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Zusammenfassung

Diese Arbeit stellt einen Beitrag zur Theorie und Numerik materieller Kräfte der Kon-

tinuumsmechanik dar. Im Gegensatz zu physikalischen Kräften wirken materielle Kräfte

in der sogenannten materiellen Mannigfaltigkeit bzw. im materiellen Raum. Dabei re-

präsentieren Sie die Tendenz von Defekten wie beispielsweise Risse oder Einschlüsse sich

relativ zu dem sie umgebenden Material zu bewegen. Materielle Kräfte eignen sich so-

mit insbesondere für eine Bewertung von Defekten und den oftmals damit verbundenen

Singularitäten in festen Körpern.

Konzeptionell untersucht die übliche räumliche Formulierung der Kontinuumsmechanik

die Antwort auf Variationen räumlicher Plazierungen ‘physikalischer Partikel’ gegenüber

dem umgebenden Raum. Demgegenüber wird in der materiellen Formulierung der Konti-

nuumsmechanik die Antwort auf Variationen materieller Plazierungen ‘physikalischer Par-

tikel’ gegenüber dem umgebenden Material betrachtet. Die erste Betrachtungweise führt

dabei auf die üblichen räumlichen (newtonschen, mechanischen) Kräfte, die ‘physikalische

Partikel’ durch den umgebenden Raum treiben, während die letztere Betrachtungwei-

se auf materielle (eshelbysche, Konfigurations-) Kräfte führt, die ‘physikalische Partikel’

durch das umgebende Material treiben.

Die Betrachtung von materiellen Kräften geht auf die Arbeiten von Eshelby [27, 29]

zurück, der als erster Kräfte untersuchte, die auf Defekte wirken. Die in der materiel-

len Impulsbilanz auftauchenden materiellen Spannungen werden daher oftmals auch als

Eshelby Spannungen bezeichnet. Basierend auf dem Konzept der materiellen Kräfte stellt

die Analyse von verschiedenen Defekten, wie z.B. Rissen, Versetzungen, Einschlüsse, Pha-

sengrenzen und ähnlichem, hinsichtlich ihrer Tendenz, sich gegenüber dem umgebenden

Material zu bewegen, einen aktiven Zweig der Kontinuumsmechanik und -physik dar.

Die theoretische Seite der Arbeit umfasst die Aufarbeitung und Formulierung der materi-

ellen Bilanzaussagen für konservative und insbesondere nichtkonservative Problemstellun-

gen, die sich aus der Betrachtung des inversen Deformationsproblems ergeben. Basierend

auf diesen theoretischen Arbeiten sowie aufgrund der Verwendung der Finite Element

Methode zur Lösung des direkten Deformationsproblems bietet sich eine Galerkin Dis-

kretisierung der schwachen Form der materiellen Bilanzaussagen an. Hieraus resultiert

eine Finite Element Methode, die Methode der Materiellen Kräfte, deren Knotengrößen

diskreten materiellen Einzelkräften entsprechen. Ein Hauptziel auf der numerischen Seite

war es daher, die Implementierung verschiedener konservativer und insbesondere nicht-
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2 Zusammenfassung

konservativer Problemstellungen zu realisieren und anhand unterschiedlicher Beispiele die

Kinetik von Defekten numerisch zu untersuchen.

Als konservative Problemstellung wird die geometrisch nichtlineare Hyperelastizität dis-

kutiert. Hierbei zeigt sich eine Dualität zwischen der materiellen Formulierung der Kon-

tinuumsmechanik und der üblichen räumlichen Formulierung. Es zeigt sich, daß das in

der Bruchmechanik häufig verwendete J-Integral, das zur Bewertung von Rissen heran-

gezogen wird, einer materiellen Einzelkraft entspricht, die an der Rißspitze angreift und

sozusagen den Riß durch das Material treiben möchte. Gängige numerische Verfahren zur

Berechnung des J-Integralwertes, wie z.B. Gebietsintegrale, lassen sich im Rahmen der

Theorie Materieller Kräfte somit als Gleichgewichtsbetrachtungen von materiellen Kräften

in der materiellen Konfiguration interpretieren. Als Modellbeispiele wurden Risse in hy-

perelastischen Materialien untersucht. Es wurde hierbei auch die Spezialisierung auf den

geometrisch linearen Fall durchgeführt, um einen Vergleich mit bereits bekannten Ergeb-

nissen aus der geometrisch linearen Fließbruchmechanik (Ramberg-Osgood Stoffgesetz)

durchzuführen. Anhand von numerischen Simulationen konnte eine gute Übereinstim-

mung zwischen der Methode der materiellen Kräften und den klassischen Verfahren zur

Berechnung des J-Integralwertes dargestellt werden. Im geometrisch nichtlinearen Fall

konnte weiterhin gezeigt werden, daß die materielle Einzelkraft, die an einer Rißspitze

wirkt, ein gut geeignetes Rißabknickkriterium ist.

Für nichtkonservative Systeme wurden folgende Problemstellungen diskutiert:

• gekoppelte Problemstellungen der Thermomechanik

• gekoppelte Problemstellungen der Kontinuumsschädigungsmechanik

• geometrisch nichtlineare Plastomechanik

• geometrisch lineare Einkristallplastizität

• geometrisch lineare von Mises Plastizität

In all diesen Problemstellungen treten lokale Änderungen von Inhomogenitäten in Ma-

terialien auf. Diese können auf elegante Weise mit zusätzlich auftretenden materiellen

Volumenkräften charakterisiert werden. Verursacht werden diese durch inhomogene Feld-

verläufe in den zusätzlichen Zustandsvariablen (z.B. Temperatur, Schädigungsparameter

oder interne plastische Variablen). Eine der numerischen Hauptziele dieser Arbeit war

nun, diese Gradienten numerisch zu berechnen um damit die materiellen Volumenkräfte

ermitteln zu können.

Hierzu wurden im wesentlichen zwei Lösungsstrategien verfolgt. Erstens wurde die ent-

sprechende Zustandsvariable als zusätzlicher Freiheitsgrad auf ‘Knoten-Ebene’ in der FE-

Diskretisierung eingeführt (Thermomechanik, Kontinuumsschädigungsmechanik und Ein-

kristallplastizität). Dabei müssen in Falle der Kontinuumsschädigungsmechanik und der

Einkristallplastizität die Kuhn-Tucker-Bedingungen auf ‘Knoten-Ebene’ erfüllt werden,
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was durch die Verwendung eines ‘active set search’-Algorithmus gelöst wurde. Nach der

numerischen Lösung der Problemstellung können die Gradienten durch Standardmetho-

den der FE berechnet werden. Im Rahmen der zweiten Lösungsstrategie wurden die Zu-

standsvariablen klassisch als interne Variablen auf ‘Integrationspunkt-Ebene’ eingeführt

(Einkristallplastizität und von Mises Plastizität) und dann mit einer L2-Projektion auf

die Knoten-Ebene projiziert. Somit kann die Berechnung der Gradienten wieder mit Stan-

dardmethoden erfolgen. Der Vorteil dieser Methode ist der geringere numerische Aufwand,

da die Kuhn-Tucker-Bedingungen nur lokal auf ’Integrationspunkt-Ebene’ erfüllt werden

müssen.

Anhand numerischer Beispiele wurde die Effizienz und die Zuverlässigkeit der entwickel-

ten Methoden aufgezeigt. Insbesondere ist es hiermit möglich, materielle Kräfte für den

Fall nichtkonservativer, d.h. dissipativer Rißprobleme oder auch Problemstellungen mit

Einschlüssen in dissipativer Materialien zu berechnen.
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Chapter 1

Introduction

In contrast to the spatial motion setting, the material motion setting of continuum me-

chanics is concerned with the response to variations of material placements of particles

with respect to the ambient material. The material motion point of view is thus extremely

prominent when dealing with defect mechanics to which it has originally been introduced

by Eshelby [27, 28] more than half a century ago. Its primary unknown, the material de-

formation map is governed by the material motion balance of momentum, i.e. the balance

of material forces on the material manifold in the sense of Eshelby.

Material (configurational) forces are concerned with the response to variations of mate-

rial placements of ’physical particles’ with respect to the ambient material. Opposed to

that, the common spatial (mechanical) forces in the sense of Newton are considered as

the response to variations of spatial placements of ’physical particles’ with respect to the

ambient space. Material forces as advocated by Maugin [59, 60] are especially suited for

the assessment of general defects as inhomogeneities, interfaces, dislocations and cracks,

where the material forces are directly related to the classical J-Integral in fracture me-

chanics, see also Gross & Seelig [31]. Another classical example of a material — or rather

configurational — force is emblematized by the celebrated Peach–Koehler force, see e.g.

the discussion in Steinmann [98].

Classically, the assessment of hyperelastic fracture mechanics problems is based on the

evaluation of the J-integral, see Cherepanov [16] and Rice [80]. Thereby, the J-integral

basically integrates the normal projection of the so-called Eshelby stress over a sur-

face/line enclosing the crack tip. For hyperelastic problems without material inhomo-

geneities, the J-integral possesses the computationally attractive property of integration-

path-independence. Nevertheless the approach of the J-integral possesses some possible

drawbacks, e.g., the additional definition of an integration surface/line or the necessary

projection of the Eshelby stress from the quadrature points to the integration surface/line.

This obviously demands non–standard Finite Element data structures, see Shih & Needle-

man [86, 87]. Moreover, the J-integral is essentially restricted to fracture mechanics prob-

lems. An assessment of general defects in structures, as inhomogeneities, dislocations or

interfaces is not possible.

9



10 Introduction Chapter 1

We therefore aim for a theoretical and computational set-up which circumvents the dif-

ficulties mentioned above. To this end, we consider the formulation of the geometrically

nonlinear balance equations of continuum mechanics on the material manifold. Our de-

velopments are based heavily on the exposition of the continuum mechanics of inhomo-

geneities as comprehensively outlined by Maugin [56, 58] and Gurtin [32] or Kienzler

& Herrmann [38]. Thereby, the essential ingredient is the notion of the so-called Es-

helby stresses and the material (or rather configurational) forces in the spirit of Eshelby,

that are opposed to the standard spatial forces. The new approach then consists in a

straightforward Galerkin discretization of the corresponding balance of (pseudo) momen-

tum equation proposed by Steinmann et al. [99, 95]. Thereby it turns out that the

resulting scheme resembles approaches like e.g. those advocated by Braun [12] or Li &

Needleman [48]. The resulting node point quantities, which we shall denote material node

point forces, are demonstrated to be of the same qualitative and quantitative importance

for the assessment of a fracture mechanics problem as the classical J-integral, see also

Steinmann [94, 99], and for additional applications see Müller et al. [72], Müller & Maugin

[73] and Kolling et al. [39].

One aim of this work is to discuss a further improvement of the Material Force Method

concerning the reliability and accuracy of the evaluation of the vectorial J-integral. For

comparison purposes this is validated by a classical fracture mechanics problem formulated

in a modified boundary layer style and using the Ramberg-Osgood material type.

Another main goal of this work is to formulate the theory and numerics of non-conservative

systems like thermomechanical problems, continuum damage mechanics and plasticity.

In thermomechanical problems the coupling between the mechanical and the thermal re-

sponse is twofold. On the one hand, we typically encounter thermally induced stresses,

i.e., the deformation of the structure strongly depends on the temperature field it is sub-

jected to. On the other hand, large deformations induce structural heating, a phenomenon

which is classically referred to as Gough–Joule effect. Traditionally, thermodynamic ef-

fects are characterized in the spatial motion context within the framework of rational

thermodynamics, see e.g. Truesdell & Toupin [106], Coleman & Noll [18], Truesdell &

Noll [105] or the recent textbooks of Silhavý [88], Maugin [61], Haupt [35] or Liu [53].

Conceptually speaking, the spatial setting of continuum thermodynamics considers the

response to variations of spatial placements of particles with respect to the ambient space.

In a computational context, the basic concern is the evaluation of the spatial motion bal-

ance of momentum and energy, whereby the former essentially represents the equilibrium

of spatial forces in the sense of Newton. The resulting coupled system of equations defines

the evolution of the spatial deformation map and the temperature field. In a finite element

context, first attempts towards a numerical solution of finite thermo–elasticity date back

to the early work of Oden [74]. A detailed analysis of different staggered solution tech-

niques based on an isothermal or an adiabatic split can be found in Armero & Simo [5]. A

comparison with a fully monolithic solution technique has been carried out by Miehe [65],

[66], [67] and Simo [91]. In the present work, we shall focus on a simultaneous solution of
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the balance of momentum and energy, which has also been documented by Simo & Miehe

[92], Reese & Govindjee [78], Reese & Wriggers [79], Reese [77] or Ibrahimbegovic, Chorfi

& Gharzeddine [37]. However, in contrast to the above mentioned references, we shall

restrict ourselves to the thermo–hyperelastic case in the sequel.

The evolution of the deformation field and the temperature field is typically accompanied

with the local rearrangement of material inhomogeneities which can be characterized ele-

gantly within the material motion context, see e.g. the recent contributions by Steinmann

[96], [97] and Kuhl & Steinmann [46], [45]. From a computational point of view, the

material version of the balance of momentum is particularly attractive since it renders

additional information without requiring the solution of a completely new system of equa-

tions. Rather, it can be understood as a mere postprocessing step once the spatial motion

problem has been solved. Due to its computational efficiency, the material force method

has been applied to a number of different problem classes such as thermomechanics by

Shih, Moran & Nakamura [85]. Since the resulting discrete material forces typically indi-

cate a potential energy increase upon replacement of the material node point positions,

spurious material forces can be utilized to improve the finite element mesh. To this end,

Kuhl, Askes & Steinmann [42, 7] analyzed the staggered and the fully coupled solution of

the spatial and the material motion balance of momentum introducing both the spatial

and the material motion map as primary unknowns. Within the present contribution,

however, we shall restrict ourselves to a purely postprocessing–based analysis of the ma-

terial motion problem. Nevertheless, for the class of inelastic problems considered herein,

an additional contribution in the material motion momentum source has to be taken

into account. In the context of thermodynamics, this additional term can basically be

expressed as a function of the temperature gradient and the entropy density. The elabo-

ration of the influence of the temperature field on the material forces thus constitutes the

one main objective of the present work.

Also a concern of this work is to establish a theoretical and computational link between

defect mechanics and continuum damage mechanics with the use of the Material Force

Method. In the present work we combine an internal variable approach towards damage

mechanics with the material force concept. Thereby distributed material volume forces

that are conjugated to the damage field arise. Thus the Galerkin discretization of the

damage variable as an independent field becomes necessary in addition to the deforma-

tion field. An early attempt to set up a mixed finite element formulation, whereby an

internal strain-like variable is discretized in addition to the displacement field was pro-

vided by Pinsky [76]. An alternative proposal based on a complementary mixed finite

element formulation, whereby the loading condition is enforced in weak sense at the el-

ement level is due to Simo, Kennedy & Taylor [89]. Likewise, a two-field finite element

formulation for elasticity coupled to damage was proposed by Florez-Lopez et al. [30].

Here, consequently, we set up on the one hand the classical balance of momentum and on

the other hand a constitutive subproblem corresponding to the Kuhn-Tucker conditions,

which are enforced in a weak sense in a coupled fashion. The coupled problem will be
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solved using a monolithic solution strategy. The resulting material node point quantities,

which we shall denote discrete material node point forces are demonstrated to be closely

related to the classical J-integral in fracture mechanics problems.

Furthermore, we focus on material format of the quasi-static balance of momentum of a

geometrically nonlinear problem involving elasto-plasticity. Our derivation is motivated

by the work of Epstein and Maugin [23, 25, 24], Maugin [56] and Cleja-Tigoiu and Maugin

[17].

As a an example we consider in particular the modeling of (associated) geometrically lin-

ear crystal–plasticity; for an overview see e.g. Asaro [6], the monographs by Besseling and

van der Giessen [11] and Phillips [75] and references cited therein, or Vidoli and Sciarra

[107] where an alternative multi–field approach is advocated. The underlying numeri-

cal formulation is later on applied to single–slip crystal–plasticity with only one possibly

active sliding parameter; for detailed discussions on the general algorithmic formulation

we refer the reader to Cuitiño and Ortiz [20], Steinmann and Stein [100], Miehe [69, 70]

and Miehe and Schröder [71]. This specific assumption, however, enables us to consider

a rather concise framework and thereby allows to focus on the one concern of this con-

tribution, namely to elaborate two different numerical approaches within a general finite

element setting:

On the one hand, the active sliding parameter is treated as an internal variable. With

this field available on the ‘integration point level’, standard interpolation techniques can

be applied such that the slip parameter is L2–projected to the node points of the finite

element mesh, see e.g. Zienkiewicz and Taylor [109]. It is then straightforward to com-

pute the corresponding spatial gradient which is a key ingredient to the material force

method. Apparently, loading and unloading conditions, i.e. the Kuhn–Tucker conditions,

are incorporated at the ‘integration point level’. In the sequel, this approach is denoted

as ‘integration point based’.

On the other hand, the sliding parameter is introduced as an additional degree of free-

dom. Again, the corresponding spatial gradient represents one of the essential fields for

the application of the material force method. In contrast to the previous formulation

the computation of this gradient field can conveniently be performed by application of

standard finite element techniques. However, loading and unloading conditions, i.e. the

Kuhn–Tucker conditions, are now introduced at the ‘node point level’ which results in

an active set search borrowed from convex nonlinear programming, compare e.g. the

monographs by Luenberger [55], Bazaraa et al. [9] or Bertsekas [10]. We will refer to this

approach as ‘node point based’ in the progression of this work.

A comparison of different numerical approaches for the integration point based — and

node point based — framework in the context of open system mechanics is given in Kuhl

et al. [44] where, however, neither an active set search nor any additional projection

algorithms for a mass–flux–free integration point based formulation are needed since the

computation of material volume forces is not in the main focus of that contribution (but

of [45]). Nevertheless, the spatial gradient of the, say, internal variable is of importance
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for the computation of the underlying material forces. As an interesting side aspect,

these gradient terms are typically introduced into the concept of higher-order gradient —

or rather non–local — continua. Especially crystalline solids have been explored within

that setting, see e.g. Kosevich [40] and Kröner [41] and references cited therein, Anthony

and Azirhi [4], Steinmann [93], Menzel and Steinmann [64], Acharya and Bassani [1],

Davini [21], Cermelli and Gurtin [13, 14], Svendsen [102] and others and e.g. Svedberg

[101, paperE] and Liebe et al. [50] for inelastic and geometrically nonlinear numerical

applications as based on the finite element method. Based on the results of crystal–

plasticity we additionally formulate the material force method for geometrically linear

von Mises type plasticity model.

The present work is mainly divided in four parts. In the first part we will introduce

the basic notions of the mechanics and numerics of material forces for a quasi-static

conservative mechanical system. In this case the internal potential energy density per unit

volume characterizes a hyperelastic material behaviour. In the first numerical example we

discuss the reliability of the material force method to calculate the vectorial J-integral of

a crack in a Ramberg-Osgood type material under mode I loading and superimposed T -

stresses. Secondly, we study the direction of the single material force acting as the driving

force of a kinked crack in a geometrically nonlinear hyperelastic Neo-Hooke material.

In the second part we focus on material forces in the case of geometrically nonlinear

thermo–hyperelastic material behaviour. Therefore we adapt the theory and numerics to

a transient coupled problem, and elaborate the format of the Eshelby stress tensor as well

as the internal material volume forces induced by the gradient of the temperature field.

We study numerically the material forces in a bimaterial bar under tension load and the

time dependent evolution of material forces in a cracked specimen.

The third part discusses the material force method in the case of geometrically nonlinear

isotropic continuum damage. The basic equations are similar to those of the thermo–

hyperelastic problem but we introduce an alternative numerical scheme, namely an active

set search algorithm, to calculate the damage field as an additional degree of freedom.

With this at hand, it is an easy task to obtain the gradient of the damage field which

induces the internal material volume forces. Numeric examples in this part are a specimen

with an elliptic hole with different semi-axis, a center cracked specimen and a cracked disc

under pure mode I loading.

In the fourth part of this work we elaborate the format of the Eshelby stress tensor

and the internal material volume forces for geometrically nonlinear multiplicative elasto-

plasticity. Concerning the numerical implementation we restrict ourselves to the case of

geometrically linear single slip crystal plasticity and compare here two different numerical

methods to calculate the gradient of the internal variable which enters the format of the

internal material volume forces. The two numerical methods are firstly, a node point based

approach, where the internal variable is addressed as an additional degree of freedom,

and secondly, a standard approach where the internal variable is only available at the

integration points level. Here a least square projection scheme is enforced to calculate
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the necessary gradients of this internal variable. As numerical examples we discuss a

specimen with an elliptic inclusion and an elliptic hole respectively and, in addition, a

crack under pure mode I loading in a material with different slip angles. Here we focus

on the comparison of the two different methods to calculate the gradient of the internal

variable.

As a second class of numerical problems we elaborate and implement a geometrically

linear von Mises plasticity with isotropic hardening. Here the necessary gradients of the

internal variables are calculated by the already mentioned projection scheme. The results

of a crack in a material with different hardening behaviour under various additional T -

stresses are given.



Chapter 2

Hyperelasticity

To set the stage and in order to introduce terminology and notation, we briefly reiterate

some key issues pertaining to the geometrically nonlinear kinematics of the quasi-static

spatial and material motion problem. This chapter based on the work which was partially

published in [22].

2.1 Duality in kinematics

2.1.1 Spatial motion problem
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Figure 2.1. Kinematics of the spatial motion problem

In the spatial motion problem in fig. 2.1, the placement x of a ‘physical particle’ in the

spatial configuration Bt is described by the nonlinear spatial motion deformation map

x = ϕ(X) (2.1)

in terms of the placement X of the same ‘physical particle’ in the material configura-

tion B0. The spatial motion deformation gradient, i.e. the linear tangent map associated

to the spatial motion deformation map, together with its determinant are then given by

15
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F = ∇Xϕ(X) and J = det F . (2.2)

Finally, typical strain measures are defined over the cotangent space to B0 and the tangent

space to Bt by the right and left spatial motion Cauchy-Green strain tensors, respectively

C = F t · g · F and b = F ·G−1 · F t. (2.3)

Hereby C can be interpreted as the spatial motion pull back of the covariant spatial

metric g and b as the push forward of the contravariant material metric G−1.

2.1.2 Material motion problem
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Figure 2.2. Kinematics of the material motion problem

In the material motion problem in fig. 2.2 the placement X of a ‘physical particle’ in the

material configuration B0 is described by the nonlinear material motion deformation map

X = Φ(x) (2.4)

in terms of the placement x of the same ‘physical particle’ in the spatial configuration Bt.

The material motion deformation gradient, i.e. the linear tangent map associated to the

material motion deformation map, together with its determinant are then given by

f = ∇xΦ(x) and j = det f . (2.5)

Finally, typical strain measures are defined over the cotangent space to Bt and the tangent

space to B0 as the right and left material motion Cauchy-Green strain tensors, respectively

c = f t ·G · f and B = f · g−1 · f t (2.6)

Analog to the spatial motion problem c can be interpreted as the material motion pull back

of the covariant material metric tensor G and B by the push forward of the contravariant

spatial metric g−1.
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2.1.3 Spatial and material motion problem

The direct and inverse motion description are linked together by the identity maps in Bt

and B0

idBt = ϕ ◦Φ(x) = ϕ(Φ(x)) and idB0 = Φ ◦ϕ(X) = Φ(ϕ(X)) (2.7)

whereby ◦ denotes the composition of two functions.

In addition the direct and inverse deformation gradients F and f are related by

F−1 = f ◦ϕ(X) = f(ϕ(X)) and f−1 = F ◦Φ(x) = F (Φ(x)). (2.8)

Without danger of confusion we make no distinction between F−1 and f in the spatial

motion problem or f−1 and F in the material motion problem, respectively, in our further

definitions.

Furthermore, the spatial Cauchy-Green strain tensors C and b and the corresponding

material Cauchy-Green strain tensors c and B are related via their inverses.

C−1 = B and b−1 = c (2.9)

2.2 Duality in balance of momentum

In the sequel, we shall derive the appropriate formats of the balance of momentum and

emphasize the formal duality of spatial and material forces acting on arbitrary subdomains

of a body with the corresponding quasi-static equilibrium conditions.

Thereby, in order to introduce the relevant concepts, we merely consider a conservative

mechanical system. In this case, the internal potential energy density Wτ per unit volume

in Bτ with τ = 0, t characterizes the hyperelastic material response and is commonly

denoted as stored energy density. Moreover, an external potential energy density Vτ char-

acterizes the conservative loading. Then the conservative mechanical system is essentially

characterized by the total potential energy density per unit volume Uτ = Wτ + Vτ .

2.2.1 Spatial motion problem

For the spatial motion problem the quasi-static balance of momentum reads

−DivΠ t = b0 =⇒ −divσt = bt. (2.10)

The two-point description stress Π t and the spatial description stress σt, see fig. 2.3,

which are called the spatial motion first Piola-Kirchhoff and Cauchy stresses, have been

introduced here. For the present case of a conservative mechanical system, they can be

derived by means of the potential energy density as
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Figure 2.3. Kinetics of the spatial motion problem

Π t = ∂F U0 =⇒ σt = jΠ t · F t = UtI − f t · ∂fUt. (2.11)

Thereby the second expression in eq. 2.11 denotes the energy-momentum format of the

spatial motion Cauchy stress. For the sake of conciseness and without danger of confusion,

we omitted the explicit indication of the spatial or material parametrization.

Moreover, distributed volume forces bτ per unit volume follow from the explicit spatial

gradient of the total potential energy density

b0 = −∂xU0 =⇒ bt = jb0 (2.12)

In addition, the spatial motion stresses St = f ·Π t and M t = F t ·Π t in material de-

scription are defined for completeness. Here, S and M denote the second Piola-Kirchhoff

and the Mandel stress in the spatial motion problem, respectively.

We now observe an arbitrary subdomain Vt with boundary ∂Vt of the spatial configuration

Bt. The subdomain is loaded along ∂Vt by spatial description surface tractions in terms

of the spatial description Cauchy stress σ (projected by the spatial surface normal n)

and within Vt by spatial description volume forces bt, e.g. gravity. Then we may define

the resultant spatial description surface and volume forces acting on Vt asfsur =

∫

∂Vt

σt · nda and fvol =

∫

Vt

bt dv (2.13)

Finally, the statement of quasi-static equilibrium of spatial forces for the subdomain with

spatial configuration Vt is simply written asfsur + fvol = 0 (2.14)

The local format of eq. 2.14 coincides with eq. 2.10.

2.2.2 Material motion problem

For the material motion problem, the quasi-static balance of momentum reads
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Figure 2.4. Kinetics of the material motion problem

−DivΣt = B0 ⇐= −divπt = Bt. (2.15)

The two-point description stress πt and the material description stress Σt, see fig. 2.4,

which may be called the material motion first Piola-Kirchhoff and Cauchy stresses, have

been introduced here. For the present case of a conservative mechanical system, they

follow from the potential energy density as

Σt = Jπt · f t = U0I − F t · ∂F U0 ⇐= πt = ∂fUt (2.16)

Thereby, the first expression in eq. 2.16 denotes the energy-momentum format of the

material motion Cauchy stress, which is commonly denoted as the Eshelby stress. For

the sake of conciseness and without danger of confusion, we again omitted the explicit

indication of the spatial or material parametrization.

Moreover, distributed volume forces Bτ per unit volume follow from the explicit material

gradient of the potential energy density with respect to the material coordinates

B0 = JBt ⇐= Bt = −∂XUt. (2.17)

Corresponding to the spatial motion problem, we can also define the second Piola-Kirchhoff

and the Mandel stress in spatial description for completeness. We thus obtain st = F ·πt

and mt = f t · πt, respectively, in the material motion problem.

We now observe an arbitrary subdomain V0 with boundary ∂V0 of the material configura-

tion B0. The subdomain is loaded along ∂V0 by surface tractions in terms of the material

Cauchy stress Σ (projected by the material surface normal N) and within V0 by material

volume forces B0, stemming e.g. from material inhomogeneities. We may then define the

resultant material description surface and volume forces acting on V0 asFsur =

∫

∂V0

Σt ·N dA and Fvol =

∫

V0

B0 dV. (2.18)

Finally, the statement of quasi-static equilibrium of material forces for the subdomain

with material configuration V0 is simply written as
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Again the local format of eq. 2.19 coincides with eq. 2.15.

2.3 J-Integral from equilibrium of material forces

In order to highlight the notion of material forces, we shall relate this concept to the

familiar J-integral in fracture mechanics. To this end, we consider an arbitrary subdomain

V0 of the material configuration B0, see fig. 2.5. The boundary ∂V0 is thereby assumed to

be decomposed into a regular and a singular part ∂V0 = ∂Vr
0 ∪ ∂Vs

0 with ∅ = ∂Vr
0 ∩ ∂Vs

0 .

The singular part of ∂V0 denotes a crack tip in this case.
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Figure 2.5. Arbitrary subdomain with regular and singular part of its boundary

For nonvanishing material description volume forces B0 6= 0 within V0, eq. 2.19 renders

the following relation between the material description surface and volume forces

∫

∂V0

Σt ·N dA = −
∫

V0

B0 dV. (2.20)

After decomposing the boundary ∂V0 into a regular and a singular boundary part, the

resulting material force acting on the singular boundary is given byFsur,s :=

∫

∂Vs
0

Σt ·N dA = −
∫

∂Vr
0

Σt ·N dA−
∫

V0

B0 dV (2.21)

Please note that this material force coincides with a vectorial generalization of the J-

integral as originally proposed by Rice1 [80] modulo a change of sign which stems from

the integration along the regular part instead of integration along the singular part of

∂V0.

1Rice proposed in his work the first component as the J-integral.
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−Fsur,s = J = lim
∂Vr

0→0

∫

∂Vr
0

Σt ·N dA (2.22)

Issues of path dependence of the J-integral can now easily be discussed based on straight-

forward material equilibrium considerations.

2.4 Virtual work and discretization

In the following, the quasi-static balances of momentum for the spatial and the material

motion problem will be recast in their weak or rather variational form. The variational for-

mats of the quasi-static balances of momentum readily lead to a straightforward Galerkin

discretization. As a result, discrete spatial and material node point (surface) forces are

obtained.

2.4.1 Spatial motion problem

The pointwise statement in eq. 2.10 for the solution of the spatial motion problem is mul-

tiplied by a test function (spatial virtual displacement) w under the necessary smoothness

and boundary assumptions to render the virtual work expression

∫

∂Bt

w · σt · nda

︸ ︷︷ ︸wsur

=

∫

Bt

∇xw : σt dv

︸ ︷︷ ︸wint

−
∫

Bt

w · bt dv

︸ ︷︷ ︸wvol

∀ w. (2.23)

Whereby wsur denotes the spatial variation of the total bulk potential energy due to

its complete dependence on the spatial position, whereas the contributions wint and wvol

denote the spatial variations of the total bulk potential energy due to its implicit and

explicit dependence on the spatial position, respectively.

The quasi-static equilibrium of spatial forces in eq. 2.14 is recovered, if arbitrary uniform

spatial virtual displacements w = θ are selected for the evaluation of eq. 2.23

θ ·
[∫

∂Bt

σt · n da+

∫

Bt

bt dv

]

= 0 ∀ θ (2.24)

The domain is discretized in nel elements with Bh
0 = ∪nel

e=1Be
0 and Bh

t = ∪nel
e=1Be

t as shown

in fig. 2.6. The geometry in Bt and B0 is interpolated from the positions ϕn and Xn of

the nen nodes by shape functions Nn on each element, with n ∈ [1, nen] denoting the local

node numbering

ϕh|Be
t

=
nen∑

n=1

Nnϕn and Xh|Be
0

=
nen∑

n=1

NnXn. (2.25)
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Figure 2.6. Discretization of the spatial motion problem

Thus, the elementwise discretization of the virtual spatial displacement field w into nodal

values wn which are interpolated as well by the shape functions Nn in the spirit of an

isoparametric expansion, renders the representation

wh|Be
t

=

nen∑

n=1

Nnwn (2.26)

Furthermore, the elementwise Jacobi matrix

J0 = ∇ξX
h|Be

0
=

∑

n=1

Xk ⊗∇ξN
k
X (2.27)

is needed to compute the material gradients ∇X{•} = ∇ξ{•} · J -1
0 by the chain rule.

The corresponding gradients of the virtual spatial displacement field are given in each

element by

∇Xwh|Be
t

=

nen∑

n=1

wn ⊗∇XN
n and ∇xw

h|Be
t

=

nen∑

n=1

wn ⊗∇xN
n (2.28)

Lastly, based on the above discretizations, the corresponding deformation gradient F

takes the elementwise format

F h|Be
0

=
∑

k

ϕk ⊗∇XN
k
ϕ (2.29)

The elementwise expansions for the internal and the volume contributions therefore readwint
e =

nen∑

n=1

wn ·
∫

Be
t

σt · ∇xN
n dv and wvol

e =
nen∑

n=1

wn ·
∫

Be
t

btN
n dv (2.30)
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Finally, considering the arbitrariness of the spatial virtual node point displacements wn,

the global discrete spatial node point forces characterizing external spatial surface loads

are computed as fhsur = A
nel

e=1

∫

Be
t

[
σt · ∇xN

n − btN
n
]

dv (2.31)

In conclusion of these considerations, the discrete spatial node point (surface) forces are

thus energetically conjugated to variations of the spatial node point positions.

2.4.2 Material motion problem

The pointwise statement in eq. 2.15 for the solution of the material motion problem

is multiplied by a test function (material virtual displacement) W under the necessary

smoothness and boundary assumptions to render the virtual work expression

∫

∂B0

W ·Σt ·N dA

︸ ︷︷ ︸Wsur

=

∫

B0

∇XW : Σt dV

︸ ︷︷ ︸Wint

−
∫

B0

W ·B0 dV

︸ ︷︷ ︸Wvol

∀W . (2.32)

Whereby Wsur denotes the material variation of the total bulk potential energy due to its

complete dependence on the material position, whereas the contributions Wint and Wvol

denote the material variations of the total bulk potential energy due to its implicit and

explicit dependence on the material position, respectively.

The quasi-static equilibrium of material forces in eq. 2.19 is recovered if arbitrary uniform

material virtual displacements W = Θ are selected for the evaluation of eq. 2.32

Θ ·
[∫

∂B0

Σt ·N dA +

∫

B0

B0 dV

]

= 0 ∀ Θ. (2.33)
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Figure 2.7. Discretization of the material motion problem
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Next the domain is discretized in nel elements with Bh
t = ∪nel

e=1Be
t and Bh

0 = ∪nel
e=1Be

0, see

fig. 2.7. On each element the geometry in B0 and Bt is interpolated from the positions

Φn and xn of the nen nodes by shape functions Nn, with n ∈ [1, nen] denoting the local

node numbering

Φh|Be
0

=

nen∑

n=1

NnΦn and xh|Be
t

=

nen∑

n=1

Nnxn. (2.34)

The elementwise discretization of the virtual material displacement field W into nodal

values W n, which are interpolated as well by the shape functions Nn in the spirit of an

isoparametric expansion, renders the representation

W h|Be
0

=

nen∑

n=1

NnW n. (2.35)

Thereby, the shape functions render a globally C0-continuous interpolation by assembling

all elementwise expansions. Furthermore, the elementwise Jacobi matrix

J t = ∇ξx
h|Be

t
=

∑

n=1

xk ⊗∇ξN
k
x (2.36)

is needed to compute the gradients ∇x{•} = ∇ξ{•} · J -1
t by chain rule.

Corresponding gradients of the virtual material displacement field are given in each ele-

ment by

∇xW
h|Be

0
=

nen∑

n=1

W n ⊗∇xN
n and ∇XW h|Be

0
=

nen∑

n=1

W n ⊗∇XN
n. (2.37)

Lastly, based on the above discretizations, the corresponding gradients f and ∇xW take

the elementwise format

fh|Be
t

=
∑

k

Φk ⊗∇xN
k
Φ. (2.38)

Thereby the elementwise expansions for the internal and the volume contributions readWint
e =

nen∑

n=1

W n ·
∫

Be
0

Σt · ∇XN
n dV and Wvol

e =

nen∑

n=1

W n ·
∫

Be
0

B0N
n dV. (2.39)

Finally, considering the arbitrariness of the material virtual node point displacements

W n, the global discrete material node point forces characterizing external material surface

loads are computed asFh
sur = A

nel

e=1

∫

Be
0

[
Σt · ∇XN

n −B0N
n
]

dV. (2.40)

In conclusion of these considerations, the discrete material node point (surface) forces are

thus energetically conjugated to variations of the material node point positions.
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In summary, the Material Force Method advocated in this contribution is based essentially

on eq. 2.40. The additional computational steps pertaining to the Material Force Method

are then:

• Compute material motion stress and volume force at quadrature points

• Perform standard numerical quadrature

Thus, the method simply consists of the determination of the discrete material node point

forces corresponding to the material motion problem which are trivially computable after

the spatial motion problem has been solved. In particular, no additional data structures

or subroutines are necessary.

2.4.3 Material Force Method for J-integral evaluation

For the sake of simplicity and without loss of generality, we shall consider cases with

vanishing material volume forces B0. Recall that the discrete material node point force

given by eq. 2.40, acting on a node representing the crack tip is equal to the vectorial

J-integral. The accuracy of the numerical evaluation strongly depends on the accuracy

of the Eshelby stress in the vicinity of the crack tip. Due to the singular behaviour of

the spatial motion stresses and strains near the crack tip, the accuracy of Σ is often

insufficient within a finite element setting.

In special cases, it is possible to overcome this problem by introducing special crack tip

elements, like e.g. [8], but this is restricted to problems where the type of the singularity

in the strain field is a priori known, like e.g. linear elastic crack problems.

For an improvement of the method proposed in eq. 2.40, we consider in general a given

subdomain V0 in the material configuration V0 which encloses the crack tip with the

boundary decomposed in a regular part ∂Vr
0 and a singular part ∂Vs

0 as shown in fig. 2.8.

We propose to evaluate the vectorial J-integral by the summation of all discrete material

node point forces in a given finite subdomain V0 except those which are associated with

the regular boundary ∂Vr
0J = −

n̄np∑

n=1

A
nel

e=1

∫

Be
0

[
Σt · ∇XN

n
]

dV, (2.41)

where n̄np is the number of all nodes lying in the subdomain V0 \ ∂Vr
0 .

Within a finite element setting, the discrete singular material node point (surface) forceFh
sur,s is in balance with the discrete material node point (surface) force Fh

sur,r on the

regular boundary ∂Vr
0 and the spurious discrete internal material node point (surface)

forces Fh
sur,i. Consequently, the singular material (surface) force Fsur,s is approximated

by Fsur,s ≈ −Fh
sur,r = Fh

sur,s + Fh
sur,i (2.42)
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Figure 2.8. Balance of discrete material node point (surface) forces

This proposal is motivated by the occurrence of spurious discrete internal material node

point (surface) forces Fh
sur,i in the case of a poor approximation of the singular stress and

strain fields in the vicinity of the crack tip caused by e.g. biquadratic P2 elements, as

shown in fig. 2.9a. Whereas in the case of a good approximation of the singular behaviour

by S2s elements [8] those spurious material node point forces almost vanish, see fig. 2.9b.

a. P2 elements b. S2s elements

Figure 2.9. Material forces in the vicinity of the crack tip

Our proposal is strongly related to the domain integral method introduced by Li et al.

[48] and Shih et al. [85]. They introduced a sufficiently smooth function, say W̄ ∈ H1(V0),

which takes the value one on ∂Vs
0 and zero on ∂Vr

0 and obtain for the evaluation of the

J-integral

J = −
∫

∂V r
0 ∪∂V s

0

W̄e‖ ·Σt ·N dA = −
∫

∂V0

W̄ ·Σt ·N dA with W̄ =

{
1 on ∂V s

0

0 on ∂V r
0

(2.43)
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The application of the Gauss theorem and integration by parts as well as a subsequent

standard Galerkin discretization of the preselected integration domain into n̄el elements

with Vh
0 = ∪n̄el

e=1B0e and the selection of a prescribed virtual material displacement W̄
h

=
∑nen

n=1N
nW̄ n then renders the algorithmic version of the domain integral method

J = −
n̄np∑

n=1

A
nel

e=1W̄ n ·
∫

Be
0

[
Σt · ∇XN

n
]

dV (2.44)

It is thus obvious that the proposed Material Force Method in eq. 2.41 projected to e‖ is

equivalent to the domain integral method eq. 2.44 if we choose

W̄ n =

{
e‖ if n ∈ Vh

0 \ ∂V hr
0

0 if n ∈ ∂Vhr
0

(2.45)

So this special function could be interpreted as a ’plateau’-function in Vh
0 . Although

Shih et al. [85] observed that there is no significant influence of the choice of the virtual

material displacement function W̄ n on the results, we prefer our approach based on the

notion of equilibrium of material forces. Nevertheless, the Material Force Method does

not restrict the evaluation to the e‖-direction. Vectorial material force quantities clearly

contain more information than scalar ones.

2.5 The geometrically linear case

Until now we have formulated our problem in a geometrically nonlinear setting. But

from a historical point of view the Eshelby stress and the corresponding material forces

were introduced by Eshelby [27] in geometrically linear setting. Furthermore, the (scalar-

valued) J-integral, which is a commonly used fracture parameter in fracture mechanics,

was introduced by Cherepanov [16] and Rice [80] also for a geometrically linear setting.

Therefore, we now elaborate the format of the Eshelby stress tensor for this case.

We start with the balance of linear momentum

divσt + b = 0 (2.46)

and pre-multiply this with the displacement gradient h = ∇u.

ht · divσt + ht · b = div(ht · σt)−∇ht : σt + ht · b = 0 (2.47)

Next we use the compatibility of h

∇ht : σt = σt : ∇h (2.48)

and the hyperelastic character of the stress σt = dhW , whereby W is the stored energy

density of an elastic material, so that we get
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σt : ∇h = dhW : ∇h = div(WI)− ∂xW (2.49)

Assembling all the terms we can identify the material motion quasi-static balance of

momentum

div(WI − ht · σt) + B = 0 (2.50)

and thus we identify the corresponding Eshelby stress tensor Σt and the volume force B

as

Σt = WI − ht · σt and B = −ht · b− ∂xW (2.51)

The weak form and the discretization applies in an analog manner to the geometrically

non–linear case as given in the previous sections, so that it is not necessary to repeat it

here.

In the next section we discuss the numerical performance and reliability of the proposed

Material Force Method in a first example for a straight crack in a geometrically linear

but non–linear elastic Ramberg-Osgood type material. The second example discusses the

kinking behaviour of a straight crack in a geometrically non-linear setting under mixed

mode loading.

2.6 Examples

2.6.1 Crack in a Ramberg-Osgood material

For comparison purposes, we consider a geometrically linear setting of a ‘Modified Bound-

ary Layer’-formulation (MBL-formulation) [81] of a straight, traction free crack in a

nonlinear elastic material of the Ramberg-Osgood type. Thereby the one-dimensional

stress-strain relation is given by

ǫ

ǫ0
=

σ

σ0
+ α

[
σ

σ0

]n

(2.52)

whereby σ0 and ǫ0 are the ‘yield’ stress and strain, respectively, n > 1 is the strain

hardening exponent and α is a dimensionless material constant. The first term of the

right hand side describes a linear elastic material behaviour with a Young’s modulus

E = σ0/ǫ0 whereas the second part provides a nonlinear response. Although eq. 2.52

describes a nonlinear elastic material behaviour, it is often misleadingly addressed as a

(deformation) ‘plasticity’ model. A 3d generalization of this model is given in appendix B.

The MBL-formulation is based on an isolated treatment of the crack tip region which is

independent of the surrounding specimen, see fig. 2.10a & b. Under ‘Small Scale Yielding’

(SSY) conditions this region is chosen in such a way that a small crack tip ‘yield’ zone,

dominated by the nonlinear part of eq. 2.52, is surrounded by a large elastic boundary

layer mainly controlled by the elastic part of eq. 2.52. We define the ‘yield’ or ‘plastic’
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Figure 2.10. Single Edged Tension specimen, equivalent MBL-formulation and Ram-
berg-Osgood stress-strain relation for α = 0.01

zone near the crack tip by that region where the equivalent von Mises stress σv exceeds

the ‘yield’ stress σ0.

In this work, we apply the first two terms of the asymptotic linear elastic stress series

near a crack tip given by Williams [108] as

σ =
KI√
2πr

f (θ) + Te1 ⊗ e1. (2.53)

Here KI denotes the stress intensity factor, T the T -stress which is a uniform normal

stress acting parallel to the crack faces and f(θ) are given functions depending only on

the angle θ measured counterclockwise from the positive x-axis. In all simulations, we kept

KI constant and varied the T -stress. Under SSY-conditions, the linear elastic relation for

the J-integral

Jappl = K2
I /E

′ (2.54)

with E ′ = E/[1 − ν2] for plane strain holds. To ensure SSY-conditions in the MBL-

formulation we discretized a circular area around the crack tip with a radius R at least

50 times larger than the maximum size of the ’plastic’ zone.

As known from the classical HRR-solution [36, 82], the singular strain field ǫ ∝ r−n/[n+1]

near the crack tip can be approximated by special crack tip elements derived from second

order serendipity elements which covers a combination of 1/
√
r and 1/r terms, see Bar-

soum [8]. The ‘plastic’ zone is discretized by approximately 8 second order serendipity

finite elements along the ligament.

We varied the T -stress in the range of τ = T/σ0 = ±0.1, 0.3, 0.5, 0.7, 0.9 as the hardening

parameter we choose n = 1, 7, 13, 30 and set the material parameter α = 0.01. The

resulting one-dimensional stress-strain behaviour defined by eq. 2.52 is shown in fig. 2.10c.

Since the T -stress has no influence on the value of the J-integral as shown by Rice [81]

this was used as a benchmark to check the accuracy of the J-integral within the numerical
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evaluation.

Discussion of the deformation near the crack tip and plastic zones

Although there is no influence of the T -stress on the J-integral, the deformation near the

crack tip and especially the size and shape of the ‘plastic’ zone is strongly controlled by

this quantity. The deformation behaviour is depicted in fig. 2.11 and the ‘plastic’ zones

are shown in fig. 2.122.

To quantify the influence of the T -stress on the deformation behaviour, the crack tip

opening displacement δt (CTOD) introduced by Tracy [103] was calculated for the hard-

ening parameters n = 30, 13, 7 as given in fig. 2.13. There is a significant influence of

the T -stress on the crack opening behaviour especially for larger values of n whereas a

negative T -stress leads to a larger crack opening in comparison to the equivalent positive

T -stress.

The size and shape of the ‘plastic’ zone is strongly driven by the T -stress whereas the

hardening exponent n has much less influence. At τ = 0, the maximal expansion of the

‘plastic’ zone is 50 J/σ0 under an angle of θ = 76◦ relative to the ligament. The expansion

along the ligament is about 10J/σ0 and it is 40J/σ0 perpendicular to the ligament. A

negative T -stress leads to an increasing size of the ‘plastic’ zone up to 800J/σ0 at 55◦

for τ = −0.9. In contrast to this the expansion of the ‘plastic’ zone along the ligament

is almost uneffected by a negative T -stress. Whereas a large positive T -stress τ = 0.9

in combination with a lower hardening parameter, n = 7 leads to an additional ‘plastic’

appendix in front of the crack tip. A positive T -stress initially leads to a reduction of

the size of the ‘plastic’ zone. At τ ≈ 0.25, the maximum expansion 40J/σ0 could be

found under an angle of ±90◦. With increasing T -stress, the size of the ‘plastic’ zone also

increases and the maximum expansion is shifted to greater angles. At τ = 0.9, it resides

at ±130◦ with a length of 190J/σ0. Furthermore it is observed that the expansion of the

‘plastic’ zone under an angle of ±90◦ is constant.

An overall negative T -stress leads to a large ‘plastic’ zone which is bent over the ligament.

In contrast to this, a positive T -stress causes less extended ‘plastic’ zones which are rotated

in the direction of the crack faces.

J-Integral results

For the evaluation of the J-integral within the MBL-formulation under SSY-conditions,

we choose 3 different methods. First, we take the single material force acting on the crack

tip defined by eq. 2.40. Second, we use the improved material force method defined by

2The distinct vertex which is observed in the base of the deformed crack tip especially for large

hardening exponents n is due to the use of the special crack tip elements. In the case we use standard

biquadratic triangular finit elements in the vicinity of the crack tip the profile of the deformed crack tip

is in good agreement with those of the analytical near field solution, see e.g. [31].
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Figure 2.11. Material node forces near the crack tip for different hardening exponents n
and T -stresses τ

eq. 3.51 and third, we apply a classical line integral method, see e.g. [86], using Eshelby

stresses projected to those nodes defining a circular integration path around the crack tip.

The projected nodal Eshelby stress Σp is thereby computed by a L2-projection, i.e. by

minimizing the mean root square error

∫

B0

1

2
[Σp −Σh]2 dV → Min ;

∫

B0

δΣp : [Σp −Σh] dV = 0 (2.55)

with Σp|Be
0

=
∑nen

n=1N
nΣp

n, the shape functions Nn and the non-smooth finite element

solution Σh and after using a diagonalization technique, we conceptually obtain
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Figure 2.12. ‘Plastic’ zones near the crack tip for negative and positive T -stresses and
hardening parameter n = 30, 7.
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Σp
m =

⌈

A
nel

e=1

∫

Be
0

NmNn dV

⌋−1

A
nel

e=1

∫

Be
0

NnΣh dV. (2.56)

The first 15 rings of finite elements which surround the crack tip were selected as the

integration domain for the Material Force Method in eq. 2.41. The regular boundary of

this domain was chosen as the integration path for the classical line integral method.

The results for the different methods are given in fig. 2.14. It is observed that the J-

integral evaluation by the improved Material Force Method renders the most accurate

values. The deviation for large T -stress, especially τ = ±0.9, is caused by the slightly

nonlinear behaviour of the Ramberg-Osgood-Law for ǫ < ǫ0 which is controlled by the

material parameter α and the hardening exponent n. Secondly the SSY-conditions could

only be approximately fulfilled in a finite domain. The single material force acting on the

crack tip shows the largest deviation from the applied one but the error is still less than

4%. The reason is that only the elements directly connected to the crack tip are used

for its computation and these elements do not capture the correct singular behaviour of

the stress and strain field near the crack tip. The classical line integral method based on

the projected nodal Eshelby stress typically underestimates the applied J-value by 1%

which is caused by the applied projection algorithm. For the special case n = 1 (linear

elastic material behaviour), the Material Force Method provides results with an error of

less than 0.01%.

Next, we studied the dependence of the Material Force Method on the size of the inte-

gration domain. We therefore varied the number of rings of finite elements defining the

integration domain from 03 to 10. It is observed, see fig. 2.15, that the Material Force

Method converges within 3 to 4 rings of elements to the applied J-value with an error of

less than 0.2% even in the case where we use non singular biquadratic P2 elements in the

vicinity of the crack tip.

30 rings of elements is equivalent with the discrete material node point force acting on the crack tip.
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Figure 2.14. J-integral evaluated by different methods.
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Figure 2.16. Undeformed SET specimen with ratio a/W = 0.3, 0.5, 0.7.

2.6.2 Single Edged Tension specimen

In this example study the material forces at a crack tip of a Single Edged Tension spec-

imen (SET). We choose a height to witdth ratio of H/W = 3 and three different ratios

of the crack length to width of the specimen a/W = 0.3, 0.5 and 0.7, as shown in fig.

2.16. The specimens are discretized by 1152 biquadratic finite elements and the mesh

is strongly refined in the vicinity of the crack tip. The material behaviour is modeled

by a compressible Neo-Hooke material with an Young’s modulus E = 72000 MPa and

a Poisson’s ratio ν = 0.3. The specimen are loaded at the bottom and top surfaces by

a vertical traction load. The corresponding deformed configurations and the calculated

discrete material forces are given in fig. 2.17. Although we choose elastic material param-

eters which roughly belongs to an aluminium alloy, we are aware of the fact that a real

aluminium specimen will not undergo these large elastic deformation.
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Figure 2.17. Deformed SET specimen with ratio a/W = 0.3, 0.5, 0.7.
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Figure 2.18. Single material force for geometrically linear and nonlinear simulations.

Next we compare the numerical results from the geometrically nonlinear problem with

those from the corresponding linear problem, i.e. we use a linear elastic material law. For

both cases we calculate the single material force acting at the crack tip with the Material

Force Method, see eq. 2.41. As the integration domain we choose the first 20 rings of finite

elements starting with the crack tip node. The results for the ratios a/W = 0.3, 0.5, 0.7 are

illustrated in fig. 2.18. For all three cases the geometrically linear problems overestimates

the material force considerably in comparison to the geometrically nonlinear problem.
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2.6.3 Crack kinking

Real structures with cracks are frequently subjected to all kind of stresses acting on

them simultaneously. Therefore, not only the investigation of cracks exposed to normal

stresses (mode I) is of great interest but also the fracture prediction for cracks under

superimposed normal and shear loading (mixed mode) or pure shear loading (mode II)

is necessary. Under mixed mode load it is observed, that a straight crack changes its

path more or less suddenly which is often called crack kinking. This phenomena is widely

discussed in the literature. We refer to the classical studies of Cotterell and Rice [19],

Leblond [47], Amestoy and Leblond [3] which are based on the asymptotic solution of

the stress fields of a curved or kinked crack in a linear elastic body. An other interesting

theoretical work for kinking and curving of cracks was published by Gurtin and Podio-

Guidugli [33] based on the material force acting at the crack tip. Recently, Adda-Bedia

[2] compares the path predictions of kinked cracks in brittle material with experimental

findings and we also want to mention the interesting experimental work of Richard [83].

x

y

−ϕ0
existing crack appendix

a. Crack with small appendix b. Discretization of the problem

c. Deformation under mode I loading d. Deformation under mode II loading

Figure 2.19. Discretization of a kinked crack.

In this section we want to numerically study the influence of a kinked crack under mixed

mode load conditions on the single material force acting at the crack tip. A straight
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traction free crack is extended by a small appendix crack under a certain angle ϕ0 as

depicted in fig. 2.19a. The problem is discretized by 1755 S2 elements and 24 P2 elements

which are directly connected to the crack tip node as shown in figures 2.19b.–d. The mesh

is strongly refined towards the crack tip. The overall dimension of the plate is 200 by

200 whereas the edge length of the elements at the crack tip is 0.03. The length of the

appendix lapx is choosen 100 times smaller than the crack length a, i.e. lapx/a = 1/100.

The deformation behaviour in the vincinity of the kinked crack for mode I and mode II

loading and a kink angle of ϕ0 = 40◦ can be seen in figures 2.19c. and d.

To ensure mixed mode loading we use again a ’modified boundary layer’ formulation

and applied the asymtotic stress field of the linear elastic solution of a straight crack as

boundary conditions. This reads

tp = σasymp · n =

[
KI√
2πr

f I(ϕ) +
KII√
2πr

f II(ϕ)

]

· n

where KI , KII are the Stress Intensity Factor (SIF) for mode I and mode II loading,

f I(ϕ),f II(ϕ) are given function and n is the outer normal of the boundary.

The material is modelled by a geometrically nonlinear compressible Neo-Hooke material

with the following stored energy density function W0

W0 =
λ

2
ln2 J +

µ

2
[b− I] : I − µ lnJ (2.57)

where λ, µ are the Lamé parameters which are choosen is such a way, that the Young’s

modulus E = 71600 MPa and the Poisson ratio ν = 0.33 is encountered.

The calculated discrete material forces acting at the kinked crack tip for pure mode I,

mixed mode (KII/KI = 0.5) and pure mode II loading are given in the figure 2.20 to 2.22.

Under mode I loading and a kink angle of ϕ0 = 0◦, i.e. a straight crack, the material force

is collinear to the ligament of the crack. The more the kink angle varies from the straight

crack the more we observe a deviation between the kink direction and the direction of the

material force. It seems that the material force wants to ’drive’ the kinked crack back to

the ligament of the initial crack. This is in agreement with a common crack kink criteria

which assumes, that the path taken by the crack to be one for which the local stress field

at the tip is of mode I type, i.e. the material force is collinear with the crack path, see

Cotterell and Rice [19] or Richard [83]. Additionally we find, that with increasing kink

angle the length of the material force decreases.

For mixed mode loading, e.g. we choose KII/KI = 0.5, see fig. 2.21, we see already for

the straight crack a relatively large deviation of the kink direction and direction of the

material force. This could be interpreted, that the material force tries to kink the crack

in a certain direction. With increasing kink angle we find an angle of ϕ0 ≈ −55◦ were the

kink direction and the direction of the material force are collinear. For larger angles the

material force shown the tendency to ’drive’ the crack back to this direction.
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a. ϕ0 = 0◦ b. ϕ0 = −20◦

c. ϕ0 = −40◦ d. ϕ0 = −80◦

Figure 2.20. Material forces in the vincinity of the kinked crack tip for pure mode I
loading.

The results for pure mode II loading are depicted in fig. 2.22. Even for a straight crack

the material force shows the clear tendency to ’drive’ the crack out of the ligament.

This result is in contrast to the geometrically linear theory, see e.g. Richard [83], which

predicts no tendency of the vectorial J-integral to kink the crack. We want to critically

point out, that a pure mode II deformation mode seems to be physically impossible.

The pure mode II is based on the assumption of an antisymmetric displacement field

in a symmetrically cracked specimen. But the symmetry of the specimen, at least in a

geometrically non–linear sense, must vanish if we apply a antisymmetric displacement

field. So the geometricaly non–linear theory omits this paradoxon. For a kink angle of

ϕ0 ≈ −76◦ we found the collinear case of the material force and the kink direction, which

is in good agreement with experimental results of the kink angle, see e.g. Richard [83].

To interpret the material forces acting at a kinked crack tip more clearly, we introduce

a simplified illustration of the results as depicted in fig. 2.23 for various mixed mode

loading conditions. We inverted the direction of the calculated material force, so that we

graphically see the driving direction. The dashed lines are those directions, were the kink

direction and the direction of the material force are collinear.
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a. ϕ0 = 0◦ b. ϕ0 = −20◦

c. ϕ0 = −40◦ d. ϕ0 = −80◦

Figure 2.21. Material forces in the vincinity of the kinked crack tip for mixed mode
loading (KII/KI = 0.5).

With this results at hand we compare the predicted kink angles by the material force

method with some common kink criteria known from the literature, as depicted in fig.

2.24. These are the maximal hoop stress criterion by Erdogan and Shih, the energy

density criterion by Shih et al. and a criterion of stress intensity factors for a kinked crack

with length lapx → 0 by Amestoy et al. see e.g. Richard [83] for a discussion. All of them

are based on the analytical field solution of the linear fracture mechanics. The results of

the material force method for the kinking direction of a crack under mixed mode load are

in good agreement with these classical kink criterions.
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a. ϕ0 = 0◦ b. ϕ0 = −20◦

c. ϕ0 = −40◦ d. ϕ0 = −80◦

Figure 2.22. Material forces in the vincinity of the kinked crack tip for pure mode II
loading.
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Chapter 3

Thermo-Hyperelasticity

The theoretical and numerical results given in this chapter are based on our work published

in [43].

3.1 Kinematics

Because we now take also transient, i.e. time dependent, behaviour into account we shall

briefly review the underlying geometrically nonlinear kinematics of the spatial and the

material motion problem within this framework. While the classical spatial motion prob-

lem is based on the idea of following physical particles from a fixed material position

X through the ambient space, the material motion problem essentially characterizes the

movement of physical particles through the ambient material at fixed spatial position x.

3.1.1 Spatial motion problem

Let B0 denote the material configuration occupied by the body of interest at time t0. The

spatial motion problem is thus characterized through the nonlinear spatial deformation

map

x = ϕ ( X, t ) : B0 → Bt (3.1)

assigning the material placement X ∈ B0 of a physical particle to its spatial placement

x ∈ Bt. The related spatial deformation gradient F

F = ∇Xϕ (X, t) : TB0 → TBt (3.2)

defines the linear tangent map from the material tangent space TB0 to the tangent space

TBt while its Jacobian will be denoted as J = det F > 0. We shall introduce the right

Cauchy–Green strain tensor C = F t ·g ·F , i.e. the spatial motion pull back of the spatial

metric g as a typical strain measure of the spatial motion problem. In what follows, the

material time derivative of an arbitrary quantity {•} at fixed material placement X will

be denoted as Dt{•} = ∂t{•}|X. Accordingly, the spatial velocity v can be introduced as

45
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Figure 3.1. Spatial motion problem: Kinematics

the material time derivative of the spatial motion map as v = Dtϕ (X, t). The gradient

and the divergence of an arbitrary quantity {•} with respect to the material placement

will be denoted as ∇X and Div , respectively.

3.1.2 Material motion problem

Likewise, let Bt denote the spatial configuration occupied by the body of interest at time

t. Guided by arguments of duality, we can introduce the material deformation map Φ

X = Φ ( x, t ) : Bt → B0 (3.3)

defining the mapping of the spatial placement of a physical particle x ∈ Bt to its material

placement X ∈ B0. Correspondingly, the material deformation gradient f
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Figure 3.2. Material motion problem: Kinematics

f = ∇xΦ (x, t) : TBt → TB0 (3.4)

defines the related linear tangent map from the spatial tangent space TBt to the material

tangent space TB0 with the related material Jacobian j = det f > 0. In complete

analogy to the spatial motion case, we can introduce the material motion right Cauchy
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Green strain tensor c = f t · G · f , i.e. the material motion pull back of the material

metric G. To clearly distinguish between the spatial and the material motion problem,

we shall denote the spatial time derivative of a quantity {•} at fixed spatial placements

x as dt{•} = ∂t{•}|x. It defines the material velocity V as the spatial time derivative of

the material motion map V = dt Φ (x, t). Moreover, let ∇x and div denote the gradient

and divergence of an arbitrary quantity {•} with respect to the spatial placement.

3.1.3 Spatial vs. material motion kinematics

The spatial and the material motion problem are related through the identity maps in

B0 and Bt while the corresponding deformation gradients are simply related via their

inverses as F−1 = f ( ϕ(X, t), t ) and f−1 = F ( Φ(x, t), t ). Moreover, the spatial and

the material velocity are related via the following fundamental relations V = −f · v
and v = −F · V which can be derived from the total differentials of the spatial and

material identity map in a straightforward way, see e.g. Maugin [56] or Steinmann [97].

Recall, that the material and spatial time derivative of any scalar– or vector–valued

function {•} are related through the Euler theorem as Dt{•} = dt{•} + ∇x{•} · v and

dt{•} = Dt{•} + ∇X{•} · V . Moreover, the material and the spatial time derivative

of a volume specific scalar– or vector–valued function {•}0 = ρ0 {•} and {•}t = ρt {•}
characterized in terms of the material and spatial density ρ0 and ρt are related through

the spatial and material motion version of Reynold’s transport theorem as j Dt{•}0 =

dt{•}t + div ( {•}t ⊗ v ) and J dt{•}t = Dt{•}0 + Div ( {•}0 ⊗ V ).

3.1.4 Spatial motion problem

For the spatial motion problem, the balance of momentum balances the rate of change of

the spatial momentum p0 = ρ0 g ·v which is nothing but the material velocity v weighted

by the material density ρ0 with the momentum flux Π t, i.e. the first Piola–Kirchhoff

stress tensor, and the momentum source b0.

Dt p0 = DivΠ t + b0 (3.5)

Recall, that in general, the momentum source b0 consists of an external and an internal

contribution as b0 = bext
0 + bint

0 . The second fundamental balance equation in thermo-

mechanics is the balance of energy, which can be stated in the following entropy–based

format.

θDt S0 = −Div Q +Q0 + D0 − Dcon
0 (3.6)

In the above equation, S0 denotes the material entropy density while Q and Q0 are the

material heat flux vector and the material heat source, respectively. Moreover, D0 denotes

the material dissipation power, which can be understood as the sum of a convective and a

local part, as D0 = Dcon
0 +Dloc

0 . Following the standard argumentation in classical rational
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thermodynamics, we shall assume the convective part Dcon
0 = −Q ·∇X ln θ ≥ 0 to be non–

negative throughout and the local part Dloc
0 = 0 to vanish identically, thus guaranteeing

that D0 ≥ 0. In what follows, we shall consider a hyperelastic material characterized

through the free energy density Ψ0 = Ψ0 (F , θ; X) being a function of the spatial motion

deformation gradient F and the absolute temperature θ with a possible explicit depen-

dence of the material placement X. The evaluation of the spatial motion version of the

Clausius–Planck inequality thus renders the definition of the first Piola–Kirchhoff stress

tensor Π t and the material entropy density S0 as thermodynamically conjugate variables

to the spatial motion deformation gradient F and the absolute temperature θ. Moreover,

it turns out that the internal forces bint
0 of the spatial motion problem vanish identically,

compare e.g. Steinmann [97].

Π t = DF Ψ0 S0 = −DθΨ0 bint
0 = 0 (3.7)

The material time derivative of the entropy density S0 can thus be expressed in the

following format, Dt S0 = Dθ S0 Dt θ − Dθ Π t : DtF . With these results at hand, we can

recast the entropy–based balance of energy (3.6) in its more familiar temperature–based

format,

c0 Dt θ = −Div Q +Q0 +Qmech
0 (3.8)

with the specific material heat capacity at constant deformation c0 = θDθ S0 and the

thermomechanical coupling term Qmech
0 = θDθΠ

t : DtF which is typically responsible

for the so–called Gough–Joule effect.

3.1.5 Material motion problem

Conceptually speaking, the balance of momentum of the material motion problem follows

from a complete projection of the classical momentum balance (3.5) onto the material

manifold. It balances the time rate of change of the material motion momentum P 0 =

ρ0 C · V with the material motion momentum flux πt − TtF
t and momentum source

Bt + ∂ΦTt.

jDt P 0 = div (πt − TtF
t) + Bt + ∂ΦTt (3.9)

Note, that in the transient case, the classical static material momentum flux πt has to

be modified by the correction term Tt F
t in terms of the kinetic energy density Tt =

ρtV · C · V /2. Likewise, the material volume force Bt = Bext
t + Bint

t which typically

consists of an external and an internal contribution contains an additional transient term

∂ΦTt. The balance of energy of the material motion problem can be stated in the following

entropy–based format,

j θDt S0 = −div q +Qt + Dt − Dcon
t (3.10)

with q and Qt denoting the spatial heat flux vector and heat source, respectively. The

spatial dissipation Dt consists of a convective and a local contribution Dt = Dcon
t + Dloc

t



Section 3.2 Weak form 49

with Dcon
t = −q ·∇x ln θ ≥ 0 and Dloc

t = 0 vanishing identically, such that Dt ≥ 0 is a priori

guaranteed for the hyperelastic materials considered in the sequel. Next, we introduce

the free energy density Ψt = Ψt (f , θ,Φ) as a function of the material motion deformation

gradient f , the absolute temperature θ and the material placement Φ. The evaluation of

the material motion version of the Clausius–Planck inequality according to Steinmann [97]

renders the definition of the material motion momentum flux πt as thermodynamically

conjugate variable to the material motion deformation gradient f , the entropy density

S0 as conjugate variable to the temperature θ and a definition of the internal forces Bint
t

which are generally different from zero in the material setting.

πt = dfΨt S0 = −DθΨ0 Bint
t = St∇Xθ − ∂ΦΨt (3.11)

Similar to the spatial motion problem, the balance of energy (3.10) can be cast into its

more familiar temperature–based format

ct Dt θ = −div q +Qt +Qmech
t (3.12)

by making use of the above–derived definitions.

3.1.6 Spatial vs. material quantities

While the material motion version of the balance of momentum follows from a complete

projection of its spatial motion counterpart onto the material manifold, the material

motion version of the balance of energy is simply related to its spatial version through

a multiplication with the related jacobian. We can thus set up the following relations

between the spatial and material motion momentum and the corresponding flux and

source terms.

P 0 = − F t · p0

πt = −j F t ·Π t · F t + jΨ0 F t

Bt = −j F t · b0 + j S0∇Xθ − j ∂ΦΨ0

(3.13)

The related transformation formulae for the scalar– and vector–valued quantities of the

balance of energy simply follow from the appropriate weighting with the jacobian ct = j c0,

Qt = jQ0, Qmech
t = jQmech

0 , Dt = j D0 and from the corresponding Piola transform as

q = jQ · f−t.

3.2 Weak form

As a prerequisite for the finite element formulation that will be derived in chapter 3.3, we

shall reformulate the balance of momentum and energy in their weak format.
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3.2.1 Spatial motion problem

The weak form of the spatial motion problem is based on the global residual statements

of the balance of momentum (3.5) and the temperature–based version of the balance of

energy (3.8),

rrrrrrrrrϕ (θ,ϕ) = fffffffffϕ
dyn − fffffffffϕ

sur − fffffffffϕ
vol = 0

rθ (θ,ϕ) = fθdyn − fθsur − fθvol = 0
(3.14)

whereby the dynamic, the surface and the volume contribution expand in the following

expressions.

fffffffffϕ
dyn=

∫

B0

Dt p0 dV fffffffffϕ
sur=

∫

∂B0

Π t ·N dA fffffffffϕ
vol=

∫

B0

b0 dV

fθdyn=

∫

B0

c0 Dt θ dV fθsur=

∫

∂B0

−Q ·N dA fθvol=

∫

B0

Q0 +Qmech
0 dV

(3.15)

The residual statements (3.14) are supplemented by appropriate boundary conditions

for the mechanical and the thermal fields. For the deformation problem (3.14)1, the

boundary ∂B0 is decomposed into disjoint parts as ∂Bϕ
0 ∪ ∂Bt

0 = ∂B0 and ∂Bϕ
0 ∩ ∂Bt

0 =

∅. Correspondingly, for the temperature problem (3.14)2, the equivalent decomposition

renders the disjoint boundary contributions ∂Bθ
0∪∂Bq

0 = ∂B0 and ∂Bθ
0∩∂Bq

0 = ∅. Dirichlet

boundary conditions are prescribed for the deformation ϕ and the temperature θ on ∂Bϕ
0

and ∂Bθ
0, whereas Neumann boundary conditions can be introduced for the momentum

flux Π t and the heat flux Q on ∂Bt
0 and ∂Bq

0 in terms of the outward normal N .

ϕ = ϕ̄ on ∂Bϕ
0 Π t ·N = t̄ on ∂Bt

0

θ = θ̄ on ∂Bθ
0 Q ·N = q̄ on ∂Bq

0

(3.16)

By testing the local residual statements corresponding to (3.14)1 and (3.14)2 and the

related Neumann boundary conditions (3.16)2 and (3.16)4 with the vector– and scalar–

valued test functions w and ϑ, respectively, we can derive the corresponding weak forms

gϕ ( w; θ,ϕ ) = w
ϕ
dyn + w

ϕ
int − wϕ

sur − w
ϕ
vol = 0 ∀ w in H0

1 (B0)

gθ ( ϑ; θ,ϕ ) = wθ
dyn + wθ

int − wθ
sur − wθ

vol = 0 ∀ ϑ in H0
1 (B0)

(3.17)

provided that the related fields fulfill the necessary smoothness and boundary assump-

tions. By interpreting the vector–valued test function w as the spatial virtual displace-

ments δϕ, equation (3.17)1 can be identified as the virtual work expression of the spatial

motion problem with the dynamic, the internal, the surface and the volume parts of the

virtual work given in the familiar form.

w
ϕ
dyn =

∫

B0

w ·Dt p0 dV w
ϕ
int =

∫

B0

∇Xw : Π t dV

wϕ
sur =

∫

∂Bt
0

w ·Π t ·N dA w
ϕ
vol =

∫

B0

w · b0 dV
(3.18)
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Accordingly, the scalar–valued test function ϑ can be interpreted as the virtual tempera-

ture δθ. The dynamic, the internal, the surface and the volume contribution to the virtual

temperature problem thus expand into the following expressions.

wθ
dyn =

∫

B0

ϑ c0 Dt θ dV wθ
int =

∫

B0

−∇Xϑ ·Q dV

wθ
sur =

∫

∂Bq
0

− ϑQ ·N dA wθ
vol =

∫

B0

ϑ [Q0 +Qmech
0 ] dV

(3.19)

3.2.2 Material motion problem

Guided by arguments of duality, the global residual statements of the balance of momen-

tum and energy of the material motion problem can be introduced in complete analogy

to their spatial motion counterparts.

RRRRRRRRR
Φ = FFFFFFFFF Φ

dyn − FFFFFFFFF Φ
sur − FFFFFFFFF Φ

vol = 0

Rθ = Fθ
dyn − Fθ

sur − Fθ
vol = 0

(3.20)

The dynamic, the surface and the internal contribution to both equations can be expressed

in the following form.

FFFFFFFFFΦ
dyn =

∫

Bt

j Dt P 0 dv FFFFFFFFFΦ
sur =

∫

∂Bt

[πt −KtF
t] · nda FFFFFFFFFΦ

vol =

∫

Bt

Bt + ∂ΦKt dv

Fθ
dyn =

∫

Bt

ct Dt θ dv Fθ
sur =

∫

∂Bt

−q · nda Fθ
vol =

∫

Bt

Qt +Qmech
t dv

(3.21)

Next, Dirichlet and Neumann boundary conditions can be defined for the material motion

problem to illustrate the formal duality with the spatial motion problem. For the balance

of momentum (3.20)1, the corresponding parts of the boundary will be introduced as

∂BΦ
t ∪ ∂BT

t = ∂Bt and ∂BΦ
t ∩ ∂BT

t = ∅ while for the balance of energy (3.20)2, they

read ∂Bθ
t ∪ ∂BQ

t = ∂Bt and ∂Bθ
t ∩ ∂BQ

t = ∅. Accordingly, the corresponding boundary

conditions can be expressed in the following form.

Φ = Φ̄ on ∂BΦ
t [πt −KtF

t] · n = T̄ on ∂BT
t

θ = θ̄ on ∂Bθ
t q · n = Q̄ on ∂BQ

t

(3.22)

By testing the pointwise statements of the material momentum and energy balance and the

related Neumann boundary conditions with the vector– and scalar–valued test functions

W and ϑ, we obtain the weak forms of the material motion problem.

GΦ(W ; θ,Φ ) = WΦ
dyn + WΦ

int −WΦ
sur −WΦ

vol = 0 ∀W in H0
1 (Bt)

Gθ ( ϑ; θ,Φ ) = Wθ
dyn + Wθ

int −Wθ
sur −Wθ

vol = 0 ∀ ϑ in H0
1 (Bt)

(3.23)

Note, that by interpreting the test function W as the material virtual displacement

W = δΦ, equation (3.23)1 can be interpreted as the material counterpart of the classical

virtual work expression (3.17)1. Accordingly, WΦ
dyn and WΦ

int denote the dynamic and
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the internal virtual work, while WΦ
sur and WΦ

vol are the corresponding surface and volume

contributions.

WΦ
dyn =

∫

Bt

W · jDt P 0 dv WΦ
int =

∫

Bt

∇xW : [πt −KtF
t] dv

WΦ
sur =

∫

∂BT
t

W · [πt −KtF
t] ·n da WΦ

vol =

∫

Bt

W · [Bt + ∂ΦKt] dv
(3.24)

Furthermore, the dynamic, the internal, the surface and the volume contribution to the

weak form of the energy balance (3.23)2 expand into the following formats.

Wθ
dyn =

∫

Bt

ϑ ct Dt θ dv Wθ
int =

∫

Bt

−∇xϑ · q dv

Wθ
sur =

∫

∂BQ
t

− ϑ q · n da Wθ
vol =

∫

Bt

ϑ [Qt +Qmech
t ] dv

(3.25)

3.2.3 Spatial vs. material test functions

While the scalar–valued test function ϑ testing the balance of energy is identical for the

spatial and the material motion problem, the vector–valued test functions w and W are

related by the fundamental relations w = −W · F t and W = −w · f t which can be

verified easily by transforming the virtual work statements of the spatial and the material

motion problem (3.17)2 and (3.23)2 into one another.

3.2.4 Spatial and material forces

Note, that equations (3.15)1 define the different contributions to the spatial forces fffffffffϕ rep-

resenting the traditional forces in the sense of Newton. These are generated by variations

relative to the ambient space at fixed material position X. On the contrary, equations

(3.21)1 define material forces FFFFFFFFF Φin the sense of Eshelby which are generated by varia-

tions relative to the ambient material at fixed spatial position x. These material forces

represent important measures in the mechanics of material inhomogeneities.

3.2.5 Material Force Method

Recall, that for the spatial motion problem, the surface and the volume contributions to

the weak forms (3.17), namely wϕ
sur and w

ϕ
vol for the deformation problem and wθ

sur and

wθ
vol for the temperature problem typically represent given quantities which define the

primary unknowns ϕ and θ. Once the spatial motion problem is solved, the dynamic term

WΦ
dyn, the internal virtual work WΦ

int and the volume contribution WΦ
vol to the material

momentum balance can be computed directly. Correspondingly, the material surface

forces FFFFFFFFFΦ
sur furnish the primary unknown of the material motion problem. Their numerical

evaluation has been advocated as Material Force Method by Steinmann, Ackermann &

Barth [99], see also Denzer, Barth & Steinmann [22], Kuhl & Steinmann [46] or Liebe,

Denzer & Steinmann [49].
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3.3 Discretization

Equations (3.17) and (3.23) define the weak forms of the initial boundary value problem

of thermo–hyperelasticity for the spatial and the material motion problem. Traditionally,

these equations are first discretized in time, typically with finite difference schemes, before

a spatial discretization with the finite element method can be carried out. To this end,

consider a partition of the time interval of interest T

T =

nstep−1
⋃

n=0

[ tn, tn+1 ] (3.26)

and focus on the typical subinterval [ tn, tn+1 ] whereby ∆t = tn+1 − tn denotes the corre-

sponding actual time increment. Assume, that the primary unknowns, either the spatial

or the material deformation ϕn or Φn and the temperature θn and all derivable quantities

are known at time tn. In what follows, we shall make use of the classical Euler backward

integration scheme to advance the solution in time from the known time step tn to the

actual time step tn+1. Consequently, the first order material time derivatives of the spatial

and the material momentum p0 and P 0 and the temperature θ can be approximated in

the following way.

Dt p0 =
1

∆ t
[ p0 n+1 − p0 n ]

Dt P 0 =
1

∆ t
[ P 0 n+1 − P 0 n ]

Dt θ =
1

∆ t
[ θn+1 − θn ]

(3.27)

Moreover, the governing equations can now be reformulated in terms of the unknown

spatial deformation ϕn+1 and the temperature θn+1 at time tn+1 for the spatial motion

problem

g
ϕ
n+1 ( w; θn+1,ϕn+1 ) = w

ϕ
dyn + w

ϕ
int − wϕ

sur − w
ϕ
vol = 0 ∀w inH0

1 (B0)

gθ
n+1 ( ϑ; θn+1,ϕn+1 ) = wθ

dyn + wθ
int − wθ

sur − wθ
vol = 0 ∀ϑ inH0

1 (B0)
(3.28)

and in terms of the material deformation Φn+1 and the temperature θn+1 for the material

motion problem.

Gθ
n+1( ϑ; θn+1,Φn+1 ) = Wθ

dyn + Wθ
int −Wθ

sur −Wθ
vol = 0 ∀ϑ inH0

1 (Bt)

GΦ
n+1(W ; θn+1,Φn+1 ) = WΦ

dyn + WΦ
int −WΦ

sur −WΦ
vol = 0 ∀W inH0

1 (Bt)
(3.29)

The semi–discrete weak forms (3.28) and (3.29) lend themselves readily for the spatial

discretization within the finite element framework which will be illustrated in the following

sections.



54 Thermo-Hyperelasticity Chapter 3

3.3.1 Spatial motion problem

Let B0 denote the region occupied by the reference configuration of a solid continuum

body at time t = t0. In the spirit of the finite element method, this reference domain is

discretized in nel elements Be
0. The underlying geometry X is interpolated elementwise by

the shape functions N i
X in terms of the discrete node point positions X i of the i = 1..nen

element nodes.

B0 =

nel⋃

e=1

Be
0 Xh|Be

0
=

nen∑

i=1

N i
X X i (3.30)

According to the isoparametric concept, we shall interpolate the unknowns ϕ and θ on

the element level with the same shape functions N i
ϕ and N j

θ as the element geometry

X. In the spirit of the classical Bubnov–Galerkin technique, similar shape functions are

applied to interpolate the test functions w and ϑ.

wh|Be
0
=

nen∑

i=1

N i
ϕ wi ∈ H0

1 (B0) ϕh|Be
0
=

nen∑

k=1

Nk
ϕ ϕk ∈ H1 (B0)

ϑh |Be
0
=

nen∑

j=1

N j
θ ϑj ∈ H0

1 (B0) θh |Be
0
=

nen∑

l=1

N l
θ θl ∈ H1 (B0)

(3.31)

The related gradients of the test functions ∇Xwh and ∇Xϑ
h and the gradients of the

primary unknowns ∇Xϕh and ∇Xθ
h thus take the following elementwise interpolation.

∇X wh|Be
0

=
nen∑

i=1

wi ⊗∇XN
i
ϕ ∇X ϕh|Be

0
=

nen∑

k=1

ϕk ⊗∇XN
k
ϕ

∇X ϑh |Be
0

=

nen∑

j=1

ϑj ∇XN
j
θ ∇X θh |Be

0
=

nen∑

l=1

θl ∇XN
l
θ

(3.32)

Recall, that herein, ∇Xϕh|Be
0

denotes the discrete spatial deformation gradient as F h|Be
0

=

∇Xϕh|Be
0
. With the above–suggested discretizations in time and space, the fully discrete

algorithmic balance of momentum and energy of the spatial motion problem takes the

following format.

rrrrrrrrrϕh
I (θh

n+1,ϕ
h
n+1) = fffffffffϕ

dyn
h
I + fffffffffϕ

int
h
I − fffffffffϕ

sur
h
I − fffffffffϕ

vol
h
I = 0 ∀ I = 1, nnp

rθh
J (θh

n+1,ϕ
h
n+1) = fθdyn

h
J + fθint

h
J − fθsur

h
J − fθvol

h
J = 0 ∀ J = 1, nnp

(3.33)

Herein, the discrete inertia forces, the internal forces, the surface forces and the volume

forces can be expressed as

fffffffffϕ
dyn

h
I =

nel

AAAAAAAAA
e=1

∫

Be
0

N i
ϕ

p0n+1 − p0n

∆ t
dV fffffffffϕ

int
h
I =

nel

AAAAAAAAA
e=1

∫

Be
0

∇XN
i
ϕ ·Πn+1 dV

fffffffffϕ
sur

h
I =

nel

AAAAAAAAA
e=1

∫

∂Bte
0

N i
ϕ t̄n+1 dA fffffffffϕ

vol
h
I =

nel

AAAAAAAAA
e=1

∫

Be
0

N i
ϕ b0 n+1 dV

(3.34)
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while the dynamic, the internal, the surface and the volume contribution of the balance

of energy expand into the following expressions.

fθdyn
h
J =

nel

AAAAAAAAA
e=1

∫

Be
0

N j
θ c0

θn+1 − θn

∆ t
dV fθint

h
J =

nel

AAAAAAAAA
e=1

∫

Be
0

∇XN
j
θ ·Qn+1 dV

fθsur
h
J =

nel

AAAAAAAAA
e=1

∫

∂Bqe
0

−N j
θ q̄n+1 dA fθvol

h
J =

nel

AAAAAAAAA
e=1

∫

Be
0

N j
θ [Q0n+1 +Qmech

0n+1] dV

(3.35)

In the above definitions, the operator AAAAAAAAA denotes the assembly over all e = 1, nel element

contributions at the i, j = 1, nen element nodes to the global node point vectors at all

I, J = 1, nnp global node points. Equations (3.33) thus represent the coupled nonlinear

set of governing equations which is suggested to be solved in a monolithic sense. The

corresponding solution procedure in terms of the incremental iterative Newton Raphson

scheme is illustrated in the appendix C. Recall, that the discrete spatial surface forces

acting on the global node points can be calculated as

fffffffffϕ
sur

h
I =

nel

AAAAAAAAA
e=1

∫

Be
0

N i
ϕ

p0n+1 − p0n

∆ t
+∇XN

i
ϕ ·Πn+1 −N i

ϕ b0 n+1 dV (3.36)

and are thus energetically conjugate to spatial variations of the node point positions.

3.3.2 Material motion problem

In complete analogy, we can discretize the domain of interest Bt in nel elements Be
t for the

material motion problem. Correspondingly, the geometry x of each element is interpolated

from the i = 1..nen node point positions xi by the shape functions N i
x.

Bt =

nel⋃

e=1

Be
t xh|Be

t
=

nen∑

i=1

N i
x xi (3.37)

By making use of the isoparametric concept, we shall interpolate the primary unknowns

Φ and θ with the same shape functions N i
Φ and N j

θ as the element geometry x. Moreover,

the test functions W and ϑ are discretized with the same shape functions N i
Φ and N j

θ .

W h|Be
t
=

nen∑

i=1

N i
Φ W i ∈ H0

1 (Bt) Φh|Be
t
=

nen∑

k=1

Nk
Φ Φk ∈ H1 (Bt)

ϑh |Be
t
=

nen∑

j=1

N j
θ ϑj ∈ H0

1 (Bt) θh |Be
t
=

nen∑

l=1

N l
θ θl ∈ H1 (Bt)

(3.38)

Accordingly, the discretization of the gradients of the test functions ∇xW
h and ∇xϑ

h and

the gradients of the primary unknowns ∇xΦ
h and∇xθ

h takes the following representation.

∇x W h|Be
t

=

nen∑

i=1

wi ⊗∇xN
i
Φ ∇x Φh|Be

t
=

nen∑

k=1

Φk ⊗∇xN
k
Φ

∇x ϑ
h |Be

t
=

nen∑

j=1

ϑj ∇xN
j
θ ∇x θ

h |Be
t

=

nen∑

l=1

θl ∇xN
l
θ

(3.39)
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Herein, ∇xΦ
h denotes the discrete material deformation gradient fh|Be

t
= ∇xΦ

h|Be
t
. Con-

sequently, the discrete algorithmic balances of momentum and energy, the material motion

counterparts of equations (3.33), take the following representations.

RRRRRRRRR Φh
I (θh

n+1,Φ
h
n+1) = FFFFFFFFF Φ

dyn
h
I + FFFFFFFFF Φ

int
h
I − FFFFFFFFF Φ

sur
h
I − FFFFFFFFF Φ

vol
h
I = 0 ∀ I = 1, nnp

Rθh
J (θh

n+1,Φ
h
n+1) = Fθ

dyn
h
J + Fθ

int
h
J − Fθ

sur
h
J − Fθ

vol
h
J = 0 ∀ J = 1, nnp

(3.40)

The discrete material inertia forces, the internal forces, the surface forces and the volume

forces can be expressed as

FFFFFFFFF Φ
dyn

h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

N i
Φ j

P 0n+1 − P 0n

∆ t
dv FFFFFFFFF Φ

int
h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

∇xN
i
Φ · [π −KtF ]n+1 dv

FFFFFFFFF Φ
sur

h
I =

nel

AAAAAAAAA
e=1

∫

∂BTe
t

N i
Φ T̄ n+1 da FFFFFFFFF Φ

vol
h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

N i
Φ[Bt + ∂ΦKt]n+1 dv

(3.41)

while the dynamic, the internal, the surface and the volume contribution of the energy

balance take the following format.

Fθ
dyn

h
J =

nel

AAAAAAAAA
e=1

∫

Be
t

N j
θ ct

θn+1 − θn

∆ t
dv Fθ

int
h
J =

nel

AAAAAAAAA
e=1

∫

Be
t

∇xN
j
θ · qn+1 dv

Fθ
sur

h
J =

nel

AAAAAAAAA
e=1

∫

∂BQe
t

N j
θ Q̄tn+1 da Fθ

vol
h
J =

nel

AAAAAAAAA
e=1

∫

Be
t

N j
θ [Qtn+1 +Qmech

tn+1 ] dv

(3.42)

As a fundamental difference to the spatial motion problem, the Neumann boundary con-

ditions of the material motion problem cannot be considered as given input data. Cor-

respondingly, the discrete material forces acting on the global node points can only be

computed in a post processing calculation once the spatial motion problem has been

solved. Their definition parallels the definition of the discrete surface forces of the spatial

motion problem given in equation (3.36). The discrete material surface forces

FFFFFFFFF Φ
sur

h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

N i
Φ j

P 0n+1 − P 0n

∆ t
+∇xN

i
Φ · [π−KtF ]n+1−N i

Φ[Bt + ∂ΦKt]n+1dv (3.43)

are thus energetically conjugate to material variations of the node point positions. They

are readily computable once the solution to the spatial motion problem has been deter-

mined.

Coupled thermo–mechanical problems tend to involve time scales which typically differ by

orders of magnitude. Rather than circumventing the problem of potentially ill–conditioned

system matrices by making use of staggered solution techniques, we shall consider the bal-

ance of momentum (3.33)1 or (3.40)1 in a quasi–static sense in the sequel. In other words,
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the dynamic contributions which manifest themselves in the N j
ϕ[p0n+1 − p0n]/∆t term of

equation (3.34)1 and in the N j
Φj[P 0n+1−P 0n]/∆t term of equation (3.41)1 are assumed to

be negligible. Moreover, the dynamic correction to the material motion momentum flux

and source, i.e. the −KtF
t and the ∂ΦKt term in equation (3.41)2 and (3.41)4, vanish

identically in the quasi–static case.

For the class of quasi–static problems considered in the sequel, the discrete momentum

flux πt
n+1, and the corresponding momentum source Bt n+1 that are essentially needed to

compute the discrete material node point forces defined in equation (3.43) are related to

their spatial motion counterparts Π t
n+1 and b0 n+1 through the following transformation

formulae.

πt
n+1 = −j F t

n+1 ·Π t
n+1 · F t

n+1 + jΨ0n+1 F t
n+1

Bt n+1 = −j F t
n+1 · b0 n+1 + j S0∇Xθn+1 − j ∂ΦΨ0 n+1

(3.44)

3.3.3 Adiabatic thermo–hyperelasticity

Recall, that in general, the computational analysis of adiabatic problems within the spatial

setting does not require a C0–continuous interpolation of the temperature field. Since

the heat flux Q and with it a possible explicit dependence on the temperature gradient

vanish in the adiabatic case, there is no obvious need to introduce the temperature as

a nodal degree of freedom. For the material motion problem, however, the calculation

of the material volume forces Bt n+1 according to equation (3.44) essentially relies on

the temperature gradient ∇Xθn+1, irrespective of the incorporation of a heat flux. The

above–suggested C0–continuous interpolation of the temperature field is thus mandatory

in the context of the material force method.

3.4 Examples

Finally, we turn to the elaboration of the derived thermo–hyperelastic finite element

formulation by means of a number of selected examples. To this end, we introduce the

following free energy function for thermo–hyperelastic materials,

Ψ0 = λ
2

ln2 J + µ
2

[ b− I] : I − µ lnJ mechanical part

−3ακ [θ − θ0] ln J
J

thermo-mechanical coupling

+c0 [θ − θ0 − θ ln θ
θ0

]− [θ − θ0]S◦ thermal part

(3.45)

whereby the first three terms represent the classical free energy function of Neo–Hooke

type characterized through the two Lamé constants λ and µ. The fourth term introduces

a thermo–mechanical coupling in terms of the thermal expansion coefficient α weighting

the product of the bulk modulus κ and the difference between the current temperature θ

and the reference temperature θ0. The fifth term finally accounts for the purely thermal
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behavior in terms of the specific heat capacity c0 and the last term defines the absolute

entropy density S◦ at the reference temperature θ0. According to the general constitu-

tive equation (3.7), the first Piola–Kirchhoff stress can be derived as thermodynamically

conjugate variable to the spatial motion deformation gradient as Π t = DF Ψ0 and thus

Π t = [λ ln J − µ]F−t + µF − 3ακ

J
[θ − θ0][1− ln J ]F−t. (3.46)

Moreover, we assume the material heat flux Q to obey Fourier’s law

Q = −K0 G−1 · ∇Xθ (3.47)

introducing a materially isotropic behavior in terms of the conductivity K0, the material

metric G and the material temperature gradient ∇Xθ. The convective part of the dissipa-

tion inequality Dcon
0 = −Q·∇X ln θ ≥ 0 is thus a priori satisfied for the materially isotropic

conductivity being strictly non–negative as K0 ≥ 0. With the above definitions at hand,

the derivatives of the momentum flux Π t, the resulting thermo–mechanical coupling term

Qmech
0 and the heat flux Q with respect to the deformation gradient F , the temperature

θ and the temperature gradient ∇Xθ which are essentially needed to compute the global

tangential stiffness matrix according to equation (A3) can be expressed as follows.

DF Π t = µ I ⊗ I + λF−t ⊗ F−t − [λ ln J − µ] F−t⊗F−1

Dθ Π t = −3ακ

J
[1− lnJ ]F−t

DF Qmech
0 = θ

3ακ

J2
[ [3− 2 lnJ ] div v − [1− ln J ] DJ(DtJ) ] J F−t

Dθ Qmech
0 = −3ακ

J
[1− ln J ] div v

D∇XθQ = −K0 G

(3.48)

The DF Π t term of equation (3.48)1 is typically introduced as the sum of the geometric

and the material part of the classical tangential stiffness matrix, where the component rep-

resentation of the non–standard dyadic products ⊗ and ⊗ reads {•⊗◦}ijkl = {•}ik⊗{◦}jl
and {•⊗◦}ijkl = {•}il ⊗ {◦}jk. Moreover, we have made use of the following transfor-

mation formula F−t : DtF = div v in equations (3.48)3 and (3.48)4. Recall, that with

the temporal discretization based on the traditional Euler backward method as suggested

in chapter 3.3, the temperature dependent term DJ(DtJ) of equation (3.48)3 typically

simplifies to DJ(DtJ) = 1/∆t.

Remark: Isotropic heat flow

Observe, that in the present contribution, we assume the heat flux to be isotropic in the

reference configuration as Q = −K0 G−1 ·∇Xθ or alternatively q = −j K0 b ·∇xθ. In the

related literature, however, we typically find a spatially isotropic rather than a materially

isotropic behavior as q = −kt g−1·∇xθ which corresponds to an anisotropic behavior in the

reference configuration in the context of finite thermo–elasticity as Q = −J kt C
−1 ·∇Xθ,

see e.g. Miehe [66], [68], Reese & Wriggers [78] or Simo [91].
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Remark: Absolute Entropy

We have to introduce an absolute entropy density S◦ in the free energy function Ψ0.

Otherwise the definition of the entropy density S0 = −DθΨ0 would only represent the

change of the entropy in the system and this would lead to internal material forces Bint
t

which depend on the reference temperature θ0. Because we restrict our analysis in this

section to materials with constant specific heat capacity c0 the change of the temperature

has to be moderate. Otherwise we have to address the temperature dependency of the

heat capacity.

3.4.1 Bi-material bar

As a first example we consider a bi-material bar under tension with plane strain constraint.

The material parameters of the left half of the bar corresponds roughly to steel and are

given in the following table.

Young’s modulus E 205000
[

N
mm2

]

Poisson’s Ratio ν 0.29

Density ρ0 7.85 · 10−3
[

g
mm3

]

Thermal Expansion Coefficient α 11.5 · 10−6
[

1
K

]

Thermal Conductivity K0 0.0498
[

N
msecK

]

Heat Capacity c0 3.8151
[

N
mm2K

]

Reference Temperature θ0 298 [K]

Absolute Entropy S◦
Fe 3.8374

[
N

mm2K

]

Whereas the material parameters of the right half corresponds roughly to an Aluminium

alloy, which are given below.

Young’s modulus E 72000
[

N
mm2

]

Poisson’s Ratio ν 0.33

Density ρ0 2.81 · 10−3
[

g
mm3

]

Thermal Expansion Coefficient α 23.6 · 10−6
[

1
K

]

Thermal Conductivity K0 0.130
[

N
msecK

]

Heat Capacity c0 2.6976
[

N
mm2K

]

Reference Temperature θ0 298 [K]

Absolute Entropy S◦
Al 2.9473

[
N

mm2K

]

The specimen is discretized by bi-linear Q1-elements. A constant elongation is applied

at the left and right end of the bar within a very short first time step ∆t = 0.01 and

afterwards the elongation is kept constant. Due to the volatile change of the material
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parameters at the interface an inhomogeneous temperature field is induced by the external

mechanical load. This results in a heat flux which equalizes the temperature differences

within the bar over the time.

To point out the evolution of the material volume forces Bt we split the discrete material

node point (surface) forces FFFFFFFFFh
sur, given by Eq. 3.43, into an internal part

FFFFFFFFF Φ
int

h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

∇xN
i
Φ · πn+1dv (3.49)

and a volume part

FFFFFFFFF Φ
vol

h
I =

nel

AAAAAAAAA
e=1

∫

Be
t

N i
ΦBt n+1dv. (3.50)

The computed discrete material node point (surface) forces ’SUR’, the internal part ’INT’

and the volume part ’VOL’ in the vicinity of the interface are depicted in Fig. 3.3 for 3

different times t = 0.01, 1, 100. Furthermore the distribution of the relative temperature

∆θ is given as contour plots.

After the mechanical load is applied within the first time step (t = 0.01) relatively large

temperature gradients ∇Xθn+1 are observed in the vicinity of the interface which causes

material node point volume forces ’VOL’. These vanishes over the time due to the heat flux

so that the resulting discrete material node point (surface) forces ’SUR’ are dominated

by their internal part ’INT’.

3.4.2 Specimen with crack

As a second example we want to discuss a single edged tension specimen typically used in

fracture mechanics. The height to width ratio is set to H/W = 3 and the ratio of crack

length to width is a/W = 0.5. The specimen is discretized by bilinear Q1-elements and

the mesh is heavily refined around the crack tip. The elements which are connected to

the crack tip are P1-elements. The material is modeled with the parameter given in the

previous section which roughly corresponds to an Aluminium alloy. A constant symmetric

elongation of totally 0.1667% of the height W is applied at the top and bottom of the

specimen within the first very short time step ∆t = 0.01. The computed discrete material

node point (surface) forces ’SUR’, the internal part ’INT’, the volume part ’VOL’ and

the temperature distribution ∆Θ in the vicinity of the crack tip are shown in Fig. 3.4.2

at three different time states t = 0.01, 1, 100.

Similar to the interface problem we observe a steep temperature gradient ∇Xθ after the

load is applied within the first time step (t = 0.01). This results in large material node

point volume forces ’VOL’, which decrease over the time due to the heat flux with the

specimen.

We now apply our improvement of the Material Force Method for the vectorial J-Integral

evaluation, as proposed in [22], which essentially consists of the summation of the material
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Figure 3.3. Discrete material node point surface, internal and volume forces and temper-
ature distribution in the vicinity of the interface at times t = 0.01, 1, 100
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Figure 3.4. Discrete material node point surface, internal and volume forces and temper-
ature distribution in the vicinity of the crack tip at times t = 0.01, 1, 100
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forces over a given subdomain V0 enclosing the crack tip, except those which are associated

with the regular, i.e. non-singular, part of the boundary ∂V r
0 . This reads

−J = FFFFFFFFFsur =

n̄np∑

i=1

A
nel

e=1

∫

Be
t

∇xN
i
Φ · πn+1 −N i

ΦBt n+1dv. (3.51)

where n̄np is the number of all nodes lying in the subdomain V0 \ ∂V r
0 .

We also introduce the split of the discrete material node point (surface) force FFFFFFFFFsur into

an internal part FFFFFFFFFint and a volume part FFFFFFFFFvol in this case analogous to Eqn. 3.49 and 3.50.

As given subdomains for Eq. 3.51 we simply use those subdomains defined by different

number of element rings in the vicinity of the crack tip. The resulting material forces for

three different times t = 0.01, 1, 100 are shown in Fig. 3.5.

Although the internal part FFFFFFFFF int and the volume part FFFFFFFFFvol of the material surface force are

domain dependent due to the temperature gradient ∇Xθ the resulting material surface

force FFFFFFFFFsur behaves domain independent.
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Figure 3.5. Material Forces at different time states t = 0.01, 1, 100



Chapter 4

Hyperelasticity Coupled with

Damage

For the kinematics and the quasi-static balance of momentum of spatial and material

motion problem we refer to chapter 2 and also to our work in [49].

4.1 Hyperelasticity coupled to isotropic damage

In this chapter we present a particular free energy density modelling a hyperelastic consti-

tutive response coupled to isotropic damage. Thereby isotropic damage is characterized

by a degradation measure in terms of a scalar damage variable 0 ≤ d ≤ 1 that acts as a

reduction factor of the local stored energy density of the virgin material W0 = JWt per

unit volume in B0 (or Wt = jW0 per unit volume in Bt, respectively), which is supposed to

be an objective and isotropic function in F (or f , respectively). Observe that the familiar

constitutive relations of the spatial motion problem are formally dual to the presentation

of the appropriate constitutive relations of the material motion problem, see Shield [84],

Chadwick [15] and Ericksen [26] for the case of hyperelasticity.

4.1.1 Spatial motion problem

In the case of the spatial motion problem with hyperelasticity coupled to isotropic damage

the free energy density ψ0 is a function of the deformation gradient F and the internal

variable representing damage α = d(X) with possible explicit dependence on the material

placement X

ψ0 = ψ0(d,F ; X) = [1− d]W0(F ; X) (4.1)

Then, exploiting the Clausius-Duhem inequality Π t : DtF − Dtψ0 ≥ 0 with Dt{•}
denoting the material time derivative of {•}, i.e. the time derivative at fixed X, and

assuming the appropriate invariance requirements under superposed spatial rigid body

motion being fulfilled, the familiar constitutive equations for the material motion stresses

65
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in B0 are given as

Π t = [1− d]∂W0

∂F
=⇒ σt = jΠ t · F t = [1− d]

[

WtI − f t · ∂Wt

∂f

]

(4.2)

Note that the given format of the spatial motion Cauchy stress σt is formally comparable

to the energy-momentum tensor of Eshelby [29]. Recall that,Wt = jW0 denotes the energy

density per unit volume in Bt. In the case of spatial objectivity, i.e. W0 is invariant under

superposition of spatial rigid body motions, the spatial motion Cauchy stress turns out

to be symmetric σt = σ.

Furthermore, we introduce the local damage energy release rate Y0 per unit volume in B0

as thermodynamically conjugated to d

Y0 = −∂Ψ0

∂d
= W0 (4.3)

Thus it turns out that W0 is conjugated to the evolution of the independent damage

field d. The reduced dissipation inequality reads consequently D0 = Y0 Dtd ≥ 0. Thus a

damage condition is readily motivated as

Φ(Y0; d) = φ(Y0)− d ≤ 0 (4.4)

with φ(•) a monotonic function of its argument, see e.g. [90] for the small strain case.

Then, based on the postulate of maximum dissipation, an associated damage evolution

law is given in terms of a Lagrange multiplier κ

Dtd = Dtκ∂Y0Φ (4.5)

This is complemented by the set of Karush-Kuhn-Tucker loading/unloading conditions

Φ(Y0; d) ≤ 0 and Dtκ ≥ 0 and DtκΦ(Y0; d) = 0 (4.6)

Moreover, the consistency condition in the case of loading characterized by Φ = 0 and

Dtκ > 0 allows for the closed form update for the damage parameter

DtΦ(Y0; d) = 0 −→ DtY0 = Dtκ ≥ 0 −→ d = φ(κ) (4.7)

whereby κ is computed with κ0 the initial damage threshold from

κ = max
−∞<s<t

(Y0(s), κ0) (4.8)

Finally, based on the inversion of φ(•), the damage condition and the Karush-Kuhn-Tucker

complementary conditions may be expressed in an alternative format as

ϕ(Y0; κ) = Y0 − κ ≤ 0 and Dtd ≥ 0 and Dtd ϕ(Y0; κ) = 0 (4.9)

The complementary condition Dtd ϕ = 0 may be alternatively stated by decomposition

of the total solution domain B0 into an inactive elastic and an active damaging domain
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Be
0 = {X ∈ B0|ϕ ≤ 0, Dtd = 0} and Bd

0 = {X ∈ B0|ϕ = 0, Dtd > 0} (4.10)

with the additional completeness and non-overlapping requirements for the solution sub-

domains

B0 = Be
0 ∪ Bd

0 and ∅ = Be
0 ∩ Bd

0 (4.11)

4.1.2 Material motion problem

In the case of the material motion problem with hyperelasticity coupled to isotropic

gradient damage the free energy ψt is considered as a function of the deformation gradient

f and the damage variable α = d(x) = d(X) ◦Φ(x), whereby the explicit dependence on

the material placement is captured by the field X = Φ(x)

ψt = ψt(d,f ,Φ(x)) = [1− d]Wt(f ,Φ(x)) (4.12)

Then, assuming again the appropriate invariance requirements under superposed spatial

rigid body motion being fulfilled, the familiar constitutive equations for the macroscopic

material stresses in Bt are given as

Σt = jπt · f t = [1− d]
[

W0I − F t · ∂W0

∂F

]

⇐= πt = [1− d]∂Wt

∂f
(4.13)

Clearly, Σt is the so-called Eshelby stress involved in many problems of defect mechanics.

Observe carefully that only in the case of material objectivity or rather isotropy, i.e. Wt is

invariant under superposition of material rigid body motions, the material motion Cauchy

stress turns out to be symmetric Σt = Σ.

Here, W0 = JWt denotes the energy density per unit volume in B0. The thermodynamic

stress of the material motion problem conjugated to the damage variable, corresponds

trivially via the Jacobian J to the one of the spatial motion problem, i.e. Yt = Wt with

Y0 = JYt.

Note that the distributed volume forces as derived in Eq. 4.19 take now the following

particular format with respect to the incorporation of damage

B0 = Y0∇Xd− ∂Xψ0 − F t · b0 (4.14)

4.1.3 Spatial versus material motion problem

Starting from the spatial balance of momentum  = DivΠ t + b0 we perform a covariant

pullback to the material manifold. To this end we consider the following identity

F t ·DivΠ t = Div(F t ·Π t)−∇XF t : Π t. (4.15)
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Then we assume sufficient smoothness, and recall the integrability conditions for F , i.e.

∇XF t : Π t = Π t : ∇XF . Next by choosing a general internal variable based constitutive

assumption for the free energy density per unit volume in B0 as

ψ0 = ψ0(F , α; X) (4.16)

whereby α denotes an internal variable to be specified together with its conjugated coun-

terpart A = −∂αψ0, the total material gradient in terms of the free energy can be written

as

∇Xψ0 = Div(ψ0I) = Π t : ∇XF − A∇Xα + ∂Xψ0 (4.17)

With ∂Xψ0 denoting the explicit material gradient due to material inhomogeneities. Hence

assembling terms the following energy-momentum format of the material motion Cauchy-

stress (in the sense of Eshelby [29]) holds

Σt = ψ0I − F t ·Π t = ψ0I −M t (4.18)

Moreover distributed volume forces B0 per unit volume B0 can be retrieved from rela-

tion (4.17) in the following manner

B0 = A∇Xα− ∂Xψ0 − F t · b0 (4.19)

Summarizing, the material motion balance of momentum is obtained as

 = F t ·
[
DivΠ t + b0

]
−→  = DivΣt + B0 (4.20)

4.2 Weak Form

As a prerequisite for a finite element discretization the nonlinear boundary value problem

has to be reformulated in weak or rather variational form. Again, the duality of the spatial

and material point of view is elaborated.

4.2.1 Spatial motion problem

Firstly, the pointwise statement of the spatial balance of momentum −divσt = bt is tested

by spatial virtual displacements δϕ = w under the necessary smoothness and boundary

assumptions to render the virtual work expression

∫

∂Bt

w · σt · n da

︸ ︷︷ ︸wsur

=

∫

Bt

∇xw : σt dv

︸ ︷︷ ︸wint

−
∫

Bt

w · bt dv

︸ ︷︷ ︸wvol

∀w (4.21)

For a conservative system the different energetic terms wsur, wint and wvol may be inter-

preted by considering the spatial variation at fixed X of the free energy density ψ0. As
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a result, the contribution wsur denotes the spatial variation of ψ0 due to its complete

dependence on the spatial position, whereas the contributions wint and wvol denote the

spatial variations of ψ0 due to its implicit and explicit dependence on the spatial position,

respectively.

Secondly, we propose the weak form of the constitutive subproblem in order to cope with

the damage field. As shown in in chapter 4.1.2 the distributed volume forces require the

gradient w.r.t. to the damage variable. Thus it becomes necessary to separately discretize

d as an additional field. Therefore we advocate a constitutive subproblem represented by

the variational format of the Karush-Kuhn-Tucker complementary conditions ϕ ≤ 0 and

Dtd ≥ 0 which are tested by δd with δd > 0 and by δϕ with δϕ > 0, respectively, to

render the global statementswϕ =

∫

B0

δd[Y0 − κ] dV ≤ 0 and wd =

∫

B0

δϕDtd dV ≥ 0 (4.22)

Based on these statements, the decomposition of the solution domain B0 into an actively

damaged and inactive elastic domain B0 = Bd
0 ∪ Be

0 and ∅ = Be
0 ∩ Bd

0 follows implicitly as

the support of those admissible test functions δd, δϕ which satisfy

Be
0 = {X ∈ B0|wϕ ≤ 0, wd = 0 ∀δd, δϕ> 0 in Be

0} (4.23)

Bd
0 = {X ∈ B0|wϕ = 0, wd > 0 ∀δd, δϕ> 0 in Bd

0}

4.2.2 Material motion problem

Here, the pointwise statement of the material balance of momentum −DivΣt = B0 is

tested by material virtual displacements δΦ = W under the necessary smoothness and

boundary assumptions to render the virtual work expression

∫

∂B0

W ·Σt ·N dA

︸ ︷︷ ︸Wsur

=

∫

B0

∇XW : Σt dV

︸ ︷︷ ︸Wint

−
∫

B0

W ·B0 dV

︸ ︷︷ ︸Wvol

∀W (4.24)

Again for a conservative system the different energetic terms Wsur, Wint and Wvol may

be interpreted by considering the material variation at fixed x of the free energy density

ψt. As a result, the contribution Wsur denotes the material variation of ψt due to its

complete dependence on the material position, whereas the contributions Wint and Wvol

denote the material variations of ψt due to its implicit and explicit dependence on the

material position, respectively.

Remark Note that the two variational formulations in Eqs. 4.21 and 4.24 are connected

by w = −W · F t and W = −w · f t for the relation between the spatial and material

virtual displacements, see also Maugin & Trimarco [104]. Taking into account the relations

derived in chapter 4.1.3, applying integration by parts and invoking the Gauss theorem
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we may expand e.g.
∫

B0
w ·DivΠ t dV into

∫

B0
W ·

[
DivΣt + B0 + F t · b0

]
dV .1

4.3 Discretization

The above variational set of quasi-static balances of momentum will be discretized by the

standard Bubnov-Galerkin finite element method rendering discrete spatial and material

node point (surface) forces.

4.3.1 Spatial motion problem

In addition to the discretization of the hyperelastic case as described in section 2.4 we

now introduce an additional damage field d. The damage variable field d, together with

its variation δd is expanded elementwise by independent shape functions Nk
d in terms of

the nodal values dk and δdk

dh|Be
0

=
∑

k

Nk
d dk and δdh|Be

0
=

∑

k

Nk
d δdk (4.25)

Lastly, based on the above discretization, the corresponding gradient ∇Xd take the ele-

mentwise format

∇Xd
h|Be

0
=

∑

k

dk∇XN
k
d

Then, based on the spatial discretizations of the primary variables ϕ and d the discretized

internal and volume contributions to the spatial virtual work follow aswint
h = A

e

∑

k

wk ·
∫

Be
t

σt · ∇xN
k
ϕ dv (4.26)wvol

h = A
e

∑

k

wk ·
∫

Be
0

Nk
ϕbt dv (4.27)

Thus implying the arbitrariness of the spatial virtual node point displacements wk the

discrete algorithmic spatial node point (surface) forces are obtained at global node K as

follows

fh
sur,K = A

e

∫

Be
t

[
σt · ∇xN

k
ϕ −Nk

ϕbt

]

n+1
dv. (4.28)

1Convince yourself by considering the following derivation:

−W · F t ·DivΠt = −W · Div(F t ·Πt) + W ·Πt : ∇XF

= −W · Div(F t ·Πt) + W · [Div(ψ0I) +A∇Xα− ∂Xψ0]

= W ·
[
DivΣt + B0 + F t · b0

]
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Here we assumed the implicit Euler backward method for the time discretization without

loss of generalization. Thereby the temporal integration of the primary variables ϕ and

d renders a discretized temporal update for the values ϕn+1 and dn+1.

Furthermore, the discrete algorithmic Karush-Kuhn-Tucker complementary conditions

are obtained at global node K, whereby the first one represents the discrete algorithmic

damage condition and the second one assures positive increments of the damage variablerϕK = A
e

∫

B0

[
Nk

d [Y0 − κ]
]

n+1
dV and rdK = A

e

∫

B0

[
Nk

d

[
dh

n+1 − dh
n

]]
dV (4.29)

whereby [•]n and [•]n+1 denote successive time steps.

Moreover, the discrete algorithmic decomposition of the node point set with B = B
d
n+1 ∪

B
e
n+1 and ∅ = B

d
n+1 ∩ B

e
n+1 takes the following explicit format

B
e
n+1 = {K ∈ B|rϕK ≤ 0, rdK = 0} (4.30)

B
d
n+1 = {K ∈ B|rϕK = 0, rdK > 0}.

The initially unknown decomposition of the discretization node point set into active and

inactive subsets B = B
d
n+1 ∪ B

e
n+1 at time step tn+1 is determined iteratively by an active

set search. Thereby, the strategy is borrowed from convex nonlinear programming, see

Luenberger [54] as is frequently used e.g. in multi-surface and crystal plasticity. For a

detailed solution strategy w.r.t. the geometrically linear gradient damage case we refer

to Liebe et al. [52], see also Liebe and Steinmann [51] in the case of geometrically linear

gradient plasticity .

4.3.2 Material motion problem

Following the ideas of section 2.4 the discrete algorithmic material node point (surface)

forces at global node point K are obtained as follows

Fh
sur,K = A

e

∫

Be
0

[
Σt · ∇XN

k −Nk
ΦB0

]

n+1
dV, (4.31)

whereby we denote the material surface forces Fh
sur,K by ’sur’ in the diagrams later in

the example section. Furthermore we separate on the one hand

Fh
int,K = A

e

∫

Be
0

[
Σt · ∇XN

k
]

n+1
dV (4.32)

the internal part of the discrete algorithmic material node point (surface) forces denoted

by ’int’ and on the other hand

Fh
vol,K = A

e

∫

Be
0

[
Nk

ΦB0

]

n+1
dV (4.33)
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the volume part of the discrete algorithmic material node point (surface) forces denoted

by ’vol’ for later use in the example section. Thus we have in summary the obvious

result

Fh
sur,K = Fh

int,K −Fh
vol,K (4.34)

Based on these results we advocate the Material Force Method with the notion of global

discrete material node point (surface) forces, that (in the sense of Eshelby) are generated

by variations relative to the ambient material at fixed spatial positions. Such forces

corresponding to the material motion problem are trivially computable once the spatial

motion problem has been solved. Moreover, due to the interpretation of material forces

as being energetically conjugate to configurational changes, discrete material forces at

the boundary may be considered as a measure of the geometrical shape sensitivity of a

specimen.

4.3.3 Discretized format of J-integral: Material Force Method

' $

%&
v

v

v
v

�

�
��	

�
��	

�
���

Fh
vol

Fh
sur,iFh

sur,s

Fh
sur,r

Figure 4.1. Balance of discrete material node point forces

Consider the resulting discrete material node point (surface) force Fh
sur,s acting on a crack

tip, see Fig. 4.1. In analogy to the continuum format of the quasi-static equilibrium of

material forces the exact value Fsur,s in Eq. 2.21 can be approximated by the discrete

regular surface part Fh
sur,r and the discrete volume part Fh

vol of the discrete material node

point (surface) forces

Fsur,s ≈ −Fh
sur,r −Fh

vol (4.35)

These in turn are balanced by discrete singular material surface forces Fh
sur,s and (spu-

rious) discrete internal material surface forces Fh
sur,i, which stem from an insufficient

discretization accuracy as follows

−Fh
sur,r − Fh

vol = Fh
sur,s + Fh

sur,i (4.36)

Note thus, that the sum of all discrete algorithmic material node point surface forces
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Fh
sur,K corresponds according to Eq. 4.31 to the resulting value

Fsur,s ≈
∑

K∈Vh
0 \∂V

r,h
0

Fh
sur,K = Fh

sur,s + Fh
sur,i (4.37)

Thus an improved value for Fsur,s is obtained by summing up all discrete material node

point surface forces in the vicinity of the crack tip, see also Denzer et al. [22]. Observe

that the presence of spurious discrete internal material surface forces Fh
sur,i as implied by

Eq. 4.36 indicates that a change of the node point positions of the discretization renders

an improved mesh with less potential energy content in the conservative case, see also the

reasoning by Braun [12] and Maugin [62].

4.4 Numerical examples

In this section we focus on the computational performance and versatility of the proposed

Material Force Method with the incorporation of isotropic damage. To this end we first

study the results of a geometrically nonlinear computation obtained for a specimen with

an elliptic hole with varying axis ratios under tension. Next we compare these results with

a center cracked (CCT) fracture mechanics specimen in tension. Finally for validation

purposes we pursue a convergence study of a ’Modified Boundary Layer’-formulation

(MBL-formulation) of a straight, traction free crack.

4.4.1 Specimen with elliptic hole

First, we consider different specimen with an elliptic hole for varying axes ratios ranging

from a full circle (a/b = 1.0) to a slender ellipse (a/b = 0.1), see Fig. 4.2 in tension

with plane strain constraint. The height to width ratio is H/W = 3. The specimen is

discretized by bi-linear Q1-elements. The mesh is densified towards the hole boundary.

The virgin material is modeled based on a compressible Neo-Hookean formulation W0 =

µ [[I1 − lnJ ]/2− 3] + λln2J/2 with the shear modulus µ = 27540 MPa and the bulk

modulus K = λ+ 2/3µ = 59666 MPa corresponding roughly to aluminum.

For the damage evolution law, we specify the function φ(κ) with κ0 = 0.01 MPa the

assumed initial damage threshold and h = 0.1 a material parameter as φ(κ) = 1 −
exp(h[κ0 − κ]). Note that the particular choice of the supposed damage evolution may

influence the overall behavior of the considered specimen. The corresponding damage

evolution with an increasing internal variable κ > κ0 is depicted in Fig. 4.3.

A constant elongation is applied incrementally by prescribed displacements at the top sur-

face, the lateral movement of the nodes at the top and bottom surface are unconstrained.

Firstly we depict the damage variable distribution within zooms of the typical scenario

around the hole for varying axes ratios a/b. Thereby an evolving damage zone is shown

ranging from the purely undamaged elastic state (Fig. 4.4a) to a state with completely
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a. a/b = 1/1 b. a/b = 5/10 c. a/b = 1/10 d. CCT

Figure 4.2. Specimen geometries
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Figure 4.3. Damage evolution versus internal variable

damaged nodes (Fig. 4.4d). There are two intermediate states represented exhibiting the

first appearance of damaged nodes (Fig. 4.4b) and a further advanced damage state of

the first active nodes (Fig. 4.4c).

Then the computed discrete material node point surface forces are visualized in Fig. 4.5.

Due to the fact that Fh
sur,K = Fh

int,K − Fh
vol,K holds, we separately plot the internal part

of the discrete material node point (surface) forces ’int’, see Fig. 4.6 and the (negative)

volume part of the discrete material node point forces ’vol’, see Fig. 4.7. In all figures

the contour lines representing the damage state are superposed for convenience. Thereby

the discrete material node point surface forces ’sur’ point into the directions of an energy

increase upon replacement of the material node point position. Thus the initiation of a

crack in the direction opposite to the material (surface) force, in particular the replacement

of the material position at the root of the notch node point, that enlarges the macro crack

into the virgin material, corresponds to an energy release. Note in addition that the
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Figure 4.4. Damage variable evolution

(negative) volume part of the discrete material node point forces ’vol’ points along the

(negative) gradient ∇d of the damage field, which appears to reduce the far-field material

loading and hence the resulting material node point surface force at the root of the notch.

Note that the (negative) volume part of the discrete material node point forces ’vol’ are

of one order smaller in magnitude compared with the internal part of the discrete material

node point (surface) forces ’int’, see Fig. 4.7.

Observe finally that the more slender the elliptic hole the more diverted the material node

point (surface) forces ’sur’ become at the root of the notch with an increasing damage

zone. This is due to the fact that the finite elements in the vicinity of notch get highly

distorted for a/b = 1/10, see Fig. 4.5. Contrary it is notable that within a circular hole

the material node point (surface) forces get aligned perpendicular to the load direction
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corresponding to a possible horizontal line crack initiation, see Fig. 4.5. In order to cope

with a real crack we next investigate a CCT-specimen, which is discretized in a suitable

way to avoid highly distorted elements.
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Figure 4.5. Discrete material node point (surface) forces ’sur’
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Figure 4.6. Discrete internal part of material node point forces ’int’



78 Hyperelasticity Coupled with Damage Chapter 4

vol×250 vol×250 vol×250

a.

15 0.0236
14 0.0220
13 0.0204
12 0.0188
11 0.0173
10 0.0157
9 0.0141
8 0.0126
7 0.0110
6 0.0094
5 0.0079
4 0.0063
3 0.0047
2 0.0031
1 0.0016

vol×250 vol×250 vol×250

b.

15 0.0236
14 0.0220
13 0.0204
12 0.0188
11 0.0173
10 0.0157
9 0.0141
8 0.0126
7 0.0110
6 0.0094
5 0.0079
4 0.0063
3 0.0047
2 0.0031
1 0.0016

15 0.0157
14 0.0147
13 0.0136
12 0.0126
11 0.0115
10 0.0105
9 0.0094
8 0.0084
7 0.0073
6 0.0063
5 0.0052
4 0.0042
3 0.0031
2 0.0021
1 0.0010

vol×10 vol×15 vol×75

c.

15 0.5586
14 0.5214
13 0.4841
12 0.4469
11 0.4096
10 0.3724
9 0.3352
8 0.2979
7 0.2607
6 0.2234
5 0.1862
4 0.1490
3 0.1117
2 0.0745
1 0.0372

15 0.4613
14 0.4305
13 0.3998
12 0.3690
11 0.3383
10 0.3075
9 0.2768
8 0.2460
7 0.2153
6 0.1845
5 0.1538
4 0.1230
3 0.0923
2 0.0615
1 0.0308

vol×3.75 vol×4 vol×2.5

d.

15 0.9258
14 0.8641
13 0.8024
12 0.7407
11 0.6790
10 0.6172
9 0.5555
8 0.4938
7 0.4321
6 0.3703
5 0.3086
4 0.2469
3 0.1852
2 0.1234
1 0.0617

15 0.9375
14 0.8750
13 0.8125
12 0.7500
11 0.6875
10 0.6250
9 0.5625
8 0.5000
7 0.4375
6 0.3750
5 0.3125
4 0.2500
3 0.1875
2 0.1250
1 0.0625

a/b=1/1 a/b=5/10 a/b=1/10

Figure 4.7. Discrete (negative) volume part of material node point forces ’vol’
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4.4.2 Specimen with center crack

Next we study the influence of a center cracked fracture specimen in tension with geom-

etry and material model as in the previous example, see Fig. 4.2d. This time the mesh is

discretized with bi-quadratic S2-serendipity elements and is heavily densified in the vicin-

ity of the crack tip, whereas the elements connected to the crack tip node are standard

P2-triangular elements. A constant elongation is applied incrementally by prescribed dis-

placements at the top surface, the lateral movement of the nodes at the top and bottom

surface are unconstrained.

Here we consider the damage variable distribution for different damage states ranging

from the purely undamaged elastic stage to the state where nodes around the crack tip

are completely damaged, see zooms of the typical scenario at the crack tip, Fig. 4.8.
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Figure 4.8. Damage distribution at crack tip for different damage states

The computed discrete material node point (surface) forces point again into the direction

of an energy increase upon replacement of the material node point position. Thus the

growth of the crack in the direction opposite to the material force, i.e. the replacement of

the material position of the crack tip node point tries to proceed the crack tip further into

the material, corresponds to an energy release. We observe the similar damage zone as

for the case of the slender elliptic hole, compare with Fig. 4.4, i.e. it almost resembles the

singular crack tip of the CCT-specimen investigated here. Due to better discretization of

the crack vicinity of the CCT-specimen less diverted spurious material node point forces

can be found along the crack tip. Instead we have essentially a single material node point

(surface) force perpendicular to the load direction pointing into the crack, see Fig. 4.9.

Therefore the spurious material forces act as a sensitive indicator for the mesh quality.

Once again the discrete (negative) volume part of the material node point forces points

along the (negative) gradient of the damage field into the material surrounding the crack

tip, see Fig. 4.11. Note that the volume part ’vol’ is of one order smaller in magnitude

compared with the internal part ’int’. Therefore the shielding effect against the external

material loading is not very pronounced and in this example no significant difference

between the total discrete material node point (surface) forces and the internal part can

be found, see Fig. 4.10.
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Figure 4.9. Discrete material node point (surface) forces for different damage states
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Figure 4.10. Discrete internal part of material node point forces for different damage
states

vol×250 vol×250 vol×22.5 vol×7.5

Figure 4.11. Discrete (negative) volume part of material node point forces for different
damage states

4.4.3 MBL-specimen

For validation purposes, we consider finally a ’Modified Boundary Layer’ formulation

(MBL-formulation) [36, 82] of a straight, traction free crack. The discretization and the

material model are the same as in the previous example. The MBL-formulation is based

on an isolated treatment of the crack tip region which is independent of the surrounding

specimen, see Fig. 4.12. Under ’Small Scale Damage’ (SSD)2 conditions this region is

chosen in such a way that a small crack tip damage zone, dominated by the nonlinear

part of the material formulation, is surrounded by a large elastic boundary layer mainly

controlled by elastic material behavior. We define the damaged zone near the crack tip

2according to ’Small Scale Yielding’ (SSY) conditions in classical fracture mechanics
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by that region where the damage threshold κ0 is exceeded.
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Figure 4.12. Contour plot of damage variable and discrete material surface node point
forces

In this work we apply the first term of the asymptotic linear elastic stress series near a crack

tip given by Williams [108] as σ =
KI√
2πr

f (θ). Here KI denotes the stress intensity factor

and f (θ) are given functions depending only on the angle θ measured counterclockwise

form the positive x-axis. Under SSD-conditions, the linear elastic relation for the J-

integral Jpre = K2
I /E

′ with E ′ = E/[1 − ν2] for plane strain holds. To ensure SSD-

conditions in the MBL-formulation we discretized a circular area around the crack tip

with a radius R at least 1000 times larger than the maximum size of the damaged zone.

In the following figures we depict the MBL-specimen with a damaged crack tip as a contour

plot of the damage variable and a line contour plot of the damage variable together with

the discrete material surface node point forces, see Fig. 4.12.
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Figure 4.13. Purely elastic state vs. advanced damage state

Then we investigate the influence of the damage zone near the crack tip. Therefore we

compare a purely elastic state and an advanced damaged state, see Fig. 4.13. According

to Eqs. 4.36,4.37 the sum of all discrete algorithmic material node point surface forces

renders an improved value for the material force at the crack tip. The sum is taken over a
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varying number of rings of elements around the crack tip. After only a few number of rings

the internal part of the material node point surface force is converged to the prescribed

material load and remains constant. Due to the increasing damage zone around the crack

tip the volume part of the discrete material node point forces increases accordingly with

the gradient of the damage field. Therefore the discrete material node point surface force

on the crack tip is decreased due to the evolving damage around the crack tip compared

to the purely elastic state. Thus the crack tip might be considered as being shielded by

the distributed damage field. This ’shield’ is formed closely around the crack tip and

converges after a few rings to a constant value.



Chapter 5

Plasticity

In the following sections we briefly elaborate the material format of the quasi-static bal-

ance of momentum of a geometrically nonlinear problem involving multiplicative elasto-

plasticity. Our derivation is motivated by the work of Epstein and Maugin [23, 25, 24],

Maugin [56] and Cleja-Tigoiu and Maugin [17].

5.1 Kinematics
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Figure 5.1. Kinematics of multiplicative elasto-plasticity

In the framework of multiplicative elastoplasticity an intermediate configuration Bp is

introduced, see fig. 5.1. This configuration is stress free and incompatible. We assume,

that the total deformation gradient F of the spatial motion problem is the result of a

composition of a plastic distorsion F p and an elastic distorsion F e

83
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F = F e · F p (5.1)

Neither F e nor F p are generally representable as the gradient of a placement vector and

therefore do not satisfy the conditions of compatibility.

5.2 Material motion balance of momentum

To derive the format of the material motion balance of momentum and thus the format

of the Eshelby stress tensor Σt and the internal material volume force Bint
0 in the case of

finite hyperelasto-plasticity we assume the existence of a free Helmholtz energy ψ0 of the

following format (see Epstein and Maugin [23])

ψ0 = ψ0(F ,F p, κ; X) = Jpψp(F · F−1
p , κ; X) with Jp = det(F p) (5.2)

We start with the spatial motion balance of momentum

DivΠ t + bext
0 = 0 (5.3)

and a covariant pull back leads to

F t ·DivΠ t + F t · b0 = 0. (5.4)

in conjunction with the identity

Div(F t ·Π t) = F t ·DivΠ t +∇XF t : Π t or (5.5)

F t ·DivΠ t = Div(F t ·Π t)−∇XF t : Π t (5.6)

we end up with

Div(F t ·Π t)−∇XF t : Π t = 0 + F t · b0. (5.7)

Using the compatibility condition for F in the format

∇XF t : Π t = Π t : ∇XF (5.8)

together with equation (5.7) results in

Div(F t ·Π t)−Π t : ∇XF + F t · b0 = 0. (5.9)

Now we reformulate the expression Π t : ∇XF by analysing the identity

Div(ψ0I) = I∇Xψ0 + ψ0DivI = I · ∇Xψ0 = ∇Xψ0 (5.10)

were we took DivI = 0 into account. The material gradient of ψ0 is
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∇Xψ0(F ,F p, κ) = DF ψ0 : ∇XF + DF p
ψ0 : ∇XF p + Dκψ0∇Xκ+ ∂Xψ0 (5.11)

with Π t = DF ψ0 and Π t
p = DF p

ψ0 we can rewrite this as

∇Xψ0(F ,F p, κ) = Π t : ∇XF + Π t
p : ∇XF p + Dκψ0∇Xκ+ ∂Xψ0 (5.12)

or by using the identity from equation (5.10) we encounter

Π t : ∇XF = Div(ψ0I)−Π t
p : ∇XF p − Dκψ0∇Xκ− ∂Xψ0. (5.13)

Now we want to analyze Π t
p = DF p

ψ0 a bit more. We need the expression

Π t = DF ψ0 = Jp DF ψ0 (5.14)

and

DF e
ψp = DF ψp : DF e

F = DF ψp · F t
p (5.15)

to get

Π t
p = DF p

ψ0 = DF p
(Jpψp) (5.16)

= ψp DF p
Jp + Jp DF e

ψp : DF p
F e (5.17)

= F−t
p · [ψ0I − F t ·Π t] = F p ·Σt (5.18)

= ψ0F
−t
p − F t

e ·Π t (5.19)

With equation (5.9) we found the material motion balance of momentum with the follow-

ing format

Div(ψ0I − F t ·Π t)−Π t
p : ∇XF p − Dκψ0∇Xκ− ∂Xψ0 = 0 (5.20)

were we identify the Eshelby stress tensor Σt as

Σt = ψ0I − F t ·Π t (5.21)

and the material volume force density as B0 = Bext
0 + Bint

0 with

Bext
0 = −F t · bext

0 (5.22)

Bint
0 = −Π t

p : ∇XF p − Dκψ0∇Xκ− ∂Xψ0 (5.23)

= Σt : [F−1
p · ∇XF p]− Dκψ0∇Xκ− ∂Xψ0 (5.24)

Thus, we end up with the common format of the material motion balance of momentum

DivΣt + B0 = 0 (5.25)
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With this at hand we can now proceed further through the weak form and the discretiza-

tion as already established in the previous chapters. The essential difference in comparison

to the thermo–hyperelastic or isotropic damage case is now, that our internal material

volume force Bint
0 now depends on the gradient ∇XF p. As a consequence we need an

evolution law for F p within a constitutive theory. To avoid these difficulties we restrict

ourselves to the geometrically linear cases of single slip crystal plasticity and von Mises

plasticity with isotropic hardening. Both problems and their numerical implementations

are discussed in the following two sections.

5.3 Single Crystal Plasticity

In this section we discuss theoretical an numerical results of material forces in the case of

geometrically linear crystal–plasticity which based on our work published in [63].

5.3.1 Essential kinematics of crystal–plasticity

Let the position of a material particle be denoted as x ∈ B and the vector u(x, t) char-

acterize the corresponding displacement field whereby t represents time. Furthermore,

we adopt the commonly assumed additive decomposition of the displacement gradient,

i.e. the distorsion, into elastic and plastic parts; ∇u = h
.
= he + hp. Based on this,

the introduction of typical strain fields is straightforward, to be specific ε
.
= εe + εp with

εe .
= [he]sym, εp .

= [hp]sym and [•]sym = 1
2
[ • + •t ] whereby the notation •t abbreviates

transposition.

The remaining task consists in the setup of an appropriate evolution equation for hp

or rather εp, respectively, that accounts for the underlying crystal kinematics. In this

context, we adopt standard notation and let {sI , mI} denote the slip system I ∈ 1, . . . , nsl

which is determined via the slip direction sI , the normal to the slip plane mI , with

sI ⊥ mI and ‖sI‖ .
= ‖mI‖ = 1 without loss of generality, and a corresponding slip

parameter γI that is restricted by loading – and unloading conditions. With these relations

at hand, we obtain the evolution equation

ḣ
p

=
∑

I∈J

γ̇I sI ⊗mI with J = { I ∈ 1, . . . , nsl |ΦI = 0 and γ̇I 6= 0 } (5.26)

whereby the functions ΦI define a (convex) admissible domain for each slip system such

that J collects the set of active slip systems and the notation ˙(•) abbreviates derivation

with respect to time.

As an interesting side aspect, we consider the integrability of the displacement field, apply

Stokes theorem and observe that the plastic distorsion is directly related to the elastic

distorsion
∮

C

du =

∮

C

h · dx =

∫

A

[∇× h ] ·n da =

∫

A

bbur da
.
= 0 → ∇× hp = −∇× he(5.27)
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with bbur denoting the Burgers vector of the total compatible deformation. This relation

motivates the introduction of a plastic dislocation density tensor which takes with respect

to eq.(5.26) the following format

αp .
= ∇× hp =

∑

I∈J

[∇γI ×mI ]⊗ sI (5.28)

and apparently incorporates the spatial gradients of the active slip parameters.

5.3.2 Standard dissipative materials

We adopted in this section the framework of standard dissipative materials as advocated

by Halphen and Nguyen [34] and assume that the free Helmholtz energy is additively

decomposed into a purely elastic – and hardening contributions which are defined in

terms of one single hardening parameter for each slip system,

ψ = ψmac(ε− εp; x) +

nsl∑

I

ψhar(κI ; x) . (5.29)

Based on the (isothermal) dissipation inequality and the standard argumentation of ra-

tional mechanics, hyperelastic stress formats are introduced

D = σ : ε̇− ψ̇ ≡ σ : ε̇p −
nsl∑

I

hI κ̇I ≥ 0 (5.30)

σ
.
= ∂εψ

mac = ∂εeψmac = − ∂εpψmac hI
.
= ∂κI

ψhar . (5.31)

Furthermore, let the admissible domain of each slip system be defined by the (convex)

function ΦI which is assumed to depend on the Schmid stress τI and the hardening stress

hI via

ΦI(τI , hI) = |τI | − [Y0 + hI ] ≤ 0 with τI = sI · σ ·mI (5.32)

and 0 < Y0 = const. Next, associated evolution equations are introduced

ε̇p .
=

∑

I∈J

λ̇I ∂σΦI =
∑

I∈J

λ̇I sign(τI) [ sI ⊗mI ]sym κ̇I
.
= − λ̇I ∂hI

ΦI = λ̇I (5.33)

with λ̇I taking the usual interpretation as Lagrange multipliers of the corresponding con-

strained optimization problem. We thereby observe that the plastic strain field εp evolves

independently of the sign of the slip directions sI and slip plane normals mI , respec-

tively, and furthermore that the comparison of eq.(5.26) with eq.(5.33) results in the

relation γ̇I = sign(τI) λ̇I = sign(τI) κ̇I which actually stems from the chosen format in

eq.(5.32). The underlying Kuhn–Tucker conditions

κ̇I ≥ 0 ΦI ≤ 0 κ̇I ΦI = 0 (5.34)
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allow alternative representation via the following decomposition of the domain B, occu-

pied by the body B of interest, into elastic and plastic – or rather active and inactive

subdomains

Be
I ∪ Bp

I = B Be
I ∩ Bp

I = ∅
⋃nsl

I=1
Bp

I = Bp with (5.35)

Be
I = {x ∈ B |ΦI ≤ 0 , κ̇I = 0} Bp

I = {x ∈ B |ΦI = 0 , κ̇I > 0} . (5.36)

With these relations in hand, the corresponding Eshelby–type stress field and volume

force read

Σt = ψ I − ht · σ B =

nsl∑

I

[ τI ∇γI − hI ∇κI ]− ∂x ψ − ht · b (5.37)

whereby the relation − ∂εpψmac : ∇ εp = σ : [
∑nsl

I sI ⊗mI ⊗∇γI ] =
∑nsl

I τI ∇γI as

well as the underlying compatibility condition have been incorporated and I denotes the

second order identity. Please note that B depends on the spatial gradient of the slip and

hardening parameters and, moreover, that for monotonic loading conditions the contri-

butions τI ∇γI − hI ∇κI to the Eshelby–type volume force boil down to [ |τI | − hI ] ∇κI

which are additionally bounded by the yield function (5.32), namely |τI | − hI ≤ Y0.

5.3.3 Numerical solution strategies

While the introduction and computational treatment of the weak form (equality) of the

balance of linear momentum is straightforward

Gu(u, κI ; δu) =

∫

∂Bt

δu · tpr da+

∫

B

δu · b−∇δu : σ dv = 0 ∀δu ∈ H1
0 (B) (5.38)

the Kuhn–Tucker conditions can either be realized via the following weak form relations

(inequalities)

GΦ
I (u, κI ; δκI) =

∫

B

δκI [ |τI | − Y0 − hI ] dv ≤ 0 ∀ δκI > 0 ∈ L2(B) (5.39)

Ġκ
I (κ̇I ; δΦI) =

∫

B

δΦI κ̇I dv ≥ 0 ∀ δΦI > 0 ∈ L2(B) (5.40)

or within the standard internal variable approach. In analogy to eq.(5.36) the elastic and

plastic subdomains allow the alternative representation

Be
I =

{

x ∈ B |GΦ
I ≤ 0 , Ġκ

I = 0 ∀ δκI , δΦI > 0 ∈ L2(Be
I)

}

, (5.41)

Bp
I =

{

x ∈ B |GΦ
I = 0 , Ġκ

I > 0 ∀ δκI , δΦI > 0 ∈ L2(Bp
I )

}

. (5.42)
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Please note that eqs.(5.39,5.40) constitute the weighted format of the yield function

in eq.(5.32) and the evolution of the hardening parameters under the constraints im-

posed by the Kuhn–Tucker conditions as highlighted in eq.(5.34). The first approach

(i.e. eqs.(5.39,5.40)), where the Kuhn–Tucker conditions are evaluated on the global fi-

nite element level, is denoted as node point based and the second framework, where the

Kuhn–Tucker conditions are evaluated on a pointwise or rather local level, is classified

as integration point based. Their particular properties are discussed below. For concep-

tual clarity we restrict ourselves to the specific case of single–slip crystal–plasticity in the

progression of this work, i.e. nsl
.
= 1 such that the index I can be dropped.

Node point based approach

After the temporal and spatial discretization of the weak forms in eqs.(5.38,5.39) are

carried out one obtains the residua Ru
K and RΦ

K ∀K ∈ B whereby K denotes the index

of a finite element node in the discretization domain B, see appendix D.1 for a brief

reiteration. The contribution from eq.(5.40), i.e. ∆Rκ
K is incorporated into the following

active set search:

The initialization consists in the obvious choice that the active domain corresponds to

those nodes where the (representation of the) yield function is violated and the initial –

or rather trial step for the hardening parameter follows straightforward

Bact = {K ∈ B |RΦ
K > 0 } κtrial

K = κK n + ∆κK ∀ K ∈ Bact . (5.43)

Since the incremental field ∆κK might become negative, which is not admissible due to

eqs.(5.34,5.40), we have to incorporate an additional projection to the admissible range

of κK or rather restrict the evolution of κK via κK n+1
.
= max{κtrial

K , κK n}. The active

working set is then defined by

Bact = B
Φ
act ∪ B

p
act B

Φ
act = {K ∈ B |RΦ

K > 0} B
p
act = {K ∈ B |∆Rκ

K > 0} (5.44)

and convergence is obtained for B
Φ
act = ∅ such that Bact = B

p
act → B

p
n+1. Finally note that

the computation of the spatial gradient of the hardening parameter is straightforward and

performed on the element level via the spatial gradients of the shape functions Nk
κ , i.e.

∇κh =
∑nen

k=1 κk∇Nk
κ . Similarly, the update for the slip parameter γ reads γK n+1 = γK n+

sK ∆κK and sK = sign(A
nel

e=1

∫

Be Nk
κ τ

h dv) such that with these nodal values at hand the

computation of the corresponding spatial gradient results in ∇γh =
∑nen

k=1 γk∇Nk
κ .

Integration point based approach

For the integration point based – or rather standard internal variable approach the hard-

ening variables and slip parameters are, by definition of the algorithm, only available at

the integration points, see appendix D.2 for further details on the underlying formula-

tion. We therefore have to apply a projection – or in other words smoothing algorithm to
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the hardening variables and slip parameters in order to compute these fields at the node

point level which then enables us to calculate their spatial gradients via the gradients

of the shape functions. Adopting standard algorithms, the corresponding least square

approximation yields
∫

B

1
2
[ κpro − κh ]2 dv → min

∫

B

δκpro [ κpro − κh ] dv = 0 (5.45)

whereby κpro =
∑nen

l=1 N
l
κ κ

pro
l denotes the projected field and κh characterizes the field

sampled at the integration points; apparently the identical scheme can be applied to

the projection of the slip parameters γ. A straightforward interpolation technique which

guarantees C0 continuity is e.g.

κpro
k =

⌈

A
nel

e=1

∫

Be

Nk
κ N

l
κ dv

⌋−1

A
nel

e=1

∫

Be

N l
κ κ

h dv (5.46)

with the notation ⌈ • ⌋ indicating a lumped matrix format and the identical scheme holding

for γpro
k , respectively. The computation of the sought gradients follows in analogy to the

node point based setting, namely ∇κh =
∑nen

k=1 κ
pro
k ∇Nk

κ and ∇γh =
∑nen

k=1 γ
pro
k ∇Nk

κ .

5.3.4 Examples

The subsequent numerical examples are based on rather elementary constitutive functions,

i.e. a quadratic format for the elastic and hardening contribution of the free Helmholtz

energy is adopted

ψmac(εe; x) = 1
2
L [ εe : I ]2 +G [εe]2 : I ψhar(κ; x) = 1

2
H κ2 . (5.47)

Material parameters that reflect the behavior of (single–crystalline) elastoplastic metals

are applied throughout; E = 60000 MPa, ν = 0.3, H = 6000 MPa, Y0 = 60 MPa with

L = E ν
[ 1+ν ] [ 1−2 ν ]

and G = E
2 [ 1+ν ]

being obvious. For the definition of the slip system

we choose m = − 0.5 e1 + 0.866 e2 such that ∠(m, e1) = 120◦ whereby the base vectors

ei represent a Cartesian frame. We discuss three different numerical examples under

plane strain conditions in the sequel and thereby start with an inhomogeneous specimen

represented by an elliptic inclusion, then switch to a specimen with an elliptic hole and

finally consider a cracked specimen. The inhomogeneity due to the inclusion stems from

a modified orientation of the slip system, namely minc = − 0.866 e1 + 0.5 e2 such that

∠(minc, e1) = 150◦. Any assumption on plane strain or plane stress conditions is therefore

not affected by the plastic strains, since e3 · s = e3 ·m = 0, but solely reflected via the

elastic portions.

For comparison reasons, similar finite element techniques are applied to the node – and

integration point based approach. To be specific, for the first framework a C0 , C0 ap-

proximation of Q1 , Q1 type for the displacement and hardening field u , κ is chosen and

consequently the latter framework is realized via a C0 approximation of Q1 type for the

displacement field u.
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Specimen with an elliptic inclusion

The initial state of the considered specimen is completely homogeneous since the inclusion

possesses identical elastic properties as the ambient material. Taking a tension–type

loading path into account (which is chosen to be displacement driven for the subsequent

numerical example), we observe that the elastic status boils down to a one–dimensional

setting as the transverse stretch is not constrained by the applied boundary conditions.

For the particular choice of the orientations of the slip systems it turns out that the yield

limit is achieved simultaneously in the entire body, and that the non–homogeneity occurs

only for inelastic deformation processes. Apparently, this non–homogeneity stems from

the application of varying material parameters in different domains (here the orientation of

slip systems) as well as the formation of non–homogeneous contributions of the hardening

field, which is often classified as the heterogeneity of the solution.

The geometry of the specimen is visualized in figure 5.2 and corresponds to the dimen-

sions 60 × 20. Moreover, the discretization is performed by 1152 elements whereby 384

elements are attached to the elliptic inclusion which is of dimension 5× 10. Apparently,

the (longitudinal) load \vs (prescribed) displacement curves in figure 5.2 monitor, as far

as the eye can catch, identical results for the node point based – and integration point

based approach. Figures 5.3 and 5.4 highlight the contributions of the material internal

–, volume – and surface forces Fh
int, vol, sur K as well as the hardening variable κ for a pre-

scribed displacement of upr = 0.2 at the ending of the specimen. It thereby turns out that

the material internal forces and the material volume contributions, which obviously stem

from the non–vanishing spatial gradient of the hardening variables and slip parameters,

almost cancel out – except at the transition zone from the ambient body to the inclusion.

Moreover, this inhomogeneity or rather heterogeneity of the material is also clearly mon-

itored by the visualization of the hardening variable. Finally, we observe that figures 5.3

and 5.4 show only minor differences, i.e. the node point based – and integration point

based approach end up with qualitatively similar results.

Specimen with an elliptic hole

In contrast to the previous setting it is now the incorporation of an elliptic hole which

causes, even in the elastic range, an inhomogeneously deformed state. Due to the resulting

stress intensities plastic zones start to develop in a symmetric arrangement but then

further progress in a non–symmetric pattern since the slip system is not aligned with the

longitudinal loading direction.

In analogy to section 5.3.4 we consider once more a specimen characterized by the same

geometry (with identical boundary and loading conditions) whereby the discretization

is realized via 48 × 16 elements, compare figure 5.5. Again, the (longitudinal) load \vs

(prescribed) displacement curves for the node point based – and integration point based

approach come up with (almost) identical results, see figure 5.5. Furthermore, the cal-

culated material internal –, volume – and surface forces Fh
int, vol, sur K and the hardening
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Figure 5.2. Specimen with an elliptic inclusion: Discretization and (longitudinal) load \vs
(prescribed) displacement curves for the node point based – and integration point based
approach.
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d) 0 ≤ κ < 0.01

Figure 5.3. Specimen with an elliptic inclusion: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ

for the node point based approach ambient of the inclusion at upr = 0.2.
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Figure 5.4. Specimen with an elliptic inclusion: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ

for the integration point based approach ambient of the inclusion at upr = 0.2.
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variable κ are monitored in figures 5.6 and 5.7 at upr = 0.2. Apparently, similar results

are obtained for the node point based – and integration point based approach. The overall

anisotropic response is thereby clearly underlined by the plots of the hardening field.
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Figure 5.5. Specimen with an elliptic hole: Discretization and (longitudinal) load \vs
(prescribed) displacement curves for the node point based – and integration point based
approach.

Specimen with a crack

Finally, we consider a cracked specimen under mode I loading which is directly related

to the well–known r−1/2 singularity of an isotropic linear elastic setting. Due to this

stress intensity the plastic zone starts to develop at the crack tip and then progresses in

a non–symmetric pattern since the slip system is not aligned with the loading direction.

To be specific, a circular subdomain, with radius R = 150 (and Hcrack = H × 10−2), of

the infinitely expanded body is taken into account and the discretization is performed

with 38 × 24 elements, see e.g. figure 5.8. The 38 rings are thereby arranged (in radial

direction) in a geometrical series and the ring at the crack tip consists of P1, P1 triangular

elements for the approximation of the displacement – and hardening field, respectively.
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Figure 5.6. Specimen with an elliptic hole: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ for the

node point based approach ambient of the hole at upr = 0.2.
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Figure 5.7. Specimen with an elliptic hole: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ for the

integration point based approach ambient of the hole at upr = 0.2.
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Due to the plastic anisotropy of the material the vectorial J–integral is not entirely aligned

with the crack direction, compare figures 5.9c) and 5.10c). However, in order to compare

the computation of the vectorial J–integral, as based on the developed formulation, with

the (analytical) solution for an isotropic linear elastic setting we highlight solely the

component of Jh in the direction of the crack. Consequently, the boundary conditions

have to be chosen such that mode I loading is recovered, i.e. for a given J–integral with

respect to an isotropic linear elastic setting, say Jpr
e , we obtain the related prescribed

displacement field at the boundary of the outer ring; for a detailed outline the reader

is referred to, e.g., Williams [108]. Moreover, the accuracy of the approximation of Jh

depends on the considered domain, which is highlighted in figure 5.8 for Jpr
e = 0.49. The

obtained results are thereby normalized with respect to the corresponding (analytical)

solution of the isotropic linear elastic setting which rests upon the idea that the plastic

zone is relatively small compared to the considered domain. Furthermore, note that

specialized finite elements at the crack tip, which are not in the focus of this work, would

not considerably improve the solution of this inelastic setting. The computations based

on the node point based – and integration point based approach however, once more end

up with similar results, see again figure 5.8. In contrast to the example in section 5.3.4

and especially the one in section 5.3.4 we observe that the material volume forces are now

less pronounced (as indicated by a higher scaling factor), see figures 5.9 and 5.10 where

the material forces and the hardening field are highlighted for Jpr
e = 0.49 in analogy to

the previous settings. Once more, the node point based – and integration point based

approach render similar results with only minor differences.
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Figure 5.8. Specimen with a crack: Discretization and J-integral \vs number of rings for
the node point based – and integration point based approach at Jpr

e = 0.49.
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Figure 5.9. Specimen with a crack: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ for the node

point based approach ambient of the crack at Jpr
e = 0.49.
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Figure 5.10. Specimen with a crack: a) Fh
int K , b) Fh

vol K , c) Fh
sur K and d) κ for the

integration point based approach ambient of the crack at Jpr
e = 0.49.
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5.4 Von Mises plasticity

Based on the theoretical results of the previous section we are able to formulate the

material force method for geometrically linear von Mises type plasticity model. We restrict

ourselves to a simple prototype model with linear isotropic hardening behaviour, as defined

by the following free Helmholtz energy function

ψe(εe) = 1
2
K [εe : I]2 +G[εedev]2 : I ψhar(κ) = 1

2
H κ2 (5.48)

Because we already discussed ’Standard dissipative materials’ in section 5.3.2 we discuss

the relevant equations only briefly in the sequel.

The (isothermal) dissipation inequality

Dred = σ : ε̇p +R κ̇ ≥ 0 (5.49)

leads to the hyperelastic stress

σ = ∂εeψe = −∂εpψe. (5.50)

We furthermore introduce a yield function and the hardening stresss by

Φ(σ, R) = ||σdev|| −
√

2/3 [Y0 −R] ≤ 0 and R = −∂κψ (5.51)

The postulate of maximum dissipation results in the associated evolution equation for the

plastic strain

ε̇p = λ̇n κ̇ = λ̇
√

2/3 n = σdev/||σdev||. (5.52)

and the Kuhn-Tucker loading and unloading conditions

λ̇ ≥ 0 Φ ≤ 0 λ̇Φ = 0 (5.53)

The numerical implementation of this model is described e.g. by Simo [91] and should not

be discussed here.

Iterating through the equations in section 2.5, page 27, gives us the Eshelby stress tensor

and the material volume force as

Σt = ψ I − ht · σ (5.54)

B = σ : ∇xε
p − R ∇xκ− ∂x ψ − ht · b. (5.55)

We can split the material volume force in an external and an internal part B = Bext+Bint

with
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Figure 5.11. Material forces for T -stress τ = −0.9

Bext = −ht · b (5.56)

Bint = σ : ∇xε
p −R ∇xκ− ∂x ψ. (5.57)

The internal part of the material volume force Bint is also called a ’dissipative’ volume

force, see Maugin [57]. To determine Bint we need the gradients ∇xε
p and ∇xκ. Both

are calculated numerically by the integration point based method already outlined in the

previous section 5.3.3 based on a L2-projection of the values εp and κ available at the

integration points.

As a numerical example we study a ’Modified Boundary Layer’-formulation of a straight

traction free crack in a von Mises plasticity type material. The example is similar to those

given in section 2.6.1, page 28. We load the isolated crack tip region with a prescribed

boundary condition which belongs to a prescribed J-integral value of Jpre = 4. This

guarantees us ’Small Scale Yielding’ (SSY) conditions based on the asymptotic linear

elastic solution under mode I loading.

We varied the T -stress in the range of τ = T/Y0 = −0.9, 0.0, 0.9 and as a hardening

modul we choose the ratio E/H = 100 and E/H = 2. The Youngs’ modulus was set to

E = 72000 MPa, the Poisson’s ratio to ν = 0.3 and the yield stress to Y0 = 317 MPa.

The resulting discrete material (surface) forces Fh
sur K and their internal and volume parts

as well as the internal variable κ are shown in fig. 5.14 to 5.19.

To study the domain dependency of the J-integral we use our in eq. 2.41 proposed Material

Force Method. In this case we increase our integration domain not starting at the crack tip

node but at the outer boundary of the discretized region. That means due to the choosen

SSY-condition we start our integration in the elastic region where we found the prescribed

J-integral value with an error less than 0.1%. Thus the in fig. 5.11 to 5.13 depicted graphs

should be read from right to left. Especially for large negative T -stress the influence of
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Figure 5.12. Material forces for T -stress τ = 0.0
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Figure 5.13. Material forces for T -stress τ = 0.9
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vol K × 25
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c. Fh
sur K × 1 d. κ

Figure 5.14. Material forces for T -stress τ = −0.9 and E/H = 100

the ’dissipative’ material volume forces are considerably strong, see fig. 5.14. Whereas in

the case of vanishing or positive T -streses we observe a much less influence. Additionally,

we found that small hardening moduls H results in larger ’dissipative’ material volume

forces.
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Figure 5.15. Material forces for T -stress τ = 0.0 and E/H = 100
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Figure 5.16. Material forces for T -stress τ = 0.0 and E/H = 100
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Figure 5.17. Material forces for T -stress τ = −0.9 and E/H = 2
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Figure 5.18. Material forces for T -stress τ = 0.0 and E/H = 2
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Figure 5.19. Material forces for T -stress τ = 0.0 and E/H = 2
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Outlook

Their are several problems which must be discussed in the future. One is the problem of

calculation accurately the single material force acting at the crack tip as a driving force

in the case of dissipative materials. In this case the J-integral is path-dependent and thus

the single material force must be calculated by the inaccurate approximation of the stress

and strain fields in the vicinity of the crack tip. The inaccurate approximation is caused

by the singular behaviour of the solution at the crack tip but the type of the singularity

is not known in common.

Another field of ongoing work should be the theory and numerics of material forces in the

case of geometrically nonlinear hyperelasto–plasticity. The theory of geometrically non-

linear hyperelasto–plasticity is still in discussion, whereby the format of material motion

balance of momentum seems fruitfully stimulate this discussion, as shown by e.g. Epstein

and Maugin [23, 25, 24].

A third field should be the kinetics of defects. This could be crack propagation, phase

transitions and the growth of materials whereby the material forces play the role of a

driving force.

111



112 Outlook Chapter 6



Appendix A

Notation

We denote scalar quantities by nonbold symbols c, vectors and second order tensors by

bold symbols a and b or A and B. Fourth order tensors are indicated by nonserif bold

fonts E. In the following the frequently used calculation rules and their notations are

summarized. For the sake of simplicity we only denoted the rules in cartesian coordinates.

contraction c = a · b c = ai bi

a = A · b ai = Aij bj

A = B ·C Aij = Bik Ckj

double contraction c = A : B c = Aij Bij

A = E : B Aij = EijklBkl

dyadic product A = a⊗ b Aij = ai bj

E = A⊗B Eijkl = Aij Bkl

nonstandard dyadic products E = A⊗B Eijkl = Aik Bjl

E = A⊗B Eijkl = AilBjk

The second order unit tensor I is defined as Iij = δij , the fourth order unit tensor I

is determined as Iijkl = δij δkl and the symmetric the fourth order unit tensor I
sym is

I
sym
ijkl = 1

2
[δikδjl + δilδjk].
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Appendix B

Ramberg-Osgood Material –

Linearization

The implementation of the Ramberg-Osgood material law for 3d or 2d plane strain con-

dition is epitomized in the sequel.

The 3d generalization of Eq. 2.52 is given by

ǫvol =
1

K
σvol (A1)

ǫdev =
1

2G
σdev +

3

2

α

E

[
σv

σ0

]n−1

σdev (A2)

where K is the bulk modulus, E is the Young’s modulus and G is the shear modulus.

ǫvol, ǫdev, σvol,σdev are the volumetric and deviatoric strains and stresses, respectively,

which are defined by

ǫvol = 1
3
[ǫ : I]I σvol = 1

3
[σ : I]I

ǫdev = ǫ− ǫvol σdev = σ − σvol
(A3)

By introducing the equivalent von Mises stress σv and the equivalent deviatoric strain ev

it follows from Eq. A2

ev =
2

3

1

2G
σv +

α

E

[
σv

σ0

]n−1

σv (A4)

with

σv =

√

3

2
σdev : σdev

ev =

√

2

3
ǫdev : ǫdev

Now the von Mises stress σv could be solved by a standard Newton iteration from Eq. A4

and with the use of Eq. A2 the deviatoric part of the stress tensor is computable
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σdev =
2σv

3ev

ǫdev. (A5)

The volumetric part of the stress tensor is obtained directly from Eq. A1. The algorithmic

implementation is given in Tab. B.1

Table B.1. 3d Ramberg-Osgood material

Given: strain of the actual step m+ 1

m+1ǫ = m+1ǫ
dev + m+1ǫ

vol

Step 1: trial von Mises stress

m+1ev =
√

2
3 m+1ǫdev : m+1ǫdev

trial
m+1σv =







3G m+1ev if 3G m+1ev ≤ σ0
[

σn−1
0 E m+1ev

α

]1/n

if 3G m+1ev > σ0

Step 2: Newton iteration to solve Eq. A4

k = 0

σk
v = trial

m+1σv

f(σk
v ) = 2

3
1

2G
σk

v + α
E

[
σk

v

σ0

]n−1

σk
v − m+1ev

while (|f | ≥ tol)

f ′(σk
v ) = 2

3
1

2G
+ α

E
n

n−1

[
σk

v

σ0

]n−1

σk+1
v = σk

v − f(σk
v )/f

′(σk
v )

k ← k + 1

f(σk
v ) = 2

3
1

2G
σk

v + α
E

[
σk

v

σ0

]n−1

σk
v − m+1ev

end

m+1σv = σk
v

Step 3: obtain stress tensor

m+1σ
dev = 2 m+1σv

3 m+1ev
m+1ǫ

dev

m+1σ
vol = K m+1ǫ

vol

m+1σ = m+1σ
dev + m+1σ

vol

For the global solution by a Newton-type algorithms, we apply a consistent linearization.

With tedious but straightforward manipulations we obtain the consistent tangent moduli
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as

∂σdev

∂ǫdev
=

2σv

3ev

[

I
sym −

[

2

3e2v
− 2

3e2v + 3ev((n− 1)ασv

σ0

n−1 σv

E
))

]

ǫdev ⊗ ǫdev

]

(A6)
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Appendix C

Thermo-Hyperelasticity –

Linearization

The discrete coupled nonlinear system of equations of the spatial motion problem is solved

in a monolithic sense with the help of an incremental iterative Newton–Raphson solution

strategy. The discrete balance of momentum (3.33)1 and the discrete balance of energy

(3.33)2 are thus solved simultaneously at time tn+1. Consequently, the k+ 1–th iterate of

the Newton iteration can be expressed as

rrrrrrrrr
ϕ
I

k+1
n+1 = rrrrrrrrr

ϕ
I

k
n+1 + drrrrrrrrr

ϕ
I
.
= 0 ∀ I = 1, nnp

rθJ
k+1
n+1 = rθJ

k
n+1 + drθJ

.
= 0 ∀ J = 1, nnp

(A1)

whereby drrrrrrrrr
ϕ
I and drθJ denote the iterative residua which are based on the consistent

linearization of the governing equations.

drrrrrrrrr
ϕ
I =

nnp∑

K=1

K
ϕϕ
IK · dϕK +

nnp∑

L=1

K
ϕθ
IL dθL ∀ I = 1, nnp

drθJ =

nnp∑

K=1

K
θϕ
JK · dϕK +

nnp∑

L=1

Kθθ
JL dθL ∀ J = 1, nnp

(A2)

They can be expressed in terms of the iteration matrices K
ϕϕ
IK , K

ϕθ
IL, K

θϕ
JK , Kθθ

JL, and the

incremental changes of the global vector of unknowns dϕK and dθL. For the problem

at hand, these iteration matrices which can be interpreted as submatrices of the global
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tangential stiffness matrix take the following format.

K
ϕϕ
IK =

∂rrrrrrrrr
ϕ
I

∂ϕK

=
nel

AAAAAAAAA
e=1

∫

B0

N iρ0
1

∆t2
INk +∇XN

i · DF Π t · ∇XN
k dV

K
ϕθ
IL =

∂rrrrrrrrr
ϕ
I

∂θL
=

nel

AAAAAAAAA
e=1

∫

B0

∇XN
i · DθΠ

tN l dV

K
θϕ
JK=

∂rθJ
∂ϕK

=
nel

AAAAAAAAA
e=1

∫

B0

−N j DFQmech
0 · ∇XN

k dV

Kθθ
JL =

∂rθJ
∂θL

=
nel

AAAAAAAAA
e=1

∫

B0

N jc0
1

∆ t
N l −N jDθQmech

0 N l +∇XN
j ·D∇XθQ · ∇XN

ldV

(A3)

Therein, the first terms of equations (A3)1 and (A3)4 illustrate the time–dependent nature

of the problem. They represent the consistent mass and capacity matrix, respectively.

The second term of (A3)1 corresponds to the classical structural stiffness. Equation (A3)2

reflects the thermal influence in the constitutive equation. The indirect influence of the

changes in temperature on the deformation field and on the temperature field introduced

through the Gough–Joule effect is reflected through equation (A3)3 and the second term

in (A3)4. The last term in equation (A3)4 accounts for heat convection. The above

introduced derivatives of the momentum flux Π t, the thermo–mechanical coupling term

Qmech
0 and the heat flux Q with respect to the deformation gradient F , the temperature

θ and the temperature gradient ∇Xθ depend on the choice of the individual constitutive

equations. A particular examplification is given in chapter 3.4. The solution of the

linearized system of equations (A1) finally defines the iterative update for the increments

of the global unknowns ϕI and θJ .

∆ϕI = ∆ϕI + dϕI ∀ I = 1, nnp

∆ θJ = ∆ θJ + d θJ ∀ J = 1, nnp

(A4)

Remark: Transient terms in the linearized residual

Recall, that when considering the balance of momentum in the quasi–static sense, the

term N Iρ0/∆t
2 I NK of equation (A3)1 vanishes identically.



Appendix D

Single Crystal Plasticity – Numerical

Solution Strategies

For convenience of the reader we briefly reiterate the applied discretization scheme in

time and space in the sequel (with emphasis on a single–slip setting). The time interval

of interest is thereby partitioned into finite subintervals, T = ∪N
n=0 [ tn , tn+1 ] with ∆t =

tn+1 − tn > 0 being obvious, and the spatial domain is represented via an element wise

discretization B = ∪nel
e=1 Be within a standard finite element context.

D.1 Node point based approach

By carrying out the discretization in time we derive the algorithmic version of the weak

forms and the decomposition into elastic and plastic domains as highlighted in eqs.(5.38–

5.42)

Gu
n+1 =

∫

∂Bt

δu · tpr
n+1 da+

∫

B

δu · bn+1 −∇δu : σn+1 dv = 0 (A1)

GΦ
n+1 =

∫

B

δκ [ |τn+1| − Y0 − hn+1 ] dv ≤ 0 (A2)

∆Gκ
n+1 =

∫

B

δΦ [ κn+1 − κn ] dv ≥ 0 (A3)

Be
n+1 =

{
x ∈ B |GΦ

n+1 ≤ 0 , ∆Gκ
n+1 = 0

}
(A4)

Bp
n+1 =

{
x ∈ B |GΦ

n+1 = 0 , ∆Gκ
n+1 > 0

}
(A5)

whereby the approximation κ̇
.
= [κn+1 − κn ]/∆t has been applied. Please note that

eqs.(A4,A5) take the interpretation as the pointwise algorithmic format of the Kuhn–

Tucker condition in eq.(5.34)3, namely [κn+1 − κn ]Φn+1 = 0 (with ∆t > 0).

Concerning the spatial discretization of u and κ, we introduce the finite element domain
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via

B =
⋃nel

e=1
B

e
B

e = {k | k = 1, . . . , nen} B = {K |K = 1, . . . , nnp} (A6)

such that k and K represent nodes on the element – and global level, respectively. In

analogy to eqs.(A1–A5) one obtains the residua and domain decomposition as follows

Ru
K = A

nel

e=1

∫

∂Be∩∂Bt

Nk
u t

pr
n+1 da +

∫

Be

Nk
u bn+1 −∇Nk

u · σn+1 dv = 0 (A7)

RΦ
K = A

nel

e=1

∫

Be

Nk
κ [ |τn+1| − Y0 − hn+1 ] dv ≤ 0 (A8)

∆Rκ
K = A

nel

e=1

∫

Be

Nk
κ [ κh

n+1 − κh
n ] dv ≥ 0 (A9)

B
e
n+1 =

{
K ∈ B |RΦ

K ≤ 0 , ∆Rκ
K = 0

}
(A10)

B
p
n+1 =

{
K ∈ B |RΦ

K = 0 , ∆Rκ
K > 0

}
(A11)

whereby the displacement field (as well as the nodal positions) is approximated via Nk
u

while the shape functions Nk
κ are applied to the hardening variable and δΦ, respectively.

The discrete algorithmic format of eq.(5.34)3 is thereby represented via ∆Rκ
K RΦ

K = 0.

Now, standard incremental iteration schemes can be applied to solve the underlying sys-

tem of nonlinear equations. Placing emphasis on a typical Newton algorithm we obtain

the linearized residua as

− dRu
K =

∑

L∈B

[

A
nel

e=1

∫

B
e

∇Nk
u · ∂εn+1σn+1 · ∇N l

u dv
]

· duL (A12)

+
∑

L∈Bact

[

A
nel

e=1

∫

B
e

∇Nk
u · ∂κn+1σn+1N

l
κ dv

]

· dκL ∀K ∈ B

− dRΦ
K =

∑

L∈B

[

A
nel

e=1

∫

B
e

Nk
κ ∂εn+1 |τn+1| · ∇N l

u dv
]

· duL (A13)

+
∑

L∈Bact

[

A
nel

e=1

∫

B
e

Nk
κ ∂κn+1 [ |τn+1| − hn+1 ]N l

κ dv
]

· dκL ∀K ∈ Bact

and the incorporated derivatives take the following format for the problem at hand

∂εn+1σn+1 = L i⊗ i + 2G i
sym ∂κn+1σn+1 = − 2G sign(τn+1) ν (A14)

∂εn+1
|τn+1| = 2G sign(τn+1) ν ∂κn+1 [ |τn+1| − hn+1 ] = −G−H (A15)

with ν = [ s ⊗m ]sym and i
sym denoting the fourth order symmetric identity; see also

the following section D.2 where the underlying Euler backward integration is highlighted.
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Please note that the obtained system of equations turns out to be symmetric if the resid-

ual RΦ
K or rather eqs.(A8,A13,A15) is scaled by the factor −1 which moreover results

in a positive definite element stiffness matrix (this change of sign is therefore adopted

for the implementation of the developed formulation). Finally, eqs.(A14,A15) turn out

to be independent of the sign of s and m, moreover, recall that the contributions in

eqs.(A14,A15)1 do not incorporate any (implicit) derivatives due to the Lagrange multi-

plier or rather the hardening variable since eqs.(A14,A15)2 account for the calculation of

this field.

D.2 Integration point based approach

The implementation of the integration point based approach is rather straightforward:

Based on the evolution equation ε̇p = λ̇ sign(τ) ν, with ν = [ s⊗m ]sym, s ·ν ·m = 1
2

and

ν : i = 0 since s ⊥m, we obtain by application of the implicit Euler backward scheme

εe
n+1 = εtri −∆λ sign(τn+1) ν and κn+1 = κn + ∆λ (A16)

with εtri = εn+1 − εp
n, τn+1 = s · σn+1 · m as well as ∆λ = ∆t λ̇. Following stan-

dard concepts in computational inelasticity, the actual stress state reads σn+1 = σtri −
2G∆λ sign(τn+1) ν, compare eq.(5.47), and allows the Schmid stress to be represented as

τn+1 = τ tri −G∆λ sign(τn+1) (A17)

sign(τn+1) |τn+1| = sign(τ tri) |τ tri| −G∆λ sign(τn+1) (A18)

with τ tri = s · σtri ·m being obvious. Based on this relation, we consequently observe

from G∆λ > 0 that

sign(τn+1) = sign(τ tri) |τn+1| = |τ tri| −G∆λ (A19)

holds throughout such that the slip parameters allow to be updated via

γn+1 = γn + sign(τn+1) ∆λ = γn + sign(τ tri) ∆λ (A20)

and the yield function takes the format

Φn+1 = |τ tri| −G∆λ− [Y0 +H κn +H ∆λ ]
.
= Φtri −∆λ [G +H ] . (A21)

In case that the trial yield function is violated, Φtri > 0, the Lagrange multiplier is

determined via ∆λ = [G+H ]−1 Φtri in order to satisfy Φn+1 = 0. Finally, the computation

of the (symmetric) algorithmic tangent operator results in

e
alg
n+1 = ∂εn+1σn+1 = L i⊗ i + 2G i

sym − 4G2 [G +H ]−1 ν ⊗ ν (A22)

and apparently assembles the contributions in eqs.(A14,A15).
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