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Einleitung

Ziel dieser Arbeit ist die Entwicklung und Analyse von neuartigen Finite Element

Ansätzen zur Berücksichtigung von Diskontinuitäten. Bei numerischen Simulationen mit

Hilfe der Finiten Element Methode war die Abbildung von Diskontinuitäten lange Zeit

durch die zu Grunde liegende Vernetzung eingeschränkt. Unter dem Begriff Diskonti-

nuitäten werden im Rahmen dieser Arbeit starke und schwache Diskontinuitäten zusam-

mengefasst. Starke Diskontinuitäten bezeichnen Sprünge im Verschiebungsfeld, also das

Auftreten von Rissen. Der Begriff schwache Diskontinuität bedeutet, dass ein Sprung

im Gradienten des Verschiebungsfeldes also in den Verzerrungen auftritt. Dieses ist zum

Beispiel der Fall bei unterschiedlichen Materialien, Einschlüssen oder Löchern innerhalb

einer Struktur.

Im Rahmen der klassischen Finiten Element Methode können solche Diskontinuitäten

nur entlang von Elementgrenzen berücksichtigt werden. Das führt offensichtlich zu netz-

abhängigen Lösungen oder erfordert eine ständige Neuvernetzung der Struktur. Um diese

Einschränkungen der Finiten Element Methode aufzuheben, werden in der vorliegenden

Arbeit diskontinuierliche Finite Element Ansätze entwickelt. Diese werden sowohl zur

Modellierung und Simulation von Versagensvorgängen und Rissfortschritt, als auch zur

netzunabhängigen Simulation von Materialgrenzen und Einschlüssen herangezogen.

Die maximal aufnehmbare Belastung einer Struktur ist durch das Entstehen von Ver-

sagenszonen begrenzt, die in spröden Materialien durch das Auftreten von Rissen

gekennzeichnet sind. Der Versagensvorgang geht mit einer Entfestigung des Materials

durch Schädigung und Bildung von Mikrorissen einher. Sobald eine kritische Belastung

überschritten wird, nimmt die aufnehmbare Last bei weiterer Deformation ab, bis die

Struktur letztendlich versagt. Zur Beschreibung von Versagensvorgängen sind in der Ver-

gangenheit kontinuierliche und diskontinuierliche numerische Methoden untersucht wor-

den. In den kontinuierlichen Ansätzen wird das Verschiebungsfeld als kontinuierlich ange-

sehen und entfestigendes Materialverhalten, welches den Versagensvorgang einleitet, wird

mit Hilfe spezieller konstitutiver Gesetze beschrieben. Dieses Verfahren hat den Vorteil,

dass numerische Analysen in einem kontinuierlichen Rahmen möglich sind. Allerdings ist

bekannt, dass Regularisierungen der Kontinuumsformulierung (z. B. nicht-lokale oder gra-

dientenerweiterte Ansätze) nötig sind, um eine Netzabhängigkeit numerischer Lösungen

beim Übergang zu lokalisiertem Versagen zu vermeiden. Betrachtet man die Ausdehnung

der Versagenszone und den Versagensvorgang bis hin zu diskreten Rissen, so liegt es

nahe, diskontinuierliche Ansätze zu verwenden. Durch die Einführung einer Diskonti-
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nuität im Verschiebungsfeld wird eine realistischere Beschreibung des postkritischen Ver-

haltens ermöglicht. Die konstitutive Beschreibung inelastischen Materialverhaltens wird

durch die Einführung von Traktions-Separations-Beziehungen entlang der Diskontinuität

ermöglicht.

Die numerische Umsetzung des diskontinuierlichen Modells erfolgt in zwei Schritten.

Zunächst wird ein Ansatz zur Beschreibung von Versagensvorgängen entwickelt, bei dem

die Diskontinuitäten auf die Elementgrenzen beschränkt sind. Wenn die Versagens-

geometrie a priori bekannt ist, können Interface Elemente entlang dieser Versagenszone

eingesetzt werden. Im vorkritischen Bereich wird die Kontinuität des Verschiebungsfeldes

mit Hilfe der diskontinuierlichen Galerkin Methode erzwungen, im postkritischen Bere-

ich beschreibt ein phänomenologisches Traktions-Verschiebungs-Gesetz das entfestigende

Materialverhalten.

Bei der Simulation von sich ausbreitenden Diskontinuitäten ist im Allgemeinen allerdings

die Versagenszone nicht a priori bekannt. Aus diesem Grund wird eine Methode mit

diskontinuierlichen Elementansätzen entwickelt, die das Auftreten von Diskontinuitäten

innerhalb der Elemente ermöglicht. Dabei werden in den diskontinuierlichen Elementen

zusätzliche Freiheitsgrade an den schon bestehenden Knoten eingeführt. Das führt

sozusagen zu einer Verdoppelung des Elements und ermöglicht somit die Approximation

von zwei unabhängigen Feldern. Bei der Integration der Gleichungen wird jeweils nur ein

Teil des Elements berücksichtigt. Dies erfolgt über die Formulierung diskontinuierlicher

Ansatzfunktionen, die identisch mit den normalen Ansatzfuntionen sind, allerdings jew-

eils auf einer Seite der Diskontinuität den Wert Null annehmen. Um die Ausbreitung

des Risses zu beschreiben, werden ein Versagenskriterium und eine Methode zur Bestim-

mung der Rissrichtung benötigt. Dazu wird ein Hauptspannungskriterium herangezogen.

Wird die Festigkeit des Materials überschritten, so wird die Diskontinuität verlängert.

Zur Richtungsbestimmung wird ein gewichtetes Mittel der Spannungen im Bereich der

Rissspitze gebildet.

Der beschriebene Ansatz wird für geometrisch lineare und nichtlineare Problemstellun-

gen spezifiziert. Die Erweiterung für den geometrisch nichtlinearen Rahmen bringt

die Berücksichtigung unterschiedlicher kinematischer Beziehungen mit sich. Die Defi-

nition der Diskontinuitätsfläche ist innerhalb der geometrisch nichtlinearen Theorie in

der verformten Konfiguration nicht mehr eindeutig. Zur Formulierung von Traktions-

Verschiebungs-Beziehungen muss aus diesem Grund eine fiktive Diskontinuitätsfläche

eingeführt werden. Des Weiteren muss die Änderung des räumlichen Normalenvek-

tors auf diese Diskontinuitätsfläche bei der Formulierung von Traktions-Verschiebungs-

Beziehungen und deren Linearisierung berücksichtigt werden.

Die numerische Umsetzung dieses Ansatzes erfolgt für zwei und drei dimensionale Prob-

lemstellungen. Dabei erfordert die Einführung neuer Freiheitsgrade, die geometrische

Beschreibung des Risses und die Integration der diskontinuierlichen Elemente besondere
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Methoden. Die Einführung neuer Freiheitsgrade erfolgt am Ende eines Lastschritts,

falls das Versagenskriterium überschritten wird. Die Beschreibung der Rissgeometrie

erfolgt durch die Identifizierung der Schnittpunkte der Elementkanten mit der Diskon-

tinuitätsfläche. Diese werden auch zur Integration der diskontinuierlichen Elemente

herangezogen.

Die Leistungsfähigkeit der entwickelten Methode wird mit Hilfe von zwei und drei di-

mensionalen Beispielen verdeutlicht. Dabei wird insbesondere die Unabhängigkeit der

Resultate von der räumlichen Diskretisierung gezeigt.

Die diskontinuierlichen Elemente werden außerdem zur netzunabhängigen Simulation von

schwachen Diskontinuitäten verwendet. Wie bereits erwähnt werden damit Sprünge im

Verzerrungsfeld bezeichnet. Werden Strukturen, die aus verschiedenen Materialien zusam-

mengesetzt sind oder Einschlüsse aufweisen, betrachtet, so ist das Verschiebungsfeld kon-

tinuierlich, das Verzerrungsfeld weist allerdings Sprünge entlang der Materialgrenzen auf.

Im Rahmen der Finite Element Methode werden diese schwachen Diskontinuiäten nor-

malerweise durch die Vernetzung berücksichtigt. Werden allerdings Strukturen mit vielen

Einschlüssen oder komplizierten Geometriebedingungen betrachtet, so kann es von Vorteil

sein, wenn diese nicht explizit vernetzt werden müssen. Dies gilt ebenfalls für sich bewe-

gende Interfaces, z. B. bei Phasentransformationen.

Da die diskontinuierlichen Elemente sowohl Sprünge in den Verschiebungen als auch

in den Verzerrungen zulassen, aber nur Letzteres erwünscht ist, wird zusätzlich eine

Methode benötigt, die die Kontinuität des Verschiebungsfeldes sicherstellt. Dazu wird

die diskontinuierliche Galerkin Methode angewandt. Durch zusätzliche Terme in der

schwachen Formulierung wird ähnlich einer konsistenten Penalty-Methode der Sprung im

Verschiebungsfeld zu Null erzwungen. Innerhalb der diskontinuierlichen Elemente sind

allerdings die Verzerrungen auf beiden Seiten der Diskontinuität unabhängig voneinan-

der, so dass die schwache Diskontinuität abgebildet werden kann. Die diskontinuierliche

Galerkin Methode wird auf die geometrisch nichtlineare Theorie erweitert.

Die Geometrie der Interfaces wird mit Hilfe von Level Set Funktionen beschrieben. Dabei

wird die Kontur des Interfaces durch die Nullstellen einer Funktion, die eine Dimension

höher ist, dargestellt. Im Rahmen der Finiten Element Diskretisierung wird durch die

diskrete Level Set Funktion ermöglicht, die diskontinuierlichen Elemente zu identifizieren.

Die Leistungsfähigkeit des beschriebenen Ansatzes wir mittels numerischer Beispiele

verifiziert. Dabei werden im Rahmen der geometrisch linearen Theorie numerische

Konvergenzstudien im Vergleich mit analytischen Lösungen durchgeführt. Die Ergeb-

nisse zeigen, dass mit der bereitgestellten Methode die netzunabhängige Simulation von

schwachen Diskontinuitäten ermöglicht wird.
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1. Introduction

Discontinuities can appear in different fields of mechanics. Some examples where discon-

tinuities arise are more obvious such as the formation of cracks. Other sources of dis-

continuities are less apparent such as interfaces between different materials. Furthermore

continuous fields with steep gradients can also be considered as discontinuous fields. This

work aims at the inclusion of arbitrary discontinuities within the finite element method.

Although the finite element method is the most sophisticated numerical tool in modern

engineering, the inclusion of discontinuities is still a challenging task. Traditionally within

the framework of FE methods discontinuities are modeled explicitly by the construction

of the mesh. Thus, when a fixed mesh is used, the position of the discontinuity is pre-

scribed by the location of interelement boundaries and not by the physical situation. The

simulation of crack growth requires a frequent adaption of the mesh and that can be a

difficult and computationally expensive task. Thus a more flexible numerical approach is

needed which leads to the mesh-independent representation of the discontinuity.

A challenging field where the accurate description of discontinuities is of vital importance

is the modeling of failure in engineering materials. The load capacity of a structure is

limited by the material strength. If the load limit is exceeded failure zones arise and

increase. Representative examples of failure mechanisms are cracks in brittle materials

or shear bands in metals or soils. Failure processes are often accompanied by a strain

softening material behavior (decreasing load carrying capacity with increasing strain at a

material point). It is known that the inclusion of strain softening material behavior within

a continuum description requires regularization techniques to preserve the well-posedness

of the governing equations. One possibility is the consideration of non-local or gradient

terms in the constitutive equations but these approaches require a sufficiently fine dis-

cretization in the localization zone, which leads to a high numerical effort. If the extent of

the failure zone and the failure process to the point of the development of discrete cracks

is considered, it seems reasonable to include strong discontinuities. In the framework

of fracture mechanics the inclusion of displacement jumps is intuitively comprehensible.

However, the modeling of localized failure processes demands the consideration of inelas-

tic material behavior. Cohesive zone models represent an approach which is especially

suited for the incorporation within the finite element framework. It is supposed that

cohesive tractions are transmitted between the discontinuity surfaces. These traction are

constitutively prescribed by a phenomenological traction separation law and thus allow

for the modeling of different inelastic mechanisms, like micro-crack evolution, initiation

of voids, plastic flow or crack bridging. The incorporation of a displacement discontinuity

1
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1. Introduction

in combination with a cohesive traction separation relation leads to a sound model to

describe failure processes and crack propagation.

Another area where the existence of discontinuities is not as obvious is the occurrence

of material interfaces, inclusions or holes. The accurate modeling of such internal in-

terfaces is important to predict the mechanical behaviour of components. The present

discontinuity is of different nature: the displacement field is continuous but there is a

jump in the strains, which is denoted by the expression weak discontinuity. Usually in

FE methods material interfaces are taken into account by the mesh construction. But if

structures exhibit multiple inclusions of complex geometry it can be advantageous if the

interface does not have to be meshed. And when we look at problems where the interface

moves with time, e. g. phase transformation, the mesh-independent modeling of the weak

discontinuities naturally holds major advantages.

The greatest challenge in the modeling of discontinuities is their incorporation into

numerical methods. The focus of the present work is the development, analysis and

application of a finite element approach to model mesh-independent discontinuities. The

method shall be robust and flexible to be applicable to both strong and weak discontinu-

ities.

The present work is divided into seven chapters. The individual chapters, with the ex-

ception of the introduction in the present chapter and the conclusion in chapter 7, de-

scribe different approaches for the numerical treatment of strong or weak discontinuities

in the framework of the finite element method. Each chapter is self-contained. Thus in

each chapter the underlying kinematics, the balance equations, the constitutive equations

and the numerical evaluation of the derived set of equations are defined. Consequently

numerical examples are presented at the end of each chapter.

In the following chapter a hybrid discontinuous Galerkin/ interface method for the sim-

ulation of failure processes is introduced. The approach offers the possibility to simulate

failure along well-defined surfaces, which occurs for example in the case of light-weight

composite materials. Since the failure surface is known a priori, the use of interface

elements, which are placed along the failure surface, represents the most natural choice.

In contrast to usual interface methods the continuity of the solution in the precritical

regime is here ensured in a weak sense by a discontinuous Galerkin method. In the post-

failure state the behavior of the interface is constitutively determined, depending on the

displacement jump.

In chapter 3 the restriction that the failure surface is known in advance is abolished. Thus

a framework for the mesh-independent modeling of cohesive cracks is introduced. The

emphasis of the chapter is on the formulation of discontinuous elements which allow for

a discontinuity in the element. Additional degrees of freedom are placed at the exist-

ing nodes and a discontinuous set of basis functions is adopted to permit the simulation

2
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of propagating cracks without remeshing. The inelastic fracture process is described by

means of cohesive zone models. The numerical implementation of the novel finite element

concept is described in detail and numerical examples demonstrate the ability of the ap-

proach to simulate mesh-independent discontinuities.

Chapter 4 combines particular parts of the previous chapters to an approach for the

mesh-independent modeling of weak discontinuities. Weak discontinuities are present in

the case of material interfaces or holes and inclusions. To simulate the resulting jump

in the strains the discontinuous elements and the discontinuous Galerkin method are

adopted. The discontinuous elements allow for arbitrary discontinuities and the discon-

tinuous Galerkin method ensures the continuity of the displacement field in a weak sense.

Thus only weak discontinuities remain.

In the following two chapters the approaches, introduced in the chapters 3 and 4 are ex-

tended to the geometrically nonlinear setting. Therefore the introduction of the nonlinear

kinematics is a main part. Considering strong discontinuities the extension to nonlinear

kinematics implies additional difficulties, concerning the definition of the discontinuity

surface and the formulation and linearization of cohesive traction separation laws. In

addition to the introduction of the geometrically nonlinear equations the approach is ex-

tended to three dimensional problems. The handling of the complex geometry of three

dimensional crack modeling is specified and significant examples present the performance

of the approach.

For the handling of weak discontinuities in chapter 6 the discontinuous Galerkin method

is extended to finite strains. The same discontinuous elements as in the previous chapters

are used. The continuous and discrete equations are specified and again the applicability

of the concept in the geometrically nonlinear setting is demonstrated by numerical exam-

ples.

In the conclusions in chapter 7 the acquired results are summarized and complemented

by suggestions about possible future work.

3
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2. A hybrid dG/interface method

In the present chapter the computational modeling of failure along well-defined surfaces,

which occur for example in the case of light-weight composite materials, is discussed. The

chapter is mainly based on reference [80].

A hybrid method will be introduced which makes use of the discontinuous Galerkin

method in combination with a finite element interface approach. Since it is assumed that

the failure zone is known in advance interface elements can be placed along the known

failure surface. The discontinuous Galerkin method is applied in the prefailure regime to

avoid the unphysical use of penalty terms and instead to enforce the continuity of the

solution along the interface weakly. Once a particular failure criterion is fulfilled, the be-

havior of the interface is determined constitutively, depending on the displacement jump.

The applicability of the proposed method is illustrated by means of two computational

model problems.

2.1. Motivation

The application of light-weight composite materials has become increasingly popular in

recent years. The load carrying capacity of such composite structures is typically charac-

terized through the failure of the weakest link, i.e. through the debonding of the adhesive

layer in between two components or through the failure of the boundary layer very close

to the adhesive. The accurate description of the delamination process can thus be con-

sidered the most essential ingredient in the design of composite structures. In [52] the

failure process in fibre metal laminates is analyzed, in [108] computational strategies for

composites are developed and in [1] an approach for the simulation of the delamination

process in laminated composites is introduced.

When failure takes place along well-defined failure surfaces, the use of interface elements

represents the most natural choice. In the case of pasted structures, for example, inter-

faces are placed in the adhesive layer. As soon as a particular failure criterion is met,

the behavior of the interface is determined constitutively through a traction separation

law whereby the interface traction is typically introduced as a nonlinear function of the

displacement jump. The characterization of the postfailure regime is thus straightforward

and well-accepted in the related literature. For example in [69] and [84] the localization of

elastoplastic solids is simulated by means of interface elements. The numerical integration

of interface elements is studied in detail in [109]. Furthermore interface elements with in-

dependent traction separation laws are applied for cohesive crack propagation in [137], [23]

5
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and [101].

However, the classical treatment of the prefailure regime is rather ad hoc and somewhat

inconsistent. Since the displacement field is double-valued at the interface, two finite

element nodes have to be introduced at one material point. Traditionally, prior to failure,

these two nodes are held together artificially with the help of a penalty method, whereby

the choice of an appropriate penalty parameter is rather questionable.

The present chapter aims at deriving a consistent interface formulation by refraining from

the use of penalty methods in the prefailure regime. Rather, we suggest the weak en-

forcement of continuity at the interface by making use of Nitsche’s method [95], which

can be seen as the origin of the discontinuous Galerkin methods. Nitsche introduced a

method to enforce the Dirichlet boundary conditions in a weak sense. Later Douglas

and Dupont [33], Arnold [6] and Wheeler [133] extended Nitsche’s approach to the weak

enforcement of the continuity of the solution at the interior boundaries. These methods

are known as the interior penalty methods. In the last years the discontinuous Galerkin

methods were extended and applied to various problems, see [26] for an overview and [7]

for a unified analysis of different discontinuous Galerkin approaches for elliptic problems.

Only recently the discontinuous Galerkin method gained an increased interest in the struc-

tural mechanics community through the work of Engel et al. [36], where a continuous/

discontinuous approach was developed to solve fourth-order differential equations, e. g.

problems concerning beams and plates and strain gradient elasticity. Based on this idea

in [129] and [88] a dG method for strain gradient damage was proposed. Furthermore

in [50] a discontinuous Galerkin method for incompressible elasticity was developed and

in [49] a dG method for the plate equation is presented. In the chapters 4 and 6 the dis-

continuous Galerkin method is also adopted for the mesh-independent modeling of weak

discontinuities. This weak enforcement of continuity, which has also been applied success-

fully in combination with domain decomposition techniques, see e. g. Becker, Hansbo and

Stenberg [13], represents a consistent strategy to tie together pairs of finite element nodes

at the interface prior to failure. Like in classical discontinuous Galerkin methods, the

jump in the displacements is enforced to vanish in an integral sense. Double-valued fields

are thus treated consistently in the present approach and the use of otherwise unphysical

penalty parameters is only necessary to stabilize the method.

This chapter is organized as follows: Firstly we will review the kinematic relations of a

geometrically linear solid, which exhibits a strong discontinuity surface. Then the govern-

ing equations are defined, the weak formulation of the discontinuous Galerkin method is

formulated for linear elasticity and afterwards the weak formulation of the interface ap-

proach is derived. Based on the previous results the hybrid method is formulated. Some

aspects of the spatial discretization and the implementation are highlighted. Finally two

numerical examples are presented to demonstrate the applicability of the proposed hybrid

method.

6
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2.2. Kinematics

2.2. Kinematics

Let B denote a linear elastic body with placements denoted by x. The boundary ∂B with

the outward unit normal vector ne is subdivided into the disjoint parts ∂B = ∂Bu ∪
∂Bt with ∂Bt ∩ ∂Bu = ∅, where either Neumann or Dirichlet boundary conditions are

prescribed. Since we assume that the potential failure zone is known we introduce an

PSfrag replacements

∂B∂Bu

∂Bt

BΓ

Γ

n̄

B−

B+

Figure 2.1.: B crossed by an internal boundary Γ

internal surface Γ along this zone. The two resulting parts of the body are denoted by B+

and B−. We associate a unit normal vector n̄ and a tangential vector m̄ to Γ, compare

figure 2.1. Thereby n̄ points from B− to B+, thus n̄ = −n̄+ = n̄− and the associated

tangential vector is denoted with m̄. The unknown displacement field u is described

separately in both parts of the body

u(x) =

{

u+(x) in B+

u−(x) in B−.
(2.2.1)

Consequently the symmetric strain tensor is also specified separately for B+ and B− as

the symmetric part of the gradient of the displacement field

ε =







ε+ = 1
2 [∇xu+ + ∇t

xu+]

ε− = 1
2 [∇xu− + ∇t

xu−].

(2.2.2)

To treat the discontinuities we introduce a jump term term and an average term

[[u]] := u+
|Γ

− u−
|Γ

{u} :=
1

2
[u+

|Γ
+ u−

|Γ
]. (2.2.3)

which are calculated by means of values of the field variable u|Γ evaluated at the internal

boundary Γ.

2.3. Governing equations

In the following the governing equations to describe a geometrically linear solid are re-

viewed. The equation of equilibrium combined with the boundary conditions leads to the

7
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2. A hybrid dG/interface method

strong form of the boundary value problem. Due to the internal interface we need to

define further interfacial conditions for the pre- and the postcritical regime. Based on the

governing equations the weak formulations of the discontinuous Galerkin method, of the

interface approach and of the hybrid approach are derived in the following.

2.3.1. Strong form of the boundary value problem

The equation of equilibrium and the boundary conditions are given by

−div σ = b in B

u = up on ∂Bu

σ · ne = tp on ∂Bt.

(2.3.1)

Hereby σ denotes the symmetric Cauchy stress tensor. We consider linear elasticity and

therefore the constitutive law, describing the stress strain relation is given by

σ = C : ε, (2.3.2)

with C being the fourth order constitutive tensor, depending on the material parameters,

e.g. the Lamé parameters λ and µ. Furthermore b denotes the body force, tp is the pre-

scribed traction vector on the Neumann boundary and up is the prescribed displacement

on the Dirichlet boundary.

Additionally we need to define interfacial conditions at the internal boundary Γ. In the

prefailure regime continuity of the displacement field and of the tractions is required, thus

[[u]] = 0 and [[σ]] · n̄ = 0 on Γ. (2.3.3)

In the postfailure regime a jump in the displacement field can occur and the interfacial

tractions are constitutively prescribed, depending on the size of the displacement jump.

Therefore traction continuity is automatically ensured and the interfacial conditions are

specified as

[[u]] 6= 0, and σ+ · n̄ = σ− · n̄ = t̄([[u]]) on Γ. (2.3.4)

Starting from the strong form of the boundary value problem the weak formulations of the

discontinuous Galerkin method, the interface approach and the resulting hybrid method

are derived.

2.3.2. Discontinuous Galerkin method

In this section the modeling of the prefailure state with the discontinuous Galerkin method

is described. In the prefailure regime the jump in the displacement field along Γ shall

vanish. Therefore we apply the discontinuous Galerkin method to enforce the continuity

8
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2.3. Governing equations

of the displacement field in a weak sense. In different analyses and applications of discon-

tinuous Galerkin methods in elasticity, the dG terms are applied along all interelement

boundaries. For example in [106] and [71] error estimates for different dG approaches

in elasticity are considered. Locking-free dG approaches were introduced by Hansbo and

Larson in [50] and by Wihler in [134]. A dG method to handle viscoelasticity can be found

in [105]. In contrast to the mentioned methods in the present approach the additional dG

terms are only used along the internal interface. The two continuous parts of the body

are handled by a continuous Galerkin method.

In a similar way a Nitsche type discontinuous Galerkin method was applied as a mortaring

method by Stenberg in [122] and as a domain decomposition method by Heinrich et al.

in [54] and [53] and by Becker et al. in [13]. Different interface problems were addressed

by Hansbo and co-workers in [46], [48] and [47].

To define the discontinuous Galerkin method we introduce the average tractions along Γ

according to the definition of the average term (2.2.3) as,

{σ} · n̄ :=
1

2

[
σ|Γ+ + σ|Γ−

]
· n̄. (2.3.5)

To obtain the weak formulation of the boundary value problem, we multiply the strong

form of the boundary value problem (2.3.1) with a test function δu and integrate by parts

over B+ and B−

∫

B+∪B−

δε : σ(u) dV −
∫

Γ+

δu+ · σ(u+) · n̄+ dA −
∫

Γ−

δu− · σ(u−) · n̄− dA

=

∫

B+∪B−

δu · b dV +

∫

∂Bt

δu · tp dA,
(2.3.6)

whereby the two sides of the internal interface Γ are considered separately. We recall the

definition of the normal vector n̄ and obtain that

−
∫

Γ+

δu+ · σ(u+) · n̄+ dA −
∫

Γ−

δu− · σ(u−) · n̄− dA =

∫

Γ

[[δu · σ(u)]] · n̄ dA. (2.3.7)

With the following identity, which allows for the separation of the jump term of a product

[[δu · σ]] = [[δu]] · {σ} + {δu} · [[σ]], (2.3.8)

and provided that σ · n̄ is continuous over Γ, which means that [[σ]] · n̄ = 0, compare

equation (2.3.3), we obtain

∫

B+∪B−

δε : σ(u)dV +

∫

Γ

[[δu]] · {σ(u)} · n̄dA =

∫

B+∪B−

δu · bdV +

∫

∂Bt

δu · tpdA. (2.3.9)

Since the resulting equation is neither symmetric nor stable so far, the term
∫

Γ
n̄ · {δσ} · [[u]] dA is added to symmetrize the method. And furthermore, in terms of

9
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Nitsche’s method a penalty term
∫

Γ
θ [[δu]] · [[u]] dA, with θ being a penalty factor, de-

pending on the mesh size h and the material parameters, is added to obtain a stabilized

symmetric method.

∫

B+∪B−

δε : σ dV +

∫

Γ

[

[[δu]] · {σ} · n̄ + n̄ · {δσ} · [[u]]
]

dA

+

∫

Γ

θ [[δu]] · [[u]] dA =

∫

B+∪B−

δu · b dV +

∫

∂Bt

δu · tp dA.
(2.3.10)

Since nonstandard terms were added to the weak form, the consistency with the original

equations has to be examined. As we consider a continuous displacement field u, the jump

in the displacements [[u]] is equal zero along Γ. The additionally added terms, which do not

automatically arise from the variational derivation, vanish and thus the resulting equation

is consistent with equations (2.3.1) and (2.3.3). The formulation (2.3.10) assures the weak

enforcement of the continuity of the solution along Γ, which is required in the precritical

state.

2.3.3. Interface approach

A finite element interface formulation is applied to model the postcritical state, after a

failure criterion has been met. The interface formulation accounts for strong discontinu-

ities in the displacement field along the discontinuity surface Γ. The postcritical material

behavior, namely the development of the discontinuities in the displacements, is governed

by a constitutive traction separation law, which is defined independently of the constitu-

tive behavior of the bulk.

Interface approaches were successfully applied to different problems, concerning crack

propagation or localization and failure processes. In [137] crack growth in brittle solids

was modeled, in [23] interface elements were used for the simulation of impact and dam-

age, Ortiz et al. considered geometrically nonlinear crack growth in [101]. Due to the

geometry of a localized failure zone, which is in one direction significantly thinner than in

the other directions, interface approaches are also applied for the description of localiza-

tion. In [70] the localization in metallic and granular materials is considered, in [84] an

interface approach with an independent traction separation law was applied to localization

in elastoplastic solids and in [69] an interface approach for capturing plastic localization

was derived, which was in [119] extended to large strains.

In the same manner as before we consider an internal interface, but now the additional

interface contribution does not depend on the stresses within the two parts of the body,

but on constitutively prescribed tractions.

To develop the weak formulation of the interface approach, we start with the strong form

of the boundary problem with the appropriate interface conditions (2.3.4). Recall that

jumps of field quantities (•) across Γ are denoted by [[(•)]] = (•)+ − (•)−. We then con-

10
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2.4. Discretization and linearization

clude that the test function or virtual displacement function δu exhibits a discontinuity

[[δu]] along Γ. Taking into account that t̄ is continuous along Γ, compare equation (2.3.4),

we obtain the weak formulation of the interface approach with an additional contribution

due to the tractions along the interface
∫

B+∪B−

δε : σ(u) dV +

∫

Γ

[[δu]] · t̄([[u]]) dA =

∫

B+∪B−

δu · b dV +

∫

∂Bt

δu · tp dA. (2.3.11)

The relation of the traction vector t̄ and the jump of the displacements [[u]] describes

the failure behavior of the interface. Here the constitutive law of the interface is chosen

independently of the constitutive setting of the surrounding domain. An exponential

softening of the material is assumed in the postcritical state and can be formulated as

t̄n([[u · n̄]]) = tn exp (−c [[u · n̄]])

t̄m([[u · m̄]]) = tm exp (−c [[u · m̄]]),
(2.3.12)

whereby c affects the gradient of the curve. The normal and tangential components t̄n

and t̄m are considered separately, whereby t̄ = t̄nn̄ + t̄mm̄.

2.3.4. Hybrid dG/interface approach

Based on the approaches introduced in the last two subsections, we are now able to

formulate the hybrid method. The basic idea of the hybrid method is, to combine the

discontinuous Galerkin method with the interface approach in a way, that the discon-

tinuous Galerkin method assures the weak enforcement of the continuity of the solution

along Γ in the prefailure regime and that the interface approach controls the jump in

the displacements in the postcritical state. Therefore we combine the weak formulations

(2.3.10) and (2.3.11) with a switching factor α and obtain the weak formulation of the

hybrid method
∫

B+∪B−

δε : σ(u) dV +

∫

Γ

[1 − α]
[

[[δu]] · {σ(u)} · n̄ + n̄ · {σ(δu)} · [[u]]
]

dA

+

∫

Γ

[[δu]] · [[1 − α] θ [[u]] + α t̄([[u]])] dA =

∫

B+∪B−

δu · b dV +

∫

∂Bt

δu · tp dA.

(2.3.13)

Thereby the factor α controls the switch from the discontinuous Galerkin method to

the interface approach. We set α = 0 in the precritical state and once a certain failure

criterion is met, α = 1 and remains constant thereafter.

2.4. Discretization and linearization

The weak formulation is solved by means of the finite element method. For literature

on the finite element method we refer to the textbooks of Bathe [12], Hughes [57] and

11
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Zienkiewicz [139], [140]. The spatial discretization of the underlying problem is charac-

terized by the consideration of the internal interface. Since we generally allow for strong

discontinuities in the displacement field, which are enforced to vanish in the precritical

state by the dG terms, the displacement field has to be double-valued along the interface.

2.4.1. Spatial discretization

The weak form associated with the domains B+ and B− is discretized with standard

isoparametric elements. The geometry x is expanded elementwise by shape functions N k

B =

nel⋃

e

Be x|Be
=

nen∑

i=1

N i xi (2.4.1)

and in terms of the isoparametric concept, the displacement field u and its variation δu

are expanded by the same shape functions

u|Be
=

nen∑

i=1

N i ui δu|Be
=

nen∑

i=1

N i δui. (2.4.2)

Based on the above discretizations the corresponding gradients ε and δε take the format

ε|Be
=

nen∑

i=1

[
ui ⊗∇N i

]s
δε|Be

=

nen∑

i=1

[
δui ⊗∇N i

]s
. (2.4.3)

We denote two elements, which border on Γ with B+
e and B−

e . N i|Γe
indicates the set of

shape functions N i evaluated at the relevant element boundary. The discretization of the

corresponding jump and average terms reads

[[u]]|Γe
=

n+
en∑

i=1

N i|Γe
u+

i −
n−

en∑

i=1

N i|Γe
u−

i =

n+
en+n−

en∑

p=1

Jp up

{u}|Γe
= 1

2





n+
en∑

i=1

N i|Γe
u+

i +

n−

en∑

i=1

N i|Γe
u−

i



 =

n+
en+n−

en∑

p=1

Ap up.

(2.4.4)

It is apparent that the nodes along the interface Γ are doubled. Therefore the values u+
i

and u−
i belong to different, independent nodes, which are just situated at the same place.

The introduced terms J and A comprise the shape functions evaluated at Γe of the two

elements and either the associated sign to obtain the jump term or the factor 0.5 to get

the average value.

2.4.2. Discrete weak form

The weak formulation is discretized by means of the introduced approximations of the

primary variable and the test function. In the precritical state, when the failure criterion

has not been met, the discontinuous Galerkin method renders a linear system of equations,

12
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which can be solved directly. Since the geometry of the problem changes, once the failure

criterion has been met, and due to the nonlinear constitutive law of the interface approach

a nonlinear system of equations is generated. It is solved iteratively by a Newton-Raphson

scheme. The discretized weak formulation of the hybrid method, namely the discrete

version of equation (2.3.13), reads

RI = Rint
I + Rdis

I − Rext
I , (2.4.5)

whereby Rint
I , Rdis

I and Rext
I denote the internal forces, the additional internal forces due

to Nitsche’s method along the interface and the external forces, respectively. They can

be expressed by the assembly of their element contributions

Rint
I =

nel

A
e=1

∫

B+,−
e

∇N i · σ dV

Rdis
I =

nel

A
e=1

∫

Γe

[1 − αe]
[

J i{σ(u)} · n̄ + ∇Ai · n̄ · C · [[u]]
]

dA

+

∫

Γe

J i [[1 − αe] θ [[u]] + αe t̄([[u]])] dA

Rext
I =

nel

A
e=1

∫

B+,−
e

N i b dV +

∫

∂Bt e

N i tp dA.

(2.4.6)

Herein the operator

nel

A
e=1

denotes the assembly of all element contributions at the element

nodes i = 1, nen to the overall residual at the global node points I = 1, nnp. The switching

factor αe is calculated elementwise by means of the failure criterion. Therefore parts of

the interface can be in the postfailure regime while others are in the prefailure state. But

since αe is defined elementwise, it comprises the constraint, that the interface connection

between two adjacent elements can not fail partly but just for the whole element at the

same time.

To solve the resulting system of equations by means of the Newton-Raphson scheme a

consistent linearization of (2.4.5) is accomplished

Rk+1
I = Rk

I + dRI = 0 and dRI =

nnp∑

J=1

KIJ · uJ , (2.4.7)

whereby dRI denotes the iterative residual of the iteration k + 1, which is derived as

the sum over all node points nnp. The iteration matrix is given as the derivative of the

residual

KIJ =
∂RI

∂uJ
= Kint

IJ + Kdis
IJ (2.4.8)

13
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and can be composed of its element contributions

Kint
IJ =

nel

A
e=1

∫

B+,−
e

∇N i · C · ∇N j dV

Kdis
IJ =

nel

A
e=1

∫

Γe

[1 − αe]
[

J i
C · n̄ · ∇Aj + ∇Ai · n̄ · C J j

]

dA

+

∫

Γe

J i
[
[1 − αe] θ J j + αe T J j

]
dA.

(2.4.9)

Thereby T represents the tangent stiffness of the traction separation law at the discon-

tinuity, which is calculated as the derivative of the traction vector (2.3.12) with respect

to the jump term as

T =
∂t̄

∂[[u]]
= −tn c exp (−c [[u · n̄]])n̄ ⊗ n̄ − tm c exp (−c [[u · m̄]])m̄ ⊗ m̄. (2.4.10)

It is obvious that the tangent stiffness matrix is symmetric as long as the tangent stiffness

of the traction T retains its symmetry, which is the case for the chosen traction separation

law.

2.4.3. Penalty parameter

The application of Nitsche’s method in the precritical regime requires the definition of the

penalty parameter θ. As already stated before the penalty parameter has to be sufficiently

large so that the method is stable, in that it can guarantee that the resulting stiffness

matrix is positive definite. It can be shown, that for linear elasticity the penalty parameter

depends on the element size and the material parameters, see for example [50], [54] and

[41]. Therefore we introduce the penalty parameter as

θ =
ϑ

h
[λ + µ]. (2.4.11)

Now the scalar factor ϑ does not depend on the material parameters or the element size.

In appendix B a numerical study of the influence of the penalty parameter on the solution

is accomplished. Thereby the dG method is applied along all interelement boundaries.

Analytical derivations of the sufficient size of the penalty parameter can for example be

found in [50] and [41]. In [54] an explicit calculation of the minimum penalty factor

is carried out, which is possible if linear elements are used, such that the stresses are

elementwise constant.

2.5. Implementation

The decisive factor for the change from the dG method to the interface approach is given

by the failure criterion. The switching factor αe is set from 0 to 1 for a particular interface,

14
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2.5. Implementation

if the traction vector of the discontinuity surface Γ meets the following failure criterion:

{σ} : [n̄ ⊗ n̄] + β |{σ} : [n̄ ⊗ m̄]| − tcrit ≤ 0 → α = 0, (2.5.1)

whereby β assigns different weights to the normal tractions and the absolute value of

the tangential components of the traction. To ensure a continuous transition from the

discontinuous Galerkin method to the interface approach, the values, which are reached

for {σ(u)} : [n̄ ⊗ n̄] and {σ(u)} : [n̄ ⊗ m̄] in the moment of failure provide the normal

and tangential components of the traction vector t̄ for [[u]] = 0, namely tn and tm.

The method is implemented using bilinear quadrilateral elements. Both the dG method
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nodes

Gauss points
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Figure 2.2.: Integration of the boundary contributions

loop over load steps

global Newton iteration

loop over all elements

determine element residua Rint
e and their derivatives K int

e

loop over all element boundaries Γe = ∂Be ∪ Γ which belong to the interface

determine interface residua Rdis
e and their derivatives Kdis

e

assemble global residual R and tangent stiffness matrix K

calculate σ and the interfacial tractions {σ} · n̄
check failure criterion

determine state of equilibrium

Table 2.1.: Algorithmic implementation of the hybrid approach

and the interface approach include additional interfacial contributions. To evaluate these

terms numerically two further Gauss points are introduced at each element boundary,

which belongs to Γ, compare figure 2.2.

Since the algorithmic implementation requires the nonstandard integration over certain

element boundaries, the basic procedure of the approach is highlighted in table 2.1.
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2.6. Numerical examples

In the following two numerical examples are presented, which demonstrate the perfor-

mance of the introduced hybrid method. Firstly a mode I problem is considered, to check

the transition from the discontinuous Galerkin method to the interface approach. In the

second example mixed mode failure is simulated.

2.6.1. Mode I failure

In this example the hybrid approach is applied to a purely mode I problem, to study the

influence of different discretizations and to check the transition from the discontinuous

Galerkin method to the interface approach. The geometry and the loading conditions of

the model problem are pictured in figure 2.3a, the potential failure zone is introduced in

the middle of the bar and the bar is loaded on both sides by displacement control. It is

shown in figure 2.3b that the load displacement curve is independent of the discretization

and that the transition from the discontinuous Galerkin method to the interface approach

is smooth. Furthermore the effect of the choice of the factor c on the softening behavior is

shown. The larger the coefficient c, the more brittle is the material response. Figure 2.3c

displays the deformation of the structure at the different time steps A-D, as indicated

in figure 2.3b. Since there is a constant stress state in the structure the interface fails

completely once the tensile strength is reaches. Then the cohesive tractions resist the

opening of the interface.
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Figure 2.3.: Mode I - geometry, load displacement relation and deformation of the structure

2.6.2. Mixed mode failure

The second example is concerned with mixed mode failure. Figure 2.4 depicts the

geometry of the structure, the loading conditions and the resulting load displacement

16
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relation. The load displacement curve is not as smooth as in the first example, since the

failure criterion is not met at the same time for all element boundaries Γe, but succes-

sively. The deformation of the structure and the relaxation of the two continuous parts

are shown in figure 2.4 as well as the lateral sliding as a consequence of the development

of the discontinuity in the displacement field. In this example an additional penalty term,

which enforces that [[u · n̄]] ≥ 0, is added to the weak formulation of the hybrid form

(2.3.13), to prevent the penetration of the two parts of the structure after the failure of

the interface.
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Figure 2.4.: Mixed mode - geometry, load displacement relation and deformation of the structure

2.7. Summary

A consistent hybrid formulation for the computational modeling of failure along a known

interface has been proposed. Prior to failure the discontinuous Galerkin method is applied

to enforce the continuity of the solution weakly and to refrain from the use of unphysical

penalty parameters. As soon as the failure criterion is met, a switch from the discontinuous

Galerkin method to the interface approach takes place. The material behavior in the

postcritical regime is described by a constitutive traction separation law, which is chosen

independently of the constitutive setting of the surrounding domain. By means of two

numerical examples concerning mode I and mixed mode failure the applicability of the

hybrid method was shown. It was shown that the global load displacement answer is

independent of the discretization. The transition from the prefailure to the postfailure

regime was checked as well as the resulting deformation and the expected results were

achieved.
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3. Mesh-independent modeling of strong

discontinuities

This chapter is concerned with the computational modeling of cohesive cracks. In contrast

to the previous chapter, the discontinuity is not limited to interelement boundaries, but is

allowed to propagate freely through the elements. Therefore the approach is not limited to

failure processes with known failure zones. In the elements, which are intersected by the

discontinuity, additional displacement degrees of freedom are introduced at the existing

nodes. The formulation of these discontinuous elements allows for the simulation of crack

propagation without remeshing. Details on the numerical implementation are given, con-

cerning the failure criterion, the determination of the direction of the discontinuity and

the integration scheme. Finally numerical examples show the performance of the method.

The formulation is restricted to geometrically linear problems.

3.1. Motivation

In the present chapter a method for the modeling of cohesive cracks is described, which was

introduced in reference [81]. The discontinuity is supposed to propagate independently

of the mesh structure. Therefore elements with an internal discontinuity are formulated.

The construction of these elements follows the approach, recently proposed by Hansbo

and Hansbo in [46] and [47]. To model inelastic material behavior, a discrete damage type

model is applied, formulated in terms of displacements and tractions at the discontinuity

surface. This procedure is similar to the one in the previous chapter beside the fact that

the interface is situated within certain elements and not along element boundaries. The

discontinuities are introduced when a failure criterion is met, such that the discrete con-

stitutive model characterizes the inelastic behavior only and the continuum represents

the elastic response. Since the discontinuity is not introduced until failure occurs the

continuity of the solution is directly satisfied in the prefailure regime. In contrast to the

approach in chapter 2 no additional effort has to be made to ensure continuity prior to

failure.

The modeling techniques for the simulation of failure processes can generally be divided

into continuous and discrete methods, compare [20]. Within the continuous approach the

the body is considered as a continuum and the displacement field is continuous throughout

the body. The failure process is described by means of continuum damage formulations,

which connects continuum stresses with continuum strains. The observation of discrete
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cracks leads to the development of discrete failure models. Thereby a discrete failure sur-

face is introduced in the body and the formulation allows for the development of strong

discontinuities, namely jumps in the displacement field. To describe the inelastic failure

process a discrete traction separation relation is introduced at the failure surface. Thereby

the tractions are constitutively prescribed, controlled by the jump in the displacement

field, and prevent the opening of the discontinuity. It is assumed that the crack surfaces

are able to transmit these tractions. With an increasing opening of the crack surfaces the

tractions eventually vanish. The so-called cohesive traction separation law can be chosen

independently of the surrounding material response. Different inelastic processes prior to

failure can be summarized in a phenomenological cohesive law. The cohesive zone models

trace back to the work of Dugdale and Barenblatt. Dugdale introduced in [34] a cohesive

zone model for ductile materials, whereby Barenblatt’s model [10] is suited for cracks in

brittle materials. During the last years cohesive zone models were frequently used in the

finite element simulation of failure processes and crack propagation, an overview is given

in section 3.4.2.

The numerical implementation of the cohesive zone models requires special finite elements,

which comprise the traction separation law. In some approaches interface elements are

utilized, as in the approach in the previous chapter. An interface element has zero width

and is placed between the continuum elements along a predefined discontinuity surface.

The interface elements behave like a nonlinear (softening) spring when the structure is

loaded. It is obvious that the formulation with interface elements implies one constraint.

The failure geometry has to be known in advance, either due to the structure of the

material (delamination in composites) or due to experimental evidence. To overcome

this problem Xu and Needleman [137] introduced a formulation with interface elements

between all continuum elements. And Camacho and Ortiz [23] introduced an adaptive

method to simulate brittle fracture. Nevertheless the direction of the crack is not entirely

free, or a permanent remeshing of the structure has to be accomplished.

Due to these drawbacks different numerical approaches have been considered over the last

years, which allow for the modeling of strong discontinuities which can run arbitrarily

through finite elements. Mainly two formulations can be distinguished: elements with

embedded discontinuities and the extended finite element method, based on the partition

of unity method, [9].

In the approach with embedded discontinuities strain or displacement discontinuities are

inserted by means of additional degrees of freedom on the element level. This permits the

discontinuity to have arbritrary orientation, but the discontinuity is incompatible over

element boundaries. The additional degrees of freedom can be eliminated at the element

level. The class of methods seems to go back to the work of Ortiz et al. [100] and Be-

lytschko et al. [16], where a discontinuity in the strain field was used for the modeling

of localization. Formulations which contain jumps in the displacement field were intro-
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duced by Klisinski et al. in [64] and Lofti et al. in [75]. The variational framework

for the consideration of enhanced strain or displacement fields was established by Simo

and co-workers in [115], [112] and [113]. Simo, Oliver and Armero analyzed in [114] the

connection between the continuous stress strain dependency and the discrete traction

separation relation and presented a one dimensional finite element for the simulation of

strong discontinuities. Further extensions and application of the method can be found

for different problems and by different authors. In [96] Oliver provides a summary of the

theoretical and numerical aspects of the method. Jirasek applied the embedded discon-

tinuity elements for the modeling of damage and crack closure effects in [61] and [62]. In

the thesis of Wells [128] an extension to three dimensions can be found and Mosler et

al. studied the method using a rotating crack concept [90]. An extension of the concept

to beams was recently proposed in [35]. An overview and a classification of the different

approaches is given in [60], whereby it is distinguished between the statically optimal

symmetric approach, the kinematically optimal symmetric approach and the statically

and kinematically optimal nonsymmetric approach.

The extended finite element method, which is conceptually most similar to the present

one, traces back to Belytschko et al., see references [14] and [87], where it was applied to

linear elastic fracture problems. The method is based on the partition of unity concept,

compare [79]. The essential idea of the method is to add enrichment functions to the

approximation, which contain a discontinuous displacement field. Since the additional

degrees of freedom, which are required to represent the enrichment functions, are global,

the discontinuity is continuous over element boundaries but the additional degrees of free-

dom can not be condensed out at the element level. A detailed description of the XFEM

can be found in [31]. The method was extended by Sukumar et al. to handle three dimen-

sional cracks [125] and by Daux et al. to include intersecting and branching cracks [27].

Wells and Sluys [130], Moës and Belytschko [85] and Zi and Belytschko [138] applied the

partition of unity method to the modeling of cohesive cracks. In [30], [17] and [123] the

XFEM was used to model crack growth with friction, arbitrary discontinuities and crack

growth by means of level sets. In [132] and [116] the XFEM was used within a strain

softening material. The modeling of fracture in Mindlin-Reissner plates was considered

in [29], in [15] dynamic crack growth was analyzed and recently the XFEM was extended

to the modeling of crack propagation in shells [3]. An overview over the different possi-

bilities of the XFEM can be found in [63].

Another approach with additional global degrees of freedom was introduced by Bolzon

and Corigliano in [18] and extended by Löblein in [74].

The present approach allows also for arbitrary discontinuities within the elements. The

special characteristic of the present approach lies in the formulation of the elements with

an internal discontinuities, which is based on the idea of Hansbo and Hansbo, [46] and [47].

In contrast to the present method, in [46] and [47] the discontinuous elements were applied
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in an extended Nitsche’s method [95]. That allows for the simulation of weak as well as

strong discontinuities within the elements, but the formulation was restricted to linear

traction separation laws.

The displacement field of an intersected element is a discontinuous function, which ex-

hibits a jump along the discontinuity, but is continuous on both sides of this discontinuity.

Therefore the displacement field can as well be considered as two independent continuous

functions, with the displacement jump being the difference of the two function values at

both sides of the discontinuity. Additional displacement degrees of freedom are introduced

at the existing nodes and two independent copies of the standard basis functions are used,

to permit the approximation of the two continuous functions. One set of basis functions is

put to zero on one side of the discontinuity while it takes its usual values on the other side

and vice versa. This allows for the formulation of elements with internal discontinuities,

using only displacement degrees of freedom and the standard basis functions. In contrast

to the extended finite element method the enrichment is strictly local and no additional

transition elements are required.

In the next chapter the kinematic relations for a domain crossed by a discontinuity are

described. Afterwards the governing equations are given and the variational formula-

tion of the problem is derived. The constitutive equations are specified in section 3.4,

whereby the cohesive crack concept is described in detail. The following section deals

with the discretization of the variational formulation and especially with the construction

of the discontinuous element. Furthermore the linearized discrete weak form is specified.

Then some details about the implementation are given and finally the performance of the

method is pointed out by means of numerical examples.

3.2. Kinematics

To develop a numerical method for solving problems that include displacement discontinu-

ities we need to define the kinematics that describe a displacement jump across a surface.

To introduce the notation we shortly review the kinematics of a continuous body in a

geometrically linear setting and specify the strong discontinuity kinematics afterwards.

3.2.1. Continuous kinematics

We consider a body B with the boundary ∂B and with placements denoted by x. The

boundary ∂B with the external normal vector ne is subdivided into the disjoint parts

∂B = ∂Bu ∪ ∂Bt with ∂Bt ∩ ∂Bu = ∅, where either Neumann or Dirichlet boundary

conditions are prescribed. The unknown continuous displacement field is denoted by u.

The symmetric strain tensor is specified as the symmetric part of the gradient of the
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displacement field with respect to x

ε =
1

2
[∇xu + ∇t

xu] = ∇s
xu, (3.2.1)

whereby the superscript s denotes the symmetric part of the differential operator.

3.2.2. Strong discontinuity kinematics

Now we consider a body B which is divided by a discontinuity surface Γ into the parts

B+ and B−. Consequently the position vectors of the points in B+ and B− are denoted

with x+ and x−. The displacement field u is continuous in both parts of the body, but

discontinuous along the discontinuity surface. Therefore we can write the displacement

field as

u(x) =

{

u+(x) in B+

u−(x) in B−.
(3.2.2)

The jump in the displacement field is calculated as the difference of the two continuous

functions, evaluated on Γ

[[u]] = u+
|Γ
− u−

|Γ
, (3.2.3)

whereby u
+,−
|Γ

denote the boundary values of u+,−. The unit normal vector n̄ associated
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Figure 3.1.: B crossed by a discontinuity Γ

with Γ points from B− to B+, see figure 3.1. Therefore the jump can be separated into a

normal and tangential part with respect to Γ

[[un]] = [[un]] n̄ with [[un]] = [[u]] · n̄

[[um]] = [[u]] − [[un]].
(3.2.4)

The strain tensor in the bulk is found by taking the derivative of the displacement field.

Since the displacement field is defined by two independent continuous functions, the strain

tensor is as well defined separately for both parts of the body

ε(x) =

{
ε+(x) = ∇su+(x) in B+

ε−(x) = ∇su−(x) in B−.
(3.2.5)

Note that the strain tensor is not defined along Γ.
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3.3. Variational formulation

In this chapter the variational formulation of the relevant field equations is derived. The

variational principle belongs to the fundamental principles in mathematics and mechanics,

and the variational approach can be considered as the basis for the development of most

of the discretization methods, e. g. the finite element method. The weak formulation will

be derived from the principle of stationary potential energy.

3.3.1. Principle of stationary potential energy

To utilize the principle of stationary potential energy we require the existence of a func-

tional Π. The total potential energy is usually given as the sum of the internal and

external potential energy. If we consider strong discontinuities by means of the cohesive

crack concept, we have to take into account an additional cohesive energy contribution

along the interface. This cohesive energy distribution defines the energy which is dissi-

pated when crack propagation takes place. The cohesive energy can be seen as a material

parameter, which is taken into account by the cohesive constitutive law. To obtain the

variational formulation of the problem, we start with the definition of the total potential

energy

Π(u) = Πint + Πcoh + Πext. (3.3.1)

To simplify matters we assume that no body forces are acting and therefore the exter-

nal energy depends solely on the Neumann tractions. Then the above equation can be

specified as

Π(u) =

∫

B+∪B−

Ψ(ε(u)) dV +

∫

Γ

Ψ̄([[u]]) dA −
∫

Bt

u · tp dA. (3.3.2)

Thereby Ψ(ε) denotes the strain energy function per unit volume and is specified for linear

elastic material behavior in section 3.4.1. The internal energy describes the energy which

is stored in the body due to an elastic deformation. In analogy to the usual internal

energy distribution, the cohesive energy is constituted by the cohesive energy density

Ψ̄([[u]]), which is given for certain cohesive constitutive laws is section 3.4.2. The last

term of the equation represents the external energy, tp are the prescribed tractions at the

Neumann boundary ∂Bt.

The stationary position of the total potential energy is obtained by requiring its variation

with respect to the displacement field u to vanish. This leads to the following variational

formulation

δΠ(u, δu) =

∫

B+∪B−

δε : σ dV +

∫

Γ

[[δu]] · t̄ dA −
∫

Bt

δu · tp dA =̇ 0, (3.3.3)
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whereby σ is the Cauchy stress, which is derived from the strain energy function by

σ := ∂Ψ(ε)/∂ε. Analogously the cohesive traction vector t̄ is defined as the derivative

of the cohesive energy density with respect to the jump term t̄ := ∂Ψ̄([[u]])/∂[[u]]. Both

terms have to be specified for a particular energy density. Equation (3.3.3) constitutes

the variational formulation of the considered problem.

3.3.2. Governing equations

Since the stationary condition of the potential energy yields the principle of virtual work

for a configuration in static equilibrium [56], we can specify the underlying stron form of

the boundary value problem. The Euler equation is given by Cauchy’s first equation of

motion

−divσ = 0 in B+ ∪ B−. (3.3.4)

The boundary conditions define the displacements at the Dirichlet boundary and the

tractions at the Neumann boundary.

σ · ne = tp on ∂Bt and u = up on ∂Bu (3.3.5)

The interfacial contribution in the potential energy leads to an additional traction equi-

librium condition at the internal boundary.

σ+ · n̄ = σ− · n̄ = t̄ on Γ. (3.3.6)

Thereby the traction vector t̄ is constitutively prescribed by the cohesive traction sepa-

ration law.

3.4. Constitutive equations

In the following section the constitutive laws, which determine the material response, are

specified. In general the constitutive equation defines the stress state at any point x,

depending on other field variables, e. g. the strain.

In the present approach we consider strong discontinuities by means of the cohesive crack

concept. Therefore we need to introduce two constitutive equations, one for the material

behavior of the bulk, defined by the strain energy density Ψ, and one for the cohesive

tractions at the internal boundary, specified by the cohesive energy density Ψ̄.

3.4.1. Continuous constitutive law

The material behavior of the bulk is assumed to be linear elastic. The linear dependence

of the stress σ on the strain ε can be expressed by means of the so called elasticity tensor

C. The associated strain energy function is given as

Ψ(ε) =
1

2
ε : C : ε (3.4.1)
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and the stress strain relation follows as

σ =
∂Ψ(ε)

∂ε
= C : ε. (3.4.2)

Since we consider only isotropic material behavior the elasticity tensor C depends on two

material parameters, for example the Young’s modulus E and the Poisson’s ratio ν.

3.4.2. Cohesive crack concept

The concept of cohesive zone models goes back to the pioneering work of Dugdale [34] and

Barrenblatt [10]. Cohesive zone models are extensively used in computational mechanics

to simulate fracture and failure processes. In the framework of cohesive zone models the

crack tip is not considered to be infinitely sharp, as in linear elastic fracture mechanics,

but the existence of a fracture process zone in front of the crack tip is assumed. In this pro-

cess zone small-scale yielding, micro-cracking, void initiation and other inelastic processes

take place. Following the cohesive crack concept, these degrading mechanisms are lumped

into a discrete line or plane. Cohesive tractions, which prevent the separation between

the incipient material surfaces, are transmitted along this plane, see figure 3.2. These

cohesive tractions are constitutively prescribed by a traction separation law, depending

on the opening displacement. Under monotonic loading the tractions eventually reduce

to zero when a critical opening is attained. Within the constitutive traction separation

law the different dissipative processes are combined into a phenomenological approach.

Therefore the fracture process is seen as a gradual phenomenon.

Since the implementation of cohesive zone models in the context of finite element methods

is relatively easy, they evolved as a preferred method to analyze fracture problems. Dif-

ferent traction separation laws, linear, bilinear or exponential, have been introduced to

simulate ductile or brittle fracture, see e. g. [55], [91], [99], [92], [127], [23], [72]. Irre-

versible cohesive laws were for example introduced in [23], [101] and in [94] for fatigue

crack growth. An irreversible uncoupled cohesive model for delamination analysis was

proposed in [1], whereby the tangential and normal tractions are derived by independent

constitutive relations. Cohesive zone models under dynamic conditions were used in [137]

and [23] and critically surveyed with respect to crack branching in [39].

There is a common belief that cohesive zone laws can be described by two independent pa-

rameters [93], which may be the tensile strength ft and the work of separation Gf , which

is the work that is needed to create a unit surface of a fully developed (traction-free)

crack. In the case of brittle material the shape of the traction separation relation is quite

important [21]. Two stylized traction separation relations for the one dimensional case

are plotted in figure 3.3, describing more ductile and more brittle failure, respectively.

There are different numerical approaches, to include the cohesive law in finite element

analyses, as introduced in section 3.1. The most important difference between them,
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concerning the formulation of the cohesive law, is, if the cohesive zones or elements are

introduced a priori or adaptively depending on a failure criterion. If the crack path is

known in advance, either from experimental evidence or due to the material structure (de-

lamination), cohesive or interface elements can be introduced along the potential crack

path. The applied cohesive laws have the characteristic that with an increasing interfacial

separation the tractions across the interface reach a maximum, then decrease and even-

tually vanish, permitting a complete decohesion. Therefore the cohesive elements model

an initially elastic behavior and an opening of the adjacent surfaces is possible when the

critical load is not reached. Conversely Camacho and Ortiz [23] and Pandolfi et al. [103]

introduced an initially rigid cohesive law, whereby the displacement jump is fixed at zero

until a critical stress is reached. Initially rigid cohesive laws are naturally connected with

adaptivity, since the cohesive zone is adaptively activated, depending on a failure crite-

rion, see e. g. [104]. This kind of cohesive laws is well suited for the introduction within

discontinuous elements, see for example [130], [81] or [43].

The cohesive constitutive law, which is formulated here, is valid for quasi-brittle materials.

The material behavior in the direction normal to the discontinuity surface shall be differ-

ent from that one in tangential direction, to distinguish between sliding and separation.

To specify the traction separation law we start with the definition of the cohesive potential

energy Ψ̄, which depends only on the normal and tangential jump in the displacement

field

Ψ̄ = Ψ̄([[u]]) = Ψ̄([[un]], [[um]]). (3.4.3)

In normal direction exponential softening is assumed and in tangential direction a constant

shear stiffness is adopted. The cohesive potential is specified as

Ψ̄([[un]], [[um]]) = Gf [1 − exp(− ft

Gf
[[un]])] +

1

2
d [[um]] · [[um]], (3.4.4)

thereby the material parameters are the fracture energy Gf , the tensile strength ft and

the shear stiffness d. The derivative of the cohesive potential with respect to the jump

leads to the definition of the cohesive traction vector

t̄ =
∂Ψ̄

∂[[u]]
= ft exp(− ft

Gf

[[un]]) n̄ + d [[um]]. (3.4.5)
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This discrete constitutive formulation is chosen due to its simplicity with respect to the im-

plementation, the introduction of more general constitutive law is straightforward. Since

the chosen cohesive traction separation law is nonlinear its linearization will be needed,

which is derived as the derivative of t̄ with respect to [[u]]

T =
∂t̄

∂[[u]]
= − f 2

t

Gf
exp

(

− ft

Gf
[[un]]

)

n ⊗ n + d [I − n̄ ⊗ n̄]. (3.4.6)

Due to the constant shear stiffness, which does not depend on the normal part of the

jump, the stiffness matrix retains its symmetry.

3.5. Discretization and linearization

The variational formulation which was derived in section 3.3.1 is discretized by means of

the finite element method. Discontinuous elements are constructed to allow for strong

discontinuities, which are independent of the mesh structure. The resulting nonlinear

discrete weak form is consistently linearized to be solved by a Newton-Raphson scheme.

3.5.1. Formulation of a discontinuous element

To construct an element Bd with an internal discontinuity we consider that Bd is divided

by Γd into B+
d := B+ ∩Bd and B−

d := B− ∩Bd. The displacement field u is continuous for

both parts of the element, but exhibits a discontinuity along Γd. In analogy to (3.2.2) we

can describe the displacement field of the element Bd by

u(x) =

{

u+
d (x) in B+

d

u−
d (x) in B−

d .
(3.5.1)

To approximate one of the continuous displacement fields u+
d or u−

d , we need the usual

number of degrees of freedom, depending on the desired polynomial degree. Even though

u+
d is only defined in B+

d it can as well be approximated by the nodal values at all nodes

of the element and the standard basis functions. The same applies to u−
d which has,

due to the discontinuous characteristic, no relation to u+
d . To ensure the independent

approximation of both continuous parts of the displacement field, we need to introduce

new degrees of freedom at the existing nodes. Furthermore we apply two copies of the

standard basis functions. One set is put to zero on one side of the discontinuity, while it

takes its usual values on the other side, and vice versa

N+ i =

{

N i in B+
d

0 in B−
d ,

and N− i =

{

0 in B+
d

N i in B−
d .

(3.5.2)

To clarify the procedure of the introduction of additional degrees of freedom, a one

dimensional example is considered in figure 3.4. In the left part of the picture the set of
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Figure 3.4.: Approximation of the discontinuous displacement field in 1D

one-dimensional basis functions is pictured, whereby the dashed lines indicate the parts

which are equal to zero. In the middle of the picture an exemplary approximation of two

continuous functions u+ and u− is given, which can be obtained by the new set of basis

functions and the two additional degrees of freedom at the nodes i∗ and j∗ as

u+ = N+ 1ui + N+ 2uj∗ u− = N− 1ui∗ + N− 2uj. (3.5.3)

Since the basis functions are equal to zero in the element part where the particular con-

tinuous function is not defined, the discontinuous function u is obtained as the sum of u+

and u−. In the more general two- or three-dimensional case this approximation is given

as

u|Bd
=

n+
en∑

i=1

N+ iu+
i +

n−

en∑

i=1

N− iu−
i . (3.5.4)

This set of discontinuous basis functions can be easily constructed for different types of

elements of higher order and dimension. Exemplarily the approximation of a discontinu-

ous function is highlighted for two-dimensional linear triangles in figure 3.5, since these

elements will mainly be used in the numerical simulations. The additional degrees of free-
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Figure 3.5.: Split of linear triangular element and approximation of the discontinuous displacement field

doms are introduced at the existing nodes. Therefore the points of intersection between

29



“main” — 2006/3/15 — 19:54 — page 30 — #42

3. Mesh-independent modeling of strong discontinuities
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Figure 3.6.: Comparison – present approach, XFEM

the element edges and the discontinuity as well as the geometry of the element parts are

not needed until the evaluation of the weak form.

Remark 3.5.1 The difference between the discretization with the present method and the

XFEM is clarified by means of a onedimensional bar which is intersected by a strong

discontinuity in figure 3.6. On the left hand side of the figure the discretization with the

present approach is pictured. The only element which exhibits more than the usual two

degrees of freedom is the intersected element in the middle. The elements next to it are

usual elements.

In contrast to that the discretization with the XFEM which is displayed on the right hand

side requires transition elements. The elements next to the intersected element possess

usual and enhanced degrees of freedom and need a special treatment.

3.5.2. Discrete weak formulation

The elements which are not crossed by a discontinuity are usual isoparametric elements.

The domain B is discretized with nel elements. The geometry x is expanded elementwise

by shape functions N i in terms of the discrete nodal positions xi of the i = 1, nen element

nodes

B =

nel⋃

e

Be x|Be
=

nen∑

i=1

N i xi. (3.5.5)

Following the isoparametric concept, the unknown displacement field u is interpolated

on the element level with the same shape functions in terms of the nodal displacement

values ui. These shape functions are also applied to interpolate the test function δu in

the spirit of the Bubnov-Galerkin technique

u|Be
=

nen∑

i=1

N i ui δu|Be
=

nen∑

i=1

N i δui. (3.5.6)

Based on the above discretization the corresponding gradients ∇su and ∇sδu take the

format

∇su|Be
=

nen∑

i=1

(
ui ⊗∇N i

)s ∇sδu|Be
=

nen∑

i=1

(
δui ⊗∇N i

)s
. (3.5.7)
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The approximation of the jump in the displacement field arises automatically from the

approximation of the two continuous parts of the displacement field

[[u]]|Γe
=

n+
en∑

i=1

N i|Γe
u+

i −
n−

en∑

i=1

N i|Γe
u−

i =
nen+n∗

en∑

p=1

Jp up

[[δu]]|Γe
=

n+
en∑

i=1

N i|Γe
δu+

i −
n−

en∑

i=1

N i|Γe
δu−

i =
nen+n∗

en∑

p=1

Jp δup

(3.5.8)

Thereby u+
i and u−

i denote the displacements at the element nodes n+
en and n−

en, belonging

to B+
d and B−

d , respectively. The newly introduced term J comprises the shape functions

N , evaluated on Γe and associated with the appropriate algebraic sign, ’+’ for degrees of

freedom belonging to B+
d and ’−’ for those in B−

d . Obviously the jump is approximated

with the same polynomial degree as the displacement field.

By means of the described discretization of the primary unknown, the weak formulation

(3.3.3) is discretized and the discrete algorithmic balance of momentum follows as

RI = Rint
I + Rcoh

I − Rext
I (3.5.9)

whereby the vector-valued residual is composed of the internal forces, the cohesive forces

and the external forces. The internal force consists of contributions of the elements

belonging to B+, B− and of the discontinuous elements Bd

Rint
I =

nel

A
e=1

∫

B+,−
e

∇N i · σ dV +

∫

B+

d

∇N̄+ i · σ dV +

∫

B−

d

∇N̄− i · σ dV

Rcoh
I =

nel

A
e=1

∫

Γe

J i t̄([[u]]) dA

Rext
I =

nel

A
e=1

∫

∂Bt

N i tp dA.

(3.5.10)

Herein the operator

nel

A
e=1

denotes the assembly of all element contributions at the element

nodes, including the newly introduced ones, i = 1, nen + n∗
en to the overall residual at the

global node points I = 1, nnp + n∗
np.

3.5.3. Linearized discrete weak formulation

Equation (3.5.10) represents the governing discrete system of equations. Due to the

applied constitutive law and the changing boundary conditions the system of equations

becomes nonlinear and has to be solved iteratively. A Newton-Raphson scheme is applied

and therefore a consistent linearization of the governing equations is performed

Rk+1
I = Rk

I + dRI = 0 with dRI =

nnp+n∗

np∑

J=1

KIJ duJ , (3.5.11)
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whereby the iterative residual dRI is expressed in terms of the global tangent stiffness

matrix KIL. The tangential stiffness matrix is obtained as the partial derivative of the

residual with respect to the displacements

KIJ =
∂RI

∂uJ

= Kint
IJ + Kcoh

IJ . (3.5.12)

For the considered problem the tangent stiffness matrix takes the format

Kint
IJ =

nel

A
e=1

∫

B+,−
e

∇N i · C · ∇N j dV +

∫

B+

d

∇N̄+ i · C · ∇N̄+ j dV

+

∫

B−

d

∇N̄− i · C · ∇N̄− j dV

Kcoh
IJ =

nel

A
e=1

∫

Γe

J i
TJ j dA.

(3.5.13)

Herein T represents the tangent stiffness of the traction separation law at the discontinuity,

which was specified in section 3.4.2.

Finally the iterative update of the global unknown uL

uk+1
J = uk

J + duJ (3.5.14)

can be expressed in terms of the solution of the linearized equation (3.5.11).

3.6. Implementation

In this section details about the implementation of the method are given. In contrast

to the approach introduced in the previous chapter the failure surface is not known a

priori. Therefore a procedure to estimate the crack propagation direction is required.

Furthermore we need to propose a failure criterion to decide if crack propagation occurs.

Moreover, the integration of the intersected elements necessitates a modified and adequate

integration scheme.

3.6.1. Propagation of the discontinuity

A discontinuity is introduced in an element when a certain failure criterion is met. During

the calculation the principal stresses in the element ahead of the tip of the discontinuity

are monitored. If the stresses exceed the tensile strength ft of the material, a discontinuity

is introduced. The discontinuity is introduced as a straight line through the element and is

enforced to be geometrically continuous. To determine the right direction of the extension

of the discontinuity we follow the suggestion of Wells [130]. Since the gradients of the

stresses close to the tip of the discontinuity are large, non-local stresses σ̃ are calculated
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in view of finding the principal directions. The non-local stress tensor is computed as

a weighted average of the stresses at the ngp Gauss points within an interaction radius

around the tip. A weighted Gauss function is used

ŵ(r) =
1

l
√

2π
exp

( −r2

[2 l]2

)

, w(r) =
ŵ(r)

ngp∑

i=1

ŵi Ai

, (3.6.1)

whereby r is the distance of the Gauss point to the crack tip and l determines the decline

of ŵ with respect to r. The non-local stress tensor results from the sum of the local

stresses at the Gauss points i, weighted with wi and the associated area Ai

σ̃(x) =

ngp∑

i=1

σi wi Ai. (3.6.2)

The discontinuity is extended in the direction perpendicular to the dominant non-local

principal stress direction.

In combination with the cohesive zone law this stress-based propagation criterion leads to

reasonable results for the crack path. Nevertheless other crack propagation criteria can

be used in combination with the proposed method. A promising alternative is given by

the Material Force Method, see e. g. [117] and [28] and appendix C.

3.6.2. Additional nodes

The jump in the displacement field should be continuous over the element boundaries.

Therefore the newly introduced degrees of freedom have to be global. If an additional

node is introduced, it is checked, if the node has already been created by the neighboring

elements. To enforce the continuity of the crack path, the discontinuity is always continued

at the old crack tip. Furthermore the jump in the displacement field at the discontinuity

tip must be equal to zero. To enforce this condition, no additional degrees of freedom

are introduced at the nodes, which lie on the same element boundary as the tip of the

discontinuity. In figure 3.7(a) the path of the discontinuity is depicted and the additional
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Figure 3.7.: (a) finite element mesh with additional nodes, (b) displacement approximation using doubled
nodes, (c) resulting discontinuous approximation

nodes are highlighted, figure 3.7(b) displays the deformation of the structure, including
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the additional fictitious nodes, and finally in figure 3.7(c) the resulting deformation of the

structure is displayed.

In this formulation a discontinuity can only be introduced if a state of equilibrium is

reached. An incremental displacement or force is applied to the structure and the resulting

deformation is calculated. Within a post-processing step the Cauchy stresses and the non-

local stresses around the tip of the discontinuity are determined. The failure criterion is

checked for the crack-tip element. If the failure criterion is met the discontinuity is

extended through the crack-tip element in the direction estimated by means of the non-

local stresses. Due to the introduction of the new discontinuity the geometry of the

structure has changed and the previously computed displacements does not represent

an equilibrium state anymore. Therefore the same load step is recalculated with the

elongated discontinuity. The procedure is repeated until an equilibrium state is reached

and the failure criterion is not met. Then the next load increment is applied. The

algorithmic implementation is summarized in figure 3.8.

load step

iterative solution of equation (3.5.10) for u

calculation of the principal stress σ1 in the crack-tip element

checking propagation criterion

σ1 < ft σ1 ≥ ft

calculation of averaged stress σ̃

introduction of new discontinuity

new load step

Figure 3.8.: Algorithmic implementation

3.6.3. Integration scheme

For the approximation of the displacement field of the intersected elements the usual shape

functions are used. But since the geometry of the element parts varies, the initial Gauss

scheme is not valid for the intersected elements. Therefore the quadrilateral part of the

intersected element is subdivided into triangular parts. Within each triangular subdomain

centroid Gaussian quadrature is applied. This approach is sufficient for constant strain

triangles, for higher-order elements one needs to introduce more Gauss points for each
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subdomain. Additionally two Gauss points are placed on the discontinuity surface to

evaluate the terms depending on the tractions, see figure 3.9.

i

PSfrag replacements
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Figure 3.9.: Gauss integration points

3.7. Numerical examples

In this section three numerical examples are presented to demonstrate the applicability

of the proposed method in the geometrically linear case. By means of the first exam-

ple, a simple mode I failure problem, the influence of different discretizations and the

implementation of the proposed method is checked. The second example, a three-point

bending beam with a centrally initiated discontinuity, tests the method for objectivity

with respect to mesh alignment and element size. Both the path of the discontinuity and

the global load displacement relation are examined for two different discretizations. The

third example deals with the same three-point-bending beam, but the discontinuity is

initiated excentered, to demonstrate an example for a curved discontinuity. All examples

are calculated using three-noded triangles.

3.7.1. Mode I failure

In the first example purely mode I failure is considered, to check the influence of different

discretizations on the load displacement relation. A square plate is loaded by a given

uniform displacement at the top edge and is fixed at the bottom edge, the geometry and

the loading conditions are depicted in figure 3.10. The discontinuity is introduced on the

left hand side of the plate.

The material parameters are set to: Young’s modulus E = 100 N/mm2, Poisson’s ratio

ν = 0, tensile strength ft = 1.0 N/mm2 and fracture energy Gf = 0.02 N/mm. Due to

the bearings, which prevent a lateral movement of the structure, and due to the cohesive

forces acting on the interface, the complete separation of the structure does not result in a

singular tangent stiffness matrix. In figure 3.11 the deformation of the plate for the three

chosen discretizations with 32, 72 and 128 three-noded triangles is pictured. Since the

stresses are constant, the discontinuity propagates through the whole structure, when the

tensile strength is exceeded. Furthermore it propagates along a straight line, as expected.
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Figure 3.11.: Deformation of the structure

The load displacement relations, which are depicted in figure 3.12, confirm that the results

are independent with respect to the discretization.

The example was also calculated under loading and following unloading conditions, when

the prescribed displacement is equal 0.7 mm. To realize an irreversible material behavior

for the loading/unloading conditions, a history variable q is introduced in the traction

separation law (3.4.5). For mode I failure the normal jump seems to be a reasonable

choice for the history variable. We obtain the following loading function f and a modified

traction separation relation for the normal part of the traction vector

q = max(q, [[un]]) f = [[un]] − q

tn = ft exp(− ft

Gf
q) if f = 0

tn = ft exp(− ft

Gf
q)

[[un]]
q if f < 0.

(3.7.1)

If unloading and reloading occurs the material answer follows a linear path. This is

numerically verified in figure 3.12. The unloading leads to a damage like release of stresses

and the answer during reloading follows the same path in the opposite direction.
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Figure 3.12.: Load displacement relation
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3.7.2. Three-point bending beam

We consider a three-point bending test, whereby a simply supported beam is loaded by an

imposed displacement at the center of the top edge. The following material parameters

are chosen: E = 100 N/mm2, ν = 0, ft = 0.5 N/mm2 and Gf = 0.01 N/mm. The crack

shear stiffness d is set to zero. The parameter l from equation (3.6.1) is approximately

equal to three times the average element diameter. In figure 3.13 the geometry and the

loading conditions are pictured. Two different unstructured meshes with 498 and 850

elements are used for the simulation. The main goal is to examine the dependence of

the alignment and the propagation of the crack with respect to the discretization. For

PSfrag replacements
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Figure 3.13.: Geometry, loading condition

the first calculation a crack is initiated at the center of the bottom edge. As expected,

due to the symmetric setting, the crack propagates directly upwards independently of the

mesh alignment. The load displacement relations are shown in figure 3.14. The peak

load for the two different discretizations is slightly different. Due to the proposed failure

criterion, which depends only on the maximum principal stress in the element ahead of

the tip, the larger elements of the coarse mesh fail later. Therefore the peak load is

slightly overestimated for the coarse discretization. But nevertheless the good agreement

of the two load displacement curves confirms the objectivity of the method with respect

to the discretization. The path of the discontinuity is pictured in figure 3.15. For both

discretizations the discontinuity describes a straight line towards the top of the beam.

The path of the discontinuity is entirely independent of the mesh structure and identical

for both discretizations.

In the next example the ability of the method to model a curved crack is tested. Therefore

a concentric crack is initiated at the bottom edge of the beam (with 0.7 mm offset). The

crack is expected to propagate in a curved path towards the center at the top of the beam,

compare the experimental results in [110]. In figure 3.17 the propagation of the crack for

both discretizations is displayed and with both discretizations the expected curved path

of the crack is well described. Even the simulation with the coarse mesh gives a good

approximation of the crack path, the result can not be distinguished from the one obtained

with the fine discretization.

The load displacement relations, pictured in figure 3.16, show minor differences. The

peak-load is well approximated in both cases, but the curve is quite rough for the coarse
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Figure 3.14.: Load displacement relation for centered crack
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Figure 3.15.: Propagation of the centered discontinuity for both discretizations

mesh. This is due to the elementwise failure. The discontinuity can only intersect the

whole element at once and therefore the load displacement relation shows the small jumps.

However it is clearly that for a finer discretization these inaccuracies are smoothed out

and become negligible for further mesh refinement.

Picture 3.18 shows a detail of the crack path and highlights the independence of the
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Figure 3.16.: Load displacement relation for excentered crack

crack path with respect to the mesh alignment. It is visible that the elements can be

arbitrarily intersected by the discontinuity.
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Figure 3.18.: Detail of the discontinuity path

3.8. Summary

A new finite element method was introduced for the modeling of cohesive cracks. The

method allows for discontinuities propagating through the elements. The characteristic

feature of the method is the construction of these elements which are intersected by the

discontinuity. Additional displacement degrees of freedom are introduced at the existing

nodes and only the standard basis functions are used. The manner of constructing

intersected elements can be easily adapted for different elements in 2D an 3D. The

method is used to model cohesive cracks, considering quasi-brittle materials. Thereby

the inelastic material behavior is covered by a certain discrete constitutive law, applied

at the interface. The introduction of different cohesive traction separation laws is

straightforward. A simple crack propagation criterion, based on the maximum principal

stresses, is applied. The presented numerical examples point out that the method

allows for simulating propagating discontinuities, both, of straight and curved nature,

independent of the mesh structure.
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4. Mesh-independent modeling of weak discontinuities

In the present chapter a discontinuous Galerkin method, which is based on Nitsche’s

method [95] and was introduced in chapter 2, is applied for the modeling of weak dis-

continuities in linear elasticity. A weak discontinuity denotes a jump in the gradient of

the displacement field, namely in the strains. These weak discontinuities are present if

we consider for example structures, made of different materials or containing holes or

inclusions.

Instead of meshing the internal boundaries, the discontinuous elements, proposed in

chapter 3.5.1 are combined with the discontinuous Galerkin method. The discontinu-

ous elements allow for jumps in the displacements and in the strains. The discontinuous

Galerkin method is applied to enforce continuity of the displacement field in a weak sense,

such that only the weak discontinuities remain. The weak discontinuities are therefore

modeled independently of the element boundaries.

4.1. Motivation

In structural mechanics internal boundaries with weak discontinuities can occur due to de-

fects, such as pores and inclusions or due to material interfaces, for example in composites.

The accurate consideration of these interfaces within finite element method usually re-

quires the meshing of the internal boundaries to obtain optimal convergence rates, see [8]

and [76].

Here a different framework is introduced which allows for voids and inclusions of arbitrary

geometry independent of the mesh. Therefore discontinuous elements are formulated.

The continuity of the displacement field is enforced weakly by means of a discontinuous

Galerkin method of Nitsche’s type [95]. The method is closely connected to the approach

introduced by Hansbo and Hansbo in [46] and [47] and is mainly introduced as a starting

point for its extension to finite strains, which is given in chapter 6.

Material discontinuities were considered by MacKinnon et al. in [76] and by Li in [73]

by basis functions which satisfy the jump conditions at the interface. In [11] problems

with inhomogeneous interface conditions are considered. A different framework to model

interfaces independently of the mesh is formed by the extended finite element method

(XFEM), which goes back to [14]. Thereby the partition of unity concept [9] is adopted

to add additional functions to the usual shape functions. The XFEM was originally de-

veloped for crack propagation problems, where the Heaviside function and near crack tip

asymptotic fields are used as enrichment functions [87]. The modeling of holes and inclu-
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sions by means of the XFEM and level set methods [111] is regarded by Sukumar et al.

in [124]. Thereby the displacement field is enriched by additional functions containing a

jump in its gradient. These enrichment functions were introduced in connection with the

Element Free Galerkin method in [65]. In combination with the level set method the value

of the level set function itself can be used to develop an enrichment function. In [124]

holes and inclusions are modeled with the XFEM, in [17] arbitrary discontinuities are con-

sidered and in [86] the approach is adopted to handle complex microstructure geometries.

The combination of the extended finite element method and level set methods was also

applied for problems with moving internal interfaces. In [25] and [58] the Stefan problem

is simulated, in [24] two-phase fluids are regarded and in [32] an approach to simulate

the swelling of hydrogels is introduced. In this context a study of different strategies to

enforce interfacial constraints is accomplished in [59].

The present approach is applied to the modeling of inclusions and material interfaces in

linear elasticity. The method is based on the unfitted finite element method, introduced

by Hansbo and Hansbo in [46] for stationary heat conduction problems and applied in

a more general format to elasticity in [47]. The discontinuous elements, which were in-

troduced in [46] and adopted in chapter 3 for crack propagation problems, are utilized.

Due to the construction of the shape functions, these elements allow for a discontinuity

in the displacement field and its gradient. When weak discontinuities are simulated the

displacement field is required to be continuous. To fulfill this condition a Nitsche type

discontinuous Galerkin method, which was introduced in section 2.3.2, is applied along

the internal interface. By means of the discontinuous Galerkin terms the continuity of

the displacement field is weakly satisfied. Nitsche introduced in [95] a consistent method

to enforce inhomogeneous Dirichlet boundary conditions in a weak sense. Douglas and

Dupont [33], Wheeler [133] and Arnold [6] extended this approach to the weak fulfillment

of continuity at all element boundaries.

Although only static interfaces are considered in this approach the geometry of the in-

ternal boundary is described by means of level set methods [102] and [111]. Usually the

level set method is applied to track moving interfaces, but nevertheless it constitutes a

simple manner to describe arbitrarily formed holes and inclusions.

In the next chapter the kinematics regarding a weak discontinuity are introduced, after-

wards the variational formulation, including the additional discontinuous Galerkin terms,

is derived from the principle of stationary potential energy and the governing equations

are constituted. The discretization and implementation is described in detail and finally

numerical examples are presented and numerical convergence studies are carried out.
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4.2. Kinematics

4.2. Kinematics

Let B denote a linear elastic body with placements denoted by x. The boundary ∂B with

the outward unit normal vector ne is subdivided into the disjoint parts ∂B = ∂Bu ∪
∂Bt with ∂Bt ∩ ∂Bu = ∅, where either Neumann or Dirichlet boundary conditions are

prescribed. We assume that the body exhibits an internal discontinuity which is denoted
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Figure 4.1.: B crossed by an internal boundary Γ

with Γ and the parts of the body placed on the two sides of the internal boundary with

B+ and B−. The associated normal vector n̄ points from B− to B+, see figure 4.1. Since

the continuity of the displacement field will be enforced by additional terms in the weak

form it is possible to use the same kinematical assumption as in chapter 3 for strong

discontinuities. Thus two independent unknown displacement fields are defined

u =

{

u+ in B+

u− in B− (4.2.1)

and the symmetric strain tensor is introduced as

ε =

{

ε+ = ∇su+ in B+

ε− = ∇su− in B−.
(4.2.2)

To treat the discontinuities we define a jump term and an average term

[[u]] = u+
|Γ

− u−|Γ and {u}κ = κ+ u+|Γ + κ− u−|Γ, (4.2.3)

whereby u
+,−
|Γ

indicate the field values on both sides of the internal boundary. In contrast

to section 2.2 the average term is introduced as a weighted average with the weighting

factors κ+ and κ−, with κ+ + κ− = 1. The use of the weighted average value instead

of the mean average and the particular size of the weighting factors is directly related to

the discretization. Their determination will be discussed in section 4.5.1.

4.3. Variational formulation

In this section the variational formulation of the problem is determined from the principle

of stationary potential energy. Thereby additional interfacial contributions are added

to the potential which ensure the continuity of the displacement field. These additional

contributions vanish if the the continuity condition is exactly fulfilled.
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4.3.1. Principle of stationary potential energy

To apply the principle of stationary potential energy we propose the existence of an energy

functional Π. Usually the total energy is composed of the internal energy Πint and the

external energy Πext. We introduce additional energy contributions Πdis. The definition

of the total potential energy reads

Π(u) = Πint + Πdis + Πext. (4.3.1)

The internal energy is defined in terms of the strain energy density Ψ(ε) and the external

energy contains contributions of the body force b and surface tractions tp.

Πint =

∫

B+∪B−

Ψ(ε(u)) dV Πext = −
∫

B+∪B−

u · b dV −
∫

∂Bt

u · tp dA. (4.3.2)

The additional term Πdis is defined as

Πdis(u) =

∫

Γ

[[u]] · {σ} · n̄ dA +

∫

Γ

1

2
θ [[u]] · [[u]] dA, (4.3.3)

whereby σ denotes the Cauchy stress. It can be easily verified that this contribution

vanishes if the continuity of the displacement field is satisfied, i. e. [[u]] = 0. The

second part of Πdis forms a penalty term, which is necessary to stabilize the method,

compare section 2.4.3. The penalty factor θ depends on the material parameters and the

discretization and will be specified in section 4.5. The total potential energy is then given

as

Π(u) =

∫

B+∪B−

Ψ(ε(u)) dV +

∫

Γ

[[u]] · {σ} · n̄ dA +

∫

Γ

1

2
θ [[u]] · [[u]] dA

−
∫

B+∪B−

u · b dV −
∫

∂Bt

u · tp dA.
(4.3.4)

Equilibrium is obtained when the total potential energy reaches a stationary point, i.

e. when its variation with respect to the displacement field vanishes. The variational

formulation reads

δΠ(u, δu) =

∫

B+∪B−

σ : δε dV +

∫

Γ

[[[δu]] · {σ} · n̄ + [[u]] · {δσ} · n̄] dA

+

∫

Γ

θ [[δu]] · [[u]] dA −
∫

B+∪B−

δu · b dV −
∫

∂Bt

δu · tp dA =̇ 0,
(4.3.5)

whereby the Cauchy stress tensor is defined as the derivative of the strain energy density

with respect to the strain σ = ∂Ψ/∂ε. To clarify the underlying interfacial conditions the

term on the internal boundary Γ is analyzed. Since all the integral terms are inexistent in

continuous weak formulations, they have to vanish, if the interface conditions are exactly
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satisfied. The last two terms, evaluated on Γ contain the jump in the displacement field.

When the continuity condition

[[u]] = 0 on Γ (4.3.6)

is fulfilled these terms are equal to zero. The remaining term provides the equilibrium

of the tractions along the internal interface, i. e. {σ} · n̄ = σ+ · n̄ = σ− · n̄. Then it

can be shown by means of the divergence theorem and integration by parts that the weak

form is consistent with the following strong form

−divσ = b in B+ ∪ B−

u = up on Bu

σ · ne = tp on Bt

[[σ]] · n̄ = 0 on Γ

[[u]] = 0 on Γ.

(4.3.7)

The additional terms due to the discontinuous Galerkin method ensure the continuity of

u over the internal boundary in a weak sense.

4.4. Constitutive equation

We assume linear elastic behavior of the body. Therefore the strain energy function is

defined as

Ψ(ε) =
1

2
ε : C : ε (4.4.1)

and the stress-strain relation follows as

σ =
∂Ψ(ε)

∂ε
= C : ε. (4.4.2)

Thereby C is the elasticity tensor, which depends for isotropic material behavior only on

two material parameters, e. g. the Lamé parameters λ and µ. Then the stress strain

relation can be rewritten as

σ = λ tr(ε)I + 2 µ ε. (4.4.3)

To simplify matters we choose the same linear elastic behavior for both parts of the body,

B+ and B−. In general the material behavior of the parts is independently and can be

defined by different strain energy functions. However, in the present study the difference

between the material behavior of the parts is restricted to varying material parameters.
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4.5. Discretization

In this section the discretization of the weak formulation is described. Since the weak

discontinuities shall be independent of the finite element mesh the weak formulation 4.3.5

is discretized with the discontinuous elements, which were established in chapter 3.5.1 for

the modeling of crack propagation. Due to the set of discontinuous shape functions, these

intersected elements allow for the approximation of two independent functions, and thus

for jumps in the displacement field and the strains. In contrast to the application of these

elements for crack modeling, where a displacement jump is required, the continuity of the

displacement field is here enforced weakly by Nitsche’s method. Consequently only the

jumps in the strain field, namely the weak discontinuities, remain.

4.5.1. Discontinuous elements

The formulation of the discontinuous elements is described in detail in section 3.5. An

intersected element is divided by Γe into the parts B+
d and B−

d with the independent

displacement fields u+ and u−. To approximate the displacement field additional degrees

of freedom are introduced at the existing nodes and discontinuous shape functions are

defined on the basis of the standard shape functions

N+ i =

{

N i in B+
d

0 in B−
d ,

and N− i =

{

0 in B+
d

N i in B−
d .

(4.5.1)

The approximation of the displacement jump and average of the strains which have to be

evaluated at the internal interface reads

[[u]]|Γe
=

n
en+∑

i=1

N i|Γe
u+

i −
n

en−∑

i=1

N i|Γe
u−

i =
n+

en+n−

en∑

p=1

Jpup

{u}|Γe
= κ+

n
en+∑

i=1

N i|Γe
u+

i + κ−
n

en−∑

i=1

N i|Γe
u−

i =
n+

en+n−

en∑

p=1

Apup.

(4.5.2)

The newly introduced terms Jp and Ap comprise the shape functions evaluated at the

internal boundary and the appropriate sign for the jump term or the weighting factors κ

for the average value. The size of the weighting factors is defined according to [46] by the

size of the two parts of the intersected element

κ+ =
|B+

d |
|Bd|

and κ− =
|B−

d |
|Bd|

. (4.5.3)

The introduction of this weighted average term is necessary since the interface can in-

tersect the elements arbitrarily. Therefore the geometry of the intersected elements is

not fully characterized by the mesh size h. Another definition of the weighting factors is

possible. In reference [47] κ is defined as

κ+ =

{

1 if |B+
d | > |B−

d |
0 if |B−

d | > |B+
d |,

and κ− = 1 − κ+. (4.5.4)
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4.6. Implementation

That means that the average values in an intersected element are computed at that side

of the interface where the larger part of the element resides.

In chapter 2 the Nitsche type discontinuous Galerkin method is applied along element

boundaries in structured meshes. Hence the introduction of an average weighting factor

is not required and the usual arithmetic mean is used.

4.5.2. Discrete weak formulation

The elements which are not intersected by the discontinuity are usual isoparametric

elements, as described in section 3.5. The discretization of the weak formulation 4.3.5

leads to a linear system of equations which can be solved directly. The global load vector

is simply given by

F I =

nel

A
e=1

∫

B+∪B−

N i b dV +

∫

∂Bt

N i tp dA. (4.5.5)

The stiffness matrix is composed of the usual bulk contribution and the additional dG

interfacial contributions

KIJ =

nel

A
e=1

∫

B+,−

e,d

∇N i
C∇N j dV

+

∫

Γe

[

J i
C · n̄ · ∇Aj + ∇Ai · n̄ · C J j

]

dA +

∫

Γe

θeJ
i J j dA

(4.5.6)

The penalty factor θe depends on the material parameters and the mesh size h. It can

be specified as θe = ϑ (λmax + µmax)/h, whereby ϑ is a scalar-valued constant which has

to be sufficiently large to ensure stability of the method, see [46] for a stability proof.

Obviously equation 4.5.6 renders a symmetric linear system of equations, which is solved

for the primary primary unknown u, which results in

nnp∑

L=1

KIJ uJ = F I.

4.6. Implementation

In this section the implementation of the proposed method is described. Thereby the

focus lies on the introduction of the additional nodes and the geometric description of

the interface by means of level set methods. The numerical integration of the intersected

elements and the additional boundary contributions is carried out by a special Gauss

integration scheme, which is described in section 3.6.3.

4.6.1. Geometric description of the interface

Although only stationary interfaces are considered, the geometry of the internal bound-

aries is defined by means of level set functions [111]. The idea of the level set method is
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Figure 4.2.: Level set description of circular inclusion

to represent an interface as the zero level set of a function l(x, t), which is one dimension

higher than the considered problem. A moving interface Γ in two dimensions can be

described as

Γ(t) = {x ∈ R
2 : l(x, t) = 0}. (4.6.1)

In the here considered examples the interface is static, therefore the dependence on the

time t is omitted. However, in general the time dependence of the interface can be easily

included, which requires the definition of an evolution equation for the level set function

to describe its motion.

To illustrate the concept of the geometry description, we exemplarily look at a circular

inclusion. The level set function is given as

l(x) = ||x − xc|| − r, (4.6.2)

whereby the center of the circle is denoted with xc and the radius with r. In figure 4.2

one can see that the zeros of the function l constitute a circular interface, the function

values of the coordinates inside this circle are lower and of the external ones are larger

than zero.

To determine the position of the interface in the context of finite element methods, the

discrete function values of l are determined at the nodes. Therefore the elements which

belong to B+ or B− can be identified by the sign of their nodal values of l. Elements

which are intersected by the interface possess nodal values with different signs. If linear

triangular elements are considered, the interface is described as a straight line in the

element and the intersection points of the interface with the element boundaries are the

zeros of the discrete level set function l.

4.6.2. Additional nodes

The formulation of the discontinuous elements requires the introduction of additional

nodes. Since only static interfaces are considered the additional nodes can be introduced
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4.7. Numerical examples

prior to the calculation.To identify the elements which are intersected it is looped over

all elements. If their are two nodes ni and nj in the connectivity of the element with

li lj < 0 the element becomes a discontinuous element. Additional degrees of freedom are

introduced at the nodes of the intersected elements, which is indicated at left hand side of

figure 4.3. On the right hand side the intersected elements containing the doubled nodes

are depicted completely. Since the additional degrees of freedom are global, it is checked
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Figure 4.3.: Introduction of the additional nodes

whether the node has already been doubled by another divided element. Furthermore

the intersection points of the element edges and the interface are easily calculated as the

zeros of the discrete level set function. The intersection points and the geometry of the

element parts are stored since they do not change during the calculation.

4.7. Numerical examples

Two numerical examples are presented, which demonstrate the performance of the

method. For both examples the calculation of an analytical solution is possible and

therefore the numerical solution is analyzed with respect to the analytical one. For both

examples the error in the displacement field and in the energy is calculated. The second

example is also used to control the stress and strain contributions. Both numerical exam-

ples are calculated with a penalty parameter of ϑ = 5, whereby θ = ϑ/h (λmax + µmax).

4.7.1. Bimaterial bar

The first example, a bimaterial bar, which is fixed on both sides and loaded by a body

force, is taken from [50]. The geometry and the boundary conditions are given in figure

4.4. A material interface is located in the middle of the bar, the material on the left side

of the interface, in B+, is softer than the other one. The body force is only applied in

x-direction. With the material parameters E+ = 0.5, E− = 3 and ν+ = ν− = 0 a one

dimensional problem is characterized, which is solved in a two dimensional setting. The
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applied body force and the resulting analytical solution of this problem are given as

b =







1

0







ux |B+ = 3 E+ + E−

4 E+2 + 4 E+ E−
x
15 − 1

2 E+

(
x
15

)2

ux |B− =
[E− − E+] + [3 E+ + E−]

x

15
4 E+2 + 4 E+ E− − 1

2 E−

(
x
15

)2

.

(4.7.1)

The deformation of the bimaterial bar is displayed in figure 4.5, whereas the deformation

in x-direction is plotted on the z-axis to visualize the continuity of the solution. The

jump in the material parameters leads to a jump in the gradient of the displacements

as expected. The jumps within the displacement field along the internal boundary are

approximately zero. The numerical solution is compared with the analytical one in order

to show convergence of the method. The error in the displacements is calculated as
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Figure 4.6.: Error in the displacements
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Figure 4.7.: Error in the energy

e = ||ua − u||, whereby ua denotes the analytical solution. The error in the energy is

calculated as the difference of the numerically determined energy and the analytically
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calculated energy eΠ = |Πa − Π|. The latter is for the given example Πa = 0.03001.

For comparison reasons the bimaterial bar is also calculated with a fitted finite element

method. That means that the interface is taken into account such that it coincides with

nel e eΠ

50 1.764786e-04 1.3622e-3

98 7.096249e-05 7.1977e-4

242 2.168587e-05 2.9864e-4

450 9.256522e-06 1.6250e-4

1058 2.778997e-06 6.9919e-5

2450 8.319168e-07 3.0450e-5

4050 4.006681e-07 1.8510e-5

6050 2.228348e-07 1.2442e-5

Table 4.1.: Displacement error and energy error for dG method, bimaterial bar

the meshlines. The error in the displacements is shown in figure 4.6. It can be seen that

quadratic convergence is achieved for the present method. The error is comparable to

the one of the fitted finite element method. The energy error is presented in figure 4.7.

Again quadratic convergence is achieved. The numerical values for the displacement and

the energy error are summarized in table 4.1.

4.7.2. Circular plate with inclusion

As the second example a more complicated problem is calculated, for which an analytical

solution exists: a circular plate with a soft circular inclusion. The example is taken from

Sukumar et al. [124]. The geometry and the boundary conditions are given in figure 4.8.

Due to the axisymmetric loading the whole problem is axisymmetric. We calculate only
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Figure 4.8.: Geometry and loading conditions

one quarter of the problem. The material parameters are constant in each part of the
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structure, but exhibit a discontinuity across the internal interface Γ. They are chosen as

λ+ = µ+ = 0.4, λ− = 5.7692 and µ− = 3.8461. At the outer boundary of the circular

structure a displacement field is prescribed, which is given in polar coordinates ur = b

and uθ = 0. Since we consider displacement and traction continuity, compare equations

(4.3.6) and (4.3.7), the analytical solution can be specified as

ur(r) =







[

[1 − b2

a2

]

α + b2

a2 ] r, 0 ≤ r ≤ a
[

[[1 − b2

r2 ] α + b2

r2

]

r, a ≤ r ≤ b

uθ = 0,

(4.7.2)

whereby

α =
[λ+ + µ+ + µ−] b

[λ− + µ−] a2 + [λ+ + µ+] [b2 − a2] + µ− b2 . (4.7.3)

In our calculations a = 3.75 and b = 15. The exact potential energy can be calculated

analytically by calculating the stresses and strains from the given displacement field and

integrating the strain energy function over B+ and B−. The potential energy turns out

to be equal to Πa = 2893.954.

In the same manner as in the first example the convergence of the method is checked by

comparison of the numerical with the analytical solution. The problem is calculated with

an increasing number of elements. The error in the displacement field is calculated as

well as the error in the energy. Both errors are depicted in table 4.2. In figure 4.9 the

error in the displacements is plotted and figure 4.10 shows the error in the energy. The

convergence results are not as accurate as in the first example, since the meshes show some

irregularities. But the expected quadratic convergence behavior in the displacement error

and the energy is recognizable. The deformation of the structure as well as the associated

stress and strain contributions are displayed in the figure 4.11. The radial displacements

ur are plotted along the z-axis. It is visible that the jump in the displacement field is
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nel e eΠ

367 1.864142e-03 1.0213e+01

583 8.726288e-04 5.9514e+00

1011 3.377139e-04 2.9187e+00

1946 1.473069e-04 1.9525e+00

3171 8.342057e-05 1.0580e+00

Table 4.2.: Convergence of the dG approach, circular inclusion
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approximately zero at the interface. Furthermore one can see that the gradient of the

radial displacement field exhibits a jump along the internal boundary where the material

parameters change. This connection becomes apparent when the radial strain contribution

is considered. The jump in the radial strains along the interface is clearly visible and well

captured by the discontinuous elements. The radial stresses are depicted in figure 4.11 (c).

Since traction continuity is required along the internal boundary a continuous transition

of the radial stresses is expected and can be verified.

4.8. Summary

In the present chapter an approach was introduced which combines the application of

a Nitsche type dG method with discontinuous finite elements for the mesh independent

simulation of weak discontinuities. Weak discontinuities denote a jump in the gradients

of the displacement field, which occur when one considers material interfaces, holes or

inclusions. The discontinuous elements allow for a jump in the displacement field and

its gradient. The construction of the elements is very simple and in a uniform manner

applicable for elements of different polynomial degree and dimension. The set of discon-

tinuous shape functions offers the possibility to capture arbitrary discontinuities within

the elements. The continuity of the displacement field is weakly enforced along the inter-
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nal interface by Nitsche’s method, which leads to additional terms along the interface.

The accuracy of the technique was tested by numerical examples in two dimensional elas-

tostatics. For two problems with known analytical solutions convergence studies were

performed. The obtained convergence rates in the displacements and the energy are op-

timal. Furthermore the jump in the strain field is exactly captured by the discontinuous

elements. The results show that the method offers a robust and accurate numerical tech-

nique for the modeling of material interfaces, voids and inclusions independent of the

interelement boundaries.
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discontinuities at finite strains

The approach for the mesh-independent crack modeling which was developed in chapter

3 is extended to finite strains. This chapter is mainly based on reference [82]. The exten-

sion to the geometrically nonlinear setting implicates different kinematic relations. The

concept of cohesive crack modeling is adopted to model inelastic failure processes. The

numerical implementation is based on the discontinuous elements which were introduced

in detail in the second chapter and is expanded to three dimensional applications. A con-

sistent linearization of the method is presented, where attention is especially paid to the

linearization of the cohesive traction vector. The numerical examples, in two and three

dimensions show the mesh-independency of the results.

5.1. Motivation

In this chapter the approach for the modeling of cohesive cracks involving strong disconti-

nuities is extended to large strains. The failure process is dominated by a strain softening

processes, where the standard continuum description leads to physically meaningless so-

lutions due to an ill-posedness of the underlying problem. Therefore the discrete crack

approach is adopted, where the failure zone is described by means of a strong discon-

tinuity. To include inelastic material behavior a fracture process zone is included by the

introduction of a cohesive zone model. The idea of the cohesive zone models goes back

to the work of Dugdale [34] for elastoplastic fracture in metals and Barenblatt [10] and

Hillerborg et al. [55] for brittle fracture. In the cohesive zone theory the fracture process

is seen as a gradual phenomena, whereby the inelastic processes prior to crack initiation

are lumped onto a fracture process plane in front of the crack tip. The opening of the

adjacent crack surfaces is resisted by cohesive tractions, whose evolution is governed by a

constitutive traction separation law. Different inelastic effects like the initiation and coa-

lescence of micro-cracks,void initiation, interlocking of grains and others can be combined

in a phenomenological particularization of a traction separation law. The cohesive zone

models are widely used in fracture and failure mechanics. In the geometrically nonlin-

ear setting Ortiz and Pandolfi [101] developed an irreversible damage like cohesive zone

model. In [1] a traction separation law for the delamination of laminates is introduced

by Alfano and Crisfield and Gasser and Holzapfel [43] applied a transversely isotropic

damage traction separation law for the modeling of dissection of biological tissues.
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The introduction of strong discontinuities and cohesive zones in the framework of finite

elements was treated with different methods in recent years. The main topic is the de-

scription of evolving discontinuities independent of the underlying finite element mesh.

One recently developed approach is the extended Finite Element Method (XFEM), where

the continuous displacement field is enriched by an additional potentially discontinuous

displacement field. This allows to include strong discontinuities within finite elements.

The XFEM was applied for linear elastic fracture problems in [14] and [87]. Applications

of the method to the geometrically nonlinear setting can be found in the works of Wells

et al. [131], Gasser and Holzapfel [43], Larsson and Fagerström [66] and Areias and Be-

lytschko [2].

Different approaches with additional degrees of freedom on the element level can be sum-

marized as the method with embedded discontinuities. These methods are based on

the class of mixed Enhanced Assumed Strains (EAS) methods, proposed by Simo et

al. [115]. Incompatible finite element methods for the modeling of failure based on this

ideas have been introduced in the geometrically nonlinear regime for example by Armero

and Garikipati [5], Larsson et al. [68], Oliver et al. [97], [98] and Gasser and Holzapfel [43].

In the present chapter a different approach is proposed. The method involving the dis-

continuous elements, which were introduced by Hansbo and Hansbo in [46] and used

in chapter 3, is extended to finite strains. The elements which exhibit a discontinuity

are doubled, which allows for the independent approximation of both continuous parts.

Thereby only the standard basis functions are used and set to zero on one side of the

discontinuity surface or on the other side. The approach shows similarities to the XFEM

and leads eventually to a reparametrization of the resulting equations. But in contrast to

the XFEM the enrichment at the interface is strictly local in the sense that no additional

transition elements are required, compare section 3.5.1.

The introduction of the discontinuous elements allows for the simulation of propagating

discontinuities, whereby the path of the discontinuity is independent of the finite element

mesh. The method is implemented for two and three dimensional problems. In the follow-

ing section the kinematic relations are introduced, first for the continuous case and then

including a strong discontinuity. Afterwards the variational formulation is derived. The

weak form is given in the material and the spatial configuration. A consistent linearization

of the weak form is presented, whereby attention is paid especially to the linearization

of the cohesive traction. In the next section the constitutive equations for the hyperelas-

tic material behavior of the bulk and the damage type softening along the discontinuity

surface are specified. Afterwards the discretization of the weak form is introduced and

details about the integration of the discontinuous elements, the crack propagation and the

algorithmic implementation are given. In the last sections numerical examples for two

and three dimensional crack propagation are presented and the chapter is closed with a

summary.
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5.2. Kinematics

In the following the kinematics for a continuous body in the geometrically nonlinear

setting are recapitulated. Afterwards the kinematic relations are extended for a body

crossed by a strong discontinuity.

5.2.1. Continuous kinematics

The basic kinematic variables which are necessary to describe the motion and deformation

of a homogeneous body are introduced. In accordance with the continuum theory we

consider a body as a composition of a set of particles. The placements of these particles

at an initial time t0 are specified by the position vectors X and define the reference

or material configuration B of the body. At a certain time t the current position of

the particles is described by the position vectors x and defines the spatial or current

configuration S.

We define a nonlinear deformation map ϕ, which describes the motion of the body. The

deformation map has to be unique, continuous and differentiable and maps the points X

in the material configuration to the places x in the spatial configuration

x = ϕ(X, t) with ϕ : B → S. (5.2.1)

In the same manner the inverse motion can be introduced, which reverses the deformation

map ϕ and thus maps the spatial to the reference configuration

X = Φ(x, t) with Φ : S → B, (5.2.2)

see figure 5.1. The deformation gradient F , which is a fundamental kinematical quan-

tity, is determined as the gradient of the deformation map with respect to the spatial

coordinates

F = ∇Xϕ(X, t) with F : TB → TS. (5.2.3)

Therefore F describes the linear tangent map from the material tangent space TB to

the spatial tangent space TS. The determinant of the deformation gradient is denoted

Jacobian

J = det(F ) > 0. (5.2.4)
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The condition J > 0 implies the physical meaning that the body can not penetrate itself

during the deformation. To ensure the existence of the inverse deformation gradient, F

must not be singular, i. e. the Jacobian is not equal zero. The inverse deformation

gradient is defined by means of the inverse deformation map as

F−1 = ∇xΦ(x, t) with F−1 : TS → TB. (5.2.5)

The deformation gradient presents a linear tangent map of a line element in the material

configuration dX ∈ TB to a line element in the spatial configuration dx ∈ TS

dx = F · dX. (5.2.6)

Furthermore the deformation gradient can be utilized for the transformation of area and

volume elements. The transformation of area elements is described by Nanson’s formula

da = J F−t · dA = cof (F ) · dA, (5.2.7)

whereby the cofactor of F denotes the product of the Jacobian and the transposed inverse

deformation gradient. The orientation of the area elements is specified by their normals

da = n da and dA = N dA. (5.2.8)

An infinitesimal volume element is transformed by means of the Jacobian

dv = J dV. (5.2.9)

To describe the deformation of the body typical strain measures are introduced, namely

the right and left Cauchy-Green strain tensors C and b

C = F t · F b = F · F t, (5.2.10)

which are symmetric and positive definite. Since the deformation gradient F can be

decomposed into pure stretch and pure rotation, F = R · U with Rt · R = I, it is

apparent that the left and right Cauchy-Green tensors contain no rotational contributions.

Hence a rigid body rotation is characterized by F = R and C = I.

As a further strain measure the change in the squared length of a line element is defined,

which leads to the specification of the Green-Lagrange strain tensor E and the Euler-

Almansi strain tensor e

E =
1

2
[F · F t − I] e =

1

2
[I − F−t · F−1]. (5.2.11)

Note that both strain measures are symmetric and vanish in the case that only rigid body

motions are present, i. e. E = 0 if C = I.

The introduced vector- and tensor-valued quantities are defined in the material or the
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spatial configuration, or can be associated with both configurations, as e. g. the deforma-

tion gradient. The transformation from the material to the spatial configuration and vice

versa are denoted by push-forward and pull-back operations. Thereby a multiplication

of the considered quantity with F , F t, F−1 or F−t is accomplished, whereby the par-

ticular procedure depends on the character of this quantity. A short overview of several

transformations can be found in [56], a more detailed description is given in [77].

5.2.2. Strong discontinuity kinematics

Now we refrain from the assumption that the deformation map is continuous in the whole

body and instead allow for the development of a strong discontinuity along certain internal

surfaces. One can imagine different situations where the usual assumption of continuity

of the deformation map is not valid anymore. If we consider a body with a macroscopic

crack, the opening of the crack can be described by means of a strong discontinuity, i. e.

a jump in the deformation map. Due to this discontinuity it is possible that two points

which are on each other in the reference configuration are mapped to different positions in

the spatial configuration, when the two crack surfaces are separated. Physical phenomena

which imply large strain gradients, like localization, can also be described by means of a

strong discontinuity, see for example [69], [84], [119].

We assume that the body B is divided by the internal discontinuity surface Γ into the

referential subdomains B+ and B−, as pictured in figure 5.2. We consider now a non-

linear, discontinuous deformation map ϕ, which carries the material configuration into

the spatial one. The points X+ located in B+ are mapped to the points x+ in S+ and

accordingly for the points X−. Consequently a point X̄, located on the discontinuity sur-

face Γ in the material configuration, is mapped onto two points x̄+ and x̄− in the spatial

configuration, due to the discontinuous character of the deformation map. Therefore we

obtain two discontinuity surfaces in the spatial configuration, denoted with γ+ and γ−.

To characterize the discontinuity surface we introduce its normal vector in the material

configuration N , pointing from B− to B+. The two different spatial normal vectors are

denoted with n+ and n− and oriented as given in figure 5.2.
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The deformation map is continuous in both parts of the body but discontinuous along Γ

and can therefore be expressed by two independent continuous parts

ϕ(X) =

{

ϕ+(X) with ϕ+ : B+ → S+

ϕ−(X) with ϕ− : B− → S−.
(5.2.12)

Then the jump in the deformation map can be defined as the difference of the maps at

the discontinuity surface

[[ϕ]] = ϕ+
|Γ

− ϕ−
|Γ
. (5.2.13)

As a consequence of the discontinuous deformation map, all related kinematic quantities,

which were introduced in subsection 5.2.1, are defined separately for the two subdomains.

The deformation gradient and the Jacobian are for example given as

F =

{

F + = ∇Xϕ+

F− = ∇Xϕ−
and J =

{

J+ = det(F +)

J− = det(F−)
. (5.2.14)

Note that in this way the deformation gradient is not defined along the discontinuity

surface itself.

Remark 5.2.1 The strong discontinuity kinematics can as well be described by means of

the Heaviside function to avoid the disjoint definitions for each part of the body. The

Heaviside function is defined as

HΓ(X) =







1 in B+

1
2 on Γ

0 in B−.

(5.2.15)

If we want to retain the definitions of ϕ+ and ϕ− we obtain

ϕ(X) = HΓ(X)ϕ+(X) + [1 −HΓ(X)] ϕ−(X), (5.2.16)

The deformation gradient is then obtained as

F = δΓ ϕ+ ⊗ N + HΓF + − δΓ ϕ− ⊗ N + [1 −HΓ] F−, (5.2.17)

which can be summarized in a more common way as

F = HΓF + + [1 −HΓ]F−

︸ ︷︷ ︸

F
b

+ δΓ [[ϕ]] ⊗ N
︸ ︷︷ ︸

F
u

. (5.2.18)

Thus the deformation gradient consists of a bounded part F b, defined by the deformation

gradients of the continuous fields ϕ+ and ϕ− and an unbounded part F u due to the
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discontinuity. The unbounded term results from the spatial derivative of the Heaviside

function. This is given in terms of the Dirac-delta function δΓ

∇XHΓ(X) = δΓ N , (5.2.19)

whereby δΓ has the properties

δΓ(X) =







∞ on Γ

0 else

with

∫

B

δΓ(X) f(X) dV =

∫

Γ

f(X) dA. (5.2.20)

5.2.3. Definition of the fictitious discontinuity surface

Due to the discontinuous deformation map ϕ, the unique discontinuity surface Γ in the

material configuration is mapped onto the surfaces γ+ and γ− in the spatial configuration.

In several works concerning strong discontinuities in the geometrically nonlinear setting

a simplifying assumption for the jump term is made. For example in the contributions

by Armero and Garikipati [5], Steinmann and Betsch [121] and Mosler [89], the jump is

assumed to be spatially constant. That results in the relation ∇X [[ϕ]] = 0, which leads

to an incompatibility. Since the jump is spatially constant the two discontinuity surfaces

γ+ and γ− remain parallel, at least locally, and a unique normal vector to the internal

surfaces is obtained.

In the present work we abolish the restriction on the jump term and allow for a spatially

varying jump with ∇X [[ϕ]] 6= 0. However, since we assume that tractions can be trans-

mitted along the internal discontinuity, we require a unique normal vector in order to

define a traction separation relation. It seems to be a reasonable choice to follow [101]
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and [131] and define a centered discontinuity surface γ̄, compare figure 5.3.

The averaged deformation map ϕ̄ is introduced, which maps a point X̄, located on Γ, to

the point x̄ on the center surface γ̄, whereby x̄ can be identified as

x̄ =
1

2
[x+ + x−]. (5.2.21)

The associated deformation map turns out to be the average of the deformation maps ϕ+

and ϕ−

ϕ̄ =
1

2
[ϕ+

|Γ
+ ϕ−

|Γ
] with ϕ̄ : Γ → γ̄ (5.2.22)
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and the related deformation gradient results as

F̄ =
1

2
[F +

|Γ
+ F−

|Γ
]. (5.2.23)

This averaged deformation gradient is only defined on the centered discontinuity surface,

its determinant is denoted by J̄ = det (F̄ ). The normal vector n̄, associated to γ̄ and

pointing from γ− to γ+, can be calculated from Nanson’s formula (5.2.7) as

n̄ dā = J̄ F̄
−t · N dA = cof(F̄ ) · N dA, (5.2.24)

applying the average deformation gradient and its determinant.

Remark 5.2.2 If we look at the definition of the bounded part of the discontinuous de-

formation gradient in (5.2.18) and evaluate the Heaviside function at Γ

F̄ =
1

2
F + + [1 − 1

2
]F− =

1

2
[F + + F−] (5.2.25)

the average deformation gradient is also obtained.

In contrast to the above introduced centered discontinuity surface, obtained by the av-

eraged deformation map, another definition of the discontinuity surface is imaginable.

Instead of starting with the definition of the position of a point located on γ̄, the ficti-

tious discontinuity surface is directly identified via the averaged normal vectors, weighted

with the incremental area measures, which leads to

n̄ dā =
1

2
[n+ da+ + n− da−] = {n da}. (5.2.26)

The particular spatial normal vectors are related to the material ones by Nanson’s formula

and therefore we obtain

n̄ dā = {J F−t} · N dA = {cof(F )} · N dA. (5.2.27)

One can state that by means of this new definition an averaged discontinuity surface is

introduced, whereby the averaging takes place with respect to the area and the orientation

of the two spatial discontinuity surfaces.

If one compares equations (5.2.24) and (5.2.27), the approaches seem to be equivalent if the

cofactor of the average deformation gradient F̄ is the same as the average of the cofactors

of the deformation gradients F + and F−. It can be shown that the two approaches

indeed coincide for two dimensional problems, where the discontinuity surface reduces to

a discontinuity line. But in the general three dimensional case arise differences.

However, if we consider cohesive cracks the definition of the fictitious discontinuity surface

does not draw much of a difference, since the cohesive tractions are only transmitted in

the process zone, where the opening of the crack surfaces is small. When the jump term

increases, such that the definition of the fictitious discontinuity surface would have an

influence, the tractions eventually vanish. Therefore the variation of the two approaches

will be negligible. Since the first one leads to a simpler derivation of the governing

equations it is used in the following.
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5.3. Variational formulation

5.3.1. Strong form of the boundary value problem

We recapitulate the boundary value problem of geometrically nonlinear continuum me-

chanics in the strong form and formulated in the reference configuration B. The boundary

∂B of the body B with the material outward normal vector N e is divided into disjoint

parts ∂B = ∂Bx ∪∂Bt with ∂Bx ∩∂Bt = ∅, where either Dirichlet or Neumann boundary

conditions are prescribed. To simplify matters we assume that there are no body forces

acting. The strong form of the boundary value problem is then given by the balance of

linear momentum and the boundary conditions in terms of the prescribed Piola tractions

T p and the prescribed deformation xp

−Div P = 0 in B+ ∪ B−

x = xp on ∂Bx

P · N e = T p on ∂Bt.

(5.3.1)

The Piola stress tensor is denoted with P . We assume that cohesive tractions, denoted

with T̄ in the material configuration, are transmitted along the discontinuity surface.

This leads to an additional equilibrium condition

P + · N = P− · N = T̄ on Γ (5.3.2)

at the internal boundary. The cohesive tractions will be constitutively prescribed.

5.3.2. Weak formulation in material configuration

As a prerequisite for a finite element formulation the nonlinear boundary value problem

has to be reformulated in a weak form. Thereby an additional contribution to the virtual

work expression has to be considered since the cohesive tractions are included. The

balance of linear momentum is weighted with a test function δϕ and after integration by

parts we obtain
∫

B+∪B−

δF : P dV +

∫

Γ+

δϕ+ ·P + ·N dA −
∫

Γ−

δϕ− ·P− ·N dA =

∫

∂Bt

δϕ · T p dA. (5.3.3)

The two parts of the body are considered separately at first, which leads to the additional

terms along the two sides or the discontinuity surface, Γ+ and Γ−. The different signs

result from the definition of the normal vector N , which points from B− to B+. The

boundary term can be summarized by means of a jump term
∫

Γ+

δϕ+ · P + · N dA −
∫

Γ−

δϕ− · P− · N dA =

∫

Γ

[[δϕ · P ]] · N dA (5.3.4)

63



“main” — 2006/3/15 — 19:54 — page 64 — #76

5. Mesh-independent modeling of strong discontinuities at finite strains

and rewritten by the relation for the jump of a product (A.3.2) as
∫

Γ

[[δϕ · P ]] · N dA =

∫

Γ

[[δϕ]] · {P } · N + {δϕ} · [[P ]] · N dA. (5.3.5)

We take into account traction continuity along Γ, that means [[P ]] · N = 0, and obtain

the resulting weak formulation in the reference configuration
∫

B+∪B−

δF : P dV +

∫

Γ

[[δϕ]] · T̄ dA =

∫

∂Bt

δϕ · T p dA. (5.3.6)

Remark 5.3.1 The variational formulation can also be obtained by the introduction of

the discontinuous kinematic quantities in the standard weak formulation
∫

B

δF : P dV =

∫

∂Bt

δϕ · T p dA. (5.3.7)

The variation of the discontinuous deformation gradient, expressed with the Heaviside

function, is calculated from equation (5.2.18)

δF = HΓδF + + [1 −HΓ] δF− + δΓ[[δϕ]] ⊗ N (5.3.8)

and inserted into the weak form 5.3.7
∫

B+∪B−

[HΓ δF + + [1 −HΓ] δF− + δΓ[[δϕ]] ⊗ N ] : P dV =

∫

∂Bt

δϕ · T p dA

⇒
∫

B+∪B−

δF : P dV +

∫

Γ

[[δϕ]] · T̄ dA =

∫

∂Bt

δϕ · T p dA,

(5.3.9)

whereby the equilibrium condition T̄ = P · N is adopted. Naturally the same weak

formulation is obtained.

5.3.3. Weak formulation in spatial configuration

To express the weak form of the governing equations in terms of the Cauchy stresses

and tractions, equation (5.3.6) is pushed forward to the current configuration. To carry

out the push forward of the particular terms the definition of the fictitious discontinuity

surface and the associated averaged deformation quantities have to be considered.

In order to accomplish the push forward of the weak form (5.3.6) we replace the Piola

stress tensor by the Cauchy stress tensor σ according to

P = J σ · F−t (5.3.10)

and apply the relation δF = ∇xδϕ · F . Since the deformation map is composed of

two continuous functions this procedure can be accomplished for both parts of the body.
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Introducing the spatial volume element dv = J dV and the spatial cohesive traction

vector t̄ = T̄ dA/da results in the weak formulation in the spatial configuration

∫

S+∪S−

∇xδϕ : σ dv +

∫

γ̄

[[δϕ]] · t̄ da =

∫

∂St

δϕ · tp da. (5.3.11)

The push forward of the cohesive traction vector results from the push forward of the

Cauchy stress tensor with the averaged deformation gradient and Nanson’s formula

T̄ dA = P · N dA = J̄ σ · F̄−t · N dA = σ̄ · n̄ da = t̄ da (5.3.12)

and reveals the equilibrium condition on the discontinuity surface in the spatial configu-

ration σ ·n̄ = t̄. The push forward of the prescribed tractions on the Neumann boundary

is accomplished in a similar manner.

If we introduce the following expressions for the particular parts of the virtual work

δWint =

∫

S+∪S−

∇xδϕ : σ dv, δWcoh =

∫

γ̄

[[δϕ]] · t̄ da, δWext =

∫

∂St

δϕ ·tp da (5.3.13)

we can rewrite equation (5.3.11) as

δWint + δWcoh = δWext. (5.3.14)

5.3.4. Linearization

In this section we consider the linearization of the weak governing equation. Thereby

linearizations are denoted by a prefixed ∆ and the partial derivative of ∗ with respect to

• is denoted by ∂ (∗)/∂ (•). The linearization of the internal virtual work δWint consists

of two contributions

∆δWint =

∫

S+∪S−

σ :
[
∇t

x∆ϕ · ∇xδϕ
]

dv +

∫

S+∪S−

∇xδϕ : e : ∇x∆ϕ dv, (5.3.15)

a material one due to the dependence of the stress tensor on the strain and a geometric

one due the dependence of the strain on the deformation. Thereby e denotes the elas-

tic tangent moduli. In what follows we shall assume that δWext be independent of the

deformation such that ∆δWext = 0. What remains is the linearization of the additional

contribution to the virtual work δWcoh. Therefore we follow the work of Gasser and

Holzapfel [42], who derived the linearization of the cohesive traction vector for different

enhanced assumed strain (EAS) approaches. The linearization of ∆δWcoh is here accom-

plished for traction separation laws where the traction vector depends on the jump and

on the normal vector of the discontinuity surface. In this case the linearization results in

three parts: a material one, due to the dependence of the traction vector on the jump in

the deformation map, and two geometrical ones, due to the change of the normal vector
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and the change of the area of the fictitious discontinuity surface, respectively. In case

that an isotropic traction separation relation for the Cauchy traction t̄ or in the material

setting for the Piola traction T̄ is applied, the linearization becomes simpler. Its discrete

version is given in section 5.5.3.

In the general case the linearization of δWcoh([[ϕ]], n̄) reads

∆δWcoh =

∫

γ̄

[[δϕ]] · ∂t̄

∂[[ϕ]]
· [[∆ϕ]] da +

∫

γ̄

[[δϕ]] · ∂t̄

∂n̄
· ∆n̄ da +

∫

γ̄

[[δϕ]] · t̄ ∆da. (5.3.16)

The Cauchy traction t̄ depends on the jump in the deformation map [[ϕ]] and when a

different material behavior for the opening and sliding direction is assumed also on the

change in the direction of the unit normal vector n̄. In the geometrically linear setting this

additional dependence on the normal vector is not included. The derivation of ∂ t̄/∂[[ϕ]]

depends on the chosen cohesive constitutive law. We denote the derivative of the tractions

with respect to the jump with Tϕ and the first term of equation (5.3.16) results in
∫

γ̄

[[δϕ]] · ∂t̄

∂[[ϕ]]
· [[∆ϕ]] da =

∫

γ̄

[[δϕ]] · Tϕ · [[∆ϕ]] da, (5.3.17)

The tangent operator Tϕ is specified for different cohesive traction separation relations in

section 5.4.2.

The second term of equation (5.3.16) contains the directional derivative of the traction

t̄ with respect to the unit normal vector n̄, which vanishes for the isotropic case. In

the same manner as above, we introduce the general tangent operator Tn = ∂t̄/∂n̄. To

complete the specification of the second term of equation (5.3.16), the linearization of

the normal vector ∆n̄, has to be calculated. The spatial unit normal of the fictitious

discontinuity surface n̄ can be described in terms of the push forward of the reference

unit normal scaled by its current length

n̄ =
n̄∗

|n̄∗| n̄∗ = N · F̄−1 |n̄∗| = [N · C̄−1 · N ]1/2. (5.3.18)

Firstly we will derive the directional derivative of n̄ with respect to F̄
−1

∂n̄

∂F̄
−1 = n̄ · F̄ ⊗ I − n̄ ⊗ n̄ · F̄ ⊗ n̄ =

1

|n̄∗| [N · I ⊗ I − n̄ ⊗ N ⊗ n̄]. (5.3.19)

This relation has to be completed by the linearization of the inverse deformation gra-

dient ∂F̄
−1

/∂F̄ = −F̄
−1⊗̄F̄

−t
, whereby the non-standard dyadic product ⊗̄ takes the

following component-wise representation {•⊗̄◦}ijkl = {•}ik ⊗ {◦}jl, and thus

∂n̄

∂F̄
= −n̄ · [I⊗̄F̄

−t
] + n̄ ⊗ n̄ ⊗ n̄ · F̄−t

=: G. (5.3.20)

Accordingly the linearization of the spatial unit normal can be expressed as

∆n̄ = G : ∆F̄ . (5.3.21)
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This leads to the summarized result of the linearization of the second term of equation

(5.3.16)
∫

γ̄

[[δϕ]] ·Tn · ∆n̄ da =

∫

γ̄

[[δϕ]] · Tn · G : ∆F̄ da. (5.3.22)

To proceed with the linearization, we rewrite the third term by means of equation (5.3.16)

by means of the area ratio K = da/dA
∫

¯̄gamma

[[δϕ]] · t ∆da =

∫

γ̄

[[δϕ]] · t 1

K
∆K da, (5.3.23)

whereby an expression for K can be found by applying Nanson’s formula

K = J̄
√

N · C̄−1 · N . The directional derivative of K can then be calculated as

∆K =
∂K

∂J̄

∂J̄

∂F̄
: ∆F̄ +

∂K

∂C̄
:
∂C̄

∂F̄
: ∆F̄ , (5.3.24)

whereby the first part is given by

∂K

∂J̄

∂J̄

∂F̄
: ∆F̄ =

K

J̄
J̄ F̄

−t
: ∆F̄ = K F̄

−t
: ∆F̄ . (5.3.25)

The calculation of the second part of equation (5.3.24)

∂K

∂C̄
= − J̄2

2 K
N · C̄−1 ⊗ C̄

−1 · N = −K

2
n̄ · F̄−t ⊗ F̄

−1 · n̄. (5.3.26)

in conjunction with ∂C̄/∂F̄ : ∆F̄ = ∆F̄
t · F̄ + F̄

t · ∆F̄ results in the following expres-

sion

∂K

∂F̄
: ∆F̄ = −Kn̄ · ∆F̄ · F̄−1 · n̄ (5.3.27)

which finally leads, completed with the result in (5.3.25) to the linearization of K

∆K = K [I − n̄ ⊗ n̄] · F̄−t
: ∆F̄ . (5.3.28)

and to the specification of the third term of equation (5.3.16)
∫

γ̄

[[δϕ]] · t ∆da =

∫

γ̄

[[δϕ]] · t [I − n̄ ⊗ n̄] · F̄−t
: ∆F̄ da. (5.3.29)

To finish the linearization of δWcoh we specify the linearization of the jump in the deforma-

tion map [[∆ϕ]], which appears in equation (5.3.17), and the linearization of the averaged

deformation gradient ∆F̄ , which can be found in (5.3.22) and (5.3.29). Therefore we

recall the definitions of both terms, (5.2.13) and (5.2.23), and obtain

[[∆ϕ]] = [∆ϕ+ − ∆ϕ−]

∆F̄ = 1
2

[
∆F + + ∆F−

]
= 1

2

[
∇X∆ϕ+ + ∇X∆ϕ−

]
,

(5.3.30)
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which finally completes the linearization on δWcoh.

It is notable that the accomplished linearization is generally valid for different transversely

isotrop traction separation laws, which are formulated in the Cauchy tractions. The

tangent moduli Tϕ and Tn have to be recomputed when introducing a different cohesive

constitutive law.

5.4. Constitutive equations

In the following section the constitutive laws, which determine the material response, are

specified. In general the constitutive equation defines the stress state at any point x,

depending on other field variables, e. g. the strain. In the present work the phenomeno-

logical approach is used, whereby the macroscopic behavior of a material is described

without any information about the related microstructure.

We consider problems with a strong discontinuity and imply the existence of an addi-

tional cohesive traction vector at the discontinuity surface. In the literature two different

procedures for the development of the traction separation relation can be found. Simo

et al. [114], Armero and Garikipati [5] and Steinmann and Betsch [119], among others,

derive the traction separation relation as the projection of the material behavior of the

bulk material onto the discontinuity. This procedure is mainly applied for the modeling

of strain localization within the plasticity or damage theory. Traction separation relations

for multiplicative finite strain plasticity are derived in [5] and [121]. The projection of a

continuum damage model onto the discontinuity is accomplished in [96] and [67].

In the present approach a different assumption is made. The traction separation relation

is not associated to the constitutive relation for the Piola stress P , that means that the

material behavior of the interface is independent of the material behavior of the surround-

ing domain. This approach is also adopted by e. g. Miehe and Schröder [84] or Armero [4]

for localization in elastoplastic solids and by Jirásek within the framework of the damage

theory [61], [62]. This concept can be related to the cohesive crack concept, which is based

on the work of Dugdale [34] and Barenblatt [10]. This approach does not presuppose a

particular type of constitutive behavior in the bulk. Therefore it is possible to restrict all

dissipative mechanisms to the traction separation law and assume elastic behavior in the

bulk.

In the following two independent constitutive equations will be formulated, one for the

bulk and one for the cohesive surface.

5.4.1. Hyperelasticity

The material behavior of the bulk is assumed to be hyperelastic, which is sufficient for

many materials, sustaining large deformation. In the geometrically linear case the equa-
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tions reduce to linear elasticity.

The existence of a free energy Ψ per unit reference volume is required, which is commonly

called the strain energy function. In the case of perfectly elastic materials, which are

considered here, the internal dissipation is equal to zero [126] and the definition of the

Piola stress P follows directly from the second law of thermodynamics as

P =
∂Ψ(F )

∂F
. (5.4.1)

The symmetric Cauchy stress tensor can then be calculated by means of a push forward

as

σ = J−1 ∂Ψ(F )

∂F
· F t. (5.4.2)

The strain energy function has to fulfill some physically motivated conditions. The nor-

malization condition states that the strain energy function vanishes in the reference config-

uration Ψ(I) = 0 and increases with deformation Ψ(F ) ≥ 0. This leads to a stress-free

reference configuration. Furthermore the growth condition implies that Ψ tends to infinity

if the Jacobian comes close to zero or infinity. This has the physical interpretation that

one needs infinite energy to compress or expand a body to zero or infinite volume.

We restrict ourselves to isotropic material behavior in the bulk, which means that the

material response is the same for different directions of loading. Furthermore we assume

that the material is compressible, therefore the volume can change during deformation

and the only restriction to the Jacobian is J > 0 (instead of the restriction J = 1 in the

incompressible case).

We choose a Neo-Hookean strain energy function, which is often used in the literature, e.

g. [19]. The strain energy function is given by

Ψ =
µ

2

[
[F · F t] : I − ndim

]
− µ ln (J) +

λ

2
ln2 (J), (5.4.3)

whereby µ and λ are the Lamé parameters and ndim denotes the dimension. Using equa-

tion (5.4.1), the derivative of the strain energy function with respect to the deformation

gradient leads to the Piola stress

P = [λ ln (J) − µ ] F−t + µ F . (5.4.4)

And the application of the push-forward operation (5.4.2)

σ = J−1 [λ ln (J) − µ ] I + J−1 µ b (5.4.5)

leads to the definition of the Cauchy stress.
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5.4.2. Cohesive constitutive law

In the first part of this subsection a transversely isotropic traction separation relation

for the Cauchy traction t̄ is postulated. To simplify matters the cohesive traction sepa-

ration relation, which was introduced in section 3.4.2, is transfered to the geometrically

nonlinear setting. In the second part of the subsection a thermomechanically consistent

determination of a traction separation relation for the Piola tractions T̄ is derived.

The transversely isotropic cohesive constitutive law relates the traction vector t̄ = σ · n̄
along the discontinuity surface with the jump in the deformation map [[ϕ]]. We assume

that softening phenomena occur along the discontinuity and that the cohesive behavior is

different for opening and sliding. In the direction normal to the interface exponential soft-

ening is assumed and a constant stiffness is supposed in tangential direction. Therefore a

cohesive constitutive law can be postulated as

t̄n = ft exp

(

− ft

Gf
[[ϕn]]

)

n̄

t̄m = d [[ϕm]]

t̄ = t̄n + t̄m.

(5.4.6)

The tensile strength is denoted by ft, the fracture energy by Gf and the shear stiffness

by d. The normal and tangential gaps in the deformation map can be obtained by

[[ϕn]] = [[ϕn]] n̄ with [[ϕn]] = [[ϕ]] · n̄ and [[ϕm]] = [[ϕ]] − [[ϕn]] n̄. (5.4.7)

Since this traction separation relation depends on the normal vector n̄ we need to specify

the linearizations of t̄ with respect to [[ϕ]] and n̄. We can specify ∂t̄/∂[[ϕ]] as

∂t̄

∂[[ϕ]]
=

∂t̄

∂[[ϕn]]
· [n̄ ⊗ n̄] +

∂t̄

∂[[ϕm]]
· [I − n̄ ⊗ n̄] =: Tϕ. (5.4.8)

Considering the exponential softening law (5.4.6), the tangent moduli ∂ t̄/∂[[ϕn]] and

∂t̄/∂[[ϕm]] can be derived as

∂t̄

∂[[ϕn]]
= − f 2

t

Gf
exp

(

− ft

Gf
[[ϕn]] · n̄

)

n̄ ⊗ n̄ and
∂t̄

∂[[ϕm]]
= d I. (5.4.9)

To derive the linearization with respect to n̄ we decompose the derivative in a normal

and a tangential attribution

∂t̄

∂n̄
=

∂t̄

∂[[ϕn]]
· [n̄ ⊗ [[ϕ]] + [[[ϕ]] · n̄] I] − ∂t̄

∂[[ϕm]]
· [n̄ ⊗ [[ϕ]] + [[[ϕ]] · n̄] I] =: Tn. (5.4.10)

Then we can introduce the already computed tangent moduli for the exponential softening

law (5.4.9). This particular format of the cohesive constitutive law is chosen because of
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its simplicity with respect to the implementation and adopted in most of the examples.

In the following a thermomechanically consistent traction separation relation is derived

in terms of the Piola tractions T̄ . The starting point is the definition of the deformation

power of a body containing a cohesive surface. It extends the conventional deformation

power identity by an additional term depending on the cohesive tractions [101]

P =

∫

B+∪B−

P : Ḟ dV +

∫

Γ

T̄ · [[ϕ̇]] dA. (5.4.11)

Obviously the Piola tractions T̄ and the jump in the deformation map [[ϕ]] are work con-

jugated with respect to the the undeformed volume. Therefore the opening displacements

[[ϕ]] act as a deformation measure, T̄ being the conjugated stress measure.

Remark 5.4.1 The extended deformation power identity can also be obtained by the in-

troduction of the material velocity gradient Ḟ , calculated by means of equation (5.2.18)

Ḟ = HΓḞ
+

+ [1 −HΓ] Ḟ
−

+ δΓ[[ϕ̇]] ⊗ N (5.4.12)

into the conventional deformation power identity
∫

B

P : Ḟ dA =

∫

B+∪B−

P : Ḟ dV +

∫

B

δΓP · [[ϕ̇]] ⊗ N dV

=

∫

B+∪B−

P : Ḟ dV +

∫

Γ

T̄ · [[ϕ̇]] dA.
(5.4.13)

Expressing the deformation power in the spatial configuration, using the push forward of

the Piola stress (5.4.2) and Nanson‘s formula (5.2.24), leads to

P =

∫

B+∪B−

σ : d dv +

∫

γ

t̄ · [[ϕ̇]] da, (5.4.14)

in terms of the Cauchy stress tensor and the Cauchy traction vector. The rate of the defor-

mation tensor d denotes the symmetric part of the spatial velocity gradient l = Ḟ · F−1.

The Cauchy traction vector t̄ and the jump in the deformation map [[ϕ]] are therefore

work conjugated with respect to the deformed volume. The deformation measure [[ϕ]]

vanishes identically if the body undergoes rigid body motions.

We consider isotropic cohesive material behavior. As a starting point we postulate the

existence of a cohesive free energy density per unit undeformed area of the form

Ψ̄ = Ψ̄([[ϕ]]). (5.4.15)

The time derivative of the cohesive potential is determined as

˙̄Ψ =
∂Ψ̄

∂[[ϕ]]
· [[ϕ̇]]. (5.4.16)
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By recourse to Coleman and Noll’s method and with the equations (5.4.11) and (5.4.16)

the cohesive traction separation law takes the format

T̄ =
∂Ψ̄

∂[[ϕ]]
. (5.4.17)

To specify the introduced cohesive material behavior we assume an exponential softening

of the interface. The cohesive energy density is particularized as

Ψ̄([[ϕ]]) =
α

β
[1 − exp (−β |[[ϕ]]|)] (5.4.18)

whereby α and β denote some scalar valued positive material parameters. The traction

vector results from equation (5.4.17) as

T̄ =
∂Ψ̄

∂[[ϕ]]
= α exp (−β |[[ϕ]]|) [[ϕ]]

|[[ϕ]]| (5.4.19)

whereby the traction vector has the same direction as the jump in the deformation map.

The presented cohesive constitutive law is isotropic and therefore no additional depen-

dence on the normal vector has to be regarded. The linearization of the traction vector

is only composed of the tangent Tϕ = ∂T̄ /∂[[ϕ]]

Tϕ = −α β exp (−β |[[ϕ]]|)ν ⊗ ν +
α

|[[ϕ]]| exp (−β |[[ϕ]]|) [I − ν ⊗ ν], (5.4.20)

with ν = [[ϕ]]/|[[ϕ]]|. In figure 5.4 the direction of the traction vector and the exponential

softening is indicated. By means of the figure and equation (5.4.19) it can be verified that

the material parameter α can be identified as the tensile strength and the ratio α/β as

the fracture energy.
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Figure 5.4.: Traction separation relation, exponential softening

Remark 5.4.2 This cohesive constitutive law is especially useful for the adaptive intro-

duction of cohesive zones within finite elements, since it belongs to the group of initially

rigid cohesive laws. The jump is enforced to be zero until the tractions across the inter-

face reach a critical value. The resulting infinite stiffness may lead to problems regarding

the convergence behavior. This is circumvented by numerical perturbation of the initial

opening displacement |[[ϕ]]| with a small value.
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Remark 5.4.3 In order to avoid penetration of the surfaces a penalty method is adopted.

Therefore a high compressive force is applied if the normal jump [[ϕ]] · n̄ becomes negative.

With this penalty constraint the isotropic formulation becomes anisotropic for [[ϕ]]· n̄ < 0.

In the previous part an isotropic traction separation relation was derived from a cohe-

sive potential for the interface. If we refrain from the restriction of isotropic material

behavior, an additional dependence of the traction vector on the normal vector n̄ to the

discontinuity surface can be considered. This is an important difference between the geo-

metrically linear and nonlinear case, since the normal vector depends on the deformation

in the nonlinear setting. In several publications this transversely isotropic behavior is

taken into account, e. g. in [101], [131], [43] and [82]. But due to this dependence of

the traction vector on a certain direction, unsymmetric formulations are derived. This

conflicts with the assumption that the traction separation law can be obtained from a

cohesive potential. A variation of the normal vector at a constant jump must not entail

a variation of the deformation power (5.4.11). But if we define a cohesive energy with an

additional dependence on the normal vector exactly this is the case.

In the work of Steinmann and Häsner [120] material interfaces with their own free energy

function are regarded. Thereby an additional dependence of the interface free energy

on the surface Cauchy-Green deformation tensor is taken into account, which was also

considered in [101]. The surface Cauchy-Green deformation tensor is given in terms of

the surface gradient of the deformation map

CΓ = ∇Γϕ̄t · ∇Γϕ̄. (5.4.21)

The conjugated quantity to the surface deformation is an interface stress field, which

does not possess any normal parts. But the additional dependence of Ψ̄ on CΓ does not

describe the directional dependence of t̄. On the one hand, the surface Cauchy-Green

deformation tensor can not describe the rotation of the normal vector, only the surface

stretch, and on the other hand a stretch of the crack surfaces should not lead to a change

of the cohesive tractions.

These comments lead to the conclusion that the determination of a traction separation law

from a cohesive potential is restricted to isotropic formulations in the geometrically non-

linear setting. To clarify this conclusion, the Clausius-Duhem inequality for an anisotropic

elastic traction separation law is derived. Let the cohesive energy depend on the jump

[[ϕ]] and on the normal vector n̄

Ψ̄ = Ψ̄([[ϕ]], n̄). (5.4.22)

Then the time derivative of the cohesive free energy implies contributions due to a varia-

tion of the normal vector

˙̄Ψ =
∂Ψ̄

∂[[ϕ]]
· [[ϕ̇]] +

∂Ψ̄

∂n̄
· ˙̄n. (5.4.23)
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With the interface part of the deformation power identity (5.4.11) the Clausius-Duhem

inequality of the interface reads

D̄ = T̄ · [[ϕ̇]] − ∂Ψ̄

∂[[ϕ]]
· [[ϕ̇]] − ∂Ψ̄

∂n̄
· ˙̄n ≥ 0. (5.4.24)

For elastic material behavior, the dissipation has to be zero. With the definition of the

traction separation law T̄ = ∂Ψ/∂[[ϕ]] and the assumption that the normal vector can

change ˙̄n 6= 0, the equation can only be satisfied if ∂Ψ/∂n̄ = 0. This corresponds to an

isotropic material behavior.

5.5. Discretization and linearization

The variational formulation (5.3.11) is discretized by means of the finite element method.

For literature for the finite element method in the geometrically nonlinear setting we refer

to the textbooks of Bonet and Wood [19] and Wriggers [135].

In the present approach the discontinuity can arbitrarily intersect elements and is therefore

independent of the discretization. To allow for the discontinuity within certain elements

the same discontinuous elements as in chapter 3.5 are applied and the approach is extended

to the three dimensional case.

5.5.1. Formulation of a discontinuous element

The formulation of the discontinuous elements is described in detail in section 3.5.1 and

only the main ideas are summarized here. If an element is splitted, additional degrees of

freedom are introduced at the existing nodes. It is checked if the degrees of freedom were

already introduced by a former element split, then no new ones have to be introduced,

but only the element connectivity has to be changed. The introduction of the new degrees

of freedom leads in a way to the doubling of the splitted elements. A new set of basis

function is proposed, which is zero in one part of the element and equal to the standard

basis functions in the other part. The construction of the discontinuous elements is similar

for different types of elements of higher order or dimension. According to the geometrically

linear case the additional degrees of freedom are global. Therefore the overall number of

degrees of freedom changes during the simulation of crack propagation.

5.5.2. Discrete weak formulation

For the spatial discretization of the weak formulation we resort to the isoparametric

concept. The domain S is divided into nel elements Se. The geometry is described

by means of shape functions N i and the node point coordinates X i in the material
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configuration

S =

nel⋃

e

Se X|Se
=

nen∑

i=1

N i X i. (5.5.1)

The deformation map ϕ and the test function δϕ are approximated with the same shape

functions

ϕ|Se
=

nen∑

i=1

N i ϕi δϕ|Se
=

nen∑

i=1

N i δϕi (5.5.2)

and the approximation of their gradients with respect to the reference coordinates results

as

∇Xϕ|Se
=

nen∑

i=1

ϕi ⊗∇XN i δF |Se
=

nen∑

i=1

δϕi ⊗∇XN i. (5.5.3)

It is emphasized that in contrast to the extended finite element method the jump is

not an explicit variable and its discretization arises automatically from the independent

approximation of the two deformation maps

[[ϕ]]|Γ =
n+

en∑

i=1

N i|Γ ϕ+
i −

n−

en∑

i=1

N i|Γ ϕ−
i =

nen+n∗

en∑

p=1

Jp ϕp

[[δϕ]]|Γ =
n+

en∑

i=1

N i|Γ δϕ+
i −

n−

en∑

i=1

N i|Γ δϕ−
i =

nen+n∗

en∑

p=1

Jp δϕp.

(5.5.4)

Thereby ϕ+
i and ϕ−

i denote the nodal deformation map at the element nodes n+
en and

n−
en. The newly introduced set J comprises the shape functions, evaluated at Γ, and the

corresponding algebraic sign, such that the jump terms are obtained. Furthermore the

discretization of the average deformation gradient (5.2.23) will be expressed as

F̄ |Γ =
1

2





n+
en∑

i=1

ϕ+
i ⊗∇XN i|Γ +

n−

en∑

i=1

ϕ−
i ⊗∇XN i

Γ



 =

nen+n∗

en∑

p=1

ϕp ⊗ Lp. (5.5.5)

The set L contains the gradients of the shape function, evaluated at Γ, and the factor

0.5.

The discretization of the weak formulation leads to the discrete algorithmic balance of

momentum in terms of the vector-valued residual

RI(ϕ) = Rint
I + Rcoh

I − Rext
I = 0 (5.5.6)

The discretization of the weak form in the spatial configuration (5.3.11) results in the

following particular parts of RI

Rint
I =

nel

A
e=1

∫

Se∪S
+,−

d

∇xN i · σ dv, Rcoh
I =

nel

A
e=1

∫

γ̄e

J i t̄([[ϕ]]) da, Rext
I =

nel

A
e=1

∫

∂Ste

N i tp da.
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(5.5.7)

The discretization of the weak form in the material configuration (5.3.6) results in the

equivalent discrete formulation

Rint
I =

nel

A
e=1

∫

Be∪B
+,−

d

∇XN i · P dV, Rcoh
I =

nel

A
e=1

∫

Γe

J i T̄ ([[ϕ]]) dA, Rext
I =

nel

A
e=1

∫

∂Bte

N i T p dA.

(5.5.8)

Herein the operator

nel

A
e=1

denotes the assembly of all element contributions at the element

nodes, including the newly introduced ones, i = 1, nen +n∗
en, to the overall residual at the

global node points I = 1, nnp + n∗
np.

5.5.3. Linearized discrete weak formulation

Equation (5.5.6) represents the governing system of equations. Due to the geometrically

nonlinear setting, the nonlinear constitutive law and the changing geometry, the system of

equations has to be solved iteratively. A Newton-Raphson scheme is applied and therefore

the linearization of equation (5.5.6) is performed

Rk+1
I = Rk

I + dRI = 0 with dRI =

nnp+n∗

np∑

L=1

KIL dϕL. (5.5.9)

The global tangent stiffness matrix KIJ contains parts due to the linearization of the

internal virtual work and of the additional virtual work contribution due to the cohesive

tractions at the internal boundary. We recall the linearized continuous equations (5.3.15)

and (5.3.16), introduce the discrete quantities and obtain the tangential stiffness matrices

Kint
IJ =

nel

A
e=1

∫

Se∪S
+,−

d

∇xN i · e · ∇xN j dv +

∫

Se∪S
+,−

d

∇xN i · σ · ∇xN j I dv

Kcoh
IJ =

nel

A
e=1

∫

γ̄e

J i
Tϕ J j da +

∫

γ̄e

J i
Tn · G · Lj da +

∫

γ̄e

J i t̄
[
A · Lj

]
da.

(5.5.10)

The tangents Tϕ and Tn contain the directional derivative of the cohesive traction t̄ with

respect to the jump [[ϕ]] and the normal vector n̄, respectively, compare equations (5.4.8)

and (5.4.10). The third-order tensor G is given in equation (5.3.20), and the second-

order tensor A summarizes the expression, which can be found in equation (5.3.28),

A = [I − n̄ ⊗ n̄] · F̄−t
.

In Kint the material and geometric contributions of the element stiffness matrices are

given. To simplify the notation the contributions of the unsplitted and of the two parts
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of the splitted elements are summarized. The general structure of their element stiffness

matrices is identical, unless, if an intersected element is considered, the usual shape func-

tions N i have to be replaced by the discontinuous ones N̄ i, which become zero in the non

considered part of the element.

The first term of the additional part of the tangent stiffness matrix Kcoh can be identified

as the material part of the linearization of the cohesive traction term. It is identical with

the one which is obtained in the geometrically linear case, compare [81] or [130]. The

last two terms contain the geometric parts of the linearization, which are constituted by

the change of the normal vector and of the area of the internal boundary. Due to these

geometric parts of the linearization of the cohesive traction the tangent stiffness matrix

loses its symmetry.

When the isotropic traction separation relation for the Piola traction vector (5.4.19) is

used, it is advantageous to formulate the tangent stiffness matrix in the material config-

uration. This results in the simpler format

Kint
IJ =

nel

A
e=1

∫

Be∪B
+,−

d

∇XN i · A · ∇XN j dV

Kcoh
IJ =

nel

A
e=1

∫

Γe

J i
Tϕ J j dA

(5.5.11)

whereby A denotes the second derivative of the strain energy density with respect to the

deformation gradient A = ∂2Ψ/∂F 2. Obviously the formulation is symmetric.

5.6. Implementation

The approach in the geometrically nonlinear setting is implemented for two and three di-

mensional problems. The implementation in two dimensions resembles the one described

in section 3.6. The consideration of three dimensional problems leads to a more compli-

cated implementation procedure, since especially the geometry of three dimensional crack

modeling is more involved. The ideas about the handling of the complex geometry data,

the geometrical representation of the crack path and the crack propagation procedure

are mainly adopted from Sukumar et al. [125], Gasser and Holzapfel [43] and Areias and

Belytschko [2].

For simplicity the method is implemented using linear tetrahedral elements, the discon-

tinuity surface is flat within an element and intersects always the whole element. In the

following details about the implementation in three dimensions are provided. Firstly the

splitting of the intersected elements will be described. In the same manner as in the two

dimensional case, the integration of the discontinuous elements requires special attention.
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The geometrical representation of the crack path is considered, which is more involved as

in two dimensions, since the crack-tip is not longer represented by a point but by a line.

5.6.1. Splitting of elements

The split of a tetrahedral linear element can produce two different combinations of subele-

ments, provided that the surface is flat. If the intersection plane cuts three edges of the

element, such that the element interface becomes triangular, a tetrahedral part and a

polyhedral part with two triangular and three quadrilateral faces are generated, which is

plotted in figure 5.5. For the integration the last-mentioned part can be further subdivided

into three tetrahedrons. It is also possible that the discontinuity surface intersects four

edges of the element, which leads to a quadrilateral interface and is illustrated in figure

5.5. Then the resulting subelements are both polyhedrons consisting of two triangular

and three quadrilateral faces.

The geometry of the splitted elements can be simply represented by the intersection points

in the reference configuration. These points as well as the geometry and volume of the

subelements in the reference configuration do not change throughout a simulation and

have two be calculated only once, when the discontinuity is introduced, and can be stored

for the following load steps.
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Figure 5.5.: Splitting of a tetrahedral element

5.6.2. Numerical integration

As already stated and similar to the two dimensional case a modified integration scheme

is adopted for the intersected elements, since in general two different functions have to

be integrated over the two particular elements parts. Depending on the splitting of the

element it can be subdivided into four or six tetrahedral subdomains. This additional

partitioning is applied in order to use the same central Gauss integration for each tetra-

hedral subdomain. The subdivision does not involve the introduction of new degrees of

freedom, it is only performed to simplify the numerical integration.

When an element is intersected, firstly the coordinates of the intersection points are de-

termined in global coordinates X and in the local coordinate system ξ. The coordinate
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transformation from the global to the local coordinates is described by the Jacobian J̆ .

The computation of the local coordinates of the intersection points requires a loop over

the element edges, but it has to be carried out only once and only for the intersected

elements. With the knowledge of the intersection points, the element is subdivided into

four or six subtetrahedrons, their vertices expressed in the local coordinates of either the

intersection points or the vertices of the parent tetrahedron.

Within each subdomain the coordinates of the Gauss point are calculated, which is simply

done by the multiplication of the shape functions evaluated at the usual Gauss point posi-

tion (which is in our case for central Gauss integration in a linear tetrahedron ξ1,2,3 = 0.25)

with the vertex coordinates of the subelements. By means of an additional coordinate

transformation with the Jacobian J̃ from the local coordinates of the subelements η,
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Figure 5.6.: Local coordinates of the subdivided element

which are indicated in figure 5.6, to the local coordinates of the parent tetrahedron, the

integration can be accomplished over the subelements. Exemplarily the integration of

a function g(X), which exhibits a discontinuity along Γe, over an element Bd, can be

expressed as
∫

Bd

g(X) dV =

∫

B+

d

g+(X) dV +

∫

B−

d

g−(X) dV

=

n+
gp∑

i=1

g+(ξi) detJ̆(ξi) detJ̃(ξi) αi +

n−

gp∑

j=1

g−(ξi) detJ̆(ξj) detJ̃(ξj) αj,

(5.6.1)

whereby n+,−
ng is the number of Gauss points in each part of the splitted element, which

here coincides with the number of subtetrahedrons. The Gauss point coordinates are

denoted with ξi and the associated weighting factors with αi.

In addition to the described volume integration the integration of the contributions due

to the cohesive tractions has to be accomplished over the intersection plane. This leads
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to the evaluation of a surface integral. The surface is either quadrilateral or triangular.

Since we assume that the crack surface is flat and intersects the whole element, we can

apply two dimensional numerical integration. An additional coordinate transformation

from the global coordinates X to the local ones ζ → {ζ1, ζ2} of the intersection surface

is introduced. Since the dimension of ζ is one less than the dimension of the global

coordinates, the procedure is similar to the integration of an external surface loading. An

incremental line element can be expressed in the local coordinates as

dX = Ĵ · dζ =










∂X1

∂ζ1

∂X1

∂ζ2
∂X2

∂ζ1

∂X2

∂ζ2
∂X3

∂ζ1

∂X3

∂ζ2










·






ζ1

ζ2




 (5.6.2)

whereby the Jacobian Ĵ contains the partial derivatives of the global with respect to the

local coordinates. Note that Ĵ is not square. An incremental area element can then be

calculated as the norm of the cross product of two incremental line elements

dA =

∣
∣
∣
∣
∣
∣
∣






Ĵ11

Ĵ21

Ĵ31




 ×






Ĵ12

Ĵ22

Ĵ32






∣
∣
∣
∣
∣
∣
∣

dζ1 dζ2 (5.6.3)

The surface integration can be accomplished as in usual triangular or quadrilateral two

dimensional elements, whereby the vertices are represented by the points of intersection.

For the integration over the triangular surfaces three Gauss points are introduced and

four Gauss points are used for the integration over a quadrilateral section plane.

5.6.3. Crack propagation and crack path representation

One major constraint in the present formulation in three dimensions is that the crack

geometry is restricted to planar cracks, which means that the normal vector to the crack

plane is identical in each element (in the reference configuration). This is not a general

limitation of the element formulation but an assumption that is made to simplify the

geometrical representation of the crack surface and the crack propagation. In the special

case of planar crack propagation, crack path continuity is automatically ensured in three

dimensions. If non-planar crack growth is considered the crack path becomes either dis-

continuous as in [43], or the normal vector of the crack surface in one element has to be

influenced by the neighboring ones to ensure crack path continuity [2]. The crack plane

is sufficiently defined by its normal vector and one point, which is in the in section plane.

But in three dimensions the crack surface composes an intersection line with the faces of

the splitted element, which usually does not go with the normal vector. However, when

the crack surface is plane, these additional difficulties would not exist, since the normal
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vectors of two neighboring elements are equal and therefore the intersection line with the

crack surface of the two elements is equal.

The direction of crack propagation is predetermined but nevertheless a failure criterion

has to be defined to decide whether the crack propagates or not. A criterion of Rankine

type is used. If the principal stress in the elements ahead of the crack-tip exceeds the

tensile strength of the material the discontinuity is elongated.

The crack surface is represented by means of the triangular and quadrilateral intersec-

tion planes, each described by a point, lying on the surface, and the normal vector. The

elements, which possess a neighboring element, that is not cracked, belong to the crack-

tip elements. And in particular the faces of splitted elements, connected to unsplitted

elements, constitute the set of crack-tip faces. The failure criterion is checked for all

elements that border a crack-tip face. If the failure criterion is met, the set of splitted

elements, of the crack-tip elements and of the crack-tip faces has to be updated. Further-

more the new degrees of freedom have to be introduced. The load step is recalculated with

the modified geometry and the crack criterion is controlled for the new set of elements

next to the crack-tip faces. The procedure is repeated until no further element failure is

observed.

5.6.4. Algorithmic implementation

The decisive differences of the present approach to a usual finite element code, concerning

the implementation, is the introduction of the discontinuous elements. This modification

can be easily realized. Since the discontinuous elements consist in a way of two continuous

ones with a modified integration region, the element routine has to be altered only little.

The shape functions and the number of degrees of freedom for each part of the discon-

tinuous element are as usual. The geometry of the element parts and the subdivision

of the elements is stored once and then used for the evaluation of the element residual

and its derivative. The implementation of the discontinuous elements further requires a

routine to store the cracked elements and to decide whether the usual element routine or

the ’discontinuous element’ routine is called. In the considered case of cohesive cracks, an

additional subroutine for the calculation of the surface tractions is required.

The implementation of the crack propagation entails additional post-processing steps,

including the introduction of the new degrees of freedom and the determination of the

geometry of the splitted elements. As already mentioned, the discontinuity is elongated

if the elements next to the crack tip faces satisfy the failure criterion. When an element

cracks, firstly the degrees of freedom are updated, in consideration of the constraint at

the crack tip. Then the different sets, containing the cracked elements and the crack-tip

elements, are changed. For each splitted element the intersection points and the geometry

of the element parts are stored since they do not change during the simulation. To decide
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which elements are connected to the crack tip faces not only the usual element connec-

tivity has to provided but also the face connectivity. This can be calculated once in

the beginning of the simulation and is not changed. The general steps of the numerical

implementation for one load step are summarized in following table.

repeat

global Newton iteration

loop over unsplitted elements Be

calculation of element residua Rint
e and their derivatives K int

e

loop over splitted elements Bd

readout intersection points and geometry

loop over the subdomains

calculation of the contributions of the subdomains to the element residua

and their derivatives

assembly of Rint
d and Kint

d

calculation of the surface contributions Rcoh
e and Kcoh

e

assembly of global residual R and tangent stiffness K

solution of equilibrium equation, calculation of nodal deformation map ϕ

calculation of Cauchy stresses σ

control crack criterion for the elements next to the crack tip faces

if σ1 > ft introduction of new degrees of freedom

update of the set of the cracked elements and the crack-tip faces

determine intersection points and geometry of splitted element

until crack geometry is stable, σ1 < ft

5.7. Numerical examples

In this section numerical examples are presented to demonstrate the applicability of the

approach. The first two examples deal with two dimensional crack propagation. Thereby

the presented method is implemented, using linear triangular elements. The primary aim
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of the examples is to show the capability of the proposed strategy to simulate propagating

discontinuities independently of the discretization. Therefore the computation of the

two examples is carried out with varying discretizations, considering structured as well

as unstructured meshes. The deformation of the structures as well as overall load

displacement answers are compared for the different meshes. Another purpose of the

examples is to verify the accomplished linearization of the cohesive traction. Therefore

the transversely isotropic traction separation law (5.4.6) is applied. The second example

is unsymmetric, which leads to rotations of the discontinuity surface.

The last two examples consider three dimensional crack propagation. The first example

deals with a rectangular block under tension and is mainly used to check the implementa-

tion of the method. The example is calculated with three different discretizations. In the

second example the three dimensional version of the symmetric peel test is calculated.

The results for different meshes are compared to analyze the convergence of the method.

5.7.1. Two dimensional crack propagation

Symmetric peel test

In the first example a symmetric peel test is considered. A cantilever beam is loaded by

prescribed displacements, the geometry and the loading conditions are depicted in figure

5.7. The discontinuity is initiated in the middle of the beam and propagates along a

straight line during additional loading. The computation is carried out with two different

discretizations, a structured mesh with 500 elements and an unstructured mesh with 520
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Figure 5.7.: Geometry and loading conditions, symmetric peel test

elements. The material parameters are chosen as λ = 2778, µ = 4167, ft = 200 and the

tangential stiffness d is set to zero. The fracture energy is equal to Gf = 100.

Due to the symmetry of the example, the fictitious discontinuity surface, which is located

in the middle of the two crack surfaces, does not change its orientation during the de-

lamination process. Therefore this example can not be used to check the the geometric

contributions of the linearization of the cohesive tractions, but to examine the influence

of the different discretizations. We apply the prescribed displacement in constant incre-

ments of 0.04. After each load step the stress state in the element ahead of the crack

tip is compared with the tensile strength. If the tensile strength is exceeded the discon-

tinuity is introduced into this element. Under these modified boundary conditions (with
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Figure 5.8.: Deformation of the structure, structured and unstructured mesh
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Figure 5.9.: Load displacement relation, structured and unstructured mesh
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the extended discontinuity) the calculation of the present load step is repeated and the

stress state in the element ahead of the crack tip is calculated again, to decide, if the

discontinuity propagates further. The next displacement increment is applied, when an

equilibrium state is accomplished and the stresses ahead of the discontinuity do not ex-

ceed the tensile strength. To avoid penetration of the cohesive zone, a standard penalty

method with a high normal penalty stiffness is applied.

In figure 5.8 the deformation of the structure at two different load steps, calculated with

the structured and the unstructured mesh is plotted. It is visible that the results are

similar for both discretizations. This is confirmed by the global load displacement re-

sponses, depicted in figure 5.9. The load displacement answers are identical for the differ-

ent meshes and do not show any significant oscillations, even for the comparatively low

number of elements. In the beginning the load increases up to a critical value and then

softening takes place. Afterwards the reaction force remains at a constant value. Due to

the imposed boundary conditions a full delamination of the structure is prevented.

Nonsymmetric peel test

In the second example a nonsymmetric peel test is considered. Thereby one layer is

peeled from another one, which is fixed at the bottom. The boundary conditions and

the geometry are shown in figure 5.10. The material parameters are similar to the first

example, but Gf = 50. In this example the fictitious discontinuity surface undergoes
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Figure 5.10.: Geometry and loading conditions, unsymmetric peel test
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Figure 5.11.: Deformation of the structure, unsymmetric peel test, 1620 elements

large rotations and the orientation of its normal vector changes significantly during the

computation. Therefore this example enables us to verify the linearization of the traction

vector numerically. In order to compare the influence of different discretizations, two
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different structured meshes are used, one with 1620 elements and a finer one with 3380

elements. An additional computation with an unstructured mesh was not accomplished,

since the results in the first example were similar for structured and unstructured meshes

with comparably many elements.

In figure 5.11 the deformation of the structure for the discretization with 1620 elements

is shown. The deformation of the structure calculated with the finer discretization looks
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Figure 5.12.: Load displacement relation, 1620 elements and 3380 elements

alike. However, in contrast to the first example the coarser discretization reveals small

oscillations in the global load displacement answer, see figure 5.12. These oscillations are

smoothed out when the finer discretization is considered and can therefore be linked to the

elementwise failure. As expected, the global load displacement relations show the same

characteristics as in the first example: increasing load up to a critical value, softening and

a constant reaction force until full delamination occurs.

During the computation the convergence behavior is monitored by means of the norm

of the residual. Quadratic convergence was achieved in all loadsteps, which numerically

confirms the performed linearization.

5.7.2. Three dimensional crack propagation

Rectangular block under tension

The first example in three dimensions is a simple mode I failure problem to check the

implementation of the method and the dependence of the solution on the discretization.

We consider a rectangular block under a tensile load. The block is fixed on one side

and loaded by a prescribed displacement on the other side. Failure is initialized on two

sides of the specimen, as indicated in figure 5.13. The material parameters are chosen as

E = 10000 N/mm, ν = 0.3, ft = 200 N/mm2 and Gf = 100 N/mm. The block has a

86



“main” — 2006/3/15 — 19:54 — page 87 — #99

5.7. Numerical examples

PSfrag replacements

j

Γ

j

k

B
S

X

x

ϕ(X)

F

Φ(x)

F−1

1

2

x̄

Figure 5.13.: Geometry

0 0.1 0.2 0.3 0.4
0

50

100

150

200

displacement

lo
ad

nel=316
nel=721
nel=1125

PSfrag replacements

j

Γ

j

k

B
S

X

x

ϕ(X)

F

Φ(x)

F−1

1

2

x̄

Figure 5.14.: Load displacement relations

squared base of 1 mm × 1 mm and is 2 mm high.

In order to compare the results of different discretizations the computation is carried out

with three different meshes, containing 316, 720 and 1125 elements. When the critical

stress state is reached, the crack propagates through the specimen on a straight horizontal

path. The cohesive tractions prevent the complete separation of the two parts of the block.

The deformation of the block is shown for the discretization with 1125 elements in figure

5.15. The first deformation belongs to the precritical state. The applied displacement

is 0.04 mm. The two other pictures show post critical deformation states at prescribed

displacements of 0.2 mm and 0.4 mm.
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Figure 5.15.: Deformation of the block at different load steps
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5. Mesh-independent modeling of strong discontinuities at finite strains

In figure 5.15 the separation of the two sides of the discontinuity surface is indicated by

plotting the intersection planes in addition to the usual elements. It is visible that the

opening increases significantly. The expected exponential unloading with an increasing

opening can be verified by the load displacement diagram in figure 5.14. The resultant

force on top (or bottom) of the block is plotted versus the prescribed displacement. As

expected an initially elastic behavior can be observed. When the critical stress state is

reached the load drops down rapidly and decreases exponentially with the opening. The

global load displacement answer is given for the three different discretizations and it can

be verified that the solutions are independent of the discretization. Minor differences

between the answer of the coarse discretization and the two others, close to the point

of maximum tensile stress, can be explained by the failure criterion. The stresses in the

elements ahead of the crack tip are compared with the critical stress. If the elements are

too large, the stress calculation becomes incorrect. But it can be seen that these oscilla-

tions are smoothed out even for the mesh with 712 elements. The computations for the

different discretizations are in good agreement and the expected results were obtained.

Symmetric peel test

As a second example the symmetric peel test is recalculated in three dimensions. A can-

tilever beam is fixed on one side and a displacement is prescribed on the upper and lower

edge on the other end of the beam. The crack is initialized in the middle on the right hand
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Figure 5.16.: Deformation of the structure at different load steps
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5.7. Numerical examples

side of the beam and the propagation of the crack is governed by the failure criterion and

fixed to the horizontal plane. The material parameters are chosen accordingly to the two

dimensional problem in order to compare the results. The geometry is chosen similar to

the two dimensional example, the thickness is given as 1 mm such that a quadratic cross

section is generated.

To avoid penetration of the cohesive zone an additional penalty constraint is added to

the weak form. The computations are accomplished with three different meshes with

2250, 3750 and 6250 linear tetrahedral elements. The displacement is prescribed in 100

increments and the largest displacement on each side is 6 mm, therefore the largest open-

ing displacement is 12 mm. Since the specimen is fixed on the left hand side the whole

separation of the two layers is prevented. The deformation of the structure is pictured in

figure 5.16 for different prescribed displacements. In addition to the element surfaces the

crack surfaces are indicated to clarify that the elements, which exhibit the discontinuity,

are not highly deformed but splitted into two parts. The deformation is symmetric as

expected and the discontinuity propagates along the center line, but is not aligned with

the element boundaries. The load displacement answers are calculated for the three differ-

ent discretizations and plotted in figure 5.17. It is noticeable that the load displacement
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Figure 5.17.: Load displacement relation

answer for the coarse discretization is quite different, compared to the other two. The

maximum reaction force is overestimated and also the post peak behavior shows minor

differences. The main reason for that can be found in the failure criterion, which consid-

ers only the elements next to the crack tip. The elements are too large, to approximate

the high stress gradients correctly. Therefore the somehow smeared stresses in the large

elements are smaller and failure occurs later than in smaller elements. In general the
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discretization with only 2250 elements is not sufficient. But the general structure of the

load displacement relations are equal and comparable with the two dimensional case. We

have an increasing force up to to a peak load, followed by a softening and a constant

reaction force. And the results converge with a finer discretization. The load displace-

ment answer of the finer discretization with 3750 elements shows some small oscillations,

which are associated to the elementwise failure, as in the two dimensional setting. These

oscillations are smoothed out in the load displacement answer for the sufficiently fine dis-

cretization with 6250 elements. The load displacement relations for the simulation with

3750 and 6250 elements are in very good agreement with the results of the two dimensional

calculation.

5.8. Summary

A finite element method for the computational modeling of propagating discontinuities

at finite deformations was introduced. The discontinuity can arbitrarily intersect the

elements and the discontinuity path is therefore independent of the underlying finite

element mesh. The characteristic feature of the method is the construction of the elements,

which are intersected by the discontinuity. Additional displacement degrees of freedom

are introduced at the existing nodes and only the standard basis functions are used. To

model softening behavior, the cohesive crack concept is utilized. Cohesive tractions are

applied at the interface, determined by a traction separation law. The weak formulation,

its discretization and the consistent linearization, which is fundamental for the numerical

solution, were provided. In the presented numerical examples in two and three dimensions

the ability of the method to simulate propagating discontinuities independently of the

mesh structure was pointed out.
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6. Mesh-independent modeling of weak discontinuities

at finite strains

The present chapter implies the extension of the approach which was introduced in chapter

4 to finite strains and is based on reference [83]. The approach allows for the modeling

of weak discontinuities independent of the underlying finite element mesh. Therefore the

same discontinuous elements as in the previous chapters are used. Along the internal

interface a Nitsche type method is applied to enforce the continuity of the deformation

map. Nitsche’s method is extended to finite strains.

6.1. Motivation

This section extends the approach for the mesh-independent modeling of weak disconti-

nuities, which was introduced in chapter 4, to finite strains. The term weak discontinuity

describes a jump in the gradient of the deformation map, which occurs if we consider

different materials within a body, inclusions or holes. Usually in the framework of finite

elements weak discontinuities are taken into account by letting the element boundaries

coincide with the discontinuity surface. However, if inclusions with various geometries are

considered or moving internal boundaries are treated, it can be advantageous to avoid the

meshing of the discontinuity surface. The present approach uses discontinuous elements

and a Nitsche type method to impose the continuity of the deformation map along the

internal boundary.

The discretization is carried out with the already in detail characterized discontinuous

elements, compare section 3.5.1 or the references [46] and [81]. Additional global degrees

of freedom are introduced and a new set of discontinuous shape functions allows for the

simulation of a jump of the deformation map within the elements.

The discontinuous elements allow as well for a jump in the deformation map as in its gra-

dient. In the same manner as in the linear case in chapter 4 a Nitsche type method [95]

is introduced along the internal boundary to ensure continuity in the deformation map

in a weak sense. Nitsche’s method is extended for the geometrically nonlinear setting.

The governing equations are determined by means of the principle of stationary potential

energy and lead to a quite similar formulation as in the linear case. Nitsche’s method

was also applied as a mortaring method by Stenberg [122] and Heinrich [54], a domain

decomposition method by Becker et al. [13] or for contact problems [136]. Another area

of application is the enforcement of essential boundary conditions in the framework of
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Figure 6.1.: Weak discontinuity kinematics

meshless methods, compare [44] and [40].

In the next section the nonlinear kinematics regarding a weak discontinuity are intro-

duced. Afterwards the variational formulation is determined from the principle of sta-

tionary potential energy. Some details about the discretization and the implementation

are recapitulated and finally numerical examples are presented.

6.2. Kinematics

We consider a body B in the reference configuration, which is divided by a discontinuity

surface Γ into the parts B+ and B−. The associated normal vector N points from B−

to B+. We assume that a weak discontinuity can occur along the internal discontinuity

boundary. In the present approach the continuity of the deformation map will be ensured

in a weak sense, adopting additional terms in the weak formulation. Therefore we can use

the same kinematical assumptions as for strong discontinuities in the previous chapter.

Accordingly we have a nonlinear and noncontinuous deformation map ϕ, which maps the

body from the reference configuration B to its spatial configuration S, see figure 6.1. We

split the deformation map in two continuous parts, each one only defined on one side of

the discontinuity surface

ϕ(X) =

{

ϕ+(X) : B+ → S+

ϕ−(X) : B− → S−.
(6.2.1)

Since the two parts of the deformation map are independent, the gradients and the

strain measures are also defined for each part of the body separately. The discontinuous

deformation map reads

F =

{

F + = ∇Xϕ+

F− = ∇Xϕ−.
(6.2.2)

Since F + and F− denote gradients of two independent functions, it is of course possible

that they take different values at the internal interface, which leads to a weak discon-

tinuity.
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6.3. Variational formulation

In contrast to the problem involving strong discontinuities, the two sides of the discon-

tinuity remain on each other in the spatial configuration. Therefore it is possible to

define a unique spatial normal vector n̄ to the discontinuity surface γ̄. The jump in the

deformation map and its weighted average value are defined as

[[ϕ]] := ϕ+
|Γ

− ϕ−
|Γ

{ϕ} := κ+ϕ+
|Γ

+ κ−ϕ−
|Γ
. (6.2.3)

The weighted average term was already introduced in equation (4.2.3) and is defined here

in the same manner.

6.3. Variational formulation

To derive the weak formulation for a problem involving discontinuities in the deformation

gradient, we apply a variant of Nitsche’s method [95], which is closely related to the ap-

proach in [46]. If we want to model weak discontinuities we assume that the deformation

gradient can exhibit a jump along the interface, but the deformation map shall be contin-

uous. Since our kinematic assumption of two independent deformation maps allows for

jumps in both the deformation map and its gradient, we need to ensure the continuity

of the deformation map. This is enforced in an weak sense by means of an extended

Nitsche’s method, applied along the internal interface.

6.3.1. Principle of stationary potential energy

The variational formulation of the problem is derived based on the principle of station-

ary potential energy, which leads to a symmetric formulation. Thereby we require the

existence of an energy functional Π. The total potential energy is usually given as the

sum of the internal and external potential energy. Since we want to apply a variant of

Nitsche’s method, we obtain an additional interfacial energy contribution, similar to the

linear case. This leads to the weak fulfillment of the continuity condition, and vanishes if

the continuity condition is exactly satisfied.

We start with the definition of the total potential energy

Π(ϕ) =

∫

B+∪B−

Ψ(F (ϕ)) dV + Π̄(ϕ+, ϕ−) −
∫

∂Bt

ϕ · T p dA, (6.3.1)

whereby the Π̄(ϕ+, ϕ−) denotes the additional term at the internal interface, which de-

pends on the field values in both parts of the body. The strain energy density Ψ(F (ϕ))

specifies the internal energy stored in the body during an elastic deformation and the

tractions T p are prescribed at the Neumann boundary.

The additional interface contribution is given by

Π̄(ϕ+, ϕ−) =

∫

Γ

[[ϕ]] · {P (F (ϕ)} · N dA +
1

2

∫

Γ

θ [[ϕ]] · [[ϕ]] dA, (6.3.2)
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6. Mesh-independent modeling of weak discontinuities at finite strains

whereby {P } = κ+ P + + κ− P− denotes the weighted average of the Piola stress tensor.

It can easily be verified that this additional interface term vanishes if the continuity

condition is exactly fulfilled, that is [[ϕ]] = 0. The second part of Π̄(ϕ+, ϕ−) can be

identified as a penalty term, which is necessary to stabilize the method. Since the scalar

valued penalty factor θ depends on the discretization, it will be specified later.

Remark 6.3.1 This particular choice of the interfacial energy contribution can be moti-

vated by the following consideration. If we look at both parts of the body separately and

set up the total potential energy while taking into account the interface contributions of

the Piola stresses, we obtain

Π(ϕ) =

∫

B+∪B−

Ψ(F (ϕ)) dV +

∫

Γ

ϕ+ ·P + ·N dA−
∫

Γ

ϕ− ·P− ·N dA−
∫

∂Bt

ϕ·T p dA. (6.3.3)

Thereby the different signs of the two interface terms result from the direction of the

normal vector N , which points from B+ to B−. The definition of the jump term (6.2.3)

is utilized and the relation for the jump of a product is inserted [[ab]] = [[a]]{b} + {a}[[b]],
which is only valid if the average term is the mean average, to rewrite the interfacial terms

as
∫

Γ

[[ϕ · P ]] · NdA =

∫

Γ

[[ϕ]] · {P } · N + {ϕ} · [[P ]] · NdA. (6.3.4)

In a last step the traction equilibrium condition at the interface is included [[P ]] · N = 0,

such that the second term vanishes.

As already stated the applicability of this procedure depends on the appearance of the mean

average. But since the introduction of the weighted average value follows only from aspects

of the discretization, this derivation can act as a motivation.

To obtain the weak formulation we need to take the variation of the total potential energy

(6.3.1), which has to become zero

δΠ(ϕ, δϕ) =

∫

B+∪B−

δF : P dV+

∫

Γ

[[δϕ]] · {P } · NdA +

∫

Γ

[[ϕ]] · {A : δF } · NdA

+

∫

Γ

θ [[δϕ]] · [[ϕ]]dA −
∫

∂Bt

δϕ · T p dA =̇ 0,

(6.3.5)

thereby the tangent operator A follows as the second derivative of the strain energy

density A = ∂2Ψ/∂F 2 = ∂P /∂F . If the average term, containing the tangent operator

is summarized as {A : δF } = {δP }, the resulting weak formulation looks quite similar to

Nitsche’s method for linear elasticity, compare equation (4.3.5) or for example [41] or [51].

Since the formulation is based on an energy functional it is symmetric.
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6.4. Constitutive equation

By means of the divergence theorem and integration by parts it can be shown that the

weak formulation (6.3.5) obtained from the principle of stationary potential energy is

consistent with the following strong form in the material configuration

−Div P = 0 in B

x = xp on ∂Bx

P · N e = T p on ∂Bt,

(6.3.6)

which is completed by the conditions along the internal interface

[[P ]] · N = 0 on Γ

[[ϕ]] = 0 on Γ.

(6.3.7)

The first interfacial condition assures traction continuity along the internal boundary and

the second one enforces the continuity of the deformation map.

6.3.2. Linearization

In contrast to the geometrically linear setting the weak form renders a nonlinear equation.

To solve the equation numerically the consistent linearization of the weak formulation

(6.3.5) is required. Linearizations are denoted by a prefixed ∆.

∆δΠ =

∫

B

δF : A : ∆F dV

+

∫

Γ

[[δϕ]] · {A : ∆F } · NdA +

∫

Γ

[[ϕ]] · {[Ξ : ∆F ] : δF } · NdA

+

∫

Γ

[[∆ϕ]] · {A : δF } · N dA +

∫

Γ

θ [[∆ϕ]] · [[δϕ]] dA.

(6.3.8)

The linearization of the variation of the internal potential energy leads to the first term

which contains the tangent operator A. The linearization of the interface terms leads to

four different terms, whereby Ξ := ∂A/∂F is an sixth order curvature tensor which results

from the third derivative of the strain energy function with respect to the deformation

map. It is specified in the next subsection 6.4.

6.4. Constitutive equation

For the sake of simplicity we introduce the same strain energy function Ψ as in section

5.4.1 for both parts of the body. We assume hyperelastic material behavior of compressible

Neo-Hooke type, which can be characterized by the strain energy density

Ψ =
µ

2

[
[F · F t] : I − 3

]
− µ ln (J) +

λ

2
ln2 (J), (6.4.1)
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whereby µ and λ are the Lamé parameters. In general it is possible to define various

constitutive laws for both parts of the body, but here we restrict the differences between

the materials to the material parameters. The derivation of the strain energy function

with respect to the deformation gradient leads to the definition of the Piola stress

P =
∂Ψ

∂F
= [λ ln (J) − µ ] F−t + µ F . (6.4.2)

The tangent operator A , which occurs in the weak form or its linearization, respectively,

can be specified as

A =
∂2Ψ

∂F 2 = λ F−t ⊗ F−t + [µ − λ ln (J)] F−t⊗F−1 + µ I ⊗ I, (6.4.3)

whereby non-standard dyadic products are used, which take the following componentwise

representations {•⊗̄◦}ijkl = {•}ik ⊗ {◦}jl and {•⊗◦}ijkl = {•}il ⊗ {◦}jk. The curvature

tensor Ξ, which is required in the linearization, is given in index notation

[Ξ]ijklmn = −λ [F−1
jmF−1

ni F−1
lk + F−1

ji F−1
lm F−1

nk + F−1
nmF−1

li F−1
jk ]

+[λ ln (J) − µ][F−1
lm F−1

ni F−1
jk + F−1

li F−1
jmF−1

nk ].

(6.4.4)

6.5. Discretization and linearization

The introduced weak formulation will be solved using finite elements, which allow for

a discontinuity intersecting the elements, following the approach suggested in [46] and

also applied in [47], [81] and in the previous chapters. The considered elements allow for

both, a jump in the deformation map and a jump in its gradient. In the case of weak

discontinuities the deformation map shall be continuous, which is globally ensured by

means of the additional ’Nitsche’ terms in the weak form. Therefore the discretization of

the weak form resembles that in the previous chapter. The elements which are crossed by

the interface are doubled and hence additional global degrees of freedom are introduced.

A new set of discontinuous shape functions is adopted for the discontinuous elements to

capture the discontinuity. The size of the two resulting element parts defines the weighting

factors κ+,−, which are equal to the area ratio

κ+ =
|B+

d |
|Bd|

and κ− =
|B−

d |
|Bd|

, (6.5.1)

compare section 4.5.1.

The reference domain is discretized with nel elements and, following the isoparametric

concept, the geometry and the unknown deformation map are approximated by the same

shape functions. Furthermore these shape functions are also used for the approximation

of the test function, according to the Bubnov-Galerkin technique

B =

nel⋃

e

Be , X|Be
=

nen∑

i=1

N i X i , ϕ|Be
=

nen∑

i=1

N i ϕi δϕ|Se
=

nen∑

i=1

N i δϕi. (6.5.2)
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6.5. Discretization and linearization

The approximation of the jump term follows by inserting the above given approximation

of the deformation map into the definition (6.2.3)

[[ϕ]] =

n+
en∑

i=1

N i|Γ ϕ+
i −

n−

en∑

i=1

N i|Γ ϕ−
i =

n+
en+n−

en∑

p=1

Jp ϕp. (6.5.3)

The jump term is derived at the interface within a discontinuous element and by means

of the nodal values of the old and the newly introduced degrees of freedom.

6.5.1. Discrete weak formulation

By means of the described discretization of the primary unknown, the weak formulation

(6.3.5) is discretized and the resulting nonlinear system of equations is solved by an

iterative Newton-Raphson scheme.

The discrete algorithmic balance of momentum reads

RI = Rint
I + Rdis

I − Rext
I = 0 (6.5.4)

with the particular contributions

Rint
I =

nel

A
e=1

∫

Be∪Bd

∇XN i · P dV

Rdis
I =

nel

A
e=1

∫

Γe

J i{P } · N dA +

∫

Γe

[

κ+
e ∇XN i + · Ã+

+ κ−
e ∇XN i− · Ã−

]

dA

+

∫

Γe

θe J i[[ϕ]]dA

Rext
I =

nel

A
e=1

∫

∂Bt e

N i T p dA.

(6.5.5)

The average term of the product {A : δF }, which appears in the continuous equa-

tion (6.3.5) has to be splitted in the discrete form. We introduced the abbreviations

Ã
+,−

= [[[ϕ]] ⊗ N ] : A
+,−.

The weighting factors κe are calculated for each part of a splitted element as the area

ratio. The scalar penalty factor θe depends on the inverse of the element measure he and

on the material parameters λ and µ. Since an analytical analysis of the penalty factor can

not be accomplished in the considered nonlinear case, we define the penalty parameter

comparable to the linear elastic case, cf. [41], as θe := ϑ[λ + µ]/he, and accomplish a

numerical analysis concerning the minimum value of the scalar factor ϑ in section 6.7.
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6.5.2. Linearized discrete weak formulation

The above discrete residual statement represents a nonlinear system of equations which

can be solved efficiently within the framework of an incremental Newton-Raphson solution

strategy. To this end a consistent linearization of the governing equations is performed

Rk+1
I = Rk

I + dRI = 0 with dRI =

n+
np+n−

np∑

J=1

KIJ dϕJ . (6.5.6)

To obtain the tangential stiffness matrix KIJ the linearized weak form (6.3.8) is dis-

cretized. This task is straightforward, but since we have to decompose the occurring

averages of products the tangential stiffness matrix takes a quite unhandy format

Kint
IJ =

nel

A
e=1

∫

Be∪Bd

∇XN i · A · ∇XN j dV

Kdis
IJ =

nel

A
e=1

∫

Γe

[

κ+
e J i

Â
+ · ∇XN+ j + κ−

e J i
Â

− · ∇XN− j
]

dA

+

∫

Γe

[

κ+
e ∇XN+ i · Ât +

J j + κ−
e ∇XN− i · Ât−

J j
]

dA

+

∫

Γe

[

κ+
e ∇XN+ i · Ξ̃+ · ∇XN+ j + κ−

e ∇XN− i · Ξ̃− · ∇XN− j
]

dA

+

∫

Γe

θeJ
i J j dA,

(6.5.7)

where we further introduced the abbreviations Â, Â
t
and Ξ̂ which are defined as

Âikl = Aijkl Nj, Â
t

ikl = Âkli and Ξ̃
+,−

= [[[ϕ]] ⊗ N ] : Ξ
+,−. (6.5.8)

As expected the tangential stiffness matrix turns out to be symmetric.

6.6. Implementation

The implementation of the proposed method follows the one described in section 4.6 and

is shortly summarized here. The geometry of the interface is defined by means of level set

functions. Thereby the interface is represented by the zeros of a function l(X, t) which is

one dimension higher than the underlying problem. The function values of l on the node

of the finite element mesh decide whether a node is on one side or on the other side of

the interface, which leads to a simple algorithm to identify the splitted elements.

The introduction of the additional degrees of freedom follows the same procedure as in

section 4.6. Since the interface is static, the introduction of the additional nodes and

98



“main” — 2006/3/15 — 19:54 — page 99 — #111

6.7. Numerical examples

the identification of the splitted elements can be executed in a preprocessing step. The

nodal values of the level set function are calculated and if an element contains nodes with

different signs of the nodal values of l, the element is intersected by the interface. Thus

the intersection points of the level set and the element edges and the area of the element

subdomains are determined and stored. The algorithm of a simulation is sketched in

table 6.1. The integration of the weak form is accomplished by a subtriangulation of the

intersected elements and usual Gauss integration in the subdomains.

identification of splitted elements, determination of intersection points

loop over load steps

global Newton iteration

loop over all continuous elements Be

determine element residua Rint
e and their derivatives K int

e

loop over all discontinuous elements Bd

determine the contributions of the element subdomains to Rint
e and Kint

e

determine interface residua Rdis
e and their derivatives Kdis

e

assemble global residual R and tangent stiffness matrix K

solve system of equation, check convergence

determine state of equilibrium

Table 6.1.: Algorithm of the approach

6.7. Numerical examples

In the case of weak discontinuities one major task is to numerically investigate the

influence of the penalty parameter ϑ on the solution. Therefore a simple example, a

bimaterial bar, is considered. By means of a very coarse discretization with only two

elements an eigenvalue study is accomplished to obtain information about the minimal

size of the penalty parameter during a simulation. Moreover the bimaterial bar is utilized

to check the convergence behavior of the approach with respect to mesh refinement. In

the second example a plate with a soft circular inclusion is simulated, to analyze the

stress and strain distributions.
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6. Mesh-independent modeling of weak discontinuities at finite strains

6.7.1. Bimaterial bar

The bimaterial bar exhibits a material interface, which does not correspond to the

mesh-lines. The bar is fixed on the left hand side and loaded by prescribed displacements

on the right hand side, as indicated in figure 6.2. To get a first idea of the influence of the
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Figure 6.2.: Geometry and loading conditions of bimaterial bar

penalty parameter we assume that the bar consists only of one material, but nevertheless

the interface is introduced and Nitsche’s method is applied to glue together the two parts

of the bar. To check the influence of the penalty parameter numerically an eigenvalue

analysis of the tangential stiffness matrix is carried out. Therefore the bar is discretized
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Figure 6.3.: Eigenvalues vs. penalty parameter

with only two triangular elements. The prescribed displacement is applied in five equal

steps of 1.0 and the penalty parameter is varied. The material parameters are chosen as

µ+ = µ− = 77000 and λ+ = λ− = 115000. The smallest eigenvalues of the tangential

stiffness matrix of the first and the fifth loadstep are displayed in figure 6.3. In the

considered example the method does not converge if the penalty factor is approximately

ϑ ≈ 0.025. The reason for this can be found in the eigenvalue analysis: if ϑ ≈ 0.025,

the smallest eigenvalue Λ is approximately zero, which means that the stiffness matrix

becomes singular (which explains the gap in the graphical presentation). If ϑ < 0.025,
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6.7. Numerical examples

the method converges but at least one eigenvalue is smaller than zero and the tangential

stiffness matrix is not positive definite. The desired result is obtained, if ϑ >> 0.025: all

eigenvalues of the tangential stiffness matrix are positive and K is positive definite. In

contrast to the linear case, the tangential stiffness matrix is varying in each load step

and furthermore in each iteration increment. In order to obtain information about the
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Figure 6.4.: Relative error in the total energy

development of the tangent stiffness during the deformation, the minimal eigenvalues of

the stiffness matrix of the first and the final loadstep are compared in figure 6.3. For

sufficiently large penalty parameter ϑ > 0.025 the eigenvalues in loadstep 5 exceed these

in loadstep 1, which implies that, if the penalty is large enough for the first loadstep it

will be sufficient for the following ones as well. In consideration of the aforementioned

results and taking into account the experiences we made by means of different numerical

examples, we reason, that the penalty factor has to be sufficiently large, but does not

need to change during the computation.

In the next step a ’real’ bimaterial bar is considered. The penalty parameter is kept

constant and the discretization is refined in order to check the convergence behavior

of the method. The material parameters are fixed to λ+ = 115000, µ+ = 77000 and

λ− = 11500, µ− = 7700. The interface is introduced, such that it does not coincide with

the mesh-lines, and the prescribed displacement is equal to 5.0. Taking into account the

results from the eigenvalue analysis, a sufficiently large penalty factor is chosen, namely

ϑ = 5 and θe = ϑ [λmax +µmax]/he. Since an analytical solution for the present nonlinear

example can not be provided, the solution of an FE calculation with 4050 elements and

an explicitely meshed interface is used as a reference solution. The simulation is carried

out with six different discretization and the relative error in the energy is determined as

e = |Πref − Π|/Πref . The results for the present method in comparison with the results

of a fitted standard finite element calculation are pictured in figure 6.4. The present
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6. Mesh-independent modeling of weak discontinuities at finite strains

approach shows approximately the same convergence behavior as the standard finite

element method, where the mesh lines are enforced to coincide with the interface.

6.7.2. Plate with inclusion

The second example deals with a plate with a soft circular inclusion. Since the problem

is symmetric it is sufficient to simulate only one quarter of the structure. The geometry

and the loading conditions are given in figure 6.5. The circular interface is introduced via
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the zero level set of the simple function

L(X) = [X − Xm] · [X − Xm] − r2 = 0 (6.7.1)

whereby r is the radius of the circle and Xm its center. The structure is loaded by

prescribed displacements. The material parameters for the matrix and the inclusion are
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defined as λM = 11500, µM = 77000, λI = 1150 and µI = 770. The penalty parameter

is set to ϑ = 5. In figure 6.6 the deformation of the structure, the distribution of the
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6.8. Summary

Cauchy stresses σ22 and the Green-Lagrange strains E22 are pictured. As expected there

are no visible jumps in the deformation map along the internal interface. The jumps in

the stresses and strains are correctly determined along the internal interface and the stress

and strain distributions are independent of the mesh geometry.

6.8. Summary

In the present chapter a method for the mesh-independent modeling of weak discontinu-

ities at finite strains was introduced. The method combines the discontinuous elements,

which were also applied for the modelling of propagating cracks, with Nitsche’s method.

Nitsche’s method is extended to finite strains and applied along the discontinuity surface

to enforce the continuity of the deformation map. Two numerical example verify that the

method offers a numerical technique to simulate material interfaces independent of the

element boundaries. The jump in the strain field is correctly captured and the convergence

is comparable to a simulation with a meshed interface.
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7. Conclusions

In the present work different numerical approaches for the incorporation of strong and

weak discontinuities in the framework of the finite element method were introduced. The

expressions strong and weak discontinuities denote either jumps in the displacement field

or jumps in the strains. Strong discontinuities characterize for example cracks whereby

weak discontinuities occur at material interfaces.

In the first chapter the development of strong discontinuities was restricted to particu-

lar failure surfaces. As the most natural choice interface elements were placed along the

known failure surface. The characteristics of the approach is the weak enforcement of the

continuity of the displacement field in the precritical state by a discontinuous Galerkin

method. Thus the unphysical use of a ’dummy’ stiffness was avoided.

In the following four chapters a unified framework for the mesh-independent modeling

of strong and weak discontinuities in the geometrically linear and nonlinear setting was

presented. A new class of discontinuous elements was formulated, which allows for the

description of the discontinuity independently of the underlying mesh. The elements

which are intersected by the discontinuity get additional degrees of freedom such that the

element is doubled. The additional degrees of freedom are global, this permits a contin-

uous representation of the discontinuity path. A set of discontinuous basis functions is

formulated by means of two copies of the usual basis functions. One set is put to zero

on one side of the discontinuity while it takes its usual values on the other side and vice

versa. This set of discontinuous basis functions can be easily constructed for different

types of elements of higher order and dimension and makes the approach highly flexible.

In chapter 3 the discontinuous elements were applied for the modeling of cohesive crack

propagation in the geometrically linear setting. Inelastic and dissipative processes were

restricted to the discontinuity surface and modeled by a cohesive traction separation law.

A failure criterion and a method to determine the crack propagation direction was de-

veloped. The capability of the approach was presented by numerical examples in two

dimensions. The results reflected the ability of the method to simulate mesh-independent

discontinuities.

The same discontinuous elements were applied in the next chapter to model weak discon-

tinuities. The geometry of the interfaces wass described by means of level set functions.

To achieve the desired continuity of the displacement field, the discontinuous Galerkin

method, which was applied in chapter 2, was adopted along the interfaces in the elements.

This led to an additional interface contribution in the weak form, which was algorith-

mically handled in a similar manner as the cohesive energy contribution in the strong
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7. Conclusions

discontinuity approach. This method was adopted to solve two numerical examples with

material interfaces. The numerical solutions were compared with the analytical one and

optimal convergence rates were obtained.

In chapter 5 the extension of the approach for cohesive crack modeling to finite strains

was presented. The kinematics were extensively described. The differences compared

to the geometrically linear setting were mainly found in the description of the discon-

tinuity surface and in the formulation and linearization of the traction separation law.

The approach was extended to the three dimensional modeling of planar crack growth.

Implementational details of three dimensional crack propagation, concerning the discrete

crack path and crack tip description and the numerical integration of the discontinuous

elements were given. The performance of the method was verified by means of numerical

examples in two and three dimensions.

The next chapter described the extension of the approach for the modeling of weak dis-

continuities to finite strains. The focus is the extension of the discontinuous Galerkin

method to the geometrically nonlinear regime. A numerical study concerning the size of

the penalty parameter was accomplished and the method was applied to problems includ-

ing material interfaces. The results showed the capability of the method to capture the

jump in the strains independent of the underlying mesh.

The developed approach for the mesh-independent modeling of strong and weak discon-

tinuities implies the possibility of further developments in different directions. One task

can be the introduction of a more sophisticated crack initiation and propagation criterion,

since the applied principle stress criterion has its restrictions and can lead to physically

unreasonable crack-paths. The Material Force Method which is studied in appendix C for

a linear elastic fracture mechanics problem, can be a promising alternative. Furthermore

the incorporation and analysis of different traction separation relations can be studied.

Naturally the comparison with experiments would be necessary to adapt the cohesive laws

and the parameters to particular materials.

From the numerical viewpoint the introduction of intersecting cracks can be interesting,

as well as the extension of the three dimensional approach to nonplanar crack growth.

Furthermore the development of discontinuous shell elements would broaden the applica-

tion area of the approach.

The mesh-independent modeling of weak discontinuities becomes more important if mov-

ing interfaces are considered. The applied framework makes use of level set functions and

can be expanded in a simple way to the modeling of moving interfaces, like phase transfor-

mation problems. And finally the application of the Nitsche type discontinuous Galerkin

method to different fields, e. g. contact mechanics, domain decomposition methods etc.,

requires further analysis.
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A. Miscellaneous

A.1. Notation

Throughout the work scalar quantities are denoted by nonbold symbols c, vectors and

second order tensors are denoted by bold symbols a and b or A and B. Fourth or higher

order tensors are indicated by nonserif bold fonts E. In the following the frequently used

calculation rules and their notations are summarized.

contraction c = a · b c = ai bi

a = A · b ai = Aij bj

A = B · C Aij = Bik Ckj

double contraction c = A : B c = Aij Bij

A = E : B Aij = Eijkl Bkl

dyadic product A = a ⊗ b Aij = ai bj

E = A ⊗ B Eijkl = Aij Bkl

nonstandard dyadic products E = A⊗B Eijkl = Aik Bjl

E = A⊗B Eijkl = Ail Bjk

The second order unit tensor I is defined as Iij = δij and the fourth order unit tensor I

is determined as Iijkl = δij δkl.
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A. Miscellaneous

A.2. Derivatives

In the next part some derivatives which are frequently used, especially for the linearization

of particular quantities, are recapitulated

∂F

∂F
= I⊗I

∂F

∂F

−1

= −F−1⊗F−t

∂F

∂F

t

= I⊗I
∂F

∂F

−t

= −F−t⊗F−1

∂J

∂F
= J F−t

∂|a|
∂a

= a
|a|

∂(a/|a|)
∂a

= 1
|a|

[

I − a
|a| ⊗

a
|a|

]

.

(A.2.1)

A.3. Jump and average terms

The existence of a discontinuity requires the definition of jump and average terms to deal

with the special characteristics at the discontinuity surface. In the present work the jump

and average terms of scalar, vectorial and tensorial quantities are defined similarly, that

means the jump or average of a field quantity is of the same order as the field quantity

itself

[[a]] = a+ − a− [[a]] = a+ − a− [[A]] = A+ − A−

{a} = 1
2 [a+ + a−] {a} = 1

2 [a+ + a−] {A} = 1
2 [A+ + A−].

(A.3.1)

The jump and average terms of products can be separated following simple algebraic rules

which can be summarized as

[[a b]] = [[a]] {b} + {a} [[b]]

{a b} = 1
4 [[a]] [[b]] + {a} {b}

[[a b c]] = [[a]] {b} {c} + {a} [[b]] {c} + {a} {b} [[c]] + 1
4 [[a]] [[b]] [[c]]

{a b c} = 1
4 {a} [[b]] [[c]] + 1

4 [[a]] {b} [[c]] + 1
4 [[a]] [[b]] {c} + {a} {b} {c}.

(A.3.2)
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B. Numerical study of the dG method for linear

elasticity

In this section the discontinuous Galerkin method for elasticity is numerically analyzed.

To get insight in its convergence behavior and the influence of the penalty parameter

a model problem is considered where the dG method is applied between all element

boundaries. The results are compared with the analytical solution and the solution of the

continuous finite element method.

B.1. DG method for linear elasticity

The use of the discontinuous Galerkin method for linear elasticity, which is applied along

certain boundaries in the approaches in the chapters 2 and 4, results in the following weak

formulation
∫

B+∪B−

δε : σ dV +

∫

Γ

[

[[δu]] · {σ} · n̄ + n̄ · {δσ} · [[u]]
]

dA

+

∫

Γ

θ [[δu]] · [[u]] dA =

∫

B+∪B−

δu · b dV +

∫

∂Bt

δu · tp dA.
(B.1.1)

If the discontinuous Galerkin method is applied in the whole domain, the boundary Γ

consists of all interior element boundaries. That means that the overall number of nodes

is equal to the number of elements times the number of element nodes. The additional

terms along the interior boundaries ensure the continuity of the solution in a weak sense.

The factor θ denotes a penalty factor which has to be sufficiently high to ensure stability

of the method.

B.2. Numerical example

To gain some insight in the properties and the convergence behavior of the discontinuous

Galerkin method for linear elasticity and to study the influence of the penalty parameter,

see section 2.4.3, one simple example, which is taken from [51], is calculated. Bilinear

quadratic elements are used.

In the example the deformation of a squared plate of the size 1 × 1, which is fixed at all

sides and loaded by a body force b, is calculated. The choice of the body force allows for

a simple analytical solution of the problem. The body force and the resulting analytical
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B. Numerical study of the dG method for linear elasticity

solution are given as

b =

[

[λ + µ] [1 − 2x] [1 − 2y]

−2µ y [1 − y] − 2 [λ + 2µ] x [1 − y]

]

u =

[

0

−x y [1 − x] [1 − y]

]

. (B.2.1)

To calculate the error of the numerical solution, the numerically calculated displacement

field u is compared to the analytical one ua and the error is derived as

e = |ua − u|, (B.2.2)

To obtain information about the size of the penalty parameter firstly an eigenvalue ana-

lysis of the stiffness matrix is accomplished. Therefore the penalty parameter is varied

whereby the element size is kept constant. When the penalty factor is sufficiently large,

all eigenvalues of the stiffness matrix are positive and the method is stable. For the chosen

example the minimum penalty factor turns out to be ϑ ≈ 2, with θ = ϑ/h [λ+µ]. Since

the factor ϑ is independent of the element measure h, this minimum value will be used

throughout the calculations with a decreasing element size.

In figure B.1 the error in the displacements is plotted against the size of the penalty pa-
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Figure B.2.: Minimal eigenvalue depending on ϑ

rameter. It is clearly visible that the error is highly reduced, when the penalty parameter

exceeds its critical value. A further increase of the penalty parameter does not lead to a

notable improvement of the results. The relation between the eigenvalues of the stiffness

matrix and the error is clarified in figure B.2, where the minimal eigenvalue Λmin of the

stiffness matrix is plotted against the penalty parameter. The strong reduction of the

error coincides with the change of sign of the minimal eigenvalue.

With the information about the penalty parameter the same example is calculated with

different discretizations to check the convergence behavior. Thereby the penalty param-

eter is kept constant at ϑ = 5. For comparison the example is also calculated with the

continuous finite element method. In each case five discretizations are used, with 4, 16,
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B.2. Numerical example

−8 −6 −4 −2 0

−14

−12

−10

−8

DG
FE

PSfrag replacements

j

Γ

j

k

B
S

X

x

ϕ(X)

F

Φ(x)

F−1

1

2

x̄

e

ϑ

Λmin

ln(h)

ln(e)

ln(1/ndof0.5)

2

e

ϑ

Λmin

ln(h)

ln
(e

)

ln(1/ndof0.5)
2

Figure B.3.: Error depending on number of dof

−6 −4 −2 0

−14

−12

−10

−8
DG

FE

PSfrag replacements

j

Γ

j

k

B
S

X

x

ϕ(X)

F

Φ(x)

F−1

1

2

x̄

e

ϑ

Λmin

ln(h)

ln(e)

ln(1/ndof0.5)

2

e

ϑ

Λmin

ln(h)

ln
(e

)

ln(1/ndof0.5)
2

Figure B.4.: Error depending on element size

64, 256 and 1024 elements. Due to the additional degrees of freedom within the discon-

tinuous Galerkin method, the error within the displacement field is plotted against the

number of degrees of freedom in figure B.3 and against the element size in figure B.4.

The results of the continuous finite element method are shown for comparison. The main

result of the numerical study is that the expected quadratic convergence behavior for the

discontinuous Galerkin method is obtained. Since we consider a problem with a smooth

solution the continuous finite element method is superior due to the lower number of

degrees of freedom.
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C. Application of the Material Force Method

The method for cohesive crack modelling, which was introduced in chapter 5 for

finite strains is here applied for the simulation of traction free cracks. The traction

free crack surfaces are simply generated by letting the cohesive tractions vanish. By

means of a numerical study the ability of the proposed approach with the discontinuous

elements to reproduce classical fracture mechanics quantities like the J-integral is studied.

C.1. Motivation

The main goal of the present study is to investigate the applicability of the Material Force

Method in combination with the introduced discontinuous elements in the framework of

fracture mechanics. The developement of the Material Force Method is essentially based

on the exposition of the continuum mechanics of inhomogeneities as comprehensively out-

lined by Maugin [78], Gurtin [45] and Steinmann [118]. Material forces are considered as

the response of variations of material placements of physical particles with respect to the

ambient space. Material forces are especially suited for the assesment of general defects as

inhomogeneities, interfaces, dislocations and cracks. In fracture mechanics the material

forces are directly related to the classical J-integral. First numerical concepts of material

forces within the FE method trace back to Braun [22] who derived node point forces from

the discretized potential energy with respect to the material node point positions, that

contain the material stress in the spirit of Eshelby [37], [38]. The algorithmic represen-

tation of the material balance of momentum resulting in the notion of discrete material

forces is proposed as the so called Material Force Method, see [117] and [118].

In the present approach discontinuous elements are applied which allow for a represen-

tation of the crack independent of the finite element mesh. The construction of the

discontinuous elements and the special treatment concerning the integration over the

splitted elements are explained in the previous chapters. In the following the Material

Force Method is derived, the discrete surface material forces are formulated and details

concerning the special discretization are given. Finally a numerical study is accomplished

to compare the results of different simulations with an analytical solution.
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C. Application of the Material Force Method

C.2. Material Force Method

Starting from the spatial balance of momentum DivP = 0 with the assumption that no

body forces act, a pull back to the material configuration is performed by premultiplying

the equation with F t. With the identity

F t · DivP = Div(F t · P ) −∇XF t : P (C.2.1)

and the integrability condition for F

∇XF t : P = P : ∇XF (C.2.2)

the balance of momentum can be rewritten as

Div(F t · P ) − P : ∇XF = 0. (C.2.3)

We suppose hyperelastic material behaviour with P = ∂Ψ/∂F and substitute

P : ∇XF = ∇XΨ = Div(Ψ I). (C.2.4)

The resulting material balance of momentum reads

Div(F t · P − Ψ I) = 0. (C.2.5)

With the definition of the Eshelby stress tensor Σ
t = Ψ I − F t · P the material balance

of momentum becomes

−DivΣt = 0. (C.2.6)

The strong form of the material balance of momentum is tested by material virtual dis-

placements δΦ. The integration over the domain and the application of the divergence

theorem leads to the material virtual work
∫

∂B

δΦ ·Σt · N e dA =

∫

B+∪B−

∇XδΦ : Σ
t dV. (C.2.7)

The left hand side can be considered as a virtual surface energy and the right hand side

as a virtual internal energy. The boundary of the domain ∂B includes the crack surfaces,

compare figure C.1. The domain is discretized by means of finite elements with shape

functions N i and we end up with the discrete algorithmic material node point forces

Fsur,I = Fint,I =

nel

A
e=1

∫

B+∪B−

Σ
t · ∇XN i dV. (C.2.8)

This material node point forces correspond to variations relative to the ambient material

at fixed spatial positions. During the simulation the material forces are calculated in a
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C.2. Material Force Method
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Figure C.1.: Balance of discrete material node point forces

postprocessing step once the spatial problem has been solved.

The boundary of the domain B is subdivided into a regular part ∂Br and a singular

part ∂Bs, compare figure C.1. The discrete singular material surface force Fsur,s acting

on the crack tip, thus on the singular part of the boundary, is balanced by the discrete

material surface forces on the regular part of the boundary Fsur,r. In addition spurious

material forces Fres within the domain occur which stem from an insufficient discretization

accuracy. An improved value for the discrete singular material force can be obtained by

the sum of all discrete material forces within the domain, compare [28]

Fsur,s =
∑

I∈B\∂Br

Fsur,s,i + Fres,i. (C.2.9)

In the present approach this result is significant since no node exists at the crack tip and

therefore the discrete singular material surface force Fsur,s can only be calculated by the

sum of the discrete material forces within the domain. One has to note that in equation

(C.2.9) the sum excludes the regular part of the boundary. Usually this can be taken

into account by summing over all nodes except these lying at the regular boundary. The

present approach entails the difficulty that no nodes are located at the crack surfaces.

That means that these regular material surface forces are distributed among the nodes

within the domain. Therefore we restrict our approach to mode I problems where the

Eshelby surface tractions at the crack surfaces are balanced and have no influence on

the discrete material forces. If unsymmetric problems are considered a boundary integral

over the crack surfaces Γ+,− has to be calculated to eliminate the contributions of the

boundary Eshelby tractions

Fsur,Γ,I =

nel

A
e=1

−
∫

Γ+

N i
Σ

t + · N dA +

∫

Γ−

N i
Σ

t− · N dA. (C.2.10)

Thereby Σ
+,− denotes the Eshelby stress tensor calculated on either side of the discon-

tinuity and N denotes the normal vector, pointing from B− to B+. Then the discrete

material surface forces resulting from this boundary integral have to be subtracted from

the sum of discrete material forces

Fsur,s =
∑

I∈B\(∂Br\Γ)

Fsur,s,i + Fres,i − Fsur,Γ,I . (C.2.11)

115



“main” — 2006/3/15 — 19:54 — page 116 — #128

C. Application of the Material Force Method

However, in the present application we consider only mode I failure, where the Eshelby

tractions on the crack surfaces are balanced.

In the present approach discontinuous elements are applied which exhibit additional de-

grees of freedom. Naturally material node point forces occur at the new nodes which are

close to the crack tip. Since the discrete material node point forces constitute the discrete

representation of the Eshelby stresses within the elements, the discrete material forces

on the new degrees of freedom simply result from the distribution of the Eshelby stress

within the ’real’ part of the element. Hence the material node point forces of all nodes,

old and new ones, are added up to constitute the discrete singular material surface force.

C.3. Numerical example

In the present numerical example a plane strain single edge notched specimen is consid-

ered. The specimen is loaded by a uniaxial tensile stress, perpendicular to the notch. The
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Figure C.2.: Single edge notched specimen

example is selected since the results can be compared with the analytical solution for the

stress intensity factors. The geometry of the specimen is given as a = 5 mm, b = 10 mm

and h = 30 mm, compare figure C.2. The tensile stress is σ = 10 N/mm2 and the ma-

terial parameters are taken from [118] as E = 206900 N/mm2 and ν = 0.29. Lateral

movements of the nodes at the top and bottom surface are unconstrained. The applied

load magnitude along with the material parameters results in small deformations and

avoids geometrical nonlinearities.

The simulation is accomplished with four different discretizations with 625, 1178, 1734

and 2336 linear triangular elements to check the convergence of the method. The notch

is introduced through the elements, independent of the discretization. The analytical
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C.3. Numerical example

solution for the stress intensity factor is taken from [107] and specifies the stress intensity

factor for the present geometry as K1/K0 = 2.8425 with K0 = σ
√

π a. The results for

the singular material node point force, which are obtained in the simulation are converted

into comparable stress intensity factors. Only the contribution of the material force paral-

lel to the crack surfaces F1
sur,s is considered, which is equivalent to the classsical J-integral.

However, the contribution of the material force perpendicular to the crack surfaces is ap-

proximately zero. The relation between the stress intensity factors and the J-integral

is given as K1 =
√

J E ′ with E ′ = E/(1 − ν2) for plane strain conditions. Table C.1

summarizes the stress intensity factors, calculated with different discretizations, and the

errors in comparison with the analytical solution. The results show significant deviations

nel

√

F1
sur,s E ′/(σ2 π a) deviation

625 2.477 12.86 %

1178 2.532 10.92 %

1734 2.648 6.84 %

2336 2.682 5.64 %

Table C.1.: Convergence of discrete material force

compared to the analytical results but also imply convergence towards the reference value.

The smallest relative error is equal to 5.64 %. The magnitude of the errors is due to the

insufficient approximation of the singular stress distribution close to the crack tip. The

utilized linear triangular elements can not accurately reproduce the stresses and this is

reflected in the high errors of the derived material forces. An improvement of the results

can be obtained by taking into account the singular stress distributions by special crack

tip elements as in [118] or by the use of special enrichment functions in the vicinity of the

crack tip, as supposed in [87]. However, the present results are effectively equal to the

results obtained by standard finite element computations with comparable meshes and an

explicitly meshed crack.
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[84] Miehe, C. & J. Schröder [1994]. ‘Post critical discontinuous localization analysis of

small-strain softening elastoplastic solids.’ Archive of Applied Mechanics, 64, pp. 267–285.
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