
�

Case Adaptation & Reuse in Déjà Vu
Barry Smyth

�

 �
 Department of Computer Science,

 University College Dublin, Belfield, Dublin 4, IRELAND.
 Email: bsmyth@cslan.ucd.ie

Abstract. It is generally agreed that one of the most challenging
issues facing the case-based reasoning community is that of
adaptation. To date the lion’s share of CBR research has
concentrated on the retrieval of similar cases, and the result is a
wide range of quality retrieval techniques. However, retrieval is
just the first part of the CBR equation, because once a similar case
has been retrieved it must be adapted. Adaptation research is still
in its earliest stages, and researchers are still trying to properly
understand and formulate the important issues. In this paper I
describe a treatment of adaptation in the context of a case-based
reasoning system for software design, called Déjà Vu. Déjà Vu is
particularly interesting, not only because it performs automatic
adaptation of retrieved cases, but also because it uses a variety of
techniques to try and reduce and predict the degree of adaptation
necessary.

1 INTRODUCTION

Déjà Vu is a case-based system for designing industrial
device control software. Its main application domain is the
control of robotic vehicles and machinery in steel-mill s.
These mill s contain various types of vehicles (called Coil -
Cars), loading bays (called Skids), and pressing devices
(called Tension-Reels) which have a wide range of device
configurations and operational settings. Important tasks
include the loading and unloading of coils and spools of
steel and the transport of coils by vehicles (see Smyth &
Cunningham, 1992; Smyth & Keane, 1994).

The main objective of this paper is to outline the
adaptation process in Déjà Vu. However, before this, the
next section briefly explains how Déjà Vu tries to minimise
the need for adaptation by supporting the reuse of multiple
cases and by using a sophisticated adaptation-guided
retrieval technique. The structure of adaptation knowledge
is described in section 1.3, and an example of how this
knowledge is used during adaptation is the topic of section
1.4. Section 1.5 looks at some related work, focusing not
just on adaptation but also on retrieval, and the reuse of
multiple cases. Section 1.6 outlines the strengths and
limitations of the approach taken, and section 1.7
concludes with a list of further issues and questions.

2 AVOIDING ADAPTATION IN DÉJÀ VU

In may seem rather strange to begin a paper on adaptation
by describing how a system avoids it, but this idea is
fundamental to Déjà Vu’s philosophy. The standard,
“single-shot” model of CBR (i.e., reusing only a single
case) has been extended in two ways: (1) Déjà Vu uses a
technique called hierarchical case-based reasoning
(HCBR) to support the reuse of multiple cases; (2) An
retrieval approach called adaptation-guided retrieval

(AGR) which ensures that adaptable cases are always
retrieved. Both of these extensions minimise the amount of
adaptation that is necessary in a typical problem solving
session.

2.1 Hierarchical CBR

New target problems are solved by retrieving, adapting and
combining solutions from a number of relevant cases, at
varying levels of abstraction. In effect, Déjà Vu integrates
decompositional and case-based design processes to solve
complex problems in a top-down fashion. Complex
problems are stored as hierarchical collections of cases, and
individual cases describe part of a more complex solution
at some given level of abstraction.

There are two principal case types, abstract or detailed.
Abstract cases contain high-level design solutions. In fact,
an abstract solution can be viewed as a set of sub-problems
so that the retrieval and adaptation of an abstract case
actually results in the definition of new target sub-problem
specifications which must be solved by further CBR cycles.
In this way abstract cases are used to decompose complex
problems into simpler problems. In contrast, detailed
design cases contain actual plant-control software code,
and the retrieval and adaptation of one of these cases
completes part of the overall target problem solution. (see
also Smyth & Cunningham, 1992; and for related work,
Maher & Zhang, 1993; Branting & Aha, 1995)

HCBR reduces the adaptation load by reusing the best
parts of many larger solutions rather than insisting on the
reuse of a single monolithic solution. Indeed, without
HCBR it would not be possible to solve complex plant-
control problems except by using extremely large case-
bases or very sophisticated adaptation facilities.

2.2 Adaptation-Guided Retrieval

The AGR philosophy states that at all ti mes we should try
to retrieve a case which is not only adaptable, but which is
the easiest of those available to adapt. This is made
possible in Déjà Vu by using adaptation knowledge during
retrieval to determine the adaptation requirements of cases.
In short, a case is only retrieved if there is evidence, in the
form of adaptation knowledge, that it can be adapted to fit
the target problem, and if its predicted adaptation cost is
the best available. Furthermore, AGR works without
overburdening the retrieval stage (see Smyth & Keane,
1994).

Experiments demonstrate that AGR does indeed
significantly reduce the adaptation load when compared to
more standard similarity-based retrieval methods. Overall
costs are further reduced because one of the side-effects of

�

AGR is the identification of relevant adaptation
knowledge, thereby setting up the adaptation stage (see
Smyth & Keane, 1995, and for related work Purvis & Pu,
1995)

3 ADAPTATION KNOWLEDGE

In case-based reasoning systems adaptation knowledge is
needed to make changes to the solutions of retrieved cases.
Plant-control software solutions are represented as graph
structures. Individual nodes correspond to solution
commands and the connections between nodes encode
sequential and parallel control flow.

Adaptation knowledge must specify how, and under what
conditions, these solution graphs are to be modified. Déjà
Vu uses 3 basic adaptation operators to perform node
substitution, node insertion, and node deletion. Adaptation
knowledge contains sequences of these operators. There
are two basic forms of adaptation knowledge. The first is
an adaptation specialist, these are designed to perform
specific adaptation tasks. The second form is an adaptation
strategy, and these encode more general modifications, and
can be used to co-ordinate specialists as well as resolve
adaptation conflicts. Both types of adaptation knowledge
are used during retrieval as well as during adaptation, and
both can be used to modify detailed design cases as well as
abstract cases.

3.1 Adaptation Specialists

The most common reason for adaptation is that there are
differences between the target problem and base case. For
example, different entities may be used, or different tasks
may be performed, or different operational constraints may
be valid. Typically, to compensate for such, the base
solution will have to be modified by making various
substitutions or structural changes, and it is these type of
adaptations that specialists are designed to handle.

For example, one common plant-control task is the MOVE

task, in which a vehicle (COIL-CAR) is moved from one
location to another using either 1-SPEED or 2-SPEED

motion. In 1-SPEED motion the vehicle moves at its slow
speed until reaching a destination, whereupon the
activation of a sensor stops the vehicle. In 2-SPEED motion
the vehicle initially moves at its fast speed, at a certain
distance (vehicle dependent) before the destination it slows
down, and finally on reaching its destination it stops. When
solving MOVE problems, cases will often be retrieved that
differ from the target in terms of their destination locations,
or their vehicles, or their speed of motion. Each of these
differences will require certain types of adaptation. For
instance, if the target problem specifies a different
destination, then the command in the base solution which
checks if the vehicle has reached its destination must be
adapted. In addition, the destination change may alter the
direction of travel, and hence direction adaptations may
also be required. If there is a speed difference, then this can
mean adding or removing nodes from the solution
depending on the type of speed difference.

3.2 Adaptation Strategies

Specialists make localised changes to solutions, and they
are blind to the changes made by other specialists.
Problems arise when the actions of specialists conflict to
invalidate their combined actions; similar interaction and
conflict problems have plagued the planning community
for decades. Some way of co-ordinating specialists and
resolving their implicit conflicts is needed. This is the role
of adaptation strategies.

Co-ordination Problems: Often a retrieved case will
need to be adapted by more than one specialist, each
working on different parts of the solution. This picture is
complicated by the fact that sometimes the operation of one
specialist depends on an adaptation made by another. A co-
ordination mechanism is needed to ensure that this
condition is satisfied during the adaptation stage. This is
the role of a CO-ORDINATION strategy. Its job is to
recognise ordering constraints between relevant specialists
and to use these constraints to compute an appropriate
activation schedule.

Interaction Problems: Sometimes conflicts between
specialists may be so serious that they cannot be resolved
by simply co-ordinating and scheduling the action of
specialists. For instance, even when there are no immediate
conflicts between specialists, it can happen that through the
action of one specialist, a totally new conflict is introduced,
which of course must then be resolved. For instance, a
balance-interaction conflict is said to occur when the value
of one feature is proportionally dependent on another,
because adapting one feature may have an adverse effect on
the validity of the other. For example, when moving a
COIL-CAR across the factory floor the height of its li fter
platform must be adjusted to accommodate the load being
transported. There is a balance condition between the
height of the li fting platform and the diameter of the load.
In general, empty coils (spools) can be carried at the COIL-
CAR’S carrying-level height, while the larger coils must be
carried at the COIL-CAR’S lower-limit height setting. If this
balance is not properly maintained then a failure may occur
(the COIL-CAR may colli de with an overhead obstacle). The
repair action for this conflict is to make sure that a
compensating adaptation is performed to restore the
balance condition. The BALANCE-INTERACTION strategy
uses this approach.

4 AN ADAPTATION EXAMPLE

It has been mentioned in section 2 that the result of
adaptation-guided retrieval is, not only the selection of a
suitable base case, but also a list of the adaptation
specialists and strategies relevant to the adaptation of this
case. Previous work has described in detail how retrieval
operates and how this relevant knowledge is located
(Smyth & Keane, 1993, 1995). Here we will explain,
through a worked example, how specialists and strategies
are used during adaptation to modify the base solution to
fit the target problem.

�

� � � � � � 	
 � �
 � � � � � � �

� � � �� � � � � � � � � �
� � !� � " # $ � % &

' () *+ + , - , . / 0 0 1
2 3 (4� � " # $ � % &

2 5 (6+ + , - , . / 0 0 1

� � � � � � � � � � � !
7 8 8 9 9: � ; � % �< # = & � �

+ + , - , . / 0 0 1 > 5< # = & � �

' () *+ + , - , . / 0 0 1
2 3 (4

? (@ 4 > @ A
2 5 (6+ + , - , . / 0 0 1

+ + , - , . / 0 0 1 > 5
B * C D E (C , F * * 3 , -

G H I J K L I M N O L P Q O R S P Q Q T M U V
W X I I N O R Y I Z K U [M I U O \ K K N O R] [M U V R O
W X K K ^ H I Y M I U _

G H I J K L I M N O L P Q O R S P Q Q T M U V P L I M N O R Y I
W ` M ^ O R] [M U V a O W X K K ^ H I Y M I U _

(2) Move-Destination-Spc

(3) Move-Direction-Spc

Adaptation Specialists

Adaptation Strategy

(1) Co-ordination-Stg

(2) Balance-Interaction-Stg

� � � �� � � � b = ; ! � %
! � � � � � � b � $ � % � b = 9 = !� = c � � � < d � � & 9 � ! = � c

Load-Diameter Lifter-Level

Spool-Diam
Coil-Diam

>

Lower-Limit
Carrying

-Level
<

Balance

(1) Move-Speed-Spc

B
e
f
o
r
e

e � � � 	 f � �
 � � � � � � �

Figure 1. An example adaptation scenario.

Figure 1 ill ustrates the adaptation of a 1-SPEED MOVE case
to solve a 2-SPEED target problem. Both problems share
certain features, such as the type of task and the vehicle
used, but they differ in terms of speed requirements, the
destination location, and the content being carried. These
differences signal the need for a number of specialists: (1)
The speed specialist is need to transform the single speed
solution into a two speed solution by adding extra nodes as
shown (the two new noes have a dashed outline); (2) the
destination specialist is needed to substitute the target
destination (SKID-1) for the base destination (TENSION-
REEL-1) in the sensor-check nodes that determine the
distance of the vehicle from its destination; (3) the
direction specialist is needed because, since the vehicle is
travelli ng to a different destination, it is also travelli ng in a
different direction, and so the direction parameter of each
move command must be adapted. Note that the
substitutional changes are shown in Figure 1 by
underlining the new terms and using italics in the target
solution graph.

On their own these specialists do not fully adapt the base
solution. First of all co-ordination is needed between the
speed specialist and the destination and direction
specialists. The speed specialist adds new solution nodes,
and these nodes will be later modified by the destination

and direction specialists. So we must ensure that the speed
specialist performs its actions first. The need for this type
of co-ordination is recognised and performed by the CO-
ORDINATION strategy because there is a BEFORE relation
between the dependant specialists.

Another interaction problem exists because of the
difference in content between the target and base. As
explained above there is a balance condition between the
content being transported and the vehicle’s li fting platform
height. The base case carries a small diameter empty spool
but the new target solution will carry a large diameter coil .
Therefore, we must ensure to lower the li fting platform
height to restore the balance condition. This means that a
new node has to be added to the target solution to handle
this lowering task before the main MOVE solution proceeds
an abstract node is added as shown that specifies a new
LIFT sub-problem (this new node is drawn with a dashed
outline).

5 DISCUSSION & COMPARISONS

The main goal of the workshop is to:

“ … develop a framework of design options in
adaptation. This will be done in a bottom up way, by

g

asking system developers to identify and rationalize
common and different features, shortcomings and
strengths of their systems”

To promote an organised exchange of ideas the workshop
papers have been divided into a number of clusters dealing
with specific adaptation-related themes. In this section I
will address two of these themes and compare Déjà Vu to
similar systems in the appropriate clusters.

5.1 Abstraction

In section 2 of this paper I described how an important
feature of Déjà Vu is its hierarchical CBR method which
makes use of case hierarchies during problem solving. In
particular, each problem is represented in the case-base as a
hierarchy of cases at various levels of abstraction.
Currently the system makes use of explicit levels of
abstraction by using an abstraction vocabulary. This
vocabulary extends the primitive solution operator set to
include abstract operators, which are then used in the
abstract cases. In this way Déjà Vu’s case hierarchies share
much in common with the type of plan hierarchies that are
automatically built by the PARIS system (Bergmann &
Wilke, 1995, 1996). In particular, both systems make use
of abstract knowledge that is represented as actual high-
level solution code.

The EADOCS system (Netten & Vingerhoeds) also uses
abstraction knowledge, however, unlike Déjà Vu and
PARIS this knowledge is not stored with the structure of
abstract cases. Instead a separate knowledge source is used
to specialise design problems to formulate more tractable
sub-problems. Thus, abstraction knowledge is explicitl y
encoded within a set of specialisation rules. Moreover, in
EADOCS a static set of specialisation knowledge seems to
be encoded within fixed decomposition strategies thus
limited the flexibility of specialisation.

Of course the main reason that abstraction is used at all i s
to help reduce the adaptation overhead. In the case of Déjà
Vu and PARIS complex problems are more easily solved at
high-levels of abstraction, with the resulting high-level
solutions leading to the formulation of lower-level sub-
problems during decomposition.

The main condition that must be satisfied in order to use
Déjà Vu hierarchical CBR method is that the domain must
be decomposable. A similar condition must be satisfied if
the PARIS approach is to be used. However, an advantage
that PARIS has over Déjà Vu is that it has the abilit y to
automatically produce abstract cases. Déjà Vu does not
have this facilit y and thus the case hierarchies must be
carefully hand-coded, adding to the overall knowledge
acquisition cost.

5.2 Decomposition & Incremental Adaptation

In earlier sections I have described how Déjà Vu uses a
combination of decomposition and adaptation to reuse
cases to solve new target problems. One of the advantages
of Déjà Vu’s decomposition technique is that it does not
relay on static decomposition knowledge. Instead, the case
hierarchies drive the decomposition process, and
decomposition is a direct result of the retrieval and
adaptation of abstract cases. In this context Déjà Vu is

similar to PARIS (Bergmann & Wilke, 1995, 1996)
because it permits the explicit reuse of previous problem
decompositions (the abstract case solutions) and it is these
adapted decompositions that guide the decomposition
process. However, an important difference between Déjà
Vu and PARIS is that Déjà Vu refines its abstract solutions
by the further retrieval and adaptation of more concrete
cases, while PARIS uses search-based refinement methods.
In other words, when Déjà Vu retrieves and adapts an
abstract case, thereby introducing addition sub-problems
that must solved, it goes on to retrieve and adapt new cases
with which to solve these sub-problems, rather than using a
search-based solution approach.

Purvis and Pu (1995, 1996) describe a system called
COMPOSER which also reuses multiple cases, where
decomposition is a direct consequence of the way that
different cases match different parts of the target problem;
these partially matching cases are all reused. Like Déjà Vu,
decomposition is dynamic, and depends predominantly on
the current case-base organisation and target problem
structure, however the explicit reuse of abstract cases (or
previous problem decompositions) does not directly occur.

Netten & Vingerhoeds (1996) also advocate the use of
problem decomposition during design in the EADOCS
system. However, the decompositional component of
EADOCS is limited by the use of static decomposition
methods.

5 STRENGTHS & LIMITATIONS

Hierarchical CBR and AGR both reduce the adaptation
load by reusing and combining optimal cases. Because of
this it is possible to encode the required adaptation
knowledge as a collection of about 30 - 60 domain specific
specialists and much smaller number of general repair
strategies (about 4 strategies are usually used).

Currently, Déjà Vu has been validated on a diversity of
plant-control tasks covering a wide range of steel-mill
configurations and layouts. In addition, preliminary studies
have been carried out in alternative domains which suggest
that the idea of characterising adaptation knowledge as
specialists and strategies is one that will successfully
transfer to many other application areas; to date we have
also looked at graphical-user interface design. Moreover, it
should be noted that while adaptation specialists will t end
to change from one domain to another, the adaptation
strategies should be reusable because they encode very
general types of repair knowledge.

6 FURTHER ISSUES & QUESTIONS

•• Obviously there is trade-off between the case-base and
the adaptation knowledge, in the sense that adaptation
allows us to bridge gaps in the case-base and vice
versa. Should adaptation have limited scope in CBR? If
so, how can we discuss & characterise these limits?

•• Is there a correlation between domain characteristics
and the type of adaptation that is supported by a
system, or the type of adaptation knowledge that is
used? What sort of predictions can we make about the
type of adaptation that is most useful in a given domain
or for a specific task?

h

• • How can we measure the coverage of adaptation
knowledge? For example, in Déjà Vu part of the
scaling-up problem is simply recognising that suff icient
adaptation knowledge has been encoded, or conversely
determining that additional knowledge is needed. Is
there any way that we can monitor and guide the
acquisition of adaptation knowledge?

•• Is it always possible to predict the cost of particular
types of adaptation so that we can avoid expensive
adaptation during retrieval?

REFERENCES

Bergmann, R., & Wilke, W. (1996) PARIS: Flexible Plan
Adaptation by Abstraction and Refinement. Proceedings of
the Workshop on Adaptation in Case-Based Reasoning,
12th European Conference on Artifi cial Intelli gence,
Budapest, Hungary.

Bergmann, R., & Wilke, W. (1995) Building and Refining
Abstract Planning Cases by Change of Representation
Language. Journal of Artifi cial Intelli gence Research, 3,
pp. 53 - 118.

Branting, L. K. & Aha. D. W. (1995) Stratified Case-Based
Reasoning: Reusing Hierarchical Problem Solving
Episodes. Proceedings of the 14th International Joint
Conference on Artificial Intelligence. Montreal, Canada.

Hammond, K. (1989) Case-Based Planning. Academic
Press.

Kolodner, J. (1989) Judging Which Is the "Best" Case for a
Case-Based Reasoner. Proceedings of the Case-Based
Reasoning Workshop. Florida, USA.

Maher, M. L. & Zhang, D. M. (1993) CADSYN: A Case-
Based Design Process Model. Artifi cial Intelli gence for
Engineering Design, Analysis, and Manufacturing., 7(2),
pp. 97-110.

Netten, B.D., & Vingerhoeds, R. A. (1996) Adaptation for
Conceptual Design in EADOCS. Proceedings of the
Workshop on Adaptation in Case-Based Reasoning, 12th

European Conference on Artifi cial Intelli gence, Budapest,
Hungary.

Purvis, L., & Pu, P. (1996) An Approach to Case
Combination. Proceedings of the Workshop on Adaptation
in Case-Based Reasoning, 12th European Conference on
Artificial Intelligence, Budapest, Hungary.

Purvis, L. & Pu, P. (1995) Adapting Using Constraint
Satisfaction Techniques. (Ed.s M. Veloso & A. Aamodt)
Case-Based Reasoning: Research & Development -
Proceedings of the 1st International Conference on Case-
Based Reasoning. Springer-Verlag

Smyth, B. & Cunningham, P. (1992) A Hierarchical Case-
Based Reasoning System for Software Design. Proceedings
of the 10th European Conference on Artifi cial Intelli gence,
Vienna, Austria.

Smyth, B. & Keane, M. T. (1995) Experiments on
Adaptation-Guided Retrieval in a Case-Based Design
System. (Ed.s M. Veloso & A. Aamodt) Case-Based
Reasoning: Research & Development - Proceedings of the
1st International Conference on Case-Based Reasoning.
Springer-Verlag

Smyth, B. & Keane, M. (1994) Retrieving Adaptable
Cases. (Eds. M. Richter, S. Wess, and K-D Dieter) Topics
on Case-Based Reasoning. Lecture Notes on AI. Springer-
Verlag.

