Stop Location Design in Public

Transportation Networks:
Covering and Accessibility
Objectives:

Dwi Retnani Poetranto®, Horst W. Hamacher®?, Simone Horn®, Anita
Schébel®.

@ Fachbereich Mathematik, Universitdt Kaiserslautern, Postfach 3049, Kaiserslautern,
Germany
® Institut fiir Numerische und Angewandte Mathematik, Georg- August-Universitét

Gottingen, Germany

Abstract

In StopLoc we consider the location of new stops along the edges
of an existing public transportation network. Examples of StopLoc in-
clude the location of bus stops along some given bus routes or of railway
stations along the tracks in a railway system. In order to measure the
“convenience” of the location decision for potential customers in given
demand facilities, two objectives are proposed. In the first one, we give
an upper bound on reaching a closest station from any of the demand
facilities and minimize the number of stations. In the second objec-
tive, we fix the number of new stations and minimize the sum of the
distances between demand facilities and stations. The resulting two
problems CouvStopLoc and AccessStopLoc are solved by a reduction to
a classical set covering and a restricted location problem, respectively.
We implement the general ideas in two different environments - the
plane, where demand facilities are represented by coordinates and in
networks, where they are nodes of a graph.
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1 Introduction

The acceptance of public transportation is depending on various components
such as competitive fares, convenience, punctuality, reliability, etc. In this
paper, we address the question of convenience. In particular, we investigate
the problem of finding “good” locations for stops in order to allow potential
customers to access the public transportation system within a reasonable
amount of time (StopLoc problems).

Due to their great potential for improved public transportation systems,
several versions of StopLoc have been considered by various authors in the
last years. A survey on relevant theory and current solution methods can
be found in the monograph of Schébel [Sch06]. The public transportation
system is defined by a Public Transportation Network (PTN), which is
an undirected graph PT'N = (V, E) with node set V consisting of existing
stops Viiop and breakpoints Viyeqr, i.e., V' = Viiop U Vipear, and edge set E
(containing direct connections between nodes in V). In the following, we
assume that the PTN is embedded in the plane. The potential customers
of the public transportation system are modeled as demand facilities, for
which we assume that the distance to any point of the PTN is known. In
order to find “good” locations, several objective functions are possible.

One of the most frequently discussed goals is to minimize the number of
stops such that each demand facility is within a tolerable distance from at
least one stop. The maximal distance that a customer is willing to tolerate
is called covering radius and we therefore call this type of stop location
problem Cowvering Stop Location problem, or CovStopLoc for short. For bus
stops a covering radius of 400 m is common, meaning that customers are
only willing to use public transportation, if the next stop is within a distance
of at most 400 m. In rail transportation, the covering radius is larger and
is usually assumed to be 2 km.

In the literature, CovStopLoc has been introduced in [Gle75] and is con-
sidered for example, in [MDSF98, MurOla, MurOlb, LMOO02], see also refer-
ences therein. In these papers, StopLoc is treated in a discrete setting, i.e.,
a finite set is considered as potential new stops. [SHLWO02] however, allow
a continuous set of possible locations for the stops, for instance, all points
on the current bus routes or railway tracks. An application of continuous
CovStopLoc is given in [HLST01], where the authors report on a project
with the largest German rail company (Deutsche Bahn) and consider the
trade-off between the positive and negative effects of stops. The negative
effect of longer travel times due to additional stops is compared with the
positive effect of shorter access times, and the goal is to find locations for
new stops that maximize the difference of the two effects.

Based on this application, variants of continuous CovStopLoc have been
treated in [KPST03, Sch05]. The problem has been solved for the case of



two intersecting lines, see MMWO04]. Algorithmic approaches for solving the
underlying covering problem have been studied in [RS04, MWO04]. Recently,
complexity and approximation issues have been presented in [MSWO05].

In our paper, we will focus on two variants of StopLoc which will be
considered in a planar and in a network environment. In the former case
the demand is concentrated in points p,, = (Pm1,Pm2), m = 1,..., M of the
Euclidean plane R?. In the latter case the demand originates in nodes of an
extended network.

The first variant of StopLoc, CovStopLoc, was explained before. We
review results for the planar case from the literature. The network case has
to the best of our knowledge not been considered before. We present new
results which were motivated by the thesis of Horn [Hor04].

In the Access Stop Location Problem (AccessStopLoc) we minimize the
overall distance, i.e. the sum of the distances between the demand facilities
and their closest stations. In spite of its obvious application potential, this
problem has not been considered in the literature so far. AccessStopLoc was
first introduced in the thesis of Poetranto [Poe04] where it is treated as a
restricted median location problem.

The remainder of our paper is structured as follows. In the next sec-
tion CovStopLoc and AccessStopLoc are formally introduced, both in the
planar and network environment. In Section 3 we show that CovStopLoc
can be reduced to a classical set covering problem, by identifying a finite
dominating set (FDS). We will show that such an FDS can be found ef-
ficiently in both environments. Algorithms for solving AccessStopLoc are
presented in Section 4. We give a reformulation of the problem as restricted
location problem and show how to solve it for the planar and for the net-
work case. We finish the paper by a conclusion, in which we sketch ideas on
how to extend the theory presented in the previous sections. In particular,
we consider an equity objective which can be tackled by either of the two
approaches of Sections 3 or 4.

Throughout, we assume that the reader is familiar with basic concepts
of location theory (see, e.g., [LMWS88, FLMW92, Ham95, Das95, DH02]) .



2 Covering and Access Problems

In this section, we formally introduce the Covering and Access Stop Location
Problem in planar and network environments.

The new stops are selected among the points of a given public transporta-
tion network (PTN). A PTN consists of an undirected, connected graph
G = (V, E) where the edges e = (v;,vj) € E between nodes v; and v; are
part of public transportation lines. We assume that the graph has a pla-
nar embedding such that the edges are represented as straight lines (this
can always be enforced by adding nodes at crossing points of an originally
given PTN). Each edge e has an associated length [, which is a real number
representing physical length or travel time. A point s € G of the graph
G = (V,E) is either a node or strictly contained in an edge e = (v;,v;). In
both cases, we often use the denotation s = (e, t) where 0 < ¢ < 1 and where
the distance between s and v; is tl. and between s and v; is (1 — t)le.

The potential users of the public transportation system are assumed to
be represented by a finite set P = {p1,...,par} of demand facilities. For
each demand facility p € P and point s € G we assume that a distance
d(p,s) € Ris known. If S C G is a subset of points, then

d(p,S) :=min d(p,s). (2.1)

seS

In this paper, we consider two versions of stop location problems.

In the Covering Stop Location Problem (CovStopLoc) a real number r
is given as radius. It is assumed that customers will not use the public
transportation system if the distance to a station is larger than r. In Cov-
StopLoc we want to find a set of locations for stations, which is a subset
S C G = (V, E) with minimal cardinality, such that every customer in one
of the demand facilities can reach at least one of the new stations located
in some s € § with a distance of at most . Hence we want to solve the
following problem.

minimize |S]|
subject to d(p,S) <r VpeP (CovStopLoc)
S CG.

In the Accessibility Stop Location Problem (AccessStopLoc) a positive inte-
ger k is given which is maximal number of stations which can be built. We
want to find in AccessStopLoc a subset S C G = (V, E) with |S| < k such
that its overall distance to the demand facilities is minimized. If we measure
the overall distance by the sum of the distances from S to all customers, the
resulting problem is the following.



minimize f(S) = Z d(p,S)

peEP
subject to S C G
S| <k

(AccessStopLoc)

Both versions of the stop location problem include the distance d(p, s)
between demand facilities and points in the PTN in their formulations. We
have two different environments, where distances are defined.

In the planar environment we use the given straight line planar embed-
ding of the PTN G = (V,E). Here, any point s of the graph G can be
interpreted as a point s = (s1, 52) in the Euclidean plane R2. If we addition-
ally assume that for each m = 1,..., M the demand facility p,, = (Pmm1, Pm2)
is also a point in the Euclidean plane R2, then d(p,s) can be any distance
function in R?, for instance, the rectangular distance

d(p,s) := l1(p,s) := |p1 — s1] + |p2 — s2|.

In the network environment, the PTN is part of a larger network, the
street and public transportation network (SPTN) G = (V,&), where V =
VUP and E C £. The edges in € \ F represent streets which can be used
by potential passengers to reach one of the new stations. An example of a
SPTN is given in Figure 1.

Demand facilities, P

O

| Existing stops, Vitep

o Breakpoints, Virear
—_— Lines in PTN, E

——  Streets, E\ E

Figure 1: Street and Public Transportation Network.

The distance d(p, s) is the shortest path distance in G, if both p and s
are nodes of G, i.e. p € P and s € V. We denote this network distance in
the following with ND(p,s). If s = (e,t) is a point of the PTN inside the
edge e = (v;,v;) € E (i.e.,, with 0 <t < 1) and p € P, then

ND(p,s) :==min {ND(p,v;) +tle, ND(p,v;) + (1 —t)l.}. (2.2)



The distance ND(p,s) as a function of ¢ if we fix p € P and move
s = (e, t) along an edge e is illustrated in Figure 4.

Having defined two different versions of StopLoc and two environments,
we can define four types of StopLoc. The key in tackling these four problem
types is a discretization based on the following properties.

1. The finite dominating set (FDS) property reduces the continuous Sto-
pLoc to one, where only a finite candidate set S.qung has to be consid-
ered to choose locations for new stations.

2. The polynomiality property yields a set Scqng which is polynomial in
the size of the problem.

If both properties are satisfied for one of our problems, the following
algorithmic approach is straightforward.

Algorithm : Generic algorithm for StopLoc

Input : PTN = (V,E), demand facilities P = {p1, ..., pps } C R2.
Output : S* optimal stops.

Step 1: Determine the set of candidates Scung-

Step 2: Let S&* = argmin {f(S):S € Scana}

Step 3 : Output: S§*

In the following sections we will consider this approach in more detail.



3 Covering

In this section we assume that a radius r € R is given.

Definition 3.1. (Cover) A demand facility p € P is covered by a point s
in the PTN G = (V, E) if d(s,p) < r. For a set S of points in G we define

cover(S) = {p € P :d(s,p) <r for some s € S}. (3.1)

If S = {s} is a singleton we use the denotation cover(s) instead of cover({s}).
S is called a cover of P if all p € P are covered by some s € S, i.e., for all
p € P there exists some s € S such that d(s,p) <.

The Covering Stop Location Problem (CouvStopLoc) is thus the problem
of finding a cover with smallest cardinality.

For any finite set Sgang € G of points in the PTN G = (V, E) which
contains candidates for the location of new stations we can define a binary

matrix A = (aps)pep  Where
SEScand

[ 1 ifd(p,s)<r
ps = { 0 else (3.2)

Since any subset S C S..nq can be represented using its characteristic
vector & = (z) defined by

1 ifseS
Ts = { 0 else, (3.3)

the discrete CovStopLoc, where we allow only stops from the set Scqng, can
be written as the following integer program:

min Z T (3.4)

SEScand

s.t Z apsts > 1, VpeP (3.5)
SEScand
xs €{0,1}, Vs € Scand (3.6)

The objective function (3.4) represents the number of selected candidates
and the constraint (3.5) guarantees that each demand facility is covered by
at least one selected candidate. The integer program (3.4 - 3.6) is obviously
the well-known set-covering problem.

In order to show that every CovStopLoc can be written as set-covering
problem, we need to establish the FDS and polynomiality properties intro-
duced at the end of Section 2.



We begin with the definition of candidate set
Scand = {s € G : Ipy, € P with d(pm,s) =r} (3.7)

where the distance function d is the rectangular distance for planar environ-
ment and the network distance N D given by (2.2).

In order to prove the dominance property of Scunqg defined by (3.7),
we call § € Scung a neighbored candidate of s € G, if there exists a path
Path(s,§) in the PTN with the following property. None of the points
strictly between § and s on the path is contained in Scung-

Lemma 3.2. Let s be a point in G which is not a candidate and let 5 be a
neighbored candidate of s. Then

cover(s) C cover($) (3.8)
Proof. Suppose cover(s) ¢ cover(s). Then there exists some p € P with
d(p,s) <rand d(p,8) >r

Since the distance function d is continuous and the path is connected, the
intermediate value theorem yields some § € Path(s, §) such that d(p, ) = r.
Hence, § € S.4n4, contradicting the definition of s and § as two points on G
such that there exist no candidate along Path(s, §). O

The dominance property for Scqnq is now an immediate consequence of
Lemma 3.2.

Theorem 3.3. If CovStopLoc is feasible, then there exists an optimal solu-
tion S C Seand-

Proof. Let S be optimal and 8 € Scang. Take any s € S\ Seana and let §
be a candidate and Path(s, §) be a path not containing any other candidate
point. We define

S=8\{s}u{s}.
-

Due to Lemma 3.2, cover(s) C cover(§) and consequently

P = cover(S) C cover(S),

i.e., S is also feasible. Furthermore, |5 | < |S| and S contains strictly less
stops which are not in S..,q. We can iterate this process until all stops in
S\ Scana are replaced by stops in Seang- O

To show the polynomiality property of Scqng, we first consider CovSto-
pLoc in the planar environment where the distance is measured with rect-
angular distance. The candidate set defined in (3.7) is given by the intersec-
tion points of G with the boundaries of the rectangular unit balls of radius
r about the demand facilities p (see Figure 2).



O Demand facilities, P
[ J Breakpoints, Visear
——  Existing tracks/routes £

@) Candidates, Scana

Figure 2: Candidates for CovStopLoc in planar environment.

In [SHLWO02] it was shown that if Sc4pq is finite dominating set for the
continuous StopLoc, then it consists of at most O(M|E|) candidates and
hence satisfies the polynomiality property. Otherwise, if the boundary of
some rectangular unit ball contains a linear piece which coincides with G in
infinitely many points (see Figure 3), [SHLWO02] proved that only the end
points of the corresponding interval need to be considered. Hence, also in
this case there are at most O(M|E|) candidates altogether.

Figure 3: Candidates for CovStopLoc where some edge of the PTN coincides
with a segment of some rectangular ball.

As a result, we get the following theorem.

Theorem 3.4. In planar environment where the distance is measured with
rectangular metric, the candidate set for CovStopLoc as defined in (3.7) is
finite with polynomial cardinality.

The resulting discrete optimization problem turns out to be a set covering
problem. For some special cases (e.g. if the graph G consists of points
along a straight line) the problem is solvable efficiently in polynomial time.
Details can be found in [SHLW02, Sch06]. Moreover, it was shown that the
dominance property of a finite candidate set of polynomial cardinality still



holds when covering is defined with respect to an arbitrary norm or even a
gauge.

In the following, the distance between demand facilities p € P and points
s € S is given by the network shortest path distance N D(p, s) given by (2.2).
The next theorem shows that in the network environment, Scqnq is also a
finite set of polynomial cardinality.

Theorem 3.5. Given an instance of the network CouvStopLoc with edge set
E in the underlying PTN and demand facilities P. Let

Scand = {s € G : Ipy, € P with ND(py,,s) =r}
be the candidate set defined in (3.7). Then
|Scanal < 2|E[[P]. (3.9)

Proof. Consider a demand facility p € P and a point s = (e, t) on edge e € E.
From the definition of network distance given by (2.2), it follows that if we
move s along e, then ND(p,s) = ND(p, (e,t)) is continous, concave, and
piecewise linear in ¢ with at most two linear pieces with slopes I, and —I,
respectively (see Figure 4).

ND(p, (e, t)) ND(p, (e, t))

Figure 4: Network Distance.

Thus, given r € R, there exist at most two points on edge e that have
distance exactly r from p, and the result follows. O

10



4 Accessibility

The Accessibility Stop Location Problem (AccessStopLoc) as introduced in
Section 2 is

minimize f(S) ::Z d(p,S)

peEP
subject to S C G
IS| < k

(AccessStopLoc)

Recall that G = (V, E) is the public transportation network (PTN) and
S C @ indicates that S is a subset of the points of the PTN. Thus Ac-
cessStopLoc is a special case of the restricted location problem as discussed,
for instance, in [Ham95, NH95, HS97]. More specifically, AccessStopLoc
is a restricted k-median problem, where the (at most) k new locations are
required to be points of the PTN.

Two problems are considered, completely redesigning all stops and open-
ing additional stops. In the first problem, we assume that the customers will
be served only by the new stops, thus we look for §* C G that minimizes
the objective function:

min f(S) =Y d(p,S) (4.1)
peEP

In the second model, we assume that some stations do already exist in a
subset Vo, € V and the customers can go to both the existing and the new
stops, whichever is closer. For this model, the objective function is:

min f(S) = d(p, Vitop US) (42)
peEP

where d(p, Vitop U S) := mingev,,,,us d(p,s) is the distance between a de-
mand facility p and the set Vo, US of existing and new stops.

As for the covering objective function, we will show in the following sub-
sections that AccessStopLoc can be solved using the FDS and polynomiality
property in the planar as well as in the network environment.

4.1 Accessibility Problem in Planar Environment

In this section, we will explain our ideas for solving the planar AccessStopLoc
using the rectangular distance

d(p,s) :=|p1 — s1| + |p2 — s2|-

As will be shown in Section 5, these ideas can be carried over to other
distance functions, for instance, polyhedral gauges.

11



4.1.1 Single Location AccessStopLoc

We begin with the special case of establishing only a single new stop. More-
over, we first assume that all demand facilities are served by the new stop,
i.e., there is so far no stop in the PTN. (Later in this subsection we will
relax this condition.)

Using the definition of the rectangular distance and the denotation f(s)
instead of f({s}) and denote the index set {1,..., M} by M we can rewrite
Equation (4.1).

min f(s) = Z l1(pm 8)

meM

= Z [Pm1 — s1] + [pm2 — s2| .- (4.3)
meM

We sort the first and second coordinates of p,, in non-decreasing order,

Pmil < Pmol <. Spli
Pni2 SPno2 < oo S Dngg2
In the case where py;1 = Pm; 1 = .. = Pm;1 We omit Py, 115+ -+ Py

The list of first coordinates then becomes pi1,...,pp1 (P < M), where
P11 < ... < pp1. Moreover, we define weights v;1 := [{pm1 : Pm1 = Di1}| for
pit, ¢t =1,...,P. The list P < ... < ﬁQQ and Weights V12, -+, VQ2, (Q <
M) with respect to the second coordinates of p,, are defined analogously.
Additionally we define po; = po2 = —00 and ppy11 = po+1,2 = 00.

Now we get a decomposition of R? into rectangles
<i,j >={(z1,22) : Pi1 <x1 < Pit11,
Pjo < w2 < Piy12}

fori € Pp:={0,1,...,P}and j € Qp:={0,1,...,Q}.

Definition 4.1. (Construction lines) The lines determining the rectan-
gles < 1,5 >,

L:={x1=pm1:-me{l,...,P}}U{za=pp2:ne{l,...,Q}}
are called construction lines.

We now show the finite dominating set (FDS) property for the inter-
section points between edges e of the PTN and the construction lines as
candidate set.

12



] Demand facilities, P

@ Breakpoints, Vireak
——  Existing tracks/routes, £
””” Construction lines, £

O Candidates, Scang

Figure 5: Candidates for AccessStopLoc in planar environment.

Definition 4.2. (Candidate Set) Scung := Vireak UC where
C:={enl:ec€E/le L, and leNnl| =1}.
The candidate set Scqng is illustrated in Figure 5.

Theorem 4.3. S.4nq is an FDS for AccessStopLoc in the case of a single
stop, i.e., there exists an optimal solution s* € Scund.

Proof. From (4.3) we know that the objective function f is piecewise linear in
the plane, in particular, f is a linear function on each rectangle < ¢,7 >, 1 €
Po, j € Qo- Recall from Section 2 that the PTN has a planar representation,
where each edge e € E is a line segment in R?. Thus, for each linear part
e C 8§, the intersection e N < 7,7 > is either empty or again a line segment,
and f is linear on e N < 7,5 >. Hence, the linear programming problem

min{f(s):s€en<i,j>}

is either infeasible or has an optimal solution at an endpoint of the segment
e N < 4,7 >. An endpoint of e N < 4,5 > is either a breakpoint, hence
in Vireak, or an intersection point e NI for some construction line [ not
containing e, hence in C. U

Note that C is contained in the set of intersection points SNL between the
tracks and the construction lines, but neglecting cases where a construction
line [ coincides with a linear segment e of the tracks. Such a situation is
illustrated in Figure 6. As the proof of Theorem 4.3 shows, the intersection
I M e need not be considered in this case.

After establishing that S.q,q is a finite dominating set for AccessStopLoc,
we can use the algorithm described at the end of Section 2 to find {s*}, the
optimal solution of single AccessStopLoc.

Next we establish the polynomiality property. The candidates sq, ..., sz,
can be determined in O(|V| + M|E|). The effort to compute the objective

13



Figure 6: Candidates for AccessStopLoc where some edge of the PTN coin-
cides with a segment of some construction line.

value for each candidates is O(M), thus the overall complexity of the algo-
rithm is O(M?|E)).

Next, we remove the condition that all demand facilities have to be
served by the new stop, i.e., we consider a subset Vip # (0 of the node
set V. = Viiop U Virear as well as a single new one. To distinguish this
problem from the former one, we denote it by AccessStopLoc’. We will see
that several results of the previous model, with some modifications, can be
carried over to this model.

Figure 7: Graphical solution idea.

For each demand facility p,,,m € M, we determine an existing stop

14



Um € Viiop that is closest to py,.

Uy € argmin 1 (pp,v)
UEVstop

dym, = I (pma Um)

For s € R?, we have to decide whether p,, is closer to s than to the
current closest stop v,,. This is easily done using the rectangular circle

Dp, = {se R? : 1y (pm, 8) < dn},m € M. (4.4)

with center p,, and radius d,,. Customers in demand facility p,, will prefer
a new stop in s to the previous stops if and only if s lies inside this circle.
Therefore, we only need to consider points that lie in the interior of the set

D = |J Dm, (4.5)
meM

i.e., in the interior of at least one circle (see Figure 7). Clearly,

f(s) < fl(v)=f0) = Z dp =:d ¥ v € Vigpp, s € R (4.6)
meM

and
fl(s)<d < seint(D). (4.7)

Definition 4.4. (Construction lines) The construction lines for AccessSto-
pLoc’ are
L' ={lnint(D):1le L}

The construction lines I € £ decompose D,, into four quadrants (see
Figure 8 for an illustration):

Dy {(z1,22) € Dy - 1 > Prm1, T2 > Pz}
Do = {(z1,22) € Dy : 21 < D1, T2 > P2}
Dz = {(z1,22) € Dyt 21 < prm1, T2 < P2}
Dy = {(z1,22) € Dy : 21 > Pm1, 2 < Pm2}

Using the denotation

Mg:={meM:s€D,} CM

15



for all s € R?, we can rewrite the objective function (4.2).

F() = > li(pm Vatop U {s}) (4.8)

meM
= Y min{dm, i (pm5)} (4.9)
meM
= > dmt Y L(pms) (4.10)
meM\M; meMs
= Z dm +
meM\M;
S (51— pm1) + (52— pma)) +
m:SEDm1
Z ((pml - 51) + (52 - me)) +
m:SEDy2
Z ((Pm1 — 51) + (Pm2 — 52)) +
m:SEDm3
D ((s1=pm1) + (Pma2 — 2)) (4.11)
m:SEDma

From (4.11), we conclude that f’ is linear in each D,,;, m € M, i =
1,...,4. This fact can be used to establish a finite candidate set S, ; that
contains a global optimal solution for AccessStopLoc’ (see Figure 8).

Definition 4.5. (Candidate Set) S/, =V, .. UC" where
‘/b/'reak = Vhrear Nint(D)
C' = {enl:eeE,lel, and|enl|=1}.

Recall that Viyeqr € V is the set of breakpoints of PTN G = (V| E).

Theorem 4.6. The optimal solution for AccessStopLoc’ is contained in
S/

cand’

Proof. We use a similar argument as in the proof of Theorem 4.3. Due to
(4.11), f’ is linear in each D,,;, m € M, i =1,...,4. Since the tracks are
assumed to be piecewise linear in the plane, f’ is again linear on e N D,y,; for
each linear part e. If eN D,y,; is not an empty set, then f’ attains its minimal
at the endpoint of e N D,y;, that is either at a breakpoint, hence in V) _ ..
or an intersection point e N ! for some construction line ! not containing e,
hence in C’, or at an intersection e N 8D,, where D, is the boundary of
D,,.

It will be shown in the following lemma that f’(s) will not achieve a
minimum at a point § € 9(D,,), m € M, even though it may be an endpoint
of eN sz

Thus, we only need to consider s € §., =V, . UC'. O

cand

16
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_ Existing tracks/routes, E
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O Candidates, S/,

Figure 8: Candidates for AccessStopLoc’ in planar environment.

Lemma 4.7. f'(s) can not achieve a minimum at points s € O(Dy,), m €

M.

Proof. Let 5 € G N 0Dy, for some m € M. To show that § cannot be a
minimum, we consider the piecewise linear functions

gm(8) := min{d,, l1 (pm, s) }

giving the distance from p,, to the closest facility in Visop U {s}. Let U :=
U(5) NG be a (sufficiently small) neighborhood about § On U we have:

® g, has a local maximum in s if s € GNOD,,,
® g, is linear if s € GNOD,,.

Summing up, we obtain that f(s) =" 1 9m(s) cannot have a minimum
at 3, hence s is not optimal. O

Figure 9 illustrates the function f’(s) along a track e € S.

Similar as for AccessStopLoc, the proof of Theorem 4.6 shows that we
do not need to consider the intersection [ N e where the construction line
[ € L' coincides with a linear segment e of the tracks. It follows that the
candidate set S, is finite, consisting of at most O(M|E|) candidates.

The computation of vy, d,, and D,, needs O(M|V]) time and the effort
to compute objective value for each candidates is O(M). Hence, the overall
complexity of the algorithm as described at the end of Section 2 for single
AccessStopLoc’ is O(M?|E|).

It can happen that S/, = 0, namely if there does not exist any point
on the tracks that improves the objective value f'(v),v € Vgop. Thus, in

such a situation it is not reasonable to add any station to our PTN.
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Figure 9: f’(s) along one track.

Figure 10: An example where the existing PTN can not be improved.
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Notice that S, ; € Scana- Moreover, if S/ . = Scand, then AccessSto-
pLoc and AccessStopLoc’ are equivalent. Such a situation happens, for
example, if all the existing stops are at infinity. In practice, this can be
interpreted as follows: if all the existing stops are far away from the set
of demand facilities, we do not need to consider them in our planning to
open some additional stop. All the demand facilities will be served only
by the new stop, and the problem is reduced to the problem of completely
redesigning all stops.

4.1.2 Multiple Location AccessStopLoc

Now we are ready to analyze the general stop location problem where we
want to establish at most k stops. In what follows we will only consider
AccessStopLoc, but all the arguments also hold for AccessStopLoc’.

We know that the optimal solution for the single stop problem is con-
tained in the candidate set S.qung. The next theorem shows that this holds
also for the general problem.

Theorem 4.8. For AccessStopLoc, there exists an optimal solution §* C
Scanda |S*‘ S k

Proof. Suppose we have already a set of solutions S for the set of demand
facilities P with |S| < k, S & Seand- Take § € S\ Seana and consider only
demand facilities that are served by 5. Use the algorithm given in Section 2
to find the single stop that minimizes the total distance from these demand
facilities. Due to Theorem 4.3 we obtain an optimal solution § € Suand.
By reassigning the covering of the demand facilities, we will get at least the
same objective value. Iterate this process until all stops in S \ Scand are
replaced by stops in Sceng- O

However, AccessStopLoc is NP-hard even if we only consider the finite
dominating set Scqnd-

Theorem 4.9. AccessStopLoc is N'P-hard

Proof. The proof is a reduction of the rectangular k-median problem to the
decision version of AccessStopLoc.
(Rectangular k-median problem) Given a set P = {p1,...,py} C R?
of points in the plane and positive rational number k. Is there a set S C R?
of k points such that if I1 (p,, S) is the length of shortest /1 travel path from
pm to the closest point in S, then 2%21 l1(pm, S) < k?
The rectangular k-median problem is known to be N"P-hard (see [MS84]).
It can easily be shown (see [Poe05]) that rectangular k-median is poly-
nomially transformable to an instance of AccessStopLoc as follows:

e Leave P and k as it is.
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e Define G such that it contains sufficiently large parts of the construc-
tion lines, where V consists of the end points of the segments and of
the intersection points between pairs of the segments. G can now be
defined as a grid graph with V as nodes and edges corresponding to
the linear pieces between the nodes.

O

Heuristic methods based on a node partitioning scheme and some nu-
merical results are presented in [Poe05].

4.2  Accessibility Problem in Street Network Environment

To complete our analysis on stop location models, we discuss next the ac-
cessibility problem on a street network as defined in Section 2.

In locational analysis, the problem of locating k facilities on a graph
G = (V, E) to serve the customers such that the sum of the weighted shortest
distances between customers and facilities is minimized is commonly referred
as k-median problem. If the customers are only located on the vertices of G,
k-median has the node optimality property (see [Hak65]), meaning that an
optimal solution exists on the vertices. Due to this property, one must only
examine all subsets of V' containing k vertices to find the optimal solution.
However, even if we restrict the facilities to be a subset of vertices, solving
this problem is non-trivial. The number of possible solutions is exponentially
increasing in the number n of vertices and the number k of facilities. Kariv
and Hakimi [HK79] showed that the k-median problem is NP-hard, even
when the network has a simple structure, e.g. if it is a planar graph with
maximum vertex degree three.

In the street network environment, our stop location model can be con-
sidered as a variant of the restricted k-median problem. Given the SPTN
G = (V, &), where vertex set V contains the demand facilities P, breakpoints
Vireak, and existing stops Vizop (which can be empty), we define the weights
of vertices v € P as equal to one, whereas the weights of all other vertices
is set to zero. Since the set of demand facilities P is a subset of V, the
node optimality property also holds for AccessStopLoc. That means, our
candidate set contains only the set of breakpoints, which is obviously finite.

Definition 4.10. (Candidate Set) Scund := Vireak

We remark that the set of demand facilities is not included in the can-
didate set, even though P C V. This is due to the fact that the potential
location is restricted only on the existing PTN, hence we only need to con-
sider the set of vertices on the PTN, which by definition consists of the
breakpoints and of the existing stops. For AccessStopLoc we assume the set
of existing stops is empty, thus the above definition of S.4,q follows.
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For AccessStopLoc’, the arguments used in the planar case can be carried
over to the network environment. For each demand facility p,, € P, we
determine a closest stop vy, € Viiop, that is

Uy, € argmin N D(pp,,v)
VE Vstop

The objective function is improved if we locate a new stop in the interior
of D, where D is defined as in (4.5) but the radius is of course measured
by the network distance. That means, the set S\ int(D) can be considered
as forbidden region. The node optimality property is however still valid for
AccessStopLoc’, leading to the result that we only need to consider the set
of breakpoints that lie on int(D). Following the notation from the planar
case, we denote this set by V} ...

Definition 4.11. (Candidate Set) S’ =Vy eak

cand *

With this result, we have shown that in the network environment we
can also discretize the continuous problem. Solving AccessStopLoc and
AccessStopLoc” on SPTN can be done by any method for the restricted
k-median problem.
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5 Conclusion

In this paper we have discussed solution approaches to four classes of stop
location problems, the covering and the accessibility problem in planar and
network environments. Our solution algorithms are based on a discretiza-
tion, in which a candidate set S.4yq is defined, which has the finite dominat-
ing set and the polynomiality property. In the AccessStopLoc we distinguish
the case of existing stops and of planning from scratch. It should be noted
that these two problems are equivalent for the CovStopLoc (see [Sch06]).

Several other variations of the problems are possible, three of them
should be mentioned below.

First, the rectangular distance function used for planar StopLoc prob-
lems can be generalized to polyhedral gauge distances.

A polyhedral gauge is defined by its unit ball B, which is a convex polyhe-
dron in the plane R? containing the origin (0,0) in its interior. Let exp(B) =
{v1,...,vr} be the extreme points of B. The fundamental directions of B
are the half-lines starting at the origin with direction v,,r € {1,..., R}.
Rooting the fundamental directions as construction lines at each demand
facility p,m,, Vm € M, the candidate set is defined as the union of the break-
points and the intersection points between edges e € E and construction
lines. With similar arguments as for the rectangular distance, we can show
that this candidate set is indeed a finite dominating set.

Another interesting variant of the StopLoc is the Center Stop Location
Problem with respect to a given positive integer k defined by

minimize ¢(S) :=max d(p,S)

peEP
subject to S C G (CovStopLoc)
S| =k

This problem can be tackled by using the results either of CovStopLoc
(by a binary search strategy) or of AccessStopLoc (by looking at constraint
center location problems instead of median location problems).

Another straightforward extension is to take the number of potential
passengers in each demand facility into account by using weights for each
p € P. This leads to weighted objective functions in the set-covering problem
and in the restricted location problem in Sections 3 and 4.
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