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Abstract

Strict order relations are defined as strict asymmetric and transitive
binary relations. For classes of so-called levelled strict orders it is
analyzed, under which conditions the endomorphism monoids of two
relations coincide; in particular the case of direct sums of strict an-
tichains is studied. Further, it is shown that these orders differ in their
sets of binary order preserving functions.

1 Definitions and preliminaries

A strict order relation is a binary relation p C A2, satisfying the fol-
lowing conditions:

1. (Strict) asymmetry: (a,b) € p => (b,a) ¢ p

2. Transitivity: (a,b),(b,c) € p= (a,c) €p

Instead of (a,b) € p it is often written a <, b. If only one single relation
p is in consideration, we denote a < b instead of a <, b. The n-ary order
preserving or isotone functions are called polymorphisms. That is, for all
(a1,b1),...,(an,by) € p follows (f(ai,...,an), f(b1,...,b,)) € p. The set of
all polymorphisms is designated by Polp and its subset of n-ary functions
by Pol™ p, respectively. The monoid of unary polymorphisms is denoted by
Endp. A chain C is an order, in which any two elements are comparable, i.e.
for distinct a,b € A it holds either a <¢ b or b <¢ a. A maximum chain in
(A; p) is a suborder C of (4;p), s.t. for any other chain C' in (A;p) holds
< (c]

Definition 1 Let p be a strict order relation. Ng (x) is defined as the supre-
mum over all n, s.t. there is a path x1xs...x,_1x in the Hasse diagram of
p, ending at x. Dually, Ng(x) 1s the supremum over all n, s.t. there is a
path x x1xo ... 2,1 starting at x. The cardinality of a mazimum chain in p
is designated by c(p).
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Theorem 1 Let p C A? be a strict order relation, C = v .. Ve(p) @ MATi-
mum chain and a € A arbitrary. Then the following functions determine
polymorphisms of p:

V(@1 wn) s )21 ) = V) in (V] (20) | 1<)
0[C,n,a)(xy,. .. x,) = Ve(p)+1—min{N] (z;) | 1<i<n}> ~ WENN Vi:a < a,
,Umin{Né(a;i) |1<i<n} sonst.

Proof: In the following let (o, 5;) € p,i=1,...,n and
By = arg min{Né(ﬁi) |1 <i<n}

— min{Né(ozi)|1§i§n}§ak<ﬁk
= Unin{N}(as) | 1<i<n} < Ymin{N}(8;) | 1<i<n}
— 0,[C,n] € Pol™)p.

Dually, it is shown 6;[C,n] € Pol™p.

With respect to the function 8[C| n, a], we have to consider two cases:

Case I: Vi:oy >a=Vi: [, > a= («9[0,71,@](07),8[0,71,@](3)) € p.
Case 2: 3j : o 2 a = 0[C,n,a](&) = Unmin{ N4 (as) | 1<i<n}

Case 2.1: 3r: 3, # a = (9[C,n,a](d),@[C,n,a](B)) € p.

Case 2.2: Vi : f; > a = 0[C,1, al(B) = Uy 1 mingivy () 1 1<i0)
If one defines f, := argmin{N}(5;)|1 < i < n} as it was done
above, one gets
0[C,n,dl(a) = Unin{ N} (o) | 1<i<n} S UNS ()

< Vi = 010 n, al(B).

Definition 2 Let p be a strict order relation and m™ a permutation over
{1,....¢c(p)}. We define

Pr = {(a,b) ‘W(Né(a)) < m(N}(b)); (a,b) € p oder (b,a) € p}.
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For example consider the following Hasse diagrams:

% % a a

&

The relation p, was got by permuting the first with the second level of p. If
7 is of the form

m(N}(a)) < 7(N}(b)) <= N}(b) < Nl(a),
we get pr = {(a,b) | (b,a) € p} =: p, the converse relation of p. We define
C, :={C|C is a maximum chain in p}.

Considering the above example yields C, = {C}, Cy, C5, Cy }, where

C1 = aiazayas,
Cy = aazayag,
03 = a1asaqQs
and 04 = a10a3040¢g.

Theorem 2 Let p and p be strict order relations with Endp = Endu. Then
it exists a permutation m, s.t. for their maximum chains C,, and C, holds:

Cuo ={Cx|C €y,

where C arises from C by a permutation of the elements:

C=v...00 = Cr = 0rq1) ... Un(k)-

Proof: Let Cy,Cy € C, and | := ¢(p),

Cl = UV1...0 and

02 = Wi...w.
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Then there are permutations 7 and m, with C;, ,Cr, € C,. We choose
f € Endp = Endu with Im(f) = Cy. The function f is a retraction, since
additionally f o f = f is fulfilled. It follows f(C5) = €} (maximum chains
are mapped onto maximum chains) — e.g. consider the function f(z) :=
6,[Cy,1](x) from theorem 1 — and it holds Vi : f(w;) = v;. (Note that

flwr) < fw) <. f(wn).)

Since Vi : Vr, i) = Vr,5), We get Vi : mo(i) = m1(7) and hence mp = 7.

The conversion of theorem 2 is in general not true.

Definition 3 A relation p C A? is called rigid relation, if the identity
mapping id(x) = x is the only unary polymorphism, that is Endp = {id}.
Moreover, if for every natural number n the n-ary projections (or selector
functions) e (xq,...,2,),1 < i <n, are the only n-ary polymorphisms, then
p 1s called strongly rigid.

In [4] it was shown that rigid relations exist on any set. In 1973 I.G.Rosenberg
continued this work by presenting a strongly rigid binary relation on a 3 < n-
element set [3].

Lemma 3 Let p be a binary relation (not necessarily a strict order) and let
v,w € A with the property that in the corresponding graph no arc belongs
into v and no arc belongs out of w. Then for f € Polp™ and {v,w} C
{ai,...,a,} the values f(ay,...,a,) can be arbitrary chosen.

[ (a1,D01),..., (an,b,) € p = none of the q;‘s fulfills a; = w and none of the
b =v. ]

In the following we will call these elements maximum and minimum elements
and their corresponding sets pmin O Pmaz, respectively.

Theorem 4 There are rigid, but no strongly rigid strict order relations.

Bewets: The rigid strict orders are exactly the chains. Every chain C pos-
sesses a minimum and a maximum element. Using the foregoing lemma, for
every n > 2 there is a n-ary polymorphism f € Pol™C being no projection.

0

We conclude this section with an easy observation: Let p be a strict order

relation and f € Endp. ThenVa € A:a £, f(a) and a #, f(a).
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2 Levelled strict orders

Definition 4 A strict order relation p is called levelled strict order
relation, if for all a € A holds:

Nl(a)+ N}(a) = c(p) + 1.

That is, every element is lying in a maximum chain of p.
For these relations the conversion of theorem 2 is also valid.

Theorem 5 Let p be a levelled strict order relation. Further, let u be a
strict order relation. Then it holds Endp = Endu if and only if there is a
permutation 7, s.t. C, ={C;|C € C,}.

[Proof: “<=": Every f € Polp is level-preserving, that is
Vo : Npl(f(x, ce,X)) = Né(:z:).
Particularly for f € Endp we obtain

Vo Né(f(ac)) = Npl(x).

“==": Follows directly from theorem 2.]

Definition 5 Let A = AU Ay a disjoint partition and p; C A%,i € {1,2},
strict order relations. The direct sum P, ® P, = (AW As; p) of strict orders
Py = (Ay;p1) and Py = (Ag; pa) is defined as follows:

(a,b) € p <= (a,b) € pyUpa U (A x Ay).

A (strict) antichain is a (strict) order, s.t. any two elements are incompa-
rable.

In the following corollary the set of all permutations over a n-element set is
designated by .5,,.
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Corollary 6 Let A = WU, A; and A, = (A;;<), i € {1,...,n}, strict
antichains. We define

PlA1, ..., Ayl = {P

P= éAw(i),ﬂ' €S, }
=1

Let P, = (A;p1) and Py = (A;pa) be direct sums of antichains. Then it
holds EndPy, = EndPy iff Py, P» € P|Ay, ..., A,] for an appropriate partition
[A1,...,A,] of A

Note that for a strict order relation p the condition “to be a direct sum of
antichains” is the same as “z <y <= N}(z) < N}(y)”. Hence, corollary 6
can also be formulated by the use of the concept of p, of definition 2.

Direct sums of at most two-element disjoint antichains are known as towers.

Example 1 The following figures show endomorphism classes of a four-
element and a siz-element strict tower, respectively. In the second exam-
ple the diagrams are depicted up to isomorphism and the markings of their
elements are omitted.

b u v a b
U<:>." Eﬂﬂ\bI/.w ”<:>'V Ew‘/az\. aua
¢
a a b u v u
q
Y =Y =Y w
q

To refine the endomorphism classes of levelled strict orders, we extend our
investigations to n-ary polymorphisms and obtain

Theorem 7 Let p be a levelled strict order relation and p be a strict order
relation with Pol™p = Pol™u for a natural number n > 2. Then C, = C,
orC, = Cp.
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Proof: Let Pol™p = Pol™ for a natural number n > 2 and further the
equivalence

N,(a) = Ny (B) <= N,(a) = N, (8) ()

hold. It follows that o and (3 remain in the same levels. By lemma 3 we may
assume that the maximum and minimum elements of p and u coincide. Now
let w.l.o.g.

Pmin = {$|N$($) = 1} = {x|Ni($) = 1} = Hmin-

(Else the converse relation i is considered instead of p.)
To get a contradiction, we assume that there exist a,b with the property

1 i ! !
Ny(a) < N;(b) and N,(a) > N, (b).
We choose a polymorphism f € Pol™ p satisfying the condition

V(1. .., x,) : Né(f(xl, cey ) = mZaX{NpL(:L'i)}.

[Such functions exist, e.g. the function 6;[C,n] from theorem 1, corre-
sponding to a maximum chain C' = vy...v.,). It is easy to verify that
0:]C,n] € Pol™ p holds.]

Let 0 € pmin = fmin and a’, b’ be chosen with the property (o,0), (V/,d) € p,
where N}(a') = N}(a) and N} (V') = N}(b). It follows

(flo,b,....b), f(V',d,...,a")) € NI(b) x N.(b)

and by () also f ¢ Pol™ p contradicting the assumption.

The concluding observation is an immediate consequence of theorem 7.

Corollary 8 Let P, = (A;p1) be a direct sum of strict antichains and Py =
(A; p2) be a strict order. Then it holds Pol®®p, = Pol®py iff p = pa or

p1 = p2.

That is, direct sums of strict antichains are — up to dual isomorphism —
uniquely determined by their binary isotone functions.
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