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Abstract

Strict order relations are defined as strict asymmetric and transitive
binary relations. For classes of so-called levelled strict orders it is
analyzed, under which conditions the endomorphism monoids of two
relations coincide; in particular the case of direct sums of strict an-
tichains is studied. Further, it is shown that these orders differ in their
sets of binary order preserving functions.

1 Definitions and preliminaries

A strict order relation is a binary relation ρ ⊆ A2, satisfying the fol-
lowing conditions:

1. (Strict) asymmetry: (a, b) ∈ ρ =⇒ (b, a) /∈ ρ

2. Transitivity: (a, b), (b, c) ∈ ρ =⇒ (a, c) ∈ ρ

Instead of (a, b) ∈ ρ it is often written a <ρ b. If only one single relation
ρ is in consideration, we denote a < b instead of a <ρ b. The n-ary order
preserving or isotone functions are called polymorphisms. That is, for all
(a1, b1), . . . , (an, bn) ∈ ρ follows (f(a1, . . . , an), f(b1, . . . , bn)) ∈ ρ. The set of
all polymorphisms is designated by Polρ and its subset of n-ary functions
by Pol(n)ρ, respectively. The monoid of unary polymorphisms is denoted by
Endρ. A chain C is an order, in which any two elements are comparable, i.e.
for distinct a, b ∈ A it holds either a <C b or b <C a. A maximum chain in
(A; ρ) is a suborder C of (A; ρ), s.t. for any other chain C ′ in (A; ρ) holds
|C ′| ≤ |C|.

Definition 1 Let ρ be a strict order relation. N↓
ρ (x) is defined as the supre-

mum over all n, s.t. there is a path x1x2 . . . xn−1 x in the Hasse diagram of
ρ, ending at x. Dually, N↑

ρ (x) is the supremum over all n, s.t. there is a
path x x1x2 . . . xn−1 starting at x. The cardinality of a maximum chain in ρ
is designated by c(ρ).
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Theorem 1 Let ρ ⊆ A2 be a strict order relation, C = v1 . . . vc(ρ) a maxi-
mum chain and a ∈ A arbitrary. Then the following functions determine
polymorphisms of ρ:

∀(x1, . . . , xn) : θ↓[C, n](x1, . . . , xn) := vmin{N↓
ρ (xi) | 1≤i≤n}.

∀(x1, . . . , xn) : θ↑[C, n](x1, . . . , xn) := vc(ρ)+1−min{N↑
ρ (xi) | 1≤i≤n}.

θ[C, n, a](x1, . . . , xn) :=

{

vc(ρ)+1−min{N↑
ρ (xi) | 1≤i≤n}, wenn ∀i : a ≤ xi,

vmin{N↓
ρ (xi) | 1≤i≤n} sonst.

Proof: In the following let (αi, βi) ∈ ρ, i = 1, . . . , n and

βk := arg min{N↓
ρ (βi) | 1 ≤ i ≤ n}

=⇒ min{N↓
ρ (αi) | 1 ≤ i ≤ n} ≤ αk < βk

=⇒ vmin{N↓
ρ (αi) | 1≤i≤n} < vmin{N↓

ρ (βi) | 1≤i≤n}

=⇒ θ↓[C, n] ∈ Pol(n)ρ.

Dually, it is shown θ↑[C, n] ∈ Pol(n)ρ.

With respect to the function θ[C, n, a], we have to consider two cases:

Case 1: ∀i : αi ≥ a =⇒ ∀i : βi ≥ a =⇒
(

θ[C, n, a](α̃), θ[C, n, a](β̃)
)

∈ ρ.

Case 2: ∃j : αj 6≥ a =⇒ θ[C, n, a](α̃) = vmin{N↓
ρ (αi) | 1≤i≤n}.

Case 2.1: ∃r : βr 6≥ a =⇒
(

θ[C, n, a](α̃), θ[C, n, a](β̃)
)

∈ ρ.

Case 2.2: ∀i : βi ≥ a =⇒ θ[C, n, a](β̃) = vc(ρ)+1−min{N↑
ρ (βi) | 1≤i≤n}.

If one defines βk := arg min{N↓
ρ (βi) | 1 ≤ i ≤ n} as it was done

above, one gets

θ[C, n, a](ã) = vmin{N↓
ρ (αi) | 1≤i≤n} ≤ vN↓

ρ (αk)

< vc(ρ)+1−N↑
ρ (βk) = θ[C, n, a](β̃).

�

Definition 2 Let ρ be a strict order relation and π a permutation over
{1, . . . , c(ρ)}. We define

ρπ :=
{

(a, b)
∣

∣

∣π(N↓
ρ (a)) < π(N↓

ρ (b)); (a, b) ∈ ρ oder (b, a) ∈ ρ
}

.
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For example consider the following Hasse diagrams:

a1

a2 a

π

3

a2 a3

a6a5

a4

a5

a4

a6

a1

ρ ρ

The relation ρπ was got by permuting the first with the second level of ρ. If
π is of the form

π(N↓
ρ (a)) < π(N↓

ρ (b)) ⇐⇒ N↓
ρ (b) < N↓

ρ (a),

we get ρπ = {(a, b) | (b, a) ∈ ρ} =: ρ̄, the converse relation of ρ. We define

Cρ := {C |C is a maximum chain in ρ}.

Considering the above example yields Cρ = {C1, C2, C3, C4}, where

C1 = a1a2a4a5,
C2 = a1a2a4a6,
C3 = a1a3a4a5

and C4 = a1a3a4a6.

Theorem 2 Let ρ and µ be strict order relations with Endρ = Endµ. Then
it exists a permutation π, s.t. for their maximum chains Cµ and Cρ holds:

Cµ = {Cπ |C ∈ Cρ},

where Cπ arises from C by a permutation of the elements:

C = v1 . . . vk =⇒ Cπ := vπ(1) . . . vπ(k).

Proof: Let C1, C2 ∈ Cρ and l := c(ρ),

C1 = v1 . . . vl and
C2 = w1 . . . wl.
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Then there are permutations π1 and π2 with Cπ1 , Cπ2 ∈ Cµ. We choose
f ∈ Endρ = Endµ with Im(f) = C1. The function f is a retraction, since
additionally f ◦ f = f is fulfilled. It follows f(C2) = C1 (maximum chains
are mapped onto maximum chains) – e.g. consider the function f(x) :=
θ↓[C1, 1](x) from theorem 1 – and it holds ∀i : f(wi) = vi. (Note that
f(w1) < f(w2) < . . . f(wl).)

=⇒ f(wπ2(i)) = vπ2(i)

and f(wπ2(i)) = vπ1(i).

Since ∀i : vπ2(i) = vπ1(i), we get ∀i : π2(i) = π1(i) and hence π2 = π1.

�

The conversion of theorem 2 is in general not true.

Definition 3 A relation ρ ⊆ A2 is called rigid relation, if the identity
mapping id(x) = x is the only unary polymorphism, that is Endρ = {id}.
Moreover, if for every natural number n the n-ary projections (or selector
functions) en

i (x1, . . . , xn), 1 ≤ i ≤ n, are the only n-ary polymorphisms, then
ρ is called strongly rigid.

In [4] it was shown that rigid relations exist on any set. In 1973 I.G.Rosenberg
continued this work by presenting a strongly rigid binary relation on a 3 ≤ n-
element set [3].

Lemma 3 Let ρ be a binary relation (not necessarily a strict order) and let
v, w ∈ A with the property that in the corresponding graph no arc belongs
into v and no arc belongs out of w. Then for f ∈ Polρ(n) and {v, w} ⊆
{a1, . . . , an} the values f(a1, . . . , an) can be arbitrary chosen.

[ (a1, b1), . . . , (an, bn) ∈ ρ =⇒ none of the ai‘s fulfills ai = w and none of the
bi = v. ]
In the following we will call these elements maximum and minimum elements
and their corresponding sets ρmin or ρmax, respectively.

Theorem 4 There are rigid, but no strongly rigid strict order relations.

Beweis: The rigid strict orders are exactly the chains. Every chain C pos-
sesses a minimum and a maximum element. Using the foregoing lemma, for
every n ≥ 2 there is a n-ary polymorphism f ∈ Pol(n)C being no projection.

�

We conclude this section with an easy observation: Let ρ be a strict order
relation and f ∈ Endρ. Then ∀a ∈ A : a 6<ρ f(a) and a 6>ρ f(a).
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2 Levelled strict orders

Definition 4 A strict order relation ρ is called levelled strict order
relation, if for all a ∈ A holds:

N↓
ρ (a) + N↑

ρ (a) = c(ρ) + 1.

That is, every element is lying in a maximum chain of ρ.

For these relations the conversion of theorem 2 is also valid.

Theorem 5 Let ρ be a levelled strict order relation. Further, let µ be a
strict order relation. Then it holds Endρ = Endµ if and only if there is a
permutation π, s.t. Cµ = {Cπ |C ∈ Cρ}.

[Proof: “⇐=”: Every f ∈ Polρ is level-preserving, that is

∀x : N↓
ρ (f(x, . . . , x)) = N↓

ρ (x).

Particularly for f ∈ Endρ we obtain

∀x : N↓
ρ (f(x)) = N↓

ρ (x).

“=⇒”: Follows directly from theorem 2.]

Definition 5 Let A = A1∪· A2 a disjoint partition and ρi ⊆ A2
i , i ∈ {1, 2},

strict order relations. The direct sum P1⊕P2 = (A1∪· A2; ρ) of strict orders
P1 = (A1; ρ1) and P2 = (A2; ρ2) is defined as follows:

(a, b) ∈ ρ :⇐⇒ (a, b) ∈ ρ1 ∪ ρ2 ∪ (A1 × A2).

A (strict) antichain is a (strict) order, s.t. any two elements are incompa-
rable.

In the following corollary the set of all permutations over a n-element set is
designated by Sn.
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Corollary 6 Let A = ∪· n
i=1 Ai and Ai = (Ai; <), i ∈ {1, . . . , n}, strict

antichains. We define

P [A1, . . . , An] :=

{

P

∣

∣

∣

∣

∣

P =
n

⊕

i=1

Aπ(i), π ∈ Sn

}

Let P1 = (A; ρ1) and P2 = (A; ρ2) be direct sums of antichains. Then it
holds EndP1 = EndP2 iff P1, P2 ∈ P [A1, . . . , An] for an appropriate partition
[A1, . . . , An] of A.

Note that for a strict order relation ρ the condition “to be a direct sum of
antichains” is the same as “x < y ⇐⇒ N↓

ρ (x) < N↓
ρ (y)”. Hence, corollary 6

can also be formulated by the use of the concept of ρπ of definition 2.
Direct sums of at most two-element disjoint antichains are known as towers.

Example 1 The following figures show endomorphism classes of a four-
element and a six-element strict tower, respectively. In the second exam-
ple the diagrams are depicted up to isomorphism and the markings of their
elements are omitted.

b

a

u v

a

b

bu v

b

u v

a

=End =End =End =End =End

a

b

u v

b

a

u v

a

u v

End= = = = =End End End End

To refine the endomorphism classes of levelled strict orders, we extend our
investigations to n-ary polymorphisms and obtain

Theorem 7 Let ρ be a levelled strict order relation and µ be a strict order
relation with Pol(n)ρ = Pol(n)µ for a natural number n ≥ 2. Then Cµ = Cρ

or Cµ = Cρ̄.
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Proof: Let Pol(n)ρ = Pol(n)µ for a natural number n ≥ 2 and further the
equivalence

N↓
ρ (α) = N↓

ρ (β) ⇐⇒ N↓
µ(α) = N↓

µ(β) (∗)

hold. It follows that α and β remain in the same levels. By lemma 3 we may
assume that the maximum and minimum elements of ρ and µ coincide. Now
let w.l.o.g.

ρmin = {x |N↓
ρ (x) = 1} = {x |N↓

µ(x) = 1} = µmin.

(Else the converse relation µ̄ is considered instead of µ.)
To get a contradiction, we assume that there exist a, b with the property

N↓
ρ (a) < N↓

ρ (b) and N↓
µ(a) > N↓

µ(b).

We choose a polymorphism f ∈ Pol(n)ρ satisfying the condition

∀(x1, . . . , xn) : N↓
ρ (f(x1, . . . , xn)) = max

i
{N↓

ρ (xi)}.

[Such functions exist, e.g. the function θ↑[C, n] from theorem 1, corre-
sponding to a maximum chain C = v1 . . . vc(ρ). It is easy to verify that
θ↑[C, n] ∈ Pol(n)ρ holds.]
Let o ∈ ρmin = µmin and a′, b′ be chosen with the property (o, b′), (b′, a′) ∈ µ,
where N↓

ρ (a′) = N↓
ρ (a) and N↓

ρ (b′) = N↓
ρ (b). It follows

(f(o, b′, . . . , b′), f(b′, a′, . . . , a′)) ∈ N↓
ρ (b) × N↓

ρ (b)

and by (∗) also f /∈ Pol(n)µ contradicting the assumption.

�

The concluding observation is an immediate consequence of theorem 7.

Corollary 8 Let P1 = (A; ρ1) be a direct sum of strict antichains and P2 =
(A; ρ2) be a strict order. Then it holds Pol(2)ρ1 = Pol(2)ρ2 iff ρ1 = ρ2 or
ρ1 = ρ̄2.

That is, direct sums of strict antichains are – up to dual isomorphism –
uniquely determined by their binary isotone functions.
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