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Abstract

In recent years a considerable attention was paid to an investiga-
tion of finite orders relative to different properties of their isotone func-
tions [2,3]. Strict order relations are defined as strict asymmetric and
transitive binary relations. Some algebraic properties of strict orders
were already studied in [6]. For the class K of so-called 2-series strict
orders we describe the partially ordered set End/lC of endomorphism
monoids, ordered by inclusion. It is obtained that EndK possesses a
least element and in most cases defines a BOOLEan algebra. Moreover,
every 2-series strict order is determined by its n-ary isotone functions
for some natural number n.

Mathematics Subject Classification (2002): 03G05, 06A06, 08A35,
08A40.

1 Definitions and notations

A strict order relation is a binary relation p C A2, satisfying the fol-
lowing conditions:

1. (Strict) asymmetry: (a,b) € p => (b,a) ¢ p

2. Transitivity: (a,b), (b,c) € p = (a,c) € p

Instead of (a,b) € p it is often written a <, b. If only one single relation
p is in consideration, we denote a < b instead of a <, b. The n-ary order
preserving or isotone functions are called polymorphisms. That is, for all
(a1,b1),...,(an,b,) € p follows (f(a,...,an), f(by,...,b,)) € p. The set of
all polymorphisms is designated by Polp and its subset of n-ary functions
by Pol™ p, respectively. The monoid of unary polymorphisms is denoted by
Endp. A chain C is an order, in which any two elements are comparable, i.e.
for distinct a,b € A it holds either a <¢ b or b <¢ a.
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Definition 1.1 Let p be a strict order relation. N} (x) is defined as the
supremum over alln, s.t. there is a path r1xs...x,_1 x in the Hasse diagram
of p, ending at x. Dually, Ng (x) is the supremum over all n, s.t. there is a
path x x1xo...x,_1 starting at x. The cardinality of a mazimum chain in p
is designated by c(p).

Definition 1.2 Let K = n+m denote the class of all strict order relations
p C A2, consisting of a "scaffolding” ¢, composed by a n-element chain
C1 = (C1; <) and a m-element chain Cy = (Cq; <), s.t.

A= ChuCy
and for every p € n4+m and a € A holds
Ni(a) = Né(a) and
Nl(a) = N/
These relations are called 2-series strict order relations.

Since the structure of the endomorphism monoids of the elements of n+m
doesn’t change, if one adds two elements 0 and 1 with Vz € A:0 <z <1,
in the following example bounded strict orders are considered.

Example 1.3 The class 2+2, where C; = {a1,as} and Cy = {by, by},

1 1 1

0 0 0

Figure 1: The class 242

Definition 1.4 Let p € n+m. N(p) denotes the set of all relations p €
n+m of the form p = pU{(ay,),...,(a, B:)},r > 0 arbitrary, s.t. for
the case r > 1 holds
Vi<i<r: Ng(a,-) > Ng(ﬁi) +1 and
V1<i<r:N)B) > Niow)+1.



2 ENDOMORPHISM CLASSES 3

It is not necessary to require that «; and [; are elements of different chains
of the scaffolding. (Else it follows automatically (s, 3;) € p.)

Moreover, if there is no («/, ") € p with [@/ > « and ' < f] or [/ >
a and (' < ], then the tuples (o, ) are called blind edges:

1

Defining

B(p) = {(a,b)|Every unrefineable chain around a and b contains at least

one blind edge},

p = p\ B(p) arises from p by deletion of all blind edges in the Hasse diagram
of p. In the following the chains of ¢ are denoted by Cy = {ay,...,a,},a1 <
oo <apand Cy = {by,...,bn}, b1 < ... < Dbp.

2 Endomorphism classes

We need the following

Lemma 2.1 Let p,pu € n+m. Then it holds Endp = Endp if and only if
p= .

That is, the equivalence e, defined by

[ple ={n|p e N(p)},

divides the n+m -orders into their endomorphism classes.
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Proof: Let a € Cy and b € Cy. In the case n > Ng(b) we define ai € Cy by
the property N,}(ai) = N}(b), in the case n > N/ (b) the element a) € C is
determined by the property N!(a}) = N/ (b). Dually, the elements b} and b}
are defined for the case m > Npl(a) and m > N; (a), respectively.

“=" Let w.lo.g. (a,b) € p\ p. We may assume that (a,b) doesn’t be a
blind edge, that is, it holds (a,b) € p. In the case N}(a) = N}(b) — 1
we define f,, € Endp \ Endu by

_J antw-n ifx<b
fan() : { x else.
In the other case it holds Nl (a) — 1 = N](b) and we define
b t ifx>a
e m+2—N, (z)?
far() { z else.
“«=:" Let in reversion be
a=£gicrll{3y €C|(z,y) € p\u}-

We have to show:

i) [ € Endp—>(f(a), f(b)) € p, and

ii) g € Endp and (o, f) € p = (9(), 9(B)) # (a,b).
Two cases are to be considered:

Case 1: n > m.

Ad i) Let f € Endp. Then the fact Vo : ¢ £, f(z) and f(z) £, = yields
(f(a), F(b)) € {(a,]), (a,a;)} € p.

Ad ii) Now let g € Endp and (o, 3) € pu with (g(«), g(B8)) = (a,b). One
observes
a € {a}u(Cyn[bl, min{b b}]) and
B e {Bh(Cin fobal)).
Suppose that « # a and 3 # b holds. Then it exists a non-blind

edge e = (a/,V) € C; x Cy with a < a/ and ¥/ < b in p. It follows
e € p and with (a,b) € p a contradiction.
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Case 2: n < m. The proof is done as in the case n > m, considering
the converse relations i and p.

O

Lemma 2.2 [/| Let p be a 2-series strict order relation. Further, let u be a
strict order relation. Then it holds Endp = Endu if and only if there is a
permutation w, s.t. for their maximum chains C, and C, holds:

Cu ={Cx|C €yl

where Cr arises from C by Cr := vr(1y ... Upy with C'= vy ... vy.

Now we are able to prove the next theorem, which gives answer to the ques-
tion, under which conditions the inclusion of endomorphism monoids is ful-

filled.

Theorem 2.3 Let p, u € n+m and n # m. Then it holds Endp C Endyu if
and only if p C fi.

Proof:

“«=:" Because of lemma 2.1 it remains to study the case p C fi. Let (a, 3) €
fi. The function f,s from the proof of the lemma fulfills f,3 € Endu \
Endp.
Now let f € Endp and (a,b) € p\p with a € C; and b € Cy. W.l.o.g. let
hold the inequation n = |Cy| > |Co| = m. (Else consider the relations
@ and p instead of p and pu.)
By lemma 2.1 it suffices to consider the case (a,b) € i\ p. With lemma
2.2 and p C pNpu follows either (f(a), f(b)) = (a,b) or (f(a), f(b)) € Ca
and hence (f(a), f(b)) € p.
“=—-" It remains to analyze the case Endp C Endu. One observes that for
f € Endu \ Endp and all pairs (§,5) € N(p) x N(p) holds: f €
End¢ \ Ends.
To get a contradiction we assume ¥ € N(p)\ N(p). Then exists (a,b) €
Y with V€ € N(u) : (a,b) ¢ &
— (@hep\p
= dg € Endp and («, B) € p with (g(a), g(8)) = (a,0)"
= g ¢ Endpu.
Thus it follows g € Endp \ Endu contradicting the assumption. O

*E.g. the function f,; possesses this property.
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Corollary 2.4 The lattice of endomorphism monoids of the elements of KK =
n+m, m < n, is isomorphic to the power set lattice of a 2(m — 1)-element
set; that is, from |M| = 2(m — 1) follows

(p(M); C) = EndK.

Example 2.5 In figure 2 the lattice of endomorphism classes of 4+ 3-orders
is depicted. For each class Endp appears the representant p € [p|. of the

4%5%?
i ii b

I
<y

Figure 2: The class 4+3

Definition 2.6 A relation p C A% is called rigid, if the identity mapping
id(z) = z is the only unary polymorphism, that is Endp = {id}. Moreover,
if for every natural number n the n-ary projections (or selector functions)
er(xy,...,xn), 1 <i <mn, are the only n-ary polymorphisms, then p is called
strongly rigid.

In [9] it was shown by Z.Hedrlin et al. in 1965, that rigid relations exist on
any set. In 1973, I.G.Rosenberg continued this work by presenting a strongly
rigid binary relation on any 3 < n-element set [8].

We transfer the concept of rigid relations to given classes K of relations.



2 ENDOMORPHISM CLASSES 7

Definition 2.7 Let IC be a class of relations. p € KC is called local rigid, if
Endp C Endp holds for all p € K. Moreover, if the inclusion Polp C Polp
holds for all i € K, then p is called local strongly rigid. If there exists
p € K with this property, we say “KC admits local (strongly) rigid structures”.

Corollary 2.8 Let n # m. Then K = n+m admits local rigid structures.

[Proof: Obviously, every p € [(]. is local rigid.]

Lemma 2.9 [/|Let p and p be strict order relations with Endp = Endp.
Then it exists a permutation m, s.t. C, = {C,|C € C,} holds.

In the following the case n = m is studied.
Theorem 2.10 Let I = n+n. We define the disjoint partition IC = K,UIC,
by

Ks = {pekK|(a;,bj) € p<=>(aj,b;) € p} and

Ko = {pe K[, j:(aib;) € p,(bi,a;) & p}-

Further, let p,u € IC. Then the following conditions are equivalent:

i) Endp C Endp

i) p C [, and if Ir : (ay,bry1), (br,ari1) € p, then the following implica-
tions hold (conditions of symmetry):

a) Ai,j>r with (a;,b;) € p, (bi,a;) ¢ p
or (ai, b;) & p, (bi,a;) € p

:>/§7'7] 2 r wlth (a'i7bj) € H, (b’i7aj) ¢ M
or (ai, b;) ¢ p, (bi,a;) € p.

b) Ai,j <r with (a;,b;) € p, (bi,aj) & p
or (ai,b;) ¢ p, (bi,a;) € p
= Ai,j <r with (a;,b;) € p, (bi,a;) ¢ p
or (a;, bj) & u, (b;,a;) € .
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Proof:

i) = 41): Let (a;,b;41) € p be arbitrary chosen. The mapping fo, 5,., 1S an endo-

morphism of p and with (a;,a;11) € p follows

(@i, biy1) = (f(ai), fair1)) € it

and hence p C fi. If there is no r with (a,,b,41), (br,ar11) € p, it
remains nothing to show. Else exist vy < ... < ri, k > 1, with this
property. W.lo.g. let 7, +1 < r;yy for alli € {1,...,k}. We define

Po = {(a’v b) | (CL, b)v (b7 bT1+1) S ,0} and
pi = {(a,0)[(a,0),(ar;,a), (b; by, 1) € py for 1<j <k

41

Analogously o, ..., ux are defined.

Now we check the conditions of symmetry. For this, assume for some
ie{l,...,n}:
/Hri S S,t S Ti+1 with (asabt) € Pis (637at) ¢ Pi
or (asvbt) ¢ Pis (bsaat) € 0i.

Suppose that Jr; < s,t < riq with (as, b)) € wi, (bs,ar) &
or (a'sa bt) ¢ iy (bsaat> € Ui

Then we are able to define a mapping f € Endp; \ Endyu; by

fla;) = b and

f) = a

for r; < 1 < riyq, which can be extended to an endomorphism f €
Endp \ Endp as follows:

o) = { f(x), ze {ar,, ... ar,  FU{by, ... b )

x  else.
This yields a contradiction to the condition Endp C Endu.
1) = 1): We differ between two cases A) p € Ks and B) p € KC,,.

Ad A) Let f € Endp and (o, B) € u. We may assume (a, 5) = (a;,b;) €
Cy x Cy. By lemma 2.9 we get

fla) € {a;,bi} and f(B) € {a;,b;}.
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With

{(as, a;), (bi, b;), (ai, bj), (bs; a;)} € p

follows (f(a), f(5)) € p and within f € Endp as claimed.
Ad B) Obviously, it does also hold p € K,.

Case B.1)

Case B.2)

Ar:(ap,beyr), (b, ari1) € p.

Let be (a;,b;) € p blind edges, (b;,a;) ¢ p and f € Endp.
Suppose that (f(a;), f(b;)) = (b;,a;). Then f(C;) = Cy and
f(C2) = Cy is fulfilled, contradicting p € K, and one obtains
f € Endp.

Ir: (ap,byi1), (br, ars1) € p.

We consider the relations py,...,pr and pg,..., g, which
were defined in the other direction of the proof. By the use
of the conditions of symmetry #i.a) and 4.b) the pairs (u;, p;)
in the case p; € K!, can be treated as the pair (u, p) in B.1)
or in the case p; € K as the pair (u, p) in A). O

Corollary 2.11 The class n+n admits local rigid structures.

[Beweis: p is local rigid if and only if p € K, and p = (]

By now, we only considered endomorphisms. To study n-ary polymorphisms,
we need a generalization of the concept of blind edges.

3 Polymorphisms

Definition 3.1 Let p € n+m. The tuple («, 3) is called k-blind edge, if
a and (B are elements of different chains of the scaffolding and additionally

holds:

i) Nl(a) > NI(B)+k
anng(ﬁ) >  Ni(a)+k,

i) Ald,B") € p with o >, <
or o >a,3 >p.
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Lemma 3.2 Let K = n+m. Then the following mapping 0 : A> — A
defines a binary polymorphism of (.

as, Zf (.Tl,QJQ) = (a‘17bm71>
as, if (x1,22) = (a;,by,) for ani > 2

9(331,.1'2) = 07 Zf Elj Iy = 0
1, o Fjrx;=1
Te else.

Proof: Let (a;,3;) € ( fori=1,2. W.lo.g. let a1 #0 # ay and B # 1 #
Bs. (Else with f(&) =0 or f(3) =1 it follows directly (f(&), f(3)) € C.)

In the case (a1, az) = (a1, b,,_1) one obtains 31 € C; and By € {by,, a,}.

i) (B1,B2) = (a;,bym) for some j > 2. Then (f(&), f()) = (az, as) € C.
ii) (B1,02) = (aj,a,) for an j > 2. Then (f(d),f(B)) = (ag,an) € (.

In the case (o, a2) = (aj, byy,) for some j > 2 follows f = 1 and hence
(F(@), F(3) = (a5, 1) € ¢

In all other cases it is obtained (f(&), f(5)) = (g, 2) € C.

O

Theorem 3.3 Let n # m. The class n+m doesn’t admit local rigid struc-
tures.

[Proof: It suffices to consider p with p = (, since the class of  contains the
only rigid relations. We define p € n+m by

p:=CU {(alv bmfl)’ (ala bm)}

Then the mapping 6 from lemma 3.2 is a binary polymorphism 6 € Bin( \
Binp, since

(a1,bm-1), (by—1,b) € p, but
(O(a1,bm—1),0(bm-1,bm)) = (a2,bm) & p.]
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That the above theorem is also valid for the case n = m, follows immediately
from

Theorem 3.4 For every 2-series strict order relation p there is a natu-

ral number m, s.t. p is uniquely determined by its m-ary polymorphisms
Pol™p.

Proof: Let p,u € n+m and (a,,bs) € p\ p be a k-blind edge for some
k > 1. We define the mapping 7,5, : A*"1 — A by

Ay, if (xh...,xs_l) = (bl,...,bs_l)
Narbs (T15 -y Ts—1) := ¢ 0, ifdi:xz; =0
Ts_1 else.

Then 7,5, is a polymorphism of p:
Let (ag, 3;) € p, i =1,...,5 — 1. We have to consider three cases:

1) (C(l, ce 7C(‘Sfl) = (b17 ey bsfl). It follows

flag,...,as—1) = ay,

Na-bs (5% cee 7/68—1) - 65—1

with bs_1 < f[s_1. It holds 1) §,_1 € Cy, i.e. Bs_1 > bs or 2) it exists
an element a € C; with (3,-1,a) € p and hence (a,,a) € p.
In both cases 1) and 2) follows (74.5.(&), Na,b.(53)) = (ar, Bs—1) € p-

i) (Br,...,Be1) = (bry...,bs1). Tt follows a; = 0 and hence
(Marts (@)s Naps. (B)) = (0, a,) € p.
i) &% (by,...,bs_1) # B. It follows
(vt (@), 0ay0, (B)) = (a1, Bom1) € p.

On the other side one obtains 7,5, ¢ Pol*~"u, being a consequence of

(blbe)w"u(bs—labs) S Mand
(narbs<b17"'7b3*1>7narbs(b27"'7b5)) = (aﬁbs) ¢ 22

O

Corollary 3.5 The class n+n doesn’t admit local strongly rigid structures.
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[Proof: We have to consider the set

S::{p‘pEICu and ﬁ:C}

of all local rigid relations. Since ¢ ¢ S, two different relations p1, py € S differ
in at least two blind edges (a,,, bs,) € p1\ p2 and (a,,, bs,) € p2\ p1. (W.lo.g.
the tuples were assumed to be elements of C; x Cy.) For the mappings

Nar,bs, Asi—l A, ie{1,2}
from theorem 3.4 holds:

Nay bs, € Pol®1=Yp, \ Pol*1~1)p,

and 1, 5. € Pol®27Ypy \ Pol*2=1p, ]

2b52

It is possible to generalize the concept of 2-series strict orders in a natural
way to k-series strict orders of the form K = Y05, n; (see [5]). Then EndKC
in general does not be isomorphic to a BOOLEan algebra and X admits no
local rigid structures and hence no local strongly rigid structures, too. If a
BooLEan algebra B appears as a direkt product of an even number of two-
element BOOLEan algebras, then it is possible to find a class KC of k-series

strict orders with EndK = B.
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