Functions preserving 2-series strict orders

Rainer Lenz

Abstract

In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class \mathcal{K} of so-called 2-series strict orders we describe the partially ordered set $End\mathcal{K}$ of endomorphism monoids, ordered by inclusion. It is obtained that $End\mathcal{K}$ possesses a least element and in most cases defines a BOOLEan algebra. Moreover, every 2-series strict order is determined by its *n*-ary isotone functions for some natural number *n*.

Mathematics Subject Classification (2002): 03G05, 06A06, 08A35, 08A40.

1 Definitions and notations

A strict order relation is a binary relation $\rho \subseteq A^2$, satisfying the following conditions:

- 1. (Strict) asymmetry: $(a, b) \in \rho \Longrightarrow (b, a) \notin \rho$
- 2. Transitivity: $(a, b), (b, c) \in \rho \Longrightarrow (a, c) \in \rho$

Instead of $(a, b) \in \rho$ it is often written $a <_{\rho} b$. If only one single relation ρ is in consideration, we denote a < b instead of $a <_{\rho} b$. The *n*-ary order preserving or isotone functions are called **polymorphisms**. That is, for all $(a_1, b_1), \ldots, (a_n, b_n) \in \rho$ follows $(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in \rho$. The set of all polymorphisms is designated by $Pol\rho$ and its subset of *n*-ary functions by $Pol^{(n)}\rho$, respectively. The monoid of unary polymorphisms is denoted by $End\rho$. A chain \mathcal{C} is an order, in which any two elements are comparable, i.e. for distinct $a, b \in A$ it holds either $a <_{\mathcal{C}} b$ or $b <_{\mathcal{C}} a$.

1 DEFINITIONS AND NOTATIONS

Definition 1.1 Let ρ be a strict order relation. $N_{\rho}^{\downarrow}(x)$ is defined as the supremum over all n, s.t. there is a path $x_1x_2...x_{n-1}x$ in the Hasse diagram of ρ , ending at x. Dually, $N_{\rho}^{\uparrow}(x)$ is the supremum over all n, s.t. there is a path $x x_1 x_2...x_{n-1}$ starting at x. The cardinality of a maximum chain in ρ is designated by $c(\rho)$.

Definition 1.2 Let $\mathcal{K} = \mathbf{n} + \mathbf{m}$ denote the class of all strict order relations $\rho \subseteq A^2$, consisting of a "scaffolding" ζ , composed by a n-element chain $\mathcal{C}_1 = (C_1; <)$ and a m-element chain $\mathcal{C}_2 = (C_2; <)$, s.t.

$$A = C_1 \cup C_2$$

and for every $\rho \in \mathbf{n+m}$ and $a \in A$ holds

$$N^{\downarrow}_{
ho}(a) = N^{\downarrow}_{\zeta}(a)$$
 and $N^{\uparrow}_{
ho}(a) = N^{\uparrow}_{\zeta}(a).$

These relations are called 2-series strict order relations.

Since the structure of the endomorphism monoids of the elements of n+m doesn't change, if one adds two elements 0 and 1 with $\forall x \in A : 0 \leq x \leq 1$, in the following example bounded strict orders are considered.

Example 1.3 The class 2+2, where $C_1 = \{a_1, a_2\}$ and $C_2 = \{b_1, b_2\}$.

Figure 1: The class 2+2

Definition 1.4 Let $\rho \in \mathbf{n+m}$. $N(\rho)$ denotes the set of all relations $\mu \in \mathbf{n+m}$ of the form $\mu = \rho \cup \{(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)\}, r \geq 0$ arbitrary, s.t. for the case $r \geq 1$ holds

$$\forall 1 \le i \le r : N_{\rho}^{\uparrow}(\alpha_i) > N_{\rho}^{\uparrow}(\beta_i) + 1 \text{ and} \forall 1 \le i \le r : N_{\rho}^{\downarrow}(\beta_i) > N_{\rho}^{\downarrow}(\alpha_i) + 1.$$

It is not necessary to require that α_i and β_i are elements of different chains of the scaffolding. (Else it follows automatically $(\alpha_i, \beta_i) \in \rho$.)

Moreover, if there is no $(\alpha', \beta') \in \rho$ with $[\alpha' > \alpha \text{ and } \beta' \leq \beta]$ or $[\alpha' \geq \alpha \text{ and } \beta' < \beta]$, then the tuples (α, β) are called **blind edges**:

Defining

 $B(\rho) = \{(a, b) | \text{Every unrefineable chain around } a \text{ and } b \text{ contains at least} \\ \text{one blind edge} \},$

 $\tilde{\rho} := \rho \setminus B(\rho)$ arises from ρ by deletion of all blind edges in the Hasse diagram of ρ . In the following the chains of ζ are denoted by $C_1 = \{a_1, \ldots, a_n\}, a_1 < \ldots < a_n$ and $C_2 = \{b_1, \ldots, b_m\}, b_1 < \ldots < b_m$.

2 Endomorphism classes

We need the following

Lemma 2.1 Let $\rho, \mu \in \mathbf{n+m}$. Then it holds $End\rho = End\mu$ if and only if $\tilde{\rho} = \tilde{\mu}$.

That is, the equivalence ε , defined by

$$[\rho]_{\varepsilon} = \{\mu \mid \mu \in N(\tilde{\rho})\},\$$

divides the n+m -orders into their endomorphism classes.

Proof: Let $a \in C_1$ and $b \in C_2$. In the case $n \ge N_{\rho}^{\downarrow}(b)$ we define $a_b^{\downarrow} \in C_1$ by the property $N_{\rho}^{\downarrow}(a_b^{\downarrow}) = N_{\rho}^{\downarrow}(b)$, in the case $n \ge N_{\rho}^{\uparrow}(b)$ the element $a_b^{\uparrow} \in C_1$ is determined by the property $N_{\rho}^{\uparrow}(a_b^{\uparrow}) = N_{\rho}^{\uparrow}(b)$. Dually, the elements b_a^{\downarrow} and b_a^{\uparrow} are defined for the case $m \ge N_{\rho}^{\downarrow}(a)$ and $m \ge N_{\rho}^{\uparrow}(a)$, respectively.

"⇒:" Let w.l.o.g. $(a,b) \in \rho \setminus \mu$. We may assume that (a,b) doesn't be a blind edge, that is, it holds $(a,b) \in \tilde{\rho}$. In the case $N_{\rho}^{\downarrow}(a) = N_{\rho}^{\downarrow}(b) - 1$ we define $f_{ab} \in End\rho \setminus End\mu$ by

$$f_{ab}(x) := \begin{cases} a_{N_{\rho}^{\downarrow}(x)-1}, & \text{if } x < b \\ x & \text{else.} \end{cases}$$

In the other case it holds $N_{\rho}^{\uparrow}(a) - 1 = N_{\rho}^{\uparrow}(b)$ and we define

$$f_{ab}(x) := \begin{cases} b_{m+2-N_{\rho}^{\uparrow}(x)}, & \text{if } x > a \\ x & \text{else.} \end{cases}$$

" \Leftarrow :" Let in reversion be

$$a = \min_{x \in \mathcal{C}_1} \Big\{ \exists y \in \mathcal{C}_2 \, \Big| \, (x, y) \in \rho \setminus \mu \Big\}.$$

We have to show:

i)
$$f \in End\mu \Longrightarrow (f(a), f(b)) \in \rho$$
, and

ii)
$$g \in End\rho$$
 and $(\alpha, \beta) \in \mu \Longrightarrow (g(\alpha), g(\beta)) \neq (a, b)$.

Two cases are to be considered:

Case 1: $n \ge m$.

Ad i) Let $f \in End\mu$. Then the fact $\forall x : x \not\leq_{\mu} f(x)$ and $f(x) \not\leq_{\mu} x$ yields

$$(f(a), f(b)) \in \{(a, b), (a, a_b^{\downarrow})\} \subseteq \rho.$$

Ad ii) Now let $g \in End\rho$ and $(\alpha, \beta) \in \mu$ with $(g(\alpha), g(\beta)) = (a, b)$. One observes

$$\alpha \in \{a\} \cup (\mathcal{C}_2 \cap [b_a^{\uparrow}, \min\{b_a^{\downarrow}, b\}]) \text{ and } \\ \beta \in \{b\} \cup (\mathcal{C}_1 \cap [a_b^{\downarrow}, a_b^{\uparrow}]).$$

Suppose that $\alpha \neq a$ and $\beta \neq b$ holds. Then it exists a non-blind edge $e = (a', b') \in \mathcal{C}_1 \times \mathcal{C}_2$ with $a \leq a'$ and $b' \leq b$ in ρ . It follows $e \in \mu$ and with $(a, b) \in \mu$ a contradiction.

Case 2: n < m. The proof is done as in the case n > m, considering the converse relations $\bar{\mu}$ and $\bar{\rho}$.

Lemma 2.2 [4] Let ρ be a 2-series strict order relation. Further, let μ be a strict order relation. Then it holds $End\rho = End\mu$ if and only if there is a permutation π , s.t. for their maximum chains C_{μ} and C_{ρ} holds:

$$\mathcal{C}_{\mu} = \{ C_{\pi} \mid C \in \mathcal{C}_{\rho} \},\$$

where C_{π} arises from C by $C_{\pi} := v_{\pi(1)} \dots v_{\pi(k)}$ with $C = v_1 \dots v_k$.

Now we are able to prove the next theorem, which gives answer to the question, under which conditions the inclusion of endomorphism monoids is fulfilled.

Theorem 2.3 Let $\rho, \mu \in \mathbf{n+m}$ and $n \neq m$. Then it holds $End\rho \subseteq End\mu$ if and only if $\tilde{\rho} \subseteq \tilde{\mu}$.

Proof:

" \Leftarrow :" Because of lemma 2.1 it remains to study the case $\tilde{\rho} \subset \tilde{\mu}$. Let $(\alpha, \beta) \in \tilde{\mu}$. The function $f_{\alpha\beta}$ from the proof of the lemma fulfills $f_{\alpha\beta} \in End\mu \setminus End\rho$.

Now let $f \in End\rho$ and $(a, b) \in \mu \setminus \rho$ with $a \in C_1$ and $b \in C_2$. W.l.o.g. let hold the inequation $n = |C_1| > |C_2| = m$. (Else consider the relations $\bar{\mu}$ and $\bar{\rho}$ instead of ρ and μ .)

By lemma 2.1 it suffices to consider the case $(a, b) \in \tilde{\mu} \setminus \tilde{\rho}$. With lemma 2.2 and $\tilde{\rho} \subseteq \rho \cap \mu$ follows either (f(a), f(b)) = (a, b) or $(f(a), f(b)) \in C_2$ and hence $(f(a), f(b)) \in \mu$.

"⇒:" It remains to analyze the case $End\rho \subset End\mu$. One observes that for $f \in End\mu \setminus End\rho$ and all pairs $(\xi, \varsigma) \in N(\mu) \times N(\rho)$ holds: $f \in End\xi \setminus End\varsigma$.

To get a contradiction we assume $\vartheta \in N(\rho) \setminus N(\mu)$. Then exists $(a, b) \in \vartheta$ with $\forall \xi \in N(\mu) : (a, b) \notin \xi$

 $\begin{array}{l} \implies & (a,b) \in \tilde{\rho} \setminus \tilde{\mu} \\ \implies & \exists g \in End\rho \text{ and } (\alpha,\beta) \in \mu \text{ with } (g(\alpha),g(\beta)) = (a,b)^* \\ \implies & g \notin End\mu. \end{array}$

Thus it follows $g \in End\rho \setminus End\mu$ contradicting the assumption. \Box

^{*}E.g. the function f_{ab} possesses this property.

Corollary 2.4 The lattice of endomorphism monoids of the elements of $\mathcal{K} = \mathbf{n} + \mathbf{m}$, m < n, is isomorphic to the power set lattice of a 2(m-1)-element set; that is, from $|\mathcal{M}| = 2(m-1)$ follows

$$(\wp(M); \subseteq) \cong End\mathcal{K}.$$

Example 2.5 In figure 2 the lattice of endomorphism classes of 4+3-orders is depicted. For each class End ρ appears the representant $\tilde{\rho} \in [\rho]_{\varepsilon}$ of the corresponding order.

Figure 2: The class 4+3

Definition 2.6 A relation $\rho \subseteq A^2$ is called rigid, if the identity mapping id(x) = x is the only unary polymorphism, that is $End\rho = \{id\}$. Moreover, if for every natural number n the n-ary projections (or selector functions) $e_i^n(x_1, \ldots, x_n), 1 \leq i \leq n$, are the only n-ary polymorphisms, then ρ is called strongly rigid.

In [9] it was shown by Z.Hedrlin et al. in 1965, that rigid relations exist on any set. In 1973, I.G.Rosenberg continued this work by presenting a strongly rigid binary relation on any $3 \leq n$ -element set [8].

We transfer the concept of rigid relations to given classes \mathcal{K} of relations.

Definition 2.7 Let \mathcal{K} be a class of relations. $\rho \in \mathcal{K}$ is called local rigid, if $End\rho \subseteq End\mu$ holds for all $\mu \in \mathcal{K}$. Moreover, if the inclusion $Pol\rho \subseteq Pol\mu$ holds for all $\mu \in \mathcal{K}$, then ρ is called local strongly rigid. If there exists $\rho \in \mathcal{K}$ with this property, we say " \mathcal{K} admits local (strongly) rigid structures".

Corollary 2.8 Let $n \neq m$. Then $\mathcal{K} = n + m$ admits local rigid structures.

[**Proof:** Obviously, every $\rho \in [\zeta]_{\varepsilon}$ is local rigid.]

Lemma 2.9 [4] Let ρ and μ be strict order relations with $End\rho = End\mu$. Then it exists a permutation π , s.t. $C_{\mu} = \{C_{\pi} | C \in C_{\rho}\}$ holds.

In the following the case n = m is studied.

Theorem 2.10 Let $\mathcal{K} = n + n$. We define the disjoint partition $\mathcal{K} = \mathcal{K}_s \cup \mathcal{K}_u$ by

$$\mathcal{K}_s = \{ \rho \in \mathcal{K} \mid (a_i, b_j) \in \rho \iff (a_j, b_i) \in \rho \} and$$

$$\mathcal{K}_u = \{ \rho \in \mathcal{K} \mid \exists i, j : (a_i, b_j) \in \rho, (b_i, a_j) \notin \rho \}.$$

Further, let $\rho, \mu \in \mathcal{K}$. Then the following conditions are equivalent:

- *i*) $End\rho \subseteq End\mu$
- *ii)* $\tilde{\rho} \subseteq \tilde{\mu}$, and if $\exists r : (a_r, b_{r+1}), (b_r, a_{r+1}) \in \tilde{\rho}$, then the following implications hold (conditions of symmetry):

$$\begin{array}{ll} \textbf{a)} \quad \not\exists i,j \geq r \quad with \ (a_i,b_j) \in \rho, \ (b_i,a_j) \notin \rho \\ & or \ (a_i,b_j) \notin \rho, \ (b_i,a_j) \in \rho \\ \Longrightarrow \not\exists i,j \geq r \quad with \ (a_i,b_j) \in \mu, \ (b_i,a_j) \notin \mu \\ & or \ (a_i,b_j) \notin \mu, \ (b_i,a_j) \in \mu. \end{array}$$

b)
$$\not\exists i, j \leq r$$
 with $(a_i, b_j) \in \rho$, $(b_i, a_j) \notin \rho$
or $(a_i, b_j) \notin \rho$, $(b_i, a_j) \in \rho$
 $\Longrightarrow \not\exists i, j \leq r$ with $(a_i, b_j) \in \mu$, $(b_i, a_j) \notin \mu$
or $(a_i, b_j) \notin \mu$, $(b_i, a_j) \in \mu$.

Proof:

 $i) \Longrightarrow ii):$ Let $(a_i, b_{i+1}) \in \tilde{\rho}$ be arbitrary chosen. The mapping $f_{a_i, b_{i+1}}$ is an endomorphism of ρ and with $(a_i, a_{i+1}) \in \mu$ follows

$$(a_i, b_{i+1}) = (f(a_i), f(a_{i+1})) \in \tilde{\mu}$$

and hence $\tilde{\rho} \subseteq \tilde{\mu}$. If there is no r with $(a_r, b_{r+1}), (b_r, a_{r+1}) \in \rho$, it remains nothing to show. Else exist $r_1 < \ldots < r_k, k \ge 1$, with this property. W.l.o.g. let $r_i + 1 < r_{i+1}$ for all $i \in \{1, \ldots, k\}$. We define

$$\begin{array}{ll} \rho_0 := & \{(a,b) \mid (a,b), (b,b_{r_1+1}) \in \rho\} \text{ and} \\ \rho_j := & \{(a,b) \mid (a,b), (a_{r_j},a), (b,b_{r_{j+1}+1}) \in \rho\} \text{ for } 1 \leq j \leq k. \end{array}$$

Analogously μ_0, \ldots, μ_k are defined.

Now we check the conditions of symmetry. For this, assume for some $i \in \{1, ..., n\}$:

$$\nexists r_i \leq s, t \leq r_{i+1} \quad \text{with} \ (a_s, b_t) \in \rho_i, \ (b_s, a_t) \notin \rho_i \\ \text{or} \ (a_s, b_t) \notin \rho_i, \ (b_s, a_t) \in \rho_i.$$

Suppose that $\exists r_i \leq s, t \leq r_{i+1}$ with $(a_s, b_t) \in \mu_i, (b_s, a_t) \notin \mu_i$ or $(a_s, b_t) \notin \mu_i, (b_s, a_t) \in \mu_i$.

Then we are able to define a mapping $\tilde{f} \in End\rho_i \setminus End\mu_i$ by

$$f(a_l) = b_l$$
 and
 $\tilde{f}(b_l) = a_l$

for $r_i \leq l \leq r_{i+1}$, which can be extended to an endomorphism $f \in End\rho \setminus End\mu$ as follows:

$$f(x) := \begin{cases} \tilde{f}(x), & x \in \{a_{r_i}, \dots, a_{r_{i+1}}\} \cup \{b_{r_i}, \dots, b_{r_{i+1}}\}, \\ x & \text{else.} \end{cases}$$

This yields a contradiction to the condition $End\rho \subseteq End\mu$.

 $ii) \Longrightarrow ii$ We differ between two cases A) $\mu \in \mathcal{K}_s$ and B) $\mu \in \mathcal{K}_u$.

Ad A) Let $f \in End\rho$ and $(\alpha, \beta) \in \mu$. We may assume $(\alpha, \beta) = (a_i, b_j) \in \mathcal{C}_1 \times \mathcal{C}_2$. By lemma 2.9 we get

$$f(\alpha) \in \{a_i, b_i\}$$
 and $f(\beta) \in \{a_j, b_j\}.$

With

$$\{(a_i, a_j), (b_i, b_j), (a_i, b_j), (b_i, a_j)\} \subseteq \mu$$

follows $(f(\alpha), f(\beta)) \in \mu$ and within $f \in End\mu$ as claimed.

Ad B) Obviously, it does also hold $\rho \in \mathcal{K}_u$.

- Case B.1) $\exists r: (a_r, b_{r+1}), (b_r, a_{r+1}) \in \rho.$ Let be $(a_i, b_j) \in \mu$ blind edges, $(b_i, a_j) \notin \mu$ and $f \in End\rho.$ Suppose that $(f(a_i), f(b_j)) = (b_i, a_j)$. Then $f(\mathcal{C}_1) = \mathcal{C}_2$ and $f(\mathcal{C}_2) = \mathcal{C}_1$ is fulfilled, contradicting $\rho \in \mathcal{K}_u$, and one obtains $f \in End\mu$.
- Case B.2) $\exists r : (a_r, b_{r+1}), (b_r, a_{r+1}) \in \rho.$ We consider the relations ρ_0, \ldots, ρ_k and μ_0, \ldots, μ_k , which were defined in the other direction of the proof. By the use of the conditions of symmetry *ii.a*) and *ii.b*) the pairs (μ_i, ρ_i) in the case $\mu_i \in \mathcal{K}_u^i$ can be treated as the pair (μ, ρ) in B.1) or in the case $\mu_i \in \mathcal{K}_s^i$ as the pair (μ, ρ) in A). \Box

Corollary 2.11 The class n+n admits local rigid structures.

[*Beweis:* ρ is local rigid if and only if $\rho \in \mathcal{K}_u$ and $\tilde{\rho} = \zeta$.]

By now, we only considered endomorphisms. To study n-ary polymorphisms, we need a generalization of the concept of blind edges.

3 Polymorphisms

Definition 3.1 Let $\rho \in n+m$. The tuple (α, β) is called **k-blind edge**, if α and β are elements of different chains of the scaffolding and additionally holds:

$$i) \qquad N_{\rho}^{\uparrow}(\alpha) > N_{\rho}^{\uparrow}(\beta) + k$$

and $N_{\rho}^{\downarrow}(\beta) > N_{\rho}^{\downarrow}(\alpha) + k,$
$$ii) \not\exists (\alpha', \beta') \in \rho \quad with \quad \alpha' \ge \alpha, \beta' < \beta$$

or $\alpha' > \alpha, \beta' \ge \beta.$

Lemma 3.2 Let $\mathcal{K} = n + m$. Then the following mapping $\theta : A^2 \longrightarrow A$ defines a binary polymorphism of ζ .

$$\theta(x_1, x_2) := \begin{cases} a_2, & \text{if } (x_1, x_2) = (a_1, b_{m-1}) \\ a_3, & \text{if } (x_1, x_2) = (a_i, b_m) \text{ for an } i \ge 2 \\ 0, & \text{if } \exists j : x_j = 0 \\ 1, & \text{if } \exists j : x_j = 1 \\ x_2 & \text{else.} \end{cases}$$

Proof: Let $(\alpha_i, \beta_i) \in \zeta$ for i = 1, 2. W.l.o.g. let $\alpha_1 \neq 0 \neq \alpha_2$ and $\beta_1 \neq 1 \neq \beta_2$. (Else with $f(\tilde{\alpha}) = 0$ or $f(\tilde{\beta}) = 1$ it follows directly $(f(\tilde{\alpha}), f(\tilde{\beta})) \in \zeta$.)

In the case $(\alpha_1, \alpha_2) = (a_1, b_{m-1})$ one obtains $\beta_1 \in \mathcal{C}_1$ and $\beta_2 \in \{b_m, a_n\}$.

- i) $(\beta_1, \beta_2) = (a_j, b_m)$ for some $j \ge 2$. Then $(f(\tilde{\alpha}), f(\tilde{\beta})) = (a_2, a_3) \in \zeta$.
- ii) $(\beta_1, \beta_2) = (a_j, a_n)$ for an $j \ge 2$. Then $(f(\tilde{\alpha}), f(\tilde{\beta})) = (a_2, a_n) \in \zeta$.

In the case $(\alpha_1, \alpha_2) = (a_j, b_m)$ for some $j \ge 2$ follows $\beta_2 = 1$ and hence

$$(f(\tilde{\alpha}), f(\tilde{\beta})) = (a_j, 1) \in \zeta.$$

In all other cases it is obtained $(f(\tilde{\alpha}), f(\tilde{\beta})) = (\alpha_2, \beta_2) \in \zeta$.

		_	

Theorem 3.3 Let $n \neq m$. The class n+m doesn't admit local rigid structures.

[**Proof:** It suffices to consider ρ with $\tilde{\rho} = \zeta$, since the class of ζ contains the only rigid relations. We define $\rho \in \mathbf{n} + \mathbf{m}$ by

$$\rho := \zeta \cup \{ (a_1, b_{m-1}), (a_1, b_m) \}.$$

Then the mapping θ from lemma 3.2 is a binary polymorphism $\theta \in Bin\zeta \setminus Bin\rho$, since

$$(a_1, b_{m-1}), (b_{m-1}, b_m) \in \rho, \text{ but}$$

 $(\theta(a_1, b_{m-1}), \theta(b_{m-1}, b_m)) = (a_2, b_m) \notin \rho.]$

That the above theorem is also valid for the case n = m, follows immediately from

Theorem 3.4 For every 2-series strict order relation ρ there is a natural number m, s.t. ρ is uniquely determined by its m-ary polymorphisms $Pol^{(m)}\rho$.

Proof: Let $\rho, \mu \in \mathbf{n+m}$ and $(a_r, b_s) \in \rho \setminus \mu$ be a k-blind edge for some $k \geq 1$. We define the mapping $\eta_{a_rb_s} : A^{s-1} \longrightarrow A$ by

$$\eta_{a_r b_s}(x_1, \dots, x_{s-1}) := \begin{cases} a_r, & \text{if } (x_1, \dots, x_{s-1}) = (b_1, \dots, b_{s-1}) \\ 0, & \text{if } \exists i : x_i = 0 \\ x_{s-1} & \text{else.} \end{cases}$$

Then $\eta_{a_rb_s}$ is a polymorphism of ρ : Let $(\alpha_i, \beta_i) \in \rho$, i = 1, ..., s - 1. We have to consider three cases:

i) $(\alpha_1, ..., \alpha_{s-1}) = (b_1, ..., b_{s-1})$. It follows

$$f(\alpha_1, \dots, \alpha_{s-1}) = a_r,$$

$$\eta_{a_r b_s}(\beta_1, \dots, \beta_{s-1}) = \beta_{s-1}$$

with $b_{s-1} < \beta_{s-1}$. It holds **1**) $\beta_{s-1} \in C_2$, i.e. $\beta_{s-1} \ge b_s$ or **2**) it exists an element $a \in C_1$ with $(\beta_{s-1}, a) \in \rho$ and hence $(a_r, a) \in \rho$. In both cases 1) and 2) follows $(\eta_{a_rb_s}(\tilde{\alpha}), \eta_{a_rb_s}(\tilde{\beta})) = (a_r, \beta_{s-1}) \in \rho$.

ii) $(\beta_1, \ldots, \beta_{s-1}) = (b_1, \ldots, b_{s-1})$. It follows $\alpha_1 = 0$ and hence

$$(\eta_{a_rb_s}(\tilde{\alpha}), \eta_{a_rb_s}(\beta)) = (0, a_r) \in \rho.$$

iii) $\tilde{\alpha} \neq (b_1, \ldots, b_{s-1}) \neq \tilde{\beta}$. It follows

$$(\eta_{a_rb_s}(\tilde{\alpha}), \eta_{a_rb_s}(\beta)) = (\alpha_{s-1}, \beta_{s-1}) \in \rho.$$

On the other side one obtains $\eta_{a_rb_s} \notin Pol^{(s-1)}\mu$, being a consequence of

$$(b_1, b_2), \dots, (b_{s-1}, b_s) \in \mu$$
 and
 $(\eta_{a_r b_s}(b_1, \dots, b_{s-1}), \eta_{a_r b_s}(b_2, \dots, b_s)) = (a_r, b_s) \notin \mu.$

Corollary 3.5 The class n+n doesn't admit local strongly rigid structures.

 _	_	-	

Proof: We have to consider the set

$$\mathcal{S} := \left\{ \rho \, \middle| \, \rho \in \mathcal{K}_u \text{ and } \tilde{\rho} = \zeta \right\}$$

of all local rigid relations. Since $\zeta \notin S$, two different relations $\rho_1, \rho_2 \in S$ differ in at least two blind edges $(a_{r_1}, b_{s_1}) \in \rho_1 \setminus \rho_2$ and $(a_{r_2}, b_{s_2}) \in \rho_2 \setminus \rho_1$. (W.l.o.g. the tuples were assumed to be elements of $C_1 \times C_2$.) For the mappings

$$\eta_{a_{r_i}b_{s_i}}: A^{s_i-1} \longrightarrow A, \ i \in \{1,2\}$$

from theorem 3.4 holds:

$$\eta_{a_{r_1}b_{s_1}} \in Pol^{(s_1-1)}\rho_1 \setminus Pol^{(s_1-1)}\rho_2$$

and $\eta_{a_{r_2}b_{s_2}} \in Pol^{(s_2-1)}\rho_2 \setminus Pol^{(s_2-1)}\rho_1.$

It is possible to generalize the concept of 2-series strict orders in a natural way to k-series strict orders of the form $\mathcal{K} = \sum_{i=1}^{k} n_i$ (see [5]). Then $End\mathcal{K}$ in general does not be isomorphic to a BOOLEan algebra and \mathcal{K} admits no local rigid structures and hence no local strongly rigid structures, too. If a BOOLEan algebra \mathcal{B} appears as a direkt product of an even number of two-element BOOLEan algebras, then it is possible to find a class \mathcal{K} of k-series strict orders with $End\mathcal{K} \cong \mathcal{B}$.

References

- A.Fearnley, "A strongly rigid binary relation", Acta Sci. Math. 61, No.1-4 (1995), pp. 35-41.
- [2] Z.Fueredi, I.G.Rosenberg, "Orders admitting an isotone majority operation", *Mult.-Valued Log.* **3**, *No.*1 (1998), pp. 39-53.
- [3] B.Larose, L.Zadori, "Algebraic properties and dismantlability of finite posets", *Discrete Math.* **163**, *No.*1-3 (1997), pp. 89-99.
- [4] R.Lenz, "Isotone mappings of levelled strict orders", *Preprint Nr. 331*, University of Kaiserslautern, 2002.
- [5] R.Lenz, "Algebraisch abgeschlossene Klassen graphentreuer Funktionen", *PhD-thesis*, *University of Kaiserslautern*, 2002.

- [6] O.Lueders, D.Schweigert, "Strictly order primal algebras", Acta Math. Univ. Comen., New Ser. 63, No.2 (1994), pp. 275-284.
- [7] A.Pultr, V.Trnkova, "Combinatorial algebraic and topological representations of groups, semigroups and categories", North-Holland Math. Libr. 1980.
- [8] I.G.Rosenberg, "Strongly rigid relations", Rocky Mountain J. Math. 3 (1973), pp. 631-639.
- [9] P.Vopěnka, A.Pultr, Z.Hedrlin, "A rigid relation exists on any set", Comment. Math. Univ. Carolinae 6 (1965), pp. 149-155.

Rainer Lenz Fachbereich Mathematik Universität Kaiserslautern 67653 Kaiserslautern *e-mail:* rlenz@mathematik.uni-kl.de