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Abstract

In recent years a considerable attention was paid to an investiga-
tion of finite orders relative to different properties of their isotone func-
tions [2,3]. Strict order relations are defined as strict asymmetric and
transitive binary relations. Some algebraic properties of strict orders
were already studied in [6]. For the class K of so-called 2-series strict
orders we describe the partially ordered set EndK of endomorphism
monoids, ordered by inclusion. It is obtained that EndK possesses a
least element and in most cases defines a Boolean algebra. Moreover,
every 2-series strict order is determined by its n-ary isotone functions
for some natural number n.

Mathematics Subject Classification (2002): 03G05, 06A06, 08A35,
08A40.

1 Definitions and notations

A strict order relation is a binary relation ρ ⊆ A2, satisfying the fol-
lowing conditions:

1. (Strict) asymmetry: (a, b) ∈ ρ =⇒ (b, a) /∈ ρ

2. Transitivity: (a, b), (b, c) ∈ ρ =⇒ (a, c) ∈ ρ

Instead of (a, b) ∈ ρ it is often written a <ρ b. If only one single relation
ρ is in consideration, we denote a < b instead of a <ρ b. The n-ary order
preserving or isotone functions are called polymorphisms. That is, for all
(a1, b1), . . . , (an, bn) ∈ ρ follows (f(a1, . . . , an), f(b1, . . . , bn)) ∈ ρ. The set of
all polymorphisms is designated by Polρ and its subset of n-ary functions
by Pol(n)ρ, respectively. The monoid of unary polymorphisms is denoted by
Endρ. A chain C is an order, in which any two elements are comparable, i.e.
for distinct a, b ∈ A it holds either a <C b or b <C a.
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Definition 1.1 Let ρ be a strict order relation. N↓
ρ (x) is defined as the

supremum over all n, s.t. there is a path x1x2 . . . xn−1 x in the Hasse diagram
of ρ, ending at x. Dually, N↑

ρ (x) is the supremum over all n, s.t. there is a
path x x1x2 . . . xn−1 starting at x. The cardinality of a maximum chain in ρ
is designated by c(ρ).

Definition 1.2 Let K = n+m denote the class of all strict order relations
ρ ⊆ A2, consisting of a ”scaffolding” ζ, composed by a n-element chain
C1 = (C1; <) and a m-element chain C2 = (C2; <), s.t.

A = C1∪· C2

and for every ρ ∈ n+m and a ∈ A holds

N↓
ρ (a) = N↓

ζ (a) and

N↑
ρ (a) = N↑

ζ (a).

These relations are called 2-series strict order relations.

Since the structure of the endomorphism monoids of the elements of n+m
doesn’t change, if one adds two elements 0 and 1 with ∀x ∈ A : 0 ≤ x ≤ 1,
in the following example bounded strict orders are considered.

Example 1.3 The class 2+2, where C1 = {a1, a2} and C2 = {b1, b2}.
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Figure 1: The class 2+2

Definition 1.4 Let ρ ∈ n+m. N(ρ) denotes the set of all relations µ ∈
n+m of the form µ = ρ ∪ {(α1, β1), . . . , (αr, βr)}, r ≥ 0 arbitrary, s.t. for
the case r ≥ 1 holds

∀ 1 ≤ i ≤ r : N↑
ρ (αi) > N↑

ρ (βi) + 1 and

∀ 1 ≤ i ≤ r : N↓
ρ (βi) > N↓

ρ (αi) + 1.
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It is not necessary to require that αi and βi are elements of different chains
of the scaffolding. (Else it follows automatically (αi, βi) ∈ ρ.)
Moreover, if there is no (α′, β′) ∈ ρ with [α′ > α and β′ ≤ β] or [α′ ≥
α and β′ < β], then the tuples (α, β) are called blind edges:

β

1

0

α

Defining

B(ρ) = {(a, b) |Every unrefineable chain around a and b contains at least
one blind edge},

ρ̃ := ρ\B(ρ) arises from ρ by deletion of all blind edges in the Hasse diagram
of ρ. In the following the chains of ζ are denoted by C1 = {a1, . . . , an}, a1 <
. . . < an and C2 = {b1, . . . , bm}, b1 < . . . < bm.

2 Endomorphism classes

We need the following

Lemma 2.1 Let ρ, µ ∈ n+m. Then it holds Endρ = Endµ if and only if
ρ̃ = µ̃.

That is, the equivalence ε, defined by

[ρ]ε = {µ |µ ∈ N(ρ̃)},

divides the n+m -orders into their endomorphism classes.
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Proof: Let a ∈ C1 and b ∈ C2. In the case n ≥ N↓
ρ (b) we define a↓b ∈ C1 by

the property N↓
ρ (a↓b) = N↓

ρ (b), in the case n ≥ N↑
ρ (b) the element a↑b ∈ C1 is

determined by the property N↑
ρ (a↑b) = N↑

ρ (b). Dually, the elements b↓a and b↑a
are defined for the case m ≥ N↓

ρ (a) and m ≥ N↑
ρ (a), respectively.

“=⇒:” Let w.l.o.g. (a, b) ∈ ρ \ µ. We may assume that (a, b) doesn’t be a
blind edge, that is, it holds (a, b) ∈ ρ̃. In the case N↓

ρ (a) = N↓
ρ (b) − 1

we define fab ∈ Endρ \ Endµ by

fab(x) :=
{

aN↓
ρ (x)−1, if x < b
x else.

In the other case it holds N↑
ρ (a)− 1 = N↑

ρ (b) and we define

fab(x) :=
{

bm+2−N↑
ρ (x), if x > a

x else.

“⇐=:” Let in reversion be

a = min
x∈C1

{

∃y ∈ C2

∣

∣

∣ (x, y) ∈ ρ \ µ
}

.

We have to show:

i) f ∈ Endµ =⇒ (f(a), f(b)) ∈ ρ, and

ii) g ∈ Endρ and (α, β) ∈ µ =⇒ (g(α), g(β)) 6= (a, b).

Two cases are to be considered:

Case 1: n ≥ m.

Ad i) Let f ∈ Endµ. Then the fact ∀x : x 6<µ f(x) and f(x) 6<µ x yields

(f(a), f(b)) ∈ {(a, b), (a, a↓b)} ⊆ ρ.

Ad ii) Now let g ∈ Endρ and (α, β) ∈ µ with (g(α), g(β)) = (a, b). One
observes

α ∈ {a}∪· (C2 ∩ [b↑a,min{b↓a, b}]) and
β ∈ {b}∪· (C1 ∩ [a↓b , a

↑
b ]).

Suppose that α 6= a and β 6= b holds. Then it exists a non-blind
edge e = (a′, b′) ∈ C1 × C2 with a ≤ a′ and b′ ≤ b in ρ. It follows
e ∈ µ and with (a, b) ∈ µ a contradiction.
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Case 2: n < m. The proof is done as in the case n > m, considering
the converse relations µ̄ and ρ̄.

�

Lemma 2.2 [4] Let ρ be a 2-series strict order relation. Further, let µ be a
strict order relation. Then it holds Endρ = Endµ if and only if there is a
permutation π, s.t. for their maximum chains Cµ and Cρ holds:

Cµ = {Cπ |C ∈ Cρ},
where Cπ arises from C by Cπ := vπ(1) . . . vπ(k) with C = v1 . . . vk.

Now we are able to prove the next theorem, which gives answer to the ques-
tion, under which conditions the inclusion of endomorphism monoids is ful-
filled.

Theorem 2.3 Let ρ, µ ∈ n+m and n 6= m. Then it holds Endρ ⊆ Endµ if
and only if ρ̃ ⊆ µ̃.

Proof:

“⇐=:” Because of lemma 2.1 it remains to study the case ρ̃ ⊂ µ̃. Let (α, β) ∈
µ̃. The function fαβ from the proof of the lemma fulfills fαβ ∈ Endµ \
Endρ.
Now let f ∈ Endρ and (a, b) ∈ µ\ρ with a ∈ C1 and b ∈ C2. W.l.o.g. let
hold the inequation n = |C1| > |C2| = m. (Else consider the relations
µ̄ and ρ̄ instead of ρ and µ.)

By lemma 2.1 it suffices to consider the case (a, b) ∈ µ̃\ ρ̃. With lemma
2.2 and ρ̃ ⊆ ρ∩µ follows either (f(a), f(b)) = (a, b) or (f(a), f(b)) ∈ C2

and hence (f(a), f(b)) ∈ µ.

“=⇒:” It remains to analyze the case Endρ ⊂ Endµ. One observes that for
f ∈ Endµ \ Endρ and all pairs (ξ, ς) ∈ N(µ) × N(ρ) holds: f ∈
Endξ \ Endς.
To get a contradiction we assume ϑ ∈ N(ρ)\N(µ). Then exists (a, b) ∈
ϑ with ∀ξ ∈ N(µ) : (a, b) /∈ ξ

=⇒ (a, b) ∈ ρ̃ \ µ̃
=⇒ ∃g ∈ Endρ and (α, β) ∈ µ with (g(α), g(β)) = (a, b)∗

=⇒ g /∈ Endµ.

Thus it follows g ∈ Endρ \ Endµ contradicting the assumption. �
∗E.g. the function fab possesses this property.
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Corollary 2.4 The lattice of endomorphism monoids of the elements of K =
n+m, m < n, is isomorphic to the power set lattice of a 2(m − 1)-element
set; that is, from |M | = 2(m− 1) follows

(℘(M);⊆) ∼= EndK.

Example 2.5 In figure 2 the lattice of endomorphism classes of 4+3-orders
is depicted. For each class Endρ appears the representant ρ̃ ∈ [ρ]ε of the
corresponding order.

ζ

Figure 2: The class 4+3

Definition 2.6 A relation ρ ⊆ A2 is called rigid, if the identity mapping
id(x) = x is the only unary polymorphism, that is Endρ = {id}. Moreover,
if for every natural number n the n-ary projections (or selector functions)
en

i (x1, . . . , xn), 1 ≤ i ≤ n, are the only n-ary polymorphisms, then ρ is called
strongly rigid.

In [9] it was shown by Z.Hedrlin et al. in 1965, that rigid relations exist on
any set. In 1973, I.G.Rosenberg continued this work by presenting a strongly
rigid binary relation on any 3 ≤ n-element set [8].

We transfer the concept of rigid relations to given classes K of relations.
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Definition 2.7 Let K be a class of relations. ρ ∈ K is called local rigid, if
Endρ ⊆ Endµ holds for all µ ∈ K. Moreover, if the inclusion Polρ ⊆ Polµ
holds for all µ ∈ K, then ρ is called local strongly rigid. If there exists
ρ ∈ K with this property, we say “K admits local (strongly) rigid structures”.

Corollary 2.8 Let n 6= m. Then K = n+m admits local rigid structures.

[Proof: Obviously, every ρ ∈ [ζ]ε is local rigid.]

Lemma 2.9 [4]Let ρ and µ be strict order relations with Endρ = Endµ.
Then it exists a permutation π, s.t. Cµ = {Cπ |C ∈ Cρ} holds.

In the following the case n = m is studied.

Theorem 2.10 Let K = n+n. We define the disjoint partition K = Ks∪· Ku

by

Ks = {ρ ∈ K | (ai, bj) ∈ ρ ⇐⇒ (aj, bi) ∈ ρ} and
Ku = {ρ ∈ K | ∃i, j : (ai, bj) ∈ ρ, (bi, aj) /∈ ρ}.

Further, let ρ, µ ∈ K. Then the following conditions are equivalent:

i) Endρ ⊆ Endµ

ii) ρ̃ ⊆ µ̃, and if ∃r : (ar, br+1), (br, ar+1) ∈ ρ̃, then the following implica-
tions hold (conditions of symmetry):

a) 6 ∃i, j ≥ r with (ai, bj) ∈ ρ, (bi, aj) /∈ ρ
or (ai, bj) /∈ ρ, (bi, aj) ∈ ρ

=⇒6 ∃i, j ≥ r with (ai, bj) ∈ µ, (bi, aj) /∈ µ
or (ai, bj) /∈ µ, (bi, aj) ∈ µ.

b) 6 ∃i, j ≤ r with (ai, bj) ∈ ρ, (bi, aj) /∈ ρ
or (ai, bj) /∈ ρ, (bi, aj) ∈ ρ

=⇒6 ∃i, j ≤ r with (ai, bj) ∈ µ, (bi, aj) /∈ µ
or (ai, bj) /∈ µ, (bi, aj) ∈ µ.
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Proof:

i) =⇒ ii): Let (ai, bi+1) ∈ ρ̃ be arbitrary chosen. The mapping fai,bi+1 is an endo-
morphism of ρ and with (ai, ai+1) ∈ µ follows

(ai, bi+1) = (f(ai), f(ai+1)) ∈ µ̃

and hence ρ̃ ⊆ µ̃. If there is no r with (ar, br+1), (br, ar+1) ∈ ρ, it
remains nothing to show. Else exist r1 < . . . < rk, k ≥ 1, with this
property. W.l.o.g. let ri + 1 < ri+1 for all i ∈ {1, . . . , k}. We define

ρ0 := {(a, b) | (a, b), (b, br1+1) ∈ ρ} and
ρj := {(a, b) | (a, b), (arj , a), (b, brj+1+1) ∈ ρ} for 1 ≤ j ≤ k.

Analogously µ0, . . . , µk are defined.

Now we check the conditions of symmetry. For this, assume for some
i ∈ {1, . . . , n}:

6 ∃ri ≤ s, t ≤ ri+1 with (as, bt) ∈ ρi, (bs, at) /∈ ρi

or (as, bt) /∈ ρi, (bs, at) ∈ ρi.

Suppose that ∃ri ≤ s, t ≤ ri+1 with (as, bt) ∈ µi, (bs, at) /∈ µi

or (as, bt) /∈ µi, (bs, at) ∈ µi.

Then we are able to define a mapping f̃ ∈ Endρi \ Endµi by

f̃(al) = bl and
f̃(bl) = al

for ri ≤ l ≤ ri+1, which can be extended to an endomorphism f ∈
Endρ \ Endµ as follows:

f(x) :=
{

f̃(x), x ∈ {ari , . . . , ari+1} ∪ {bri , . . . , bri+1},
x else.

This yields a contradiction to the condition Endρ ⊆ Endµ.

ii) =⇒ i): We differ between two cases A) µ ∈ Ks and B) µ ∈ Ku.

Ad A) Let f ∈ Endρ and (α, β) ∈ µ. We may assume (α, β) = (ai, bj) ∈
C1 × C2. By lemma 2.9 we get

f(α) ∈ {ai, bi} and f(β) ∈ {aj, bj}.
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With
{(ai, aj), (bi, bj), (ai, bj), (bi, aj)} ⊆ µ

follows (f(α), f(β)) ∈ µ and within f ∈ Endµ as claimed.

Ad B) Obviously, it does also hold ρ ∈ Ku.

Case B.1) 6 ∃r : (ar, br+1), (br, ar+1) ∈ ρ.
Let be (ai, bj) ∈ µ blind edges, (bi, aj) /∈ µ and f ∈ Endρ.
Suppose that (f(ai), f(bj)) = (bi, aj). Then f(C1) = C2 and
f(C2) = C1 is fulfilled, contradicting ρ ∈ Ku, and one obtains
f ∈ Endµ.

Case B.2) ∃r : (ar, br+1), (br, ar+1) ∈ ρ.
We consider the relations ρ0, . . . , ρk and µ0, . . . , µk, which
were defined in the other direction of the proof. By the use
of the conditions of symmetry ii.a) and ii.b) the pairs (µi, ρi)
in the case µi ∈ Ki

u can be treated as the pair (µ, ρ) in B.1)
or in the case µi ∈ Ki

s as the pair (µ, ρ) in A). �

Corollary 2.11 The class n+n admits local rigid structures.

[Beweis: ρ is local rigid if and only if ρ ∈ Ku and ρ̃ = ζ.]

By now, we only considered endomorphisms. To study n-ary polymorphisms,
we need a generalization of the concept of blind edges.

3 Polymorphisms

Definition 3.1 Let ρ ∈ n+m. The tuple (α, β) is called k-blind edge, if
α and β are elements of different chains of the scaffolding and additionally
holds:

i) N↑
ρ (α) > N↑

ρ (β) + k

and N↓
ρ (β) > N↓

ρ (α) + k,

ii) 6 ∃(α′, β′) ∈ ρ with α′ ≥ α, β′ < β
or α′ > α, β′ ≥ β.
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Lemma 3.2 Let K = n+m. Then the following mapping θ : A2 −→ A
defines a binary polymorphism of ζ.

θ(x1, x2) :=























a2, if (x1, x2) = (a1, bm−1)
a3, if (x1, x2) = (ai, bm) for an i ≥ 2
0, if ∃j : xj = 0
1, if ∃j : xj = 1
x2 else.

Proof: Let (αi, βi) ∈ ζ for i = 1, 2. W.l.o.g. let α1 6= 0 6= α2 and β1 6= 1 6=
β2. (Else with f(α̃) = 0 or f(β̃) = 1 it follows directly (f(α̃), f(β̃)) ∈ ζ.)

In the case (α1, α2) = (a1, bm−1) one obtains β1 ∈ C1 and β2 ∈ {bm, an}.

i) (β1, β2) = (aj, bm) for some j ≥ 2. Then (f(α̃), f(β̃)) = (a2, a3) ∈ ζ.

ii) (β1, β2) = (aj, an) for an j ≥ 2. Then (f(α̃), f(β̃)) = (a2, an) ∈ ζ.

In the case (α1, α2) = (aj, bm) for some j ≥ 2 follows β2 = 1 and hence

(f(α̃), f(β̃)) = (aj, 1) ∈ ζ.

In all other cases it is obtained (f(α̃), f(β̃)) = (α2, β2) ∈ ζ.

�

Theorem 3.3 Let n 6= m. The class n+m doesn’t admit local rigid struc-
tures.

[Proof: It suffices to consider ρ with ρ̃ = ζ, since the class of ζ contains the
only rigid relations. We define ρ ∈ n+m by

ρ := ζ ∪ {(a1, bm−1), (a1, bm)}.

Then the mapping θ from lemma 3.2 is a binary polymorphism θ ∈ Binζ \
Binρ, since

(a1, bm−1), (bm−1, bm) ∈ ρ, but
(θ(a1, bm−1), θ(bm−1, bm)) = (a2, bm) /∈ ρ.]



3 POLYMORPHISMS 11

That the above theorem is also valid for the case n = m, follows immediately
from

Theorem 3.4 For every 2-series strict order relation ρ there is a natu-
ral number m, s.t. ρ is uniquely determined by its m-ary polymorphisms
Pol(m)ρ.

Proof: Let ρ, µ ∈ n+m and (ar, bs) ∈ ρ \ µ be a k-blind edge for some
k ≥ 1. We define the mapping ηarbs : As−1 −→ A by

ηarbs(x1, . . . , xs−1) :=







ar, if (x1, . . . , xs−1) = (b1, . . . , bs−1)
0, if ∃i : xi = 0
xs−1 else.

Then ηarbs is a polymorphism of ρ:
Let (αi, βi) ∈ ρ, i = 1, . . . , s− 1. We have to consider three cases:

i) (α1, . . . , αs−1) = (b1, . . . , bs−1). It follows

f(α1, . . . , αs−1) = ar,
ηarbs(β1, . . . , βs−1) = βs−1

with bs−1 < βs−1. It holds 1) βs−1 ∈ C2, i.e. βs−1 ≥ bs or 2) it exists
an element a ∈ C1 with (βs−1, a) ∈ ρ and hence (ar, a) ∈ ρ.
In both cases 1) and 2) follows (ηarbs(α̃), ηarbs(β̃)) = (ar, βs−1) ∈ ρ.

ii) (β1, . . . , βs−1) = (b1, . . . , bs−1). It follows α1 = 0 and hence

(ηarbs(α̃), ηarbs(β̃)) = (0, ar) ∈ ρ.

iii) α̃ 6= (b1, . . . , bs−1) 6= β̃. It follows

(ηarbs(α̃), ηarbs(β̃)) = (αs−1, βs−1) ∈ ρ.

On the other side one obtains ηarbs /∈ Pol(s−1)µ, being a consequence of

(b1, b2), . . . , (bs−1, bs) ∈ µ and
(ηarbs(b1, . . . , bs−1), ηarbs(b2, . . . , bs)) = (ar, bs) /∈ µ.

�

Corollary 3.5 The class n+n doesn’t admit local strongly rigid structures.
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[Proof: We have to consider the set

S :=
{

ρ
∣

∣

∣ ρ ∈ Ku and ρ̃ = ζ
}

of all local rigid relations. Since ζ /∈ S, two different relations ρ1, ρ2 ∈ S differ
in at least two blind edges (ar1 , bs1) ∈ ρ1 \ρ2 and (ar2 , bs2) ∈ ρ2 \ρ1. (W.l.o.g.
the tuples were assumed to be elements of C1 × C2.) For the mappings

ηaribsi
: Asi−1 −→ A, i ∈ {1, 2}

from theorem 3.4 holds:

ηar1bs1
∈ Pol(s1−1)ρ1 \ Pol(s1−1)ρ2

and ηar2bs2
∈ Pol(s2−1)ρ2 \ Pol(s2−1)ρ1.]

It is possible to generalize the concept of 2-series strict orders in a natural
way to k-series strict orders of the form K =

∑k
i=1 ni (see [5]). Then EndK

in general does not be isomorphic to a Boolean algebra and K admits no
local rigid structures and hence no local strongly rigid structures, too. If a
Boolean algebra B appears as a direkt product of an even number of two-
element Boolean algebras, then it is possible to find a class K of k-series
strict orders with EndK ∼= B.
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