Functions preserving 2-series strict orders

Rainer Lenz

Abstract

In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class \mathcal{K} of so-called 2 -series strict orders we describe the partially ordered set EndK of endomorphism monoids, ordered by inclusion. It is obtained that End \mathcal{K} possesses a least element and in most cases defines a Boolean algebra. Moreover, every 2 -series strict order is determined by its n-ary isotone functions for some natural number n.

Mathematics Subject Classification (2002): 03G05, 06A06, 08A35, 08A40.

1 Definitions and notations

A strict order relation is a binary relation $\rho \subseteq A^{2}$, satisfying the following conditions:

1. (Strict) asymmetry: $(a, b) \in \rho \Longrightarrow(b, a) \notin \rho$
2. Transitivity: $(a, b),(b, c) \in \rho \Longrightarrow(a, c) \in \rho$

Instead of $(a, b) \in \rho$ it is often written $a<_{\rho} b$. If only one single relation ρ is in consideration, we denote $a<b$ instead of $a<_{\rho} b$. The n-ary order preserving or isotone functions are called polymorphisms. That is, for all $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \rho$ follows $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in \rho$. The set of all polymorphisms is designated by Pol ρ and its subset of n-ary functions by $\operatorname{Pol}^{(n)} \rho$, respectively. The monoid of unary polymorphisms is denoted by $E n d \rho$. A chain \mathcal{C} is an order, in which any two elements are comparable, i.e. for distinct $a, b \in A$ it holds either $a<_{\mathcal{C}} b$ or $b<_{\mathcal{C}} a$.

Definition 1.1 Let ρ be a strict order relation. $N_{\rho}^{\downarrow}(x)$ is defined as the supremum over all n, s.t. there is a path $x_{1} x_{2} \ldots x_{n-1} x$ in the Hasse diagram of ρ, ending at x. Dually, $N_{\rho}^{\uparrow}(x)$ is the supremum over all n, s.t. there is a path $x x_{1} x_{2} \ldots x_{n-1}$ starting at x. The cardinality of a maximum chain in ρ is designated by $c(\rho)$.

Definition 1.2 Let $\mathcal{K}=\boldsymbol{n}+\boldsymbol{m}$ denote the class of all strict order relations $\rho \subseteq A^{2}$, consisting of a "scaffolding" ζ, composed by a n-element chain $\mathcal{C}_{1}=\left(C_{1} ;<\right)$ and a m-element chain $\mathcal{C}_{2}=\left(C_{2} ;<\right)$, s.t.

$$
A=C_{1} \uplus C_{2}
$$

and for every $\rho \in \boldsymbol{n}+\boldsymbol{m}$ and $a \in A$ holds

$$
\begin{aligned}
N_{\rho}^{\downarrow}(a) & =N_{\zeta}^{\downarrow}(a) \quad \text { and } \\
N_{\rho}^{\uparrow}(a) & =N_{\zeta}^{\uparrow}(a) .
\end{aligned}
$$

These relations are called 2-series strict order relations.
Since the structure of the endomorphism monoids of the elements of $\boldsymbol{n}+\boldsymbol{m}$ doesn't change, if one adds two elements 0 and 1 with $\forall x \in A: 0 \leq x \leq 1$, in the following example bounded strict orders are considered.

Example 1.3 The class 2+2, where $C_{1}=\left\{a_{1}, a_{2}\right\}$ and $C_{2}=\left\{b_{1}, b_{2}\right\}$.

Figure 1: The class 2+2

Definition 1.4 Let $\rho \in \boldsymbol{n}+\boldsymbol{m}$. $N(\rho)$ denotes the set of all relations $\mu \in$ $\boldsymbol{n}+\boldsymbol{m}$ of the form $\mu=\rho \cup\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{r}, \beta_{r}\right)\right\}, r \geq 0$ arbitrary, s.t. for the case $r \geq 1$ holds

$$
\begin{aligned}
& \forall 1 \leq i \leq r: N_{\rho}^{\uparrow}\left(\alpha_{i}\right)>N_{\rho}^{\uparrow}\left(\beta_{i}\right)+1 \text { and } \\
& \forall 1 \leq i \leq r: N_{\rho}^{\downarrow}\left(\beta_{i}\right)>N_{\rho}^{\downarrow}\left(\alpha_{i}\right)+1 .
\end{aligned}
$$

It is not necessary to require that α_{i} and β_{i} are elements of different chains of the scaffolding. (Else it follows automatically $\left(\alpha_{i}, \beta_{i}\right) \in \rho$.)
Moreover, if there is no $\left(\alpha^{\prime}, \beta^{\prime}\right) \in \rho$ with $\left[\alpha^{\prime}>\alpha\right.$ and $\left.\beta^{\prime} \leq \beta\right]$ or $\left[\alpha^{\prime} \geq\right.$ α and $\beta^{\prime}<\beta$], then the tuples (α, β) are called blind edges:

Defining
$B(\rho)=\{(a, b) \mid$ Every unrefineable chain around a and b contains at least one blind edge\},
$\tilde{\rho}:=\rho \backslash B(\rho)$ arises from ρ by deletion of all blind edges in the Hasse diagram of ρ. In the following the chains of ζ are denoted by $C_{1}=\left\{a_{1}, \ldots, a_{n}\right\}, a_{1}<$ $\ldots<a_{n}$ and $C_{2}=\left\{b_{1}, \ldots, b_{m}\right\}, b_{1}<\ldots<b_{m}$.

2 Endomorphism classes

We need the following
Lemma 2.1 Let $\rho, \mu \in \boldsymbol{n}+\boldsymbol{m}$. Then it holds End $\rho=$ End μ if and only if $\tilde{\rho}=\tilde{\mu}$.

That is, the equivalence ε, defined by

$$
[\rho]_{\varepsilon}=\{\mu \mid \mu \in N(\tilde{\rho})\}
$$

divides the $\boldsymbol{n}+\boldsymbol{m}$-orders into their endomorphism classes.

Proof: Let $a \in C_{1}$ and $b \in C_{2}$. In the case $n \geq N_{\rho}^{\downarrow}(b)$ we define $a_{b}^{\downarrow} \in \mathcal{C}_{1}$ by the property $N_{\rho}^{\downarrow}\left(a_{b}^{\downarrow}\right)=N_{\rho}^{\downarrow}(b)$, in the case $n \geq N_{\rho}^{\dagger}(b)$ the element $a_{b}^{\dagger} \in \mathcal{C}_{1}$ is determined by the property $N_{\rho}^{\dagger}\left(a_{b}^{\dagger}\right)=N_{\rho}^{\dagger}(b)$. Dually, the elements b_{a}^{\perp} and b_{a}^{\dagger} are defined for the case $m \geq N_{\rho}^{\ddagger}(a)$ and $m \geq N_{\rho}^{\dagger}(a)$, respectively.
" \Longrightarrow :" Let w.l.o.g. $(a, b) \in \rho \backslash \mu$. We may assume that (a, b) doesn't be a blind edge, that is, it holds $(a, b) \in \tilde{\rho}$. In the case $N_{\rho}^{\perp}(a)=N_{\rho}^{\downarrow}(b)-1$ we define $f_{a b} \in E n d \rho \backslash E n d \mu$ by

$$
f_{a b}(x):=\left\{\begin{array}{cl}
a_{N_{\rho}^{\frac{1}{\prime}}(x)-1}, & \text { if } x<b \\
x & \text { else. }
\end{array}\right.
$$

In the other case it holds $N_{\rho}^{\uparrow}(a)-1=N_{\rho}^{\uparrow}(b)$ and we define

$$
f_{a b}(x):=\left\{\begin{array}{cl}
b_{m+2-N_{\rho}^{\dagger}(x)}, & \text { if } x>a \\
x & \text { else. }
\end{array}\right.
$$

"œ:" Let in reversion be

$$
a=\min _{x \in \mathcal{C}_{1}}\left\{\exists y \in \mathcal{C}_{2} \mid(x, y) \in \rho \backslash \mu\right\} .
$$

We have to show:
i) $f \in E n d \mu \Longrightarrow(f(a), f(b)) \in \rho$, and
ii) $g \in E n d \rho$ and $(\alpha, \beta) \in \mu \Longrightarrow(g(\alpha), g(\beta)) \neq(a, b)$.

Two cases are to be considered:
Case 1: $n \geq m$.
Ad i) Let $f \in E n d \mu$. Then the fact $\forall x: x \nless \mu f(x)$ and $f(x) \not{ }_{\mu} x$ yields

$$
(f(a), f(b)) \in\left\{(a, b),\left(a, a_{b}^{\downarrow}\right)\right\} \subseteq \rho .
$$

Ad ii) Now let $g \in E n d \rho$ and $(\alpha, \beta) \in \mu$ with $(g(\alpha), g(\beta))=(a, b)$. One observes

$$
\begin{aligned}
& \alpha \in\{a\} \cup\left(\mathcal{C}_{2} \cap\left[b_{a}^{\dagger}, \min \left\{b_{a}^{\downarrow}, b\right\}\right]\right) \text { and } \\
& \beta \in\{b\} \cup\left(\mathcal{C}_{1} \cap\left[a_{b}^{\downarrow}, a_{b}^{\dagger}\right]\right) .
\end{aligned}
$$

Suppose that $\alpha \neq a$ and $\beta \neq b$ holds. Then it exists a non-blind edge $e=\left(a^{\prime}, b^{\prime}\right) \in \mathcal{C}_{1} \times \mathcal{C}_{2}$ with $a \leq a^{\prime}$ and $b^{\prime} \leq b$ in ρ. It follows $e \in \mu$ and with $(a, b) \in \mu$ a contradiction.

Case 2: $n<m$. The proof is done as in the case $n>m$, considering the converse relations $\bar{\mu}$ and $\bar{\rho}$.

Lemma 2.2 [4] Let ρ be a 2-series strict order relation. Further, let μ be a strict order relation. Then it holds End $\rho=E n d \mu$ if and only if there is a permutation π, s.t. for their maximum chains \mathcal{C}_{μ} and \mathcal{C}_{ρ} holds:

$$
\mathcal{C}_{\mu}=\left\{C_{\pi} \mid C \in \mathcal{C}_{\rho}\right\},
$$

where C_{π} arises from C by $C_{\pi}:=v_{\pi(1)} \ldots v_{\pi(k)}$ with $C=v_{1} \ldots v_{k}$.
Now we are able to prove the next theorem, which gives answer to the question, under which conditions the inclusion of endomorphism monoids is fulfilled.

Theorem 2.3 Let $\rho, \mu \in \boldsymbol{n}+\boldsymbol{m}$ and $n \neq m$. Then it holds $E n d \rho \subseteq E n d \mu$ if and only if $\tilde{\rho} \subseteq \tilde{\mu}$.

Proof:

" $\Longleftarrow: "$ Because of lemma 2.1 it remains to study the case $\tilde{\rho} \subset \tilde{\mu}$. Let $(\alpha, \beta) \in$ $\tilde{\mu}$. The function $f_{\alpha \beta}$ from the proof of the lemma fulfills $f_{\alpha \beta} \in E n d \mu \backslash$ End ρ.
Now let $f \in \operatorname{End} \rho$ and $(a, b) \in \mu \backslash \rho$ with $a \in \mathcal{C}_{1}$ and $b \in \mathcal{C}_{2}$. W.l.o.g. let hold the inequation $n=\left|\mathcal{C}_{1}\right|>\left|\mathcal{C}_{2}\right|=m$. (Else consider the relations $\bar{\mu}$ and $\bar{\rho}$ instead of ρ and μ.)
By lemma 2.1 it suffices to consider the case $(a, b) \in \tilde{\mu} \backslash \tilde{\rho}$. With lemma 2.2 and $\tilde{\rho} \subseteq \rho \cap \mu$ follows either $(f(a), f(b))=(a, b)$ or $(f(a), f(b)) \in \mathcal{C}_{2}$ and hence $(f(a), f(b)) \in \mu$.
" \Longrightarrow :" It remains to analyze the case $E n d \rho \subset E n d \mu$. One observes that for $f \in E n d \mu \backslash E n d \rho$ and all pairs $(\xi, \varsigma) \in N(\mu) \times N(\rho)$ holds: $f \in$ $E n d \xi \backslash E n d s$.
To get a contradiction we assume $\vartheta \in N(\rho) \backslash N(\mu)$. Then exists $(a, b) \in$ ϑ with $\forall \xi \in N(\mu):(a, b) \notin \xi$

$$
\begin{aligned}
& \Longrightarrow(a, b) \in \tilde{\rho} \backslash \tilde{\mu} \\
& \Longrightarrow \exists g \in E n d \rho \text { and }(\alpha, \beta) \in \mu \text { with }(g(\alpha), g(\beta))=(a, b)^{*} \\
& \Longrightarrow g \notin E n d \mu .
\end{aligned}
$$

Thus it follows $g \in E n d \rho \backslash E n d \mu$ contradicting the assumption.

[^0]Corollary 2.4 The lattice of endomorphism monoids of the elements of $\mathcal{K}=$ $\boldsymbol{n}+\boldsymbol{m}, m<n$, is isomorphic to the power set lattice of a $2(m-1)$-element set; that is, from $|M|=2(m-1)$ follows

$$
(\wp(M) ; \subseteq) \cong E n d \mathcal{K} .
$$

Example 2.5 In figure 2 the lattice of endomorphism classes of $4+3$-orders is depicted. For each class End ρ appears the representant $\tilde{\rho} \in[\rho]_{\varepsilon}$ of the corresponding order.

Figure 2: The class $4+3$

Definition 2.6 A relation $\rho \subseteq A^{2}$ is called rigid, if the identity mapping $i d(x)=x$ is the only unary polymorphism, that is End $\rho=\{i d\}$. Moreover, if for every natural number n the n-ary projections (or selector functions) $e_{i}^{n}\left(x_{1}, \ldots, x_{n}\right), 1 \leq i \leq n$, are the only n-ary polymorphisms, then ρ is called strongly rigid.

In [9] it was shown by Z.Hedrlin et al. in 1965, that rigid relations exist on any set. In 1973, I.G.Rosenberg continued this work by presenting a strongly rigid binary relation on any $3 \leq n$-element set [8].
We transfer the concept of rigid relations to given classes \mathcal{K} of relations.

Definition 2.7 Let \mathcal{K} be a class of relations. $\rho \in \mathcal{K}$ is called local rigid, if $E n d \rho \subseteq$ End μ holds for all $\mu \in \mathcal{K}$. Moreover, if the inclusion Pol $\rho \subseteq$ Pol μ holds for all $\mu \in \mathcal{K}$, then ρ is called local strongly rigid. If there exists $\rho \in \mathcal{K}$ with this property, we say " \mathcal{K} admits local (strongly) rigid structures".

Corollary 2.8 Let $n \neq m$. Then $\mathcal{K}=\boldsymbol{n}+\boldsymbol{m}$ admits local rigid structures.
[Proof: Obviously, every $\rho \in[\zeta]_{\varepsilon}$ is local rigid.]

Lemma 2.9 [4]Let ρ and μ be strict order relations with End $\rho=$ End μ. Then it exists a permutation π, s.t. $\mathcal{C}_{\mu}=\left\{C_{\pi} \mid C \in \mathcal{C}_{\rho}\right\}$ holds.

In the following the case $n=m$ is studied.
Theorem 2.10 Let $\mathcal{K}=\boldsymbol{n}+\boldsymbol{n}$. We define the disjoint partition $\mathcal{K}=\mathcal{K}_{s} \cup \mathcal{K}_{u}$ by

$$
\begin{aligned}
& \mathcal{K}_{s}=\left\{\rho \in \mathcal{K} \mid\left(a_{i}, b_{j}\right) \in \rho \Longleftrightarrow\left(a_{j}, b_{i}\right) \in \rho\right\} \text { and } \\
& \mathcal{K}_{u}=\left\{\rho \in \mathcal{K} \mid \exists i, j:\left(a_{i}, b_{j}\right) \in \rho,\left(b_{i}, a_{j}\right) \notin \rho\right\} .
\end{aligned}
$$

Further, let $\rho, \mu \in \mathcal{K}$. Then the following conditions are equivalent:
i) $E n d \rho \subseteq E n d \mu$
ii) $\tilde{\rho} \subseteq \tilde{\mu}$, and if $\exists r:\left(a_{r}, b_{r+1}\right),\left(b_{r}, a_{r+1}\right) \in \tilde{\rho}$, then the following implications hold (conditions of symmetry):

$$
\begin{aligned}
& \text { a) } \nexists i, j \geq r \text { with }\left(a_{i}, b_{j}\right) \in \rho,\left(b_{i}, a_{j}\right) \notin \rho \\
& \text { or }\left(a_{i}, b_{j}\right) \notin \rho,\left(b_{i}, a_{j}\right) \in \rho \\
& \Longrightarrow \nexists i, j \geq r \quad \text { with }\left(a_{i}, b_{j}\right) \in \mu,\left(b_{i}, a_{j}\right) \notin \mu \\
& \text { or }\left(a_{i}, b_{j}\right) \notin \mu,\left(b_{i}, a_{j}\right) \in \mu \text {. } \\
& \text { b) } \nexists i, j \leq r \text { with }\left(a_{i}, b_{j}\right) \in \rho,\left(b_{i}, a_{j}\right) \notin \rho \\
& \text { or }\left(a_{i}, b_{j}\right) \notin \rho,\left(b_{i}, a_{j}\right) \in \rho \\
& \Longrightarrow \nexists i, j \leq r \text { with }\left(a_{i}, b_{j}\right) \in \mu,\left(b_{i}, a_{j}\right) \notin \mu \\
& \text { or }\left(a_{i}, b_{j}\right) \notin \mu,\left(b_{i}, a_{j}\right) \in \mu \text {. }
\end{aligned}
$$

Proof:

i) $\Longrightarrow \boldsymbol{i i})$: Let $\left(a_{i}, b_{i+1}\right) \in \tilde{\rho}$ be arbitrary chosen. The mapping $f_{a_{i}, b_{i+1}}$ is an endomorphism of ρ and with $\left(a_{i}, a_{i+1}\right) \in \mu$ follows

$$
\left(a_{i}, b_{i+1}\right)=\left(f\left(a_{i}\right), f\left(a_{i+1}\right)\right) \in \tilde{\mu}
$$

and hence $\tilde{\rho} \subseteq \tilde{\mu}$. If there is no r with $\left(a_{r}, b_{r+1}\right),\left(b_{r}, a_{r+1}\right) \in \rho$, it remains nothing to show. Else exist $r_{1}<\ldots<r_{k}, k \geq 1$, with this property. W.l.o.g. let $r_{i}+1<r_{i+1}$ for all $i \in\{1, \ldots, k\}$. We define

$$
\begin{aligned}
\rho_{0} & :=\left\{(a, b) \mid(a, b),\left(b, b_{r_{1}+1}\right) \in \rho\right\} \text { and } \\
\rho_{j} & :=\left\{(a, b) \mid(a, b),\left(a_{r_{j}}, a\right),\left(b, b_{r_{j+1}+1}\right) \in \rho\right\} \quad \text { for } 1 \leq j \leq k .
\end{aligned}
$$

Analogously μ_{0}, \ldots, μ_{k} are defined.
Now we check the conditions of symmetry. For this, assume for some $i \in\{1, \ldots, n\}$:

$$
\begin{array}{ll}
\nexists r_{i} \leq s, t \leq r_{i+1} & \text { with }\left(a_{s}, b_{t}\right) \in \rho_{i},\left(b_{s}, a_{t}\right) \notin \rho_{i} \\
& \text { or }\left(a_{s}, b_{t}\right) \notin \rho_{i},\left(b_{s}, a_{t}\right) \in \rho_{i} .
\end{array}
$$

Suppose that $\exists r_{i} \leq s, t \leq r_{i+1}$ with $\left(a_{s}, b_{t}\right) \in \mu_{i},\left(b_{s}, a_{t}\right) \notin \mu_{i}$

$$
\text { or }\left(a_{s}, b_{t}\right) \notin \mu_{i},\left(b_{s}, a_{t}\right) \in \mu_{i} \text {. }
$$

Then we are able to define a mapping $\tilde{f} \in E n d \rho_{i} \backslash E n d \mu_{i}$ by

$$
\begin{aligned}
\tilde{f}\left(a_{l}\right) & =b_{l} \text { and } \\
\tilde{f}\left(b_{l}\right) & =a_{l}
\end{aligned}
$$

for $r_{i} \leq l \leq r_{i+1}$, which can be extended to an endomorphism $f \in$ $E n d \rho \backslash E n d \mu$ as follows:

$$
f(x):=\left\{\begin{array}{cl}
\tilde{f}(x), & x \in\left\{a_{r_{i}}, \ldots, a_{r_{i+1}}\right\} \cup\left\{b_{r_{i}}, \ldots, b_{r_{i+1}}\right\}, \\
x & \text { else }
\end{array}\right.
$$

This yields a contradiction to the condition $E n d \rho \subseteq E n d \mu$.
ii) $\Longrightarrow \boldsymbol{i}$): We differ between two cases $\mathbf{A}) \mu \in \mathcal{K}_{s}$ and $\left.\mathbf{B}\right) \mu \in \mathcal{K}_{u}$.
Ad A) Let $f \in \operatorname{End} \rho$ and $(\alpha, \beta) \in \mu$. We may assume $(\alpha, \beta)=\left(a_{i}, b_{j}\right) \in$ $\mathcal{C}_{1} \times \mathcal{C}_{2}$. By lemma 2.9 we get

$$
f(\alpha) \in\left\{a_{i}, b_{i}\right\} \text { and } f(\beta) \in\left\{a_{j}, b_{j}\right\} .
$$

With

$$
\left\{\left(a_{i}, a_{j}\right),\left(b_{i}, b_{j}\right),\left(a_{i}, b_{j}\right),\left(b_{i}, a_{j}\right)\right\} \subseteq \mu
$$

follows $(f(\alpha), f(\beta)) \in \mu$ and within $f \in E n d \mu$ as claimed.
Ad B) Obviously, it does also hold $\rho \in \mathcal{K}_{u}$.
Case B.1) $\nexists r:\left(a_{r}, b_{r+1}\right),\left(b_{r}, a_{r+1}\right) \in \rho$.
Let be $\left(a_{i}, b_{j}\right) \in \mu$ blind edges, $\left(b_{i}, a_{j}\right) \notin \mu$ and $f \in \operatorname{End} \rho$.
Suppose that $\left(f\left(a_{i}\right), f\left(b_{j}\right)\right)=\left(b_{i}, a_{j}\right)$. Then $f\left(\mathcal{C}_{1}\right)=\mathcal{C}_{2}$ and $f\left(\mathcal{C}_{2}\right)=\mathcal{C}_{1}$ is fulfilled, contradicting $\rho \in \mathcal{K}_{u}$, and one obtains $f \in E n d \mu$.
Case B.2) $\exists r:\left(a_{r}, b_{r+1}\right),\left(b_{r}, a_{r+1}\right) \in \rho$.
We consider the relations $\rho_{0}, \ldots, \rho_{k}$ and μ_{0}, \ldots, μ_{k}, which were defined in the other direction of the proof. By the use of the conditions of symmetry ii.a) and ii.b) the pairs (μ_{i}, ρ_{i}) in the case $\mu_{i} \in \mathcal{K}_{u}^{i}$ can be treated as the pair (μ, ρ) in B.1) or in the case $\mu_{i} \in \mathcal{K}_{s}^{i}$ as the pair ($\left.\mu, \rho\right)$ in A).

Corollary 2.11 The class $\boldsymbol{n}+\boldsymbol{n}$ admits local rigid structures.
[Beweis: ρ is local rigid if and only if $\rho \in \mathcal{K}_{u}$ and $\tilde{\rho}=\zeta$.]

By now, we only considered endomorphisms. To study n-ary polymorphisms, we need a generalization of the concept of blind edges.

3 Polymorphisms

Definition 3.1 Let $\rho \in \boldsymbol{n}+\boldsymbol{m}$. The tuple (α, β) is called \boldsymbol{k}-blind edge, if α and β are elements of different chains of the scaffolding and additionally holds:
i) $\quad N_{\rho}^{\uparrow}(\alpha) \quad>\quad N_{\rho}^{\uparrow}(\beta)+k$

$$
\text { and } N_{\rho}^{\downarrow}(\beta) \quad>\quad N_{\rho}^{\downarrow}(\alpha)+k,
$$

ii) $\nexists\left(\alpha^{\prime}, \beta^{\prime}\right) \in \rho$ with $\alpha^{\prime} \geq \alpha, \beta^{\prime}<\beta$

$$
\text { or } \quad \alpha^{\prime}>\alpha, \beta^{\prime} \geq \beta \text {. }
$$

Lemma 3.2 Let $\mathcal{K}=\boldsymbol{n}+\boldsymbol{m}$. Then the following mapping $\theta: A^{2} \longrightarrow A$ defines a binary polymorphism of ζ.

$$
\theta\left(x_{1}, x_{2}\right):= \begin{cases}a_{2}, & \text { if }\left(x_{1}, x_{2}\right)=\left(a_{1}, b_{m-1}\right) \\ a_{3}, & \text { if }\left(x_{1}, x_{2}\right)=\left(a_{i}, b_{m}\right) \text { for an } i \geq 2 \\ 0, & \text { if } \exists j: x_{j}=0 \\ 1, & \text { if } \exists j: x_{j}=1 \\ x_{2} & \text { else. }\end{cases}
$$

Proof: Let $\left(\alpha_{i}, \beta_{i}\right) \in \zeta$ for $i=1,2$. W.l.o.g. let $\alpha_{1} \neq 0 \neq \alpha_{2}$ and $\beta_{1} \neq 1 \neq$ β_{2}. (Else with $f(\tilde{\alpha})=0$ or $f(\tilde{\beta})=1$ it follows directly $(f(\tilde{\alpha}), f(\tilde{\beta})) \in \zeta$.)

In the case $\left(\alpha_{1}, \alpha_{2}\right)=\left(a_{1}, b_{m-1}\right)$ one obtains $\beta_{1} \in \mathcal{C}_{1}$ and $\beta_{2} \in\left\{b_{m}, a_{n}\right\}$.
i) $\left(\beta_{1}, \beta_{2}\right)=\left(a_{j}, b_{m}\right)$ for some $j \geq 2$. Then $(f(\tilde{\alpha}), f(\tilde{\beta}))=\left(a_{2}, a_{3}\right) \in \zeta$.
ii) $\left(\beta_{1}, \beta_{2}\right)=\left(a_{j}, a_{n}\right)$ for an $j \geq 2$. Then $(f(\tilde{\alpha}), f(\tilde{\beta}))=\left(a_{2}, a_{n}\right) \in \zeta$.

In the case $\left(\alpha_{1}, \alpha_{2}\right)=\left(a_{j}, b_{m}\right)$ for some $j \geq 2$ follows $\beta_{2}=1$ and hence

$$
(f(\tilde{\alpha}), f(\tilde{\beta}))=\left(a_{j}, 1\right) \in \zeta
$$

In all other cases it is obtained $(f(\tilde{\alpha}), f(\tilde{\beta}))=\left(\alpha_{2}, \beta_{2}\right) \in \zeta$.

Theorem 3.3 Let $n \neq m$. The class $\boldsymbol{n}+\boldsymbol{m}$ doesn't admit local rigid structures.
[Proof: It suffices to consider ρ with $\tilde{\rho}=\zeta$, since the class of ζ contains the only rigid relations. We define $\rho \in \boldsymbol{n}+\boldsymbol{m}$ by

$$
\rho:=\zeta \cup\left\{\left(a_{1}, b_{m-1}\right),\left(a_{1}, b_{m}\right)\right\} .
$$

Then the mapping θ from lemma 3.2 is a binary polymorphism $\theta \in \operatorname{Bin} \zeta \backslash$ Bin ρ, since

$$
\begin{aligned}
\left(a_{1}, b_{m-1}\right),\left(b_{m-1}, b_{m}\right) & \in \rho, \text { but } \\
\left(\theta\left(a_{1}, b_{m-1}\right), \theta\left(b_{m-1}, b_{m}\right)\right) & \left.=\left(a_{2}, b_{m}\right) \notin \rho .\right]
\end{aligned}
$$

That the above theorem is also valid for the case $n=m$, follows immediately from

Theorem 3.4 For every 2-series strict order relation ρ there is a natural number m, s.t. ρ is uniquely determined by its m-ary polymorphisms Pol ${ }^{(m)} \rho$.

Proof: Let $\rho, \mu \in \boldsymbol{n}+\boldsymbol{m}$ and $\left(a_{r}, b_{s}\right) \in \rho \backslash \mu$ be a k-blind edge for some $k \geq 1$. We define the mapping $\eta_{a_{r} b_{s}}: A^{s-1} \longrightarrow A$ by

$$
\eta_{a_{r} b_{s}}\left(x_{1}, \ldots, x_{s-1}\right):= \begin{cases}a_{r}, & \text { if }\left(x_{1}, \ldots, x_{s-1}\right)=\left(b_{1}, \ldots, b_{s-1}\right) \\ 0, & \text { if } \exists i: x_{i}=0 \\ x_{s-1} & \text { else }\end{cases}
$$

Then $\eta_{a_{r} b_{s}}$ is a polymorphism of ρ :
Let $\left(\alpha_{i}, \beta_{i}\right) \in \rho, i=1, \ldots, s-1$. We have to consider three cases:
i) $\left(\alpha_{1}, \ldots, \alpha_{s-1}\right)=\left(b_{1}, \ldots, b_{s-1}\right)$. It follows

$$
\begin{aligned}
f\left(\alpha_{1}, \ldots, \alpha_{s-1}\right) & =a_{r}, \\
\eta_{a_{r} b_{s}}\left(\beta_{1}, \ldots, \beta_{s-1}\right) & =\beta_{s-1}
\end{aligned}
$$

with $b_{s-1}<\beta_{s-1}$. It holds 1) $\beta_{s-1} \in \mathcal{C}_{2}$, i.e. $\beta_{s-1} \geq b_{s}$ or 2) it exists an element $a \in \mathcal{C}_{1}$ with $\left(\beta_{s-1}, a\right) \in \rho$ and hence $\left(a_{r}, a\right) \in \rho$.
In both cases 1) and 2) follows $\left(\eta_{a_{r} b_{s}}(\tilde{\alpha}), \eta_{a_{r} b_{s}}(\tilde{\beta})\right)=\left(a_{r}, \beta_{s-1}\right) \in \rho$.
ii) $\left(\beta_{1}, \ldots, \beta_{s-1}\right)=\left(b_{1}, \ldots, b_{s-1}\right)$. It follows $\alpha_{1}=0$ and hence

$$
\left(\eta_{a_{r} b_{s}}(\tilde{\alpha}), \eta_{a_{r} b_{s}}(\tilde{\beta})\right)=\left(0, a_{r}\right) \in \rho .
$$

iii) $\tilde{\alpha} \neq\left(b_{1}, \ldots, b_{s-1}\right) \neq \tilde{\beta}$. It follows

$$
\left(\eta_{a_{r} b_{s}}(\tilde{\alpha}), \eta_{a_{r} b_{s}}(\tilde{\beta})\right)=\left(\alpha_{s-1}, \beta_{s-1}\right) \in \rho .
$$

On the other side one obtains $\eta_{a_{r} b_{s}} \notin P o l^{(s-1)} \mu$, being a consequence of

$$
\begin{aligned}
\left(b_{1}, b_{2}\right), \ldots,\left(b_{s-1}, b_{s}\right) & \in \mu \text { and } \\
\left(\eta_{a_{r} b_{s}}\left(b_{1}, \ldots, b_{s-1}\right), \eta_{a_{r} b_{s}}\left(b_{2}, \ldots, b_{s}\right)\right)=\left(a_{r}, b_{s}\right) & \notin \mu .
\end{aligned}
$$

Corollary 3.5 The class $\boldsymbol{n}+\boldsymbol{n}$ doesn't admit local strongly rigid structures.
[Proof: We have to consider the set

$$
\mathcal{S}:=\left\{\rho \mid \rho \in \mathcal{K}_{u} \text { and } \tilde{\rho}=\zeta\right\}
$$

of all local rigid relations. Since $\zeta \notin \mathcal{S}$, two different relations $\rho_{1}, \rho_{2} \in \mathcal{S}$ differ in at least two blind edges $\left(a_{r_{1}}, b_{s_{1}}\right) \in \rho_{1} \backslash \rho_{2}$ and $\left(a_{r_{2}}, b_{s_{2}}\right) \in \rho_{2} \backslash \rho_{1}$. (W.l.o.g. the tuples were assumed to be elements of $\mathcal{C}_{1} \times \mathcal{C}_{2}$.) For the mappings

$$
\eta_{a_{r_{i}} b_{s_{i}}}: A^{s_{i}-1} \longrightarrow A, i \in\{1,2\}
$$

from theorem 3.4 holds:

$$
\begin{gathered}
\\
\\
\text { and } \quad \eta_{a_{r_{1}} s_{s_{1}}} \in \operatorname{Pol}^{\left(s_{1}-1\right)} \rho_{1} \backslash \operatorname{Pol}^{\left(s_{1}-1\right)} \rho_{2} \\
\left.\eta_{r_{2} b_{s_{2}}} \in \operatorname{Pol}^{\left(s_{2}-1\right)} \rho_{2} \backslash \operatorname{Pol}^{\left(s_{2}-1\right)} \rho_{1} .\right]
\end{gathered}
$$

It is possible to generalize the concept of 2 -series strict orders in a natural way to k-series strict orders of the form $\mathcal{K}=\sum_{i=1}^{k} \boldsymbol{n}_{\boldsymbol{i}}$ (see [5]). Then EndK in general does not be isomorphic to a Boolean algebra and \mathcal{K} admits no local rigid structures and hence no local strongly rigid structures, too. If a Boolean algebra \mathcal{B} appears as a direkt product of an even number of twoelement Boolean algebras, then it is possible to find a class \mathcal{K} of k-series strict orders with $E n d \mathcal{K} \cong \mathcal{B}$.

References

[1] A.Fearnley, "A strongly rigid binary relation", Acta Sci. Math. 61, No.1-4 (1995), pp. 35-41.
[2] Z.Fueredi, I.G.Rosenberg, "Orders admitting an isotone majority operation", Mult.-Valued Log. 3, No. 1 (1998), pp. 39-53.
[3] B.Larose, L.Zadori, "Algebraic properties and dismantlability of finite posets", Discrete Math. 163, No.1-3 (1997), pp. 89-99.
[4] R.Lenz, "Isotone mappings of levelled strict orders", Preprint Nr. 331, University of Kaiserslautern, 2002.
[5] R.Lenz, "Algebraisch abgeschlossene Klassen graphentreuer Funktionen", PhD-thesis, University of Kaiserslautern, 2002.
[6] O.Lueders, D.Schweigert, "Strictly order primal algebras", Acta Math. Univ. Comen., New Ser. 63, No. 2 (1994), pp. 275-284.
[7] A.Pultr, V.Trnkova, "Combinatorial algebraic and topological representations of groups, semigroups and categories", North-Holland Math. Libr. 1980.
[8] I.G.Rosenberg, "Strongly rigid relations", Rocky Mountain J. Math. 3 (1973), pp. 631-639.
[9] P.Vopěnka, A.Pultr, Z.Hedrlin, "A rigid relation exists on any set", Comment. Math. Univ. Carolinae 6 (1965), pp. 149-155.

Rainer Lenz
Fachbereich Mathematik
Universität Kaiserslautern
67653 Kaiserslautern
e-mail: rlenz@mathematik.uni-kl.de

[^0]: *E.g. the function $f_{a b}$ possesses this property.

