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Nomenclature

Throughout this work, scalars as well as scalar valued functions (e.g. differential forms)

and their values are denoted by small non-bold symbols. Vectors are denoted by small

bold symbols, e.g. a = aiei, where {eI} always denotes a spatially fixed Cartesian basis

of the three-dimensional inertial space. Einstein’s summation convention is used to sum

over repeated lower case indices. A capital symbol indexing a vector indicates that this

vector belongs to a set (usually a triad) of vectors. Second order tensors are denoted by

capital bold symbols. Calligraphic symbols denote sets or spaces of functions. Each ·
indicates one contraction, e.g. the scalar product of two vectors of equal dimension reads

aT · b = c, a matrix product of two appropriate second order tensors reads A · B = C

and the product of a matrix with a vector reads A · b = c.

The symbol n is used twofold, first of all, it indicates the dimension of the configuration

manifold and secondly, it is used as an index to represent approximations to quantities at

the n-th time node tn, e.g. zn approximates z(tn).

The system of equations of motion emanating from the use of the Lagrange multiplier

method for the constraint enforcement is also called ‘constrained formulation’, similarly

the corresponding time-stepping scheme is termed ‘constrained scheme’. The use of the

null space method leads to the ‘reduced formulation’ or ‘d’Alembert-type formulation’

of the equations of motion. Similarly, the discrete null space method gives rise to the

‘reduced scheme’ or ‘d’Alembert-type scheme’.

In Chapter 4, 5 and 6, the numerical performance of different time-stepping schemes is

compared with the help of various examples. In the corresponding tables, the order of

magnitude of the constraint fulfilment and the condition number are given. In contrast

to that, the number of unknowns is given exactly, while the CPU-time is specified as the

ratio between the computation time for a certain number of time-steps by the specific

scheme and that of the d’Alembert-type scheme with nodal reparametrisation.
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Nomenclature

Q n-dimensional real configuration manifold (see A.1)

P 2n-dimensional real phase manifold

C (n−m)-dimensional constraint manifold

TQ tangent bundle (see A.3)

T ∗Q cotangent bundle (see A.3)

q configuration vector

q̇ velocity vector

p momentum vector

z phase vector

λ Lagrange multiplier

L Lagrangian

H Hamiltonian

T kinetic energy

V potential energy

PH extra function to treat the constraints in the Hamiltonian formalism

PL extra function to treat the constraints in the Lagrangian formalism

S action integral

ω symplectic form (see A.10)

J symplectic matrix

J momentum map (see A.21)

FL fibre derivative

XH Hamiltonian vector field (see A.16)

D Jacobian (see A.4)

Di partial derivatives with respect to i-th argument

d exterior derivative (see A.9)

D discrete derivative (see 3.1.1)

DG G-equivariant discrete derivative (see 3.1.4)

Di partial discrete derivative with respect to i-th argument (see 3.1.7)

d discrete derivative on lower dimensional subspace (see 3.1.7)

g holonomic constraints

G constraint Jacobian

G discrete derivative of the constraints

P null space matrix

P discrete null space matrix

t time

h time-step

µ penalty parameter

G Lie group (see A.17)

g Lie algebra (see A.18)

φ action of a Lie group
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Nomenclature

ϕ placement of centre of mass

ϕ̇ translatorical velocity of placement of centre of mass

pϕ momentum conjugate to translatorical velocity of placement of centre of mass

{dI} director triad

{ḋI} director velocities

ω angular velocity

{pI} momenta conjugate to director velocities

% joint location with respect to body-fixed director triad

uϕ incremental displacement of centre of mass

θ incremental rotation

F(P ) set of continuously differentiable real-valued functions on P

Ck(A,B) set of k-times continuously differentiable functions from A to B

Pk(0, 1)2n set of 2n-dimensional real-valued polynomials of degree k on [0, 1]

δij Kronecker delta

εijk alternating symbol
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1 Introduction

The numerical simulation of real physical processes is indispensable in all modern techno-

logical sciences, especially in mechanical engineering. It always relies on an idealisation

of the actual situation in a physical model, such that this can be described in terms of an

abstract mathematical model. In general, a mathematical model consists of (differential)

equations and side conditions. A solution of these equations represents the simulation of

the real process. The art of modelling lies in finding the balance between simplification

of the process in the physical model and veritableness of the resulting solution. As a

consequence of nonlinearities present in even the simplest useful models, an analytical

solution to the describing equations is rarely feasible. This causes the necessity for nu-

merical methods that approximate the solution of the mathematical model. Naturally

most realistic approximations are in demand which share the relevant properties of the

analytical solution while minimising the computational costs.

This work deals with the simulation of the dynamics of multibody systems consisting

of rigid and elastic components combined by joints. Typical applications are all kinds

of robot manipulators including industrial manufacturing robots or portage machinery,

as well as deployable structures such as space satellites. The simulation of multibody

dynamics combines several issues. First of all, flexible parts must be discretised in space

and a material model for their (elastic) behaviour has to be identified. Secondly, the

interconnections have to be taken into account. Typically they give rise to constraints

restricting the possible states of the system. The choice of a method to enforce the con-

straints completes the formulation of the evolution equations and side conditions in the

mathematical model. Finally these semi-discrete equations have to be discretised in time

resulting in time-stepping algorithms.

The equations of motion, which are the basis for mathematical models of dynamical pro-

cesses, can be derived in different contexts. On the one hand, force-based approaches lead

to Newton’s second law. On the other hand, the Hamiltonian and the Lagrangian formal-

ism in analytical mechanics focus on the observation of energy and variational principles

which enhances their generality. The Hamiltonian formalism for instance can be used to

model classical mechanical systems as well as quantum dynamics, see [Pesk 95]. There-

fore, a representation in an abstract formalism, as introduced e.g. in [Abra 78,Hofe 94], is

necessary. A special property of the solutions of the equations of motion in Lagrangian or

Hamiltonian dynamics is the conservation of first integrals. Under certain suppositions,

the energy, momentum maps related to the system’s symmetries and the symplectic form

remain unchanged along these solutions. See e.g. [Nolt 02, Gold 85] for classical intro-

ductions to analytical dynamics or [Olve 95] and references therein for a more theoretical

approach to the symmetries of differential equations and variational problems.

1
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Flexible bodies can be modelled in the framework of nonlinear continuum mechanics

[Holz 00, Mars 83, Beck 75] or nonlinear structural mechanics [Antm 95]. The spatial

discretisation by finite elements divides the body into a finite number of disjoint re-

gions – the elements. Classical introductions to the finite element method for nonlinear

continuum or structural mechanics are [Zien 92, Zien 94, Bone 97, Bely 01, Wrig 01]. A

fundamental requirement to the resulting semi-discrete mechanical system is objectiv-

ity (also termed frame-indifference), i.e. the resulting strain measures must be invari-

ant with respect to superimposed rigid body motion. This restricts the possible dis-

cretisation techniques, especially in structural mechanics as pointed out in [Cris 99].

The flexible structure considered throughout this work is a geometrically exact beam,

i.e. a deformable structure whose cross-sections are small compared to its length. The

term geometrically exact refers to the allowance of large finite deformation requiring

a geometrically nonlinear description. The modelling of geometrically exact beams as

a special Cosserat continuum (which is a directed continuum, see e.g. [Antm 95]), has

been the basis for many finite element formulations starting with the works of Simo

[Simo 85,Simo 86b,Simo 88]. A realisation of the placements and orientations of the inte-

rior beam points in terms of translations and rotations is manifest and widely used, e.g.

in [Ibra 98,Jele 98]. However, the interpolation of rotations is prone to violate the objec-

tivity requirement. Thus the parametrisation of rotations is subject of many investigations

including [Bets 98,Ibra 95,Ibra 97,Ibra 02b,Jele 99,Jele 02,Rome 04,Bott 02b,Bauc 03b].

A remedy was found independently by [Rome 02b] and [Bets 02d] in the spatial inter-

polation of director triads. To maintain the kinematic assumptions of the underlying

continuous Timoshenko beam theory, each triad is required to stay orthonormal during

motion and deformation of the beam, giving rise to so called internal constraints. The

formulation of the beam dynamics as Hamiltonian system subject to internal constraints

is particularly suited for a generalisation to multibody systems since rigid bodies can be

described in the same way as directed constrained continua and, moreover, the intercon-

nections to other components are modelled as external constraints which can be treated

by analogy with the internal constraints.

For the enforcement of holonomic constraints, there are different methods at the disposal.

The Lagrange multiplier method enlarges the number of unknowns by as many Lagrange

multipliers as there are constraints. A solution of the resulting enlarged system fulfils the

constraints exactly. In contrast to that, using the penalty method, the constrained motion

is approximated by an unconstrained one under the influence of strong conservative forces.

Thereby the magnitude of the so-called penalty parameter determines the accuracy of the

solution’s constraint fulfilment. The augmented Lagrange method can be interpreted as

a combination of the just mentioned methods, with the difference, that the error in the

constraint fulfilment is reduced below a prescribed tolerance by performing extra itera-

tions. [Bert 95, Luen 84] offer general introductions to these three methods. A different

approach to constrained systems is given by null space methods, see e.g. [Benz 05]. The

main distinguishing feature is the elimination of the Lagrange multipliers (which can be

interpreted as constraint forces) from the equations leading to a size reduction of the

system of equations. This is accomplished by dint of a so-called null space matrix as

2
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introduced in [Lian 87] among others. Since the null space matrix spans the null space

of the constraint Jacobian, it is often referred to as natural orthogonal complement, e.g.

by [Ange 89,Saha 99]. The elimination of the workless constraint forces is closely related

to d’Alembert’s principle (see e.g. [Arno 78]), wherefore the resulting form of the equa-

tions of motion is also termed d’Alembert-type formulation. Another way to deal with

constraints is the reparametrisation of the system’s description in terms of independent

generalised coordinates. This method reduces the system’s dimension to the minimal

possible number and redundantises the constraints, see e.g. [Gold 85,Kuyp 03].

The temporal discretisation of the finite-dimensional system of nonlinear ordinary differen-

tial equations (ODEs) emanating from the spatial discretisation of a flexible body is – even

without the consideration of constraints – comparatively demanding, see e.g. [Leim 04].

Especially if the resulting ODEs belong to the class of stiff equations, the design of stable

time-stepping schemes is not an easy task as investigated by [Hair 96,Hair 00,Gonz 96a,

Gonz 96b]. During the research of the last decades it has been recognised that the in-

heritance of the conservation of first integrals to the temporal discrete solution entails

superior numerical performance of the specific integrator. Besides the benefit of increased

numerical stability, the conservation of energy, momentum maps and the symplectic form

along the discrete solution enhances its veritableness since the ‘unique fingerprint of the

process’, i.e. its ‘qualitative and structural characteristics’ (see [Bott 02b]) are trans-

ferred to the discrete solution. Time-stepping schemes which inherit the (conservation)

properties of the continuous mechanical system are referred to as ‘mechanical integra-

tors’, according to [Mars 92]. Energy-momentum conserving schemes, relying on a direct

discretisation of the ODEs, have been widely investigated, see e.g. [Bets 00a, Bets 00b,

Bets 01a, Ibra 99, Ibra 02a, Arme 01a, Cris 96, Gonz 00, Hugh 78, LaBu 76a, LaBu 76b,

Noel 04a,Reic 95,Simo 91a,Simo 91b,Simo 92a,Simo 94,Simo 95]. Based on the discreti-

sation of the variational formulation behind the ODEs, symplectic-momentum integrators

have been derived e.g. by [Bart 98, Hair 04, Jay 96, Leim 94, Leim 96, Lew 03, Reic 94,

Kane 00,Mars 01]; see e.g. [Simo 92b,Simo 93] for a discussion on energy-momentum and

symplectic schemes. Then again it is a common opinion that there are processes, e.g.

highly oscillatory ones, for which stable time integration requires numerical damping, see

e.g. [Arme 01a,Arme 01b,Arme 03,Bauc 96,Bott 02a,Hilb 77, Ibra 02a,Rome 02a].

The presence of constraints complicates the temporal integration of the system of equa-

tions substantially. Using the Lagrange multiplier method for the constraint enforcement

results in differential algebraic equations (DAEs) of index three, see e.g. [Seil 99,Rhei 91,

Deuf 00]. Due to the presence of the Lagrange multipliers, the direct application of

ODE integrators leads to numerical difficulties as reported by [Petz 86,Hair 89,Gera 01].

However, well-performing integration schemes for the large dimensional DAEs have been

designed recently e.g. by [Bets 01b,Bets 02b,Bets 02c,Eich 98,Fuhr 91,Arno 05,Gonz 99,

Wend 97,Reic 96]. The description of the problem in terms of independent generalised

coordinates by a local reparametrisation of the constraint manifold leads to highly com-

plex ODEs for which the application of ODE integrators is generally possible but in most

cases not recommendable, see [Leim 04,Rhei 84,Rhei 96,Rhei 97]. These problems can be

overcome using the discrete null space method proposed by [Bets 05] which is investigated

3
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extensively in this work – mainly and in-depth for the simulation of flexible multibody

dynamics.

Time-stepping schemes for flexible multibody dynamics based on the solution of the DAEs

have been developed by [Bets 02a, Bets 04, Ibra 00b, Bauc 99b, Bauc 99a, Bauc 03a]. A

different procedure relying on the master-slave approach can be found in [Jele 96,Jele 01,

Ibra 00a, Ibra 03]. An alternative to the semi-discretisation of elastic multibody systems

using wavelets is proposed by [Diaz 03].

Main issues and outline of this work

The primary object of this work is the development of a robust, accurate and efficient time

integrator for the dynamics of flexible multibody systems. Particularly a unified frame-

work for the computational dynamics of multibody systems consisting of mass points,

rigid bodies and flexible beams forming open kinematic chains or closed loop systems is

developed. In addition, it aims at the presentation of (i) a focused survey of the La-

grangian and Hamiltonian formalism for dynamics, (ii) five different methods to enforce

constraints with their respective relations, and (iii) three alternative ways for the tempo-

ral discretisation of the evolution equations. The relations between the different methods

for the constraint enforcement in conjunction with one specific temporal discretisation

method are proved and their numerical performances are compared by means of theoret-

ical considerations as well as with the help of numerical examples.

Finite dimensional equations of motion are deduced in an abstract Lagrangian and Hamil-

tonian formalism in Chapter 2, providing a basis of the modelling of any dynamical pro-

cess. The basic (conservation) properties of the solutions of these evolution equations

are shown, in particular the conservation of energy, momentum maps related to the sys-

tem’s symmetries and symplecticity. The presentation of well-known classical theories on

dynamics concludes with the sketch of specific momentum maps resulting from tempo-

ral, translational and rotational symmetry of the mechanical system. The second part of

Chapter 2 is devoted to different methods for the enforcement of holonomic constraints:

the Lagrange multiplier method, the penalty method, the augmented Lagrange method,

the null space method and the reparametrisation in terms of generalised coordinates. The

evolution equations resulting from the use of each method are given in Lagrangian and

Hamiltonian formalism and their relations are discussed.

Chapter 3 starts with the presentation of the temporal discretisation of Hamilton’s evolu-

tion equations using the concept of discrete derivatives and Galerkin-based finite elements

in time, both resulting in energy-momentum conserving time-stepping schemes. Then the

concept of variational integrators based on the direct discretisation of a variational prin-

ciple is sketched. It leads to a symplectic-momentum conserving integrator. After a short

motivation for the decision to use the Hamiltonian formalism in conjunction with the

concept of discrete derivatives for the construction of an integrator, the resulting time-

stepping schemes are given for all five methods to treat the constraints. Because of the

relatively simple structure of the evolution equations emanating from the Lagrange mul-

tiplier method, the penalty method and the augmented Lagrange method (in particular
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they contain constant mass matrices), these can be discretised easily. Furthermore the

equivalence to the Lagrange multiplier scheme of the penalty scheme for penalty parame-

ters tending to infinity and of the augmented Lagrange scheme for infinitely many itera-

tions is proved explicitly. The d’Alembert-type equations and the evolution equations in

terms of generalised coordinates contain configuration dependent mass matrices, compli-

cating the temporal discretisation substantially. (The highly complicated configuration

dependent mass matrix resulting from the description of a double spherical pendulum

in generalised coordinates is given as a deterrent example in Appendix D.) However,

they bear the advantageous properties of small dimensional systems (especially compared

to the Lagrange multiplier system) and of exact constraint fulfilment (in contrast to the

penalty system and the augmented Lagrange system, providing exact constraint fulfilment

only in the limit cases). Thus despite the awkwardly complicated temporal discretisation

procedure, they are promising to yield accurate and efficient time-stepping schemes. A

remedy can be found in the discrete null space method which proposes a reversal of the

two main steps when designing a specific numerical method. First of all, the simple

structured DAEs emanating from the use of the Lagrange multiplier method are discre-

tised in time. Then the transition to the d’Alembert-type scheme and finally the nodal

reparametrisation is performed in the temporal discrete setting in complete analogy to the

transition from the Lagrange multiplier formulation to the d’Alembert-type formulation

and the reparametrisation in terms of generalised coordinates in the temporal continuous

case. This transition involves the so-called discrete null space matrix for which different

representations are ascertained. The comparison of the theoretical aspects of the five

time-stepping schemes at the end of Chapter 3 shows that the d’Alembert-type scheme

with nodal reparametrisation performs excellently in all relevant categories. First of all,

it yields the smallest dimensional system of equations, promising lower computational

costs than the other schemes. Secondly, the constraints are fulfilled exactly and thirdly,

it is unconditionally well-conditioned, i.e. the condition number of the iteration matrix

during the iterative solution procedure of the system of nonlinear algebraic equations is

independent of the time-step. The dependence of the condition number of the specific

schemes on the time-step or on other parameters is calculated generally for each scheme

in Appendix C.

In Chapter 4, the performance and especially the equivalence of the different methods

to treat the constraints are demonstrated illustratively for the dynamics of mass point

systems and rigid bodies. For a double spherical pendulum, the time-stepping schemes

emanating from the different methods for the constraint enforcement are given explicitly.

The description of rigid body dynamics as Hamiltonian system subject to internal con-

straints serves as a basis for the objective description of spatially discretised beams in

Chapter 5. Furthermore, it is shown that the d’Alembert-type formulation of the equa-

tions of rigid body motion coincides with the well-known Newton-Euler equations. Before

the simulation of the motion of a heavy symmetrical top is documented at the end of

Chapter 4, the treatment of boundary conditions and bearings by the null space method

is outlined.

The formulation of the dynamics of a geometrically exact beam theory as Hamiltonian

system subject to internal constraints is introduced in Chapter 5. A spatial discretisation

using linear finite beam elements leads to objective discrete strain measures. Based on the

5
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concept of discrete derivatives, an objective energy-momentum conserving time-stepping

scheme is deduced. A numerical example illustrates the formerly developed relations

between the time-stepping schemes emanating from the different constraint enforcement

methods in the spatially distributed context.

The treatment of internally constrained rigid body or beam dynamics is generalised to

the dynamics of multibody systems in a systematic way in Chapter 6. First of all, the

enforcement of the internal and external constraints occurring in kinematic pairs using the

Lagrange multiplier method and the discrete null space method with nodal reparametri-

sation is developed in detail. Specifically, the continuous and discrete null space matrices

are given for the spherical, cylindrical, revolute, prismatic and planar pair and numerical

examples are shown. Then the treatment of kinematic pairs is generalised to open kine-

matic chains consisting of an arbitrary number of rigid bodies and further on to closed

kinematic chains, for which a numerical example is given in form of a six-body linkage.

Finally the procedure is generalised to the treatment of arbitrary multibody systems con-

sisting of rigid and elastic components. An instructive outline for the treatment of general

multibody systems by the discrete null space method is given, providing a new robust,

accurate and efficient integrator for flexible multibody dynamics. Finally an example of

a spatial slider-crank mechanism containing flexible beams and rigid bodies is presented.

After the conclusions in Chapter 7, the Appendix provides a collection of definitions

of relevant notions. Moreover, it contains details concerning the implementation of the

d’Alembert-type scheme and the discrete derivative in the spatially distributed case. It

concludes with some historical remarks on the ‘invertible cube’ by Paul Schatz which is

used in the example of the six-body linkage.
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Einleitung

Die numerische Simulation tatsächlicher physikalischer Prozesse ist unverzichtbar in der

modernen Technologie, speziell für Ingenieuranwendungen. Sie basiert immer auf der Ide-

alisierung des vorliegenden Problems durch ein physikalisches Modell, welches wiederum

durch ein abstraktes mathematisches Modell beschrieben werden kann. Im Allgemeinen

besteht ein mathematisches Modell aus (Differential-) Gleichungen und Nebenbedingungen.

Eine Lösung dieser Gleichungen stellt die Simulation des tatsächlichen Prozesses dar.

Die Kunst des Modellierens liegt darin, ein ausgewogenes Verhältnis zwischen der Ver-

einfachung des Prozesses im physikalischen Modell und der Echtheit der resultieren-

den Lösung zu finden. Als Konsequenz von Nichtlinearitäten, die sogar in den ein-

fachsten brauchbaren Modellen auftreten, ist das analytische Lösen der beschreibenden

Gleichungen im mathematischen Modell meistens unmöglich. Daraus ergibt sich die

Notwendigkeit für numerische Methoden, die diese Lösung approximieren. Natürlich sucht

man nach möglichst realisitischen Approximationen, welche die relevanten Eigenschaften

der tatsächlichen Lösungen innehaben und gleichzeitig den Rechenaufwand minimieren.

Die vorliegende Arbeit beschäftigt sich mit der Simulation der Dynamik von Mehrkörper-

systemen, in denen starre und elastische Komponenten durch Gelenke verbunden sind.

Typische Anwendungsbeispiele sind alle Arten von Robotern wie zum Beispiel Ferti-

gungsroboter oder Beförderungsanlagen in der Industrie, aber auch ausschwenkbare Struk-

turen wie sie beispielsweise an Satelliten zu finden sind. Die Simulation der Dynamik

flexibler Mehrkörpersysteme beinhaltet mehrere Aspekte. Zunächst müssen flexible Teile

räumlich diskretisiert werden, und ein Modell für ihr (elastisches) Materialverhalten muss

bestimmt werden. Des Weiteren müssen die Verbindungen zwischen den Körpern berück-

sichtigt werden. Typischerweise entstehen aus ihnen Zwangsbedingungen, welche die

möglichen Zustände des Systems einschränken. Die Wahl einer Methode zur Realisierung

dieser Zwangsbedingungen vervollständigt die Formulierung der Bewegungsgleichungen

und Nebenbedingungen im mathematischen Modell. Schließlich müssen diese semi-diskre-

ten Gleichungen auch zeitlich diskretisiert werden, damit ein Zeitschrittverfahren entsteht.

Die Bewegungsgleichungen, welche die Basis mathematischer Modelle für dynamische

Prozesse bilden, können in unterschiedlichen Zusammenhängen hergeleitet werden. Auf

der einen Seite führen kraftbasierte Ansätze zum zweiten Newtonschen Gesetz. Deutlich

allgemeiner betrachten der Hamiltonsche und der Lagrangesche Formalismus der ana-

lytischen Mechanik Energie und Variationsprinzipien. So kann der Hamiltonsche For-

malismus zum Beispiel sowohl zur Modellierung klassischer mechanischer Systeme als

auch für quantendynamische Prozesse eingesetzt werden, siehe [Pesk 95]. Diese allge-

meinen Ansätze bedienen sich eines abstrakten mathematischen Formalismus’, wie er

7
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z.B. in [Abra 78, Hofe 94] eingeführt wird. Eine spezielle Eigenschaft der Lösungen

der Bewegungsgleichungen im Hamiltonschen und Lagrangeschen Formalismus ist die

Konservierung von Erhaltungsgrößen entlang der Lösung. Unter bestimmten Voraus-

setzungen bleiben die Energie, Impulsabbildungen, die mit den Symmetrien des Systems

zusammenhängen und die symplektische Form entlang der Lösung erhalten. Siehe z.B.

[Nolt 02,Gold 85] für eine klassische Einführung in die analytische Dynamik oder [Olve 95]

und Referenzen darin für eine theoretischere Herangehensweise an Differentialgleichungen

mit Symmetrien und Variationsprobleme.

Flexible Körper können im Rahmen der nichtlinearen Kontinuumsmechanik [Holz 00,

Mars 83,Beck 75] oder der nichtlinearen Strukturmechanik [Antm 95] modelliert werden.

Die räumliche Diskretisierung mit finiten Elementen unterteilt den Körper in eine endliche

Anzahl disjunkter Gebiete – die Elemente. Klassiche Einführungen in die finite Elemente-

Methode für nichtlineare Kontinuums- oder Strukturmechanik bieten [Zien 92, Zien 94,

Bone 97, Bely 01, Wrig 01]. Eine fundamentale Bedingung an das resultierende semi-

diskrete System ist die Objektivität, d.h. die resultierenden Verzerrungsmaße müssen

invariant gegenüber überlagerten Starrkörperbewegungen sein, was mögliche Diskreti-

sierungstechniken einschränkt, wie in [Cris 99] gezeigt wird. In der vorliegenden Ar-

beit werden geometrisch exakte Balken als flexible Strukturen eingesetzt. Dies sind

verformbare Körper, deren Querschnitte im Vergleich zu ihrer Länge klein sind. Sie

können große endliche Verfomungen erfahren. Die Modellierung geometrisch exakter

Balken als spezielles Cosserat-Kontinuum (welches ein gerichtetes Kontinuum darstellt,

siehe [Antm 95]) bildet die Basis für viele finite Elemente-Formulierungen, angefangen mit

den Arbeiten von Simo [Simo 85, Simo 86b,Simo 88]. Die Darstellung der Platzierungen

und Orientierungen der inneren Balkenpunkte mittels Verschiebungen und Rotationen ist

nahe liegend und wird weithin benutzt, z.B. in [Ibra 98, Jele 98]. Allerdings birgt die

Interpolation von Rotationen die Gefahr, die Objektivitätsanforderungen zu verletzen,

weshalb die Parametrisierung von Rotationen Gegenstand vieler Untersuchungen wie z.B.

in [Bets 98, Ibra 95, Ibra 97, Ibra 02b, Jele 99, Jele 02,Rome 04,Bott 02b,Bauc 03b] war.

Eine Möglichkeit diese Schwierigkeiten zu umgehen wurde unabhängig von [Rome 02b]

und [Bets 02d] gefunden; die Darstellung des gerichteten Balkenkontinuums mit Di-

rektortriaden erfüllt die Objektivitätsanforderungen. Um die kinematischen Vorausset-

zungen der Timoshenko-Balkentheorie zu erfüllen, wird verlangt, dass jede Direktortriade

während der Bewegung und Verformung des Balkens orthonormal bleibt. Dies führt

zu so genannten internen Zwangsbedingungen. Die Formulierung der Balkendynamik als

Hamiltonsches System mit internen Zwangsbedingungen ist für eine Verallgemeinerung zu

Mehrkörpersystemen besonders geeignet, da starre Körper in der selben Art und Weise

als gerichtete Kontinua mit internen Zwangsbedingungen beschrieben werden können.

Außerdem werden die Verbindungen zwischen den Komponenten als externe Zwangsbe-

dingungen modelliert, welche analog zu den internen behandelt werden können.

Zur Erzwingung holonomer Zwangsbedingungen stehen verschiedene Methoden zur Verfü-

gung. Die Lagrangesche Multiplikatoren-Methode erhöht die Anzahl der Unbekannten um

so viele Lagrangesche Multiplikatoren, wie Zwangsbedingungen vorhanden sind. Eine
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Lösung des resultierenden erweiterten Systems erfüllt die Zwangsbedingungen exakt.

Im Gegensatz dazu approximiert die penalty-Methode das Problem mit Zwangsbedin-

gungen durch eines ohne Zwangsbedingungen, welches dem Einfluss einer starken kon-

servativen Kraft unterliegt. Dabei wird die Erfüllung der Zwangsbedingungen durch

die Größenordnung des so genannten penalty-Parameters bestimmt. In der erweiterten

Lagrangeschen Methode (welche als Kombination der gerade genannten Methoden in-

terpretiert werden kann) wird die Verletzung der Zwangsbedingungen während einer

zusätzlichen Iteration unter eine vorgegebene Toleranz reduziert. [Bert 95,Luen 84] bieten

allgemeine Einführungen zu diesen drei Methoden. Eine andere Herangehensweise an Sys-

teme mit Zwangsbedingungen stellt die so genannte Nullraum-Methode stellt dar, siehe

z.B. [Benz 05]. Der Hauptunterschied besteht in der Eliminierung der Lagrangeschen

Multiplikatoren (welche als Zwangskräfte interpretiert werden können), die gleichzeitig

das Gleichungssystem reduziert. Diese Eliminierung wird mit Hilfe einer so genannten

Nullraum-Matrix erreicht, die unter anderem in [Lian 87, Ange 89, Saha 99] eingeführt

wird. Das reduzierte Gleichungssystem wird auch d’Alembertsche Formulierung genannt,

da die Eliminierung der Zwangskräfte eng mit dem d’Alembertschen Prinzip zusam-

menhängt. Eine weitere Möglichkeit, die Zwangsbedingungen zu behandeln, ist die Re-

parametrisierung der Beschreibung des Problems in unabhängigen generalisierten Koor-

dinaten. Diese reduziert das Gleichungssystem auf die minimal mögliche Dimension und

macht die Zwangsbedingungen überflüssig, siehe [Gold 85,Kuyp 03].

Die zeitliche Diskretisierung des endlich-dimensionalen Systems gewöhnlicher Differen-

tialgleichungen (ODEs), das aus der räumlichen Diskretisierung der flexiblen Körper

hervorgeht, ist – auch ohne die Berücksichtigung von Zwangsbedingungen – relativ an-

spruchsvoll, siehe z.B. [Leim 04]. Die Entwicklung stabiler Zeitschrittverfahren ist beson-

ders schwierig, wenn die resultierenden ODEs zur Klasse der steifen Systeme gehören,

siehe [Hair 96,Hair 00,Gonz 96a,Gonz 96b]. Die Forschung der letzten Jahrzehnte hat

ergeben, dass die Vererbung der Konservierung von Erhaltungsgrößen an das zeitlich

diskrete System dessen numerisches Verhalten verbessert. Neben dem Vorteil der nu-

merischen Stabilität erhöht die Konservierung von Energie, Impulsabbildung und sym-

plektischer Form entlang der diskreten Lösung deren Echtheit, da der ‘einzigartige Fin-

gerabdruck des Prozesses’, also seine ‘qualitativen und strukturellen Charakteristika’

(siehe [Bott 02b]) auf die diskrete Lösung übertragen werden. Solche Zeitschrittverfahren,

die die (Erhaltungs-) Eigenschaften des kontinuierlichen Systems innehaben, werden nach

[Mars 92] als ‘mechanische Integratoren’ bezeichnet. Auf der direkten Diskretisierung

der ODEs basierende Energie-Impuls-erhaltende Verfahren wurden umfassend untersucht,

siehe z.B. [Bets 00a, Bets 00b, Bets 01a, Ibra 99, Ibra 02a, Arme 01a, Cris 96, Gonz 00,

Hugh 78,LaBu 76a,LaBu 76b,Noel 04a,Reic 95, Simo 91a, Simo 91b,Simo 92a, Simo 94,

Simo 95]. Symplektisch-Impuls-erhaltende Integratoren, die auf der Diskretisierung der

variationellen Formulierung beruhen, wurden z.B. in [Bart 98, Hair 04, Jay 96, Leim 94,

Leim 96,Lew 03,Reic 94,Kane 00,Mars 01] hergeleitet; siehe z.B. [Simo 92b,Simo 93] für

eine Erörterung Energie-Impuls-erhaltender und symplektischer Verfahren. Andererseits

ist die Meinung weit verbreitet, dass für bestimmte Prozesse (wie z.B. stark oszillierende

Bewegungen) numerische Dämpfung nötig ist, um stabile Zeitintegratoren zu erhalten,
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siehe z.B. [Arme 01a,Arme 01b,Arme 03,Bauc 96,Bott 02a,Hilb 77, Ibra 02a,Rome 02a].

Durch die Gegenwart von Zwangsbedingungen wird die Zeitintegration der Bewegungsglei-

chungen wesentlich verkompliziert. Die Lagrangesche Multiplikatoren-Methode liefert ein

System differential-algebraischer Gleichungen (DAEs) mit Index drei, siehe z.B. [Seil 99,

Rhei 91, Deuf 00]. In [Petz 86, Hair 89, Gera 01] wird berichtet, dass die direkte An-

wendung von ODE-Integratoren numerische Schwierigkeiten aufwirft. Dennoch wurden

gut funktionierende Integratoren für große Systeme von DAEs in [Bets 01b, Bets 02b,

Bets 02c,Eich 98,Fuhr 91,Arno 05,Gonz 99,Wend 97,Reic 96] entwickelt. Die Darstel-

lung des Problems in unabhängigen generalisierten Koordinaten führt zu hochkomplexen

ODEs (mit in der Regel konfigurationsabhängigen Massenmatrizen), für welche die An-

wendung von ODE-Integratoren zwar möglich, jedoch meistens nicht zu empfehlen ist,

siehe [Leim 04, Rhei 84, Rhei 96, Rhei 97]. Diese Probleme werden durch die diskrete

Nullraum-Methode, welche in [Bets 05] vorgeschlagen wird, überwunden. Sie basiert auf

der zeitlichen Diskretisierung der einfach strukturierten DAEs (insbesondere beinhalten

diese eine konstante Massenmatrix) und der anschließenden Eliminierung der Lagrange

Multiplikatoren aus dem Zeitschrittverfahren. Die diskrete Nullraum Methode wird in der

vorliegenden Arbeit umfangreich untersucht – vor allem und eingehend für die Simulation

flexibler Mehrkörperdynamik.

Basierend auf der Lösung der DAEs wurden Zeitschrittverfahren für flexible Mehrkörper-

systeme in [Bets 02a, Bets 04, Ibra 00b, Bauc 99b, Bauc 99a, Bauc 03a] entwickelt. Ein

anderes Verfahren beruht auf dem so genannten master-slave Ansatz, siehe z.B [Jele 96,

Jele 01, Ibra 00a, Ibra 03]. In [Diaz 03] wird eine Alternative zur Semi-Diskretisierung

elastischer Mehrkörpersysteme beschrieben, welche wavelets verwendet.

Hauptaspekte der vorliegenden Arbeit

Der Hauptanspruch der vorliegenden Arbeit ist die Entwicklung robuster, genauer und

effizienter Zeitintegratoren für die Dynamik flexibler Mehrkörpersysteme. Insbesondere

wird ein einheitlicher Rahmen für die numerische Dynamik von Mehrkörpersystemen be-

reitgestellt, in denen Massenpunkte, Starrkörper und elastische Balken sowohl offene

als auch geschlossene kinematische Ketten bilden können. Außerdem werden (i) ein

fokussierter Überblick über den Lagrangeschen und den Hamiltonschen Formalismus in

der Dynamik, (ii) fünf verschiedene Methoden zur Realisierung von Zwangsbedingungen

mit ihren Zusammenhängen und (iii) drei Alternativen für die zeitliche Diskretisierung von

Bewegungsgleichungen präsentiert. Die Zusammenhänge zwischen den verschiedenen Me-

thoden zur Zwangsbedingungsbehandlung in Verbindung mit einer bestimmten zeitlichen

Diskretisierungsmethode werden bewiesen und ihre numerischen Verhaltensweisen wer-

den anhand von theoretischen Überlegungen sowie mit Hilfe von numerischen Beispielen

verglichen.

Aus den verschiedenen Methoden zur Realisierung der Zwangsbedingung hervorgehende

Energie-Impuls-erhaltende Zeitschrittverfahren werden von Grund auf hergeleitet. Der

Vergleich ihrer numerischen Verhaltensweisen ergibt, dass die Lagrangesche Multiplikato-

ren-Methode zwar direkt auf relativ komplexe Probleme angewandt werden kann, jedoch
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muss dabei ein erweitertes System von DAEs gelöst werden. Dessen Lösung erfüllt die

Zwangsbedingungen exakt, allerdings wird die Methode für große mechanische Systeme

mit vielen Zwangsbedingungen sehr rechenaufwändig, und es treten schwerwiegende Kon-

ditionierungsprobleme auf. Die Lagrangesche Multiplikatoren-Methode liefert also genaue

Lösungen, ist aber weder robust noch effizient. Problematisch bei der penalty-Methode

ist, dass die Erfüllung der Zwangsbedingungen stark von der Wahl des penalty-Parameter

abhängt. Während für höhere Genauigkeiten immer größere penalty-Parameter benötigt

werden, wird das Gleichungssystem zunehmend steifer. Obwohl die penalty-Methode

sehr genaue Ergebnisse liefern kann, wird dieser Aspekt durch die damit einhergehende

schlechte Konditionierung des Gleichungssystems bzw. den hohen Rechenaufwand, der

nötig ist, wenn die schlechte Konditionierung durch einen besonders kleinen Zeitschritt

verbessert werden soll, negiert. Die auffallendste Eigenschaft der erweiterten Lagrangeschen

Methode ist der immens hohe Rechenaufwand, welcher sie im Vergleich mit den anderen

Methoden disqualifiziert. Es wird durch theoretische Analysen und durch numerische

Beispiele klar, dass die diskrete Nullraum-Methode in allen Kategorien exzellent abschnei-

det. Diese Methode liefert genaue Lösungen – die Zwangsbedingungen sind exakt erfüllt,

der Rechenaufwand ist vergleichsweise gering, da das Gleichungssystem auf seine minimal

mögliche Dimension reduziert wird, und sie ist robust, da die Konditionierung des Glei-

chungssystems vom Zeitschritt unabhängig ist.

Das Herzstück der diskreten Nullraum-Methode ist die diskrete Nullraum-Matrix, deren

Haupteigenschaften in Bemerkung 3.2.7 zusammengefasst sind. Mit ihrer Hilfe werden

die Lagrangeschen Multiplikatoren aus dem zeitlich diskreten Gleichungssystem elimi-

niert und gleichzeitig die Dimension des Systems reduziert. Die wichtige Frage ‘Wie

kann eine diskrete Nullraum-Matrix gefunden werden?’ wird in der vorliegenden Arbeit

explizit für allgemeine flexible Mehrkörpersysteme beantwortet. Es kann festgehalten wer-

den, dass eine explizite Darstellung der diskreten Nullraum-Matrix immer wünschenswert

ist, da sie den Rechenaufwand minimiert. Solch eine explizite Darstellung kann für die

meisten Anwendungsbeispiele gefunden werden, z.B. für die Massenpunktsysteme, die

Starrkörperdynamik, die offenen kinematischen Ketten und für die Dynamik flexibler

Balken, die in der vorliegenden Arbeit behandelt werden. Einzig bei der Simulation

der Dynamik der geschlossenen Kette ist eine spezielle Vorgehensweise nötig, bei der die

diskrete Nullraum-Matrix implizit konstruiert wird.

In Abschnitt 6.3.1 wird die Vorgehensweise zur Simulation der Dynamik flexibler Mehrkör-

persysteme mit der diskreten Nullraum-Methode allgemein beschrieben. Sie führt zu

einem neuen, robusten, genauen und effizienten Integrator für die flexible Mehrkörperdyna-

mik. Die explizit angegebenen diskreten Nullraum-Matrizen für die internen Zwangsbe-

dingungen in der Starrkörperdynamik und der Dynamik räumlich diskretisierter Balken

sowie die angegebenen diskreten Nullraum-Matrizen für die externen Zwangsbedingungen,

die sich aus der Verbindung kinematischer Paare durch Gelenke ergeben, können dabei

benutzt werden.
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2 Finite dimensional equations of
motion

In classical analytical mechanics, the investigation of the temporal evolution of the states

of a macroscopic physical system is based on the analysis of a scalar quantity, the energy.

In contrast to that, a force-based approach leads to Newton’s second law. Two main

branches developed during the progression of analytical mechanics. The Lagrangian for-

mulation is evolved from the observation that there are variational principles behind the

fundamental laws of force balance. The Hamiltonian formalism focuses on the observation

of energy and can be embedded into a certain geometrical structure. Although for most

applications a representation of the formalisms in the framework of linear spaces is suffi-

cient, a short overview of a more abstract formulation is given here as well. ‘The treatment

may seem unnecessarily abstract, but it is of ultimate benefit for a thorough understand-

ing.’ [Abra 78] A detailed presentation of these theories is established in [Mars 94] and a

more classical approach can be found e.g. in [Gold 85].

2.1 Lagrangian mechanics

2.1.1 Euler-Lagrange equations

Consider an n-dimensional real differentiable configuration manifold (see A.1)Q with local

coordinates q = (q1, . . . , qn) that are at least two times continuously differentiable real-

valued functions qi(t) : [t0, t1] → R, i = 1, . . . , n on a bounded time interval. Together with

the corresponding velocities q̇i = dqi/dt, the tangent bundle TQ (see A.3), representing

the phase space in the Lagrangian formalism, is described. Given a Lagrangian function

L : TQ → R, the action integral S(q) =
∫ t1

t0
L(q, q̇) dt is defined. Hamilton’s principle of

critical action states that

δS(q) = δ

∫ t1

t0

L(q, q̇) dt = 0 (2.1.1)

where variations amongst the paths qi(t) with fixed endpoints are taken. If (2.1.1) is to

hold for arbitrary variations, the Euler-Lagrange equations

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= 0 (2.1.2)

are induced. Together with initial conditions q(t0) = q0, q̇(t0) = q̇0 the n-dimensional sys-

tem (2.1.2) of second order differential equations defines a mechanical system’s dynamics

uniquely.

13
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2 Finite dimensional equations of motion

2.1.2 Abstract Lagrange equations

For a given Lagrangian L : TQ → R the fibre derivative FL : TQ → T ∗Q allows the

transition from the tangent bundle to its cotangent bundle T ∗Q (see A.3) via

FL(qi, q̇i) =

(
qi,

∂L

∂q̇i

)
= (qi, pi) i = 1, . . . , n (2.1.3)

Hereby L is called hyperregular if FL is a diffeomorphism.

Remark 2.1.1 The cotangent bundle T ∗Q (see A.3) has an intrinsic symplectic structure

that can be represented by the canonical symplectic form ω : T (T ∗Q) × T (T ∗Q) → R,

ω = dqi ∧ dpi. Thus (T ∗Q, ω) is a symplectic manifold (see A.10). Then θ : T (T ∗Q) → R,

θ = pidq
i constitutes the corresponding canonical one-form with dθ = −ω (here d denotes

the exterior derivative see A.9).

By pulling these canonical forms on T ∗Q back to TQ, one obtains the Lagrangian one-form

θL : T (TQ) → R and the closed Lagrangian two-form ωL : T (TQ) × T (TQ) → R

θL = (FL)∗ θ ωL = (FL)∗ ω = −dθL (2.1.4)

Defining the energy E : TQ → R of a Lagrangian L as E(qi, q̇i) = q̇i ∂L
∂q̇i − L(qi, q̇i), a

vector field Y : TQ→ T (TQ) is called Lagrangian vector field, if

(ωL)v (Y (v),w) = dE(v) · w for all v ∈ TQ and w ∈ Tv(TQ) (2.1.5)

For hyperregular Lagrangians, ωL is symplectic, thus Y is a Hamiltonian vector field

(see A.16) of E with respect to ωL. For given initial conditions v(t0) = (q0, q̇0) ∈ TQ,

a curve v(t) = (q(t), q̇(t)) satisfies the Euler-Lagrange equations (2.1.2) if and only if

it is an integral curve of Y through v(t0). More generally, solutions of (2.1.2) can be

identified with the Lagrangian flow v : [t0, t1] × TQ → TQ generated by the Lagrangian

vector field Y . Note that by slight abuse of terminology, for constant t ∈ [t0, t1] the map

vt : TQ→ TQ is also termed flow.

Proposition 2.1.2 (Energy conservation) The energy E is conserved along a solution

of the Euler-Lagrange equations.

Proof: The skew-symmetry of ωL induces

d

dt
E(v(t)) = dE(v(t)) · v̇(t) = (ωL)v(t)(Y (v(t)), v̇(t))

= (ωL)v(t)(Y (v(t)), Y (v(t)) = 0
(2.1.6)

for integral curves v(t) ∈ TQ of Y .

Proposition 2.1.3 (Symplecticity) The Lagrangian flow v : [t0, t1]×TQ → TQ preserves

the symplectic form ωL, i.e. v∗
tωL = ωL for all t ∈ [t0, t1].

14
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2.2 Hamiltonian mechanics

Proof: Since Y is a Hamiltonian vector field (see A.16) of E with respect to ωL, LY ωL = 0

holds. Using the Lie derivative Theorem (see A.15) one gets

d

dt
(v∗

tωL) = v∗
tLY ωL = 0 (2.1.7)

Thus v∗
tωL is independent of t, and since v0 = Id, it equals ωL.

Noether’s theorem states that the presence of symmetry in a mechanical system leads to

a quantity’s conservation along the solution of the equations of motion. If the Lie group

G (see A.17) acts canonically (see A.20, A.12) on the configuration manifold Q via φ, this

action can be extended to an action φ̌ = (φ, Tφ) on TQ in a natural way by tangent lift

(see A.4). A Lagrangian L : TQ → R is called G-invariant with respect to the action

of G, if L ◦ φ̌g = L for all g ∈ G. Let g denote the Lie algebra (see A.18) of G and g∗

its dual. Using the definition of the fibre derivative (2.1.3), a momentum map (see A.21)

JL : TQ→ g∗ for a G-invariant Lagrangian is given by

〈JL(v), ξ〉 = 〈FL(v), ξQ(q)〉 =
∂L

∂q̇i
ξi
Q(q) (2.1.8)

where ξQ(q) ∈ TQ is the infinitesimal generator (see A.20) of the action corresponding to

ξ ∈ g.

Proposition 2.1.4 (Momentum conservation) For a G-invariant Lagrangian, the mo-

mentum map JL is conserved along a solution of the Euler-Lagrange equations.

Proof: Taking the time derivative of the ξ-component of the momentum map yields

d

dt
Jξ

L =
d

dt

(
∂L

∂q̇i
ξi
Q(q)

)
=

(
d

dt

∂L

∂q̇i

)
ξi
Q(q) +

∂L

∂q̇i
(TξQ(q) · q̇)i (2.1.9)

The G-invariance of L implies L(T exp(sξ) · v) = L(v) corresponding to

∂L

∂qi
ξi
Q(q) +

∂L

∂q̇i

(
Tξi

Q(q) · q̇
)i

= 0 (2.1.10)

at the infinitesimal level. Insertion into (2.1.9) yields

d

dt
Jξ

L =

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
ξi
Q(q) (2.1.11)

Thus along solutions of the Euler-Lagrange equations, (2.1.11) vanishes. Since ξ was

arbitrary, it follows that the momentum map JL is conserved by the Lagrangian flow.

2.2 Hamiltonian mechanics
While the Lagrangian formalism relies on the coordinate’s position and velocity in the

phase space TQ, the Hamiltonian formalism considers the position and the momentum

conjugate to the velocity as independent coordinates in the phase space T ∗Q, which is

the cotangent bundle (see A.3) to the configuration manifold Q.

15
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2 Finite dimensional equations of motion

2.2.1 Hamilton’s equations

The fibre derivative (2.1.3) is used to perform the Legendre transformation

pi =
∂L

∂q̇i
i = 1, . . . , n (2.2.1)

Then the Hamiltonian H : T ∗Q→ R of a mechanical system is defined as

H(qi, pi) = pj q̇
j − L(qi, q̇i) (2.2.2)

Assuming that the transformation (qi, q̇i) → (qi, pi) specified by (2.2.1) is invertible and

considering the partial derivatives of the Hamiltonian yields

∂H

∂pi

= q̇i + pj

∂q̇j

∂pi

− ∂L

∂q̇j

∂q̇j

∂pi

= q̇i

∂H

∂qi
= pj

∂q̇j

∂qi
− ∂L

∂qi
− ∂L

∂q̇j

∂q̇j

∂qi
= −∂L

∂qi

(2.2.3)

Thus Hamilton’s equations

q̇ =
∂H(q,p)

∂p

ṗ = −∂H(q,p)

∂q

(2.2.4)

together with initial conditions q(t0) = q0,p(t0) = p0 are a 2n-dimensional system of first

order differential equations, which is equivalent to the Euler-Lagrange equations (2.1.2).

2.2.2 Abstract Hamilton equations

Consider the symplectic manifold (T ∗Q, ω) mentioned in Remark 2.1.1. A vector field

X : T ∗Q → T (T ∗Q) is called Hamiltonian vector field (see A.16) of the function

H : T ∗Q → R with respect to ω, if iXω = dH holds. Then X is denoted by XH .

Using the definition of the contraction iX of a vector field and a two-form (see A.8), this

condition reads more explicitly

(iXH
ω)z(y) = ωz(XH(z),y) = dH(z)(y) for all z ∈ T ∗Q and y ∈ Tz(T ∗Q) (2.2.5)

Hamilton’s equations (2.2.4) can be written as the evolution equations

ż(t) = XH (z(t)) (2.2.6)

Remark 2.2.1 In case of (T ∗Q, ω) being a 2n-dimensional linear space, the Hamiltonian

vector field can be expressed in terms of the gradient of H as

XH (z(t)) = J · ∇H (z(t)) (2.2.7)

where the symplectic matrix J reads

J =

(
0 In

−In 0

)
(2.2.8)

with In denoting the n× n identity matrix.
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2.2 Hamiltonian mechanics

Since (2.2.4) and (2.2.6) are apparently equivalent, for given initial conditions

z(t0) = (q0,p0) ∈ T ∗Q, a curve z(t) = (q(t),p(t)) satisfies Hamilton’s equations (2.2.4)

if and only if it is an integral curve of XH through z(t0). More generally, a solution of

(2.2.4) can be identified with the Hamiltonian flow z : [t0, t1]×T ∗Q→ T ∗Q generated by

the Hamiltonian vector field XH . Note that by slight abuse of terminology, for constant

t ∈ [t0, t1] the map zt : T ∗Q→ T ∗Q is also termed flow.

Remark 2.2.2 (Equivalence of Hamilton’s and Euler-Lagrange equations) The tran-

sition from the Lagrangian to the Hamiltonian formalism given by the fibre derivative

(2.1.3) is a diffeomorphism for hyperregular Lagrangians. In this case, Hamilton’s equa-

tions (2.2.6) are equivalent to the Euler-Lagrange equations (2.1.2) in the sense that the

corresponding vector fields Y : TQ → T (TQ) and XH : T ∗Q → T (T ∗Q) and their flow

maps v : [t0, t1]×TQ→ TQ and z : [t0, t1]×T ∗Q→ T ∗Q are related via pullback by the

fibre derivative

Y = (FL)∗XH v = (FL)−1 ◦ z ◦ FL (2.2.9)

Remark 2.2.3 (Hamiltonian and energy) Many applications are assumed to take place

in an inertial frame and furthermore it is assumed that all appearing external loads are

conservative. Then the Hamiltonian represents the total energy of the mechanical system.

Proposition 2.2.4 (Energy conservation) The Hamiltonian H is conserved along a

solution of Hamilton’s equations.

Proof: The skew-symmetry of ω induces

d

dt
H(z(t)) = dH(z(t)) · ż(t) = (ω)z(t)(XH(z(t)), ż(t))

= (ω)z(t)(XH(z(t)), XH(z(t)) = 0
(2.2.10)

for integral curves z(t) ∈ T ∗Q of XH .

Proposition 2.2.5 (Symplecticity) The Hamiltonian flow z : [t0, t1] × T ∗Q → T ∗Q

preserves the symplectic form ω, i.e. z∗
tω = ω for all t ∈ [t0, t1].

Proof: SinceXH is a Hamiltonian vector field (see A.16) ofH with respect to ω, LXH
ω = 0

holds. Using the Lie derivative Theorem (see A.15) one gets

d

dt
(z∗

tω) = z∗
tLXH

ω = 0 (2.2.11)

Thus z∗
tω is independent of t, and since z0 = Id, it equals ω.

Hence the rich theory on symplectic transformations (see A.12, [Mars 94], [Mars 92],

[Abra 78], [Bern 98]) can be applied to Hamiltonian flows. Some important properties of

symplectic transformations are presented in the sequel. By the same argument as in the

proof of Proposition 2.2.5, the following proposition can be proved:

17
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2 Finite dimensional equations of motion

Proposition 2.2.6 The flow ϕ : [t0, t1] × P → P of a vector field X on a symplectic

manifold (P, ω) consists of symplectic transformations (i.e. ϕ∗
tω = ω for all t ∈ [t0, t1]) if

and only if X is locally Hamiltonian.

Proposition 2.2.7 A symplectic transformation f : P1 → P2 between symplectic mani-

folds (P1, ω1) and (P2, ω2) of the same dimension is volume preserving.

Proof: Since the wedge product commutes with pull backs, the Liouville measure Λ (see

A.22) is preserved, i.e. f ∗Λ = Λ.

Alternatively for (P1, ω1) and (P2, ω2) being symplectic vector spaces, the Jacobian (see

A.4) of f fulfils Df · J ·DTf = J, taking determinants shows that |detDf | = 1.

Proposition 2.2.8 states that the set of Hamiltonian vector fields is invariant under sym-

plectic transformations:

Proposition 2.2.8 Let f : P1 → P2 be a symplectic transformation between the symplectic

manifolds (P1, ω1) and (P2, ω2), i.e. f ∗ω2 = ω1. Then for every function H : P2 → R

f ∗XH = XK and K = H ◦ f (2.2.12)

Proof: In view of the definition of a Hamiltonian vector field (see A.16) the following

equation holds

iXH◦f
ω1 = d (H ◦ f) = f ∗ (dH) = f ∗ (iXH

ω2) = if∗XH
(f ∗ω2) = if∗XH

ω1 (2.2.13)

Since ω1 is nondegenerate, the vector fields XH◦f and f ∗XH must be equal.

Similar to the Lagrangian formulation, Noether’s theorem states that in the presence of

symmetry in the mechanical system, there exists a quantity that is conserved along the

solution of Hamilton’s equations. The canonical action φ of a Lie group G (see A.17)

on the configuration manifold Q induces an action φ̂g = (φg, T
∗φg) on P = T ∗Q by

cotangent lift (see A.6). Let g denote the Lie algebra (see A.18) of G and g∗ its dual.

If the Hamiltonian is invariant under the action of G, i.e. H ◦ φ̂g = H for all g ∈ G, a

momentum map J : T ∗Q→ g∗ (see A.21) is given by

〈J(z), ξ〉 = 〈z, ξQ(q)〉 (2.2.14)

where ξQ(q) ∈ TQ is the infinitesimal generator (see A.20) of the action corresponding to

ξ ∈ g.

Proposition 2.2.9 (Momentum conservation) For a G-invariant Hamiltonian, the mo-

mentum map J is conserved along the solution of Hamilton’s equations.

Proof: φ̂g is the flow of the vector field ξP that belongs to the function J(ξ) ∈ F(P ).

Differentiating the invariance condition H ◦ φ̂g = H with respect to g at the neutral

element e in the direction of ξ, one obtains

d

dg

(
H ◦ φ̂g

)
|g=e·ξ = dH(z) · ξP (z) = {H, J(ξ)} = 0 for all ξ ∈ g (2.2.15)

18
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2.2 Hamiltonian mechanics

According to the properties of the Poisson bracket {· , ·} (see A.23), it follows that for each

Lie algebra element ξ, J(ξ) ∈ F(P ) (see A.21) is conserved along the trajectories of the

Hamiltonian vector field XH , thus the values of the corresponding g∗-valued momentum

map J are also conserved along the solution of Hamilton’s equations.

2.2.3 Examples of momentum maps

A physical interpretation of the specific conserved quantity is often desirable for practical

applications. Therefore, some common momentum maps are deduced in the established

theoretical framework.

Remark 2.2.10 The assumption of a Lagrangian being hyperregular, such that the tran-

sition to the Hamiltonian formalism given by the fibre derivative in (2.1.3) is a diffeo-

morphism, is reasonable for many applications. Since in this case Hamilton’s equations

are equivalent to the Euler-Lagrange equations (see Remark 2.2.2) the examples of mo-

mentum maps given here in the Hamiltonian formalism can be easily transferred to the

Lagrangian formalism.

Hamiltonian

The flow ϕ : R × T ∗Q → T ∗Q of a Hamiltonian vector field XH on P = T ∗Q can be

interpreted as R-action on T ∗Q, i.e. G = g = R. According to Proposition 2.2.4, the

Hamiltonian is invariant under that action. The infinitesimal generator (see A.20) of the

action corresponding to ξ ∈ g is given by

ξP (z) =
d

ds
ϕ(exp(sξ), z)|s=0= XH(ϕ(0, z))ξ = XH(z)ξ (2.2.16)

The condition XJ(ξ)(z) = ξP (z) (see A.21) implies that J(ξ)(z) = H(z)ξ for all ξ ∈ g

and as expected, the corresponding momentum map J(z) = H(z) equals the Hamiltonian

itself.

Linear momentum

Let Q = Rn and let G = Rn operate on Q by translation, i.e. φ : G×Q→ Q is given by

φ(g, q) = g + q (2.2.17)

Then the infinitesimal generator (see A.20) of the action corresponding to ξ ∈ g = Rn is

given by

ξQ(q) =
d

ds
φ(exp(sξ), q)|s=0= ξ (2.2.18)

According to (2.2.14) a momentum map can be calculated as

〈J(z), ξ〉 = p · ξ (2.2.19)

thus J(z) = p is the linear momentum.
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2 Finite dimensional equations of motion

Angular momentum

Let the Lie group of proper rotations G = SO(3) act on the configuration space Q = R3

via

φ(A, q) = A · q (2.2.20)

The action corresponding to the skew-symmetric matrix ξ ∈ g = so(3) has the infinitesi-

mal generator (see A.20)

ξQ(q) =
d

ds
φ(exp(sξ), q)|s=0= ξ · q (2.2.21)

Identifying so(3) with R3 (equipped with the cross product) via the isomorphism

̂: R3 → so(3) (see A.24), the infinitesimal generator corresponding to ξ = µ̂ ∈ so(3)

reads

ξQ(q) = µ̂ · q = µ × q (2.2.22)

Using (2.2.14), a momentum map is given by

〈J(z), ξ〉 = (ξ · q) · p = (µ × q) · p = (q × p) · µ (2.2.23)

thus J(z) = q × p denotes the angular momentum.

2.3 Constrained mechanical systems
Many mechanical systems are not free to move in an n-dimensional configuration manifold

since they are subject to constraints. These restrictions are expressed as specific relation-

ships between certain coordinates, their rates of change, and possibly time. Geometric

restrictions are restrictions on the configuration of the system expressed in the form

g : [t0, t1] ×Q→ Rm (2.3.1)

and called holonomic constraints. The consistency condition that the constraints must be

fulfilled at all times induces the temporal differentiated form of the constraints f = dg/dt.

These are integrable kinematic restrictions of the form

f : [t0, t1] × TQ→ Rm (2.3.2)

Any constraint that cannot be put in the form of a geometric or integrable restriction is

called nonholonomic constraint. In both cases the number of degrees of freedom is reduced,

i.e. the mechanical system is constrained to a lower dimensional manifold. Furthermore,

one distinguishes between rheonomic constraints that depend explicitly on time and sclero-

nomic constraints where the time does not explicitly appear. This standard classification

of constraints is discussed in books on classical mechanics like [Gold 85,Toro 00,Mars 94],

examples of holonomic and nonholonomic constraints are expatiated in [Kuyp 03,Nolt 02].

In this work only scleronomic holonomic constraints are considered. Different methods

for their treatment are presented in the sequel.
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2.3 Constrained mechanical systems

2.3.1 Lagrange multiplier method

Consider a mechanical system in an n-dimensional configuration manifold Q subject to

holonomic scleronomic constraints g : Q → Rm requiring g(q) = 0. In this work it is

always supposed that 0 ∈ Rm is a regular value (see A.25) of the constraints, such that

C = g−1(0) = {q|q ∈ Q, g(q) = 0} ⊂ Q (2.3.3)

is an (n−m)-dimensional submanifold (see A.26), called constraint manifold. Just as C

can be embedded in Q via i : C → Q, its 2(n−m)-dimensional tangent bundle (see A.3)

TC =
{
(q, q̇)|(q, q̇) ∈ TqQ, g(q) = 0,G(q) · q̇ = 0

}
⊂ TQ (2.3.4)

can be embedded in TQ in a natural way by tangent lift T i : TC → TQ (see A.4). Here

and in the sequel G(q) = Dg(q) denotes the m×n Jacobian (see A.4) of the constraints.

Lagrangian formalism

A Lagrangian L : TQ → R can be restricted to LC = L|TC : TC → R. To investigate

the relationship of the dynamics of LC on TC to the dynamics of L on TQ, the following

notation is used. C(Q) = C([t0, t1], Q, q0, q1) denotes the space of smooth functions sat-

isfying q(t0) = q0 and q(t1) = q1 where q0, q1 ∈ C ⊂ Q are fixed endpoints. Let C(C)

denote the corresponding space of curves in C and set C(Rm) = C([t0, t1],R
m) to be the

space of curves λ : [t0, t1] → Rm with no boundary conditions. This notation has been

introduced in [Mars 01], where a large part of the theory presented here can be found.

Theorem 2.3.1 Suppose that 0 is a regular value of the scleronomic holonomic constraints

g : Q → Rm and set C = g−1(0) ⊂ Q. Let L : TQ → R be a Lagrangian and LC = L|TC

its restriction to TC. Then the following statements are equivalent:

(i) q ∈ C(C) extremises the action integral SC(q) =

∫ t1

t0

LC(q, q̇) dt and hence solves

the Euler-Lagrange equations for LC .

(ii) q ∈ C(Q) and λ ∈ C(Rm) satisfy the constrained Euler-Lagrange equations

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
+ GT (q) · λ = 0

g(q) = 0
(2.3.5)

(iii) (q,λ) ∈ C(Q×Rm) extremise S̄(q,λ) = S(q)−〈λ, g(q)〉 and hence, solve the Euler-

Lagrange equations for the augmented Lagrangian L̄ : T (Q× Rm) → R defined by

L̄(q,λ, q̇, λ̇) = L(q, q̇) − gT (q) · λ (2.3.6)

The proof given in [Mars 01] makes use of the Lagrange multiplier theorem (see e.g.

[Abra 88]).
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2 Finite dimensional equations of motion

Equations (2.3.5)1 are often called Lagrange equations of motion of first kind like, e.g. in

[Kuyp 03,Nolt 02]. Together with the constraints, they constitute a system of n+m second

order differential and algebraic equations (DAEs) of index three (see [Bren 96,Petz 86]),

which is also called descriptor form of the equations of motion and requires non-standard

methods for the numerical solution (see [Fuhr 91]). The last term in (2.3.5)1 represents

the constraint forces that prevent the system from deviations of the constraint manifold

(2.3.3).

Hamiltonian formalism

The augmented Hamiltonian H̄ : T ∗(Q × Rm) → R corresponding to the augmented

Lagrangian in (2.3.6) is given by

H̄(q,λ,p,π) = H(q,p) + gT (q) · λ (2.3.7)

Since L̄ is degenerate in λ, the momentum π conjugate to λ is constrained to be zero and

consequently the Legendre transform is not invertible. Pulling back the canonical form ω

on T ∗Q to the primary constraint set Π ⊂ T ∗(Q× Rm) defined by π = 0, one obtains a

closed, but possibly degenerate, two-form ωΠ. Seeking XH̄ such that iXH̄
ωΠ = dH̄ gives

no equation for λ. However, the other equations constitute the constrained Hamilton’s

equations

q̇ =
∂H(q,p)

∂p

ṗ = −∂H(q,p)

∂q
−GT (q) · λ

0 = g(q)

(2.3.8)

forming 2n + m first order differential and algebraic equations, which are equivalent to

(2.3.5). The general theory appropriate for degenerate systems is Dirac’s theory of con-

straints [Dira 50], see also [Mars 94]. A major difficulty in this approach is that there is

no canonical embedding of T ∗C in T ∗Q. However for hyperregular Lagrangians, such an

embedding is given in [Mars 01].

Remark 2.3.2 (Conservation properties of constrained systems) The constrained

systems (2.3.5) on TC and (2.3.8) on T ∗C are standard Lagrangian and Hamiltonian

systems respectively, and therefore, have the usual conservation properties. See [Mars 01]

for further details.

A smooth solution (q,p,λ)(t) of (2.3.8) naturally fulfils the consistency condition

dg(q)/dt = 0, i.e. (q,p)(t) ∈ T ∗C. Using (2.3.8)1 this condition leads to the ‘hidden’

constraints on momentum level (also called secondary constraints, see [Dira 50,Seil 99])

f(q,p) = G(q) · ∂H
∂p

= 0 (2.3.9)

which are (by slight abuse of notation, see (2.3.2)) also denoted by f : T ∗Q→ Rm. They

can be explicitly incorporated into the equations of motion by a further augmentation of

the Hamiltonian in (2.3.7) according to

¯̄H(q,λ,γ,p,π,ϑ) = H(q,p) + gT (q) · λ + fT (q,p) · γ (2.3.10)
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2.3 Constrained mechanical systems

The Hamiltonian ¯̄H : T ∗(Q × Rm × Rm) → R gives rise to the 2(n + m)-dimensional

system of DAEs

q̇ =
∂H(q,p)

∂p
+DT

2 f(q,p) · γ

ṗ = −∂H(q,p)

∂q
−GT (q) · λ −DT

1 f(q,p) · γ

0 = g(q)

0 = f(q,p)

(2.3.11)

which is equivalent to that in (2.3.8), see e.g. [Bets 02b,Leim 04]. In this connection, par-

tial derivatives D1 and D2 are associated with the usual Jacobian D (see A.4). Although

being formally desirable since the configuration variable and the momentum variable are

dealt with on an equal footing in the Hamiltonian formalism, the inclusion of the momen-

tum constraints does not alter the properties of the solution of the equations of motion

in the temporal continuous setting. The projection method presented in [Gear 85] con-

stitutes a different approach based on the stabilisation of an index reduced system of

DAEs.

Remark 2.3.3 (Secondary constraints / hidden constraints) In the temporal dis-

crete setting, algorithmic solutions of (2.3.8) obtained by numerical integration do not

a priori fulfil the secondary constraints (2.3.9) at the time nodes. However, the investi-

gation of several numerical examples dealing with point mass systems, rigid bodies and

geometrically exact beams (e.g. in [Bets 02d], [Bets 03]) has brought forward that the in-

corporation of the temporally differentiated form of the constraints has not lead to crucial

advantages (besides the fulfilment of the secondary constraints themselves). This fact is

also reported in [Gonz 99] and references therein. The solution of the smaller dimensional

Hamiltonian system has not been influenced considerably by their fulfilment. Therefore,

avoiding unnecessary computational efforts, in the sequel, the attention is restricted to the

enforcement of the constraints on configuration level, although the Hamiltonian formalism

allows for the incorporation of secondary constraints in an obvious systematic way.

Augmented Hamiltonian and Lagrangian formulation

The treatment of the constraints shall be represented generally by the scalar valued

C1-function Pcon : g(Q) → R that is required to be of the form

Pcon(g(q)) ≥ 0 for all q ∈ Q Pcon(g(q)) = 0 ⇐⇒ g(q) = 0 (2.3.12)

The extra function Pcon to treat the constraints is assumed to be composed of the functions

v = v(t),R = R(g(q(t))). The product Pcon(g(q)) = vR(g(q)) must be scalar. Further

conditions on v,R can be deduced from (2.3.12). In order to unify the domains of the

functions composing H and L, the functions PH : T ∗Q → R with PH(z) = Pcon(g(q))

and PL : Q→ R with PL(q) = Pcon(g(q)) are introduced.

A deviation of the mechanical system from the constraint manifold is interpreted as a

contribution to the systems potential energy. In cases of conservative mechanical systems
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(see Remark 2.2.3), where the Hamiltonian and the Lagrangian function can be separated

into the contribution of kinetic and potential energy, the following parametrisation is

introduced

Haug(z) = H(z) + PH(z) = TH(z) + VH(z) + PH(z)

Laug(q, q̇) = L(q, q̇) − PL(q) = TL(q̇) − VL(q) − PL(q)
(2.3.13)

comprising the kinetic energy T and the potential energy V .

Remark 2.3.4 (Separable energies) In (2.3.13) the Hamiltonian and the Lagrangian are

separated into the contributions of the kinetic energy, the potential energy and the extra

function to treat the constraints. For the Lagrangian, also the dependence of the energies

on either the configuration or the velocity composing the phase variable v = (q, q̇) ∈ TQ

is apparent. This separation is hidden for the Hamiltonian, since the unified parametri-

sation in the phase variable z = (q,p) ∈ T ∗Q is useful for the discretisation using a

G-equivariant discrete derivative described in Section 3.1.1. In the sequel it is assumed

that the energy functions fulfil the following natural conditions:

(i) Haug, Laug ∈ C1(P,R) where P ∈ {T ∗Q, TQ}
(ii) D1TH(z) = D2VH(z) = D2PH(z) = 0

(iii) TH(z) ≥ 0 for all z ∈ T ∗
qQ and TH(z) = 0 ⇐⇒ p = 0

TL(q̇) ≥ 0 for all q̇ ∈ TQ and TL(q̇) = 0 ⇐⇒ q̇ = 0

(iv) VH is bounded from below, i.e. ∃V ∗
H with inf

z∈T ∗Q
VH(z) ≥ V ∗

H > −∞
VL is bounded from below, i.e. ∃V ∗

L with inf
q∈Q

VL(z) ≥ V ∗
L > −∞

(2.3.14)

According to the method used to treat the constraints, the additional function Pcon takes

different forms. For the Lagrange multiplier method v = λ,R(g(q)) = g(q). Hence

PLag(g(q)) = gT (q) · λ and the augmented Hamiltonian and Lagrangian correspond to

those given in (2.3.7) and (2.3.6) respectively. The equations of motion are then obtained

by insertion of Haug and Laug into (2.2.4) and (2.1.2) respectively and supplementation of

the resulting systems by the constraint equations. This yields the constrained Hamilton’s

equations (2.3.8) and the constrained Euler-Lagrange equations (2.3.5).

2.3.2 Penalty method

In optimisation, the main idea of penalty methods is to eliminate the constraints and

to add high costs to infeasible points (see e.g. [Bert 95]). In the context of constrained

dynamical systems, the intention of penalty methods is to approximate the constrained

motion by unconstrained motions in a conservative force field. To this end, a penalty

function yields a contribution to the system’s potential such that it grows large when the

system deviates from the constraint manifold (2.3.3). Thereby, the penalty parameter

determines the severity of the violation of the constraints. Generally, as better approx-

imations of the constrained motion are achieved by increasing penalty parameters, the

structure of the resulting system becomes more and more unfavourable. There exist so

called exact penalty functions that yield the exact solution to the original constrained
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problem for a finite value of the penalty parameter, but they introduce the difficulty of

not being differentiable (see e.g. [Luen 84]).

For the present investigation of constrained motions of mechanical systems, the question

whether or to what extent a sequence of penalty potentials will produce unconstrained mo-

tions that converge to a given constrained motion is answered in [Rubi 57] and [Born 96].

The penalty potential can be introduced in terms of the extra function Pcon to treat the

constraints defined in the last Section. Beyond (2.3.12), other conditions on Pcon to be a

penalty function are that

(i) Pcon must be convex

(ii) Pcon must be at least quadratic in g
(2.3.15)

The penalty function in use in this work is of the form PPen(g(q)) = µR(g(q)) with the

constant penalty parameter µ ∈ R+ and the function R : g(Q) → R such that (2.3.12) and

(2.3.15) are fulfilled. A widely-used example of a penalty function is PPen(g(q)) = µ
∥∥g(q)

∥∥2
.

Lagrangian formalism

Using the penalty method in the context of the Lagrangian formalism, the Lagrangian

function is augmented by the additional function PL(q) = PPen(g(q)) according to (2.3.13).

Inserting Laug into the Euler-Lagrange equations (2.1.2) yields an n-dimensional system

of unconstrained second order differential equations. The accuracy to which the con-

straints are fulfilled by its solution depends on the magnitude of the penalty parameter.

In [Rubi 57], Rubin and Ungar prove the following important theorem. The proof relies on

the energy-conservation along solutions of the Euler-Lagrange equations (see Proposition

2.1.2) and the boundedness of the potential energy (see property (iv) in (2.3.14)).

Theorem 2.3.5 For a sequence of penalty parameters (µs)s∈N
with lim

s→∞
µs = ∞, the limit

point (q(t), q̇(t)) = lim
s→∞

(qs(t), q̇s(t)) of the sequence of solutions – where (qs(t), q̇s(t))

solve the Euler-Lagrange equations (2.1.2) corresponding to µs – fulfils the constraints.

Furthermore there exists a multiplier λ, such that (q(t), q̇(t),λ) solve the constrained

Euler-Lagrange equations (2.3.5).

In [Born 96], Bornemann and Schütte carry on with that issue and offer an abstract

approach relying on the weak convergence in the sense of distributions. They even give

explicitly the sequence converging to the correct Lagrange multiplier.

Hamiltonian formalism

In context of the Hamiltonian formalism, the use of the penalty method to enforce the

constraints requires the augmentation of the Hamiltonian by PH(z) = PPen(g(q)) accord-

ing to (2.3.13). Then the 2n-dimensional system of unconstrained Hamilton’s equations

is obtained by insertion of Haug into (2.2.4). In cases where the Legendre transforma-

tion specified in (2.2.1) is invertible (see Remark 2.2.2), Theorem 2.3.5 can be directly

transformed to the following equivalent statement.
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Theorem 2.3.6 For a sequence of penalty parameters (µs)s∈N
with lim

s→∞
µs = ∞, the limit

point (q(t),p(t)) = lim
s→∞

(qs(t),ps(t)) of the sequence of solutions – where (qs(t),ps(t))

solve the Hamilton’s equations (2.2.4) corresponding to µs – fulfils the constraints. Fur-

thermore there exists a multiplier λ, such that (q(t),p(t),λ) solve the constrained Hamil-

ton’s equations (2.3.8).

In Section (3.2.2) a corresponding result is shown for a certain class of discrete Hamiltonian

systems.

Remark 2.3.7 In practice, the penalty method entails a number of drawbacks:

(i) Moderate penalty parameters do usually allow unacceptable constraint violation.

(ii) Large penalty parameters lead to stiff systems that may cause unstable numerical

solutions.

2.3.3 Augmented Lagrange method

The augmented Lagrange method can be regarded as a combination of a penalty method

and a dual method. Dual methods are based on the idea that the Lagrange multipliers

are the fundamental unknowns in a constrained problem. They have meaningful inter-

pretations, such as the costs to keep the system on the constraint manifold. A physically

insightful interpretation of the augmented Lagrange method in the context of dynamical

systems can be found in [Blaj 02] and [Bert 95,Luen 84] offer a general introduction.

The extra function to treat the constraints by the augmented Lagrange method is a

combination of those used in the previous methods

PAug(g(q)) = gT (q) · λ + µR(g(q)) (2.3.16)

with the difference that µ ∈ R+ needs not to tend to infinity to fulfil the constraints.

Instead of that, it may remain of relatively moderate value and the improvement in the

constraints is achieved by passing through an extra loop. The multipliers are determined

during an iteration process instead of being unknown variables.

Lagrangian formalism

As for the penalty method, the Lagrangian function is augmented by the additional func-

tion PL(q) = PAug(g(q)) according to (2.3.13). Starting with λ0 = 0, in each iteration

the n-dimensional system of unconstrained Euler-Lagrange equations (2.1.2) with a fixed

value λk is solved for (qk, q̇k). Then the multiplier is updated according to the Uzawa-like

rule

λk+1 = λk + µg(qk) (2.3.17)

In each iteration the constraints are less violated and the iterations stop as soon as the

constraints are fulfilled satisfactorily.
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Hamiltonian formalism

Similarly the Hamiltonian is augmented by PH(z) = PAug(g(q)) according to (2.3.13).

Starting with λ0 = 0, in each iteration the 2n-dimensional system of unconstrained Hamil-

ton’s equations (2.2.4) with a fixed value λk is solved for (qk,pk). Then the multiplier is

updated according to (2.3.17).

The main drawback of the augmented Lagrange method is that in practice this extra

iteration causes high additional computational costs.

Remark 2.3.8 It is known (see e.g. [Bert 95]) that in nonlinear constrained optimisation

problems, a sequence (xk)k∈N
of minimising solutions obtained by augmented Lagrange

iterations converges to a value x which, together with the limit λ of the corresponding

sequence of multipliers (λk)k∈N
, solves the optimisation problem, where the constraints

have been enforced by Lagrange multipliers. The existence of both limit points is guar-

anteed, see [Bert 95]. In Section (3.2.3), a similar result is shown for a certain class of

discrete Hamiltonian systems.

2.3.4 Null space method

According to d’Alembert’s principle (see e.g. [Arno 78]) the work of the constraint forces on

any virtual variation δq ∈ TqC vanishes. According to (2.3.4) for every q ∈ C, the tangent

space TqC is an (n − m)-dimensional subspace of TQ. Consequently, its basis vectors

form the n× (n−m) matrix P (q) with corresponding linear map P (q) : Rn−m → TqC.

This matrix is called null space matrix, since

range (P (q)) = null (G(q)) = TqC (2.3.18)

Hence admissible virtual variations can be expressed as δq = P (q) · δu with δu ∈ Rn−m.

With these preliminaries, d’Alembert’s principle reads

δq · GT (q) · λ = (P (q) · δu)T · GT (q) · λ = 0 for all δu ∈ Rn−m (2.3.19)

Lagrangian formalism

According to (2.3.19) a premultiplication of the differential equation (2.3.5)1 of the con-

strained Euler-Lagrange equations by P T (q) corresponds to a projection of the equations

of motion into TqC and eliminates the constraint forces including the Lagrange multipliers

from the system. The resulting d’Alembert-type equations of motion read

P T (q) ·
[
d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q

]
= 0

g(q) = 0

(2.3.20)

They constitute an n-dimensional system of second order differential and algebraic equa-

tions that is equivalent to the constrained Euler-Lagrange equations (2.3.5). Note that

the null space matrix is not unique, necessary and sufficient condition on P (q) is (2.3.18).

Due to the significant role of the null space matrix for formulation (2.3.20), it is often

termed ‘null space method’ like e.g. in [Benz 05]. In [Bets 05] a deduction of the equations

of motion in d’Alembert-type formulation and a short discussion of its different names

appearing in the existing literature (e.g. in [Ange 89,Yen 98,Kim 86]) can be found.
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Hamiltonian formalism

Likewise, the premultiplication of (2.3.8)2 of the constrained Hamilton’s equations by

P T (q) eliminates the constraint forces including the Lagrange multipliers from the system.

The resulting 2n-dimensional system of first order differential and algebraic equations

q̇ − ∂H(q,p)

∂p
= 0

P T (q) ·
[
ṗ +

∂H(q,p)

∂q

]
= 0

g(q) = 0

(2.3.21)

is equivalent to (2.3.8).

Construction of a null space matrix

A null space matrix can always be constructed by a decomposition of the Rn into the

tangent space to the constraint manifold TqC and its orthogonal complement
(
TqC

)⊥
.

From linear algebra (see e.g. [Fisc 97]) it is known that the null space of the constraint

Jacobian and the range of its transposed are orthogonal complements in Rn, i.e.

Rn = TqC ⊕
(
TqC

)⊥

= null(G(q)) ⊕ range(GT (q))
(2.3.22)

A QR-decomposition of the n×m transposed constraint Jacobian matrix yields

GT = Q · R = [Q1,Q2] ·
[

R1

0(n−m)×m

]
(2.3.23)

with the nonsingular upper triangular matrix R1 ∈ Rm×m and the orthogonal matrix

Q ∈ O(n), which can be partitioned into the orthogonal matrices Q1 ∈ Rn×m and

Q2 ∈ Rn×(n−m) with

range(Q1(q)) = range(GT (q))

range(Q2(q)) = null(G(q))
(2.3.24)

Then P (q) = Q2(q) serves as null space matrix, which is sometimes called ‘natural

orthogonal complement’ (see [Ange 89]). A null space matrix constructed in the described

way is referred to as implicit representation of a null space matrix.

Alternatively, a velocity analysis can be performed, which is closely related to the consid-

erations of d’Alembert’s principle (2.3.19). According to (2.3.4) admissible velocities are

consistent with the constraints, i.e. they are elements of the (n−m)-dimensional tangent

space TqC to the constraint manifold. Thus there exist independent generalised velocities

ν ∈ Rn−m with

q̇ = P (q) · ν ∈ TqC (2.3.25)

If the admissible velocities q̇ ∈ TqC can be expressed in terms of n − m independent

generalised velocities, the corresponding mapping yields an explicit representation of an

appropriate null space matrix.
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Remark 2.3.9 (Independent generalised velocities) The independent generalised ve-

locities ν ∈ Rn−m may be classified as quasi-velocities because in general, their time

integrals need not result in generalised coordinates (see [Gree 88]).

A third possibility, which also yields an explicit representation of a null space matrix is

a parametrisation of the constraint manifold C in terms of generalised coordinates, see

Remark 2.3.10.

2.3.5 Reparametrisation in generalised coordinates

Another way to deal with holonomic constraints is to formulate the equations of motion

directly in the remaining independent coordinates – the unconstrained generalised coor-

dinates. These coordinates are local coordinates in the constraint manifold C (2.3.3).

Assume that there is a mapping

F : U ⊆ Rn−m → C i.e. g(q) = g(F (u)) = 0 (2.3.26)

Lagrangian formalism

Reparametrisation of the Lagrangian L̃(u, u̇) = L(F (u), DF (u) · u̇) yields the Lagrange

equations of motion of second kind in terms of generalised coordinates

d

dt

(
∂L̃(u, u̇)

∂u̇

)
− ∂L̃(u, u̇)

∂u
= 0 (2.3.27)

which is also termed the state-space form of the equations of motion. Since the con-

straints are fulfilled automatically by the reparametrised configuration variable (2.3.26),

the system is reduced to n −m second order differential equations. This is the minimal

possible dimension for the present mechanical system, which consists of precisely n −m

configurational degrees of freedom. For this reason, the concept of generalised coordinates

is, e.g. in the context of multibody dynamics, also called ‘minimal coordinate approach’

(e.g. [Gera 01], [Brem 04]). Besides the dimensional benefits, the Lagrange equations of

motion of second kind (2.3.27) comprise the challenge of finding an explicit representation

of the reparametrisation F in (2.3.26). Such a reparametrisation is feasible for many prac-

tical applications, however there exist examples such as closed loop systems, for which it

is hard or even impossible to find.

Remark 2.3.10 If a reparametrisation of the constraint manifold is known, then the

Jacobian (see A.4) DF (u) of the coordinate transformation plays the role of a null space

matrix. Insertion of the coordinate transformation (2.3.26) and its Jacobian into the

d’Alembert-type equations of motion reveals that (2.3.20) and (2.3.27) are equivalent.

Hamiltonian formalism

For an introduction of generalised coordinates into the Hamiltonian formalism for con-

strained mechanical systems, the generalised momenta yi = ∂L̃/∂u̇i, i = 1, . . . , n − m,

which are conjugate to the independent generalised coordinates are defined. In anal-

ogy to (2.2.1), by Legendre transformation of the reparametrised Lagrangian L̃(u, u̇), a
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reparametrised Hamiltonian H̃(ui, yi) = yju̇
j − L̃(ui, u̇i) is obtained. The corresponding

equations of motion

u̇ =
∂H̃

∂y

ẏ = −∂H̃
∂u

(2.3.28)

constitute 2(n−m) first order differential equations of the form (2.2.4).

Remark 2.3.11 (Suitability for temporal discretisation) Theoretically, all evolution

equations of constrained motion presented in this section are suited for temporal dis-

cretisation. However, the equations of motion emanating from the use of the Lagrange

multiplier method, the penalty method or the augmented Lagrange method possess a rela-

tively simple structure – in particular in conjunction with a formulation of the mechanical

system involving a constant mass matrix. Thus they are better suited for temporal dis-

cretisation in practice than the d’Alembert-type equations or the equations of motion

in generalised coordinates, where the configuration-dependent null space matrices cause

the temporal discretisation to be very involved. As an illustration of the complexity, the

reduced configuration-dependent mass matrix appearing in the equations of motion in gen-

eralised coordinates of a double spherical pendulum is given in Appendix D. In [Leim 04],

Chapter 7 it is also pointed out that the formulation of constrained equations of motion

in generalised coordinates cannot be recommended generally for time integration. How-

ever, there exist certain examples (see e.g. [Eich 98], Example 5.2.7) for which a temporal

discretisation of the state-space form is preferable.
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The equations developed in order to describe the desired evolution of a mechanical system

are rarely analytically solvable. Therefore it is necessary to approximate their solutions

numerically. Starting with the first numerical approaches by Euler (1768), numerical

integration of ordinary differential equations has a long history. Very popular methods

are e.g. Runge Kutta and linear multistep methods see e.g. [Butc 87, Hair 93,Hair 96,

Hair 04,Leim 04,Deuf 00,Eich 98,Arev 02] and references therein.

3.1 Mechanical integrators

Naturally, one seeks realistic approximations of the solutions of the evolution equations

that share the relevant properties of the real process. Mechanical integration schemes

aim at carrying over the geometrical properties of the real flow, like the preservation of

first integrals or the symplecticity, to the discrete approximation of the solution. Besides

the crucial qualitative reliability of numerical solutions possessing such properties, they

also improve the error propagation in long-time integrations. The energy-momentum con-

serving integrator used throughout this work relies on the concept of discrete derivatives

introduced by Gonzalez in [Gonz 96c]. It is expatiated in the following Section 3.1.1.

This concept can be viewed as a special method within Galerkin-based finite element

formulations in time, introduced by Betsch and Steinmann in [Bets 00b, Bets 00a] and

described shortly in Section 3.1.2. During the last decades, much work has been done

in the field of energy-momentum conserving integrators, e.g. in [Bets 01a, Bets 01b,

Bets 02b,Cris 96,Jele 01,Ibra 03,Ibra 00b,Gonz 99,Gonz 00,Hugh 78,LaBu 76a,Noel 04a,

Noel 04b, Reic 95, Rome 02b, Simo 91a, Simo 91b, Simo 92a, Simo 94, Simo 95] to men-

tion just a few. Furthermore, energy decaying schemes have been widely investigated,

see e.g. [Arme 01a,Arme 01b,Arme 03,Bauc 96,Bott 02a,Hilb 77, Ibra 02a,Rome 02a].

On the other hand there is the class of symplectic-momentum integrators considered e.g.

in [Bart 96,Hair 04,Jay 96,Leim 94,Leim 96,Lew 03,Reic 96,Simo 92b,Kane 00,Mars 01,

Wend 97].

3.1.1 Discrete derivative

This formalism for the design of conserving time integration schemes for Hamiltonian

systems with symmetry is developed by Gonzalez [Gonz 96c]. Many terms and definitions

introduced in Section 2.2.2 are transferred to discrete Hamiltonian systems. The concept

of discrete derivatives leads to implicit second order one-step schemes which conserve
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the Hamiltonian along with at most quadratic integrals arising from symmetries of the

underlying continuous system.

Let P be open in a 2n-dimensional Euclidian space and let (P, ω) be a symplectic space (see

A.10) serving as phase space for the Hamiltonian H : P → R. A discrete approximation

of Hamilton’s differential equations (2.2.6) is given by

zn+1 − zn = hXH(zn, zn+1) (3.1.1)

where h > 0 denotes the time-step and XH : P → R2n is the discrete Hamiltonian vector

field, defined via the discrete analogue of (2.2.5)

ωb
z

n+1
2

(XH(zn, zn+1)) = DH(zn, zn+1) (3.1.2)

where the discrete derivative DH of the Hamiltonian is used on the right hand side.

The discrete Hamiltonian vector field XH can be viewed as an approximation of the

exact Hamiltonian vector field XH at the midpoint zn+ 1
2

= 1
2
(zn+1 + zn), in particular

XH(zn, zn+1) ≈ XH(zn+ 1
2
) because of property (ii) in Definition 3.1.1.

Definition 3.1.1 (Discrete derivative) A discrete derivative for a smooth function

f : P → R is a mapping Df : P × P → R2n with the following properties:

(i) Directionality: Df(x,y) · (y − x) = f(y) − f(x) for all x,y ∈ P

(ii) Consistency: Df(x,y) = Df (w) + O
(∥∥y − x

∥∥) for all x,y ∈ P

with
∥∥y − x

∥∥ sufficiently small

Here w = 1
2
(x + y) and

∥∥ ·
∥∥ denotes the standard Euclidian norm in R2n.

Proposition 3.1.2 (Energy conservation) With this construction, the Hamiltonian H is

conserved along a solution sequence (zn)n∈N
of (3.1.1) in the sense that

H(zn+1) −H(zn) = 0 for all n ∈ N.

Proof and further details can be found in [Gonz 96c].

Example 3.1.3 (Discrete derivative) A general example of a discrete derivative is given

by

Df(x,y) = Df (w) +
f(y) − f(x) −Df(w) · (y − x)∥∥y − x

∥∥2 (y − x) (3.1.3)

which is a second-order approximation to the exact derivative at the midpoint.

Recall from Section 2.2.2 that invariance of the Hamiltonian under the action of a Lie

group G (see A.17) leads to the conservation of the momentum map J : T ∗Q → g∗ (see

A.21) along the trajectories of the Hamiltonian vector field. In order to transfer this

property to the discrete case for a G-invariant function f : P → R, i.e. f ◦ φg = f for

all g ∈ G, the discrete derivative is further specified by two more properties, defining the

G-equivariant discrete derivative.
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Definition 3.1.4 (G-equivariant discrete derivative) A G-equivariant discrete deriva-

tive for a smooth G-invariant function f : P → R is a mapping DGf : P × P → R2n

satisfying the requirements of a discrete derivative together with the following properties:

(iii) Equivariance: DGf(φg(x), φg(y)) = [Dφg (w)]−T · DGf(x,y)

for all g ∈ G and x,y ∈ P

(iv) Orthogonality: DGf(x,y) · ξP (w) = 0 for all ξ ∈ g, x,y ∈ P

The G-equivariant discrete derivative DGH(zn, zn+1) of a G-invariant Hamiltonian can

be inserted in the definition of the discrete Hamiltonian vector field (3.1.2) to define a

new system of Hamiltonian difference equations (3.1.1).

Proposition 3.1.5 (Energy-momentum conservation) If the action φ of G possesses

a momentum map J : P → g∗ that is at most quadratic in z ∈ P , then J is conserved

along the solution sequence (zn)n∈N
of the new discrete system (3.1.1) in the sense that

J(ξ)(zn+1) − J(ξ)(zn) = 0 for all n ∈ N and ξ ∈ g. Furthermore, the Hamiltonian is an

integral of the motion.

Proof and further details can be found in [Gonz 96c].

Example 3.1.6 (G-equivariant discrete derivative) Assume that the regular symplectic

action φ of G on P has orbits of dimension s. Then a G-invariant function f : P → R

does not depend on the full 2n-dimensional space P , but only on the (2n−s)-dimensional

quotient space P/G. If a maximal set of independent invariants of G can be found,

i.e. there exist G-invariant functions π1, . . . , π2n−s : P → R with the property that

Dπ(z) ∈ R(2n−s)×2n has rank 2n−s at each z ∈ P , then f can be reduced to the function

f̃ : π(P ) → R, defined by the expression f̃(π(z)) = f(z) for all z ∈ P . If the invariants

π1, . . . , π2n−s : P → R are at most of degree two in z, then a G-equivariant discrete

derivative for f is defined by the relation

DGf(x,y) = Df̃ (π(x),π(y)) ◦Dπ (w)

= DT π (w) · Df̃ (π(x),π(y))
(3.1.4)

Where D denotes the discrete derivative given in Example 3.1.3.

Having in mind that P is open in a 2n-dimensional Euclidian space and represents the

phase space of a mechanical system, the following definition introduced in [Gonz 99] is

useful.

Definition 3.1.7 (Partial discrete derivative) To a discrete derivative Df(x,y) ∈ R2n

one associates partial discrete derivatives D1f(x,y) ∈ Rn and D2f(x,y) ∈ Rn according

to the relation

Df(x,y) · (uq,up) = D1f(x,y) · uq + D2f(x,y) · up (3.1.5)

for all u = (uq,up) ∈ R2n. Furthermore, a discrete derivative operator d on Rn is induced.

Let h : Rn → R and h̄ : P → R be functions related by

h̄(x) = h(xq) for all x = (xq,xp) ∈ P (3.1.6)
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3 Temporal discrete equations of motion

Then d is defined as

dh(xq,yq) = D1h̄(x,y) (3.1.7)

Remark 3.1.8 For Hamiltonian functions being at most quadratic, the examples of the

discrete derivative (3.1.3) and the G-equivariant discrete derivative (3.1.4) coincide. In

this case, both formulas reduce to the midpoint rule. Furthermore, the concept of dis-

crete derivatives is equivalent to the assumed distance method in the context of the

cG(1)-method for at most quadratic Hamiltonians. This correlation is expatiated in

[Grah 02].

Remark 3.1.9 This concept constitutes a special method within the family of time-

stepping schemes emanating from finite element approximations in time. The crucial

advantage is, that the formulas (3.1.3) and (3.1.4) are given in closed form. Thus the con-

servation properties do not depend on the numerical solution of arising time integrals. In

particular, formula (3.1.3) can be interpreted as a quadrature for the time integral arising

in the cG(1)-method in (3.1.13), which fulfils the design criteria for energy conservation

(3.1.15) and for angular momentum conservation (3.1.16) respectively.

3.1.2 Galerkin-based finite elements in time

The following introduction to the continuous Galerkin (cG) method in conjunction with

Hamilton’s equations is based on the work by Betsch and Steinmann in [Bets 00a,Bets 00b].

Its extension to nonlinear elastodynamics and to holonomically constrained mechanical

systems is presented in [Bets 01a,Bets 02b] respectively. The discretisation of Hamilton’s

equations relies on a Petrov-Galerkin finite element formulation in time. The result-

ing time-stepping scheme is exactly energy conserving, provided that the appearing time

integrals are calculated exactly. Since this is rarely feasible, the choice of appropriate

quadrature rules plays a crucial role concerning the conservation properties of the result-

ing algorithm.

Let the time interval [t0, t1] be divided into ne nonoverlapping subintervals. For con-

venience a typical time interval [tn, tn+1] is transformed to a master element with local

coordinates α ∈ [0, 1] according to

α(t) =
t− tn
hn

hn = tn+1 − tn (3.1.8)

for n = 0, . . . , ne − 1.

Hamilton’s equations (2.2.6) in conjunction with the special form of the Hamiltonian

vector field given in Remark 2.2.1, read in the weak residual form
∫ 1

0

(
δzh
)T · J ·

(
dzh

dα
− hnJ · ∇H(zh)

)
dα = 0 (3.1.9)

Together with the initial condition zh(0) = zn−1, they serve as a vantage point. The goal

is to find a continuous piecewise polynomial zh ∈ Pk(0, 1)2n of degree k, satisfying (3.1.9)

for all δzh ∈ Pk−1(0, 1)2n. The trial functions are given by

zh(α) =
k+1∑

i=1

Mi(α)zi (3.1.10)
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with the nodal shape functions Mi(α), i = 1, . . . , k + 1 being Lagrange polynomials of

degree k, such that at the time nodes αj ∈ [0, 1], Mi(αj) = δij holds and zi = zh(αi)

are the nodal values of zh. Accordingly the global approximation to z : [t0, t1] → R2n is

continuous over the time element boundaries. In contrast to that, the approximation of

the test functions

δzh(α) =

k∑

i=1

M̃i(α)δzi (3.1.11)

with the reduced shape functions M̃i(α), i = 1, . . . , k being Lagrange polynomials of de-

gree k−1, allows interelement discontinuities. The reduced shape functions are determined

by the relation

dzh

dα
=

k+1∑

i=1

M ′
i(α)zi =

k∑

i=1

M̃i(α)z̃i (3.1.12)

where the z̃i, i = 1, . . . , k consist of linear combinations of the nodal values zi,

i = 1, . . . , k + 1, see [Bets 01a] for details.

Eventually insertion of (3.1.10) and (3.1.11) into (3.1.9) yields the equations

k∑

j=1

∫ 1

0

M̃iM̃j dαz̃j − hnJ ·
∫ 1

0

M̃i∇H(zh) dα = 0 (3.1.13)

for i = 1, . . . , k. An implicit one-step scheme can be obtained by

(i) selecting the polynomial degree k. Then the integral over a polynomial of degree

2(k − 1) in the first term in (3.1.13) can be calculated exactly.

(ii) choosing a quadrature formula for the remaining integral in (3.1.13).

It can be shown easily, that the Hamiltonian is conserved along solutions of (3.1.13),

provided that the integrals are calculated exactly. If exact integration is not feasible, the

choice of the quadrature formula is crucial concerning the conservation properties and the

accuracy of the resulting time-stepping scheme. Scalar multiplication of (3.1.13) by J · z̃i

and subsequent summation over i = 1, . . . , k cancels the contributions of the first terms

and yields the condition

k∑

i=1

∫ 1

0

M̃i∇H(zh) dα · z̃i = 0 (3.1.14)

which is identical with Hn − Hn−1 = 0 for exact integration. Consequently, the en-

ergy is exactly conserved along solutions of (3.1.13), if the quadrature rule in use sat-

isfies condition (3.1.14). Assuming that the Hamiltonian is separable and of the form

H(z) = 1
2
pT · M−1 · p + V (q) (where M is a symmetric, positive semi-definite, con-

stant mass matrix and V the potential energy), the contribution of the kinetic energy to

(3.1.14) is a polynomial of degree 2k − 1 which can be integrated exactly. Consequently,

the quadrature rule applied to the calculation of the remaining integral in (3.1.14) has to

fulfil the design criterion

k∑

i=1

∫ 1

0

M̃iD1H(zh) dα · q̃i = Vn − Vn−1 (3.1.15)
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to ensure algorithmic energy conservation.

The requirement of algorithmic conservation of momentum maps imposes further restric-

tions on the evaluation of
∫ 1

0
D1H(zh)dα. E.g. in the case of vanishing external loading,

the condition for algorithmic conservation of angular momentum, i.e. Ln − Ln−1 = 0, in

the context of the cG(1)-method reads

∫ 1

0

D1H(zh) dα× qh

(
1

2

)
= 0 (3.1.16)

The attempt to fulfil the design criterion (3.1.15) leads to the consideration of the as-

sumed distance method in [Bets 00a] for N -body problems (which is energy-momentum

conserving for at most quadratic Hamiltonians) or the assumed strain method for prob-

lems of nonlinear elasticity in [Bets 01a]. In [Gros 04], Groß offers a unified development of

higher order energy-momentum conserving time integrators for nonlinear elastodynamics,

the so-called enhanced Galerkin (eG) method, see also [Gros 05].

For constrained Hamiltonian systems, where the constraints are enforced using Lagrange

multipliers as additional variables, the multipliers as well as their corresponding test func-

tions are approximated by piecewise polynomials of degree k − 1 allowing discontinuities

across the time element boundaries. Thus the trial functions λh(α) and the test functions

δλh(α) are of the form (3.1.11). This leads to the so-called mixed Galerkin (mG) method

introduced in [Bets 02b].

As already mentioned in Remark 3.1.8, the cG(1)-method in conjunction with a non-

standard quadrature rule fulfilling the design criteria for algorithmic conservation of first

integrals is equivalent to the concept of discrete derivatives, see [Grah 02].

3.1.3 Variational integrators

While the time-stepping schemes in the preceding Sections 3.1.1 and 3.1.2 rely on the

discretisation of the ordinary differential evolution equations, the concept of variational

integrators is based on a direct discretisation of the variational formulation behind the

equations of motion. Due to the variational derivation of the time-stepping scheme, its

solution is symplectic (i.e. it conserves the same two-form on the phase space as the

underlying continuous system) and it also conserves momentum maps arising from sym-

metries in the true system. Furthermore, the energy error remains bounded along the

solution of the discrete system, thus the variational method does not artificially dissi-

pate energy. This is in contrast to the numerical damping pertaining to many standard

methods, see e.g. [Arme 01a,Arme 01b,Gros 00]. As a consequence of a theorem proved

by Ge and Marsden in [Ge 88], it is not possible to achieve time-stepping schemes for

which the solution conserves momentum maps and the symplectic form as well as the

energy while using constant time-steps. Therefore, mechanical integrators were divided

into two classes, symplectic-momentum and energy-momentum integrators. However, the

symplectic-energy-momentum conserving algorithm proposed in [Mars 99] overcomes that

shortcoming by using adaptive time-steps. For the application of variational integrators

to constrained systems see [Wend 97] and a relation of variational integrators to Newmark

algorithms can be found in [Kane 00]. For a detailed introduction to discrete mechanics
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3.1 Mechanical integrators

and variational integrators see [Mars 01]. In the sequel the basic ideas of the concept of

variational integrators are sketched briefly.

Corresponding to a configuration manifold Q, the discrete phase space is defined by Q×Q
which is locally isomorphic to TQ. For a constant time-step h ∈ R, a path q : [t0, t1] → Q

is replaced by a discrete path qd : {t0, t0 + h, , . . . , t0 + Nh = t1} → Q, N ∈ N, where

qk = qd(t0 + kh) is viewed as an approximation to q(t0 + kh). Using the continuous

Lagrangian L : TQ→ R a discrete Lagrangian Ld : Q×Q→ R is introduced via

Ld(qk, qk+1) = L

(
qk+1 + qk

2
,
qk+1 − qk

h

)
(3.1.17)

and a discrete action sum Sd : QN+1 → R via

Sd =

N−1∑

k=0

Ld(qk, qk+1) (3.1.18)

The discrete variational principle states that the discrete path extremises the action sum

for fixed q0 and qN . Similar to the deduction of the continuous Euler-Lagrange equations

(2.1.2) from the variational principle of critical action (2.1.1), the requirement δSd = 0

yields the discrete Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0 (3.1.19)

which must hold for k = 1, . . . , N − 1. Let Φ : Q × Q → Q × Q, defined implicitly by

Φ(qk−1, qk) = (qk, qk+1), denote the discrete map which evolves the system forward in

time. Furthermore, using the fibre derivative FLd : Q×Q→ T ∗Q with

FLd(qk, qk+1) = (qk, D1Ld(qk, qk+1)) (3.1.20)

a discrete two-form ωd on Q×Q is defined by pulling back the canonical two-form ω on

T ∗Q given in Remark 2.1.1 and reads

ωd = FL∗
d(ω) =

∂2Ld

∂qi
k∂q

j
k+1

dqi
k ∧ dqj

k+1 (3.1.21)

Then a tedious but straightforward calculation shows that Φ∗ωd = ωd, i.e. the discrete

evolution map Φ is discretely symplectic, see [Wend 97].

Besides the discrete symplectic structure, Φ preserves discrete momentum maps related

to symmetries of the corresponding continuous system. Let ξ ∈ g where g denotes the Lie

algebra of a Lie group G whose action leaves the continuous Lagrangian invariant. Then

the discrete Lagrangian is also invariant under that group action, i.e.

Ld(exp(sξ)qk, exp(sξ)qk+1) = Ld(qk, qk+1) (3.1.22)

for s ∈ R. Differentiating this equation and setting s = 0 implies

D1Ld(qk, qk+1) · ξQ(qk) +D2Ld(qk, qk+1) · ξQ(qk+1) = 0 (3.1.23)

where ξQ is the infinitesimal generator of the action corresponding to ξ. As explained

above, qk+1 extremises the action sum Sd, so if qk+1 is varied over s ∈ R by
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qk+1(s) = exp(sξ) · qk+1 then qk+1(0) extremises Sd, what means that dSd/ds|s=0= 0.

This implies

D2Ld(qk, qk+1) · ξQ(qk+1) +D1Ld(qk+1, qk+2) · ξQ(qk+1) = 0 (3.1.24)

Subtracting equation (3.1.23) from equation (3.1.24) reveals that

D1Ld(qk+1, qk+2) · ξQ(qk+1) −D1Ld(qk, qk+1) · ξQ(qk) = 0 (3.1.25)

This equation shows that a momentum map Jd : Q×Q→ g∗ defined analogous to (2.1.8)

by

〈Jd(qk, qk+1), ξ〉 = 〈D1Ld(qk, qk+1), ξQ(qk)〉 (3.1.26)

is preserved by the algorithm Φ.

A comparison of the performance of the time-stepping scheme (3.1.1) derived using the

concept of discrete derivatives to the time-stepping scheme (3.1.19) based on a discrete

variational principle, is documented in [Laue] for a simple constrained mechanical system.

Remark 3.1.10 (Hamiltonian formalism) Just as the standard Legendre transformation

(2.2.1) maps the Lagrangian phase space TQ to the Hamiltonian phase space T ∗Q, a

discrete Legendre transformation can be defined. With its help it can be shown, that a

discrete trajectory {qk}N
k=0 in Q can be regarded as either a trajectory {(qk, qk+1)}N−1

k=0

in Q×Q or equivalently as a trajectory {(qk,pk)}N
k=0 in T ∗Q, see [Mars 01] for details.

3.2 Mechanical integration of constrained equations of
motion

With the different theoretical approaches described in the preceding chapters, a variety of

combinations is at disposal to specify time-stepping schemes for constrained mechanical

systems. Early work on time integration of constrained dynamical systems has been done

e.g. by [Card 89].

Having decided to use the Hamiltonian formalism for the deduction of the continuous

equations of motion, the next step is to choose a temporal discretisation technique. The

concept of discrete derivatives by Gonzalez [Gonz 96c] described in Section 3.1.1 is used

throughout this work. One reason for that is the intention to solve stiff systems (e.g. using

high penalty parameters) for which it has been reported that energy-conserving schemes

are better suitable, especially for long term simulations, see e.g. [Simo 93]. The concept of

discrete derivatives can be interpreted as a formal abstraction of conserving time-stepping

schemes, embedding them within the context of discrete dynamical systems. Its technical

merits lie in the possibility to prove the conservation of first integrals along the discrete

solution sequence by arguments which are in analogy to those used in the continuous

setting. In particular, the conservation properties are guaranteed by the design of the

concept, see Remark 3.1.9.
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3.2 Mechanical integration of constrained equations of motion

In a typical time interval In = [tn, tn+1] ⊆ [t0, t1] with corresponding constant time-step

h = tn+1 − tn (see Figure 3.1) the configuration and momentum vector are approximated

continuously by piecewise linear functions respectively

q(t)|In
≈ qn +

t− tn
h

(
qn+1 − qn

)

p(t)|In
≈ pn +

t− tn
h

(
pn+1 − pn

) (3.2.1)

PSfrag replacements

t

In

tn
(qn,pn)

tn+1

(qn+1,pn+1)

h

Figure 3.1: Time interval In = [tn, tn+1] ⊆ [t0, t1] of length h.

Using the canonical symplectic structure on 2n-dimensional linear spaces (2.2.8) for the

definition of the Hamiltonian vector field (3.1.2) and inserting this in the discrete equations

of motion (3.1.1), one arrives at the discrete Hamiltonian system

qn+1 − qn = hDG
2 H(zn, zn+1)

pn+1 − pn = −hDG
1 H(zn, zn+1)

(3.2.2)

which is the discrete counterpart of (2.2.4) involving the partial G-equivariant discrete

derivative defined in Section 3.1.1. By design of the G-equivariant discrete derivative, the

total energy and at most quadratic momentum maps are conserved along its solution (see

Proposition 3.1.5).

Augmentation of the Hamiltonian (2.3.13) according to the method to treat the constraints

and insertion of Haug into (3.2.2) along with a possible supplement of the system by the

constraint equations eventually yields the desired energy-momentum conserving time-

stepping scheme for constrained mechanical systems.

3.2.1 Lagrange multiplier method

As described in Section 2.3.1, the augmentation of the Hamiltonian (2.3.13) according

to the Lagrange multiplier method is given by PH(z) = PLag(g(q)) = gT (q) · λ. The

Lagrange multipliers are approximated constantly within one time interval allowing in-

terelement discontinuities. Then the conserving time-stepping scheme for the constrained

Hamiltonian system (2.3.8) reads

qn+1 − qn = hDG
2 H(zn, zn+1)

pn+1 − pn = −hDG
1H(zn, zn+1) − hGT (qn, qn+1) · λn+1

0 = g(qn+1)

(3.2.3)
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where G(qn, qn+1) = dGg(qn, qn+1) is the the partial G-equivariant discrete derivative

(see Definition 3.1.4 and 3.1.7).

A conservative Hamiltonian system with constant symmetric positive semi-definite mass

matrix M ∈ Rn×n and potential V : Q→ R building the separable Hamiltonian (2.3.13)

satisfying the assumptions in (2.3.14) reads

Haug(z) = TH(z) + VH(z) + PH(z) =
1

2
pT · M−1 · p + V (q) + gT (q) · λ (3.2.4)

Then (3.2.3) can be specified to

qn+1 − qn = hM−1 · pn+ 1
2

pn+1 − pn = −hdGV (qn, qn+1)− hGT (qn, qn+1) · λn+1

0 = g(qn+1)

(3.2.5)

Alternatively, the constrained scheme (3.2.5) can be derived from the Galerkin-based

mG(1)-method described in Section 3.1.2 as proposed by Betsch and Steinmann [Bets 02b].

By definition of the partial G-equivariant discrete derivative (3.1.7), the resulting scheme

(3.2.5) conserves the total energy and at most quadratic momentum maps, related to

symmetries of the underlying continuous system, along its solution sequence (zn)n∈N
.

According to (3.2.5)3, the constraints are fulfilled exactly at the time nodes. With regard

to (3.2.5)1, the directionality property of the discrete derivative implies

(M−1 · pn+ 1
2
)T ·GT (qn, qn+1) · λn+1 = 0 (3.2.6)

This can be considered as the discrete counterpart of d’Alembert’s requirement that the

constraint forces are workless, see (2.3.19). Beyond that, omittance of the Lagrange

multiplier in (3.2.6) shows that with regard to (2.3.9) a temporal discrete counterpart of

the consistency condition is fulfilled.

For an implementation of the constrained scheme, (3.2.5)1 is solved for pn+1 and inserted

into (3.2.5)2. This yields the (n+m)-dimensional system

2

h
M ·

(
qn+1 − qn

)
− 2pn + hdGV (qn, qn+1) + hGT (qn, qn+1) · λn+1 = 0

g(qn+1) = 0
(3.2.7)

to be solved for qn+1,λn+1 although there are only n − m independent configurational

degrees of freedom. Another drawback of the constrained scheme is that the condition

number of the iteration matrix for the solution of the nonlinear system of equations is

of the order O(h−3), see [Petz 86] and proof in Appendix C.1. This implies that for

decreasing time-steps, the iteration matrix becomes more and more ill-conditioned.

Remark 3.2.1 (Preconditioning) One possibility to remove the conditioning problem

is the use of preconditioning techniques which decouple the condition number of the

iteration matrix from the time-step. E.g. Bottasso introduces a preconditioning method

in [Bott 05] which is very effective and easy to implement. However, preconditioning

techniques do not control the magnitude of the condition number.
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3.2.2 Penalty method

With the augmentation according to the penalty method by

PH(z) = PPen(g(q)) = µR(g(q)) described in Section 2.3.2, a separable Hamiltonian

corresponding to (3.2.4) reads

Haug(z) = TH(z) + VH(z) + PH(z) = T (p) + V (q) + µR(g(q)) (3.2.8)

with T (p) = 1
2
pT ·M−1 · p. Insertion into the discrete Hamiltonian system (3.2.2) yields

the energy-momentum conserving penalty time-stepping scheme

qn+1 − qn = hM−1 · pn+ 1
2

pn+1 − pn = −hdGV (qn, qn+1)− hµdGR(g(qn, qn+1))
(3.2.9)

The following proposition may be viewed as the discrete counterpart of Theorem 2.3.5

by Rubin and Ungar [Rubi 57]. It holds for the class of energy conserving time-stepping

schemes designed by the use of the discrete derivative given in Example 3.1.3. The

statement can also be derived for the subclass of energy-momentum conserving schemes

using the G-equivariant discrete derivative, but in the following form it is more general

and notationally simpler.

Proposition 3.2.2 Let zn = (qn,pn) be consistent coordinates at time tn, n ∈ N arbitrary.

Let (µs)s∈N
⊂ R+ be an arbitrary sequence with lim

s→∞
µs = ∞ and denote the solution of

the system (3.2.9) corresponding to µs by zs
n+1. Let zn+1 = lim

s→∞
zs

n+1 be the limit point

of the sequence of solutions. Then there exists a multiplier λn+1 such that (zn+1,λn+1)

solve the constrained scheme (3.2.5).

Proof: For consistent initial data qn ∈ C, g(qn) = 0, thus the correct energy of the

mechanical system T (pn) + V (qn) = H(zn) = H0 is conserved along the solution of

(3.2.9). Then for arbitrary n, s ∈ N

T (ps
n+1) + V (qs

n+1) + µsR(g(qs
n+1)) = H0 (3.2.10)

According to the assumptions (2.3.12) and (2.3.14), T and R are non-negative and V is

bounded from below. It follows that T, V and R are bounded from above, in particular,

there exists Js
n+1 ∈ R+ with

µsR(g(qs
n+1)) ≤ Js

n+1 (3.2.11)

Since the lower bound of V is independent of n and s, there exists Jn+1 ∈ R+ with

lim
s→∞

µsR(g(qs
n+1)) ≤ Jn+1 (3.2.12)

With lim
s→∞

µs = ∞ it follows that lim
s→∞

R(g(qs
n+1)) = 0 and then assumption (2.3.12)

implies

lim
s→∞

g(qs
n+1) = 0 (3.2.13)
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Let zn+1 = (qn+1,pn+1) = lim
s→∞

zs
n+1 denote the limit point of the solution sequence

(
zs

n+1

)
s∈N

of (3.2.9). Note that the existence of a limit point for the solution sequence fol-

lows directly from the corresponding result in the temporal continuous case (see [Rubi 57]).

Then it follows by the continuity of the constraint function that

g(qn+1) = 0 (3.2.14)

i.e. (3.2.5)3 is fulfilled.

Besides the supplementation of the constrained scheme by the constraint equations, (3.2.5)

and (3.2.9) differ in the discrete derivatives

dPLag(g(qn, qn+1)) = DT g(qn+ 1
2
) ·λn+1 +

−DT g(qn+ 1
2
) · λn+1 · (qn+1 − qn)

∥∥qn+1 − qn

∥∥2 (qn+1−qn)

(3.2.15)

with qn+ 1
2

= 1
2
(qn+1 + qn) and

dPPen(g(qn, q
s
n+1)) = µsD

Tg(qs
n+ 1

2

) ·DgR(g(qs
n+ 1

2

))+

µsR(g(qs
n+1)) − µsD

T g(qs
n+ 1

2

) ·DgR(g(qs
n+ 1

2

)) · (qs
n+1 − qn)

∥∥qs
n+1 − qn

∥∥2 (qs
n+1 − qn)

(3.2.16)

with qs
n+ 1

2

= 1
2
(qs

n+1 +qn) and DgR(g(q)) denoting the Jacobian of R with respect to the

constraint function g.

(3.2.14) implies together with the assumptions (2.3.12) that

PPen(g(qn+1)) = lim
s→∞

µsR(g(qs
n+1)) = 0. In particular, the growth of PPen is bounded,

i.e. the following expression is bounded

DPPen(g(qn+ 1
2
)) = lim

s→∞
µsD

T g(qs
n+ 1

2
) ·DgR(g(qs

n+ 1
2
))

= DT g(qn+ 1
2
) · lim

s→∞
µsDgR(g(zs

n+ 1
2
))

(3.2.17)

for small enough time-steps. Since 0 is a regular value of the constraints, DT g has full

rank in qn and qn+1. If the time-step is small enough, it can be assumed that DT g(qn+ 1
2
)

has also full rank, particularly it is injective. Hence there exist
(
θs

n+1

)
s∈N

∈ Rm and

θn+1 ∈ Rm with

θn+1 = lim
s→∞

θs
n+1 = lim

s→∞
µsDgR(g̃(qs

n+ 1
2
)) (3.2.18)

and
∥∥θn+1

∥∥ <∞. Consequently with qn+ 1
2

= 1
2
(qn+1 + qn)
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lim
s→∞

dPPen(g(qn, q
s
n+1)) = DT g(qn+ 1

2
)·θn+1−

DT g(qn+ 1
2
) · θn+1 · (qn+1 − qn)
∥∥qn+1 − qn

∥∥2 (qn+1−qn)

(3.2.19)

Thus (zn+1, θn+1) solve the constrained scheme (3.2.5). The uniqueness of the solution of

(3.2.5) implies θn+1 = λn+1.

Remark 3.2.3 In [Leye 04] a similar result is proved for the slightly more general case,

allowing for the dependence of the holonomic constraints on the total phase variable z.

In [Rubi 57,Born 96], the special penalty function PPen(g(q(t))) = µ
∥∥g(q(t))

∥∥2
is consid-

ered in the continuous (∞-dimensional) case and the weak convergence of µsg(qs(t)) to the

correct Lagrange multiplier is discussed. Since the discrete system is finite-dimensional,

weak and strong convergence are equivalent for θn+1 = lim
s→∞

µsDgR(g(qs
n+ 1

2
)).

For an implementation of the penalty scheme, (3.2.9)1 is solved for pn+1 and inserted into

(3.2.9)2. This yields the n-dimensional system

2

h
M ·

(
qn+1 − qn

)
− 2pn + hdGV (qn, qn+1) + hµdGR(g(qn, qn+1)) = 0 (3.2.20)

to be solved for qn+1. The accuracy of the constraint fulfilment of the solution of (3.2.20)

depends on the penalty parameter. The condition number of the iteration matrix for the

solution of the nonlinear system of equations is of the order O(h2µ), see Appendix C.4

for proof. This implies that for certain well balanced combinations of small time-steps h

and large penalty parameters µ, the system is well-conditioned.

3.2.3 Augmented Lagrange method

A separable Hamiltonian corresponding to (3.2.4) comprising the augmentation according

to the augmented Lagrange method PH(z) = PAug(g(q)) = gT (q)·λ+µR(g(q)) described

in Section 2.3.3, reads

Haug(z) = TH(z) + VH(z) + PH(z) = T (p) + V (q) + gT (q) · λ + µR(g(q)) (3.2.21)

with T (p) = 1
2
pT · M−1 · p. For a fixed value λk ∈ Rm, insertion of (3.2.21) into the

discrete Hamiltonian system (3.2.2) yields the energy-momentum conserving augmented

Lagrange time-stepping scheme

qk
n+1 − qn = hM−1 · pk

n+ 1
2

pk
n+1 − pn = −hdGV (qn, q

k
n+1)− hGT (qn, q

k
n+1) · λk

n+1 − hµdGR(g(qn, q
k
n+1))

(3.2.22)

with zk
n+ 1

2

= 1
2
(zk

n+1 + zn). If the constraints g(qk
n+1) are not satisfied satisfactorily by

the solution of (3.2.22), the multiplier is updated similar to (2.3.17) according to

λk+1
n+1 = λk

n+1 + µDgR(g(qk
n+1)) (3.2.23)

with DgR(g(q)) denoting the Jacobian of R with respect to the constraint function g.

Then (3.2.22) is solved again for zk+1
n+1.
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Proposition 3.2.4 Let zn = (qn,pn) be consistent coordinates at time tn, n ∈ N arbitrary.

Let µ ∈ R+ be arbitrary and denote the solution of the system (3.2.22) corresponding to

λk
n+1 by zk

n+1. Let zn+1 = lim
k→∞

zk
n+1 be the limit point of the sequence of solutions. Then

the sequence of multipliers
(
λk

n+1

)
k∈N

converges to the correct Lagrange multiplier λn+1,

such that (zn+1,λn+1) solve the constrained scheme (3.2.5).

Proof: Let zn+1 = lim
k→∞

zk
n+1 be the limit point of the solutions of (3.2.22). Note that the

existence of a limit point for the solution sequence and for the multiplier sequence follows

directly from the corresponding result in the temporal continuous case (see Remark 2.3.8

and [Bert 95]). Denote the limit point of the sequence of multipliers by

λ̄n+1 = lim
k→∞

λk
n+1 = λ0

n+1 +
∞∑

k=1

µDgR(g(qk
n+1)) (3.2.24)

with λ0
n+1 = λ̄n. Then it follows that

lim
k→∞

DgR(g(qk
n+1)) = 0 (3.2.25)

This and the convexity of R (see assumption (2.3.12)) imply

g(qn+1) = 0 (3.2.26)

i.e. the constraints (3.2.5)3 are fulfilled in the limit point qn+1. Besides the supplementa-

tion of the constrained scheme by the constraint equations, (3.2.5) and (3.2.22) differ in

the discrete derivatives dPLag(g(qn, qn+1)) given in (3.2.15) and

dPAug(g(qn, q
k
n+1)) = DT g(qk

n+ 1
2

) · λk
n+1 + µDTg(qk

n+ 1
2

) ·DgR(g(qk
n+ 1

2

))+

gT (qk
n+1) · λk

n+1 + µR(g(qk
n+1))∥∥qk

n+1 − qn

∥∥2 (qk
n+1 − qn)+

−
(
DT g(qk

n+ 1
2

) · λk
n+1 + µDTg(qk

n+ 1
2

) ·DgR(g(qk
n+ 1

2

))
)
· (qk

n+1 − qn)
∥∥qk

n+1 − qn

∥∥2 (qk
n+1 − qn)

(3.2.27)

With qk
n+ 1

2

= 1
2
(qk

n+1 + qn), (3.2.25) and (3.2.26) imply

lim
k→∞

dPAug(g(qn, q
k
n+1)) = DT g(qn+ 1

2
)·λ̄n+1−

DT g(qn+ 1
2
) · λ̄n+1 · (qn+1 − qn)
∥∥qn+1 − qn

∥∥2 (qn+1−qn)

(3.2.28)

Thus (zn+1, λ̄n+1) solve the constrained scheme (3.2.5). The uniqueness of the solution

of (3.2.5) implies λ̄n+1 = λn+1.
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Remark 3.2.5 In [Leye 04] a similar result is proved for the slightly more general case,

allowing for the dependence of the holonomic constraints on the total phase variable z.

Proposition 3.2.4 holds for the class of energy conserving time-stepping schemes designed

by the use of the discrete derivative given in Example 3.1.3. The statement can also be

derived for the subclass of energy-momentum conserving schemes using the G-equivariant

discrete derivative, but in the given form it is more general and notationally simpler.

For an implementation of the augmented Lagrange time-stepping scheme, (3.2.22)1 is

solved for pk
n+1 and inserted into (3.2.22)2. This yields the n-dimensional system

2

h
M
(
qk

n+1 − qn

)
− 2pn + hdGV (qn, q

k
n+1) + hGT (qn, q

k
n+1) · λk

n+1+

hµdGR(g(qn, q
k
n+1)) = 0

(3.2.29)

to be solved for qk
n+1 using the fixed multiplier λk

n+1. Then the multiplier is updated

according to (3.2.23) and a more accurate solution is obtained by resolving (3.2.29). This

procedure is repeated iteratively until the constraints are fulfilled satisfactorily. The

magnitude of the parameter µ influences the accuracy of the first solution in a new time-

step and thus determines the number of necessary iterations. It can remain of relatively

small magnitude if one allows many iterations. The condition number of the iteration

matrix for the solution of the nonlinear system of equations is of the order O(h2µ), see

Appendix C.5 for proof. Thus for small time-steps, the system is well-conditioned.

3.2.4 Discrete null space method

In complete analogy to the procedure outlined in Section 2.3.4 for the temporal continu-

ous case, a transition from the constrained scheme (3.2.3) to a discrete d’Alembert-type

scheme implicating a size reduction can be accomplished. This transition is introduced

by Betsch in [Bets 05] and termed ‘discrete null space method’.

A discrete null space matrix P(qn, qn+1) : Rn−m → Rn whose columns form a basis

for the (n − m)-dimensional null space of the partial G-equivariant discrete derivative

G(qn, qn+1) = dGg(qn, qn+1) of the constraints, i.e.

range
(
P(qn, qn+1)

)
= null

(
G(qn, qn+1)

)
(3.2.30)

must be found. Premultiplying (3.2.3 )2 by the transposed of the discrete null space matrix

cancels the discrete counterpart of the constraint forces and thus eliminates the Lagrange

multipliers from the scheme. The resulting d’Alembert-type time-stepping scheme for the

d’Alembert-type Hamiltonian system (2.3.21) reads

qn+1 − qn − hDG
2 H(zn, zn+1) = 0

P
T (qn, qn+1) ·

[
pn+1 − pn + hDG

1 H(zn, zn+1)
]

= 0

g(qn+1) = 0

(3.2.31)

The following important proposition and proof have been taken from [Bets 05].

Proposition 3.2.6 The d’Alembert-type time-stepping scheme (3.2.31) is equivalent to

the constrained scheme (3.2.3).
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Proof: Recapitulating the construction procedure of the d’Alembert-type scheme from

the constrained scheme, it is obvious that for given initial values (qn,pn), a solution

(qn+1,pn+1,λn+1) of the constrained scheme (3.2.3) is also a solution of the d’Alembert-

type scheme (3.2.31).

Assume that (qn+1,pn+1) solve the d’Alembert-type scheme (3.2.31) for given (qn,pn).

Note that condition (3.2.30) on the discrete null space matrix implies

null
(
P

T (qn, qn+1)
)

= range
(
G

T (qn, qn+1)
)

(see e.g. [Fisc 97]). Together with (3.2.31)2 it

follows that
[
pn+1 − pn + hDG

1 H(zn, zn+1)
]
∈ null

(
P

T (qn, qn+1)
)

= range
(
G

T (qn, qn+1)
)

(3.2.32)

Accordingly, there exists a multiplier λn+1 ∈ Rm such that (qn+1,pn+1,λn+1) solve the

constrained scheme (3.2.3).

Therefore, the d’Alembert-type scheme has the same conservation properties as the con-

strained scheme. The total energy and at most quadratic momentum maps are conserved

along a solution sequence (zn)n∈N
of (3.2.31) and the constraints are fulfilled exactly at

the time nodes.

If the Hamiltonian is separable as given in (3.2.4), pn+1 can be extracted from (3.2.31)1

and inserted in (3.2.31)2. This yields the n-dimensional system

P
T (qn, qn+1) ·

[
2

h
M ·

(
qn+1 − qn

)
− 2pn + hdGV (qn, qn+1)

]
= 0

g(qn+1) = 0

(3.2.33)

to be solved for qn+1. Note that this dimension is larger than the number of degrees

of freedom n − m of the constrained mechanical system. During the iterative solution

procedure for the system of nonlinear algebraic equations (3.2.33), the tangent matrix

assumes the form given in (B.2) in Appendix B.

Besides the smaller dimension, the main advantage of the d’Alembert-type scheme over

the constrained scheme is that due to the elimination of the Lagrange multipliers from

the scheme, the conditioning problem has been removed. The condition number of the

iteration matrix for the solution of the d’Alembert-type scheme is independent of the

time-step, see Appendix C.3 for proof.

Remark 3.2.7 (Properties of the discrete null space matrix) The discrete null space

matrix P(qn, qn+1) has the following properties:

(i) rank
(
P(qn, qn+1)

)
= n−m

(ii) G(qn, qn+1) · P(qn, qn+1) = 0m×(n−m)

(iii) lim
q

n+1→q
n

P(qn, qn+1) = Un with range (Un) = null (G(qn))

Properties (i) and (ii) are equivalent to the necessary and sufficient condition (3.2.30) on

P(qn, qn+1) to be a discrete null space matrix. Consistency of the approach is guaranteed

by property (iii), which is implied by (i) and (ii) due to the consistency property of the

discrete derivative (see Definition 3.1.1). It means that in the limit for vanishing time-

steps, the discrete null space matrix coincides with the continuous one.
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Remark 3.2.8 (Explicit representation of the discrete null space matrix) For many

applications it is possible to infer a viable discrete null space matrix from the correspond-

ing continuous null space matrix by midpoint evaluation. This holds e.g. for the motion

of a single rigid body as shown in Section 4.3.4, for the treatment of spatially discretised

elastic beams presented in Section 5.4.4 and for lower kinematic pairs without relative

translational degrees of freedom described in Sections 6.1.4, 6.1.6, as well as for their

generalisations to open kinematic chains (see Example 6.2.3). For other applications,

slight modifications of the midpoint evaluation of the continuous null space matrix lead

to an appropriate discrete null space matrix. For example for the lower kinematic pairs

involving relative translational degrees of freedom treated in Sections 6.1.5, 6.1.7, 6.1.8,

these modifications can be detected by a careful inspection of the condition (3.2.30).

If no explicit representation of the discrete null space matrix can be found, nevertheless

an implicit representation can be used in any case.

Example 3.2.9 (Implicit representation of the discrete null space matrix) As in the

continuous case, the discrete null space matrix is not unique, necessary and sufficient

condition on P(qn, qn+1) is (3.2.30). A general construction procedure for a discrete null

space matrix described in [Bets 05] rests on the decomposition of Rn into anm-dimensional

subspace with base vectors b1, . . . , bm and associated matrix W = [b1, . . . , bm] ∈ Rn×m

and an (n−m)-dimensional subspace with base vectors bm+1, . . . , bn and associated matrix

U = [bm+1, . . . , bn] ∈ Rn×(n−m). Then every (qn+1 − qn) ∈ Rn can be uniquely expressed

as

qn+1 − qn = U · u + W · w (3.2.34)

for some u ∈ Rn−m and w ∈ Rm. To transform U to null
(
G(qn, qn+1)

)
the directionality

property of the discrete derivative

G(qn, qn+1) · (qn+1 − qn) = 0 (3.2.35)

(see Definition 3.1.1) is taken into account. Substitution of (3.2.34) into (3.2.35) yields

w = −
(
G(qn, qn+1) · W

)−1 · G(qn, qn+1) · U · u (3.2.36)

This representation of w can be inserted into (3.2.34) leading to

qn+1 − qn = P(qn, qn+1) · u (3.2.37)

with the implicit representation of the discrete null space matrix defined by

P(qn, qn+1) =
[
In×n − W ·

(
G(qn, qn+1) · W

)−1 ·G(qn, qn+1)
]
· U (3.2.38)

For this construction procedure it is essential that the linear operator

G(qn, qn+1) · W : Rm → Rm is invertible. To guarantee the invertibility, W can be

constructed as follows. Rn can be decomposed into

Rn = null (G(qn)) ⊕ range
(
GT (qn)

)

= Tq
n
C ⊕

(
Tq

n
C
)⊥ (3.2.39)
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Similar to the procedure in the continuous case in (2.3.23), performing a QR-decomposition

of the transposed constraint Jacobian at the time node tn yields

GT (qn) = Qn · Rn = [W n,Un] ·
[

R̄n

0(n−m)×m

]
(3.2.40)

containing the nonsingular upper triangular matrix R̄n ∈ Rm×m and the orthogonal ma-

trix Qn = [W n,Un] ∈ Rn×n that can be partitioned into the n×m matrix W n and the

n× (n−m) matrix Un with

range (W n) = range
(
GT (qn)

)

range (Un) = null (G(qn))
(3.2.41)

i.e. the columns of Un form a basis for the nodal tangent space Tq
n
C. The matrices

W n,Un or alternatively GT (qn),Un can be used in (3.2.38) to define a discrete null

space matrix.

Note that due to consistency property of the discrete derivative (see Definition 3.1.1), the

property lim
q

n+1→q
n

G(qn, qn+1) = G(qn) holds. Thus presuming that time-steps are small

for practical applications, one can assume that the m×m matrices G(qn, qn+1) · W n or

alternatively G(qn, qn+1) · GT (qn) are invertible.

Remark 3.2.10 (Properties of the discrete null space matrix (3.2.38)) Using W n,Un

determined by QR-decomposition in (3.2.40), the columns of the discrete null space matrix

given in (3.2.38) are pairwise orthonormal, hence cond
(
P(qn, qn+1)

)
= 1. This property is

advantageous for the numerical performance of the d’Alembert-type time-stepping scheme

(3.2.31) but not necessary for a discrete null space matrix. It states that the condition

number of the terms in the brackets in (3.2.31)2 is not deteriorated by the premultiplica-

tion of the transposed discrete null space matrix.

Remark 3.2.11 (Computational costs) Instead of the procedure described in Exam-

ple 3.2.9, a discrete null space matrix could be directly obtained as the least n − m

columns in the orthogonal matrix of a QR-factorisation of G(qn, qn+1). However, this fac-

torisation would be necessary at every iteration during the iterative solution of the system

of nonlinear algebraic equations (3.2.31), causing unacceptably high computational costs.

An acceptable compromise is the example (3.2.38) of a discrete null space matrix, where

the decomposition (3.2.39) has to be carried out at every time-step.

In general, an explicit representation of the discrete null space matrix is desirable for prac-

tical applications. Indeed, such an explicit representation is feasible for many applications

as presented in the sequel for mass point systems, rigid body motion and multibody sys-

tems consisting of rigid and elastic components.

3.2.5 Discrete null space method with nodal reparametrisation

Similar to the continuous case, for many applications a reduction of the system to the

minimal possible dimension can be accomplished by a local reparametrisation of the con-

straint manifold C given in (2.3.3), in the neighbourhood of the discrete configuration
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variable qn ∈ C. At the time nodes qn+1 is expressed in terms of the incremental gener-

alised coordinates u ∈ U ⊆ Rn−m, such that the constraints are fulfilled

Fq
n

: U ⊆ Rn−m → C i.e. g(qn+1) = g(Fq
n
(u)) = 0 (3.2.42)

Insertion of this nodal reparametrisation into the d’Alembert-type scheme redundantises

(3.2.31)3 and leads to the following time-stepping scheme

Fq
n
(u) − qn − hDG

2 H(zn, (Fq
n
(u),pn+1)) = 0

P
T (qn,Fq

n
(u)) ·

[
pn+1 − pn + hDG

1 H(zn, (Fq
n
(u),pn+1))

]
= 0

(3.2.43)

The following important proposition and proof have been taken from [Bets 05].

Proposition 3.2.12 The d’Alembert-type time-stepping scheme with nodal reparametri-

sation (3.2.43) is equivalent to the constrained scheme (3.2.3).

Proof: With regard to the construction procedure of the d’Alembert-type scheme with

nodal reparametrisation from the constrained scheme, it is obvious that for given initial

values (qn,pn), a solution (qn+1,pn+1,λn+1) of the constrained scheme (3.2.3) induces the

solution (u = F −1
q

n
(qn+1),pn+1) of the d’Alembert-type scheme with nodal reparametri-

sation (3.2.43).

Along the lines of the second step in proof of Proposition 3.2.6, it follows that for a

solution (u,pn+1) of the d’Alembert-type scheme with nodal reparametrisation (3.2.43)

for given (qn,pn) there exists a multiplier λn+1 ∈ Rm such that (Fq
n
(u),pn+1,λn+1)

solve the constrained scheme (3.2.3).

Thus the total energy and at most quadratic momentum maps are conserved along the

sequence (zn)n∈N
= (F n(u),pn)n∈N

obtained from system (3.2.43) and the constraints are

fulfilled exactly at the time nodes.

If the Hamiltonian is separable as given in (3.2.4), pn+1 can be extracted from (3.2.43)1

and inserted in (3.2.43)2. Then one has to solve the (n−m)-dimensional system

P
T (qn,Fq

n
(u)) ·

[
2

h
M ·

(
Fq

n
(u) − qn

)
− 2pn + hdGV (qn,Fq

n
(u))

]
= 0 (3.2.44)

for the discrete generalised coordinate u and obtains the sought configuration qn+1 via

the transformation (3.2.42).

Furthermore, the d’Alembert-type scheme with nodal reparametrisation retains the in-

dependence of the condition number of the iteration matrix on the time-step during the

solution procedure from the d’Alembert-type scheme (3.2.31), see Appendix C.2 for proof.

Altogether, this scheme features a combination of the required algorithmic conservation

properties and the good conditioning quality with a minimal dimension, i.e. the number

of equations equals exactly the number of degrees of freedom of the mechanical system.

Remark 3.2.13 (Iterative and incremental unknowns) For the nodal reparametrisa-

tion (3.2.42) of qn+1 in terms of discrete generalised coordinates u in the context of an

iterative solution procedure for the system of nonlinear algebraic equations (3.2.44), one
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can distinguish between two types of unknowns. Using iterative unknowns, the config-

uration variable is updated in each step of the Newton-Raphson iteration according to

ql+1
n+1 = Fql

n+1
(u). On the other hand using incremental unknowns, the total increment

of the generalised coordinate in one time-step is determined during the Newton-Raphson

iteration and the configuration variable is then obtained from qn+1 = Fq
n
(u). The cor-

responding linearisations of (3.2.44) are given in Appendix B.1. See also [Jele 98,Sans 03]

for investigations concerning the interpolation of iterative or incremental rotations.

3.2.6 Summary

Table 3.1 summarises the theoretical aspects of the five different time-stepping schemes

resulting from the different methods to treat the constraints. In particular, for the La-

grange multiplier scheme (3.2.7), the penalty scheme (3.2.20), the augmented Lagrange

scheme (3.2.29), the d’Alembert-type scheme (3.2.33) and the d’Alembert-type scheme

with nodal reparametrisation (3.2.44), the performance in the categories dimension of the

system of equations, constraint fulfilment of the solution and dependence of the condition

number of the specific iteration matrix on the time-step h and possibly on the penalty

parameter µ is compared. Thereby, n is the dimension of the configuration manifold and

m denotes the number of holonomic constraints.

Accordingly the constraints are fulfilled exactly for the largest dimensional constrained

scheme, as well as for the n-dimensional d’Alembert-type scheme and the smallest dimen-

sional d’Alembert-type scheme with nodal reparametrisation. For the penalty scheme the

accuracy of the constraint fulfilment improves for increasing penalty parameters. On the

other hand it improves during an extra iteration until a prescribed tolerance is reached

for the augmented Lagrange scheme. Thereby, µ remains of constant and moderate mag-

nitude. Besides the dependence of the condition number of the iteration matrix of all

schemes on a problem-dependent constant, their behaviour differs significantly. While the

constrained scheme becomes more and more ill-conditioned as the time-step decreases,

the penalty scheme can be well-conditioned for certain combinations of relatively small

time-steps and relatively large penalty parameters. Since the parameter µ remains of

moderate magnitude, the augmented Lagrange scheme is generally well-conditioned for

small time steps. Both d’Alembert-type schemes possess the convenient independence of

the condition number on h and µ. Apparently, the d’Alembert-type scheme with nodal

reparametrisation combines the advantageous properties of a small dimensional system

whose condition number is independent of the time-step and whose solution fulfils the

constraints exactly.
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3.2 Mechanical integration of constrained equations of motion

Table 3.1: Comparison of the theoretical aspects of the constrained scheme, penalty scheme, aug-
mented Lagrange scheme, d’Alembert-type scheme and d’Alembert-type scheme with nodal
reparametrisation.

constrained penalty augm. Lag. d’Al. d’Al. rep.

number of unknowns n +m n n n n−m

constraint fulfilment exact dep. on µ tolerance exact exact

condition number O(h−3) O(h2µ) O(h2µ) const const
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4 Mass point system and rigid body
dynamics

In order to demonstrate the performance and especially the equivalence of the different

methods to treat the constraints presented in the preceding chapters illustratively, the

constrained dynamics of simple, small dimensional mechanical systems are examined first.

In this connection, mass point systems and rigid bodies serve as reliable examples.

4.1 Double spherical pendulum

PSfrag replacements q1

q2

e1
e2

e3

g

l1

l2

m1

m2

Figure 4.1: Double spherical pendulum.

The double spherical pendulum in Figure 4.1 is suspended at the origin of the inertial

frame {eI}. Massless rigid rods of lengths l1 and l2 connect the masses m1 and m2 to each

other and to the origin, respectively. The gravitational acceleration with value g points

in the negative e3-direction. The kinetic energy T and the potential energy V are given

by the following expressions

T (p) =
1

2
pT · M−1 · p V (q) = −g

[
e3

03×1

]T

· M · q (4.1.1)

with

q(t) =

[
q1(t)

q2(t)

]
∈ R6 p(t) =

[
p1(t)

p2(t)

]
∈ R6 (4.1.2)
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The constant 6 × 6 mass matrix corresponding to the given phase variable z = (q,p) of

the double spherical pendulum reads

M =

[
(m1 +m2)I3 m2I3

m2I3 m2I3

]
(4.1.3)

Remark 4.1.1 (Generalised coordinates) The parametrisation of the double spherical

pendulum’s Hamiltonian in terms of generalised coordinates leads to the configuration-

dependent mass matrix given in Appendix D. It serves as an example of a configuration-

dependent mass matrix causing the temporal discretisation of the equations of motion in

generalised coordinates to be very involved.

The constraints are related to the constancy of the lengths of the rigid rods

g1(q) =
1

2

(
(q1)T · q1 − l21

)

g2(q) =
1

2

(
(q2)T · (q2) − l22

) (4.1.4)

They restrict possible configurations to the constraint manifold C = S2
l1
× S2

l2
consisting

of two spheres, one about the origin with radius l1 and one about the first mass with

radius l2.

All time-stepping schemes investigated in the sequel use the G-equivariant discrete deriva-

tive (see Definitions 3.1.4 and 3.1.7) given in Example 3.1.6, wherefore the reparametri-

sation of the Hamiltonian in terms of invariants is necessary. Due to the presence of

gravitation, the Hamiltonian H(q,p) = T (p) + V (q) consisting of the energies given in

(4.1.1) is invariant with respect to rotation of the mass point system about the axis e3.

Consequently, the angular momentum’s component corresponding to the gravitational

direction L3 is a first integral of the motion of the double spherical pendulum, see Sec-

tion 2.2.3. The Hamiltonian can be reparametrised in the independent invariants π(z)

comprising

π1(z) = (p1)T · p1 π2(z) = (p2)T · p2 π3(z) = (p1)T · p2

π4(z) = (e3)
T · q1 π5(z) = (e3)

T · q2 π6(z) = (q1)T · q1

π7(z) = (q2)T · (q2)

(4.1.5)

and reads

H̃(π(z)) =
1

2

(
π1(z)

m1

+
(m1 +m2)π2(z)

m1m2

− 2π3(z)

m1

)
−g ((m1 +m2)π4(z) +m2π5(z))

(4.1.6)

The constraints (4.1.4) can be rewritten as

g̃1(π6(z)) =
1

2

(
π6(z) − l21

)

g̃2(π7(z)) =
1

2

(
π7(z) − l22

) (4.1.7)
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4.2 Numerical investigations

Since the constraints (4.1.4) are quadratic in the configuration variable, the partial

G-equivariant discrete derivative reduces to the midpoint evaluation of the 2 × 6 con-

straint Jacobian, i.e.

G(qn, qn+1) =

[
(q1

n+ 1
2

)T 0

0 (q2
n+ 1

2

)T

]
(4.1.8)

4.2 Numerical investigations

4.2.1 Lagrange multiplier method

The energy-momentum conserving constrained time-stepping scheme (3.2.5) for the dou-

ble spherical pendulum takes the form

qn+1 − qn

h
= M−1 · pn+ 1

2

pn+1 − pn

h
= M · g

[
e3

03×1

]
−
[

q1
n+ 1

2

0

0 q2
n+ 1

2

]
· λn+1

0 = g(qn+1)

(4.2.1)

This system is in accordance with the example in [Gonz 99] and the mG(1)-method

in [Bets 02b].

Numerical results

In the simulation of the double spherical pendulum’s motion, the following parameters

have been used. The masses are m1 = 10 and m2 = 5 and the rigid rods have the

lengths l1 = l2 = 1. The gravitational acceleration is given by g = −9.81. The initial

positions of the point masses are q1(0) = e1 and q2(0) = e1 and initial velocities are

given by q̇1(0) = −2e2 and q̇2(0) = −3e2. Snapshots of the motion of the double

spherical pendulum are shown in Figure 4.2 on the left. The diagram on the right confirms

the algorithmic conservation of the total energy and the component L3 of the angular

momentum corresponding to the gravitational direction.

It is well known (see e.g. [Bets 02b]) that the constrained scheme is second order accurate

in the phase variable and first order accurate in the multiplier. One can see in Figure 4.3

on the left that the calculated solutions converge quadratically to a reference solution

as the time-step decreases. The latter has been calculated using h = 10−5. The right

diagram shows that the relative error in the multipliers drops off linearly for decreasing

time-steps.
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Figure 4.2: Double spherical pendulum: snapshots of the motion at t ∈ {0, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3} and
energy and components of angular momentum vector L = Liei (h = 0.01).
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Figure 4.3: Double spherical pendulum: relative error ez =
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∥∥ of the phase variable
and relative error of the multipliers eλ =

∥∥λLag − λref
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∥∥ for the constrained scheme
at t = 1.
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4.2 Numerical investigations

4.2.2 Penalty method

For the double spherical pendulum the penalty method can be interpreted as a replace-

ment of the rods by springs of stiffness µ. The discrete energy-momentum conserving

time-stepping scheme (3.2.9) with PPen(g(q)) = µ
∥∥g(q)

∥∥2
is given by

qn+1 − qn

h
= M−1 · pn+ 1

2

pn+1 − pn

h
= M · g

[
e3

03×1

]
− 2µ

(g̃1(π6(zn+1)))
2 − (g̃1(π6(zn)))2

π6(zn+1) − π6(zn)

[
q1

n+ 1
2

0

]
+

− 2µ
(g̃2(π7(zn+1)))

2 − (g̃2(π7((zn)))2

π7(zn+1) − π7(zn)

[
0

q2
n+ 1

2

]

(4.2.2)

Numerical results

Figure 4.4 shows the statements of Proposition 3.2.2. The fulfilment of the constraints

improves and the solution of the penalty scheme (4.2.2) for the double spherical pendulum

converges to that of the corresponding constrained scheme (4.2.1) as the penalty parameter

increases.
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Figure 4.4: Double spherical pendulum: relative error ez =
∥∥zPen − zLag

∥∥/∥∥zLag

∥∥ of the phase variable
and constraint fulfilment for the penalty scheme at t = 10 (h = 0.01).
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4.2.3 Augmented Lagrange method

Enforcing the constraints by means of the augmented Lagrange method and using

PAug(g(q)) = gT (q) · λ + µ
∥∥g(q)

∥∥2
, the time-stepping scheme (3.2.22) reads for the

double spherical pendulum

qk
n+1 − qn

h
= M−1 · pk

n+ 1
2

pk
n+1 − pn

h
= M · g

[
e3

03×1

]
−
[
λk,1

n+1 + 2µ
(g̃1(π6(zn+1)))

2 − (g̃1(π6(zn)))2

π6(zn) − π6(zn)

][
q

k,1

n+ 1
2

0

]
+

−
[
λk,2

n+1 + 2µ
(g̃2(π7(zn+1)))

2 − (g̃2(π7((zn)))2

π7(zn+1) − π7(zn)

][
0

q
k,2

n+ 1
2

]

λk+1
n+1 = λk

n+1 + 2µg(qk
n+1)

(4.2.3)

It is solved iteratively until the desired accuracy has been reached for the constraint

fulfilment. The greater the parameter µ is, the fewer iterations are required to reach this

accuracy, since for high penalty parameters, the constraints are already fulfilled to some

degree in the first iteration.

Numerical results

The improvement of the constraint fulfilment and the convergence of the solution of

the augmented Lagrange time-stepping scheme (4.2.3) to that of the constrained scheme

(4.2.1) during the augmented Lagrange iterations (AL-iterations) is depicted in Figure 4.5.

The results corroborate the statements of Proposition 3.2.4.

4.2.4 Discrete null space method with nodal reparametrisation

To derive an explicit representation of the discrete null space matrix pertaining to the dou-

ble spherical pendulum, the procedure described in Example 3.2.9 is applied with the dif-

ference that for the simple discrete constraint Jacobian given in (4.1.8), the

QR-decomposition can be performed explicitly (see [Bets 05]). According to (2.3.23),

the QR-decomposition of the transposed constraint Jacobian at tn comprises the matrices

W n =

[
d1

n 0

0 d2
n

]
Un =

[
r1

n s1
n 0 0

0 0 r2
n s2

n

]
(4.2.4)

with the unit vector dα
n = qα

n/lα ∈ S2, α = 1, 2 and the orthonormal basis rα
n, s

α
n ∈ R3

of the tangent plane Td
α

n
S2. Thus {rα

n, s
α
n,d

α
n} form an orthonormal triad. For example

rα
n and sα

n can be calculated via rα
n = Rα

n · e1 and sα
n = Rα

n · e2. Thereby, the matrix

Rα
n ∈ SO(3) is given by

Rα
n = (eT

3 · dα
n)I3×3 + ̂e3 × dα

n +
(e3 × dα

n) ⊗ (e3 × dα
n)

lα + eT
3 · qα

n

(4.2.5)
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4.2 Numerical investigations
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Figure 4.5: Double spherical pendulum: relative error ez =
∥∥zAug −zLag

∥∥/∥∥zLag

∥∥ of the phase variable
and relative error of the multipliers eλ =

∥∥λAug − λLag

∥∥/∥∥λLag

∥∥ and constraint fulfilment for
the augmented Lagrange scheme at t = 10 (h = 0.01, µ = 105).
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Insertion of W α
n and Uα

n into (3.2.38) yields the explicit representation of the 6×4 discrete

null space matrix for the double spherical pendulum

P(qn, qn+1) =

[
P

1(q1
n, q

1
n+1) 03×2

03×2 P
2(q2

n, q
2
n+1)

]
(4.2.6)

with the 3 × 2 submatrices of the form

P
α(qα

n, q
α
n+1) =

[
I3×3 −

1

(qα
n)T · qα

n+ 1
2

qα
n ⊗ qα

n+ 1
2

]
· Uα

n (4.2.7)

In view of (4.2.4) the 3 × 2 submatrices Uα
n can be written as Uα

n = [rα
n, s

α
n].

The nodal reparametrisation F q
n

: U ⊆ R4 → C introduced in (3.2.42) is partitioned

into

qα
n+1 = F α

qα
n
(uα) = lα expd

α

n
(Uα

n · uα) ∈ S2
lα

(4.2.8)

with the incremental unknowns uα ∈ R2 for α = 1, 2 and the exponential map

expd
α

n
: Tdα

n
S2 → S2 given by

expd
α

n
(ν) = cos(

∥∥ν
∥∥)dα

n +
sin(

∥∥ν
∥∥)∥∥ν
∥∥ ν (4.2.9)

With these preliminaries, the d’Alembert-type time-stepping scheme with nodal reparametri-

sation (3.2.43) for the double spherical pendulum reads

Fq
n
(u) − qn − hM−1 · pn+ 1

2
= 0

P
T (qn, qn+1) ·

[
pn+1 − pn − hgM ·

[
e3

03×1

]]
= 0

(4.2.10)

Numerical results

Figure 4.6 shows the convergence of the solution of the d’Alembert-type scheme with

nodal reparametrisation (4.2.10) to a reference solution calculated with the constrained

scheme (4.2.1) using a time-step h = 10−5. It confirms the statement of Proposition

3.2.12.

4.2.5 Comparison

Table 4.1 summarises some important aspects of the schemes (4.2.1), (4.2.2), (4.2.3) and

(4.2.10). For all schemes, the simple first equation is solved for pn+1 and inserted in the

second equation. This yields the 8-dimensional constrained scheme, the 6-dimensional sys-

tem of discrete equations of motion for the penalty and the augmented Lagrange method

and the d’Alembert-type scheme with nodal reparametrisation reduces to 4 equations.

The CPU-time for each scheme is specified as the ratio between the computation time for

1000 time-steps (h = 0.01) by the scheme and that of the d’Alembert-type scheme with

nodal reparametrisation.
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Figure 4.6: Double spherical pendulum: relative error ez =
∥∥zd′Al−zLag

∥∥/∥∥zLag

∥∥ of the phase variable
for the d’Alembert-type scheme with nodal reparametrisation at t = 1.

Although the augmented Lagrange scheme yields acceptable results in the categories con-

straint fulfilment and condition number, the high computational costs disqualify it in the

competition with the other schemes. These costs are caused by the high number of it-

erations required for the reduction of the constraint violation to the desired tolerance of

tol = 10−10, see Figure 4.5.

Since the set up of the discrete null space matrix for the double spherical pendulum is rel-

atively involved (see Section 4.2.4), the calculation of 1000 time-steps by the d’Alembert-

type scheme with nodal reparametrisation requires approximately three times more com-

putational time than by the constrained scheme and by the penalty scheme. For larger

dimensional problems subject to a higher number of constraints (see Sections 5.5, 6.1.9,

6.2.4, 6.3), this relation is reversed. In the categories constraint fulfilment and condition

number, the reduced scheme performs excellently.

The constrained scheme fulfils the constraints equally well as the reduced scheme, but it

obviously suffers from increasing conditioning problems for decreasing time-steps.

For the penalty parameter µ = 105, the penalty scheme is well conditioned, but the

constraint fulfilment in unacceptably inaccurate. In contrast to that, for µ = 1010, the

constraint fulfilment is improved, but the condition number deteriorates for h = 10−2. Its

decrease for h = 10−3 and h = 10−4 reveals the quadratic dependence of the condition

number of the time-step.
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Table 4.1: Comparison of constrained scheme, penalty scheme, augmented Lagrange scheme and
d’Alembert-type scheme with nodal reparametrisation for the example ‘double spherical pen-
dulum’.

constrained penalty augm. Lag. d’Alembert

number of unknowns 8 6 6 4

n = 6 m = 2

CPU-time 0.3 0.3 7.2 1

µ = 105 µ = 1010

constraint fulfilment 10−16 10−3 10−8 10−10 10−16

condition number

h = 10−2 108 1 105 1 1

h = 10−3 1011 1 103 1 1

h = 10−4 1014 1 101 1 1
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Figure 4.7: Configuration of a rigid body with respect to an orthonormal frame {eI} fixed in space.

4.3 Rigid body dynamics
Rigid body dynamics can be described from different view points. Classically, the evolu-

tion of the translational and rotational degrees of freedom under the influence of forces

and moments is studied. This leads to the well-known Newton-Euler equations for rigid

body dynamics (see e.g. [Schi 86, Kuyp 03, Ange 97]). Based on these equations many

conserving integrators have been designed [Krys 05b,Krys 05a,Simo 91b].

On the other hand, a rigid body can be viewed as a constrained continuum, in which all

lengths and angles are constrained to be constant. In this approach, the configuration of a

rigid body is described in redundant coordinates and the equations of motion assume the

form of DAEs described in Section 2.3.1. This formulation bears a number of advantages

see e.g. [Leim 04]. It circumvents the difficulties associated with the rotational parameters

[Bets 98, Ibra 95, Ibra 97,Bauc 03b] and is well suited for generalisation to the modelling

of geometrically exact beams as special Cosserat continuum described in Chapter 5 or

to multibody systems as investigated in Chapter 6, in which constraints are naturally

present. Concerning the temporal discretisation of the DAE approach, work has been

done e.g. by [Reic 96,Anit 04,Bets 01b,Bets 03]. The latter is used as a starting point

for the following presentation.

4.3.1 Constrained formulation of rigid body dynamics

The treatment of rigid bodies as structural elements relies on the kinematic assumptions

illustrated in Figure 4.7 (see [Antm 95]) that the placement of a material point in the

body’s configuration X = Xidi ∈ B ⊂ R3 relative to an orthonormal basis {eI} fixed in

space can be described as

x(X, t) = ϕ(t) +Xidi(t) (4.3.1)

Here Xi ∈ R, i = 1, 2, 3 represent coordinates in the body-fixed director triad {dI}. The

time-dependent configuration variable of a rigid body

q(t) =




ϕ(t)

d1(t)

d2(t)

d3(t)


 ∈ R12 (4.3.2)

63



“diss˙ln” — 2006/6/29 — 19:20 — page 64 — #76

4 Mass point system and rigid body dynamics

consists of the placement of the center of mass ϕ ∈ R3 and the directors dI ∈ R3, I = 1, 2, 3

which are constrained to stay orthonormal during the motion, representing the rigidity of

the body and its orientation. These orthonormality conditions pertaining to the kinematic

assumptions of the underlying theory are termed internal constraints. There are mint = 6

independent internal constraints for the rigid body with associated constraint functions

gint(q) =




1

2
[dT

1 · d1 − 1]

1

2
[dT

2 · d2 − 1]

1

2
[dT

3 · d3 − 1]

dT
1 · d2

dT
1 · d3

dT
2 · d3




(4.3.3)

which give rise to the following 6 × 12 constraint Jacobian

Gint(q) =




0 dT
1 0 0

0 0 dT
2 0

0 0 0 dT
3

0 dT
2 dT

1 0

0 dT
3 0 dT

1

0 0 dT
3 dT

2




(4.3.4)

where 0 denotes the 1 × 3 zero vector. For simplicity, it is assumed that the axes of the

body frame coincide with the principal axes of inertia of the rigid body. Then the inertia

tensor J with respect to the body’s center of mass has diagonal form with the principal

values

Ji =

∫

B

(X2
j +X2

k)%(X)dV (4.3.5)

for even permutations of i, j, k ∈ {1, 2, 3} and with the mass density %(X) at X ∈ B. It

can be related to the body’s Euler tensor with respect to the center of mass via

E =
1

2
(trJ)I − J (4.3.6)

where I denotes the 3 × 3 identity matrix. Then the principal values of the Euler tensor

Ei together with the body’s total mass Mϕ

Mϕ =

∫

B

%(X)dV (4.3.7)

build the rigid body’s constant symmetric positive definite mass matrix

M =




MϕI 0 0 0

0 E1I 0 0

0 0 E2I 0

0 0 0 E3I


 (4.3.8)
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where 0 denotes the 3 × 3 zero matrix.

Corresponding to the configuration variable given in (4.3.2), the conjugate momenta read

p(t) =




pϕ(t)

p1(t)

p2(t)

p3(t)


 ∈ R12 (4.3.9)

The Hamiltonian for the rigid body takes the separable form

H(q,p) =
1

2
pT · M−1 · p + V (q) (4.3.10)

As described in (2.3.13), it can be augmented according to the method to treat the

constraints leading to the constrained Hamilton’s equations (2.3.8) including the Lagrange

multipliers or the Hamilton’s equations (2.2.4) including the penalty parameter or the

Hamilton’s equations (2.2.4) in the context of the augmented Lagrange method to enforce

the constraints. For the rigid body motion, the constrained Hamilton’s equations (2.3.8)

read

q̇ = M−1 · p

ṗ = −∂V (q)

∂q
− GT

int(q) · λ

0 = gint(q)

(4.3.11)

4.3.2 Invariance of the Hamiltonian

The temporal discretisation of the equations of motion for the rigid body makes use of the

G-equivariant discrete derivative (see Definitions 3.1.4 and 3.1.7) given in Example 3.1.6,

wherefore the reparametrisation of the Hamiltonian in terms of invariants is necessary.

Assuming that the gravitational potential takes the form

V (q) = −gMϕeT
3 · ϕ (4.3.12)

the Hamiltonian is invariant with respect to rotation of the rigid body around the axis

e3. Consequently, the angular momentum’s component corresponding to the gravitational

direction L3 is a first integral of the motion, see Section 2.2.3. The Hamiltonian (4.3.10)

and the internal constraints (4.3.3) can be reparametrised in the independent invariants

π(z) comprising

π1(z) = ϕT · e3 π2(z) = dT
1 · d1 π3(z) = dT

2 · d2

π4(z) = dT
3 · d3 π5(z) = dT

1 · d2 π6(z) = dT
3 · d1

π7(z) = dT
2 · d3 π8(z) = pT

ϕ · pϕ π9(z) = pT
1 · p1

π10(z) = pT
2 · p2 π11(z) = pT

3 · p3

(4.3.13)

such that

H̃(π(z)) =
1

2

(
π8(z)

Mϕ

+
π9(z)

E1

+
π10(z)

E2

+
π11(z)

E3

)
− gMϕπ1(z) (4.3.14)

65



“diss˙ln” — 2006/6/29 — 19:20 — page 66 — #78

4 Mass point system and rigid body dynamics

and

g̃int(π(z)) =




1

2
[π2(z) − 1]

1

2
[π3(z) − 1]

1

2
[π4(z) − 1]

π5(z)

π6(z)

π7(z)




(4.3.15)

4.3.3 Reduced formulation of rigid body dynamics

To deduce the d’Alembert-type equations of motion in the Hamiltonian formalism (2.3.21),

an appropriate null space matrix with property (2.3.18) needs to be found. Remember

that due to the consistency condition (2.3.9), q̇ = M−1 ·p is constrained to the null space

of the constraint Jacobian. Thus admissible velocities can be expressed in the form

q̇ = P int(q) · ν (4.3.16)

with the independent generalised velocities ν ∈ Rn−mint . In case of the rigid body, these

independent generalised velocities are called twist (see [Ange 88])

t =

[
ϕ̇

ω

]
(4.3.17)

The twist comprises the translational velocity ϕ̇ ∈ R3 and the angular velocity ω ∈ R3

in terms of which the director velocities can be written as

ḋI = ω × dI = −d̂I · ω (4.3.18)

Thus (4.3.16) can be written as q̇ = P int(q) · t with the null space matrix for the rigid

body

P int(q) =




I 0

0 −d̂1

0 −d̂2

0 −d̂3


 (4.3.19)

It can easily be verified that (4.3.19) has full column rank and with regard to (4.3.4) that

Gint(q) · P int(q) = 0 is the 6 × 6 zero matrix.

Thus the d’Alembert-type equations of motion in the Hamiltonian formalism (2.3.21) can

be obtained by premultiplication of (4.3.11)2 by the transposed of the null space matrix

(4.3.19).
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Equivalence to the Euler equations

Having accomplished the just mentioned premultiplication of (4.3.11)2 by the transposed

of the null space matrix (4.3.19), p = M · P int(q) · t can be inserted and (4.3.11)2 takes

the form

P T
int(q) · M · P int(q) · ṫ + P T

int(q) · M · Ṗ int(q) · t + P T
int(q) · ∂V (q)

∂q
= 0 (4.3.20)

employing (4.3.8) and the null space matrix (4.3.19) yields

P T
int(q) · M · P int(q) =



MϕI 0

0 −
3∑

I=1

EI(d̂I)
2


 =

[
MϕI 0

0 J

]
(4.3.21)

where (4.3.6) and the property dT
I · dI = 1, I = 1, 2, 3 have been taken into account.

In order to calculate the term P T
int(q) · M · Ṗ int(q) · t in (4.3.20), the time derivative of

the null space matrix is performed first

Ṗ int(q) =




0 0

0 −̂̇d1

0 −̂̇d2

0 −̂̇d3




=




0 0

0 d̂1 × ω

0 d̂2 × ω

0 d̂3 × ω


 =




0 0

0 ω ⊗ d1 − d1 ⊗ ω

0 ω ⊗ d2 − d2 ⊗ ω

0 ω ⊗ d3 − d3 ⊗ ω


 (4.3.22)

A straightforward calculation then gives the relationship

P T
int(q) · M · Ṗ int(q) · t =




0

−ω ×
(

3∑

I=1

EIdI ⊗ dI

)
ω


 =

[
0

ω × Jω

]
(4.3.23)

where use has been made of (4.3.6). Finally, the last term in (4.3.20) yields

P T
int(q) · ∂V (q)

∂q
=




∂V (q)

∂ϕ

di ×
∂V (q)

∂di


 =: −

[
f̄

m̄

]
(4.3.24)

where f̄ and m̄ are the resultant external force and torque relative to the center of mass

of the rigid body, respectively. To summarise, the reduced equations of motion using

(4.3.20) can be written in the familiar form

Mϕϕ̈ = f̄

J · ω̇ + ω × J · ω = m̄
(4.3.25)

which represents the well-known Newton-Euler equations for rigid body motion.
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4.3.4 Temporal discrete equations of motion for the rigid body

Lagrange multiplier method

The energy-momentum conserving time-stepping scheme for the constrained Hamiltonian

system given in (3.2.5) can be directly applied to the present formulation of rigid body

dynamics. In this connection the partial G-equivariant discrete derivative (see Definitions

3.1.4 and 3.1.7) of the constraints needs to be specified. To this end, use is made of

the reparametrised constraints (4.3.15) in terms of the invariants (4.3.13). Since the

internal constraints are quadratic in q, the partial G-equivariant discrete derivative of the

constraints coincides with the midpoint evaluation of the constraint Jacobian (4.3.4), i.e.

Gint(qn, qn+1) = Gint(qn+ 1
2
) (4.3.26)

The implementation of the constrained scheme (3.2.7) for the free rigid body leads to a

nonlinear system of algebraic equations in terms of n+mint = 18 unknowns. It is worth

noting that the present discretisation approach for rigid bodies (i) does not involve any

rotational parameters and (ii) yields a second-order accurate energy-momentum method

(see also [Bets 01b]).

Penalty and augmented Lagrange method

Similar to the deduction of the penalty time-stepping scheme and the augmented La-

grange time-stepping scheme for the double spherical pendulum in the Sections 4.2.2 and

4.2.3, insertion of the reparametrised Hamiltonian for the rigid body (4.3.14) into the

general form of the penalty time-stepping scheme (3.2.9) or into the general augmented

Lagrange time-stepping scheme (3.2.22) yields the corresponding energy-momentum con-

serving time-stepping schemes for the motion of the rigid body.

Discrete null space method with nodal reparametrisation

In order to deduce the discrete d’Alembert-type equations of motion, a temporal discrete

null space matrix fulfilling the properties mentioned in Remark 3.2.7 respectively condition

(3.2.30) must be found. With regard to the midpoint evaluation of the constraint Jacobian

in (4.3.26), it is evident that a midpoint evaluation of (4.3.19) suffices the requirements,

i.e.

Pint(qn, qn+1) = P int(qn+ 1
2
) =




I 0

0 −(d̂1)n+ 1
2

0 −(d̂2)n+ 1
2

0 −(d̂3)n+ 1
2




(4.3.27)

can be inserted into the d’Alembert-type scheme (3.2.31). Due to the six constraints of

orthonormality (4.3.3), the configuration space Q = R12 of the free rigid body is reduced

to the constraint manifold

C = R3 × SO(3) ⊂ R3 × R9 (4.3.28)
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where SO(3) is the special orthogonal group. A reduction of the number of unknowns can

now be achieved by introducing a rotation matrix R(θ) ∈ SO(3) parametrised in terms

of θ ∈ R3, such that for I = 1, 2, 3

(dI)n+1 = R(θ) · (dI)n (4.3.29)

Thus the three rotational variables θ ∈ R3 play the role of the discrete generalised ro-

tational degrees of freedom (in other words they are incremental rotations) in the time

interval [tn, tn+1] which can be used to express the original nine unknowns associated

with the directors (dI)n+1 ∈ R3, I = 1, 2, 3. Concerning the rotation matrix, use is made

of the Rodrigues formula, which may be interpreted as a closed-form expression of the

exponential map (see e.g. [Mars 94])

R(θ) = exp(θ̂) = I +
sin(‖θ‖)
‖θ‖ θ̂ +

1

2

(
sin(‖θ‖/2)

‖θ‖/2

)2

(θ̂)2 (4.3.30)

When the above reparametrisation of unknowns is applied, the new configuration of the

free rigid body is specified by six unknowns u = (uϕ, θ) ∈ U ⊂ R3×R3, characterising the

incremental displacement and incremental rotation in [tn, tn+1], respectively. Accordingly,

in the present case the nodal reparametrisation F qn
: U → C introduced in (3.2.42)

assumes the form

qn+1 = F qn
(u) =




ϕn + uϕ

exp(θ̂) · (d1)n

exp(θ̂) · (d2)n

exp(θ̂) · (d3)n


 (4.3.31)

Note that the present use of rotation matrix (4.3.30) is restricted to a single time-step

such that possible singularities of (4.3.30) are not an issue in practical applications.

Remark 4.3.1 Although the nodal reparametrisation (4.3.31) is written in form of incre-

mental unknowns, one certainly has the choice between an incremental update structure

and an iterative update structure during the iterative solution of the nonlinear algebraic

equation (3.2.44), see Remark 3.2.13 and Appendix B.

4.3.5 Treatment of boundary conditions and bearings by the null
space method

If certain degrees of freedom of the rigid body motion are constantly prescribed by bear-

ings, they are usually eliminated from the system of equations of motion by cancellation of

the corresponding equations from the discrete system (3.2.2). This can be accomplished

consistently in the framework of the null space method.

Fixing of one point in space

The fixing in space of a rigid body’s center of mass gives rise to the external constraints

g
(F )
ext (q) = ϕ − c (4.3.32)
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Figure 4.8: Symmetrical top fixed at origin.

where c ∈ R3 is constant. For the purely rotational motion, the independent generalised

velocities reduce to ν = ω. Then the rigid body’s twist (4.3.17) can be expressed as

t =

[
0

I

]
· ω = P

(F )
ext (q) · ω (4.3.33)

with the null space matrix P
(F )
ext (q) pertaining to the external constraints (4.3.32). The ad-

missible velocities in (4.3.16) can be calculated by insertion of

P (F )(q) = P int(q) · P (F )
ext (q) with the internal null space matrix given in (4.3.19).

The discrete null space matrix can be obtained by midpoint evaluation

P
(F )(qn, qn+1) = P (F )(qn+ 1

2
). Application of the discrete null space method with nodal

reparametrisation leads to the reduced scheme (3.2.44) which is solved for the incremental

rotation vector θ ∈ R3. In the present case the reparametrisation (4.3.31) can be used

with uϕ = 0.

The fixing of a point different to the center of mass of a rigid body also reduces its

independent generalised velocities to the angular velocity. For the symmetrical top in

Figure 4.8, one point on its symmetry axis is fixed at the origin. Assuming that the

location of the fixed point is characterised by coordinates %i with respect to the body

frame, i.e. % = %idi, the corresponding external constraints read

g
(F )
ext (q) = ϕ + % (4.3.34)

Of course the translational velocity of the center of mass of the top is not zero. The twist

of the symmetrical top can be calculated from the angular velocity via

t =

[
%̂

I

]
· ω = P

(F )
ext (q) · ω (4.3.35)
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As explained above, the total null space matrix is given by P (F )(q) = P int(q) · P (F )
ext (q)

and the discrete null space matrix can be inferred by midpoint evaluation. The nodal

reparametrisation of the directors takes the form given in (4.3.31)2,3,4 and the new place-

ment of the center of mass is given by

ϕn+1 = − exp(θ̂) · %n (4.3.36)

Sliding bearing

If a rigid body is fixed in space by a sliding bearing as depicted in Figure 4.9, one point

of the rigid body is constrained to slide in the direction of the axis n, giving rise to the

external constraints

g
(F )
ext (q) = ϕ + % − un − c (4.3.37)

where u ∈ R denotes the displacement in the direction of n. Thus the sliding bearing

reduces the independent generalised velocities of the rigid body to

ν =

[
u̇

ω

]
(4.3.38)

containing the translational velocity u̇ besides the angular velocity of the rigid body. Then

the twist of the rigid body can be calculated from the independent generalised velocities

via

t =

[
n %̂

0 I

]
·
[
u̇

ω

]
= P

(B)
ext (q) · ν (4.3.39)
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As explained above, the total null space matrix is given by P (B)(q) = P int(q) · P (B)
ext (q)

and the discrete null space matrix can be inferred by midpoint evaluation. The nodal

reparametrisation of the directors takes the form given in (4.3.31)2,3,4 and the new place-

ment of the center of mass is given by

ϕn+1 = − exp(θ̂) · %n + c + (un + u)nn (4.3.40)

Remark 4.3.2 The treatment of lower kinematic pairs in Section 6.1 reveals that the

fixing of one point of a rigid body in space can be modelled as a spherical pair, where

the first body is totally fixed in space. Similarly, the sliding bearing coincides with the

modelling of a pair, consisting of one totally fixed rigid body, which is connected to the

other body by the combination of a spherical joint with a prismatic joint.

4.3.6 Numerical example: symmetrical top

The motion of a symmetrical top with a fixed point on its axis of symmetry (Figure 4.8)

is considered as an example. The shape of the top is assumed to be a cone with height

H = 0.1 and radius R = 0.05. The center of mass is located at L = 3
4
H, so that the

location of the spherical joint with respect to the body frame is given by

% = %idi [%i] = [0, 0,−L] (4.3.41)

The total mass of the top is Mϕ = 1
3
%πR2H, the mass density is assumed to be % = 2700

and the principal inertias with respect to the center of mass are

J1 = J2 =
3Mϕ

80
(4R2 +H2) J3 =

3Mϕ

10
R2 (4.3.42)

Then the principal values of the Euler tensor with respect to the center of mass follow

from (4.3.6) such that the mass matrix M ∈ R12×12 in (4.3.8) can be easily set up.

Gravity is acting on the top such that the potential energy function is given by (4.3.12)

with g = −9.81. The initial angle of nutation is chosen to be θ = π/3. Accordingly, the

initial configuration is characterised by q ∈ R12 with

dI = exp(θê1) · eI ϕ = −% = Ld3 (4.3.43)

In order to provide an illustrative example, the case of precession with no nutation is

considered. Let ωp denote the precession rate and ωs the spin rate. The condition for

steady precession can be written as (see e.g. [Magn 71])

ωs =
MϕgL

M̃3ωp

+
M̃1 − M̃3

M̃3

ωp cos(θ) (4.3.44)

Here, M̃I are the principal values of the reduced mass matrix (4.3.21). In the present case

M̃ =
(
P (F )(q)

)T

· M · P (F )(q) = J +Mϕ

(
‖%‖2I − % ⊗ %

)
(4.3.45)
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or, in view of (4.3.21)

M̃ =

3∑

I=1

JIdI ⊗ dI +MϕL
2 (d1 ⊗ d1 + d2 ⊗ d2) (4.3.46)

Accordingly, the principal values of the reduced mass matrix to be inserted into (4.3.44)

are given by

M̃1 = J1 +MϕL
2 M̃3 = J3 (4.3.47)

Note that the reduced mass matrix conforms to the well-known parallel-axis theorem.

Consistent initial velocities q̇ ∈ R12 can be calculated by employing the null space matrix

in (4.3.35). Accordingly,

q̇ =




%̂

−d̂1

−d̂2

−d̂3


 · ω = P (F )(q) · ω (4.3.48)

with the initial angular velocity vector given by

ω = ωpe3 + ωsd3 (4.3.49)

and the precession rate ωp = 10.

Lagrange multiplier method

The energy-momentum conserving constrained time-stepping scheme for the motion of

the heavy symmetrical top follows from (3.2.5).

The motion of the center of mass ϕ(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 is depicted in Fig-

ure 4.10 on the left hand side. For the time-step h = 0.001, a constant evolution of the

x3-coordinate can be observed, corresponding to the steady precession of the top. The

diagram on the right hand side shows the evolution of the energies and the components

of the angular momentum. Apparently, the algorithmic conservation of the total energy

and the angular momentum’s component corresponding to the gravitational direction is

confirmed. Furthermore, corresponding to the steady precession of the top, the evolution

of the kinetic and potential energies are also constant.

Penalty method

The discrete energy-momentum conserving penalty time-stepping scheme (3.2.9) with

PPen(g(q)) = µ
∥∥g(q)

∥∥2
is used.

Figure 4.11 shows the statements of Proposition 3.2.2. The fulfilment of the constraints

improves and the solution of the penalty scheme for the heavy symmetrical top converges

to that of the corresponding constrained scheme as the penalty parameter increases.
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Figure 4.10: Heavy symmetrical top: motion of the center of mass and energy and components of
angular momentum vector L = Liei (h = 0.001).
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Augmented Lagrange method

Enforcing the constraints by means of the augmented Lagrange method, the time-stepping

scheme (3.2.22) is solved using PAug(g(q)) = gT (q) · λ + µ
∥∥g(q)

∥∥2
with µ = 105.

The improvement of the constraint fulfilment and the convergence of the solution of the

augmented Lagrange time stepping scheme to that of the constrained scheme during

the augmented Lagrange iteration (AL-iteration) is depicted in Figure 4.12. The results

corroborate the statements of Proposition 3.2.4.
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∥∥zAug − zLag

∥∥/∥∥zLag

∥∥ of the phase variable
and relative error of the multipliers eλ =

∥∥λAug − λLag

∥∥/∥∥λLag

∥∥ and constraint fulfilment
for the augmented Lagrange scheme at t = 3 (h = 0.01, µ = 105).

75



“diss˙ln” — 2006/6/29 — 19:20 — page 76 — #88

4 Mass point system and rigid body dynamics

Discrete null space method with nodal reparametrisation

Similar to (4.3.27), an explicit representation of the discrete counterpart of the null space

matrix for the heavy symmetrical top with a point on the symmetry axis fixed used in

(4.3.48), reads

P
(F )(qn, qn+1) =




%̂n+ 1
2

−(d̂1)n+ 1
2

−(d̂2)n+ 1
2

−(d̂3)n+ 1
2




(4.3.50)

Insertion of (4.3.50) and the reparametrisation of the directors (4.3.31)2,3,4 and that of the

placement of the center of mass given in (4.3.36) into (3.2.43) yields the d’Alembert-type

time-stepping scheme with nodal reparametrisation. Figure 4.13 shows the convergence

of the solution of the d’Alembert-type scheme with nodal reparametrisation to a reference

solution calculated with the constrained scheme, using the time-step h = 10−6. It confirms

the statement of Proposition 3.2.12.

10−6 10−5 10−4 10−3 10−2
10−8

10−6

10−4

10−2

100

102

1

2

PSfrag replacements

log(h)

lo
g
(e

z
)

Figure 4.13: Heavy symmetrical top: relative error ez =
∥∥zd′Al −zLag

∥∥/∥∥zLag

∥∥ of the phase variable for
the d’Alembert-type scheme with nodal reparametrisation at t = 0.1.

Comparison

The summary of the computational aspects of the different schemes in Table 4.2 shows

that the calculation of 1000 time-steps using the 3-dimensional d’Alembert-type scheme

with nodal reparametrisation takes the least computational time. The fulfilment of the

constraints can be considered as numerically exact, since the constraint violation is smaller

than the tolerance tol = 10−10 used in the Newton-Raphson iteration. In combination with

the well-conditionedness for all time-steps, these properties distinguish the d’Alembert-

type scheme with nodal reparametrisation to be the most favourable time-stepping scheme

for the rigid body motion.

The CPU-time for each scheme is specified as the ratio between the computation time

for 1000 time-steps (h = 0.01) by the scheme and that of the d’Alembert-type scheme
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4.3 Rigid body dynamics

with nodal reparametrisation. Although the constrained scheme yields a 21-dimensional

system of equations, the calculation of 1000 time-steps is substantially quicker than us-

ing the 12-dimensional penalty or augmented Lagrange scheme, where the set up of the

G-equivariant discrete derivative of the extra function for the treatment of the constraints

is quite involved. As expected, the constraints are fulfilled numerically exactly by the

constrained scheme and the condition number of the iteration matrix deteriorates for

decreasing time-steps.

For decreasing time-steps, the condition numbers of the penalty scheme and the aug-

mented Lagrange scheme are decreasing, which is in accordance with it’s theoretically

computed quadratic dependence on the time-step.

Although the constraint fulfilment by the augmented Lagrange scheme is acceptable, its

high computational costs disqualify it in the competition with the other schemes. Just so,

the bad constraint fulfilment using µ = 105 and the high condition numbers for µ = 1010

do not recommend the use of the penalty scheme for the simulation of the rigid body

motion.

Apparantly the d’Alembert-type scheme with nodal reparametrisation surpasses the other

schemes by provdiding quickly a highly accurate solution without suffering from condi-

tioning problems.

Table 4.2: Comparison of constrained scheme, penalty scheme, augmented Lagrange scheme and
d’Alembert-type scheme with nodal reparametrisation for the example ‘heavy symmetrical
top’.

constrained penalty augm. Lag. d’Alembert

number of unknowns 21 12 12 3

n = 12 m = 9

CPU-time 1.4 2.7 7.2 1

µ = 105 µ = 1010

constraint fulfilment 10−16 10−4 10−9 10−9 10−14

condition number

h = 10−2 106 104 109 104 1

h = 10−3 109 103 107 103 1

h = 10−4 1012 103 105 103 1
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5 Objective formulation of
geometrically exact beam dynamics

Modelling geometrically exact beams as a special Cosserat continuum (see e.g. [Antm 95])

has been the basis for many finite element formulations starting with the work of Simo

[Simo 85]. The formulation of the beam dynamics as Hamiltonian system subject to

internal constraints, which are associated with the kinematic assumptions of the under-

lying continuous theory, has the advantages that external constraints representing the

connection to other components of a multibody system can be easily incorporated.

Many current semi-discrete beam formulations avoid the introduction of internal con-

straints by using rotational degrees of freedom, see e.g. [Jele 98], [Ibra 98]. However, it has

been shown by Chrisfield & Jelenic [Cris 99], that the interpolation of non-commutative

finite rotations bears the risk of destroying the objectivity of the strain measures in

the semi-discrete model. This can be circumvented by the introduction of the director

triad, which is constrained to be orthonormal in each node of the central line of the

beam. The main advantage is that the directors belong to a linear space. The spatial

interpolation of the director triad in (5.3.1) leads to objective strain measures in the

spatially discretised configuration. This idea is independently developed in [Rome 02b]

and [Bets 02d]. [Rome 04] offers an overview on the effects of different interpolation tech-

niques concerning frame invariance and the appearance of singularities. Furthermore, this

subject is elaborated in [Bets 98, Ibra 95, Ibra 97, Ibra 02b,Jele 99, Jele 02,Bott 02b].

While the authors in [Bets 02d] restrict themselves to the specification of the weak form

of balance equations for the beam in the static case, in [Bets 03] the equations of motion

are given as Hamiltonian system subject to holonomic constraints, which are realised by

the Lagrange multiplier method. As expatiated in Section 2.3, the Hamiltonian formal-

ism provides the possibility to use different methods for the constraint enforcement. In

Section 3.2 (see also [Leye 04]) various methods are compared and the results are illus-

trated with the examples of mass point systems and rigid bodies in Chapter 4. The same

methods are used here for the realisation of the internal constraints of the beam.

The major difference between the beam formulation in [Bets 03] and that presented in

the sequel (see [Leye 06]) is the reparametrisation of the Hamiltonian. Since objectivity

of the strain measures is a main goal of the formulation, it suggests itself to parametrise

the rotationally invariant Hamiltonian directly in the invariants of the Lie group SO(3).

Consequently the strain measures are approximated objectively. This is an ideal basis for a

temporal discretisation using the concept ofG-equivariant discrete derivatives by Gonzalez

[Gonz 96c] presented in Section 3.1.1, which leads to energy-momentum conserving time-

integration of the equations of motion. Thus a time-stepping scheme is obtained which is

objective and by construction energy-momentum preserving.
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5 Objective formulation of geometrically exact beam dynamics

5.1 Kinematics
PSfrag replacements

e1
e2

e3

d1

d2 d3

ζ1

ζ2

sϕ

Figure 5.1: Configuration of a beam with respect to an orthonormal frame {eI} fixed in space.

In [Bets 02d], Betsch and Steinmann introduce frame-indifferent finite elements for the

geometrically exact beam theory, in the sense that they inherit the objectivity of the

underlying continuous beam strains. The concept is a generalisation of the description

of the rigid body as a ‘one-node structure’ in Section 4.3.1. It relies on the kinematic

assumption illustrated in Figure 5.1 (see [Antm 95]) that the placement of a material

point in the inertial frame {eI}, which is identified by its position vector X(ζ i) ∈ B0 ⊂ R3

in the reference configuration B0, can be described by

x(ζκ, s, t) = ϕ(s, t) + ζκdκ(s, t) (5.1.1)

Here (ζ1, ζ2, ζ3 = s) ∈ R3 is a triple of curvilinear coordinates with s ∈ [0, L] ⊂ R being

the arc-length of the line of centroids ϕ(s, 0) ∈ R3 in the reference configuration. {dI}
represent an orthonormal triad. The directors dκ(s, t), κ = 1, 2 span a principal basis

of the cross-section at s and time t which is accordingly assumed to stay plane. In the

reference configuration, d3 is tangent to the central line ϕ(s, 0) but this is not necessary

in a deformed configuration. This allowance of transverse shear deformation corresponds

to the Timoshenko beam theory (see [Warb 76]). In contrast to kinematic assumption for

the placement of a material point in a rigid body (4.3.1), the sum over the repeated index

in (5.1.1) comprises κ = 1, 2 and the spatial extension of the beam in the longitudinal

direction is accounted for by the parametrisation in s.

Remark 5.1.1 Setting up the Lagrangian L : TQ→ R, L = L(x, ẋ) where x is specified

in (5.1.1) and ẋ denotes its temporal derivative, one comes across the fact that the

kinetic energy is independent of ḋ3. Due to that property, the Lagrangian is degenerate

and it follows that p3 = ∂L/∂ḋ3 = 0. One can still pass to the Hamiltonian formulation

using Dirac’s theory (see [Bets 03,Dira 50] and references therein). Thereby, the relevant

momenta are denoted by p̄ and the corresponding configurational quantities by q̄. The
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5.2 Dynamics of the beam as Hamiltonian system subject to internal constraints

Hamiltonian depends on the reduced phase space variable z = z(s, t) with

z(s, t) =

[
q(s, t)

p̄(s, t)

]
=




q̄(s, t)

d3(s, t)

p̄(s, t)


 ∈ R21

q̄(s, t) =




ϕ(s, t)

q1(s, t)

q2(s, t)


 ∈ R9 p̄(s, t) =




pϕ(s, t)

p1(s, t)

p2(s, t)


 ∈ R9

(5.1.2)

5.2 Dynamics of the beam as Hamiltonian system
subject to internal constraints

The beam’s kinetic energy can be written in the form

T (p(t)) =
1

2

∫ L

0

p̄T · M̄−1 · p̄ ds (5.2.1)

with the non-singular reduced mass matrix (see Remark 5.1.1)

M̄ =



AρI 0 0

0 M1
ρ I 0

0 0 M2
ρ I


 (5.2.2)

where I and 0 denote the 3 × 3 identity and zero matrices respectively, Aρ is the mass

density per reference length and M 1
ρ ,M

2
ρ can be interpreted as principal mass-moments

of inertia of the cross-section.

In the present case the potential energy function is assumed to be the sum of stored and

external energy

V (q(t)) = Vint(q(t)) +Vext(q(t)) =

∫ L

0

Wint(Γ (q),K(q)) ds+

∫ L

0

Wext(q) ds (5.2.3)

Wext is the density of the conservative external loads and Wint is a strain energy density

function expressed in terms of the objective strain measures

Γ (q) = Γiei Γi = dT
i · ϕ,s − δi3

K(q) = Kiei Ki = 1
2
εijk
(
dT

k · dj,s − (dT
k · dj,s)|t=0

) (5.2.4)

where δij is the Kronecker delta and εijk the alternating symbol. An interpretation of these

strain measures can be found in [Antm 95], whereupon Γ1 and Γ2 measure shear strains,

Γ3 elongation, K1 and K2 quantify flexure and K3 torsion. The constitutive equations

n =
∂Wint

∂Γ
m =

∂Wint

∂K
(5.2.5)

define the resulting shear forces n1, n2 and axial force n3 and the resulting bending mo-

menta m1, m2 and torsional moment m3 respectively.
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5 Objective formulation of geometrically exact beam dynamics

The assumption of orthonormality of the director triad gives rise to six independent holo-

nomic internal constraints of the form (4.3.3) at each point of the central line of the

beam. Independent of the method in use, the treatment of the configuration constraints

is represented by the extra function Pcon : gint(Q) → R introduced in (2.3.12). For the

geometrically exact beam, the contribution of the unfulfilled constraints to the Hamilto-

nian can be calculated as

PH(z(t)) =

∫ L

0

v(s, t)R(gint(q(s, t))) ds (5.2.6)

As mentioned in Remark 5.1.1, Dirac’s theory must be used to derive the equations of mo-

tion for the geometrically exact beam in the Hamiltonian formalism. The transition form

the Lagrangian formulation (with a degenerate Lagrangian) to the Hamiltonian formula-

tion is performed in detail in [Bets 03]. Along the lines described there, but neglecting

the secondary constraints (see Remark 2.3.3) and using the augmented Hamiltonian in-

troduced in (2.3.13), one arrives at the following infinite dimensional equations of motion

for the geometrically exact beam

˙̄q(s, t) = δp̄H(z(s, t))

˙̄p(s, t) = −δq̄H(z(s, t))

0 = −δd3
H(z(s, t))

(5.2.7)

where δ denotes the functional derivative (see A.5).

Remark 5.2.1 If the Lagrange multiplier method is used to enforce the constraints, the

system (5.2.7) is supplemented by the constraint equations gint(q(s, t)) = 0 of the form

(4.3.3).

5.3 Hamiltonian formulation of the semi-discrete beam
PSfrag replacements
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Figure 5.2: Configuration of a spatially discretised beam with respect to an orthonormal frame {eI} fixed
in space.

To perform a discretisation in space, nnode nodes subdivide the central line of the beam into

finite elements, see Figure 5.2. Isoparametric finite element interpolations are introduced,
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5.3 Hamiltonian formulation of the semi-discrete beam

using Lagrange-type nodal shape functions Nα(s) and Dirac deltas Mα(s) = δ(s − sα)

associated with the nodal points sα ∈ [0, L], α = 1, . . . , nnode

ϕh(s, t) =

nnode∑

α=1

Nα(s)ϕα(t) dh
I (s, t) =

nnode∑

α=1

Nα(s)dα
I (t) I = 1, 2, 3

ph
ϕ(s, t) =

nnode∑

α=1

Nα(s)pα
ϕ(t) ph

I (s, t) =

nnode∑

α=1

Nα(s)pα
I (t) I = 1, 2

zh(s, t) =

nnode∑

α=1

Nα(s)zα(t) vh(s, t) =

nnode∑

α=1

Mα(s)vα(t)

(5.3.1)

Thus the semi-discrete mechanical system is characterised by the phase vector

z(t) =




z1(t)
...

znnode(t)


 ∈ R21nnode zα(t) =

[
qα(t)

p̄α(t)

]
∈ R21

q(t) =




q1(t)
...

qnnode(t)


 ∈ R12nnode qα(t) =




ϕα(t)

dα
1 (t)

dα
2 (t)

dα
3 (t)


 ∈ R12

p̄(t) =




p̄1(t)
...

p̄nnode(t)


 ∈ R9nnode p̄α(t) =




pα
ϕ(t)

pα
1 (t)

pα
2 (t)


 ∈ R9

(5.3.2)

Insertion of (5.3.1) and (5.3.2) into the kinetic energy (5.2.1) yields

T h(p̄(t)) =
1

2

nnode∑

α,β=1

(p̄α)T ·
(
M̄

h

αβ

)−1

· p̄β =
1

2
p̄T ·

(
M̄

h
)−1

· p̄ (5.3.3)

with the consistent 9nnode × 9nnode mass matrix M̄
h

consisting of the submatrices

M̄
h

αβ =



MαβI 0 0

0 M1
αβI 0

0 0 M2
αβI




Mαβ =

∫ L

0

AρNα(s)Nβ(s) ds Mκ
αβ =

∫ L

0

Mκ
ρNα(s)Nβ(s) ds κ = 1, 2

(5.3.4)

Remark 5.3.1 Provided that the nodes are numbered appropriately, for a k-node beam el-

ement, the compact support of the shape functions Nα, α = 1, . . . , k causes

Mαβ = M1
αβ = M2

αβ = 0 for |α − β| ≥ k. Thus the symmetric, global mass matrix

M̄
h

is banded with nonzero elements on the diagonal and on k − 1 subdiagonals.

Insertion of vh(s, t) from (5.3.1) into (5.2.6) yields

P h
H(z(t)) =

nnode∑

α=1

vα(t)R(gα
int(q

α(t))) (5.3.5)
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5 Objective formulation of geometrically exact beam dynamics

i.e. the constraint fulfilment is enforced at the nodes. The nodal internal constraint

functions gα
int(q

α) ∈ R6 of the form (4.3.3) can be combined to

gint(q(t)) =




g1
int(q

1(t))
...

gnnode

int (qnnode(t))


 ∈ Rmint (5.3.6)

with mint = 6nnode. Similarly, the 6nnode × 12nnode Jacobian of the internal constraints

takes the form

Gint(q(t)) =




G1
int(q

1(t)) 0 · · · 0

0 G2
int(q

2(t)) · · · 0
...

...
. . .

...

0 0 · · · Gnnode

int (qnnode(t))


 (5.3.7)

with Gα
int(q

α) given in (4.3.4) for α = 1, . . . , nnode.

After the spatial discretisation (5.3.1), (5.3.2) has been inserted, the potential energy

(5.2.3) reads

V h(q(t)) =

∫ L

0

Wint(Γ (qh(s, t)),K(qh(s, t))) ds+

∫ L

0

Wext(q
h(s, t)) ds (5.3.8)

The special form of (5.3.8) depends on the behaviour of the material under consideration

and on the external potential.

Example 5.3.2 (Gravitation) Let the external conservative load be the gravitation in the

negative e3-direction with gravitational acceleration g and define ḡ = [0, 0, g, 0, 0, 0, 0, 0, 0]T .

V h
ext(q(t)) =

∫ L

0

Wext(q
h(s, t)) ds =

∫ L

0

−ḡT · M̄ · q̄h(s, t) ds

=

nnode∑

α=1

−ḡT · M̄ · q̄α(t)

∫ L

0

Nα(s) ds =

nnode∑

α=1

W α
ext(q

α(t))

(5.3.9)

Example 5.3.3 (Hyperelastic material) Assume that the hyperelastic material behaviour

of the beam is governed by the stored-energy function

Wint(Γ ,K) =
1

2
Γ

T · DΓ · Γ +
1

2
KT · DK · K (5.3.10)

with

DΓ =



GA1 0 0

0 GA2 0

0 0 EA


 DK =



EI1 0 0

0 EI2 0

0 0 GJ


 (5.3.11)
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5.3 Hamiltonian formulation of the semi-discrete beam

Insertion into (5.3.8) yields

V h
int(q(t)) =

1

2

3∑

i=1

DΓ

ii

∫ L

0

(
Γi(q

h(s, t))
)2
ds

︸ ︷︷ ︸
:=

+DK
ii

∫ L

0

(
Ki(q

h(s, t))
)2
ds

︸ ︷︷ ︸
:=

=
1

2

3∑

i=1

DΓ

ii Γ h
i (q(t)) +DK

ii Kh
i (q(t))

=

3∑

i=1

W i
int(Γ

h(q(t)),Kh(q(t)))

(5.3.12)

where

W i
int(Γ

h(q(t)),Kh(q(t))) =
1

2

[
DΓ

ii Γ h
i (q(t)) +DK

ii K
h
i (q(t))

]
i = 1, 2, 3 (5.3.13)

The composition of (5.3.3), (5.3.5) and (5.3.8) yields the Hamiltonian for the semi-discrete

beam Hh(z(t)) = T h(p(t)) + V h(q(t)) + P h
H(z(t)) and the semi-discrete Hamiltonian

system of equations, which has to be solved for zα(t), α = 1, . . . , nnode

˙̄qα(t) = Dp̄αHh(z(t))

˙̄pα(t) = −Dq̄αHh(z(t))

0 = −Dd
α

3
Hh(z(t))

(5.3.14)

Remark 5.3.4 If the Lagrange multiplier method is used to enforce the constraints, the

system (5.3.14) is supplemented by the constraint equations gint(q(t)) = 0 introduced in

(5.3.6), resulting in the constrained Hamilton’s equations of the form (2.3.8).

5.3.1 Discrete strain measures – objectivity

Insertion of the interpolation (5.3.1) for qh in (5.2.4) yields the discrete strain measures

Γ (qh),K(qh), which inherit the objectivity of the underlying geometrically exact beam

theory. Consider superposed rigid body motion of the discrete beam configuration

(ϕα)] = c + Q · ϕα (dα
I )] = Q · dα

I I = 1, 2, 3 (5.3.15)

with c(t) ∈ R3 and Q(t) ∈ SO(3). Then for all s ∈ [0, L] and i = 1, 2, 3 one gets

Γi((q
h)]) =

(
(dh

i )
]
)T · (ϕh

,s)
] − δi3

=

nnode∑

α,β=1

NαNβ,s(Q · dα
i )T · (c + Q · ϕβ) − δi3

=

nnode∑

α,β=1

NαNβ,s (dα
i )T · ϕβ − δi3

(5.3.16)

due to the completeness of the Lagrangian shape functions

nnode∑

α=1

Nα = 1 implying

nnode∑

α=1

Nα,sc = 0. Accordingly,

Γi((q
h)]) = Γi(q

h) Ki((q
h)]) = Ki(q

h) (5.3.17)
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5 Objective formulation of geometrically exact beam dynamics

and the discrete strain measures corresponding to the interpolation (5.3.1) are invariant

with respect to superposed rigid body motion. This is in contrast to beam elements based

on the interpolation of rotational degrees of freedom, see [Cris 99].

Further details on the only sketched proof of the objectivity of the discrete strain measures

can be found in [Bets 02d].

5.4 Objective energy-momentum conserving
time-stepping scheme

The objectivity of the strain measures relies on the fact that Γi, Ki, i = 1, 2, 3 are scalar-

valued isotropic functions of the vector argument q. Thus they do not depend on the full

configuration vector q, but on the scalar products of the vectors

{ϕα,dα
1 ,d

α
2 ,d

α
3 ,ϕ

β,dβ
1 ,d

β
2 ,d

β
3 |α, β = 1, . . . , nnode}, which are invariant with respect to

superposed rigid body motion. Consequently, Vint is an isotropic function. Detailed in-

spection of the kinetic energy of the discrete beam (5.3.3) and the extra function to enforce

the constraints (5.3.5) shows that these parts of the Hamiltonian are rotationally invariant

as well.

Remark 5.4.1 From (5.3.9), it can be seen that in Example 5.3.2 V h
ext is invariant with

respect to rotations about the gravitational axis only, whereas T h, P h and V h
int are in-

variant under the action of the full Lie group SO(3). For simplicity but without loss of

generality, it is assumed from now on that V h
ext is invariant under the action of all ele-

ments of SO(3) as well, thus the composition Hh(z(t)) = T h(p(t)) +V h(q(t)) +P h(z(t))

is also invariant under the action of SO(3). Therewith Example 5.3.2 is excluded in the

theoretical considerations.

These considerations suggest parametrising the entire isotropic Hamiltonian in the invari-

ants of the Lie group SO(3).

5.4.1 Invariance of the Hamiltonian

Assume that the semi-discrete Hamiltonian Hh is invariant under the action of the Lie

group SO(3), i.e.

Hh(z) = Hh(Q ◦ z) for all Q ∈ SO(3) and z ∈ R21nnode (5.4.1)

where Q ◦ z denotes the multiplication of each three-dimensional vector component of z

by Q, i.e.

Q ◦ z =




Q · ϕ1

...

Q · pnnode

2


 (5.4.2)

Then Hh is an isotropic, scalar valued function with vector arguments, hence by Cauchy’s

Representation Theorem (see e.g. [Antm 95]) Hh can be expressed in terms of the invari-

ants
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5.4 Objective energy-momentum conserving time-stepping scheme

S(z1, . . . , znnode) =
{

(yα)T · yβ|1 ≤ α ≤ β ≤ nnode,y
α ∈ {ϕα,dα

1 ,d
α
2 ,d

α
3 ,p

α
ϕ,p

α
1 ,p

α
2}
}

(5.4.3)

S is the set of all possible scalar products of the three-dimensional vectors composing the

phase vector z in (5.3.2) and contains 1
2
(7nnode + 1)7nnode elements.

Remark 5.4.2 The elements of S are functionally dependent in the sense of Olver [Olve 86].

The Lie group SO(3) operates semi-regularly on the n = 21nnode-dimensional phase space

P with orbits of dimension s = 3. According to Theorem 2.17 in [Olve 86] there exist

precisely d = n− s = 21nnode −3 independent invariants πi : P → R composing the maxi-

mal set π = [π1, . . . , πd]
T . The invariants π1(z), . . . , πd(z) are functionally independent if

and only if the Jacobian Dπ(z) ∈ Rd×n is of rank d for each z ∈ P . Any other invariant

πe, e > d of the group action does depend on the quotient space P/SO(3) ∼= π(P ), i.e. it

is of the form πe(z) = πe(π1(z), . . . , πd(z)).

If a maximal set π of independent invariants can be found, then the Hamiltonian can be

reduced to

H̃h : π(P ) → R with H̃h(π(z)) = Hh(z) (5.4.4)

According to Proposition 2.2.9, the invariance of the Hamiltonian under the action of

a Lie group G with Lie algebra g leads to the temporal conservation of a momentum

map J : P → g∗ along the solution of Hamilton’s equations. Along the solution of the

semi-discrete Hamiltonian system (5.3.14), a momentum map is conserved in the sense

that
∑nnode

α=1 J(zα(t)) = c for all t ∈ [t0, t1] where c ∈ R3 is constant. For G = SO(3), the

momentum map is the sum of the angular momentum at each node J(zα) = qα × pα.

The set of invariants S in (5.4.3) comprises the elements

παβ
1 (z) = (ϕα)T · ϕβ παβ

2 (z) = (dα
1 )T · dβ

1 παβ
3 (z) = (dα

2 )T · dβ
2

παβ
4 (z) = (dα

3 )T · dβ
3 παβ

5 (z) = (pα
ϕ)T · pβ

ϕ παβ
6 (z) = (pα

1 )T · pβ
1

παβ
7 (z) = (pα

2 )T · pβ
2 παβ

8 (z) = (ϕα)T · dβ
1 παβ

9 (z) = (ϕα)T · dβ
2

παβ
10 (z) = (ϕα)T · dβ

3 παβ
11 (z) = (dα

1 )T · dβ
2 παβ

12 (z) = (dα
3 )T · dβ

1

παβ
13 (z) = (dα

2 )T · dβ
3 παβ

14 (z) = (pα
ϕ)T · pβ

1 παβ
15 (z) = (pα

ϕ)T · pβ
2

παβ
16 (z) = (pα

1 )T · pβ
2 παβ

17 (z) = (ϕα)T · pβ
ϕ παβ

18 (z) = (ϕα)T · pβ
1

παβ
19 (z) = (ϕα)T · pβ

2 παβ
20 (z) = (dα

1 )T · pβ
ϕ παβ

21 (z) = (dα
1 )T · pβ

1

παβ
22 (z) = (dα

1 )T · pβ
2 παβ

23 (z) = (dα
2 )T · pβ

ϕ παβ
24 (z) = (dα

2 )T · pβ
1

παβ
25 (z) = (dα

2 )T · pβ
2 παβ

26 (z) = (dα
3 )T · pβ

ϕ παβ
27 (z) = (dα

3 )T · pβ
1

παβ
28 (z) = (dα

3 )T · pβ
2

(5.4.5)

α, β = 1, . . . , nnode. According to Theorem 2.17 in [Olve 86] (see Remark 5.4.2), one

can choose d = 21nnode − 3 functionally independent invariants of those given in (5.4.5),

generating the maximal set π in which the Hamiltonian can be parametrised.
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5 Objective formulation of geometrically exact beam dynamics

5.4.2 Fully-discrete Hamiltonian system for the beam in terms of
invariants

According to the spatial finite element discretisation (5.3.1), the phase space variable

(5.3.2) at time tn is given by

zh
n(s) = zh(s, tn) =

nnode∑

α=1

Nα(s)zα
n ∈ R21 n ∈ N (5.4.6)

with zα
n = zα(tn), α = 1 . . . , nnode.

Using (5.3.3), (5.4.5) and t1 = 5, t2 = 6, t3 = 7, the kinetic energy at time tn can be

written in the form

T̃ h(π(zn)) =

3∑

i=1

nnode∑

α,β=1

T̃ h
i (παβ

ti (zn))

=
1

2

nnode∑

α,β=1

(Mαβ)−1παβ
5 (zn) + (M1

αβ)−1παβ
6 (zn) + (M2

αβ)−1παβ
7 (zn)

(5.4.7)

where Mαβ,M
1
αβ,M

2
αβ are the entries of the consistent mass matrix (5.3.4), see Re-

mark 5.3.1.

Inspection of the internal constraints (4.3.3) obviously shows on which invariants in (5.4.5)

the constraints at the node α do depend on. With p1 = 2, p2 = 3, p3 = 4, p4 = 11,

p5 = 12, p6 = 13 the function to treat the constraints (5.3.5) at time tn can be written as

P̃ h
H(π(zn)) =

nnode∑

α=1

vα(tn)R
(
(g̃α

int)1 (παα
p1

(zn)), . . . , (g̃α
int)6 (παα

p6
(zn))

)
(5.4.8)

With γ1 = 8, γ2 = 9, γ3 = 10, k1 = 13, k2 = 12, k3 = 11 the objective strain measures

Γ (qh),K(qh) at time tn take the form

Γ̃i(π(zh
n)) =

nnode∑

α,β=1

Nα(s)N ′
β(s)παβ

Γi
(zn) − δi3 i = 1, 2, 3

K̃i(π(zh
n)) =

nnode∑

α,β=1

Nα(s)N ′
β(s)

[
παβ

ki
(zn) − παβ

ki
(z0)

]
i = 1, 2, 3

(5.4.9)

Assuming that also the external energy density function is invariant under the action of

SO(3) (see Remark 5.4.1), i.e. Wext(z
h
n) = W̃ext(π(zh

n)), the potential energy (5.3.8) at

time tn reads

Ṽ h(π(zn)) =

∫ L

0

Wint(Γ̃ (π(zh
n)), K̃(π(zh

n))) ds+

∫ L

0

W̃ext(π(zh
n)) ds (5.4.10)

Of course, the integrals transform to sums over the nodes due to the spatial discretisation

(5.4.6).

Summarising, the SO(3)-invariant Hamiltonian of the beam at time tn is of the form

Hh(zn) = H̃h(π(zn)) = T̃ h(π(zn)) + Ṽ h(π(zn)) + P̃ h
H(π(zn)) (5.4.11)

88



“diss˙ln” — 2006/6/29 — 19:20 — page 89 — #101

5.4 Objective energy-momentum conserving time-stepping scheme

Using the partial G-equivariant discrete derivative (see Definitions 3.1.4 and 3.1.7) of

the Hamiltonian in (5.4.11), one arrives at the fully-discrete constrained Hamiltonian

equations (3.2.2) for the dynamics of the geometrically exact beam, which have to be

solved for zα
n+1 = [qα

n+1, p̄
α
n+1], α = 1, . . . , nnode

q̄α
n+1 − q̄α

n = hDG
p̄αHh(zn, zn+1)

p̄α
n+1 − p̄α

n = −hDG
q̄αHh(zn, zn+1)

0 = −hDG

d
α

3
Hh(zn, zn+1)

(5.4.12)

Remark 5.4.3 If the Lagrange multiplier method is used to enforce the constraints,

the 21nnode-dimensional system (5.4.12) is supplemented by the constraint equations

gint(q(t)) = 0 introduced in (5.3.6), resulting in the 27nnode-dimensional constrained

Hamilton’s equations of the form (3.2.3).
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5 Objective formulation of geometrically exact beam dynamics

5.4.3 Overview

Table 5.1 gives an overview over the phase vector, the Hamiltonian and Hamilton’s equa-

tions corresponding to the continuous, the semi-discrete and the fully-discrete case re-

spectively.

Table 5.1: Overview over the phase vector, the Hamiltonian and Hamilton’s equations corresponding to
the continuous, the semi-discrete and the fully-discrete case respectively.

phase vector Hamiltonian H. e.

co
n
ti
n
u
o
u
s

z(s, t) = [q(s, t), p̄(s, t)] ∈ R21(5.1.2)

H(z) =

T (p) + V (q) + PH (z)

(5.2.1) (5.2.3) (5.2.6)

(5.2.7)

se
m

i-
d
is

cr
et

e zh(s, t) =

nnode∑

α=1

Nα(s)zα(t) ∈ R21 (5.3.1)

zα(t) = [qα(t), p̄α(t)] ∈ R21

z(t) = [z1(t), . . . , znnode(t)] ∈ R21nnode

H(zh) = Hh(z) =

T h(p) + V h(q) + P h
H (z)

(5.3.3) (5.3.8) (5.3.5)

(5.3.14)

fu
ll
y
-d

is
cr

et
e zh

n(s) =

nnode∑

α=1

Nα(s)zα
n ∈ R21 (5.4.6)

zα
n = [qα

n, p̄α
n] ∈ R21

zn = [z1
n, . . . , znnode

n ] ∈ R21nnode

H(zh
n) = H̃h(π(zn)) =

T̃ h(π(zn)) + Ṽ h(π(zn)) +

(5.4.7) (5.4.10)

P̃ h
H (π(zn))

(5.4.8)

(5.4.12)
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5.4 Objective energy-momentum conserving time-stepping scheme

5.4.4 Time-stepping schemes for the beam dynamics

In the sequel, the actual fully-discrete Hamiltonian equations for the dynamics of the

geometrically exact beam are deduced for the different methods to enforce the constraints.

They constitute nonlinear, objective, energy-momentum conserving one-step schemes.

According to (5.4.12), the partial G-equivariant discrete derivatives of T, V and P have to

be calculated. Therefore formulas (3.1.3) and (3.1.4), given in Example 3.1.6, are applied.

For the kinetic energy (5.4.7) one obtains

DG

p̄AT
h(zn, zn+1) =

3∑

i=1

nnode∑

α,β=1

DT̃ h
i (παβ

ti (zn), παβ
ti (zn+1)) ◦Dπαβ

ti (zn+ 1
2
) (5.4.13)

Since T̃ h
i : R+ → R, using (3.1.3) yields

DT̃ h
i (παβ

ti (zn), παβ
ti (zn+1)) =

T̃ h
i

(
παβ

ti (zn+1)
)
− T̃ h

i

(
παβ

ti (zn)
)

παβ
ti (zn+1) − παβ

ti (zn)
=: Sαβ

T̃i
(5.4.14)

for i = 1, 2, 3. Then it follows from (5.4.7) that

Sαβ

T̃1
=

1

2
M−1

αβ Sαβ

T̃2
=

1

2
(M1

αβ)−1 Sαβ

T̃3
=

1

2
(M2

αβ)−1 (5.4.15)

Because of the parametrisation of the Hamiltonian and particularly the stored energy

in the quadratic invariants and the special strain measures (5.2.4) of the beam theory

in use, an energy-momentum conserving time-stepping scheme is obtained by applica-

tion of the G-equivariant discrete derivative in Example 3.1.6 to the stored energy with

f = Wint ◦ (Γ̃ , K̃) and π from (5.4.5). This is equivalent to the application of the

G-equivariant discrete derivative to the stored energy with f = Wint and π̃ = (Γ̃ , K̃)◦π,

see Appendix E.

Remark 5.4.4 A special modification in the temporal discretisation of the stored energy

terms to obtain an energy-conserving integrator (e.g. cG(1)-method in connection with

the assumed strain modification in [Bets 01a,Simo 86a] or interpolation of the strains at

different times instead of evaluation of the strains at the temporally interpolated config-

uration in the case of nonlinear elasticity in [Simo 92a,Gonz 00]) is unnecessary here.

For many methods to treat the constraints (e.g. Lagrange multiplier method, penalty

method, augmented Lagrange method), (5.4.8) can be transformed to

P̃ h
H(π(zn)) =

6∑

i=1

nnode∑

α=1

P̃ h
i (παα

pi
(zn)) (5.4.16)

and the G-equivariant discrete derivative can be calculated along the lines of (5.4.13),

(5.4.14). For the three methods mentioned, the scalars Sα
P̃i
, i = 1, . . . , 6 will be specified

in the following subsections accordingly.
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5 Objective formulation of geometrically exact beam dynamics

Lagrange multiplier method

Using the Lagrange multiplier method, the function representing the treatment of the

constraints takes the form PH(z) = PLag(gint(q)) = gT
int(q)·λ with the Lagrange multiplier

λ ∈ R6. Thus the contribution of the constraints to the Hamiltonian in (5.2.6) can be

calculated as

v(s, t) = λ(s, t) R(gint(q(s, t))) = gint(q(s, t)) (5.4.17)

and insertion of the interpolation (5.3.1) yields corresponding to (5.3.5)

P h
Lag(gint(q(t))) =

nnode∑

α=1

(gα
int)

T (qα(t)) · λα(t) (5.4.18)

with the nodal Lagrange multipliers λα ∈ R6. (5.4.18) can be written in terms of the

invariants at time tn as follows

P̃ h
Lag(π(zn)) =

6∑

i=1

nnode∑

α=1

λα
i (tn) (g̃α

int)i (π
αα
pi

(zn)) (5.4.19)

In the G-equivariant discrete derivative DGP h
Lag, the scalars corresponding to (5.4.14) take

the values

Sα
P̃Lagi

=
1

2
λα

i i = 1, 2, 3 α = 1, . . . , nnode

Sα
P̃Lagi

= λα
i i = 4, 5, 6 α = 1, . . . , nnode

(5.4.20)

Corresponding to the treatment of the internal constraints for a rigid body in Section

4.3, the gradients of the invariants παα
pi

at the nodes coincide with rows of the midpoint

evaluation Gα
int(q

α
n+ 1

2

) of the constraint Jacobian for the rigid body in (4.3.4).

Remark 5.4.5 The use of Dirac deltas as shape functions for v = λ in (5.3.1) relates the

multipliers directly to the spatial nodes. As explained in Section 3.2.1, the multipliers

are discontinuous across time elements, particularly the multipliers are constant at each

spatial node during the time interval [tn, tn+1) and jump at the time nodes. For this

reason all multipliers appearing in the time-stepping scheme are evaluated at the time

node tn+1 and their time dependence is not indicated in (5.4.20).

Penalty method

The penalty potential being in use here is composed by a spatially and temporally constant

penalty parameter µ ∈ R and the squared norm of the constraints

v(s, t) = µ R(gint(q(s, t))) =
∥∥gint(q(s, t))

∥∥2
(5.4.21)

The same steps as in the previous paragraph for the Lagrange multiplier method lead to

P h
Pen(gint(q(t))) =

nnode∑

α=1

µ
∥∥gα

int(q
α(t))

∥∥2
(5.4.22)
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5.4 Objective energy-momentum conserving time-stepping scheme

and finally

P̃ h
Pen(π(zn)) =

6∑

i=1

nnode∑

α=1

µ
(
(g̃α

int)i (π
αα
pi

(zn))
)2

(5.4.23)

The scalars (corresponding to (5.4.14)) arising in DGP h
Pen result in

Sα
P̃Peni

=
µ

4

[
παα

pi
(zn+1) + παα

pi
(zn) − 2

]
i = 1, 2, 3 α = 1, . . . , nnode

Sα
P̃Peni

= µ
[
παα

pi
(zn+1) + παα

pi
(zn)

]
i = 4, 5, 6 α = 1, . . . , nnode

(5.4.24)

Augmented Lagrange method

In the augmented Lagrange method the function to treat the constraints is the sum of

those just described

v(s, t) =

[
λk(s, t)

µ

]
R(gint(q

k(s, t))) =

[
gint(q

k(s, t))∥∥gint(q
k(s, t))

∥∥2

]
(5.4.25)

Therewith, it ensues

P h
Aug(gint(q

k(t))) =

nnode∑

α=1

(gα
int)

T (qα,k(t)) · λα,k(t) + µ
∥∥gα

int(q
α,k(t))

∥∥2
(5.4.26)

and finally

P̃ h
Aug(π(zk

n)) =

6∑

i=1

nnode∑

α=1

λα,k
i (tn) (g̃α

int)i (π
αα
pi

(zk
n)) + µ

(
(g̃α

int)i (π
αα
pi

(zn))
)2

λα,0(t0) = 0 λα,0(tn) = λα,kmax(tn−1)

λα,k+1(tn) = λα,k(tn) + µg̃α
int(π

αα
p1

(zk
n), . . . , παα

p6
(zk

n)) α = 1, . . . , nnode

(5.4.27)

Accordingly, the scalars corresponding to (5.4.14) in DGP h
Aug are composed by

Sα,k

P̃Augi

=
1

2
λα,k

i +
µ

4

[
παα

pi
(zk

n+1) + παα
pi

(zn) − 2
]
i = 1, 2, 3 α = 1, . . . , nnode

Sα,k

P̃Augi

= λα,k
i + µ

[
παα

pi
(zk

n+1) + παα
pi

(zn)
]

i = 4, 5, 6 α = 1, . . . , nnode

(5.4.28)

Discrete null space method with nodal reparametrisation

The description of the spatially discretised beam in terms of the phase vector given in

(5.3.2) is a generalisation of that of rigid bodies in (4.3.2) and (4.3.9), which can be

considered as a ‘one-node structure’. The independent generalised velocities of the semi-

discrete beam are given by its twist

t =




t1

...

tnnode


 ∈ R6nnode (5.4.29)
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5 Objective formulation of geometrically exact beam dynamics

where, analogous to (4.3.17), the twist of the α-th node tα ∈ R6 reads

tα =

[
ϕ̇α

ωα

]
(5.4.30)

comprising the nodal translational velocity ϕ̇α ∈ R3 and the nodal angular velocity ωα ∈
R3. Now the redundant velocities q̇ ∈ R12nnode of the semi-discrete beam may be expressed

as q̇ = P int(q) · t where the 12nnode × 6nnode internal null space matrix P int(q) is given

by

P int(q) =




P 1
int(q

1) 0 · · · 0

0 P 2
int(q

2) · · · 0
...

...
. . .

...

0 0 · · · P nnode

int (qnnode)


 (5.4.31)

and P α
int(q

α) is the null space matrix associated with the α-th node, which with regard

to (4.3.19) reads

P α
int(q

α) =




I 0

0 −d̂α
1

0 −d̂α
2

0 −d̂α
3


 (5.4.32)

Remark 5.4.6 (Relation to kinematic chains) From the treatment of simple kinematic

chains in Section 6.2.1 it will become clear, that a spatially discretised beam can be

interpreted as a chain of rigid bodies for which the interconnections are prescribed by the

connectivity of the spatial finite element method, see e.g. [Hugh 00].

In analogy to the treatment of rigid bodies by the discrete null space method in Sec-

tion 4.3.4, assembly of the nodal discrete null space matrices P
α
int(q

α
n, q

α
n+1) = P α

int(q
α
n+ 1

2

)

given by the midpoint evaluation of (5.4.32), yields in a straightforward way the discrete

null space matrix Pint(qn, qn+1) = P int(qn+ 1
2
) for the semi-discrete beam. Premultiplica-

tion of (5.4.12)2,3 by its transposed and insertion of p̄n+1 from (5.4.12)1 into (5.4.12 )2,3

reduces its dimension to 6nnode.

Analogous to the reparametrisation of the free rigid body’s new configuration at time tn+1

in (4.3.31), the configuration of the semi-discrete beam can be expressed in terms of the

incremental unknowns

u =




u1

...

unnode


 ∈ R6nnode uα = (uα

ϕ, θ
α) ∈ Uα ⊂ R3 × R3 (5.4.33)

characterising the nodal incremental displacement uα
ϕ and nodal incremental rotation θα

in [tn, tn+1], respectively. Accordingly, in the present case the nodal reparametrisation

introduced in (3.2.42) assumes the form

qn+1 = F qn
(u) ∈ Q = R3nnode × (SO(3))nnode ⊂ R3nnode × R9nnode (5.4.34)
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5.5 Numerical example: beam with concentrated masses

with

qα
n+1 = F α

qα
n
(uα) =




ϕα
n + uα

ϕ

exp(θ̂α) · (dα
1 )n

exp(θ̂α) · (dα
2 )n

exp(θ̂α) · (dα
3 )n


 α = 1, . . . , nnode (5.4.35)

5.5 Numerical example: beam with concentrated
masses

L L

PSfrag replacements

F 1F 2

e1
e2

e3

mM M

Figure 5.3: Initial configuration of the beam with concentrated masses.

The following example represents a three-dimensional extension of the plane version pre-

viously dealt with in [Bott 02a,Bets 03]. The results documented in these works could be

recalculated using the present formulation. However, a three-dimensional loading is cho-

sen here to demonstrate the performance of the present formulation in a general setting.

The initial configuration of a beam with concentrated masses can be seen in Figure 5.3.

For this problem the following parameters have been used: half-length L = 1, concentrated

masses M = 10 and m = 1, mass density per reference length Aρ = 0.27, mass moment

of inertia of the cross-section Mρ = 9 · 10−8, beam stiffness parameters EI = 0.16,

EA = 4.8 · 105, GJ = 0.1230769 and GA = 1.84615 · 105. The hyperelastic material

behaviour of the beams is specified in Example 5.3.3. The temporally bounded external

loading has the form

F κ(t) = f(t)P κ

P 1 = 1.3e1 + 1.0e2 + 0.8e3

P 2 = −1.2e1 − 1.6e2 + 1.0e3
(5.5.1)

with the function

f(t) =

{
(1 − cos(2πt/T ))/2 for t ≤ T

0 for t > T
(5.5.2)

and T = 0.5.

No other external loads are present in this example. The numerical results are based on

a constant time-step h = 0.01 and an equidistant spatial discretisation of the central line

of the beam by 22 linear beam elements.
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5 Objective formulation of geometrically exact beam dynamics

5.5.1 Lagrange multiplier method

An impression of the motion and deformation of the spatially discretised beam with

concentrated masses is given in Figure 5.5 by snapshots of consecutive configurations.

Thereby, the small concentrated mass at the midnode is hidden by the cuboids represent-

ing the orientation of the spatial elements. The edge directions of a cuboid are specified

by the director triad at the left element node. The conjugate stress resultants ne,me of

the e-th element are obtained as pointwise evaluation of the resultants in the Gauß-points.

The cuboids are coloured by a linear interpolation of the weighted sum of the norms of

the stress resultants
∥∥ne

∥∥ + 10
∥∥me

∥∥ ∈ [0, 2] in the elements. Thereby, blue represents

zero, while red represents two. The evolution of the conjugate stress resultants in the

11-th spatial element is depicted in Figure 5.4 on the right hand side. The conservation

properties of the algorithm can be checked in Figure 5.4 in the left diagram. After the

vanishing of the external loads at t = 0.5, the total energy and all components of the

angular momentum are conserved.
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Figure 5.4: Beam with concentrated masses: energy and components of angular momentum vector
L = Liei and stress resultants in 11-th element (h = 0.01).
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5.5 Numerical example: beam with concentrated masses
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Figure 5.5: Beam with concentrated masses: snapshots of the motion and deformation at t ∈
{2.5, 7.5, 12.5, 17.5, 22.5, 25}.

97



“diss˙ln” — 2006/6/29 — 19:20 — page 98 — #110

5 Objective formulation of geometrically exact beam dynamics

5.5.2 Penalty method

The penalty function P h
Pen given in (5.4.22) is used. The linear decrease of the constraint

violation for increasing penalty parameters can be seen in Figure 5.6 on the right hand

side. This verifies the first statement of Proposition 3.2.2. The second statement, that

the solution of (5.4.12) using the Penalty method converges to that using the Lagrange

multiplier method is visualised in the left diagram in Figure 5.6.

104 105 106 107 108 109
10−8

10−7

10−6

10−5

10−4

10−3

1

1

PSfrag replacements

lo
g
(e

z
)

log(µ)
log(

∣∣|g(q)
∣∣|)

log(µ)
104 105 106 107 108 109

10−11

10−10

10−9

10−8

10−7

10−6

10−5

1

1

PSfrag replacements

log(ez)

log(µ)

lo
g
(∣ ∣ |

g
(q

)∣ ∣ |
)

log(µ)

Figure 5.6: Beam with concentrated masses: relative error ez =
∥∥zPen − zLag

∥∥/∥∥zLag

∥∥ of the phase
variable and constraint fulfilment for the penalty scheme at t = 1 (h = 0.01).

5.5.3 Augmented Lagrange method

The same beam deformation problem is calculated using the augmented Lagrange method

with the function P h
Aug given in (5.4.26) and µ = 105. All statements of Proposition 3.2.4

are verified by the three diagrams in Figure 5.7. The convergence of the configuration

calculated by solving (5.4.12) using the augmented Lagrange method to that using the

Lagrange multiplier method can be observed. Similarly the multipliers approach the true

Lagrange multipliers during the augmented Lagrange iteration (AL-iteration). Further-

more, the decrease in the constraint violation is demonstrated.

5.5.4 Discrete null space method with nodal reparametrisation

Figure 5.8 shows the convergence of the solution of the d’Alembert-type scheme with

nodal reparametrisation to a reference solution calculated by the constrained scheme

using a time-step h = 10−5. It confirms the statement of Proposition 3.2.12.
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Figure 5.7: Beam with concentrated masses: relative error ez =
∥∥zAug − zLag
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variable and relative error of the multipliers eλ =
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Figure 5.8: Beam with concentrated masses: relative error ez =
∥∥zd′Al − zLag
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∥∥ of the phase
variable for the d’Alembert-type scheme with nodal reparametrisation at t = 0.05.
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5 Objective formulation of geometrically exact beam dynamics

5.5.5 Comparison

Table 5.2 summarises the computational performance of the four schemes under consider-

ation for the simulation of motion and deformation of the beam with concentrated masses.

For this problem involving spatial finite beam elements in the context of geometrically

nonlinear elastic deformation, the condition number is relatively high. Its deterioration

for decreasing time-steps cannot be observed until the time-steps drops under the value of

h = 10−5 for the Lagrange multiplier method. For the other schemes, almost no influence

of the time-step or the penalty parameter on the condition number is observable, it stays

nearly constant at a relatively high value.

The ‘coupling’ of the director triads by the connectivity assumptions of the spatial finite

element method improves the constraint fulfilment for the penalty method in general and

for the augmented Lagrange method in the first iteration. Thus only a small number

of iterations is required to reduce the constraint fulfilment under the desired tolerance.

However, neither the penalty method nor the augmented Lagrange method can compete

with the numerical exact constraint fulfilment of the constrained scheme and the discrete

null space method.

The high numerical effort caused by the assembly of the internal forces DqαV
h
int for all

nodes α = 1, . . . , nnode in (5.4.12) assimilates the computational time by the different

schemes despite the large differences in the system’s dimensions. Nevertheless, the aug-

mented Lagrange schemes requires the highest computational time to calculate 100 time-

steps due to the extra iterations in each time-step. The costs for the assembly of the

null space matrix in (5.4.32) and the more involved update structure preponderates the

benefits of the small dimensional system. The penalty method requires less computa-

tional time, although twice the number of equations are solved in each time-step, whereas

the assembly and solution of the three times larger dimensional system in the Lagrange

multiplier method is only slightly more expensive.

Nevertheless, the d’Alembert-type scheme with nodal reparametrisation performs superior

to the other schemes, since it combines numerically exact constraint fulfilment with the

lowest possible condition numbers.
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5.5 Numerical example: beam with concentrated masses

Table 5.2: Comparison of constrained scheme, penalty scheme, augmented Lagrange scheme and
d’Alembert-type scheme with nodal reparametrisation for the example ‘beam with concen-
trated masses’.

constrained penalty augm. Lag. d’Alembert

number of unknowns 414 276 276 138

n = 276 m = 138

CPU-time 1.1 0.8 1.6 1

µ = 105 µ = 1010

constraint fulfilment 10−16 10−7 10−10 10−10 10−16

condition number

h = 10−5 1011 109 109 109 109

h = 10−6 1013 109 109 109 109

h = 10−7 1015 1010 109 1010 109
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6 Multibody system dynamics

The description of rigid body dynamics in terms of redundant coordinates presented in

Section 4.3 as well as that of geometrically exact beams as special Cosserat continuum

in Chapter 5, can be generalised to multibody systems consisting of rigid and elastic

components in a systematic way. The internal constraints pertaining to the underlying

kinematic assumptions of the components of the multibody system are retained and the

interconnecting joints between the components of multibody systems constitute the so-

called external constraints. Thus the constrained formulations of the equations of motion

for rigid body motion or beam dynamics provide a uniform framework to include both

types of constraints.

6.1 Lower kinematic pairs

The coupling of rigid bodies by means of configurational constraints constitutes so-called

kinematic chains, see [Ange 88,Ange 97]. In this context, the rigid bodies are often termed

links. The links are coupled pairwise, hence two neighbouring links, whose relative motion

is constrained, form a kinematic pair. These can be divided into two classes, namely upper

and lower kinematic pairs. An upper kinematic pair arises when the contact between two

bodies takes place along a line or a point. Examples are a cylinder or a sphere rolling

on a plane. The appearing constraints may be any kind of holonomic or nonholonomic

constraint. Often they can be replaced by a combination of lower pairs, see [Gera 01].

Opposite to that in a lower kinematic pair, contact takes place along a surface common

to both bodies.

In the sequel, a detailed description of the external constraints caused by joints connecting

lower kinematic pairs and their treatment by the the constrained formulations of the equa-

tions of motion, as well as the d’Alembert-type formulation, is presented (see [Bets 06]).

The penalty method and the augmented Lagrange method are set aside from now on,

since the theoretical considerations at the end of Section 3.2 and the examples up to now

(see Chapters 4 and 5) revealed that the performance of the constrained scheme and the

d’Alembert-type scheme with nodal reparametrisation is substantially superior, especially

concerning the computational costs and the accuracy of the constraint fulfilment.

With regard to Section 4.3, the configuration of the α-th rigid link in a kinematic chain

can be characterised by redundant coordinates qα ∈ R12. Thus the configuration of two

rigid links, denoted by 1 and 2, can be characterised by redundant coordinates which may

be arranged in the configuration vector

q(t) =

[
q1(t)

q2(t)

]
∈ R24 (6.1.1)
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6 Multibody system dynamics

6.1.1 Constrained formulation

The constrained formulation of each rigid body leads to constraint functions gα
int ∈ R6 of

the form (4.3.3) along with constraint Jacobians Gα
int of the form (4.3.4). For the 2-body

system at hand this yields

gint(q) =

[
g1

int(q
1)

g2
int(q

2)

]
(6.1.2)

together with

Gint(q) =

[
G1

int(q
1) 0

0 G2
int(q

2)

]
(6.1.3)

Accordingly, the 2-body system under consideration leads tomint = 12 internal constraints

with associated constraint Jacobian Gint(q) ∈ R12×24. The coupling of the two bodies by

means of a specific joint leads to further constraints termed external constraints. Table 6.1

gives an overview over lower kinematic pairs J ∈ {R,P, C, S, E}, that will be investigated

in the following. Depending on the number of external constraints m
(J)
ext they give rise to,

the degrees of freedom of the relative motion of one body with respect to the other is

decreased from 6 to r(J) = 6 −m
(J)
ext.

Table 6.1: Different types of lower kinematic pairs with corresponding number of external constraints
m

(J)
ext and number or relative degrees of freedom r(J).

revolute (R) prismatic (P) cylindrical (C) spherical (S) planar (E)

m
(J)
ext 5 5 4 3 3

r(J) 1 1 2 3 3

Remark 6.1.1 (Elementary pairs) From the six types of lower kinematic pairs, those

five giving rise to maximal quadratic configurational constraints are investigated. The C,

S, and E pair can be obtained as compositions of the R and P pair, which are termed ele-

mentary pairs. See e.g. [Ange 88] for further background on the classification of kinematic

pairs.

Each kinematic pair is characterised by altogether m(J) = mint + m
(J)
ext constraints. The

systematic approach to constrained dynamical systems presented in Section 2.3 allows

the arrangement of the corresponding constraint functions in the vector valued function

g(J) : Q = R24 → Rm(J)
, which may be written in partitioned form

g(J)(q) =

[
gint(q)

g
(J)
ext(q)

]
(6.1.4)

Similarly, the constraint Jacobian G(J) ∈ Rm(J)×24 pertaining to a specific kinematic pair

can be written as

G(J)(q) =

[
Gint(q)

G
(J)
ext(q)

]
(6.1.5)
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6.1 Lower kinematic pairs

The Hamiltonian for the kinematic pair takes the separable form given in (3.2.4) with the

constant mass matrix

M =

[
M 1 0

0 M 2

]
(6.1.6)

where each submatrix Mα ∈ R12×12 coincides with (4.3.8). As described in (2.3.13), the

Hamiltonian can be augmented according to the method to treat the constraints, leading

to the constrained Hamilton’s equations (2.3.8) including the Lagrange multipliers or the

Hamilton’s equations (2.2.4) including the penalty parameter or the Hamilton’s equations

(2.2.4) in the context of the augmented Lagrange method to enforce the constraints.

Temporal discretisation using the concept of G-equivariant discrete derivatives described

in Section 3.1.1 leads to the discrete system (3.2.2), which in the special case of the

Lagrange multiplier method takes the form (3.2.5).

6.1.2 Reduced formulation

In this section the construction of continuous null space matrices for the kinematic pairs

under consideration is outlined. Similar to the case of a single rigid body treated in

Section 4.3.3, the twist of a pair of two free rigid bodies reads

t =

[
t1

t2

]
(6.1.7)

where, analogous to (4.3.17), the twist of the α-th body tα ∈ R6, is given by

tα =

[
ϕ̇α

ωα

]
(6.1.8)

Now the redundant velocities q̇ ∈ R24 of the kinematic pair may be expressed as

q̇ = P int(q) · t where the 24 × 12 matrix P int(q) is given by

P int(q) =

[
P 1

int(q
1) 0

0 P 2
int(q

2)

]
(6.1.9)

and P α
int(q

α) is the null space matrix associated with the α-th free body, which with

regard to (4.3.19) reads

P α
int(q

α) =




I 0

0 −d̂α
1

0 −d̂α
2

0 −d̂α
3


 (6.1.10)

Note that by design Gint(q) · P int(q) = 0, the 12 × 12 zero matrix.

In a kinematic pair J ∈ {R,P, C, S, E}, the interconnection of the two rigid bodies by

means of a specific joint restricts the relative motion of the second body with respect to

the first body (see Table 6.1). The relative motion can be accounted for by introducing
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r(J) joint velocities τ (J). Thus the motion of the kinematic pair can be characterised by

the independent generalised velocities ν (J) ∈ R6+r(J)
with

ν(J) =

[
t1

τ (J)

]
(6.1.11)

In particular, introducing the 6× (6+ r(J)) matrix P
2,(J)
ext (q), the twist of the second body

t2 ∈ R6 can be expressed as

t2,(J) = P
2,(J)
ext (q) · ν (J) (6.1.12)

Accordingly, the twist of the kinematic pair J ∈ {R,P, C, S, E} can be written in the

form

t(J) = P
(J)
ext(q) · ν(J) (6.1.13)

with the 12 × (6 + r(J)) matrix P
(J)
ext(q), which may be partitioned according to

P
(J)
ext(q) =

[
I6×6 06×r(J)

P
2,(J)
ext (q)

]
(6.1.14)

Once P
(J)
ext(q) has been established, the total null space matrix pertaining the kinematic

pair under consideration can be calculated from

P (J)(q) = P int(q) · P (J)
ext(q) =

[
P 1

int(q
1) 012×r(J)

P 2
int(q

2) · P 2,(J)
ext (q)

]
(6.1.15)

Finally, the 24-dimensional redundant velocity vector of the kinematic pair can be ex-

pressed in terms of the independent generalised velocities ν (J) ∈ R6+r(J)
via

q̇ = P (J)(q) · ν (J) (6.1.16)

Provided that P
2,(J)
ext (q) has been properly deduced from (6.1.12),

q̇ ∈ null (G(J)(q)) (6.1.17)

and the above procedure warrants the design of viable null space matrices which auto-

matically satisfy the relationship

G(J)(q) · P (J)(q) = 0 (6.1.18)

To summarise, in order to construct a null space matrix pertaining to a specific kinematic

pair, essentially relationship (6.1.12) is applied to deduce the matrix P
2,(J)
ext (q). Once

P
2,(J)
ext (q) has been determined, the complete null space matrix pertaining to a specific

pair follows directly from (6.1.15).

Remark 6.1.2 Similar to the procedure for the design of appropriate null space matrices

outlined above, the relationship between rigid body twists and joint velocities is used

in [Ange 89] to deduce the ‘natural orthogonal complement’ in the context of simple

kinematic chains comprised of elementary kinematic pairs.
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6.1.3 Discrete null space method with nodal reparametrisation

To deduce the discrete equations of motion (3.2.5) for the kinematic pair in the Hamil-

tonian formalism using the concept of G-equivariant discrete derivatives, the partial

G-equivariant discrete derivative (see Definition 3.1.4 and 3.1.7) of the constraints needs

be specified. It is obvious from the above treatment of the single rigid body, that the

discrete counterparts of Gint(q) and P int(q) are given by

Gint(qn, qn+1) = Gint(qn+ 1
2
)

Pint(qn, qn+1) = P int(qn+ 1
2
)

(6.1.19)

and it can be easily checked that

Gint(qn+ 1
2
) · P int(qn+ 1

2
) = 0 (6.1.20)

In Sections 6.1.4 to 6.1.8 it is shown that all external constraint functions associated

with the kinematic pairs under consideration are at most quadratic in the redundant

coordinates. Consequently, due to the properties of the partial G-equivariant discrete

derivative, the discrete constraint Jacobians are given by

G
(J)
ext(qn, qn+1) = G

(J)
ext(qn+ 1

2
) (6.1.21)

for J ∈ {R,P, C, S, E}.
It thus remains to provide a discrete version of P

2,(J)
ext (q). Then the discrete version of the

null space matrix pertaining to the external constraints (6.1.14) reads

P
(J)
ext(qn, qn+1) =

[
I6×6 06×r(J)

P
2,(J)
ext (qn, qn+1)

]
(6.1.22)

and the total discrete null space matrix pertaining the kinematic pair under consideration

is given by

P
(J)(qn, qn+1) = P int(qn+ 1

2
)·P(J)

ext(qn, qn+1) =

[
P 1

int(q
1
n+ 1

2

) 012×r(J)

P 2
int(q

2
n+ 1

2

) · P2,(J)
ext (qn, qn+1)

]
(6.1.23)

where (6.1.19) has been taken into account.

To this end, the fulfilment of condition (3.2.30) respectively, the properties mentioned

in Remark 3.2.7 are required. Since in the present case (6.1.20) is already fulfilled, the

following condition remains as a design criterion for the P
(J)
ext(qn, qn+1)

G
(J)
ext(qn+ 1

2
) · P int(qn+ 1

2
) · P(J)

ext(qn, qn+1) = 0 (6.1.24)

where 0 is the m
(J)
ext × (6 + r(J)) zero matrix.

Remark 6.1.3 The discrete null space matrices designed so far for internal constraints in

(4.3.27) and (6.1.19) suggest the midpoint evaluation of P
(J)
ext(q) as well. Indeed, for the

examples of kinematic pairs given in Sections 6.1.4 and 6.1.6, P
(J)
ext(qn+ 1

2
) yields viable

discrete null space matrices. However, this circumstance is closely related to the facts that

107



“diss˙ln” — 2006/6/29 — 19:20 — page 108 — #120

6 Multibody system dynamics

first of all, the appearing constraints are at most quadratic in the configuration variable,

secondly, that there exists a reparametrisation of the constraint manifold in the temporal

continuous setting (2.3.26), which is likewise maximal quadratic in the generalised coor-

dinates and thirdly, that no relative translational degrees of freedom are present. It will

become evident for the kinematic pairs in Sections 6.1.5, 6.1.7, 6.1.8 and in the context

of closed loop systems described in Section 6.2.3 that the midpoint evaluation of P
(J)
ext(q)

does not yield viable discrete null space matrices in general. While a slight modification of

the midpoint evaluation yields an explicit representations of a discrete null space matrix

in the case of kinematic pairs with translational degrees of freedom, one has to revert to

the implicit representation for the closed loop system.

Corresponding to the independent generalised velocities ν (J) ∈ R6+r(J)
introduced in

(6.1.16), the redundant coordinates q ∈ R24 of each kinematic pair J ∈ {R,P, C, S, E}
may be expressed in terms of 6 + r(J) independent generalised coordinates. Concerning

the reparametrisation of unknowns in the discrete null space method, relationships of the

form

qn+1 = F (J)
qn

(µ(J)) (6.1.25)

are required, where

µ(J) = (u1
ϕ, θ

1,ϑ(J)) ∈ R6+r(J)

(6.1.26)

consists of a minimal number of incremental unknowns in [tn, tn+1] for a specific kinematic

pair. In (6.1.26), (u1
ϕ, θ

1) ∈ R3 ×R3 are incremental displacements and rotations, respec-

tively, associated with the first body (see Section 4.3.4). Furthermore, ϑ(J) ∈ Rr(J)
denote

incremental unknowns which characterise the configuration of the second body relative to

the first one. In view of (6.1.1), the mapping in (6.1.25) may be partitioned according to

q1
n+1 = F 1

q1
n
(u1

ϕ, θ
1)

q2
n+1 = F 2,(J)

qn
(µ(J))

(6.1.27)

Here, F 1
q1
n
(u1

ϕ, θ
1) is given by (4.3.31). It thus remains to specify the mapping F 2,(J)

qn
(µ(J))

for each kinematic pair under consideration. Of course, the mapping F (J)
qn

is required to

satisfy the constraints specified by (6.1.4), i.e. g(J)(F (J)
qn

(µ(J))) = 0, for arbitrary µ(J).

Remark 6.1.4 As mentioned in Remarks 3.2.13 and 4.3.1, either incremental or iterative

unknowns can be used during the iterative solution of the nonlinear algebraic equation

(3.2.44). Details concerning the linearisation for both cases can be found in Appendix B.

In the following Sections 6.1.4 to 6.1.8 details of the treatment of specific kinematic pairs

J ∈ {R,P, C, S, E} are provided. In essence, the present approach requires the specifica-

tion of (i) the external constraint function g
(J)
ext(q), along with the corresponding constraint

Jacobian G
(J)
ext(q), and (ii) the null space matrix P

2,(J)
ext (q), which is needed to set up the

complete null space matrix (6.1.14). Then (iii) the corresponding discrete null space ma-

trix is deduced according to the design criterion (6.1.24) (see Remark 6.1.3). Finally, (iv)

the mapping F 2,(J)
qn

(µ(J)) is specified, which is needed to perform the reparametrisation
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of unknowns according to (6.1.25), and allows the reduction of the discrete system of

equations of motion to the minimal possible dimension.

In the sequel the location of a specific joint on the α-th body is supposed to be charac-

terised by coordinates %α
i with respect to the body frame {dα

I } for α = 1, 2

%α = %α
i dα

i (6.1.28)

6.1.4 Spherical pair

PSfrag replacements
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d1
2

d1
3

d2
1

d2
2

d2
3

e1 e2

e3

ϕ1

ϕ2

%1

%2

S S

Figure 6.1: Spherical pair.

Constraints and constraint Jacobian

The S pair (Figure 6.1) prevents all relative translation between the two bodies, thus it

entails three external constraints of the form

g
(S)
ext(q) = ϕ2 − ϕ1 + %2 − %1 = 0 (6.1.29)

The corresponding constraint Jacobian is given by the constant 3 × 24 matrix

G
(S)
ext(q) =

[
−I −%1

1I −%1
2I −%1

3I I %2
1I %2

2I %2
3I
]

(6.1.30)

Continuous form of the null space matrix

The motion of body 2 relative to body 1 is characterised by r(S) = 3 degrees of freedom.

Specifically, with regard to (6.1.11) τ (S) = ω2, the angular velocity of the second body.

Accordingly, in the present case, the vector of independent generalised velocities reads

ν(S) =

[
t1

ω2

]
(6.1.31)
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6 Multibody system dynamics

Recall that the twist of the first rigid body given in (6.1.8) consists of its translational

velocity ϕ̇1 and its angular velocity ω1. Taking the time derivative of the external con-

straints (6.1.29) and expressing the redundant velocities in terms of the independent

generalised velocities (6.1.31) yields

ϕ̇2 = ϕ̇1 + ω1 × %1 − ω2 × %2 (6.1.32)

Now it can be easily deduced from the relationship t2,(S) = P
2,(S)
ext (q) · ν(S), that

P
2,(S)
ext (q) =

[
I −%̂1 %̂2

0 0 I

]
(6.1.33)

so that (6.1.14) yields

P
(S)
ext(q) =

[
I6×6 06×3

P
2,(S)
ext (q)

]
(6.1.34)

Furthermore, the null space matrix for the S pair follows directly from (6.1.15). It is given

by

P (S)(q) = P int(q) · P (S)
ext(q) =

[
P 1

int(q
1) 06×3

P 2
int(q

2) · P 2,(S)
ext (q)

]
(6.1.35)

with

P 2
int(q

2) · P 2,(S)
ext (q) =




I −%̂1 %̂2

0 0 −d̂2
1

0 0 −d̂2
2

0 0 −d̂2
3




(6.1.36)

Obviously with regard to (6.1.30) the present design procedure for P
2,(S)
ext (q) guarantees

that

G
(S)
ext(q) · P (S)(q) = 0 (6.1.37)

Discrete version of the null space matrix

As stated in (6.1.21) the partial G-equivariant discrete derivative of the constraints of the

spherical joint is given by

G
(S)
ext(qn, qn+1) = G

(S)
ext(qn+ 1

2
) (6.1.38)

With regard to (6.1.30) the discrete counterpart of (6.1.33) is chosen as

P
2,(S)
ext (qn, qn+1) = P

2,(S)
ext (qn+ 1

2
) (6.1.39)

It can be easily verified that this choice fulfils the design conditions (6.1.24). In particular,

G
(S)
ext(qn+ 1

2
) · P int(qn+ 1

2
) · P (S)

ext(qn+ 1
2
) = 0 (6.1.40)

Accordingly,

P
(S)(qn, qn+1) = P (S)(qn+ 1

2
) (6.1.41)

is a viable discrete null space matrix for the S pair.
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6.1 Lower kinematic pairs

Reparametrisation of unknowns

To specify the reduced set of incremental unknowns (6.1.26) for the S pair, (6.1.31) induces

ϑ(S) = θ2 ∈ R3, the incremental rotation vector pertaining to the second body. Then the

rotational update of the body frame associated with the second body can be performed

according to

(d2
I)n+1 = exp(θ̂2) · (d2

I)n (6.1.42)

Enforcing the external constraints (6.1.29) at the end of the time-step implies

ϕ2
n+1 = ϕ1

n+1 + %1
n+1 − %2

n+1 (6.1.43)

Eventually, the last two equations can be used to determine the mapping

q2
n+1 = F 2,(S)

qn
(µ(S)) =




ϕ1
n + u1

ϕ + exp(θ̂1) · %1
n − exp(θ̂2) · %2

n

exp(θ̂2) · (d2
1)n

exp(θ̂2) · (d2
2)n

exp(θ̂2) · (d2
3)n




(6.1.44)

6.1.5 Cylindrical pair
PSfrag replacements
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1

d1
2

d1
3
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1
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2

d2
3
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1
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%2
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C

Figure 6.2: Cylindrical pair.

For the C pair (Figure 6.2) a unit vector n1 is introduced which is fixed in the first body

and specified by constant components n1
i with respect to the body frame {d1

I}

n1 = n1
i d

1
i (6.1.45)

111



“diss˙ln” — 2006/6/29 — 19:20 — page 112 — #124

6 Multibody system dynamics

In addition to that for κ = 1, 2, two vectors

m1
κ = (m1

κ)id
1
i (6.1.46)

are introduced such that {m1
1,m

1
2,n

1} constitute a right-handed orthonormal frame. The

motion of the second body relative to the first one can be described by r(C) = 2 degrees

of freedom: Translation along n1 and rotation about n1. The translational motion along

n1 may be characterised by the displacement u2 ∈ R, such that (see Figure 6.2)

ϕ1 + %1 + u2n1 = ϕ2 + %2 (6.1.47)

For the subsequent treatment it proves convenient to introduce the vectors

pα = ϕα + %α (6.1.48)

for α = 1, 2.

Constraints and constraint Jacobian

The C pair entails m
(C)
ext = 4 external constraint functions that may be written in the form

g
(C)
ext (q) =




(m1
1)

T · (p2 − p1)

(m1
2)

T · (p2 − p1)

(n1)T · d2
1 − η1

(n1)T · d2
2 − η2


 (6.1.49)

where η1, η2 are constant and need be consistent with the initial conditions. The first two

components of (6.1.49) conform with (6.1.47) and thus confine the translational motion

of the second body relative to the first one. Similarly, the last two components of (6.1.49)

restrict the relative rotational motion. The constraint Jacobian associated with (6.1.49)

is given by the 4 × 24 matrix

G
(C)
ext (q) =




−(m1
1)

T GT
11 GT

12 GT
13 (m1

1)
T %2

1(m
1
1)

T %2
2(m

1
1)

T %2
3(m

1
1)

T

−(m1
2)

T GT
21 GT

22 GT
23 (m1

2)
T %2

1(m
1
2)

T %2
2(m

1
2)

T %2
3(m

1
2)

T

0
T n1

1(d
2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T
0

T (n1)T 0
T

0
T

0
T n1

1(d
2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T
0

T
0

T (n1)T 0
T




(6.1.50)

with

Gκi = (m1
κ)i(p

2 − p1) − %1
i m

1
κ (6.1.51)

for κ = 1, 2 and i = 1, 2, 3.

Remark 6.1.5 (Singularities in the constrained formulation) For certain applications,

e.g. in cases where the joints are located in each body’s center of mass, i.e. %α = 0,

α = 1, 2, the constraint Jacobian (6.1.50) is singular, whenever the rotation axis n1 is

colinear with either of the directors d2
1 or d2

2 used to check the fulfilment of the constraints

(6.1.49). In this case either the sixth or the seventh column in (6.1.50) can be expressed

as a linear combination of the second, third and fourth column.
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6.1 Lower kinematic pairs

Continuous form of the null space matrix

Corresponding to the r(C) = 2 degrees of freedom characterising the motion of the second

body relative to the first one, the independent generalised velocities of the relative motion

read

τ (C) =

[
u̇2

θ̇2

]
(6.1.52)

where, in addition to u2 already introduced in (6.1.47), θ̇2 accounts for the angular velocity

of the second body relative to the first one. Specifically, one gets

ω2 = ω1 + θ̇2n1 (6.1.53)

The vector of independent generalised velocities pertaining to the C pair is now given by

ν(C) =




t1

u̇2

θ̇2


 (6.1.54)

Differentiating (6.1.47) with respect to time and taking into account (6.1.53) and (6.1.47),

a straightforward calculation yields

ϕ̇2 = ϕ̇1 + ω1 × (ϕ2 − ϕ1) + u̇2n1 + θ̇2%2 × n1 (6.1.55)

Now the twist of the second body can be expressed in terms of the independent generalised

velocities via t2,(C) = P
2,(C)
ext (q) · ν (C), with the 6 × 8 matrix

P
2,(C)
ext (q) =

[
I ϕ̂1 − ϕ2 n1 %2 × n1

0 I 0 n1

]
(6.1.56)

Then (6.1.14) yields

P
(C)
ext (q) =

[
I6×6 06×2

P
2,(C)
ext (q)

]
(6.1.57)

Finally, with regard to (6.1.15), the null space matrix for the C pair is given by

P (C)(q) =

[
P 1

int(q
1) 06×2

P 2
int(q

2) · P 2,(C)
ext (q)

]
(6.1.58)

with

P 2
int(q

2) · P 2,(C)
ext (q) =




I ϕ̂1 − ϕ2 n1 %2 × n1

0 −d̂2
1 0 n1 × d2

1

0 −d̂2
2 0 n1 × d2

2

0 −d̂2
3 0 n1 × d2

3




(6.1.59)

It can be easily checked by a straightforward calculation that the present design procedure

for P
2,(C)
ext (q) ensures that

G
(C)
ext (q) · P int(q) · P (C)

ext (q) = 0 (6.1.60)
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6 Multibody system dynamics

Discrete version of the null space matrix

In the present case the discrete null space matrix does not coincide with P (C)(qn+ 1
2
).

Instead, with regard to the midpoint evaluation of the constraint Jacobian in (6.1.50),

the discrete counterpart of (6.1.56) is chosen as

P
2,(C)
ext (qn, qn+1) =


 I ̂ϕ1

n+ 1
2

− ϕ2
n+ 1

2

(m1
1)n+ 1

2
× (m1

2)n+ 1
2

%2
n+ 1

2

× n1
n+ 1

2

0 I 0 n1
n+ 1

2


 (6.1.61)

Remark 6.1.6 In general (m1
1)n+ 1

2
× (m1

2)n+ 1
2

does not coincide with n1
n+ 1

2

, although

m1
1 ×m1

2 = n1
1 in the continuous case. This is due to the fact that in the discrete setting

the internal constraints of orthonormality of the director frame {d1
I} are only enforced at

the time nodes.

In any case it can be easily verified that (6.1.61) fulfils the design conditions (6.1.24).

Finally, in view of (6.1.23), the discrete null space matrix for the C pair assumes the form

P
(C)(qn, qn+1) =

[
P 1

int(q
1
n+ 1

2

) 06×2

P 2
int(q

2
n+ 1

2

) · P2,(C)
ext (qn, qn+1)

]
(6.1.62)

where

P 2
int(q

2
n+ 1

2

)·P2,(C)
ext (qn, qn+1) =




I ̂ϕ1
n+ 1

2

− ϕ2
n+ 1

2

(m1
1)n+ 1

2
× (m1

2)n+ 1
2

%2
n+ 1

2

× n1
n+ 1

2

0 −(d̂2
1)n+ 1

2
0 n1

n+ 1
2

× (d2
1)n+ 1

2

0 −(d̂2
2)n+ 1

2
0 n1

n+ 1
2

× (d2
2)n+ 1

2

0 −(d̂2
3)n+ 1

2
0 n1

n+ 1
2

× (d2
3)n+ 1

2




(6.1.63)

Reparametrisation of unknowns

For the C pair the configuration of the second body with respect to the first one can

be characterised by ϑ(C) = (u2, θ2) ∈ R2. Here θ2 accounts for the incremental relative

rotation which may be expressed via the product of exponentials formula

(d2
I)n+1 = exp(θ̂1) · exp

(
θ2(n̂1)n

)
· (d2

I)n (6.1.64)

Enforcing the external constraints (6.1.47) at the end of the time-step implies

ϕ2
n+1 = ϕ1

n+1 + %1
n+1 − %2

n+1 + (u2
n + u2)n1

n+1 (6.1.65)

Accordingly, the mapping F 2,(C)
qn

(µ(C)) can be written in the form

q2
n+1 = F 2,(C)

qn
(µ(C)) =




ϕ1
n + u1

ϕ + exp(θ̂1) · [%1
n − exp

(
θ2(n̂1)n

)
· %2

n + (u2
n + u2)n1

n]

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

1)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

2)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

3)n




(6.1.66)
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6.1 Lower kinematic pairs

6.1.6 Revolute pair

PSfrag replacements

d1
1

d1
2

d1
3

d2
1

d2
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e1
e2
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Figure 6.3: Revolute pair.

As for the cylindrical pair use is made of the unit vector n1 given by (6.1.45), which

specifies the axis of rotation of the second body relative to the first one.

Constraints and constraint Jacobian

The R pair (Figure 6.3) entails m
(R)
ext = 5 external constraint functions which may be

written in the form

g
(R)
ext (q) =




ϕ2 − ϕ1 + %2 − %1

(n1)T · d2
1 − η1

(n1)T · d2
2 − η2


 (6.1.67)

Analogous to the cylindrical pair η1, η2 are constant and need be consistent with the initial

conditions. The corresponding constraint Jacobian is given by the 5 × 24 matrix

G
(R)
ext (q) =




−I −%1
1I −%1

2I −%1
3I I %2

1I %2
2I %2

3I

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T


 (6.1.68)

Remark 6.1.7 (Singularities in the constrained formulation) For certain applications,

e.g. in cases where the joints are located in each bodies center of mass, i.e. %α = 0,

α = 1, 2, the constraint Jacobian (6.1.68) is singular, whenever the rotation axis n1 is

colinear with either of the directors d2
1 or d2

2 used to check the fulfilment of the constraints

(6.1.67).
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6 Multibody system dynamics

Continuous and discrete form of the null space matrix

Both the continuous and the discrete null space matrix for the R pair can directly be

inferred from the previous treatment of the cylindrical pair. Since the R pair does not

allow translational motion of the second body relative to the first one, the corresponding

column in the null space matrix (associated with u̇2) of the C pair has to be eliminated.

This is consistent with the fact that the R pair has only one (r(R) = 1) degree of free-

dom which characterises the rotational motion of the second body relative to the first

one. In particular, relationship (6.1.53) applies again. Note that, similar to (6.1.55), the

translational velocity of the second body can be expressed as

ϕ̇2 = ϕ̇1 + ω1 × (%1 − %2) + θ̇2%2 × n1 (6.1.69)

which follows from differentiating the first three constraint equations resulting from (6.1.67)

with respect to time and taking into account (6.1.53). Now, similar to (6.1.56), (6.1.69)

gives rise to

P
2,(R)
ext (q) =

[
I %̂2 − %1 %2 × n1

0 I n1

]
(6.1.70)

In this connection note that the first three constraints resulting from (6.1.67) imply that

%2 − %1 = ϕ1 − ϕ2. Proceeding along the lines of the previous treatment of the C pair

one now gets

P (R)(q) =

[
P 1

int(q) 06×1

P 2
int(q) · P 2,(R)

ext (q)

]
(6.1.71)

with

P 2
int(q) · P 2,(R)

ext (q) =




I %̂2 − %1 %2 × n1

0 −d̂2
1 n1 × d2

1

0 −d̂2
2 n1 × d2

2

0 −d̂2
3 n1 × d2

3




(6.1.72)

In addition to that, the discrete null space matrix for the R pair follows from the mid-point

evaluation of (6.1.71), that is,

P
(R)(qn, qn+1) = P (R)(qn+ 1

2
) (6.1.73)

Reparametrisation of unknowns

For the R pair the mapping F 2,(R)
qn

(µ(R)) can be directly obtained from that of the C pair

by fixing u2 = 0. Then the incremental rotational motion of the second body relative to

the first one is specified by ϑ(R) = θ2 ∈ R. With regard to (6.1.66) one thus gets

q2
n+1 = F 2,(R)

qn
(µ(R)) =




ϕ1
n + u1

ϕ + exp(θ̂1) · [%1
n − exp

(
θ2(n̂1)n

)
· %2

n]

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

1)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

2)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

3)n




(6.1.74)
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6.1 Lower kinematic pairs

6.1.7 Prismatic pairPSfrag replacements
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Figure 6.4: Prismatic pair.

In the case of the P pair (Figure 6.4) translational motion of the second body relative to

the first one may occur along the axis specified by the unit vector n1, which as before is

specified by (6.1.45). Analogous to (6.1.47) one gets the kinematic relationship

ϕ1 + %1 + u2n1 = ϕ2 + %2 (6.1.75)

Furthermore, the kinematic constraint

ω2 = ω1 (6.1.76)

applies to the P pair.

Constraints and constraint Jacobian

The P pair entails m
(P )
ext = 5 external constraint functions that may be written in the form

g
(P )
ext (q) =




(m1
1)

T · (p2 − p1)

(m1
2)

T · (p2 − p1)

(d1
1)

T · d2
2 − η1

(d1
2)

T · d2
3 − η2

(d1
3)

T · d2
1 − η3




(6.1.77)

where ηi, i = 1, 2, 3 are constant and need be consistent with the initial conditions. Again,

m1
κ ∈ R3 and pα ∈ R3 are given by (6.1.46) and (6.1.48), respectively. Note that the

constraints resulting from the last three components of (6.1.77) conform with (6.1.76).
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6 Multibody system dynamics

The constraint Jacobian emanating from (6.1.77) is given by the 5 × 24 matrix

G
(P )
ext (q) =




−(m1
1)

T GT
11 GT

12 GT
13 (m1

1)
T %2

1(m
1
1)

T %2
2(m

1
1)

T %2
3(m

1
1)

T

−(m1
2)

T GT
21 GT

22 GT
23 (m1

2)
T %2

1(m
1
2)

T %2
2(m

1
2)

T %2
3(m

1
2)

T

0T (d2
2)

T 0T 0T 0T 0T (d1
1)

T 0T

0T 0T (d2
3)

T 0T 0T 0T 0T (d1
2)

T

0T 0T 0T (d2
1)

T 0T (d1
3)

T 0T 0T




(6.1.78)

where the Gκi’s are again given by (6.1.51).

Discrete null space matrix

To get proper representations of both the continuous and the discrete null space matrices

for the P pair, the previous treatment of the C pair requires slight modification. To this

end one essentially has to remove θ̇2 so that only u̇2 remains to characterise the motion

of the second body relative to the first one (r(P ) = 1). Then (6.1.55) yields

ϕ̇2 = ϕ̇1 + ω1 × (ϕ2 − ϕ1) + u̇2n1 (6.1.79)

such that

P
2,(P )
ext (q) =

[
I ϕ̂1 − ϕ2 n1

0 I 0

]
(6.1.80)

Analogous to (6.1.61), the discrete version of (6.1.80) is given by

P
2,(P )
ext (qn, qn+1) =

[
I ̂ϕ1

n+ 1
2

− ϕ2
n+ 1

2

(m1
1)n+ 1

2
× (m1

2)n+ 1
2

0 I 0

]
(6.1.81)

such that the discrete null space matrix for the P pair can be written as

P
(P )(qn, qn+1) =

[
P 1

int(q
1
n+ 1

2

) 06×1

P 2
int(q

2
n+ 1

2

) · P2,(P )
ext (qn, qn+1)

]
(6.1.82)

where

P 2
int(q

2
n+ 1

2
) ·P2,(P )

ext (qn, qn+1) =




I ̂ϕ1
n+ 1

2

− ϕ2
n+ 1

2

(m1
1)n+ 1

2
× (m1

2)n+ 1
2

0 −(d̂2
1)n+ 1

2
0

0 −(d̂2
2)n+ 1

2
0

0 −(d̂2
3)n+ 1

2
0




(6.1.83)
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6.1 Lower kinematic pairs

Reparametrisation of unknowns

The mapping F 2,(P )
qn

(µ(P )) can be inferred from the corresponding one for the C pair,

equation (6.1.66), by setting θ2 = 0. Accordingly,

q2
n+1 = F 2,(P )

qn
(µ(P )) =




ϕ1
n + u1

ϕ + exp(θ̂1) · [%1
n − %2

n + (u2
n + u2)n1

n]

exp(θ̂1) · (d2
1)n

exp(θ̂1) · (d2
2)n

exp(θ̂1) · (d2
3)n




(6.1.84)

with incremental unknowns µ(P ) = (u1
ϕ, θ

1, u2) ∈ R3 × R3 × R.

6.1.8 Planar pair
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Figure 6.5: Planar pair.

As before in the context of the cylindrical pair, for the E pair (Figure 6.5) use is made

of the orthonormal frame {m1
1,m

1
2,n

1}, with n1 = n1
i d

1
i and m1

κ = (m1
κ)id

1
i . In the

present case the motion of the second body relative to the first one can be characterised

by r(E) = 3 degrees of freedom. Specifically, the second body may rotate about the axis

specified by n1 and translate in the plane spanned by m1
1 and m1

2. Correspondingly, the

rotational motion can be described by the kinematical relationship

ω2 = ω1 + θ̇2n1 (6.1.85)

whereas the relative translational motion may be accounted for by two coordinates

(u2
1, u

2
2) ∈ R2, such that

p2 = p1 + u2
κm

1
κ (6.1.86)

As before, pα = ϕα + %α for α = 1, 2.
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Constraints and constraint Jacobian

The E pair gives rise to m
(E)
ext = 3 external constraint functions that may be written in

the form

g
(E)
ext (q) =




(n1)T · (p2 − p1)

(n1)T · d2
1 − η1

(n1)T · d2
2 − η2


 (6.1.87)

where η1, η2 are constant and need be consistent with the initial conditions. Note that the

first component of (6.1.87) conforms with (6.1.86), whereas the last two components of

(6.1.87) conform with (6.1.85). The constraint Jacobian emanating from (6.1.87) is given

by the 3 × 24 matrix

G
(E)
ext (q) =




−(n1)T GT
1 GT

2 GT
3 (n1)T %2

1(n
1)T %2

2(n
1)T %2

3(n
1)T

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T




(6.1.88)

with

Gi = n1
i (p

2 − p1) − %1
i n

1 (6.1.89)

for i = 1, 2, 3.

Continuous form of the null space matrix

Differentiating (6.1.86) with respect to time and taking into account (6.1.85) yields

ϕ̇2 = ϕ̇1 + ω1 × (ϕ2 − ϕ1) + u̇2
κm

1
κ + θ̇2%2 × n1 (6.1.90)

The last equation in conjunction with (6.1.85) indicates that the twist of the second body

can be expressed in terms of the independent velocities ν (E) = [t1, u̇2
1, u̇

2
2, θ̇

2]T , such that

t2,(E) = P
2,(E)
ext · ν(E). Here the 6 × 9 matrix P

2,(E)
ext is given by

P
2,(E)
ext (q) =

[
I ϕ̂1 − ϕ2 m1

1 m1
2 %2 × n1

0 I 0 0 n1

]
(6.1.91)

Then (6.1.14) yields

P
(E)
ext (q) =

[
I6×6 06×3

P
2,(E)
ext (q)

]
(6.1.92)

Finally, with regard to (6.1.15), the null space matrix for the E pair is given by

P (E)(q) =

[
P 1

int(q) 06×2

P 2
int(q) · P 2,(E)

ext (q)

]
(6.1.93)
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with

P 2
int(q) · P 2,(E)

ext (q) =




I ϕ̂1 − ϕ2 m1
1 m1

2 %2 × n1

0 −d̂2
1 0 0 n1 × d2

1

0 −d̂2
2 0 0 n1 × d2

2

0 −d̂2
3 0 0 n1 × d2

3




(6.1.94)

It can be easily checked by a straightforward calculation that the present design procedure

for P
2,(E)
ext (q) ensures that

G
(E)
ext (q) · P int(q) · P (E)

ext (q) = 0 (6.1.95)

Discrete version of the null space matrix

In the present case the discrete null space matrix does not coincide with P (E)(qn+ 1
2
).

Instead, it can be easily verified that the choice

P
2,(E)
ext (qn, qn+1) =
[

I (ϕ̂1 − ϕ2)n+ 1
2

(m1
2)n+ 1

2
× (n1)n+ 1

2
(n1)n+ 1

2
× (m1

1)n+ 1
2

%2
n+ 1

2

× n1
n+ 1

2

0 I 0 0 n1
n+ 1

2

]

(6.1.96)

satisfies the design conditions (6.1.24). Finally, in view of (6.1.23), the discrete null space

matrix for the E pair assumes the form

P
(E)(qn, qn+1) =

[
P 1

int(q
1
n+ 1

2

) 06×3

P 2
int(q

2
n+ 1

2

) · P2,(E)
ext (qn, qn+1)

]
(6.1.97)

where

P 2
int(q

2
n+ 1

2

) · P2,(E)
ext (qn, qn+1) =




I (ϕ̂1 − ϕ2)n+ 1
2

(m1
2)n+ 1

2
× (n1)n+ 1

2
(n1)n+ 1

2
× (m1

1)n+ 1
2

%2
n+ 1

2

× n1
n+ 1

2

0 −(d̂2
1)n+ 1

2
0 0 n1

n+ 1
2

× (d2
1)n+ 1

2

0 −(d̂2
2)n+ 1

2
0 0 n1

n+ 1
2

× (d2
2)n+ 1

2

0 −(d̂2
3)n+ 1

2
0 0 n1

n+ 1
2

× (d2
3)n+ 1

2




(6.1.98)

Reparametrisation of unknowns

In the present case the configuration of the second body with respect to the first one can be

characterised by the incremental variables ϑ(E) = (u2
1, u

2
2, θ

2) ∈ R3. Here θ2 accounts for

the incremental relative rotation which may be expressed via the product of exponentials

formula

(d2
I)n+1 = exp(θ̂1) · exp

(
θ2(n̂1)n

)
· (d2

I)n (6.1.99)
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Enforcing the external constraints (6.1.86) at the end of the time-step implies

ϕ2
n+1 = ϕ1

n+1 + %1
n+1 − %2

n+1 + ((u2
κ)n + u2

κ)(m
1
κ)n+1 (6.1.100)

Accordingly, the mapping F 2,(E)
qn

(µ(E)) can be written in the form

q2
n+1 = F 2,(E)

qn
(µ(E)) =




ϕ1
n + u1

ϕ + exp(θ̂1) · [%1
n − exp

(
θ2(n̂1)n

)
· %2

n + ((u2
κ)n + u2

κ)(m1
κ)n]

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

1)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

2)n

exp(θ̂1) · exp
(
θ2(n̂1)n

)
· (d2

3)n




(6.1.101)

6.1.9 Numerical examples

Revolute pair
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Figure 6.6: Initial configuration of the revolute pair.

First of all, the free flight of a revolute pair (Figure 6.6, see also Figure 6.3) is investigated.

The first body consists of a cylinder of length l1 = 15, radius r1 = 2 and mass M 1
ϕ = 100.

The second body consists of two parts, a hollow cylinder of length l2 = 4.2, outer radius

r2
o = 2.1, inner radius r2

i = 2 and mass M 21
ϕ = 1. The hollow cylinder is slipped over the

first body and connected to a solid cylinder of length l3 = 10 and radius r3 = 2.1 and

mass M22
ϕ = 1. Consequently, the total mass of the second body is given by M 2

ϕ = 2 and

the principal values of the inertia tensor with respect to the center of mass are given by

[J1
i ] = [1975, 1975, 200] (6.1.102)
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and

[J2
i ] = [12.64083, 32.3717, 26.14083] (6.1.103)

respectively. Relative to the respective body frame the location of the revolute joint is

characterised by

[%1
i ] = [0, 0, 5] [%2

i ] = [−2.5, 0, 0] (6.1.104)

Furthermore, the unit vector (6.1.45) is specified by

[n1
i ] = [0, 0, 1] (6.1.105)

The initial configuration of the revolute pair is characterised by ϕα = ϕα
i ei with

[ϕ1
i ] = [3, 3, 8] [ϕ2

i ] = [5.5, 3, 13] (6.1.106)

along with

d1
I = eI d2

I = eI (6.1.107)

for I = 1, 2, 3. The corresponding consistent initial relative rotation is θ2 = 0. Consistent

initial velocities can be computed by using the null space matrix (6.1.71), such that

q̇ = P (R)(q) · ν(R) (6.1.108)

where the independent generalised velocities are specified by

ν(R) =




ϕ̇1

ω1

θ̇2


 =




0

10

−20

−20

−15




(6.1.109)

No external forces are acting on the R pair such that the total energy and the vector of an-

gular momentum are first integrals of the motion, see Figure 6.8. To illustrate the motion

of the R pair, Figure 6.7 shows some snapshots at t ∈ {0.06, 0.08, 0.11, 0.15, 0.17, 0.18}.
Furthermore, the evolution of the relative rotation θ2(t) is depicted in Figure 6.9.

Table 6.2 reveals that the implementation of the constrained scheme (3.2.7) leads to 41

unknowns, whereas the discrete null space method with nodal reparametrisation (3.2.44)

yields a reduction to 7 unknowns. Furthermore, from Table 6.2 the condition number of

the iteration matrix for the constrained scheme and the reduced scheme can be compared.

Accordingly, the condition number of the reduced scheme is of constant and moderate

value, whereas the iteration matrix of the constrained scheme becomes more and more

ill-conditioned for decreasing time-steps.

The second-order accuracy of the d’Alembert-type scheme with nodal reparametrisa-

tion (3.2.44) can be observed in Figure 6.10. The relative error in the phase variable

ez =
∥∥z − zref

∥∥/∥∥zref

∥∥ at t = 2 drops off quadratically as the time-step decreases.

The diagram on the left hand side shows the convergence to a reference solution calcu-

lated with the d’Alembert-type scheme with nodal reparametrisation using a time-step

h = 10−5, thus it represents the consistency of the scheme. The diagram on the right hand

side shows the convergence to a reference solution calculated with the constrained scheme

(3.2.7) using a time-step h = 10−5. It confirms the statement of Proposition 3.2.12.
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Figure 6.7: Revolute pair: snapshots of the motion at t ∈ {0.06, 0.08, 0.11, 0.15, 0.17, 0.18}.
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Figure 6.8: Revolute pair: energy and components of angular momentum vector L = Liei (h = 0.01).
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Figure 6.9: Revolute pair: relative coordinate θ2(t) (h = 0.01).
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Figure 6.10: Revolute pair: relative error of phase variable with respect to a reference solution (h =

10−5) calculated with the d’Alembert-type scheme with nodal reparametrisation (left) and
with the constrained scheme (right).

Table 6.2: Comparison of constrained scheme to d’Alembert-type scheme with nodal reparametrisation
for the example ‘revolute pair’.

constrained d’Alembert

number of unknowns 41 7

n = 24 m = 17

CPU-time 5.8 1

condition number

h = 10−2 1013 102

h = 10−3 1016 102

h = 10−4 1019 102
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Cylindrical pair
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Figure 6.11: Initial configuration of the cylindrical pair.

The free flight of a cylindrical pair (Figure 6.11, see also Figure 6.2) is investigated next.

The first body consists of a cylinder of length l1 = 30, radius r1 = 2 and mass M 1
ϕ = 4.

The second body is modelled as a hollow cylinder of length l2 = 6, outer radius r2
o = 3,

inner radius r2
i = 2 and mass M 2

ϕ = 3. The principal values of the inertia tensor with

respect to the center of mass are given by

[J1
i ] = [304, 304, 8] (6.1.110)

and

[J2
i ] = [18.75, 18.75, 19.5] (6.1.111)

respectively. The cylindrical joints are located in the center of mass of each body. Con-

sequently, relative to the respective body frame the location is characterised by

[%1
i ] = [0, 0, 0] [%2

i ] = [0, 0, 0] (6.1.112)

Furthermore, the unit vector (6.1.45) is specified by

[n1
i ] = [0, 0, 1] (6.1.113)

The initial configuration of the cylindrical pair is characterised by ϕα = ϕα
i ei with

[ϕ1
i ] = [0, 0, 0] [ϕ2

i ] = [0, 0,−11] (6.1.114)

along with

d1
I = eI d2

I = eI (6.1.115)

for I = 1, 2, 3. Note that corresponding consistent initial relative coordinates are u2 = −11

and θ2 = 0. Consistent initial velocities can be computed by using the null space matrix

(6.1.58), such that

q̇ = P (C)(q) · ν (C) (6.1.116)
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where the independent generalised velocities are specified by

ν(C) =




ϕ̇1

ω1

u̇2

θ̇2


 =




0

50

0

−1

−1.5

0

35.5

100




(6.1.117)

No external forces are acting on the C pair such that the total energy and the vector of

angular momentum are first integrals of the motion, see Figure 6.13. To illustrate the

motion of the C pair, Figure 6.12 shows some snapshots at t ∈ {0.1, 0.3, 0.7}. Furthermore,

the evolution of the relative degrees of freedom u2(t) and θ2(t) is depicted in Figure 6.14.

From Table 6.3, the condition number of the iteration matrix for the constrained scheme

and the reduced scheme can be compared. Accordingly, the reduced scheme is well con-

ditioned for all time-steps, whereas the condition number of the constrained scheme in-

creases heavily for decreasing time-steps. Note that the implementation of the constrained

scheme (3.2.7) leads to 40 unknowns, whereas the discrete null space method with nodal

reparametrisation (3.2.44) yields a reduction to 8 unknowns.
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Figure 6.12: Cylindrical pair: snapshots of the motion at t = 0.1, t = 0.3, t = 0.7.
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Figure 6.13: Cylindrical pair: energy and components of angular momentum vector L = Liei (h = 0.01).
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Figure 6.14: Cylindrical pair: relative coordinates u2(t) and θ2(t) (h = 0.01).
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Table 6.3: Comparison of constrained scheme to d’Alembert-type scheme with nodal reparametrisation
for the example ‘cylindrical pair’.

constrained d’Alembert

number of unknowns 40 8

n = 24 m = 16

CPU-time 1.2 1

condition number

h = 10−2 1011 102

h = 10−3 1014 102

h = 10−4 1017 102
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Planar pair
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Figure 6.15: Initial configuration of the planar pair.

Now the free flight of a planar pair (Figure 6.15, see also Figure 6.5) is investigated. The

E pair consists of a parallelepiped of mass M 1
ϕ = 5 and side lengths l1x = l1y = 16, l1z = 0.5,

such that the principal values of the inertia tensor with respect to the center of mass are

given by

[J1
i ] =

[
5125

48
,
5125

48
,
640

3

]
(6.1.118)

The second body is modelled as a pyramid with mass M 2
ϕ = 2, side length of the square

base l2x = l2y = 2 and height l2z = 3, leading to the principal values of the inertia tensor

with respect to the center of mass

[J2
i ] =

[
43

40
,
43

40
,
4

5

]
(6.1.119)

The location of the planar joint relative to the respective body frame is characterised by

[%1
i ] = [0, 0, 0.25] [%2

i ] = [0, 0,−1] (6.1.120)

Furthermore, the orthonormal frame needed for the description of the relative motion is

specified by

[n1
i ] = [0, 0, 1] [(m1

1)i] = [1, 0, 0] [(m1
2)i] = [0, 1, 0] (6.1.121)

such that the pyramid is constrained to slide on the top surface of the parallelepiped. The

initial configuration of the planar pair is characterised by ϕα = ϕα
i ei with

[ϕ1
i ] = [5, 5, 5] [ϕ2

i ] = [−2,−2, 6.25] (6.1.122)

along with

d1
I = eI d2

I = eI (6.1.123)
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for I = 1, 2, 3. Correspondingly, consistent initial values for the relative coordinates are

given by

u2
1 = −7 u2

2 = −7 θ2 = 0 (6.1.124)

Consistent initial velocities are specified by using the null space matrix (6.1.93), so that

q̇ = P (E)(q) · ν(E) (6.1.125)

with independent generalised velocities

ν(E) =




ϕ̇1

ω1

u̇2
1

u̇2
2

θ̇2




=




0

20

20

−10

150

−120

−60




(6.1.126)

Note that, for clearness of exposition, the initial velocity of the mass center of the first

body has been set to zero (ϕ̇1 = 0). Snapshots of the planar pair at consecutive instants

illustrate the simulated motion in Figure 6.16. Since no external forces are acting on the

planar pair, both the energy and the vector of angular momentum are conserved quanti-

ties. The corresponding algorithmic conservation properties are confirmed in Figure 6.17.

Furthermore, Figure 6.18 depicts the evolution of the relative coordinates specifying the

configuration of the second body relative to the first one.

Table 6.4 again verifies that the condition number of the iteration matrix can be signifi-

cantly improved by applying the discrete null space method. In this connection, recall that

the implementation of the constrained scheme (3.2.7) is based on

n + m(E) = 24 + 15 = 39 unknowns, whereas the application of the discrete null space

method with nodal reparametrisation (3.2.44) yields a reduction to n − m(E) = 9 un-

knowns. This has an impact on the computational costs, which are about five times

higher for the constrained scheme.
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Figure 6.16: Planar pair: snapshots of the motion at t ∈ {0.02, 0.04, 0.05, 0.06, 0.07, 0.08}.
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Figure 6.17: Planar pair: energy and components of angular momentum vector L = Liei (h = 0.001).
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Table 6.4: Comparison of constrained scheme to d’Alembert-type scheme with nodal reparametrisation
for the example ‘planar pair’.

constrained d’Alembert

number of unknowns 39 9

n = 24 m = 15

CPU-time 4.9 1

condition number

h = 10−2 1010 102

h = 10−3 1013 102

h = 10−4 1016 102
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Figure 6.19: Schematic illustration of a simple open kinematic chain.

6.2 Simple kinematic chains

Combinations of kinematic pairs constitute kinematic chains. Only simple kinematic

chains, where each link is coupled to maximal two other links are considered in this work.

If every link is coupled to exactly two other links, the resulting closed chain is also called

linkage. An open kinematic chain, where precisely two links, the end links, are coupled

to only one other link is also termed manipulator. From the rich robotics terminology,

only the notation relevant for the following investigations are introduced, further discus-

sion on the subject can be found e.g. in [Ange 88, Ange 97, Gera 01, Schi 86, Eich 98].

The Denavit-Hartenberg nomenclature described in the second and third reference is a

powerful notation to describe the architecture of simple kinematic chains consisting of

elementary kinematic pairs, i.e. of revolute and prismatic pairs. Its variable applicability

exceeds the frame of the following investigations in kinematic chains, thus only parts of

the notation are introduced.

6.2.1 Open kinematic chains

Simple open kinematic chains, that can be described as an extension of the previous

treatment of lower kinematic pairs, are considered in this section. In particular, only

chains consisting of the elementary R and P pair are considered, since all other kinematic

couplings can be described as a combination of those.

Let a serial manipulator, as depicted schematically in Figure 6.19, consist of N + 1 rigid

bodies numbered by α = 0, . . . , N and N axes n0, . . .nN−1, where corresponding to

(6.1.45), nα is specified in the α-th body frame by

nα = nα
i dα

i (6.2.1)

The N joints connecting the bodies in the simple open kinematic chain are numbered by

α = 1, . . . , N and corresponding to (6.1.28) the location of the α-th joint in the (α− 1)-st
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and α-th body is characterised by

%α−1,α = %α−1
i dα−1

i %α,α = %α
i dα

i (6.2.2)

Assuming that none of the links are fixed in space, the manipulator can be described in

terms of n = 12(N + 1) redundant coordinates

q(t) =




q0(t)
...

qN (t)


 ∈ Rn (6.2.3)

generalising (6.1.1). The rigidity of each link gives rise to six internal constraints

gα
int(q

α) ∈ R6 of the form (4.3.3) along with constraint Jacobians Gα
int(q

α) ∈ R6×12

of the form (4.3.4) for α = 0, . . . , N . Similar to (6.1.2) and (6.1.3) they can be combined

to the mint = 6(N +1)-dimensional vector of internal constraints gint(q) and the mint ×n
internal constraint Jacobian matrix Gint(q).

The coupling of two neighbouring links in Figure 6.20 by a revolute or prismatic joint yields

five external constraints gα
ext([q

α−1, qα]T ) ∈ R5 with constraint Jacobians

Gα
ext([q

α−1, qα]T ) ∈ R5×24 given in (6.1.67) and (6.1.68) for the R pair and in (6.1.77) and

(6.1.78) for the P pair respectively. Similar to (6.1.4) and (6.1.5) all

mo = mint + mo
ext = 6(N + 1) + 5N constraints pertaining to the open loop system

and the corresponding constraint Jacobians can be combined to

go(q) =

[
gint(q)

go
ext(q)

]
∈ Rmo

Go(q) =

[
Gint(q)

Go
ext(q)

]
∈ Rmo×n (6.2.4)

The Hamiltonian for the open kinematic chain takes the separable form given in (3.2.4)

with the constant mass matrix

M =




M 0 0 · · · 0

0 M 1 · · · 0
...

...
. . .

...

0 0 · · · MN


 (6.2.5)

where each submatrix Mα ∈ R12×12 coincides with (4.3.8).
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Accordingly, the continuous constrained Hamiltonian equations can be inferred directly

from the procedure presented in Section 2.3 and corresponding time-stepping schemes

can be chosen from Section 3.2. Note that using the Lagrange multiplier method, the

time-stepping scheme (3.2.5) is n+mo = (23N + 18)-dimensional. Opposite to that, the

simple open kinematic chain has n−mo = N + 6 degrees of freedom.

6.2.2 Null space method

The first step in the reduction procedure according to the null space method for lower

kinematic pairs presented in Section 6.1.2 is the introduction of the α-th bodies twist

tα ∈ R6 given in (6.1.8). Then the redundant velocities of N + 1 free rigid bodies can

be expressed in terms of the twist t ∈ R6(N+1) according to q̇ = P int(q) · t where the

12(N + 1) × 6(N + 1) internal null space matrix

P int(q) =




P 0
int(q

0) 0 · · · 0

0 P 1
int(q

1) · · · 0
...

...
. . .

...

0 0 · · · P N
int(q

N)


 (6.2.6)

consists of submatrices P α
int(q

α) of the form (6.1.10).

The treatment of the revolute pair in Section 6.1.6 and of the prismatic pair in Section 6.1.7

can be easily generalised to the kinematic chain at hand. Let the α-th pair in the chain

be a revolute pair. Then using P
α,(R)
ext (q) of the form (6.1.70), the relationship between

the α-th and (α− 1)-st body’s twist can be written as

tα = P
α,(R)
ext (q) ·

[
tα−1

θ̇α

]
(6.2.7)

Partitioning P
α,(R)
ext (q) = [P

α,(R),a
ext (q),P

α,(R),b
ext (q)], with P

α,(R),a
ext (q) ∈ R6×6 and

P
α,(R),b
ext (q) ∈ R6×1, equation (6.2.7) may be rewritten as

tα = P
α,(R),a
ext (q) · tα−1 + P

α,(R),b
ext (q) · θ̇α (6.2.8)

where

P
α,(R),a
ext (q) =

[
I ̂%α,α − %α−1,α

0 I

]
P

α,(R),b
ext (q) =

[
%α,α × nα−1

nα−1

]
(6.2.9)

Similarly for the α-th pair being prismatic, using P
α,(P )
ext (q) of the form (6.1.80) yields

tα = P
α,(P )
ext (q) ·

[
tα−1

u̇α

]
(6.2.10)

or in partitioned form

tα = P
α,(P ),a
ext (q) · tα−1 + P

α,(P ),b
ext (q) · u̇α (6.2.11)
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with

P
α,(P ),a
ext (q) =

[
I ̂ϕα−1 − ϕα

0 I

]
P

α,(P ),b
ext (q) =

[
nα−1

0

]
(6.2.12)

As already stated, any kinematic chain can be decomposed into combinations of R and

P pairs. Therefore using the scalar generalised velocity νk, k = 1, . . . , N (with νk = θ̇k

if the k-th joint is a revolute joint and νk = u̇k if the k-th pair is a P pair), the twist of

the α-th link in a general series manipulator can be obtained from recursive application

of formula (6.2.8) and (6.2.11):

tα = P
α,0
ext(q) · t0 +

α∑

k=1

P
α,k
ext(q)νk (6.2.13)

with P
0,(J),0
ext (q) = I6×6 and for α = 1, . . . , N

P
α,0
ext(q) =

1∏

l=α

P
l,(J),a
ext (q) (6.2.14)

and k = 1, . . . , N

P
α,k
ext(q) =





(
k+1∏

l=α

P
l,(J),a
ext (q)

)
· P k,(J),b

ext (q) α > k

P
k,(J),b
ext (q) α = k

0 α < k

(6.2.15)

where the matrices P
α,(J),a
ext (q) and P

α,(J),b
ext (q), J ∈ {R,P} are either of the form (6.2.9)

or (6.2.12) depending on whether the α-th pair is a R or P pair.

Example 6.2.1 (Pure R chain, null space matrix) For a kinematic chain consisting

purely of R pairs, calculating the matrix products in (6.2.14) and (6.2.15) leads to the

following more explicit expressions

P
α,0
ext(q) =




I3×3

α∑

l=1

̂%l,l − %l−1,l

03×3 I3×3


 (6.2.16)

and

P
α,k
ext(q) =





[
gα,k × nk−1

nk−1

]
α > k

[
%k,k × nk−1

nk−1

]
α = k

0 α < k

(6.2.17)

with

gα,k = %α,α +
α−1∑

l=k

(
%l,l − %l−1,l

)
(6.2.18)
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Example 6.2.2 (Pure P chain, null space matrix) For kinematic chains consisting

purely of P pairs, the matrix products in (6.2.14) and (6.2.15) are given more explic-

itly by

P
α,0
ext(q) =

[
I3×3

̂ϕ0 − ϕα

03×3 I3×3

]
(6.2.19)

and

P
α,k
ext(q) =

[
nk−1

0

]
α ≥ k (6.2.20)

Accordingly the 6(N + 1)-dimensional twist of the simple open kinematic chain under

consideration can be written in terms of the independent generalised velocities νo ∈ RN+6

of the simple open kinematic chain as

t = P o
ext(q) · νo (6.2.21)

or more explicitly using the submatrices given in (6.2.14) and (6.2.15)




t0

t1

...

tN


 =




I6×6 0 · · · 0

P
1,0
ext P

1,1
ext · · · 0

...
...

. . .
...

P
N,0
ext P

N,1
ext · · · P

N,N
ext


 ·




t0

ν1

...

νN


 (6.2.22)

where for clearness of exposition the dependence on q is not indicated in the matrix

representation of P o
ext(q).

Eventually, in analogy to formula (6.1.15) for the total null space matrix pertaining to a

kinematic pair, the redundant 12(N+1)-dimensional velocity vector of the open chain can

be expressed as q̇ = P o(q) · νo with the total n× (n−mo) null space matrix pertaining

to the open chain

P o(q) = P int(q) · P o
ext(q) (6.2.23)

where P int(q) is given in (6.2.6).

Discrete null space method with nodal reparametrisation

From the treatment of kinematic pairs in Section 6.1.2 it is obvious, that the discrete null

space matrix pertaining to the internal constraints equals the midpoint evaluation of the

continuous one, i.e.

Pint(qn, qn+1) = P int(qn+ 1
2
) (6.2.24)

Similar to the midpoint evaluation of the total null space matrix pertaining to the R pair

in (6.1.73), the discrete versions of (6.2.9) are given by

P
α,(R),a
ext (qn, qn+1) = P

α,(R),a
ext (qn+ 1

2
) P

α,(R),b
ext (qn, qn+1) = P

α,(R),b
ext (qn+ 1

2
) (6.2.25)
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For the P pair, the discrete null space matrix pertaining to the external constraints is not

equal to the midpoint evaluation of the continuous one. With regard to (6.1.81), for the

α-th pair being prismatic, the discrete counterparts of the matrices in (6.2.12) are given

by

P
α,(P ),a
ext (qn, qn+1) =

[
I ̂ϕα−1

n+ 1
2

− ϕα
n+ 1

2

0 I

]

P
α,(P ),b
ext (qn, qn+1) =

[
(mα−1

1 )n+ 1
2
× (mα−1

2 )n+ 1
2

0

] (6.2.26)

Then the discrete counterpart P
o
ext(qn, qn+1) of the null space matrix pertaining to the

external constraints of the open kinematic chain consists of the discrete submatrices for

α, k = 1, . . . , N denoted by P
α,0(qn, qn+1) and P

α,k(qn, qn+1), which can be calculated

by insertion of the discrete null space matrices pertaining to the specific α-th pair given

in (6.2.25) and (6.2.26), into formulas (6.2.14) and (6.2.15). Eventually, in accordance

with (6.1.23) for kinematic pairs, the total discrete null space matrix for the simple open

kinematic chain is given explicitly by

P
o(qn, qn+1) = P int(qn+ 1

2
) · Po

ext(qn, qn+1) (6.2.27)

Example 6.2.3 (Pure R chain, discrete null space matrix) For a simple open kine-

matic chain consisting purely of R pairs, the discrete null space matrix coincides with the

midpoint evaluation of the continuous one, i.e. P
o(qn, qn+1) = P int(qn+ 1

2
) · P o

ext(qn+ 1
2
).

The reparametrisation qn+1 = Fq
n
(µo) ∈ C of the configuration vector in terms of the in-

dependent incremental unknowns µo = (u0
ϕ, θ

0, ϑ1, . . . , ϑN ) ∈ RN+6 can be accomplished

successively for the N kinematic pairs in the chain. Depending on whether the α-th pair

is a R or P pair, ϑα = θα or ϑα = uα and the reparametrisation given for the R pair in

(6.1.74) or for the P pair in (6.1.84) is applied. As for kinematic pairs or for the motion

of a single rigid body, for the reparametrisation of the first body in the open chain, body

0, formula (4.3.31) is used.

Example 6.2.4 (Pure R chain, nodal reparametrisation) For a simple open kinematic

chain consisting purely of R pairs, the reparametrisation of qα
n+1 ∈ R12, α = 1, . . . , N is

based on a product of exponentials formula (4.3.30), which characterisess the incremental

rotational motion in terms of the incremental joint angles θ1, . . . , θN . Accordingly, the

director frame of the α-th body at the end of a time-step is given by

(dα
I )n+1 =

α∏

k=1

exp(θ̂0) · exp(θk(n̂k−1)n) · (dα
I )n (6.2.28)

In addition to that, the placement of the center of mass of the α-th body with respect to

the inertial frame {eI} is given by

ϕα
n+1 = ϕ0

n+1 +
α∑

k=1

(
(%k−1,k)n+1 − (%k,k)n+1

)
(6.2.29)
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Figure 6.21: Schematic illustration of closed kinematic chain.

Example 6.2.5 (Pure P chain, nodal reparametrisation) For a simple open kinematic

chain consisting purely of P pairs, the reparametrisation of the director frames is trivial,

all director frames are updated according to the rotational increment of the first body,

i.e.

(dα
I )n+1 = exp(θ̂0) · (dα

I )n (6.2.30)

In addition to that, the placement of the center of mass of the α-th body with respect to

the inertial frame {eI} is given by

ϕα
n+1 = ϕ0

n+1 +

α∑

k=1

(
(%k−1,k)n+1 − (%k,k)n+1 + (uk

n + uk)nk−1
n+1

)
(6.2.31)

6.2.3 Closed kinematic chains

Unlike for open kinematic chains, where any combination of the lower kinematic pairs

described in Section 6.1 can be combined to a movable kinematic chain, the question

how many degrees of freedom a closed kinematic chain has, is much more challenging.

Generally, it cannot be determined by investigation of the topology of the chain alone

(see e.g. [Ange 88]).

The investigation of closed kinematic chains as sketched in Figure 6.21 usually starts with

the associated open kinematic chain in Figure 6.19, which is subject to mc
ext loop closure

conditions

gc
ext(q) = 0 (6.2.32)

connecting the first body with the last one in the open chain.
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For general closed loop systems, it is often hard or even impossible to find an explicit

representation of a continuous null space matrix by analysis of the independent generalised

velocities or in terms of a reparametrisation of the constraint manifold (see Section 2.3.4).

If one succeeds in finding an explicit representation, it is very unlikely that a midpoint

evaluation serves as a viable discrete null space matrix or that the necessary modifications

to a midpoint evaluations can be detected, see Remark 3.2.8. Consequently, one has

to revert to the implicit representation of the discrete null space matrix described in

Example 3.2.9, relying on the decomposition of Rn, which is relatively expensive. Thus it

is reasonable to make use of the explicit representation of the discrete null space matrix

P
o(qn, qn+1) in (6.2.27) by the introduction of a multiplicative decomposition of the closed

kinematic chain’s discrete null space matrix

P
c(qn, qn+1) = P

o(qn, qn+1) · Pc
ext(qn, qn+1) (6.2.33)

into that of the associated open kinematic chain P
o(qn, qn+1) and the discrete null space

matrix P
c
ext(qn, qn+1) pertaining to the loop closure condition (6.2.32). Inspection of the

design condition of discrete null space matrices (3.2.30) yields

G
c(qn, qn+1) ·Pc(qn, qn+1) =

[
G

o(qn, qn+1) · Po(qn, qn+1)

G
c
ext(qn, qn+1) · Po(qn, qn+1)

]
·Pc

ext(qn, qn+1) (6.2.34)

Assuming that the associated open loop system has been treated appropriately, the upper

entry in the matrix in (6.2.34) equals the mo × (n − mo) zeros matrix. Then the nodal

reparametrisation of the configuration variable qn+1 = Fq
n
(µo) ∈ C ⊂ R12(N+1) in terms

of the independent incremental unknowns of the open kinematic chain

µo = (u0
ϕ, θ

0, ϑ1, . . . , ϑN) ∈ RN+6 is used to define the reduced (n−mo−mc
ext)-dimensional

constraint manifold

C̃ =
{
µo ∈ Rn−mo∣∣ go(Fq

n
(µo)) = 0, gc

ext(Fq
n
(µo)) = 0

}
(6.2.35)

According to the procedure described in Example 3.2.9, an implicit representation of

the (n − mo) × (n − mo − mc
ext) discrete null space matrix P

c
ext(qn, qn+1) relies on a

decomposition

Rn−mo

= T C̃ ⊕
(
T C̃
)⊥

(6.2.36)

that can be found using the QR-decomposition of (Gc
ext(qn) · P o(qn))

T .

Remark 6.2.6 (Semi-explicit discrete null space matrix) Insertion of the implicit rep-

resentation of P
c
ext(qn, qn+1) and the explicit representation of P

o(qn, qn+1) in (6.2.33)

yields a semi-explicit representation of the discrete null space matrix pertaining to the

closed kinematic chain.

Remark 6.2.7 (Computational costs) The complexity of the QR-decomposition of a

n×m matrix is of the order nm2. Since the number of constraints in the open kinematic

chain mo = mint +mo
ext is usually higher than the number of closure conditions mc

ext, i.e.

mo � mc
ext, the decomposition of Rn−mo

relying on the QR-decomposition of the (n −
mo)×mc

ext matrix (Gc
ext(qn) · P o(qn))T is substantially cheaper, than the decomposition

of Rn based on the QR-decomposition of the n×m = n× (mo +mc
ext) matrix GT (qn).
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Figure 6.22: Initial configuration of the six-body linkage.

6.2.4 Numerical example: six-body linkage

As an example of a closed loop system, the simple closed kinematic chain consisting of six

rigid bodies interconnected by revolute joints in Figure 6.22 is considered. This example

has been analysed kinematically in [Witt 77, Lerb 05]. Simulations of the oscillation of

the six-body linkage, whereby the initial configuration as well as the configuration at the

turning point lie in one branch of the angle relation in Figure 6.25, have been reported

by [Fuhr 88,Kim 86]. In [Kreu 79], the reduced equation of motion is deduced symbolically

and its sectionwise integration is proposed. A similar problem consisting of six bars is

investigated in [Ange 86,Ange 89]. Some historical remakrs on this ‘invertible cube’ and

on Paul Schatz’s interesting interpretation of the features of its motion can be found in

Appendix F.

The initial configuration of the six-body linkage forms a cube of side length l (see Fig-

ure 6.22). Bodies 0, 2 and 4 are identical and bodies 1, 3 and 5 are identical. Furthermore,

body 1 is a mirror image of body 0. Accordingly, it suffices to provide the details of body

0. Detailed investigation of the multibody’s kinematics and symmetries reveals that the

linkage moves without collision of contiguous bodies provided that the angle γ does not

exceed π/6 (see [Witt 77]). Body 0 has density % = 1000, length l = 0.1 and angle

γ = 0.16π. Setting a = tan γ, in the initial configuration the center of mass of body 0

with respect to the inertial frame {eI} is given by

ϕ0 = ϕ0
i ei [ϕ0

i ] =



al/4

l/2

−al/4


 (6.2.37)
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In the inertial frame, the corners of this tetrahedral have the coordinates

[c1i ] =



−al/4
−l/2
al/4


 [c2i ] =




3al/4

−l/2
al/4


 [c3i ] =



−al/4
l/2

al/4


 [c4i ] =



−al/4
l/2

−3al/4


 (6.2.38)

and the mass of body 0 is given by Mϕ = %a2l3/6. Furthermore, the inertia tensor of

body 0 with respect to its center of mass in the initial configuration can be written as

J0 = J0
ijei ⊗ ej (6.2.39)

with

[J0
ij] =

% l5 a2

40




1/3 + a2/4 a/6 −a2/12

a/6 a2/2 a/6

−a2/12 a/6 1/3 + a2/4


 (6.2.40)

The principal values of the inertia tensor with respect to the center of mass are given by

[J0
i ] =

a2l5

120

[
(a2 + 1),

2a2 + 1 +
√
a4 + 1

2
,
2a2 + 1 −

√
a4 + 1

2

]
(6.2.41)

With these preliminaries, the constant symmetric positive definite mass matrix for rigid

body 0 can be inferred from (4.3.8). For simplicity, the director frame is assumed to

coincide with the corresponding principal axes. Their directions relative to the inertial

frame are characterised by

[(d̃
0

1)i] = [−1, 0, 1] [(d̃
0

2)i] = [1,
a2 − 1 +

√
a4 + 1

a
, 1] [(d̃

0

3)i] = [1,
a2 − 1 −

√
a4 + 1

a
, 1]

(6.2.42)

Then the director frame {d0
I} of body 0 is gained by normalisation. Together with the

placement of the center of mass given in (6.2.37), the 12-dimensional configuration variable

q0 is defined. Subsequent mirroring at the diagonal planes of the cube configuration yields

the other components q1, . . . , q5 of the redundant configuration vector q ∈ Rn of the six

body linkage with n = 72 . Let all revolute axes nα, α = 0, . . . , 5 be directed inwards the

cube and let θα, α = 1, . . . , 6 be defined as the angle through which body α is rotated

relative to body α−1 in the positive sense about the axis nα−1 of the α-th revolute joint.

All angles are zero in the cube configuration. Note that body 6 equals body 0.

In the associated open kinematic chain, the revolute joint connecting body 5 to body 0

is cut, thus six rigid bodies are interconnected by five revolute joints with external con-

straints gα
ext([q

α−1, qα]T ), α = 1, . . . , 5 of the form (6.1.67). The independent generalised

velocities are given in (6.2.22). Body 0 is fixed totally in space at its center of mass. The

corresponding constraints read

g
f
ext(q)




ϕ0 − c

eT
1 · d0

1 − η0
1

eT
2 · d0

2 − η0
2

eT
3 · d0

3 − η0
3


 (6.2.43)
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where the constant c ∈ R3 can be inferred from (6.2.37). This reduces the independent

generalised velocities of the open loop system to the n−mo = 5 relative angular velocities

in the hinges νo = [θ̇1, . . . , θ̇5]T and the independent incremental unknowns of the associ-

ated open loop system to µo = [θ1, . . . , θ5]T . An explicit representation of the continuous

72 × 5 null space matrix P o(q) and the discrete null space matrix P
o(qn, qn+1) for the

pure R chain is derived in Section 6.2.2 in Example 6.2.1 and Example 6.2.3 respectively.

Note that q̇0 = 0 ∈ R12 due to the total fixing in space of body 0 and therefore the first

12 rows in the 72 × 5 null space matrices equal the 12 × 5 zero matrix.

The open loop system is subject to the mc
ext = 5 additional loop closure constraint

gc
ext(q) = 0, in particular, similar to (6.1.67) the closure condition reads

gc
ext(q)




ϕ5 − ϕ0 + %5,6 − %0,6

(n5)T · d0
1 − η0

1

(n5)T · d0
2 − η0

2


 (6.2.44)

The orthonormality conditions (4.3.3) on each body’s director triad constitute mint = 36

internal constraints. According to Table 6.1, each revolute joint gives rise to 5 external

constraints. Together with the fixing in space of body 0, the number of external constraints

is mext = 36, thus the total number of constraints m = mint +mext = n and it is not clear

whether the system has any degree of freedom. To answer this question, the dependency

of the constraints combined to g(q) ∈ Rm has to be investigated. To this end it has to

be examined whether all configurations in the constraint manifold

C = {q ∈ R72
∣∣ gα

int(q
α) = 0, α = 0, . . . , 5, g

f
ext(q) = 0,

gα
ext(q) = 0, α = 1, . . . , 5, gc

ext(q) = 0} (6.2.45)

are regular points (see A.27), i.e. the rank of the 72 × 72 constraint Jacobian G(q) has

to be calculated for all kinematically admissible configurations q ∈ C. It turns out, that

only 71 constraints are independent. Therefore, the number of independent constraints is

m̃ = 71 and the system has n− m̃ = 1 relative configurational degree of freedom.

Remark 6.2.8 (Lagrange multiplier method) For the use of the Lagrange multiplier

method leading to the continuous constrained Hamiltonian equations presented in Sec-

tion 2.3, it is required that the constraint Jacobian has maximal rank. Consequently 71

independent constraints must be used and one constraint equation is omitted.

The relative configurational degree of freedom can be chosen in {θ1, . . . , θ5}. For reasons

of symmetry, only two relative angles of the system are nonequal. The following relations

hold

θ1 = θ3 = θ5 θ2 = θ4 = θ6 (6.2.46)

Then the relationship

sin(θ1)(1 + sin(θ2)) = sin(θ2) (6.2.47)

can be inferred form the formulation of the closure constraints (6.2.44) in the rela-

tive degrees of freedom of the associated open loop system, see [Witt 77]. Together

146



“diss˙ln” — 2006/6/29 — 19:20 — page 147 — #159

6.2 Simple kinematic chains

with the conditions | sin(θ1)| ≤ 1 and | sin(θ2)| ≤ 1, (6.2.47) yields θ1 ∈ [−7π
6
, π

6
] and

θ2 ∈ [−π
6
, 7π

6
]. Figure 6.25 shows the relation between θ1 and θ2 for a full revolution of

the six-body linkage which bears two problems. First of all, it is ambiguous and secondly,

it involves vertical tangents. Therefore, the reparametrisation of the relative angles in

one independent relative degree of freedom must be partitioned according to the different

periods of the motion as indicated in Figure 6.25.

s = 1 θ1 ∈ [−π
2
, 0] θ2(θ1) = arcsin

(
sin(θ1)

1 − sin(θ1)

)
∈ [−π

6
, 0]

s = 2 θ2 ∈ [0,
π

2
] θ1(θ2) = arcsin

(
sin(θ2)

1 + sin(θ2)

)
∈ [0,

π

6
]

s = 3 θ1 ∈ [−π
2
, 0] θ2(θ1) = π − arcsin

(
sin(θ1)

1 − sin(θ1)

)
∈ [

π

2
,
7π

6
]

s = 4 θ2 ∈ [0,
π

2
] θ1(θ2) = −π − arcsin

(
sin(θ2)

1 + sin(θ2)

)
∈ [−7π

6
,−π

2
]

(6.2.48)

A consistent reparametrisation of the all relative rotational degrees of freedom of the

associated open kinematic chain µo ∈ R5 reads

s ∈ {1, 3} s ∈ {2, 4}

µo = F s(θ1) =




θ1

θ2(θ1)

θ1

θ2(θ1)

θ1




µo = F s(θ2) =




θ1(θ2)

θ2

θ1(θ2)

θ2

θ1(θ2)




(6.2.49)

Thus the independent generalised velocities of the closed kinematic chain are given by

νc = θ̇1 for s ∈ {1, 3} and νc = θ̇2 for s ∈ {2, 4}.
The Jacobian of the reparametrisation (6.2.49) plays the role of a null space matrix in the

temporal continuous setting, see Remark 2.3.10. This yields

s ∈ {1, 3} s ∈ {2, 4}
νo = P

c,s
extθ̇

1

P
c,s
ext =




1

Dθ1θ2

1

Dθ1θ2

1




νo = P
c,s
extθ̇

2

P
c,s
ext =




Dθ2θ1

1

Dθ2θ1

1

Dθ2θ1




(6.2.50)

Using the null space matrix pertaining to the associated open loop system in (6.2.22), a

continuous null space matrix for the six-body linkage at hand is given by

P c = P o(q) · P c
ext (6.2.51)

Remark 6.2.9 The closed form reparametrisation (6.2.49) is feasible because the system

under consideration possesses such distinct symmetry properties as given in (6.2.46) and
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(6.2.47). A major drawback of the reparametrisation (6.2.49) is that the dependence is

highly nonlinear. Furthermore its Jacobian includes the angle θ1 or θ2. Therefore the

continuous null space matrix for the six-body linkage (6.2.51) cannot be used to infer a

temporal discrete null space matrix by midpoint evaluation or slight modifications of that,

see Remark 3.2.8.

An alternative continuous null space matrix involving only the configuration variable q

of the six-body linkage and being at most quadratic in it, can be derived as follows.

Considering the associated open kinematic chain, with regard to (6.2.13), the twist of the

body 5 can be expressed as

t5 = P
5,0
ext(q) · t0 +

5∑

k=1

P
5,k
ext(q)θ̇k (6.2.52)

On the other hand, the 6-th revolute joint interconnecting body 0 with its neighbour

body 5 relates their twists and the relative angular velocity associated with the 6-th

revolute joints according to formula (6.2.8). Accounting for the interchanged order of the

neighbouring pairs, this relation reads

t5 = P
5,(R),a
ext (q) · t0 + P

5,(R),b
ext (q) · (−θ̇6) (6.2.53)

where

P
5,(R),a
ext (q) =

[
I ̂%5,6 − %0,6

0 I

]
P

5,(R),b
ext (q) =

[
%5,6 × n5

n5

]
(6.2.54)

Equating (6.2.52) and (6.2.53) yields the loop closure condition in the form

(P 5,0
ext(q) − P

5,(R),a
ext (q)) · t0 +

6∑

k=1

P
5,k
ext(q)θ̇k = 0 (6.2.55)

where P
5,6
ext(q) = P

5,(R),b
ext (q) has been set. With regard to P

5,0
ext(q) given in (6.2.16) and

P
5,(R),a
ext (q) given in (6.2.54), it can be easily verified that P

5,0
ext(q)−P

5,(R),a
ext (q) = 0, since

5∑

k=0

(%k,k − %k,k+1) = 0 (6.2.56)

with %0,0 = %0,6 (see Figure 6.21, where the corresponding relation for a closed chain

consisting of four rigid bodies can be observed). Accordingly, from condition (6.2.55), it

remains

6∑

k=1

P
5,k
ext(q)θ̇k = 0 (6.2.57)

which can be written more explicitly as
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[
g5,1 × n0 g5,2 × n1 g5,3 × n2 g5,4 × n3 g5,5 × n4 ρ5,6 × n5

n0 n1 n2 n3 n4 n5

]
·




θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6




= 0

(6.2.58)

where (6.2.17) and (6.2.18) have been used.

Remark 6.2.10 According to the treatment of closed kinematic chains in [Ange 88], the

nullity of the matrix in (6.2.58) equals the number of degrees of freedom of the closed

kinematic chain. Since its nullity equals one, only one relative joint velocity can be chosen,

the other five can then be determined similar to (6.2.50). This coincides with the former

consideration of the constraint Jacobian G(q), whose rank deficiency turned out to be

equal to one.

Taking the symmetry of the system given in (6.2.46) into account, equation (6.2.58) yields

p1θ̇
1 + p2θ̇

2 = 0 (6.2.59)

with

p1 = P
5,1
ext(q) + P

5,3
ext(q) + P

5,5
ext(q)

p2 = P
5,2
ext(q) + P

5,4
ext(q) + P

5,6
ext(q)

(6.2.60)

Thus from (6.2.59) the following relation of θ̇1 and θ̇2 can be deduced

θ̇2 = −pT
1 · p2

pT
2 · p2

θ̇1 (6.2.61)

Now by velocity analysis equation (6.2.50) can be rewritten as

νo = P c
ext(q)θ̇1 (6.2.62)

which holds throughout the motion of the six-body linkage. It involves the continuous

null space matrix pertaining to the closure of the linkage

P c
ext(q) =




1

−pT
1 · p2

pT
2 · p2

1

−pT
1 · p2

pT
2 · p2

1




(6.2.63)

Analogous to (6.2.51), a continuous null space matrix for the closed six-body linkage is

given by

P c(q) = P o(q) · P c
ext(q) (6.2.64)
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Remark 6.2.11 The deduction of this null space matrix relies on the dependence of the

columns in the matrix in (6.2.58). More specific, it relies on the assumption, that the

columns of (6.2.58) can be combined into two linearly dependent vectors, i.e. it as assumed

that a linear combination with only two coefficients, namely 1 and −(pT
1 · p2)/(p

T
2 · p2)

equals zero. This is the case for configurations q ∈ C, where all constraints are fulfilled.

Thus the matrix in (6.2.63) qualifies as null space matrix pertaining to the loop closure

condition in the temporal continuous case. However, at intermediate configurations, e.g.

at the midpoint qn+ 1
2
/∈ C, the columns of (6.2.58) are linearly dependent, but more than

two different coefficients are needed for a linear combination that equals zero.

Neither the continuous null space matrix (6.2.51) deduced by reparametrisation of the con-

straint manifold (6.2.49) nor that in (6.2.64) obtained from the velocity analysis (6.2.62)

serves as a basis for an explicit representation of a discrete null space matrix. Thus

the semi-explicit construction procedure for the discrete null space matrix described in

Section 6.2.3 (see Remark 6.2.6) must be used. To this end the one-dimensional con-

straint manifold in (6.2.45) is written in reduced form corresponding to (6.2.35) using the

reparametrisation given in Example 6.2.4.

C̃ =
{
µo ∈ R5

∣∣ go(Fq
n
(µo)) = 0, gc

ext(Fq
n
(µo)) = 0

}
(6.2.65)

According to (6.2.36) the decomposition of the R5 into the tangent space to the reduced

constraint manifold and its orthogonal complement can be accomplished using the eval-

uation at qn of the 5 × 5 matrix Gc
ext(q) · P o(q) which reads




n0 × r1 n1 × r2 n2 × r3 n3 × r4 n4 × r5

(d1
1)

T · (n5 × n0) (d1
1)

T · (n5 × n1) (d1
1)

T · (n5 × n2) (d1
1)

T · (n5 × n4) (d1
1)

T · (n5 × n4)

(d1
2)

T · (n5 × n0) (d1
2)

T · (n5 × n1) (d1
2)

T · (n5 × n2) (d1
2)

T · (n5 × n4) (d1
2)

T · (n5 × n4)




(6.2.66)

where rk = %5,6 − g5,k and g5,k is given in (6.2.18).

Remark 6.2.12 (Discrete null space matrix) Similar to the rank deficiency of the full

72× 72 constraint Jacobian G(q), the matrix in (6.2.66) has rank 4. Thus 4 independent

rows of (Gc
ext(qn) · P o(qn))T must be chosen for the QR-decomposition leading to the

implicit representation of P
c
ext(qn, qn+1) form which the semi-explicit representation of

the discrete null space matrix pertaining to the six-body linkage can be calculated (see

Remark 6.2.6).

Remark 6.2.13 (Explicit discrete null space matrix) To reduce the computational

costs, an explicit representation of the discrete null space matrix is naturally preferable.

If one succeeds in finding the QR-decomposition of (Gc
ext(qn) · P o(qn))T explicitly, for-

mula (3.2.38) yields the desired explicit representation of the discrete null space matrix

P
c
ext(qn, qn+1). For the simple example of a double spherical pendulum treated by the

discrete null space matrix in Section 4.2.4, an explicit representation of a discrete null

space matrix could be achieved in this way.
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Numerical results

Consistent initial velocities q̇ ∈ R72 follow from q̇ = P cθ̇1 using one of the continuous

null space matrices given in (6.2.51) or (6.2.63). In the numerical example θ̇1 = 30 has

been chosen. Gravity is acting on the system with g = −9.81.

Figure 6.24 gives an impression of the motion by showing snapshots at consecutive in-

stances. Algorithmic conservation of the total energy for the present conservative problem

is corroborated in Figure 6.23. Due to the presence of gravitation and the total fixing in

space of body 0, no component of the angular momentum is a first integral of the motion.

The evolution of the coordinates θ1(t) and θ2(t) is depicted in Figure 6.25 as well as the

relation of θ2(θ1) described in (6.2.48). A characteristic of the motion of the six-body

linkage is that the distances σ1, σ2, σ3 between opposite corner nodes (the three space

diagonals in the initial cube configuration) remain constant (see [Scha 98]). Figure 6.26

verifies the algorithmic conservation of these distances. Note that due to the magnitude

of the initial angular velcity, the six-body linkage performs full revolutions. This can be

considered as an amelioration to the simulation of oscillations reproted in the existing

literature. Table 6.5 shows a comparison of the simulations of the motion of the six-body

linkage using the constrained scheme (3.2.7) and the d’Alembert-type scheme with nodal

reparametrisation (3.2.44) respectively. Although a 143-dimensional system of equations

has to be solved using the constrained scheme, approximately the same computational

time is needed as for the setup and solution of the one equation in the d’Alembert-type

scheme with nodal reparametrisation, since the implicit representation of the discrete null

space matrix pertaining to the closure condition has been used. Concerning the condi-

tioning issue, the advantageous properties of the advocated discrete null space method

are obvious in view of Table 6.5.
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Figure 6.23: Six-body linkage: energy and components of angular momentum vector L = Liei

(h = 0.01).
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Figure 6.24: Six-body linkage: snapshots of the motion at t ∈ {0.02, 0.04, 0.08, 0.09, 0.13, 0.26}.
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Figure 6.25: Six-body linkage: relative coordinates θ1(t) and θ2(t) (h = 0.01) and angle relation θ2(θ1).
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Figure 6.26: Six-body linkage: distance between opposite corner nodes (h = 0.01).
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Table 6.5: Comparison of constrained scheme to d’Alembert-type scheme with nodal reparametrisation
for the example ‘six-body linkage’.

constrained d’Alembert

number of unknowns 143 1

n = 72 m = 71

CPU-time 1 1

condition number

h = 10−2 105 1

h = 10−3 108 1

h = 10−4 1011 1
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6.3 Flexible multibody system dynamics
The description of rigid bodies and spatially discretised geometrically exact beams as

constrained continua in terms of the configuration variables given in (4.3.2) and (5.3.2)

respectively allows their coupling to a multibody system consisting of rigid and elastic

components in a systematic way. As a generalisation of (5.3.2), (6.1.1) and (6.2.3), their

configuration vectors are combined into the general configuration vector q(t) ∈ Rn where

n equals twelve times the actual number of nodes present in the system. As already

mentioned in Remark 5.4.6, a spatially discretised beam can be interpreted as a chain

of nnode rigid bodies for which the interconnections are prescribed by the connectivity

of the spatial finite element method. Furthermore, a rigid body can be considered as a

‘one-node structure’, i.e. it is a special case of a geometrically exact beam, for which the

spatial distribution is degenerate to a single point. Two examples of multibody systems

comprising elastic components are given in the sequel before the general procedure for the

treatment of arbitrary multibody systems by the discrete null space method is outlined

in Section 6.3.1.
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Figure 6.27: Coupling of a beam to a rigid body.

Example 6.3.1 (Coupling of a beam to a rigid body) The configuration variable of the

multibody system in Figure 6.27 reads

q(t) =




q1(t)
...

qnnode(t)

qrb(t)


 ∈ R12(nnode+1) (6.3.1)

It is subject to the internal constraints of the form (4.3.3) respectively (5.3.6) and the

external constraints representing the coupling by a specific joint expatiated in Section 6.1.

Interconnecting e.g. the last beam node to a rigid body by means of a specific joint

J ∈ {R,P, C, S, E} reduces the relative motion of the rigid body with respect to the

beam to the r(J) joint velocities τ (J) (see Table 6.1). Similar to (6.1.11), the mo-

tion of the multibody system is characterised by the independent generalised velocities
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ν ∈ R6nnode+r(J)
with

ν =




t1

...

tnnode

τ (J)


 (6.3.2)

The 12(nnode+1)-dimensional redundant velocity vector of the multibody system can then

be expressed via

q̇ = P (q) · ν = P int(q) · P ext(q) · ν (6.3.3)

The 12(nnode + 1) × 6(nnode + 1) internal null space matrix is given by

P int(q) =




P 1
int(q

1) 0 · · · 0 0

0 P 2
int(q

2) · · · 0 0
...

...
. . .

...
...

0 0 · · · P nnode

int (qnnode) 0

0 0 · · · 0 P rb
int(q

rb)




(6.3.4)

with P α
int(q

α) given in (6.1.10) for α = 1, . . . , nnode, rb and 0 denoting the 12 × 6 zero

matrix. From (6.1.14) it can be inferred that the 6(nnode + 1) × (6nnode + r(J)) external

null space matrix reads

P ext(q) =




I 0 · · · 0 06×r(J)

0 I · · · 0 06×r(J)

...
...

. . .
...

...

0 0 · · · I 06×r(J)

0 0 · · · P
2,(J)
ext (q)




(6.3.5)

Here I and 0 denote the 6 × 6 identity and zero matrices respectively. Different forms

of the external null space matrix P
2,(J)
ext (q) accounting for specific joints can be found in

Section 6.1.

Example 6.3.2 (Rigid connection of two beams) A rigid connection between the node

b1 ∈ {1, . . . , n1
node} with nodal configuration vector q1,b1 ∈ R12 in the first beam (which

contains n1
node nodes) and the node b2 ∈ {1, . . . , n2

node} with nodal configuration vector

q2,b2 in the second beam (which contains n2
node nodes) gives rise to the following six

constraint functions

g
(F )
ext (q) =




ϕ2,b2 − ϕ1,b1 + %b2 − %b1

(d1,b1
1 )T · d2,b2

2 − η1

(d1,b1
2 )T · d2,b2

3 − η2

(d1,b1
3 )T · d2,b2

1 − η3


 (6.3.6)

where %b1 and %b2 point from ϕ1,b1 respectively ϕ2,b2 to the rigidly connected point.
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Thus there are no relative degrees of freedom of the node b2 with respect to the node b1
and its twist can be calculated in terms of the twist of the node b1 via

t2,b2 = P
2,(F )
ext (q) · t1,b1 (6.3.7)

with the 6 × 6 null space matrix pertaining to the rigid connection

P
2,(F )
ext (q) =

[
I ̂%b2 − %b1

0 I

]
(6.3.8)

Then the mapping t = P ext(q) · ν of the independent generalised velocities

ν ∈ R6(n1
node

+n2
node

−1) to the twist of the multibody system t ∈ R6(n1
node

+n2
node

) via the

external null space matrix P ext(q) reads explicitly




t1,1

...

t1,b1

...

t1,n1
node

t2,1

...

t2,b2

...

t2,n2
node




=




I · · · 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · I · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 · · · I 0 · · · 0 0 · · · 0

0 · · · 0 · · · 0 I · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · P
2,(F )
ext · · · 0 0 · · · 0 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 · · · 0 0 · · · 0 0 · · · I




·




t1,1

...

t1,b1

...

t1,n1
node

t2,1

...

t2,b2−1

t2,b2+1

...

t2,n2
node




(6.3.9)

6.3.1 General treatment by the discrete null space method

A further generalisation to multibody systems consisting of several elastic and rigid com-

ponents can be accomplished in a straightforward way. Specific nodal configuration vec-

tors qα, qβ ∈ R12 are coupled according to the procedure described for kinematic pairs,

regardless whether they represent a node in a spatially discretised beam or a rigid body’s

configuration. The order in which the nodal configuration vectors are combined to the

configuration vector of the multibody system (see e.g. (6.3.1)), defines the positions of

the node-specific block-matrices in the internal null space matrix (see e.g. (6.3.4)). It also

prescribes the assembly of the external null space matrices representing specific couplings

in the total external null space matrix (see e.g. (6.3.5) and (6.3.9)).

A general procedure for the treatment of multibody systems consisting of rigid and elastic

components by the discrete null space method comprises the steps described in Table 6.6.

All alternatives for the construction of the discrete null space matrix in step (iii) yield

equivalent results, but they differ significantly in the arising computational costs (see

Remark 6.2.7). From the computational point of view, the explicit representation in

alternative iii.1 is most desirable. If it is not feasible for the problem at hand (e.g. for

most closed loop systems) the semi-explicit representation in alternative iii.3 states a

reasonable compromise while the implicit representation in alternative iii.2 requires the

highest computational costs.
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Table 6.6: General procedure for the treatment of flexible multibody systems by the discrete null space
method.

(i) definition of the order in which the nodal configuration variables (regardless whether

they represent a node in a spatially discretised beam or a rigid body’s configuration)

are combined to the configuration variable of the multibody system q ∈ Rn

(ii) identification of independent constraint functions and full-rank Jacobian; comprising

mint internal constraint functions and mext external constraint functions correspond-

ing to nc couplings or bearings

g(q) =




gint(q)

g1
ext(q)

...

gnc
ext(q)


 ∈ Rm G(q) =




Gint(q)

G1
ext(q)
...

Gnc

ext(q)


 ∈ Rm×n

where m = mint +mext = mint +m1
ext + . . .+mnc

ext

(iii) construction of a full-rank discrete null space matrix P(qn, qn+1) ∈ Rn×(n−m) fulfill-

ing G(qn, qn+1) · P(qn, qn+1) = 0 by employing one of the alternatives outlined in

the sequel

alternative iii.1 (explicit representation)

construction of a continuous null space matrix P (q) ∈ Rn×(n−m) fulfilling

G(q) · P (q) = 0 by a) or b)

a) velocity analysis (see Section 2.3.4): successive reduction of the redundant

velocities q̇ ∈ Rn to the independent generalised velocities ν ∈ Rn−m

• internal constraints: q̇ = P int(q) · t, t ∈ Rn−mint

• first external coupling or bearing:

q̇ = P int(q) · P 1
ext(q) · ν1, ν1 ∈ Rn−mint−m1

ext

...

• last external coupling or bearing:

q̇ = P int(q) · P 1
ext(q) · . . . · P nc

ext(q) · ν, ν ∈ Rn−m

• P (q) = P int(q) · P 1
ext(q) · . . . · P nc

ext(q)

b) explicit analytical QR-decomposition of the transposed constraint Jacobian in

terms of q: GT = [Q1,Q2] · R yields P (q) = Q2(q) (see Section 2.3.4)

midpoint evaluation of the continuous null space matrix P (qn+ 1
2
) or slight modifi-

cation of the midpoint evaluation yields P(qn, qn+1) (see Remark 3.2.8)
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alternative iii.2 (implicit representation)

QR-decomposition of GT (qn) yields the necessary submatrices to infer P(qn, qn+1)

via formula (3.2.38) (see Example 3.2.9)

alternative iii.3 (semi-explicit representation)

• explicit representation of internal discrete null space matrix:

Pint(qn, qn+1) = P int(qn+ 1
2
)

• if possible: P
c
ext(qn, qn+1) is obtained explicitly by midpoint evaluation

P c
ext(qn+ 1

2
) for c = 1, . . . , nc or by slight modification of that (see Re-

mark 3.2.8)

• if not possible: QR-decomposition of(
Gc

ext(qn) · P int(qn) · P 1
ext(qn) · . . . · P c−1

ext (qn)
)T

yields implicitly

P
c
ext(qn, qn+1) for c = 1, . . . , nc via formula (3.2.38) (see Remark 6.2.6

and Example 3.2.9)

• P(qn, qn+1) = Pint(qn, qn+1) · P1
ext(qn, qn+1) · . . . · Pnc

ext(qn, qn+1)

(iv) solution of the resulting nonlinear algebraic system by applying one of the alterna-

tives outlined in the sequel

alternative iv.1 (d’Alembert-type scheme)

solution of time-stepping scheme (3.2.33) for qn+1 ∈ Rn

alternative iv.2 (d’Alembert-type scheme with nodal reparametrisation)

nodal reparametrisation (3.2.42) qn+1 = Fq
n
(µ); solution of time-stepping scheme

(3.2.44) for µ ∈ Rn−m
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6.3.2 Numerical example: spatial slider-crank mechanism
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Figure 6.28: Initial configuration of the spatial slider-crank mechanism.

The multibody system under consideration is a three-dimensional slider-crank mechanism.

The initial configuration is depicted in Figure 6.28. It consists of a horizontal elastic beam

of length 6, which is discretised by 20 linear beam elements and characterised by the axial

and shear stiffness EA = GA = 105 and bending and torsional stiffness EI = EJ = 104.

The middle node (node 11) is rigidly connected (see Example 6.3.2) to the first node

of the elastic slider of length 4, which is discretised by 15 linear beam elements and

characterised by the axial and shear stiffness EA = GA = 106 and bending and torsional

stiffness EI = EJ = 105. The hyperelastic material behaviour of the beams is specified in

Example 5.3.3. The end of the slider is supported by a sliding bearing (see Section 4.3.5)

which allows it to slide parallel to the x-axis in the xy-plane. The inertia properties of

both elastic beams are characterised by the mass density per reference length Aρ = 20 and

the principal mass moments of inertia of the cross-section M 1
ρ = M2

ρ = 10. The ends of the

horizontal beam are connected via spherical joints to rigid bodies (see Example 6.3.1),

which are modelled as pyramids of height H = 1.5 with square bases of edge length

A = 0.2 and total mass M = 1 respectively. To allow true three-dimensional motion,

both rigid bodies are supported by spherical joints fixed in space (see Section 4.3.5).

A force parallel to the x-axis F (t) = f(t)e1 with

f(t) =

{
1000 sin(πt) for t ≤ 2

0 for t > 2
(6.3.10)

is applied at the end of the slider with a sinusoidal time variation for the first two seconds

of motion. After the force is removed the system undergoes free vibration, since no other

external loads are present. The results presented in the sequel have been obtained by
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solving the d’Alembert-type scheme with nodal reparametrisation (3.2.44). Figure 6.29

shows a series of snapshots of the motion and deformation of the slider-crank mechanism

during the first and second revolution. The cuboids of the initially horizontal beam are

coloured by a linear interpolation of the norm of the resulting momenta
∥∥me

∥∥ in the

elements whereas the slider is coloured by the norm of the resultant forces
∥∥ne

∥∥. Thereby

blue represents zero while red represents 3000. The deformations depicted in Figure 6.29

are the original deformations, they have not been scaled for the illustration.

The orbit of the rigid connection point between the beams in Figure 6.30 also emphasises

the large deformation the system is undergoing. It starts as a circle but soon leaves

that path due to the large bending of the initially horizontal beam. The diagrams in

Figure 6.31 show the stress resultants in the rigidly connected elements for the horizontal

beam on the left and for the slider on the right hand side. One can see that the horizontal

beam undergoes much bending deformation whereas in the slider the axial and shear

forces dominate. Figure 6.32 shows that after the removal of the external forces at t = 2

the total energy is conserved exactly. It also reveals that the strain energy amounts a

substantial part of the total energy.

Comparison

The same problem has been calculated using the constrained scheme (3.2.7). The schemes

are equivalent, consequently the solutions are identical and both schemes fulfil the con-

straints exactly. Table 6.7 summarises the simulations using both schemes. A remarkable

difference is in the dimensions of the system of equations of motion. For the present prob-

lem, the constrained scheme requires the solution of 722 equations whereas the system

for the d’Alembert-type scheme with nodal reparametrisation is 214-dimensional. This

has a big impact on the computational costs, the constrained scheme requires more than

twice the CPU-time than the d’Alembert-type scheme with nodal reparametrisation to

simulate 10 seconds of motion and deformation of the slider-crank mechanism. For the

time-step h = 10−2 the condition number of the constrained scheme is of the order 1010

and it increases substantially for decreasing time-steps, whereas it is of the order 104 or

less for arbitrary time-steps in the d’Alembert-type scheme.
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Figure 6.29: Spatial slider-crank mechanism: snapshots of the motion and deformation at
t ∈ {0.47, 0.79, 2.15, 3.35, 4.63, 5.99}.

162



“diss˙ln” — 2006/6/29 — 19:20 — page 163 — #175

6.3 Flexible multibody system dynamics

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

z

Figure 6.30: Spatial slider-crank mechanism: orbit of the rigid connection point in the xz-plane.
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Figure 6.31: Spatial slider-crank mechanism: stress resultants in rigidly connected elements in the ini-
tially horizontal beam (left) and in the slider (right) (h = 0.01).
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Figure 6.32: Spatial slider-crank mechanism: energy (h = 0.01).

Table 6.7: Comparison of constrained scheme to d’Alembert-type scheme with nodal reparametrisation
for the example ‘spatial slider-crank mechanism’.

constrained d’Alembert

number of unknowns 722 214

n = 468 m = 254

CPU-time 2.3 1

condition number

h = 10−2 1010 104

h = 10−3 1011 103

h = 10−4 1014 103
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7 Conclusions

Energy-momentum conserving time-stepping schemes emanating from the use of different

methods for the constraint enforcement have been deduced from scratch in this work. The

derived algorithms have been compared by means of theoretical investigations as well as

with the help of examples. Particular emphasis has been placed on their robustness, accu-

racy and efficiency for the simulation of flexible multibody dynamics. It turned out that

the Lagrange multiplier method can be applied in a straight-forward manner to complex

settings. However this approach requires the solution of the augmented system of DAEs

which yields exact constraint fulfilment on the one hand, but on the other hand becomes

computationally expensive for large problems subject to a high number of constraints and,

moreover, is subject to severe conditioning problems. The Lagrange multiplier method

yields accurate solutions but is neither robust nor efficient. Using the penalty method,

the high sensitivity of the constraint fulfilment to the choice of the penalty parameter is

troublesome. While proper enforcement of the constraints requires high penalty param-

eters, the system becomes increasingly stiff. The dependence of the condition number

on the time-step and the penalty parameter is clearly demonstrated in the example of

the double spherical pendulum. Although the penalty method can perform relatively

accurate, this property is negatived by high condition numbers or high computational

costs as a consequence of a small time-step balancing the high penalty parameter. The

most striking property of the augmented Lagrange method is its immensely high com-

putational effort which disqualifies it in the competition with the other methods. It has

been shown by theoretical analysis and numerical examples that the discrete null space

method with nodal reparametrisation performs excellently in all respects. This approach

yields accurate results – the constraints are fulfilled exactly, the computational costs are

comparatively low since the system of equations has the minimal possible dimension and

it is robust due to the independence of the condition number on the time-step. Therefore,

this method is investigated in detail in this work.

The construction of a discrete null space matrix lies at the heart of the discrete null

space method. The key properties of a discrete null space matrix are summarised in

Remark 3.2.7, based on the necessary and sufficient condition (3.2.30). With its help the

Lagrange multipliers are eliminated from the temporally discretised constrained scheme

and the systems dimension is reduced. The primary question ‘How can a discrete null

space matrix for a specific problem be found?’ is answered explicitly for general flexible

multibody dynamics. It can be stated that an explicit representation of the discrete null

space matrix is generally desirable, since it minimises the computational costs. Such an

explicit representation is feasible for most applications, e.g. for the examples in this work

comprising mass point systems, rigid body dynamics, open kinematic chains and flexible

multibody dynamics. Solely the simulation of the dynamics of the closed loop system
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requires special treatment, involving an implicit representation of a discrete null space

matrix.

The explicit representation of a discrete null space matrix can be inferred from a corre-

sponding continuous null space matrix either by midpoint evaluation at qn+ 1
2

or by slight

modification of the midpoint evaluation, see Remark 3.2.8. The necessary continuous null

space matrix can also be constructed in two different ways, either via velocity analysis

or by performing an explicit QR-decomposition of the transposed continuous constraint

Jacobian in terms of the configuration variable, see Section 2.3.4. The latter approach has

been used for the example of the double spherical pendulum while all other continuous

null space matrices have been constructed via velocity analysis. The third possibility to

obtain a continuous null space matrix as the Jacobian of the reparametrisation of the

constraint manifold in terms of generalised coordinates mentioned in Remark 2.3.10 can-

not be used to construct an explicit discrete null space matrix by midpoint evaluation or

slight modification of that, since it involves generalised coordinates. This fact is shown

exemplarily for the six-body linkage, see Remark 6.2.9. The six-body linkage constitutes

an example, for which it is not possible to construct a continuous null space matrix in

terms of the configuration variable, from which an explicit discrete null space matrix can

be inferred. Thus the discrete null space matrix has to be constructed implicitly.

The implicit construction of a discrete null space matrix, based on the QR-decomposition

of the transposed constraint Jacobian at every time-step, is always feasible, see Exam-

ple 3.2.9. However, to reduce the computational effort, it is recommendable to use a

semi-explicit representation of the discrete null space matrix as proposed in Remark 6.2.6

for closed kinematic chains. Its construction is based on the idea of identifying those

constraints which impede the construction of an explicit discrete null space matrix (typi-

cally these are the closure constraints) and to set up an explicit discrete null space matrix

corresponding to the remaining constraints. Then the null space matrix pertaining to the

identified (closure) constraints can be obtained implicitly and a semi-explicit represen-

tation of the total null space matrix is gained by multiplication of the explicit and the

implicit discrete null space matrices, see Section 6.2.3.

An instructive outline for the treatment of general multibody systems by the discrete null

space method is given in Section 6.3.1, providing a new robust, accurate and efficient

integrator for flexible multibody dynamics. Thereby, particular use can be made of the

discrete null space matrices pertaining to the internal constraints for rigid bodies and spa-

tially discretised beams and of the discrete null space matrices pertaining to the external

constraints arising from the interconnection of kinematic pairs by joints which are given

explicitly in this work.

7.1 Outlook
This study is of course by no means considered to close the rather active field of research

on computational methods for flexible multibody dynamics. Various topics seem to be

attractive for future investigations.

• The considerations in this work are restricted to holonomic constraints on the con-

figuration level. In [Bets 04] the discrete null space method has been generalised to
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nonholonomic equality constraints and applied to a rigid ball, rolling on an inclined

plane. This can be considered as the foundation for a systematic construction of

discrete null space matrices pertaining to the integrable holonomic constraints on

the momentum level, arising from temporal differentiation of internal or external

configurational constraints.

• Flexible structures considered in this work are elastic beams, discretised using struc-

tural finite beam elements. The discrete null space method could also be applied

to other structural elements like shells or plates and their coupling to multibody

systems. Furthermore, the application to flexible bodies which are discretised by

continuum finite elements and coupled to other bodies are of interest.

• The discrete null space method could be extended to inequality constraints occurring

e.g. in contact problems.

• It is of interest to test the discrete null space method in conjunction with other

temporal discretisation methods, e.g. variational integrators leading to symplectic-

momentum conserving time-stepping schemes.

• A very important field of application of multibody dynamics are actuated systems.

An extension of the discrete null space method to optimal control problems seems

to be a challenging and worthwhile task.
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A Definitions

The following standard definitions can be found in a variety of books. The list includes

parts of the representations in [Abra 78], [Mars 94], [Bern 98], [Agri 01], [Choq 77],

[Arno 78], [Luen 84]:

Definition A.1 (Differentiable manifold) Let M be a connected, topological Hausdorff

space. A chart on M is a pair (ψ, U), where U is an open set in a Banach space X and

ψ is a bijection of U onto some subset of M ,

ψ : U → ψ(U) ⊂M

If two charts (ψ, U) and (ψ
′

, U
′

) have an overlapping image in M , then

V := (ψ)−1
(
ψ(U) ∩ ψ′

(U
′

)
)

and V
′

:= (ψ
′

)−1
(
ψ(U) ∩ ψ′

(U
′

)
)

are open sets in X. Hence

the mapping (ψ
′

)−1 ◦ ψ : V → V
′

is defined. The two charts are called compatible if

this mapping is C∞. A union of compatible charts is called atlas, and two atlases are

equivalent if their union is also an atlas.

M is called differentiable manifold if M has an atlas. If every chart has domain in an

n-dimensional vector space, M is called n-manifold. In other words, M is covered by a

union of compatible charts, and the differentiable structure on M is an equivalence class

of atlases.

Definition A.2 (Bundle, fibre) A bundle is a triple (E,B, τ) consisting of two topological

spaces E and B and a continuous, surjective mapping τ : E → B. B is called the base. If

for all x ∈ B the topological spaces τ−1(x) are homeomorphic to a space F , then τ−1(x)

is called fibre at x.

Definition A.3 (Tangent vector, tangent space, tangent bundle, cotangent bundle)
Two curves c1, c2 : R →M in an n-manifold M are called equivalent at x, if

c1(0) = c2(0) = x and (ψ−1 ◦ c1)
′(0) = (ψ−1 ◦ c2)

′(0)

in some chart ψ. This definition is chart independent. A tangent vector v to a manifold

M at x ∈ M is an equivalence class of curves at x. Let U be a chart of an atlas for M

with coordinates x = (x1, . . . , xn). The components of the tangent vector v to the curve

(ψ−1 ◦ c) : R → Rn are defined by

vi =
d

dt
(ψ−1 ◦ c)i|t=0 where i = 1, . . . , n

The set of tangent vectors to M at x forms a vector space, called the tangent space to M

at x, denoted by TxM .
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The union of the tangent spaces TxM to M at all points x ∈ M is the differentiable

manifold

TM =
⋃

x∈M

TxM

Together with the natural projection τM : TM → M , which takes a tangent vector

v ∈ TxM ⊂ TM to the point x, the tangent bundle (TM,M, τM) is defined. If the base

and the projection are clear from the circumstances, the tangent bundle is denoted by

TM .

Let x = (x1, . . . , xn) be local coordinates on M and let v = (v1, . . . , vn) be components

of a tangent vector in this coordinate system. Then (x, v) = (x1, . . . , xn, v1, . . . , vn) give

a local coordinates system on TM.

If each vector space TxM is replaced with its dual T ∗
xM , and the canonical projection

πQ : T ∗M → M is introduced analogously to τM , one obtains the cotangent bundle

(T ∗M,M, πM ), which is often simply denoted by T ∗M .

Definition A.4 (Derivative) Let M and N be differentiable manifolds (see A.1) and

f : M → N a map. f is called differentiable, if f is given by differentiable functions in

local coordinates on M and N . The derivative (or tangent lift) at any point x ∈ M is

the linear map

Txf : TxM → Tf(x)N

constructed in the following way: for v ∈ TxM choose a curve c :] − ε, ε[→ M with

c(0) = x and velocity vector c′(0) = v. Then Txf · v is the velocity vector at t = 0 of

the curve f ◦ c : R → N , i.e.

Txf · v =
d

dt
f (c(t)) |t=0

If M and N are finite dimensional, the derivative is also denoted by Df and called the

Jacobian. If N = R and identifying the tangent space of R at any point with itself (as it

is usually done with vector spaces), one gets the linear map df(x) : TxM → R. That is

df(x) ∈ T ∗
xM and reads in coordinates

df(x) · v =
∂f

∂xi
vi

df is called differential of f . Using the operators
∂

∂xi
one can identify a basis of TxM

by

(
∂

∂x1
, . . . ,

∂

∂xn

)
. The dual basis to

∂

∂xi
is dxi, thus

df(x) =
∂f

∂xi
dxi

holds for any smooth function f : M → R.
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Definition A.5 (Functional derivative) Let P be a smooth infinite-dimensional mani-

fold. Moreover assume that P is a subset of an infinite-dimensional linear space V with

interior product 〈·, ·〉 : V × V → R. The functional derivative of a smooth functional

f : P → R at ϕ ∈ P , denoted by
δf

δϕ
, is the unique element of V , if it exists, satisfying

〈 δf
δϕ
, v〉 = Tϕf for all v ∈ TϕP

Definition A.6 (Cotangent lift) Let M and N be two manifolds, and let f : M → N be

a diffeomorphism. The cotangent lift of T ∗f : T ∗N → T ∗M of f is defined by

〈T ∗f(as), v〉 = 〈as, T f · v〉

where as ∈ T ∗
qN, v ∈ TrM , r ∈M , s ∈ N and s = f(r).

Definition A.7 (k-form) A two-form ω on M is a function ωx : TxM × TxM → R that

assigns to each point x ∈M a skew-symmetric bilinear form from the tangent space TxM

to M at x.

More generally, a k-form α on M is a function ωx : TxM × . . .× TxM → R that assigns

to each point x ∈ M a skew-symmetric k-multilinear form from the tangent space TxM

to M at x.

Definition A.8 (Interior product) Let α be a k-form on a manifold M and X : M → TM

be a vector field. The interior product iXα of X and α (sometimes called contraction and

denoted by i(X)α) is the (k − 1)-form

(iXα)x(v2, . . . , vk) = αx(X(x), v2, . . . , vk)

for x ∈M and (v2, . . . , vk) ∈ TxM .

Definition A.9 (Exterior derivative) The exterior derivative dα of a k-form α on M is

the (k + 1)-form on M , which is uniquely determined by the following properties:

(i) If α is a 0-form, i.e. α = f ∈ C∞(M), then dα is the one-form

which is the differential of f .

(ii) dα is linear in α.

(iii) dα satisfies the product rule, that is

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

where α is a k-form and β is a l-form.

(iv) d2 = 0, i.e. d(dα) = 0 for any k-form α.

(v) d is a local operator, i.e. dα(x) only depends on α restricted to

any open neighborhood of x. If U ⊂M is open, then

d(α|U) = (dα)|U
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Definition A.10 (Symplectic manifold) A symplectic manifold is a pair (P, ω) where P

is a manifold (see A.1) and ω is a symplectic form, i.e. ω is a closed, (weakly) nondegen-

erate two-form (see A.7) on P .

ω is called closed if dω = 0, where d is the exterior derivative (see A.9), and it is

called weakly nondegenerate if for z ∈ P the induced map ωb
z : TzP → T ∗

zP with

ωb
z(x)(y) = ωz(x,y) is injective, i.e. let x ∈ TzP , if ωz(x,y) = 0 for all y ∈ TzP then

x = 0. In the case of strong nondegeneracy ωb
z is an isomorphism.

If P is finite dimensional, weak nondegeneracy and strong degeneracy are equivalent.

Definition A.11 (Pull back, push forward) Let f : M → N be a C∞-map between the

manifolds (see A.1) M and N and α be a k-form on N . The pull back f ∗α of α by f is

the k-form on M given by

(f ∗α)x(v1, . . . , vk) = αf(x)(Txf · v1, . . . , Txf · vk)

for x ∈ M , v1, . . . vk ∈ TxM and Txf the derivative (see A.4) of f .

If Y : N → TN is a vector field on N and f is a diffeomorphism, the pull back f ∗Y is a

vector field on M defined by

(f ∗Y )(x) = Txf
−1 ◦ Y ◦ f

where x ∈M and Txf
−1 the derivative (see A.4) of f−1.

If f is a diffeomorphism, the push forward f∗ is defined by f∗ = (f−1)∗.

Definition A.12 (Symplectic/canonical transformation) A differentiable map

f : P1 → P2 between symplectic manifolds (P1, ω1) and (P2, ω2) (see A.10) is called sym-

plectic (or canonical transformation) if

f ∗ω2 = ω1

That is, by definition of the pull back of a 2-form (see A.11)

(f ∗ω2)z(x,y) = ω2f(z)
(Tzf(x), Tzf(y)) = ω1z (x,y)

for each z ∈ P1 and all (x,y) ∈ TzP1, with the derivative (see A.4)

Tzf : TzP1 → Tf(z)P2.

Definition A.13 (Jacobi-Lie bracket) Let M be a smooth C∞ manifold, f ∈ F(M) and

X, Y : M → TM two vector fields on M . Then the derivation

f → X[Y [f ]] − Y [X[f ]]

where X[f ] = df · X determines a unique vector field denoted by [X, Y ] and is called

Jacobi-Lie bracket of X and Y .

Thus X(M) (the set of vector fields on M) coincides with the set of derivatives on F(M).

Definition A.14 (Lie derivative) Let α be a k-form (see A.7) on M and let X : M → TM

be a vector field with flow ϕ : R ×M →M . The Lie derivative of α along X is given by

LXα = lim
t→0

1

t
((ϕ∗

tα) − α) =
d

dt
ϕ∗

tα|t=0
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Let f : M → R be a real-valued function and X : M → TM a vector field on M . The

Lie derivative of f along X is the directional derivative

LXf = X[f ] = df ·X

If M is finite dimensional

LXf = Xi

∂f

∂xi

Let Y : M → TM be a vector field on M . Defining

LXY = [X, Y ]

where [X, Y ] is the Jacobi-Lie bracket (see A.13) gives the Lie derivative of Y along X.

Theorem A.15 (Lie derivative theorem) Let α,X, Y and ϕ be defined as in (A.14) and

recall the definition of the pull back (see A.11). Then the following statements hold:

d

dt
ϕ∗

tα = ϕ∗
tLXα and

d

dt
ϕ∗

tY = ϕ∗
tLXY

Definition A.16 (Hamiltonian vector field) Let (P, ω) be a symplectic manifold (see

A.10). A vector field X : P → TP is called Hamiltonian vector field if there exists a

function H : P → R such that

iXω = dH

where iX is the interior product (see A.8) and d the exterior derivative (see A.9). Then

X is denoted by XH and is called Hamiltonian vector field of H with respect to ω.

The relation between Hamiltonian vector fields and 2-forms can also be expressed in terms

of the Lie derivative (see A.14) by demanding

LXH
ω = 0

since Carton’s formula states LX = d iX + iXd, by definition ddH = 0 and ω is closed

(see A.10).

Definition A.17 (Lie group) A Lie group is a group G and at the same time it is a

differentiable manifold (see A.1). The group structure must be compatible with the

manifold structure in the sense that the group operations

G×G→ G

(g, h) 7→ gh

G→ G

g 7→ g−1

are C∞ maps.

Definition A.18 (Lie algebra) Let V be a vector space and [., .] : V × V → V a Lie

bracket, i.e. it is a bilinear, skew-symmetric map which fulfils the Jacobi-identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for all A,B,C ∈ V
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Then the pair (V, [., .]), is called Lie algebra.

More specific, every Lie group G induces a Lie algebra: the vector space XL(G) of left

invariant vector fields on G is isomorphic to the tangential space TeG to G at the neutral

element e. Define the Lie bracket for ξ, η ∈ TeG by

[ξ, η] := [Xξ, Xη](e)

where Xξ, Xη are the vector fields induced by ξ and η respectively and [Xξ, Xη] is the

Jacobi-Lie bracket (see A.13) of vector fields. This makes TeG into a Lie algebra. It is

denoted by g = Lie(G) and is called Lie algebra of G.

Definition A.19 (Exponential map) Let G be a Lie group (see A.17). For all

ξ ∈ g = Lie(G) (see A.18) let γξ : R → G denote the integral curve of the left-invariant

vector field Xξ on G induced by ξ, which is defined uniquely by claiming

Xξ(e) = ξ γξ(0) = e

γ̇ξ(t) = Xξ (γξ(t)) for all t ∈ R

The map

exp : g → G

exp(ξ) = γξ(1)

is called exponential map of the Lie algebra g in G.

Definition A.20 (Action, infinitesimal generator) Let G be a Lie group (see A.17) and

P be a symplectic manifold (see A.10). Corresponding to ξ ∈ g = Lie(G) (see A.18) the

action φξ : R × P → P is defined by

φξ(s, z) = φ(exp(sξ), z)

where z ∈ P . Thus φξ is a flow on P . The corresponding vector field ξP on P is given by

ξP (z) :=
d

ds
φ(exp(sξ), z)|s=0

and is called the infinitesimal generator of the action corresponding to ξ.

Definition A.21 (Momentum map) Let the Lie algebra g (see A.18) act canonically (see

A.20, A.12) on the symplectic manifold P (see A.10). Suppose there is a linear map

J : g → F(P ), such that the vector field belonging to the smooth function J(ξ) : P → R

XJ(ξ) = ξP for all ξ ∈ g

The map J : P → g∗ defined by

〈J(z), ξ〉 = J(ξ)(z)

for all ξ ∈ g and z ∈ P is called momentum map of the action.
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Definition A.22 (Liouville measure) Let (P, ω) be an 2n-dimensional symplectic man-

ifold (see A.10). Then the Liouville volume is defined by

Λ =
(−1)

n
2

n!
ω ∧ . . . ∧ ω︸ ︷︷ ︸

n times

In canonical coordinates (q1, . . . , qn, p1, . . . , pn), Λ has the expression

Λ = dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn

The measure associated to Λ is called Liouville measure.

Definition A.23 (Poisson bracket) Let (P, ω) be a symplectic manifold (see A.10) and

F,G ∈ F(P ) with the corresponding Hamiltonian vector fields XF , XG (see A.16). Then

the Poisson bracket is defined by

{F,G}(z) = ωz(XF (z), XG(z))

where z ∈ P .

Definition A.24 (Hat map) The Lie algebra so(3) (see A.18) of the Lie group SO(3) (see

A.17) can be identified with R3 via the isomorphism̂ : R3 → so(3) (called hat map),

defined by

a = [a1, a2, a3] 7→ â =




0 −a3 a2

a3 0 −a1

−a2 a1 0




Definition A.25 (Regular value) Let M,N be differentiable manifolds (see A.1) and

f : M → N be of class C1. A point n ∈ N is called regular value of f if for each

m ∈ f−1({n}), Tmf is surjective.

Proposition A.26 Let M,N be differentiable manifolds (see A.1) and f : M → N be of

class C∞. Suppose that n ∈ N is a regular value of f . Then

f−1(n) = {m|m ∈M, f(m) = n} is a submanifold in M .

Definition A.27 (Regular point) Let f : Rn → Rm be of class C1. A point x ∈ Rn satisfy-

ing f(x) = 0 is called regular point of f if the differentials (see A.4)

dfi(x), i = i, . . . , m are linearly independent.

Proposition A.28 At a regular point x ∈ Rn of the C1-function f : Rn → Rm, the tangent

plane to the surface S = {x ∈ Rn|f(x) = 0} is equal to T = {y ∈ Rn|Df(x) · y = 0}.
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B Linearisation of the
d’Alembert-type scheme

The residual R(qn+1) ∈ Rn of the d’Alembert-type time-stepping scheme is the nonlinear

equation in terms of the configuration variable qn+1 ∈ Rn given in (3.2.33). Linearisation

of the residual by truncation of its Taylor expansion after the linear term yields the

familiar linear equation

R(ql
n+1) +DR(ql

n+1) · ∆qn+1 = 0 (B.1)

which is solved for ∆qn+1 = ql+1
n+1−ql

n+1 repeatedly until ‖R(qlmax

n+1 )‖ < ε, where ε is some

prescribed tolerance.

With regard to (3.2.33) the tangent matrix assumes the following form which is deduced

explicitly in [Bets 05].

DR(qn+1) =

[
P

T (qn, qn+1) · S(qn+1)

G(qn+1)

]
(B.2)

Here S(qn+1) is given by

S(qn+1) = DT (qn+1) −
∂GT (qn, qn+1)

∂qn+1

· l(qn+1)

= DT (qn+1) −
m∑

b=1

lb(qn+1)
∂(dGgb(qn, qn+1))

∂qn+1

(B.3)

and the abbreviations

T (qn+1) =
2

h
M ·

(
qn+1 − qn

)
− 2pn + hdGV (qn, qn+1) (B.4)

and

l(qn+1) =
(
GT (qn) ·

(
G(qn, qn+1) · GT (qn)

)−1
)T

· T (qn+1) (B.5)

have been introduced.

B.1 Linearisation of the d’Alembert-type scheme with
nodal reparametrisation

For the reparametrisation qn+1 = Fq
n
(u) with u ∈ Rn−m introduced in (3.2.42), in the

context of an iterative solution procedure for the system of nonlinear algebraic equations

(3.2.44) one can distinguish between two types of unknowns. In both cases the tangent

matrix includes the (n−m) × n matrix

DR(Fq
n
(u)) = P

T (qn,Fq
n
(u)) · S(Fq

n
(u)) (B.6)

where S can be calculated from (B.3).
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B Linearisation of the d’Alembert-type scheme

B.1.1 Iterative unknowns

Using iterative unknowns, the configuration variable is updated in each step of the

Newton-Raphson iteration according to ql+1
n+1 = Fql

n+1
(u) such that the constraints are

fulfilled. Truncation of the Taylor expansion of this reparametrisation after the linear

term reads

ql+1
n+1 = Fql

n+1
(0) +

d

dε
[Fql

n+1
(εu)]|ε=0

= ql
n+1 + DFql

n+1
(0) · u

(B.7)

Insertion into (B.1) yields the (n−m)-dimensional linear system, which has to be solved

for the iterative unknowns u

R(ql
n+1) +DR(ql

n+1) ·DFql
n+1

(0) · u = 0 (B.8)

B.1.2 Incremental unknowns

Alternatively, a configuration variable fulfilling the constraints can be expressed as

ql+1
n+1 = Fq

n
(ul+1), with ul+1 ∈ Rn−m.

Then its linearisation reads

ql+1
n+1 = Fq

n
(ul) +

d

dε
[Fq

n
(ul + ε∆u)]|ε=0

= ql
n+1 + DFq

n
(ul) · ∆u

(B.9)

and the (n−m)-dimensional linear system to be solved for ∆u reads

R(ql
n+1) +DR(ql

n+1) ·DFq
n
(ul) · ∆u = 0 (B.10)

In each iteration, the reduced unknowns are updated according to ul+1 = ul +∆u and in

each time-step (after the iteration is complete, i.e. l = lmax), the configuration variable is

determined by qn+1 = Fq
n
(ulmax).
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C Conditioning issues

C.1 Lagrange multiplier method
The constrained (n+m)-dimensional time-stepping scheme (3.2.7) which has to be solved

for qn+1,λn+1 suffers from conditioning problems. For decreasing time-steps, the system

becomes more and more ill-conditioned. In particular the following calculations prove,

that the condition number of the iteration matrix for the solution of the nonlinear system

of equations is of the order O(h−3).

The iteration matrix of the residual (3.2.7) takes the form

DR =

[
N hGT

G 0

]
(C.1)

where the n× n matrix N reads more explicitly

N =
2

h
M + hX (C.2)

with

X =
∂
(
dGV (qn, qn+1) + G

T (qn, qn+1) · λn+1

)

∂qn+1

(C.3)

Accordingly the order of the blocks of DR is

[
O(h−1) O(h)

1 0

]
(C.4)

This yields
∥∥DR

∥∥ = O(h−1) in an arbitrary matrix norm
∥∥.
∥∥. Using Gaussian elimina-

tion, the inverse of DR can be computed as

(DR)−1 =

[
N−1 − N−1 · GT · Ñ−1 · G · N−1 N−1 · GT · Ñ−1

h−1Ñ
−1 · G · N−1 −h−1Ñ

−1

]
(C.5)

where Ñ =
(
G · N−1 · GT

)
. Let M = ML · MU be the LU-factorisation of M . Then

(C.2) can be rewritten as

N =
2

h
ML ·

(
I +

h2

2
M−1

L · X · M−1
U

)
· MU (C.6)

and N−1 reads

N−1 =
h

2
M−1

U ·
(

I +
h2

2
M−1

L · X · M−1
U

)−1

· M−1
L (C.7)
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For sufficiently small time-steps,
∥∥h2

2
M−1

L ·X ·M−1
U

∥∥ < 1 holds. Then application of the

Neumann series expansion (see e.g. [Deuf 03]) leads to

(
I +

h2

2
M−1

L · X · M−1
U

)−1

=
∞∑

k=0

(
−h

2

2
M−1

L · X · M−1
U

)k

(C.8)

Cutting the expansion after the second term yields

N−1 =
h

2

(
M−1 − h2

2
M−1 · X · M−1

)
(C.9)

Similarly, it can be shown that Ñ
−1

=
(
G · N−1 · GT

)−1
can be written as

Ñ
−1

=
2

h

(
M̃

−1
+
h2

2
M̃

−1 · X̃ · M̃−1
)

(C.10)

where M̃ = G · M−1 · GT and X̃ = G · X · GT . Substitution of (C.9) and (C.10) into

(C.5) shows that the order of the blocks of (DR)−1 is

[
O(h) 1

O(h−1) O(h−2)

]
(C.11)

Consequently,
∥∥(DR)−1

∥∥ = O(h−2) and the condition number of the iteration matrix of

the constrained scheme is given by

κ(DR) =
∥∥DR

∥∥∥∥(DR)−1
∥∥ = O(h−3) (C.12)

C.2 Discrete null space method with nodal
reparametrisation

The (n−m)-dimensional d’Alembert-type time-stepping scheme with nodal reparametri-

sation (3.2.44) is unconditionally well-conditioned. The following calculations show, that

the condition number of the iteration matrix is independent of the time-step, regard-

less whether iterative or incremental unknowns are in use. From (B.8) and (B.10), the

iteration matrix of the residual (3.2.44) can be inferred to be

DR ·DFq
n

=
2

h
X + hY + Z (C.13)

with

X = P
T (qn, qn+1) · M ·DFq

n
(u)

Y = P
T (qn, qn+1) ·

∂
(
dGV (qn, qn+1)

)

∂qn+1

·DFq
n
(u)

Z = −P
T (qn, qn+1) ·

∂GT (qn, qn+1)

∂qn+1

· l(qn+1) ·DFq
n
(u)

(C.14)
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C.3 Discrete null space method

This yields
∥∥DR ·DFq

n

∥∥ = O(h−1). Let X = XL · XU be the LU-factorisation of X.

Then (C.13) can be rewritten as

DR ·DFq
n

=
2

h
XL ·

(
I + X−1

L ·
(
h2

2
Y +

h

2
Z

)
· X−1

U

)
· XU (C.15)

and its inverse reads

(
DR ·DFq

n

)−1
=
h

2
X−1

U ·
(

I + X−1
L ·

(
h2

2
Y +

h

2
Z

)
· X−1

U

)−1

· X−1
L (C.16)

For sufficiently small time-steps,
∥∥X−1

L ·
(

h2

2
Y + h

2
Z
)
·X−1

U

∥∥ < 1 holds. Analogous to the

procedure in Section C.1, application of the Neumann series expansion (see e.g. [Deuf 03])

leads to

(
I + X−1

L ·
(
h2

2
Y +

h

2
Z

)
· X−1

U

)−1

=

∞∑

k=0

(
−X−1

L ·
(
h2

2
Y +

h

2
Z

)
· X−1

U

)k

(C.17)

Cutting this expansion after the second term yields

(
DR ·DFq

n

)−1
=
h

2

(
X−1 − X−1 ·

(
h2

2
Y +

h

2
Z

)
· X−1

)
(C.18)

and consequently
∥∥ (DR ·DFq

n

)−1 ∥∥ = O(h) and the condition number of the iteration

matrix of the d’Alembert-type scheme with nodal reparametrisation is independent of the

time-step

κ(DR ·DFq
n
) =

∥∥DR ·DFq
n

∥∥∥∥ (DR ·DFq
n

)−1 ∥∥ ≈ 1 (C.19)

More precisely, κ(DR ·DFq
n
) = c where c ∈ R is a problem dependent constant.

C.3 Discrete null space method

Although the d’Alembert-type scheme (3.2.33) can be implemented directly using the

iteration matrix in (B.2), the there given form is not suitable for the conditioning consid-

erations. As described in [Bets 05], using the decomposition (3.2.34) in conjunction with

the matrices W n,Un given in (2.3.23) implies

ql
n+1 = qn + Un · ul + W n · wl

∆qn+1 = Un · ∆u + W n · ∆w
(C.20)

Insertion into (B.1) results in two equations including S and T given in (B.3) and (B.4)

respectively. Multiplying the second resulting equation by P
T · S ·W n · (G · W n)−1 and

subtracting it from the first resulting equation yields

Ku(q
l
n+1) · ∆u = −Ru(q

l
n+1)

Kw(ql
n+1) · ∆w = −Rw(ql

n+1)
(C.21)
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C Conditioning issues

with

Ku(q
l
n+1) = P

T (qn, q
l
n+1) · S(ql

n+1) ·
[
I − W n ·

(
G(ql

n+1) · W n

)−1 · G(ql
n+1)

]
· Un

Ru(q
l
n+1) = P

T (qn, q
l
n+1) ·

[
T (ql

n+1) − S(ql
n+1) · W n ·

(
G(ql

n+1) · W n

)−1 · g(ql
n+1)

]

Kw(ql
n+1) = G(ql

n+1) · W n

Rw(ql
n+1) = g(ql

n+1) + G(ql
n+1) · Un · ∆u

(C.22)

Since Kw(ql
n+1) is obviously independent of the time-step

κ(Kw) =
∥∥Kw

∥∥∥∥K−1
w

∥∥ ≈ 1 (C.23)

holds. More precisely, κ(Kw) = cw where cw ∈ R is a problem dependent constant.

Among the matrices composing Ku(q
l
n+1), only S(ql

n+1) given in (B.3) depends on the

time-step. Analogous to (C.13), it can be written as Ku = 2
h
X + hY + Z and

κ(Ku) =
∥∥Ku

∥∥∥∥K−1
u

∥∥ ≈ 1 (C.24)

or more precisely κ(Ku) = cu with the problem dependent constant cu ∈ R can be shown

in the same way.

C.4 Penalty method
Besides the time-step, the n-dimensional penalty system’s (3.2.20) condition number is

influenced by the penalty parameter µ. In the sequel it is shown, that the condition

number of the iteration matrix is of the order O(h2µ), thus for well balanced time-steps

and penalty parameters, the penalty system is well-conditioned. In particular the use of

relatively high penalty parameters, leading to acceptable constraint fulfilment, requires

the use of relatively small time-steps. In this case, the system has the property of being

stiff, see [Hair 96].

The iteration matrix of the residual (3.2.20) takes the form

DR =
2

h
M + hX + hµY (C.25)

with

X =
∂
(
dGV (qn, qn+1)

)

∂qn+1

Y =
∂dGR(g(qn, qn+1))

∂qn+1

(C.26)

Under the reasonable assumptions of relatively small time-steps h � 1 and relatively

large penalty parameters µ� 1 which are necessary for an adequately accurate solution,

the first and last terms in (C.25) are leading and obviously
∥∥DR

∥∥ = O(h−1 + hµ) holds.

Let M = ML · MU be the LU-factorisation of M . Then (C.13) can be rewritten as

DR =
2

h
ML ·

(
I + M−1

L ·
(
h2

2
X +

h2µ

2
Y

)
· M−1

U

)
· MU (C.27)
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C.5 Augmented Lagrange method

Assuming further that h2 is decreasing quicker than µ is increasing, i.e. µ is of the

order O(h−2), for sufficiently small time-steps,
∥∥M−1

L ·
(

h2

2
X + h2µ

2
Y
)
·M−1

U

∥∥ < 1 holds.

Analogous to the procedure using the Neumann series expansion in Section C.3 it can be

shown here, that the inverse iteration matrix reads

(DR)−1 =
h

2

(
M−1 − M−1 ·

(
h2

2
X +

h2µ

2
Y

)
· M−1

)
(C.28)

This yields
∥∥(DR)−1

∥∥ = O(h+ h3µ) and consequently

κ(DR) =
∥∥DR

∥∥∥∥ (DR)−1
∥∥ = O(h2µ) (C.29)

C.5 Augmented Lagrange method
As for the penalty scheme, the condition number of the iteration matrix of the n-dimensional

augmented Lagrange time-stepping scheme (3.2.29) is of the order O(h2µ). But in con-

trast to the penalty scheme, the parameter µ can remain of moderate magnitude and the

constraint fulfilment is achieved through an extra iteration. Thus for small time-steps,

the augmented Lagrange scheme is well-conditioned.

The iteration matrix of the residual (3.2.29) takes the form

DR =
2

h
M + hX + hµY (C.30)

with

X =
∂
(
dGV (qn, qn+1) + G

T (qn, q
k
n+1) · λk

n+1

)

∂qn+1

Y =
∂dGR(g(qn, qn+1))

∂qn+1

(C.31)

Analogous to the procedure for the penalty scheme in Section C.4, it can be shown that

that

κ(DR) =
∥∥DR

∥∥∥∥ (DR)−1
∥∥ = O(h2µ) (C.32)
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D Configuration dependent mass
matrix of the double spherical
pendulum

PSfrag replacements

q1

q2

u1
1

u1
2

u2
1

u2
2

e1

e2

e3

g

l1
l2

m1

m2

Figure D.1: Double spherical pendulum.

A description of the double spherical pendulum in Figure 4.1 in terms of generalised

coordinates u = [u1
1, u

1
2, u

2
1, u

2
2]

T ∈ R4 relies on the angles

uα
1 = ^ (e3, q

α) uα
2 = ^

(
e1,Π (e1,e2)(q

α)
)

α = 1, 2 (D.1)

where Π (e1,e2) is the projection to the (e1, e2)-plane, and for α = 2 the origin is moved

to the position of the first mass, see Figure D.1.

Then the reparametrisation of the constraint manifold C = S2
l1
×S2

l2
introduced in (2.3.26)

reads

F (u) =




l1 sin(u1
1) sin(u1

2)

l1 cos(u1
1)

l1 sin(u1
1) cos(u1

2)

l2 sin(u2
1) sin(u2

2)

l2 cos(u2
1)

l2 sin(u2
1) cos(u2

2)




(D.2)

Corresponding to the kinetic and potential energy of the double spherical pendulum in

(4.1.1), the reparametrisation of the Hamiltonian in generalised coordinates is given by
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D Configuration dependent mass matrix of the double spherical pendulum

H̃ : T ∗C → R with

H̃(u,y) =
1

2
yT ·

(
M̃ (u)

)−1

· y + V (F (u)) (D.3)

with the configuration-dependent reduced mass matrix M̃(u) = DT F (u) · M ·DF (u).

Insertion of M from (4.1.3) and the Jacobian of the transformation (D.2) yields

M̃(u) =
[

m̃1 m̃2 m̃3 m̃4

]
(D.4)

with

m̃1 =




l21 (m1 +m2)

0

l1m2l2 (sin(u1
1) sin(u2

1) + cos(u1
1) cos(u1

2) cos(u2
1) cos(u2

2))

l1 cos(u1
1)m2l2 (sin(u1

2) sin(u2
1) cos(u2

2) − cos(u1
2) sin(u2

1) sin(u2
2))




m̃2 =




0

−l21
(
−1 + (cos(u1

1))
2
)

(m1 +m2)

−l1 sin(u1
1) sin(u1

2)m2l2 cos(u2
1) cos(u2

2)

l1 sin(u1
1)m2l2 (cos(u1

2) sin(u2
1) cos(u2

2) + sin(u1
2) sin(u2

1) sin(u2
2))




m̃3 =




l1m2l2 (sin(u1
1) sin(u2

1) + cos(u1
1) cos(u1

2) cos(u2
1) cos(u2

2))

−l1 sin(u1
1) sin(u1

2)m2l2 cos (u2
1) cos (u2

2)

l22m2

(
1 − (cos(u2

1))
2
+ (cos(u2

1))
2
(cos(u2

2))
2
)

−l22 cos(u2
1) cos(u2

2)m2 sin(u2
1) sin(u2

2)




m̃4 =




l1 cos(u1
1)m2l2 (sin(u1

2) sin(u2
1) cos(u2

2) − cos(u1
2) sin(u2

1) sin(u2
2))

l1 sin(u1
1)m2l2 (cos(u1

2) sin(u12
1) cos(u2

2) + sin(u1
2) sin(u2

1) sin(u2
2))

−l22 cos(u2
1) cos(u2

2)m2 sin(u2
1) sin(u2

2)

−l22m2

(
(cos(u2

2))
2
(cos(u2

1))
2 − 1 + (cos(u2

1))
2 − (cos(u2

1))
2
(cos(u2

2))
2
)




The presence of highly nonlinear entries in M̃(u) causes a temporal discretisation of

Hamilton’s equations in terms of generalised coordinates (2.3.28) to be very involved.
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E Discrete derivative of the stored
energy function

For clearness of exposition, the dependence of the stored energy function of the geometri-

cally exact beam Wint on the bending strain measures K is ignored. Also the integration

over the arc-length is not indicated, since it is not relevant for the following purpose.

Then corresponding to (5.2.3), the potential energy pertaining to the internal elastic

deformation reads Vint(q) = Wint(Γ (q)). According to (5.2.4), Γ is quadratic in the

configuration variable q. Consequently, after reparametrisation in the quadratic invariants

π(z) given in (5.4.5), the strain measures Γ̃ (π(z)) in (5.4.9) are linear in π.

Despite the formal differences, the following two alternatives to apply the discrete deriva-

tive in Example 3.1.6 to the beams stored energy function are equal. In particular, the

terms in equal colours coincide.
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E Discrete derivative of the stored energy function

Alternative 1

Defining f = Wint ◦ Γ̃ and using π from (5.4.5), the G-equivariant discrete derivative of

the potential energy pertaining to the internal elastic deformation reads

DGVint(zn, zn+1) = DπW̃ (Γ̃ (π(zn),π(zn+1))) ·Dπ(zn+ 1
2
) =

D ˜
Γ
W̃

(
Γ̃

(
1

2
(π(zn+1) + π(zn))

))
·DπΓ̃

(
1

2
(π(zn+1) + π(zn))

)
·Dπ(zn+ 1

2
)+



W̃
(
Γ̃ (π(zn+1))

)
− W̃

(
Γ̃ (π(zn))

)

∥∥π(zn+1) − π(zn)
∥∥2 −

(
D ˜
Γ
W̃
(
Γ̃
(

1
2
(π(zn+1) + π(zn))

))
·DπΓ̃

(
1
2
(π(zn+1) + π(zn))

))
· (π(zn+1) − π(zn))

∥∥π(zn+1) − π(zn)
∥∥2




(π(zn+1) − π(zn)) ·Dπ(zn+ 1
2
)

Alternative 2

Defining f = Wint and replacing π in Example 3.1.6 by Γ̃ ◦π, the G-equivariant discrete

derivative of the potential energy pertaining to the internal elastic deformation reads

DGVint(zn, zn+1) = D ˜
Γ
W̃
(
Γ̃ (π(zn)), Γ̃ (π(zn+1))

)
·Dz

(
Γ̃ (π(zn+ 1

2
))
)

=

D ˜
Γ
W̃

(
1

2

(
Γ̃ (π(zn+1)) + Γ̃ (π(zn))

))
·DπΓ̃

(
π(zn+ 1

2
)
)
·Dπ(zn+ 1

2
)+



W̃
(
Γ̃ (π(zn+1))

)
− W̃

(
Γ̃ (π(zn))

)

∥∥Γ̃ (Π(zn+1)) − Γ̃ (π(zn))
∥∥2 −

D ˜
Γ
W̃

(
1

2

(
Γ̃ (π(zn+1)) + Γ̃ (π(zn))

))
·
(
Γ̃ (π(zn+1)) − Γ̃ (π(zn))

)

∥∥Γ̃ (Π(zn+1)) − Γ̃ (π(zn))
∥∥2




(
Γ̃ (π(zn+1)) − Γ̃ (π(zn))

)
·DπΓ̃

(
π(zn+ 1

2
)
)
·Dπ(zn+ 1

2
)
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F Invertible cube by Paul Schatz

The mechanism treated as an example of a six-body linkage in Section 6.2.4 is an in-

vention of the artist, inventor and technician Paul Schatz. The following abridgement

of his biography has partly been taken from the web pages of the Paul Schatz-Stiftung

http://www.paul-schatz.ch and from http://www.fzk.at, where Franz Zahaurek offers a

detailed report on the invertible cube and programmes for the simulation of its motion.

Paul Schatz was born in Constance on December 22nd, 1898. Already during his teenage

years, he was an ardent admirer of those days aviation pioneers. After World War I,

he began to study mathematics, mechanical engineering, and philosophy at the Munich

College of Technology. Alike many of his contemporaries, he was seeking a connection of

technics and arts. Between 1924 and 1927, he worked as a sculptor of wood and at the

same time, he studied intensively anthroposophy. In 1927 he published the book [Scha 27],

whose title has been translated as ‘A Quest of Art Based on the Strength of Perception’.

In the same year, he and his wife, Emmy Schatz-Witt, moved to Dornach (Switzerland),

where he lived and worked until his death on March 7th, 1979.

In 1975, his second book [Scha 98] was published, wherein the first of two parts is devoted

entirely to the invertible cube. On page 40, it is explained, that when the first model of the

invertible cube was released in 1930, it could be observed that the way people ‘invert’ the

cube gives information on their personality. Extrovert natures put it over in an outward

direction, as depicted in Figure 6.24, while introvert people put it over in the opposite

direction. The specialty about the invertible cubes motion is the rhythmically pulsatile

kinematics. It consists of the interplay of diastole (expansion) and systole (contraction)

which is characteristic for the inversion. Furthermore, the ratio of four pulsations per one

full revolution is associated with the ratio of pulse and breathing of the human organism,

which is considered to be of great ‘dynamical relevance’.

A requirement for the ‘preforced motion’ (i.e. motion having only one degree of freedom) in

both directions, is the composition of the cube by pairwise laterally reversed bodies. The

principle can be generalised to an invertible cuboid or an invertible rhombus, where the

neighbouring revolute axes are skew. Invertible bodies are frequently applied in industrial

processes of mixing and agitation, e.g. the ‘turbula’ and the ‘inversina’ are inventions by

Paul Schatz which have a long history of development in engineering.

A model of the invertible cube can be built by cutting out the contour in Figure F.2 and

gluing it together according to the letter’s guidance.

The timeform of the invertible cube (i.e. the space, where the invertible cube passes

through during a full revolution) yields the so-called oloid. It correlates with the convex
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Invertible cube by Paul Schatz

hull of two circles in orthogonal planes, each containing the center of the other one, see

Figure F.1. Its motion is qualitatively resembling that of a fish’s fin. With minimal

energy input, it can circulate large volumina of fluids, thus it is used widely in sewage

preparation.

Figure F.1: Timeform of the invertible cube: oloid.
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Invertible cube by Paul Schatz

Der umstülpbare Würfel nach Paul Schatz
 2000 Franz Zahaurek <http://www.fzk.at>

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

ii

j
j

k
k

l

l

X

X

Figure F.2: Model to build an invertible cube.
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[Ibra 95] A. Ibrahimbegović, F. Frey, and I. Kozar. “Computational aspects of vector-like

parametrization of three-dimensional finite rotations”. Int. J. Numer. Meth. Engng.,

Vol. 38, pp. 3653–3673, 1995.
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[Ibra 99] A. Ibrahimbegović and S. Mamouri. “Nonlinear dynamics of flexible beams in

planar motion: formulation and time-stepping scheme for stiff problems”. Comput.

Struct., Vol. 70, pp. 1–22, 1999.

198



“diss˙ln” — 2006/6/29 — 19:20 — page 199 — #211

Bibliography

[Jay 96] L. Jay. “Symplectic Partitioned Runge-Kutta Methods for Constrained Hamiltonian

Systems”. SIAM J. Numer. Anal., Vol. 33, No. 1, pp. 368–387, 1996.
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