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Abstract

The validity of formulas w.r.t. a specification over first-order logic with a semantics based on
all models is semi-decidable. Therefore, we may implement a proof procedure which finds a
proof for every valid formula fully automatically. But this semantics often lacks intuition:
Some pathological models such as the trivial model may produce unexpected results w.r.t.
validity. Instead, we may consider just a class of special models, for instance, the class
of all data models. Proofs are then performed using induction. But, inductive validity is
not semi-decidable—even for first-order logic. This theoretical drawback manifests itself
in practical limitations: There are theorems that cannot be proved by induction directly
but only generalizations can be proved. For their definition, we may have to extend the
specification. Therefore, we cannot expect to prove interesting theorems fully automatically.
Instead, we have to support user-interaction in a suitable way.

In this thesis, we aim at developing techniques that enhance automatic proof control of
(inductive) theorem provers and that enable user-interaction in a suitable way. We integrate
our new proof techniques into the inductive theorem prover QuodLibet and validate them
with various case studies. Essentially, we introduce the following three proof techniques:

1. We integrate a decision procedure for linear arithmetic into QuodLibet in a close
way by defining new inference rules that perform the elementary steps of the decision
procedure. This allows us to implement well-known heuristics for automatic proof
control. Furthermore, we are able to provide special purpose tactics that support
the manual speculation of lemmas if a proof attempt gets stuck. The integration
improves the ability of the theorem prover to prove theorems automatically as well as
its efficiency. Our approach is competitive with other approaches regarding efficiency;
it provides advantages regarding the speculation of lemmas.

2. The automatic proof control searches for a proof by applying inference rules. The
search space is not only infinite, but grows dramatically with the depth of the search.
In contrast to this, checking and analyzing performed proofs is very efficient. As the
search space also has a high redundancy, it is reasonable to reuse subproofs found
during proof search. We define new notions for the contribution of proof steps to a
proof. These notions enable the derivation of pruned proofs and the identification of
superfluous subformulas in theorems. A proof may be reused in two ways: upward
propagation prunes a proof by eliminating superfluous proof steps; sideward reuse
closes an open proof obligation by replaying an already found proof.

3. For interactive theorem provers, it is essential not only to prove automatically as many
lemmas as possible but also to restrict proof search in such a way that the proof process
stops within a reasonable amount of time. We introduce different markings in the
goals to be proved and the lemmas to be applied to restrict proof search in a flexible
way: With a forbidden marking, we can simulate well-known approaches for applying
conditional lemmas. A mandatory marking provides a new heuristics which is inspired
by local contribution of proof steps. With obligatory and generous markings, we can
fine-tune the degree of efficiency and extent of proof search manually.

With an elaborate case study, we show the benefits of the different techniques, in particular
the synergetic effect of their combination.
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Zusammenfassung

Die Gültigkeit prädikatenlogischer Formeln erster Stufe ist semi-entscheidbar, sofern man
bei der Semantik alle Modelle zugrundelegt. Daher ist es möglich ein Beweisverfahren zu
implementieren, das für jede gültige Formel einen Beweis vollautomatisch findet. Aber
eine Semantik, die alle Modelle berücksichtigt, entspricht oft nicht der Intuition: Einige
pathologische Modelle, wie z. B. das triviale Modell, führen zu unerwarteten Resultaten
bzgl. der Gültigkeit. In diesem Fall können wir die Klasse der betrachteten Modelle ein-
schränken, z. B. auf die Klasse aller Datenmodelle. Beweise werden in dieser Klasse mit
Hilfe von Induktion geführt. Die resultierende induktive Gültigkeit ist jedoch nicht mehr
semi-entscheidbar—nicht einmal für die Prädikatenlogik erster Stufe. Dies hat praktische
Auswirkungen: Es gibt Theoreme, die sich nicht direkt durch Induktion zeigen lassen.
Statt dessen müssen Generalisierungen betrachtet werden. Um diese definieren zu können,
ist evtl. eine Erweiterung der Spezifikation nötig. Daher können wir nicht erwarten, inter-
essante Theoreme vollautomatisch beweisen zu können. Statt dessen müssen wir manuelle
Interaktionen in geeigneter Weise unterstützen.

In dieser Arbeit entwickeln wir Techniken, die die automatisierte Beweissteuerung von
(induktiven) Theorembeweisern verbessern und die manuelle Interaktionen in geeigneter
Weise unterstützen. Wir integrieren unsere neuen Beweistechniken in den induktiven Theo-
rembeweiser QuodLibet und validieren sie mit Hilfe diverser Fallstudien. Im Wesentlichen
führen wir die folgenden drei neuen Beweistechniken ein:

1. Wir integrieren eine Entscheidungsprozedur für lineare Arithmetik in QuodLibet auf
enge Weise, indem wir neue Inferenzregeln definieren, die den elementaren Schritten
der Entscheidungsprozedur entsprechen. Auf diese Weise können wir alle Heuristiken
implementieren, die für eine automatisierte Beweissteuerung bekannt sind. Außer-
dem können wir spezielle Taktiken zur Verfügung stellen, die im Fall erfolgloser Be-
weisversuche die manuelle Spekulation von Lemmata unterstützen. Die Integration
verbessert sowohl die Effektivität als auch die Effizienz der automatisierten Beweis-
suche. Unser Ansatz ist bzgl. der Effizienz mit anderen Ansätzen vergleichbar; er
bietet jedoch zusätzliche Vorteile beim Spekulieren von Lemmata.

2. Die automatisierte Beweissteuerung sucht Beweise durch Anwenden von Inferenzre-
geln. Der Suchraum ist nicht nur unendlich, sondern wächst dramatisch in Abhängig-
keit von der Tiefe der Suche. Im Gegensatz zur Suche neuer Beweise kann die Analyse
von gefundenden Beweise sehr effizient durchgeführt werden. Da der Suchraum eine
hohe Redundanz aufweist, ist es sinnvoll gefundene Teilbeweise wiederzuverwenden.
Wir führen neue Begriffe ein, die den Beitrag eines Beweisschritts zu einem Beweis
festlegen. Diese Begriffe erlauben das Bereinigen von Beweisen und die Identifika-
tion von unnötigen Teilformeln, die zum Beweis eines Theorems nichts beitragen.
Ein Beweis kann auf zwei Arten wiederverwendet werden: Die Aufwärtspropagierung
bereinigt einen Beweis, indem überflüssige Beweisschritte entfernt werden; die Seit-
wärtswiederverwendung überträgt einen alten Beweis auf ein offenes Beweisziel.

3. Für interaktive Beweiser ist es wichtig, nicht nur so viele Lemmata wie möglich au-
tomatisch zu beweisen, sondern auch die Beweissuche derart einzuschränken, dass sie
in vernünftiger Zeit terminiert. Wir führen verschiedene Markierungen ein, um die
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Beweissuche in flexibler Weise zu steuern—zum einen auf den Zielen, die bewiesen
werden sollen, und zum anderen auf den Lemmata, die angewendet werden dürfen:
Mit einer verbotenen Markierung können wir bekannte Ansätze simulieren, die die An-
wendung von bedingten Lemmata steuern. Eine verpflichtende Markierung führt zu
einer neuen Heuristik, die auf dem lokalen Beitrag von Beweisschritten beruht. Mit
obligatorischen und großzügigen Markierungen schließlich können wir die Effizienz
und den Umfang der Beweissuche manuell steuern.

Anhand einer umfassenden Fallstudie zeigen wir die Vorteile unserer verschiedenen Tech-
niken auf, insbesondere den synergetischen Effekt, der aus ihrer Kombination resultiert.
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Chapter 1

Introduction

1.1 Motivation

If we want to establish “properties” of an “environment”, we first have to formalize the
application domain. This is usually done within some kind of logic. A logic fixes the

syntax, i.e. how do we construct logic objects, e.g. terms and formulas, from basic elements;
and

semantics, i.e. which formulas are consequences of basic formulas.

The formalization of the application domain is given by a specification. A specification
consists of a signature and axioms. The signature defines the basic elements, whereas the
axioms define the basic formulas. Typically, the semantics of a logic is given by a class of
models of the specification, i.e. algebras of the signature that fulfill all the axioms. Whereas
the environment is described by the axioms, the properties are given by additional formulas
called theorems (or lemmas). To establish a property of the environment, we have to prove
that the according theorem is valid in the specification, i.e. that it is a consequence of the
axioms. Instead of using semantic arguments, we prove theorems with sound logic calculi.
Roughly speaking, a logic calculus for a logic consists of inference rules that enable the
derivation of new formulas (conclusions) from a given set of formulas (premises). The logic
calculus is sound if every derived formula is valid. The logic calculus is complete if we can
derive every valid formula.

Depending on the logic, the balance between

expressiveness, i.e. which relationships can be expressed;

automation, i.e. which theorems can be proved automatically; and

intuition, i.e. is the validity of the theorems as we expect;

varies. Propositional logic has a high degree of automation as it is decidable, but lacks
expressiveness. For automated theorem proving, (clausal) first-order logic with semantics
based on all models of the specification is often considered as a suitable compromise between

1



2 Introduction

expressiveness and automation since it is semi-decidable. Therefore, there exist sound and
complete logic calculi for first-order logic with semantics based on all models. This entails
that we can enumerate all valid formulas of a specification. Theoretically (without regarding
space and time limitations), this yields a proof procedure which finds a proof for every valid
first-order formula of the specification.

But even first-order logic with semantics based on all models is often inappropriate
because it lacks expressiveness or intuition. In the first case, we may switch to higher-order
logic. The latter case is caused by the fact that the user often has a special model in mind
when he formalizes an application domain, e.g. when he specifies an abstract data type and
proves properties of it. Thus, the class of all models does not match his intuition. Some
pathological models such as the trivial model may produce unexpected results w.r.t. the
validity of theorems. In this case, we have to restrict the class of models considered for
the semantics of a specification. To prove theorems in the initial model, the class of all
term-generated models or all data models (cf. Chapter 2) of a specification, we have to use
induction on (constructor) terms. Therefore, these classes provide different alternatives for
defining the inductive validity of theorems (cf. [AM97, Wir97]). Whereas deductive theorem
proving is concerned with the validity in all models, inductive theorem proving deals with
inductive validity. Neither the validity in higher-order logic nor the inductive validity in
first-order logic are semi-decidable.

In this thesis, we are concerned with inductive theorem proving in clausal first-order
logic. The theoretical drawback—namely, that the inductive validity of theorems is not even
semi-decidable—manifests itself in practical limitations: In contrast to deductive theorem
proving, applications of Gentzen’s Cut rule cannot be eliminated in inductive proofs [Kre65].
Thus, we have to guess intermediate formulas to prove theorems. In practice, there are
theorems that cannot be proved by induction directly but only generalizations of them can
be proved. To formulate the required auxiliary lemmas, we may even have to extend the
signature and the axioms of the specification (cf. Chapter 8). Therefore, we cannot expect
to prove interesting theorems fully automatically. This leads to the following insight in
[Wir04, page 10]:

‘Successful application of an inductive theorem prover in “real-life” domains re-
quires a knowledgeable human user who can interact with the system at various
levels of abstraction.’

In this thesis, we aim at developing techniques that enhance automatic proof control of
(inductive) theorem provers and that enable user-interaction in a suitable way. The under-
lying ideas of our techniques are neither limited to a special theorem prover nor to inductive
theorem proving. Most of the techniques, however, display their full power only in con-
junction with user-interaction as required in inductive theorem proving. To concretize our
techniques enhancing readability and understanding, and to validate the usefulness of our
techniques with case studies, we integrate them into an inductive theorem prover. For this,
we choose QuodLibet [AKSSW03, Küh00]. QuodLibet is not as efficiently implemented
as the industrial-strength inductive theorem prover ACL2 [KMM00] for program verification.
Instead, QuodLibet was designed with a strong emphasis on both, automation as well as
user-orientation. Therefore, it provides the following advantages for the integration of our
new techniques:
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Strict separation between logic engine and proof control: The inference system
provides elementary proof steps which are oriented towards human proof techniques.
Proofs can be automated combining elementary proof steps in tactics written in an
adapted imperative programming language QML.

The inference rules are widely applicable. Basically, their applicability is solely re-
stricted to guarantee soundness and safeness properties of the inference rules. In
contrast to other approaches, the applicability is not restricted by heuristics.1 There-
fore, our inference rules are suitable for simulating many different approaches for proof
control. The currently considered proof control is then responsible for restricting the
applications heuristically.

Easy extensibility: Both, the inference system and the proof control can be extended
easily. Local properties of the inference rules guarantee the soundness of the extension.

Explicit representation of proofs with proof state graphs: This representation is
particularly useful if a proof attempt gets stuck. Proof state trees provide the user
with information about the failed proof attempt. In a uniform and flexible way, the
user may provide a hint for continuing the proof attempt e.g. by applying an inference
rule or calling a tactic.

Furthermore, the maintenance of the dependencies between proof attempts of (dif-
ferent) lemmas in a proof state graph enables the lazy generation of induction hy-
potheses, the application of yet unproved lemmas, and the usage of multiple proof
attempts. These techniques are advantageous for performing complicated proofs.

Suitable semantics for partially defined operators: In our case studies, many oper-
ators are only partially defined. QuodLibet provides welldefined semantics for spec-
ifying these operators in a natural way.

Our new techniques are intended to support complicated proofs as e.g. those based on
mutual induction. Essentially, we introduce the following three techniques to combine
automation and user-interaction:

1. Inspired by the seminal work in [BM88b], we integrate a decision procedure for linear
arithmetic into QuodLibet. Our form of integration is very close as we define new
inference rules that perform the elementary steps of the decision procedure. This
allows us to implement well-known heuristics for automatic proof control with tactics
such as the augmentation technique. Furthermore, we are able to provide special
purpose tactics that support the manual speculation of lemmas if a proof attempt gets
stuck. The integration improves the ability of the theorem prover to prove theorems
automatically as well as its efficiency. In spite of the close integration, our approach is
competitive with other approaches known from the literature regarding efficiency; it
provides additional advantages regarding the manual speculation of auxiliary lemmas.

2. Primarily, the automatic proof control searches for a proof by applying inference rules.
The search space is not only infinite, but grows dramatically with the depth of the
search. In contrast to this, checking and analyzing performed proofs is very efficient.

1Rewriting may, for instance, be restricted by wellfounded orders.
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As the search space also has a high redundancy, it is reasonable to reuse subproofs
found during proof search.

We define new notions for the contribution of proof steps to a proof. These notions
enable the derivation of pruned proofs and the identification of superfluous subfor-
mulas in theorems enhancing the reusability of proofs. A proof may be reused in
two ways: upward propagation propagates a proof upwards in the proof state tree
eliminating superfluous proof steps and the corresponding proof obligations; sideward
reuse propagates a proof sidewards in the proof state tree closing a formerly open
proof obligation.

3. In particular for interactive theorem provers, it is essential not only to prove automat-
ically as many lemmas as possible but also to restrict proof search in a suitable way
such that the proof process stops within a reasonable amount of time. We introduce
different markings to restrict proof search in a flexible way: A forbidden marking can
be used for simulating well-known approaches in the literature for applying condi-
tional lemmas. A mandatory marking provides a new heuristics which is inspired by
a local form of contribution of proof steps. With obligatory and generous markings
in lemmas, the user can fine-tune the degree of efficiency and extent of proof search
manually.

1.2 Overview of the Thesis

We start with two introductory chapters about the inductive theorem prover QuodLibet

and the basics of our automatic proof control.

More precisely, in Chapter 2, we describe the logic of QuodLibet and its architecture.
The basics presented in this chapter are required throughout this thesis. On the one hand,
QuodLibet has initiated the development of the new proof techniques. On the other
hand, we perform case studies within QuodLibet to validate the new proof techniques. In
particular, the inference rules of QuodLibet (cf. Section 2.2.2) and the tactic-based proof
control (cf. Section 2.3.1) are essential for our new proof techniques.

In Chapter 3, we present our principle approach for the automation of inductive theorem
proving. We consider the integration of induction schemes into the proof process as well as
the top-level organization of proof search. For the integration of induction schemes, there
are at least three different approaches known from the literature: proof by consistency (cf.
Section 3.1.1), explicit induction (cf. Section 3.1.2), and descente infinie (cf. Section 3.1.3).
Due to its support of user-interaction, our proof process is based on descente infinie. Our
top-level proof control is inspired by the simple waterfall model used in NQTHM [BM88a] and
ACL2 [KMM00]. We refine their simple waterfall to a more flexible one. This results in a
table-based proof control described in Section 3.2.2 which allows us to integrate new proof
techniques easily.

In the following four chapters, we present the main contributions of this thesis: the
close integration of a decision procedure for linear arithmetic into QuodLibet; the notion
of contribution for adaptable inference systems and its applications—guiding proof search
with markings and reusing contributing proofs.
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The integration of decision procedures into theorem provers has been studied for decades.
It aims at enhancing the scope of the theorem provers—the lemmas that can be proved
automatically—as well as the efficiency of proof search. In Chapter 4, we present a novel
approach which performs the integration closely. We derive new inference rules for Quod-

Libet which represent the elementary steps of the decision procedure. The applications of
the inference rules may be automated in different ways which are more suited for automation
on the one hand, and for the manual speculation of auxiliary lemmas on the other. In
Section 4.3, we validate our new approach with various case studies: We compare the
old proof control before the integration with the new proof control after the integration;
we provide evidence that our new approach is competitive with other approaches known
from the literature; and we illustrate the benefits of our new approach w.r.t. the manual
speculation of auxiliary lemmas. We have presented a preliminary version of this work in
[SS06a].

Both—guiding proof search with markings and reusing proofs—depend on partitioning
a goal into principal part, cut-off part, and context w.r.t. the inference rule applied. Both
approaches are not restricted to QuodLibet but may be applied to other reductive infer-
ence systems working on proof state trees as well. The common basics are captured in the
notion of adaptable inference system in Chapter 5. This notion allows us to extract the
essence of a proof w.r.t. its contribution to the proof.

Marking techniques provide a flexible and uniform way for guiding proof search. We
distinguish two kinds of markings: Markings in the goals to be proved and markings in
the lemmas to be applied. Markings in the goals guide proof search in two steps. Firstly,
in a fixed way, we define restrictions on the proof steps that can be performed w.r.t. the
markings in the goals and the partitioning of the goal into principal part, cut-off part and
context. Secondly, we use heuristics to inherit the markings to the new subgoals. With
a forbidden marking, we can model previous approaches known from the literature such
as Contextual and Case Rewriting. With a mandatory marking, we introduce a novel
approach for guiding proof search which is based on local contribution of proof steps. With
markings in the lemmas, we can influence the efficiency and the extent of proof search
in a flexible way manually. Primarily, obligatory markings are intended to enhance the
efficiency, whereas generous markings enhance the extent. However, enhancing the extent
may also improve efficiency. In Chapter 6, we present our flexible framework for guiding
proof search in detail. A self-contained version of this chapter will appear in [SS06b].

Instead of guiding proof search, we may also utilize the contribution of proof steps for
improving and reusing performed proofs. In Chapter 7, we present two different reuse
mechanisms: upward propagation and sideward reuse. The first one eliminates superfluous
proof steps. In doing so, we may also eliminate open proof obligations. The second one
allows us to prove an open subgoal without proof search and backtracking but with adapting
a proof previously performed successfully. These reuse mechanisms replace proof search to
some extent by proof reuse, resulting in a more efficient proof process.

We continue this thesis with a comprehensive case study about the lexicographic path
order LPO in Chapter 8. This case study is challenging as it contains function symbols
which are defined by mutual recursion. This calls for proofs based on mutual induction
which causes several difficulties in speculating auxiliary lemmas for all dependent oper-
ators, in performing appropriate inductive case splits, in applying suitable induction hy-



6 Introduction

potheses, in finding suitable wellfounded induction orders, and in proving the corresponding
order constraints. Our new proof techniques help us in this endeavor. In this chapter, we
sketch our proof engineering process as well as the resulting proof script. We illustrate
the synergetic effect of our new proof techniques which results e.g. from the combination
of generous markings and upward propagation. Furthermore, we point out directions of
further research.

Finally, we conclude this thesis in Chapter 9.



Chapter 2

QuodLibet: The Logic and the
Architecture

In this thesis, we use the inductive theorem prover QuodLibet to illustrate our new tech-
niques for automating inductive proofs and to validate them with case studies. QuodLibet

is an equality-based inductive theorem prover for clausal first-order logic with implicitly uni-
versally quantified variables. It admits partial definitions of operators over free constructors
using (possibly non-terminating) conditional equations as well as constructor, destructor,
and mutual recursion. Therefore, it is well suited for complex specifications of abstract data
types. Inductive validity is defined as validity in the class of so-called data models, the mod-
els that do not equalize any different constructor ground terms. Proofs can be performed
by induction on constructor ground terms. QuodLibet permits the explicit application of
a lemma as induction hypothesis resulting in an additional order obligation to guarantee
the wellfoundedness of the induction order. This enables the modeling of different inductive
proof processes such as explicit induction and descente infinie (cf. Section 3.1). Proofs are
based on a sequent calculus and represented by proof state graphs. Inference rules may
be applied manually or called automatically with tactics written in an adapted imperative
programming language QML. User-interaction may be performed using a text-based or a
graphical user-interface called XQL.

In this chapter, we summarize the foundations of QuodLibet as they are relevant for
this thesis. Particularly, this chapter answers the following questions:

• How do we formalize specifications with QuodLibet?

• Which properties can be expressed with QuodLibet?

• What is the semantics of a specification?

• How do we prove lemmas with QuodLibet?

A detailed description including motivation of the design decisions can be found in [Küh00]
based on theoretical work in [KW97, Wir97]. An extension to existentially quantified
variables and arbitrary two-valued logics is described in [Wir04]. Further information about
XQL and QML can be found in [SK97] and [SS97], respectively.

7



8 QuodLibet: The Logic and the Architecture

In Section 2.1, we summarize general basic notions required for this thesis. In Section 2.2,
we present the logic of QuodLibet—consisting of the specification language (2.2.1) and
the inference system (2.2.2) for performing proofs—and illustrate the given notions with
an example (2.2.3). The architecture of QuodLibet which is structured in three levels is
described in Section 2.3. Of special interest for the automation of proofs is QML presented
in 2.3.1.

2.1 Basic Notions

We expect the reader to be familiar with fundamental concepts of algebraic specifications
and term rewriting. In this section, we summarize some basic notions. Further details can
be found in [AM90, Ave95, BN98, Wir90].

Signatures. A many-sorted signature Σ = (S, F, α) consists of a set S of sorts , a set F of
function symbols and an arity function α : F → S+. The arity function α assigns to each
function symbol f argument sorts s1 . . . sn and a result sort s. Instead of α(f) = s1 . . . sns,
we also write f : s1, . . . , sn → s. Let V = (Vs)s∈S be an S-sorted family of infinite disjoint
sets Vs of variable symbols for each sort s with V ∩ F = ∅.

Terms. The set of wellformed terms Terms(F, V ) of sort s is recursively defined as the
smallest set with

• Vs ⊆ Terms(F, V ) and

• f(t1, . . . , tn) ∈ Terms(F, V ) if f is a function symbol with α(f) = s1 . . . sns and
ti ∈ Termsi

(F, V ) for each i ∈ {1, . . . , n}.

A term that only consists of a constant c, i.e. a function symbol without argument sorts, is
often denoted by c instead of c(). The set of all wellformed terms is denoted by Term(F, V ).
With Term(F ), we denote the set of wellformed ground terms, i.e. terms that do not contain
any variable.

The length |t| of a term t is recursively defined as follows:

• |t| = 1 if t ∈ V and

• |t| = 1 +
∑n

i=1 |ti| if t ≡ f(t1, . . . , tn).

The set of variables V (t) of a term t is defined as follows:

• V (t) = {t} if t ∈ V and

• V (t) =
⋃n

i=1 V (ti) if t ≡ f(t1, . . . , tn).
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The number of occurrences |t|x of a variable x in a term t is recursively defined as

• |t|x =

{

1 if t ≡ x
0 if t 6≡ x

}

if t ∈ V and

• |t|x =
∑n

i=1 |ti|x if t ≡ f(t1, . . . , tn).

A term t is called linear if |t|x ≤ 1 for each x ∈ V (t).

The top-level symbol top(t) of a term t is defined as

• top(t) = t if t ∈ V and

• top(t) = f if t ≡ f(t1, . . . , tn).

Positions. The set Pos(t) of positions of a term t is the smallest set with

• the empty position ε ∈ Pos(t) and

• i.p ∈ Pos(t) if t ≡ f(t1, . . . , tn), i ∈ {1, . . . , n} and p ∈ Pos(ti).

On positions we define a prefix relation ≤prefix as smallest relation with

• ε ≤prefix p
′ for each position p′ and

• i.p ≤prefix i.p
′ if p ≤prefix p

′.

A position p is minimal in a set P of positions if p ∈ P and for each p′ ∈ P , if p′ ≤prefix p
then p′ ≡ p.

The depth |p| of a position p is its length, i.e.

• |p| = 0 if p ≡ ε and

• |p| = 1 + |p′| if p ≡ i.p′.

The prefix prefix(p, d) of position p with depth at most d ∈ N ∪ {ω} is

• prefix(p, d) = p if |p| ≤ d and

• prefix(p, d) = p′ with p′ ≤prefix p and |p′| = d if |p| > d

Subterms. The subterm t/p of term t at position p ∈ Pos(t) is recursively defined as
follows:

• t/p ≡ t if p ≡ ε and

• t/p ≡ ti/p
′ if t ≡ f(t1, . . . , tn) and p ≡ i.p′.
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With t[u]p we denote the replacement of the subterm of t at position p ∈ Pos(t) with u
defined as:

• t[u]p ≡ u if p ≡ ε and

• t[u]p ≡ f(t1, . . . , ti−1, ti[u]p′ , ti+1, . . . , tn) if t ≡ f(t1, . . . , tn) and p ≡ i.p′.

Substitutions. A substitution is a sort-preserving function σ : V → Term(F, V ), i.e.
σ(x) ∈ Terms(F, V ) for each x ∈ Vs, with finite domain dom(σ) = {x ∈ V | σ(x) 6≡ x}. It is
extended to a function on Term(F, V ) by f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).1 The composition
στ of two substitutions σ and τ is defined as x(στ) ≡ (xσ)τ .

A match from term l to term t is a substitution σ with lσ ≡ t. Note that, if there is a
match from l to t, it is unique on V (l).

Terms u and v are unifiable if there exists a unifier σ, i.e. a substitution with uσ ≡ vσ.
A most general unifier of u and v is a unifier σ of u and v such that, for every unifier µ of
u and v, there exists a substitution τ with µ = στ . The most general unifier of u and v is
unique on V (u) ∪ V (v) up to a variable renaming. We denote it by mgu(u, v) if it exists.

Σ-algebras. A Σ-algebra A = (A,FA) for a signature Σ = (S, F, α) is defined by

• a universe A = (As)s∈S where As is a non-empty set for each s ∈ S and

• a set of functions FA = (fA)f∈F with fA : As1×· · ·×Asn
→ As if α(f) = s1 . . . sns.

A valuation is a function ϕ : V → A with ϕ(x) ∈ As for each x ∈ Vs. The valuation ϕ for
an algebra A is extended to terms by a function evalAϕ defined as

• evalAϕ (t) ≡ ϕ(t) if t ∈ V and

• evalAϕ (t) ≡ fA(evalAϕ (t1), . . . , evalAϕ (tn)) if t ≡ f(t1, . . . , tn).

For each ground term t ∈ Term(F ), the evaluation evalAϕ (t) results in the same element
of the universe regardless of the valuation ϕ. Therefore, we also denote this element by
evalA(t) or tA.

Rewrite relations. A rewrite relation −→ is a binary relation on a set A. Let ←−
be its reverse relation, ←→ its symmetric closure,

+−→ its transitive closure, and
∗−→ its

reflexive-transitive closure. Its joinability relation ↓ is defined by ↓ =
∗−→ ◦ ∗←−.

The rewrite relation is confluent if
∗←− ◦ ∗−→ ⊆ ↓.

The rewrite relation is terminating if there does not exist an infinite sequence (ai)i∈N

with ai −→ ai+1 for each i ∈ N.

1We use postfix notation to denote the application tσ of a substitution σ to a term t.
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(Quasi-)orders. A binary relation . is a quasiorder if it is reflexive and transitive. It
is an order if it is additionally antisymmetric. Let < = . − & be the strict part of .

and ∼ = . ∩ & be the equivalent part of .. The (quasi-)order . is wellfounded if > is
terminating.

For a set A, let A∗ be the set of finite sequences with elements in A. Let . be a
(quasi-)order on A. The lexicographic order .lex on A∗ induced by . is defined as follows:
a1, . . . , an .lex b1, . . . , bm iff

• n = 0 or

• n > 0, m > 0 and a1 < b1 or

• n > 0, m > 0, a1 ∼ b1 and a2, . . . , an .lex b2, . . . , bm.

In general, the lexicographic order .lex induced by . is not wellfounded even if . is
wellfounded. But if we consider sequences up to a fixed length k0 ∈ N only, this holds
true, i.e. .lex is wellfounded if . is wellfounded.

Operations on sets and multisets. Both, sets and multisets may be used to represent
clauses, i.e. disjunctively combined literals. For a uniform treatment, we define the following
operations on sets and multisets: A subset relation ⊆, a union ∪, an intersection ∩, a sum
+, a difference − operation, and a partition relation ⊎.

For sets, we define ⊆ as the subset relation on sets, ∪ and + as the union, ∩ as the
intersection, − as the difference of sets, and A = A1 ⊎ · · · ⊎ Am as the usual partition
relation on sets, i.e. A1 ⊎ · · · ⊎ Am is a partition of set A if A = A1 ∪ · · · ∪ Am and Ai are
pairwise disjoint sets.

A multiset M(A) for set A is a function M : A → N such that {x ∈ A | M(x) > 0} is
finite. We define the operations on multisets as follows:

• M1 ⊆M2 iff M1(x) ≤M2(x) for all x ∈ A;

• (M1 ∪M2)(x) = max(M1(x),M2(x)) for all x ∈ A;

• (M1 ∩M2)(x) = min(M1(x),M2(x)) for all x ∈ A;

• (M1 +M2)(x) = M1(x) +M2(x) for all x ∈ A;

• (M1 −M2)(x) = max(0,M1(x)−M2(x)) for all x ∈ A;

• M = M1 ⊎ · · · ⊎Mm iff M = M1 + · · ·+Mm.

Let . be a (quasi-)order. The multiset extension ≪ on M(A) induced by . is defined as
follows: M1 ≪M2 iff

• there exist X,Y ∈M(A) with ∅ 6= X ⊆M2, M1 = (M2 −X) + Y and
for each y ∈ Y there exists an x ∈ X with y < x.

The multiset extension ≪ is wellfounded if . is wellfounded.
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2.2 The Logic

In this section, we summarize the logic of the inductive theorem prover QuodLibet. Since
its inference system is based on free constructors, we consider only this special case. A
more general approach is described in [Küh00].

2.2.1 The Specification Language

2.2.1.1 Syntax

In comparison to the basic notions in Section 2.1, QuodLibet allows for the modeling
of partial functions. Therefore, the function symbols of a signature in QuodLibet are
divided into constructors and defined function symbols. Let Σ = (S, F, α) be a signature.
The user has to identify a set of constructors C ⊆ F in such a way that the signature
ΣC = (S,C, α|C) induced by C is sensible, i.e. that there exists at least one constructor
ground term t ∈ Terms(C) for each sort s ∈ S. The other function symbols D ≡ F −C are
called defined . Intuitively, constructor ground terms are evaluated to defined data items in
an algebra; the other elements in the universe of the algebra represent undefined values.

Analogously, the set V of variables is divided into a set V C of constructor variables and
a set V G of general variables. Intuitively, constructor variables may be evaluated only to
data items whereas general variables may be evaluated to arbitrary values. This distinction
also influences the notions for substitutions.

Definition 2.1 (Constructor / Inductive Substitutions) A substitution σ is called a
constructor substitution if σ(V C) ⊆ Term(C, V C), i.e. if every constructor variable is bound
to a constructor term. A substitution σ is called an inductive substitution if σ(V C) ⊆
Term(C) and σ(V G) ⊆ Term(F, V G). 2

In QuodLibet, formulas are represented as clauses with implicitly universally quantified
variables. A clause is a disjunctively combined finite sequence of literals. A literal λ is an
atom A or its negation ¬A. The conjugate λ of literal λ is defined by

λ =

{

A if λ ≡ ¬A
¬λ otherwise

Atoms are constructed from terms using three predefined predicate symbols:

• An equality atom t = u consists of two terms of the same sort. These atoms enable
the formulation of equality-based specifications.

• A definedness atom def t is used for expressing definedness properties of (partial)
operators in the form of domain lemmas .

• An order atom w1 < w2 consists of two weights. It explicitly represents order obli-
gations resulting from applications of induction hypotheses. A weight w is a finite
sequence of terms (u1, . . . , un) (with n ≤ k0 for a fixed k0 ∈ N).

A concrete induction order is defined in two steps:
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1. Weights w1 ≡ (u1, . . . , un) and w2 ≡ (v1, . . . , vm) are compared w.r.t. a fixed
wellfounded order. Basically, this order is the lexicographic order induced by
the term lengths of the constructor terms that are equal to the terms in weights,
i.e. (|û1|, . . . , |ûn|) <lex

N
(|v̂1|, . . . , |v̂m|) where ûi and v̂j are constructor terms

equal to ui and vj, respectively, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
For this order to be welldefined, each term may at most be equal to one con-
structor term. Particularly, we require that the constructors are free: if, for
two constructor terms tC1 , t

C
2 ∈ Term(C, V C), tC1 =R tC2 w.r.t. the considered

specification spec = (Σ, C,R) (cf. Definition 2.4), then tC1 ≡ tC2 .

2. To achieve flexibility for defining the induction order, weights are initially given
by weight variables that may be instantiated to term tuples later on.

Usually, we represent clauses by upper Greek letters such as Γ and ∆; and literals by lower
Greek letter such as λ. We write Γ, λ,∆ to represent a clause consisting of the literals in
Γ, literal λ and the literals in ∆, successively. Abusing the notation, we also represent this
in set notation—i.e. Γ ∪ {λ} ∪∆—to improve readability in continuous text.2 We extend
the notions introduced in Section 2.1 to atoms, literals and clauses if suitable.

A conditional equation is an expression of the form l = r ⇐ ∆ where ∆ is a conjunctive
sequence of condition literals. The conditional equation may be represented in clausal form
as {l = r} ∪ ∆ where ∆ is the disjunctive sequence of conjugated condition literals in ∆.
A conditional equation may be applied to replace an instance lσ of l by the same instance
rσ of r. Therefore, it is also called a (conditional) rewrite rule. To guarantee that the
constructors of admissible specifications are free, we restrict the rewrite rules that can be
used in specifications.

Definition 2.2 (Defining Rule) Let Σ = (S, F, α) be a signature and C ⊆ F be a set of
constructors for Σ. A rewrite rule l = r ⇐ ∆ is called defining rule if

• l ∈ Term(F, V )− Term(C, V ) and

• ∆ does not contain a literal of the form ¬def t.

2

Definition 2.3 (Specifications with Free Constructors)
A specification spec = (Σ, C,R) with free constructors consists of a signature Σ = (S, F, α),
a set of constructors C ⊆ F such that the induced signature ΣC is sensible and a set R of
defining rules. 2

The semantics of such a specification is given by the class of all data models of the speci-
fication (cf. Definition 2.9). For this semantics to be welldefined, the class of data models
must not be empty. This is guaranteed for admissible specifications (cf. Definition 2.5)
which essentially call for confluence of the rewrite relation −→R induced by the defining
rules R. To define this rewrite relation, we have to fix how the evaluation of the conditions
is operationalized. In QuodLibet, this is done in a constructive way with constructor
ground terms.

2Set notation is also used within the system itself. Therefore, the examples are represented in this way.
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Definition 2.4 (Rewrite Relation −→R) Let spec = (Σ, C,R) be a specification with
free constructors. The rewrite relation −→R induced by R is defined by −→R=

⋃

i∈N
−→i

with

• −→0= ∅ and

• t1 −→i+1 t2 if there is a rewrite rule l = r ⇐ ∆ in R, a position p ∈ Pos(t1) and an
inductive substitution σ such that

1. t1/p ≡ lσ

2. t2 ≡ t1[rσ]p

3. for each u = v in ∆, uσ ↓i vσ
4. for each def u in ∆, there is a term û ∈ Term(C) such that uσ

∗−→i û

5. for each u 6= v in ∆, there are terms û, v̂ ∈ Term(C) such that uσ
∗−→i û,

vσ
∗−→i v̂ and û 6≡ v̂

6. for each (u1, . . . , un) < (v1, . . . , vm) in ∆,

– there are a k ≤ min(n,m) and terms ûj, v̂j ∈ Term(C) such that ujσ
∗−→i ûj,

vjσ
∗−→i v̂j for j ∈ {1, . . . , k} and (|û1|, . . . , |ûk|) <lex

N
(|v̂1|, . . . , |v̂k|) or

– n < m and there are terms ûj, v̂j ∈ Term(C) such that ujσ
∗−→i ûj, vjσ

∗−→i

v̂j for j ∈ {1, . . . , n} and (|û1|, . . . , |ûn|) = (|v̂1|, . . . , |v̂n|)
and

7. for each ¬((u1, . . . , un) < (v1, . . . , vm)) in ∆,

– there are a k ≤ min(n,m) and terms ûj, v̂j ∈ Term(C) such that ujσ
∗−→i ûj,

vjσ
∗−→i v̂j for j ∈ {1, . . . , k} and (|v̂1|, . . . , |v̂k|) <lex

N
(|û1|, . . . , |ûk|) or

– m ≤ n and there are terms ûj, v̂j ∈ Term(C) such that ujσ
∗−→i ûj, vjσ

∗−→i

v̂j for j ∈ {1, . . . ,m} and (|û1|, . . . , |ûm|) = (|v̂1|, . . . , |v̂m|).

2

Definition 2.5 (Admissible Specifications with Free Constructors)
A specification spec = (Σ, C,R) with free constructors as defined in Definition 2.3 is called
admissible if

• −→R is confluent and

• for each defining rule l = r ⇐ ∆ and for each term t ∈ Term(F, V ) − Term(C, V C)
occurring (on top-level) in a negated equation or a negated order atom in ∆ there is
a literal def t in ∆.

2

Since we want to model non-terminating operators, we cannot use confluence criteria that
presuppose termination of the rewrite relation. Instead, QuodLibet employs an easily
testable, sufficient confluence criterion based on complementary critical pairs.
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Definition 2.6 (Complementary Critical Pairs) Let spec = (Σ, C,R) be a specifica-
tion with free constructors.

(i) Let li = ri ⇐ ∆i be a rewrite rule in R with Xi := V (li, ri,∆i) for i ∈ {0, 1}. Assume
w.l.o.g. X0 ∩ X1 = ∅. If there is a non-variable position p ∈ Pos(l1) such that
σ = mgu(l0, l1/p) exists and l1[r0]pσ 6= r1σ, then

(l1[r0]pσ,∆0σ), (r1σ,∆1σ)

is a (non-trivial) critical pair . The set of all critical pairs between rewrite rules in R
is denoted by CP(R).

(ii) The above critical pair is complementary if

• there are u, v ∈ Term(F, V ) and an i ∈ {0, 1} such that u =̇ v3 occurs in ∆iσ
and u 6= v occurs in ∆1−iσ; or

• there are t ∈ Term(F, V ) and û, v̂ ∈ Term(C) with û 6= v̂ such that t =̇ û occurs
in ∆0σ and t =̇ v̂ occurs in ∆1σ; or

• there are weights w1, w2 and an i ∈ {0, 1} such that w1 < w2 occurs in ∆iσ and
¬(w1 < w2) occurs in ∆1−iσ.

2

For the following confluence criterion two additional notions are required: A rewrite system
R is left-linear if the left-hand side l of each rewrite rule l = r ⇐ ∆ in R is linear, i.e.
|l|x ≤ 1 for each x ∈ V (l). R is effectively quasi-normal if for each rewrite rule l = r ⇐ ∆ in
R, and for each equality t1 = t2 in ∆, there is one ti, i ∈ {1, 2}, such that ti ∈ Term(C, V C)
or def ti occurs in ∆.

Theorem 2.7 (Confluence Criterion for −→R) Let spec = (Σ, C,R) be a specifica-
tion with free constructors such that R is left-linear and effectively quasi-normal. If each
critical pair in CP(R) is complementary, then −→R is confluent. 2

A proof of this theorem can be found in [Wir05a].

2.2.1.2 Semantics

Let spec = (Σ, C,R) be an admissible specification with free constructors, andA = (A,FA)
be a Σ-algebra. We refine the notion for valuations ϕ : V → A to account for the partition-
ing of variables into constructor and general variables: Let ACs = {tA | t ∈ Terms(C)} ⊆ As
be the set of defined data items of As. We consider only valuations ϕ with ϕ(x) ∈ ACs for
each x ∈ V C

s .

To define the semantics of order atoms formally, we lift evaluations from terms to
weights, i.e. tuples of terms: evalAϕ ((t1, . . . , tn)) = (evalAϕ (t1), . . . , evalAϕ (tn)). Furthermore,
we use the length of constructor terms to define a semantical order ≤A for each Σ-algebra:

3u =̇ v stands for u = v or v = u. Analogously, u ˙6= v stands for u 6= v or v 6= u.
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a1 ≤A a2 if

• a1 = a2 or

• there are t1, t2 ∈ Term(C) such that tA1 = a1, t
A
2 = a2 and |t1| < |t2|.

Definition 2.8 (Models) Let spec = (Σ, C,R) be an admissible specification with free
constructors, and A = (A,FA) be a Σ-algebra.

(i) Let ϕ : V → A be a valuation. Then A with ϕ satisfies

• an equation t1 = t2 if evalAϕ (t1) = evalAϕ (t2),

• a definedness atom def t for t ∈ Terms(F, V ) if evalAϕ (t) ∈ ACs and

• an order atom w1 < w2 if evalAϕ (w1) <
lex
A evalAϕ (w2).

A satisfies a negative literal ¬λ with ϕ if A does not satisfy λ with ϕ. Finally, A
satisfies a clause Γ with ϕ if there is at least one literal in Γ that A satisfies with ϕ.

(ii) A clause Γ is valid in A if A satisfies Γ with every valuation ϕ : V → A. This is
denoted by A |= Γ. Let K be a class of Σ-algebras and E be a set of clauses. We
write K |= E iff A |= Γ for every A ∈ K and for every Γ in E.

(iii) A is a Σ-model of spec if each defining rule in R is valid in A. The class of all
Σ-models of spec is denoted by Mod(spec).

2

Instead of all models we are interested only in those models that do not equalize any
constructor ground terms.

Definition 2.9 (Data Models / Standard Data Model M(spec))
Let spec = (Σ, C,R) be an admissible specification with free constructors. A Σ-model A of
spec is a data model of spec if, for all different constructor ground terms t1, t2 ∈ Term(C),
tA1 6= tA2 . Let DMod(spec) denote the class of all data models of spec. The standard data

model M(spec) is defined as the quotient algebra Term(F, V G)/
∗←→R. 2

In general, the class of data models for an arbitrary specification may be empty. But for
admissible specifications, the following theorem is proved in [KW97]:

Theorem 2.10 (Existence of Standard Data Model) Let spec = (Σ, C,R) be an ad-
missible specification with free constructors. Then the standard data modelM(spec) is a
data model of spec. 2

Thus, using the class of all data models to define inductive validity results in a welldefined
semantics.

Definition 2.11 (Inductive Validity)
Let spec = (Σ, C,R) be an admissible specification with free constructors. A clause Γ is
inductively valid in spec if DMod(spec) |= Γ. 2
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Using the class of all data models to define the semantics instead of just one single model
such as the standard data model provides the advantage that the semantics is monotonic
w.r.t. (constructor-consistent) extensions of a specification: In short, inductively valid lem-
mas remain inductively valid in extended specifications.

Definition 2.12 (Constructor-Consistent Extension of a Specification)
For i ∈ {0, 1} let speci = (Σi, Ci, Ri) be an admissible specification with free constructors
where Σi = (Si, Fi, αi), and let Vi = (Vi,s)s∈Si

be a variable system for Σi. We say that
spec1 is a constructor-consistent extension of spec0 if the following conditions are met:

1. S0 ⊆ S1, F0 ⊆ F1, C0 ⊆ C1 and α0 ⊆ α1

2. V0,s = V1,s for each s ∈ S0

3. R0 ⊆ R1 and

4. for each c ∈ C1 − C0 with α1(c) = s1 . . . sns we have s /∈ S0.

2

Theorem 2.13 (Monotonicity of Constructor-Consistent Extensions)
Let spec1 be a constructor-consistent extension of spec0, and Γ be a clause (over Σ0 and
V0). If DMod(spec0) |= Γ, then DMod(spec1) |= Γ. 2

Again, this theorem is proved in [KW97].

2.2.2 Inference Rules

In QuodLibet, inductive proofs are performed with an inference system working on goals.
A goal 〈Γ;w〉 consists of a clause Γ to be proved and a weight w for the definition of the
induction order. The inference system is based on a sequent calculus . The inference rules
are applied reductively , i.e. a goal (conclusion) is reduced to a (possibly empty) sequence
of new subgoals (premises). Therefore, we perform goal-oriented backward-reasoning.

Naturally, the inference rules are important for the automation of the proof process
presented in this thesis. Therefore, we list the inference rules with all their technical details
in this section. Additionally, we supplement the formal description with informal remarks
about their typical usage to ease comprehension. A complete example proof is presented in
Section 2.2.3. Further motivation and examples can be found in [Küh00].

We precede the presentation of the inference rules with three preliminary sections: In
Section 2.2.2.1, we define local properties that all the inference rules possess. These local
properties are sufficient to ensure global properties of whole proofs represented by proof
state graphs. This is described in Section 2.2.2.2. In Section 2.2.2.3, we summarize addi-
tional notions that are required for the formal presentation of the inference rules.
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2.2.2.1 Local Properties of Inference Rules

Inference rules in QuodLibet are parameterized schemes of the form

<rule name> <parameters>

〈Γ;w〉
〈Γ1;w1〉 . . . 〈Γn;wn〉

with 〈Π1; ŵ1〉U1 . . . 〈Πk; ŵk〉Uk

if <applicability conditions>

where n, k ∈ N and Ui ∈ {L, I} for i ∈ {1, . . . , k}:

<rule name> is the name of the inference rule.

<parameters> are the meta-variables that have to be instantiated to get a concrete instance.

〈Γ;w〉 stands for the goal that is reduced by the inference rule.

〈Γ1;w1〉 . . . 〈Γn;wn〉 represent the new subgoals resulting from the application of the infer-
ence rule.

〈Π1; ŵ1〉U1 . . . 〈Πk; ŵk〉Uk are the axioms or lemmas that are applied by the inference rule.
If Ui = I, then 〈Πi; ŵi〉 is applied as induction hypothesis; if Ui = L, then 〈Πi; ŵi〉 is
applied non-inductively.

<applicability conditions> are the conditions that have to be fulfilled by the goal the infer-
ence rule is applied to.

An inference rule is called applicative if k > 0; otherwise it is called non-applicative.

The inference rules make use of semantical properties of the predefined predicate symbols
and the clause form of formulas. In comparison to non-inductive inference systems, the
formulation of local soundness criteria for inference systems that may apply lemmas as
induction hypothesis with explicit order constraints is technically more involved. The defi-
nition depends on counterexamples: If a clause Γ is not inductively valid in a data model
A, then there exists a counterexample. Roughly speaking, applications of sound inference
rules make counterexamples “smaller”. Therefore, the local soundness properties of the in-
ference rules guarantee that there does not exist any A-counterexample for any data model
A if a proof within the inference system is found. In QuodLibet, A-counterexamples (for
〈Γ;w〉) have the form (〈Γ;w〉, σ, ϕ) where σ is an inductive substitution and ϕ is a valuation
for V G such that A does not satisfy Γσ with ϕ.

Definition 2.14 (Soundness of Inference Rules) We call an inference rule sound if for
any admissible specification spec with free constructors, for any instance

〈Γ;w〉
〈Γ1;w1〉 . . . 〈Γn;wn〉

with 〈Π1; ŵ1〉U1 , . . . , 〈Πk; ŵk〉Uk

of the given inference rule, for any A ∈ DMod(spec), and for any A-counterexample of the
form (〈Γ;w〉, σ, ϕ), one of the following statements holds:
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(1) There is an i ∈ {1, . . . , n} and an A-counterexample of the form (〈Γi;wi〉, τ, ψ) such
that evalAψ (wiτ) ≤lex

A evalAϕ (wσ).

(2) There is a j ∈ {1, . . . , k} such that Uj = L and Πj is not inductively valid w.r.t. spec.

(3) There is a j ∈ {1, . . . , k} and an A-counterexample of the form (〈Πj; ŵj〉, τ, ψ) such
that Uj = I and evalAψ (ŵjτ) <

lex
A evalAϕ (wσ).

2

Additionally, the inference rules of QuodLibet do not introduce any new counterexample.

Definition 2.15 (Safeness of Inference Rules) An inference rule is called safe if, for
any admissible specification spec with free constructors, and for any instance

〈Γ;w〉
〈Γ1;w1〉 . . . 〈Γn;wn〉

with 〈Π1; ŵ1〉U1 , . . . , 〈Πk; ŵk〉Uk

of the given inference rule, inductive validity of each of the clauses in {Γ,Π1, . . . ,Πk} w.r.t.
spec implies inductive validity of each of the clauses in {Γ1, . . . ,Γn} w.r.t. spec. 2

Theorem 2.16 (Soundness and Safeness Property for QuodLibet)
All the inference rules presented in this section are sound and safe for admissible specifica-
tions with free constructors. 2

This theorem is proved in [Küh00]. In most cases, the safeness of the inference rules is
ensured because the clauses of the new subgoals contain the clause of the original goal.
Therefore, we do not provide any further explanations about the safeness of the inference
rules but we only argue about their soundness in an informal way.

2.2.2.2 Proof State Graphs

Proof state graphs serve two purposes: On the one hand, they provide means for repre-
senting proof attempts of lemmas to the user so that he can call a tactic for a goal to start
an automatic proof attempt, or apply an inference rule to a goal manually. On the other
hand, they are used for managing the dependencies that result from the applications of
inference rules. Thus, we can pose easy requirements on proof state graphs that guarantee
the inductive validity of the corresponding lemmas due to the local soundness properties of
the inference rules. We introduce the necessary concepts and notions for proof state graphs
on an informal level only. For a formal treatment we refer to [Küh00].

In simple terms, a consists of one proof state tree for each lemma to be proved. A proof
state tree is a labeled directed bipartite graph consisting of goal and inference nodes . The
root goal node of a proof state tree is labeled with a goal containing the lemma to be proved.
An inference node is labeled with the inference rule applied to its parent which is a goal
node. Its n children (n ≥ 0) are again goal nodes and represent the new subgoals created
by the inference rule. In the simplest case, inference rules are applied only to those goal
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nodes that are leaves—resulting in a single proof attempt . Furthermore, it is also possible
to start several proof attempts in parallel. To do so, a goal node may have several inference
nodes as children. Any of these subtrees represents a different proof attempt.

A goal node is open if it does not possess any children, i.e. if no inference rule has
been applied to it. A proof attempt is closed if there are no open goal nodes in the proof
attempt, i.e. if all its leaves are inference nodes. Note that a closed proof attempt is not
sufficient for inductive validity—e.g. the inductive validity of the lemma labeling the root
goal node—as QuodLibet allows for the application of yet unproved lemmas. Therefore,
a proof state graph additionally contains dependencies for the applied lemmas. A proof
attempt is a proof if it is closed and all non-inductively applied lemmas are themselves
inductively valid. From the local properties of the inference rules we get the following:

Soundness: Due to the local soundness property, all the formulas that label goal nodes of
a proof are inductively valid. In particular, this holds true for the lemma labeling a
proved root goal.

Safeness: Due to the local safeness property, if a proof attempt contains a goal labeled
with a formula that is not inductively valid such as the empty clause, then the lemma
labeling the root goal or one of the lemmas applied non-inductively within the proof
attempt is not inductively valid.

A proof state tree may be interpreted as and/or-tree with goal nodes as or-nodes and
inference nodes as and-nodes: Only one proof attempt needs to be successful.

2.2.2.3 Additional Notions for Inference Rules

We summarize additional notions required for the formal definition of the inference rules.
We use the following meta-variables without further explanation:

• m,n, j, k for natural numbers,

• d for a depth, i.e. a natural number or ω,4

• t, u, v, l, r for terms,

• p for positions of terms in literals or terms,

• w for weights,

• λ for literals and

• Γ,Π,Λ for clauses.

With Γ[m] we denote the mth literal in clause Γ. We extend the notions for replacements to
clauses: With Γ[t]m.p we denote the clause that is derived from Γ by replacing the subterm
at position p in the mth literal of Γ with term t. With Γ[λ]m we denote the clause that
is derived from Γ by replacing the mth literal of Γ with λ. With Γ[−]m the mth literal is
eliminated from Γ.

4ω is represented by −1 in QuodLibet.
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Often we do not want to distinguish between (negated) equality atoms with interchanged
left-hand and right-hand side. We denote this type of equality between literals with =lit.
Formally, λ =lit λ

′ if

• λ ≡ λ′ or

• λ ≡ (u = v) and λ′ ≡ (v = u) or

• λ ≡ (u 6= v) and λ′ ≡ (v 6= u).

A literal λ occurs in a clause Γ if there is a literal λ′ in Γ with λ =lit λ
′. A clause Γ contains

a clause Π if each literal in Π occurs in Γ.

We define the minimal difference positions MinDifPos(t1, t2, d) where the terms t1 and t2
differ w.r.t. a maximal depth d. Formally, MinDifPos(t1, t2, d) are the minimal positions
in {prefix(p, d) | p ∈ Pos(t1) ∩ Pos(t2) with top(t1/p) 6≡ top(t2/p)} (cf. Section 2.1 for the
definitions of prefix and top).

Analogously, we define the minimal non-constructor positions MinNonCPos(t) of a term t
as the minimal positions in {p ∈ Pos(t) | top(t/p) /∈ (C ∪ V C)}.

The C-front of a term t is a constructor term tC ∈ Term(C, V C) that is generated from t by
consistently replacing the terms at minimal non-constructor positions with new constructor
variables of the same sort. Consistently means that for each p1, p2 ∈ MinNonCPos(t),
t/p1 ≡ t/p2 iff tC/p1 ≡ tC/p2.

A set {σ1, . . . , σn} of constructor substitutions is a cover set of substitutions (for a goal
〈Γ;w〉) if for every inductive substitution σ there is a j ∈ {1, . . . , n} and an inductive
substitution τ such that xσ ≡ xσjτ (for each x ∈ V (Γ, w)).

The case analysis resulting from literals λ1, . . . , λn (for n > 0) consists of the clauses
Λ1, . . . ,Λn,Λ such that

• Λi ≡ λi, λi−1, . . . , λ1 for i ∈ {1, . . . , n} and

• Λ ≡ λn, . . . , λ1.

The set of definedness conditions DefCond(µ,Γ) of a substitution µ and a clause Γ is defined
as DefCond(µ,Γ) = {¬def xµ | x ∈ V C ∩ V (Γ) and xµ /∈ Term(C, V C)}.

2.2.2.4 Inference Rules for Simple Tautologies

With the first three inference rules we can prove simple tautologies (cf. Figure 2.1). There-
fore, the inference rules do not create any new subgoals.

compl-lit is applicable if the considered literals are complementary, i.e. one literal is the
conjugate of the other. This inference rule is sound for all Σ-algebras due to the
clausal form of the formulas.
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compl-lit m n

〈Γ;w〉

if • Γ[m] =lit Γ[n].

6=-taut m

〈Γ;w〉

if • Γ[m] = (t1 6= t2)

• t1, t2 ∈ Term(C, V C)

• t1 and t2 are not unifiable.

<-taut m

〈Γ;w〉

if • Γ[m] = (() < (u1, . . . , uk))

• k > 0.

Figure 2.1: Inference Rules for Simple Tautologies

6=-taut is applicable if the considered literal is a negated equation with constructor terms
at each side that are not unifiable. This inference rule is sound as we consider data
models for specifications with free constructors only. Therefore, different constructor
ground terms are always mapped to different data items.

<-taut is applicable if the considered literal is an order atom with an empty tuple as
left-hand side but with a non-empty tuple as right-hand side. This inference rule is
sound due to the properties of the lexicographic order.

2.2.2.5 Inference Rules for Decomposing Atoms

The inference rules for decomposing atoms (cf. Figure 2.2) may be used for proving simple
tautologies. In this case, they do not create any new subgoals. But they may also be
used for generating new subgoals that contain one simpler literal that is derived from the
considered literal.

=-decomp is applicable if the considered literal is an equation such that the top-level sym-
bols of both sides are identical. To prove the equality t1 = t2, it suffices to prove
t1/p = t2/p for each minimal difference position p w.r.t. a maximal depth d. For a
new equality whose complement is already present in the original clause we do not
have to create a new subgoal since it can be proved with inference rule compl-lit im-
mediately. Therefore, these subgoals can be cut off. This results in the identification
of cut-off literals in the original goal as described in Chapter 5.
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=-decomp m d

〈Γ;w〉
〈u1 = v1,Γ;w〉 . . . 〈uk = vk,Γ;w〉
if • Γ[m] = (t1 = t2)

• d > 0

• top(t1) = top(t2)

• u1 = v1, . . . , uk = vk are exactly those equations in

{t1/p =̇ t2/p | p ∈ MinDifPos(t1, t2, d) }
whose complements do not occur in Γ[−]m.

def-decomp m

〈Γ;w〉
〈def u1,Γ;w〉 . . . 〈def uk,Γ;w〉

if • Γ[m] = def t

• top(t) ∈ (C ∪ V C)

• def u1, . . . , def uk are exactly those definedness atoms in

{def t/p | p ∈ MinNonCPos(t) }
whose complements do not occur in Γ[−]m.

<-decomp m

〈Γ;w〉
〈def u1,Γ;w〉 . . . 〈def uk,Γ;w〉

if • Γ[m] = (t1 < t2)

• top(t2) ∈ C
• there are t̂1, t̂2 ∈ Term(C, V C) such that

– for i ∈ {1, 2}, t̂i is a C-front for ti

– for each p1 ∈ MinNonCPos(t1) and p2 ∈ MinNonCPos(t2),
t1/p1 = t2/p2 iff t̂1/p1 = t̂2/p2

– |t̂1| < |t̂2| and |t̂1|x ≤ |t̂2|x for every x ∈ V C

– def u1, . . . , def uk are exactly those definedness atoms in

{def ti/p | i ∈ {1, 2} ∧ p ∈ MinNonCPos(ti) }
whose complements do not occur in Γ[−]m.

Figure 2.2: Inference Rules for Decomposing Atoms
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If t1 and t2 are identical, no new subgoals are created. This is the typical usage of
the inference rule.

def-decomp is applicable if the considered literal is a definedness atom that contains a
constructor symbol at top-level. To prove def t, it is sufficient to prove def t/p for
each minimal non-constructor position p in t. Again, we cut off those subgoals that
can be proved with inference rule compl-lit immediately, identifying cut-off literals
in the original clause.

If t is a constructor term, no new subgoals are created.

<-decomp is applicable if the considered literal is an order atom with one term at each
side such that the order constraint is fulfilled for all data models provided that the
terms are defined. The order constraint is checked using the C-fronts of both terms:
If the length of the left-hand side is smaller than the length of the right-hand side and
each variable occurs at most as often in the left-hand side as in the right-hand side of
the C-fronts than the order constraint is fulfilled for defined terms. The definedness
properties of the terms are checked as for inference rule def-decomp including the
usage of cut-off literals.

If both terms are constructor terms, no new subgoals are created.

2.2.2.6 Inference Rules for Removing Redundant Literals

The inference rules presented in Figure 2.3 remove redundant literals. They “complement”
the “tautological” inference rules presented in Figures 2.1 and 2.2: In short, if we can prove
a clause valid because of a single literal then the conjugate of this literal cannot provide any
additional information. Therefore, it can be removed from the clause without losing any
information. The inference rules create exactly one new subgoal eliminating the redundant
literal from the original clause. Theoretically, these inference rules do not have to be applied
at all as they do not contain any new information. Their applications do not contribute to
a proof in terms of Chapter 7. Nevertheless, their usage is indispensable in practice—at
least when goals are presented to the user. They clean up the goals making the presentation
more concise. Furthermore, they restrict proof search.

mult-lit complements inference rule compl-lit: It is applicable if the considered literals
are equal. As two equal literals do not contain different information, one of the
occurrences can be removed safely.

=-removal complements inference rule 6=-taut: It is applicable if the considered literal is
an equation with constructor terms at each side that are not unifiable. In this case,
the equation can never be fulfilled. Therefore, it can be removed from the clause
safely.

<-removal complements inference rule <-taut: It is applicable if the considered literal is
an order literal with an empty tuple as right-hand side. The literal can be removed
safely because of the definition of the lexicographic order.

6=-removal complements inference rule =-decomp: It is applicable if the equality of terms
t1 and t2 of the considered negated equation t1 6= t2 follows from the negation of the
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mult-lit m n

〈Γ;w〉
〈Γ[−]n;w〉
if • m 6= n

• Γ[m] =lit Γ[n].

=-removal m

〈Γ;w〉
〈Γ[−]m;w〉

if • Γ[m] = (t1 = t2)

• t1, t2 ∈ Term(C, V C)

• t1 and t2 are not unifiable.

<-removal m

〈Γ;w〉
〈Γ[−]m;w〉

if • Γ[m] = ((u1, . . . , uk) < ()).

6=-removal m

〈Γ;w〉
〈Γ[−]m;w〉

if • Γ[m] = (t1 6= t2)

• top(t1) = top(t2)

• each atom in {t1/p 6= t2/p | p ∈ MinDifPos(t1, t2, ω) } occurs in Γ[−]m.

¬def-removal m

〈Γ;w〉
〈Γ[−]m;w〉

if • Γ[m] = ¬def t
• top(t) ∈ (C ∪ V C)

• each atom in {¬def t/p | p ∈ MinNonCPos(t) } occurs in Γ[−]m.

Figure 2.3: Inference Rules for Removing Redundant Literals
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const-rewrite m n p

〈Γ;w〉
〈Γ[t2]m.p;w〉
if • m 6= n

• Γ[n] = (t1 ˙6= t2)

• p ∈ Pos(Γ[m]) and Γ[m]/p = t1.

6=-unif m

〈Γ;w〉
〈Γ[−]mτ ;wτ〉

if • Γ[m] = (t1 6= t2)

• t1, t2 ∈ Term(C, V C)

• τ = mgu(t1, t2) exists.

ctr-var-add m x

〈Γ;w〉
〈Γ[x 6= t]m;w〉

if • Γ[m] = ¬def t
• there is a sort s with t ∈ Terms(F, V ) and x ∈ V C

s − V (Γ, w).

Figure 2.4: Inference Rules for Making Use of Negative Literals

other literals in the clause, i.e. if the clause contains t1/p 6= t2/p for each minimal
difference position p of t1 and t2. Then, the considered literal does not contain any
additional information and can be removed from the clause safely.

¬def-removal complements inference rule def-decomp: It is applicable if the definedness
property for term t of the considered negated definedness atom ¬def t follows from
the negation of the other literals in the clause, i.e. if the clause contains ¬def t/p for
each minimal non-constructor position p of t. Then, the considered literal does not
contain any additional information and can be removed from the clause safely.

2.2.2.7 Inference Rules for Making Use of Negative Literals

A clause {λ1, . . . , λn} may be interpreted as implication λ1 → λ2 ∨ · · · ∨ λn. Therefore, we
may prove one the literals λ2, . . . , λn assuming the negation of λ1. The following inference
rules make use of such negated literals (cf. Figure 2.4).

const-rewrite is applicable if the nth literal in the clause is a negated equation that
contains a subterm of the mth literal (at position p). This subterm is replaced with
the other side of the negated equation assuming its equality.
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6=-unif is applicable if the considered literal is a negated equation consisting of constructor
terms that are unifiable. Assuming its negation it suffices to prove one of the remaining
literals in the clause if the two terms are equal. Therefore, we can apply the most
general unifier of the two terms to the other literals. Additionally, we can remove the
negated equation from the clause as we have extracted all its information with the
unifier.

Note that the weight is also instantiated with the unifier as we, henceforth, consider
a special instance of the original goal.

ctr-var-add is applicable if the considered literal is a negated definedness atom ¬def t.
Assuming its negation it suffices to prove one the remaining literals if t is defined,
i.e. if it is equal to an arbitrary but fixed constructor term. This constructor term
can be represented by a new constructor variable x (of the same sort) which does not
occur in the original clause. Therefore, we may prove the remaining literals under the
assumption that x is equal to t. Thus, we may replace ¬def t with x 6= t in the new
subgoal.

2.2.2.8 Further Inference Rules for Order Atoms

The fixed wellfounded lexicographic order used for evaluating order atoms in QuodLibet

enjoys additional properties that are exploited by the inference rules depicted in Figure 2.5.

tuple-<-reduct is applicable if the considered literal is an order atom such that both
tuples contain at least one element. As the order is a lexicographic one, the order
constraint can be proved valid if this holds true for the first components of the tuples.
Thus, the inference rule adds one order atom to the new subgoal in which the first
components of the tuples are compared.

tuple-=-reduct is applicable if the considered literal is an order atom such that both
tuples contain the same term as first element. In this case, the comparison w.r.t. the
lexicographic order is decided by the remaining elements in the tuples. Thus, the
inference rule replaces the old order atom in the original goal with an order atom
without the first element in both tuples.

<-mono is applicable if the considered literal is an order atom such that each tuple consists
of one term. Furthermore, p1 and p2 are positions in the terms of the left-hand and
right-hand side, respectively, such that the remaining symbols in the contexts are
constructor symbols and that the context on the left-hand side adds at most as much
to the constructor length as the context on the right-hand side. Thus, if we can prove
valid the order constraint resulting from the subterms at positions p1 and p2, then the
original constraint is also valid. Therefore, the inference rule adds this order atom to
the new subgoal.

<-trans is applicable if the considered literal is an order atom w1 < w3. The soundness
of this inference rule depends only on the transitivity of the order relation. If we can
prove the validity of w1 < w2 and w2 < w3 for an additional weight w2, then the
original order atom is also valid. Thus, the inference rule creates two new subgoals
with one of the additional order constraints added to each subgoal.
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tuple-<-reduct m

〈Γ;w〉
〈t1 < t2,Γ;w〉
if • Γ[m] = ((t1, u1, . . . , uj) < (t2, v1, . . . , vk))

• j > 0 ∨ k > 0.

tuple-=-reduct m

〈Γ;w〉
〈Γ[(u1, . . . , uj) < (v1, . . . , vk)]m;w〉

if • Γ[m] = ((t, u1, . . . , uj) < (t, v1, . . . , vk)).

<-mono m p1 p2

〈Γ;w〉
〈u1 < u2,Γ;w〉

if • Γ[m] = (t1 < t2)

• for i ∈ {1, 2}, pi ∈ Pos(ti)− {ε} and ti/pi = ui

• there are t̂1, t̂2 ∈ Term(C, V C) and x1, x2 ∈ V C − V (t1, t2) such that

– for i ∈ {1, 2}, t̂i = ti[xi]pi

– |t̂1| ≤ |t̂2|
– for every x ∈ V C − {x1, x2}, |t̂1|x ≤ |t̂2|x.

<-trans m w2

〈Γ;w〉
〈w1 < w2,Γ;w〉 〈w2 < w3,Γ;w〉

if • Γ[m] = (w1 < w3).

Figure 2.5: Further Inference Rules for Order Atoms

2.2.2.9 Inference Rules for Performing Case Splits

The inference rules in Figure 2.6 can be used for performing case splits.

subst-add is applicable if the given substitutions form a cover set of substitutions that
bind only variables of the goal. The original goal—i.e. the clause and the weight—is
instantiated with the cover set of substitutions creating one new subgoal for each
substitution. The soundness of the inference rule is guaranteed because a cover set of
substitutions defines a complete case split.

This inference rule is used, e.g., for the initial case split of inductive proofs that are
based on constructor recursion.
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subst-add σ1 . . . σn .

〈Γ;w〉
〈Γσ1;wσ1〉 . . . 〈Γσn;wσn〉
if • {σ1, . . . , σn} is a cover set of substitutions for 〈Γ;w〉.

lit-add λ1 . . . λn .

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉 〈Λ,Γ;w〉
if • Λ1, . . . ,Λn,Λ is the case analysis resulting from literals λ1, . . . , λn for n > 0.

Figure 2.6: Inference Rules for Performing Case Splits

lit-add is always applicable. It performs a cut, i.e. a case split w.r.t. a given list of literals
λ1, . . . , λn. For each literal, one new subgoal is created where the original clause is
handled provided that the literal is true. To be more precise, the literals of previous
cases are downfolded to the right, i.e. the following cases assume that the previous
literals are false. Additionally, one new subgoal is created that handles the case where
all the literals are false. Therefore, we get a complete case split, and the inference
rule is sound.

This inference rule is used, e.g., for the initial case split of inductive proofs that are
based on destructor recursion.

2.2.2.10 Non-Inductive Applicative Inference Rules

The first two non-inductive applicative inference rules apply (conditional) lemmas for
rewriting and subsumption, respectively (cf. Figure 2.7). As described in Section 2.2.1.1, a
clause {λ1, . . . , λn} can be interpreted as an implication λ1 ∧ · · · ∧ λn−1 ⇒ λn. A lemma is
called conditional if n > 1. As in [Zha95], we fix one literal in the lemma clause by calling
it the head literal ; the conjugates of the other literals are called condition literals . For each
inference step, we also fix one literal in the goal clause, called focus literal ; the conjugates
of the other literals are called context literals .

lemma-rewrite is applicable if the head literal—the nth literal—of the lemma clause is
an equation l =̇ r such that, for a substitution µ, lµ is equal to the subterm of
the focus literal—the mth literal—of the goal clause at position p. The subterm is
then replaced with rµ resulting in a rewrite subgoal . Furthermore, the instantiated
condition literals have to be fulfilled in the “context”: For each instantiated condition
literal, a condition subgoal is created that essentially extends the original goal by
the instantiated condition literal. Furthermore, for each constructor variable that is
bound to a non-constructor term by substitution µ, a definedness subgoal is created
that essentially extends the original goal by a definedness atom for the bound term.
If an instantiated condition literal or definedness atom is equal to a context literal
we say that it is directly fulfilled in the goal and the context literal is called a cut-off
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lemma-rewrite m p PS-Tree n µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉 〈Λ,Γ[rµ]m.p;w〉

with 〈Π; ŵ〉L

if there is a position p ∈ Pos(Γ[m]), a substitution µ and a minimal clause Θ such that

• the goal labeling the root of the proof state tree PS-Tree is 〈Π; ŵ〉
• Π[n] = (l =̇ r)

• Γ[m]/p = lµ

• Γ[lµ = rµ]m,Θ contains DefCond(µ,Π),Π[−]nµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ.

lemma-subs PS-Tree µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉

with 〈Π; ŵ〉L

if there is a substitution µ and a minimal clause Θ such that

• the goal labeling the root of the proof state tree PS-Tree is 〈Π; ŵ〉
• Γ,Θ contains DefCond(µ,Π),Πµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ.

Figure 2.7: Non-Inductive Applicative Inference Rules Using Lemmas

literal as it cuts off the subgoal that otherwise would have to be created. A lemma
is directly applicable to a goal if all condition literals are directly fulfilled in the goal.
Definedness, condition and rewrite subgoals are created from left to right. This order
is relevant insofar as we maximally downfold the definedness and the condition literals
to the right.

lemma-subs is always applicable. Except for the rewrite subgoal, the application results in
the same subgoals as for rewriting.

Inference rules axiom-rewrite and axiom-subs in Figure 2.8 do the same as inference
rules lemma-rewrite and lemma-subs except that they apply axioms—i.e. defining rules—
instead of lemmas. Whereas axioms are always inductively valid, lemmas that are applied
in a proof attempt have to be checked for inductive validity to obtain a proof from a closed
proof attempt.

The last non-inductive applicative inference rule removes redundant literals due to a lemma
or axiom.
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axiom-rewrite m p DefRule n µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉 〈Λ,Γ[rµ]m.p;w〉

with 〈Π; ()〉L

if there is a position p ∈ Pos(Γ[m]), a substitution µ and a minimal clause Θ such that

• the clause representation of the defining rule DefRule is Π

• Π[n] = (l =̇ r)

• Γ[m]/p = lµ

• Γ[lµ = rµ]m,Θ contains DefCond(µ,Π),Π[−]nµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ.

axiom-subs DefRule µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉

with 〈Π; ()〉L

if there is a substitution µ and a minimal clause Θ such that

• the clause representation of the defining rule DefRule is Π

• Γ,Θ contains DefCond(µ,Π),Πµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ.

Figure 2.8: Non-Inductive Applicative Inference Rules Using Axioms

appl-lit-removal m µ Lma n

〈Γ;w〉
〈Γ[−]m;w〉

with 〈Π; ŵ〉L

if there is a substitution µ such that

• if Lma is a defining rule then Π is the clause representation of Lma

• if Lma is a proof state tree then the root of Lma is labeled with 〈Π; ŵ〉
• Γ[m] =lit Π[n]µ

• Γ[−]m contains DefCond(µ,Π),Π[−]nµ.

Figure 2.9: Non-Inductive Applicative Inference Rules for Removing Literals
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ind-rewrite m p PS-Tree n µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉 〈Λ,Γ[rµ]m.p;w〉 〈ŵµ < w,Λ′,Γ;w〉

with 〈Π; ŵ〉 I

if there is a position p ∈ Pos(Γ[m]), a substitution µ and a minimal clause Θ such that

• the goal labeling the root of the proof state tree PS-Tree is 〈Π; ŵ〉
• Π[n] = (l =̇ r)

• Γ[m]/p = lµ

• Γ[lµ = rµ]m,Θ contains DefCond(µ,Π),Π[−]nµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ

• Λ′ = lµ = rµ,Λ .

ind-subs PS-Tree µ

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λn,Γ;w〉 〈ŵµ < w,Λ,Γ;w〉

with 〈Π; ŵ〉 I

if there is a substitution µ and a minimal clause Θ such that

• the goal labeling the root of the proof state tree PS-Tree is 〈Π; ŵ〉
• Γ,Θ contains DefCond(µ,Π),Πµ

• Λ1, . . . ,Λn,Λ is the case analysis resulting from Θ.

Figure 2.10: Inductive Applicative Inference Rules

appl-lit-removal complements inference rules lemma-subs and axiom-subs. If the con-
jugate of the focus literal follows from the head literal and if all remaining condition
and definedness literals are directly fulfilled, then the focus literal does not contain
any additional information w.r.t. the remaining literals in the goal clause and the ap-
plied lemma (or axiom). Therefore, the focus literal can be removed from the clause
safely.

2.2.2.11 Inductive Applicative Inference Rules

Lemmas can also be applied as induction hypothesis. For this, it has to be checked that
the applied induction hypothesis is smaller w.r.t. the wellfounded induction order than the
original goal it is applied to. Therefore, inference rules ind-rewrite and ind-subs in
Figure 2.10 generate—in comparison to their non-inductive counterparts lemma-rewrite

and lemma-subs in Figure 2.7—one additional order subgoal to the right. This order subgoal
essentially extends the original goal by an order atom comparing the weights of the induction
hypothesis and the original goal.



2.2 The Logic 33

2.2.3 An Example Proof

We conclude the presentation of the logic of QuodLibet with an example to illustrate
the introduced notions. In particular, we show how inductive proofs are performed using
the inference system from Section 2.2.2, and how they are represented with proof state
trees. The example is taken from our case study about the lexicographic path order LPO
[KL80] (cf. Definition 8.1). In the case study we prove that the LPO is a simplification
order on terms (cf. Definition 8.2). Additionally, we show the equivalence of different im-
plementations of the LPO. The LPO example is challenging as the specification heavily
depends on mutually recursive operators over mutually recursive data types. Therefore,
the properties are proved by mutual induction which poses huge problems to many induc-
tive theorem provers. QuodLibet is well suited for these specifications based on mutual
recursion/induction because of its flexible inference system that allows for the lazy gener-
ation of induction hypotheses. By this we mean that we do not have to fix the induction
hypotheses as well as the induction order at the beginning of the proof as in explicit induc-
tion but that we may apply lemmas inductively and have to fix the induction order only
at the end of the proof. The flexibility QuodLibet provides to model the inductive proof
process is explained more precisely in Section 3.1. In this section, we present a complete
but small extract of the LPO example. An overview of the whole specification can be found
in Chapter 8 and the complete proof script in Appendix A.

The LPO provides a scheme of wellfounded orders on wellformed terms over function
symbols with fixed arity and variable symbols. It depends on a precedence, i.e. a quasi-
order on function symbols. In our case study, we consider only total precedences. To model
the LPO scheme within QuodLibet, we first have to specify a data type for (wellformed)
terms. For this, we use a sort Term. The wellformedness property is modeled with a boolean
valued function symbol. Therefore, we also require a sort Bool for boolean values. As
we have to distinguish between terms starting with a function symbol and those starting
with a variable symbol, the sort Term is defined with two constructors: constructor V

generates a term from a variable symbol, constructor F constructs a term from a function
symbol and a list of terms used as arguments. Thus, we get three additional sorts: sort
VID represents the set of variable symbols, sort FID the set of function symbols, and sort
Termlist represents lists of terms. We do not model many-sorted signatures in the LPO
example, but we associate with each function symbol a natural number standing for its
arity. Natural numbers are modeled with sort Nat. A term is wellformed iff the arity of
its top-level function symbol corresponds to the length of its argument list and each term
in its argument list is itself wellformed. In this section, we want to specify this property
formally and prove its definedness on all terms, i.e. we can decide for each term whether it
is wellformed. Altogether, our specification consists of the following sorts listed with their
corresponding constructors:

Bool for boolean values with constructors

• true : → Bool

• false : → Bool

The two constructors are constants that represent the two truth values.

Nat for natural numbers with constructors
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• 0 : → Nat

• s : Nat→ Nat

The constructors represent zero and the successor function on natural numbers, re-
spectively. Thus, s(s(0)) stands for the natural number 2.

VID for variable symbols with constructor

• Vid : Nat→ VID

The argument of the constructor is just used for distinguishing the variables. For
each natural number, we get a different variable. Thus, the set of different variable
symbols is countably infinite.

FID for function symbols with constructor

• Fid : Nat, Nat→ FID

The first argument of the constructor is used for calculating the precedence of the
function symbols: a function symbol f is smaller in the precedence than a function
symbol g iff this holds true for the first arguments of their constructors. The second
argument represents the arity of the function symbol.

Term for terms with constructors

• V : VID→ Term

• F : FID, Termlist→ Term

Terms may be constructed from variable symbols or from function symbols together
with a list of terms used as arguments.

Termlist for lists of terms with constructors

• nil : → Termlist

• cons : Term, Termlist→ Termlist

Lists of terms are generated from the empty list nil and a constructor cons that adds
one term to the front of a list of terms.

Note that terms and lists of terms mutually depend on each other. Therefore, the well-
formedness property for terms is also specified with two function symbols: A function
symbol Well on terms and a function symbol Well tl on lists of terms. Well tl is defined
to be true for a list of terms iff each term in the list is wellformed. For the specification of the
two function symbols, we require information about the arity of function symbols and the
length of lists of terms represented with function symbols arity and length, respectively.
Thus, we specify the following defined function symbols:

• arity : FID→ Nat

• length : Termlist→ Nat
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• Well : Term→ Bool

• Well tl : Termlist→ Bool

For the formal specification of the defining rules we use the following constructor variables:

• b : Bool

• m, n : Nat

• x , y , z : VID

• f , g , h : FID

• t , u, v : Term

• ts , us , vs : Termlist

In the following, we present the defining rules for the defined function symbols in clausal
form. The arity of a function symbol is given by the second argument of the constructor
for function symbols (Axiom (2.1)).

{ arity(Fid(n,m)) = m } (2.1)

The length of a list of terms is defined recursively: the length of the empty list is zero
(Axiom (2.2)); the length of a non-empty list is the successor of the length of the remaining
elements in the list without the first element (Axiom (2.3)).

{ length(nil) = 0 } (2.2)

{ length(cons(u, us)) = s(length(us)) } (2.3)

If the top-level symbol of the term is a variable, then the term is wellformed (Axiom (2.4)).
If the top-level symbol is a function symbol and the arity of the function symbol corresponds
to the length of the argument list, then the term is wellformed iff each of the terms in the
argument list is wellformed (Axiom (2.5)). Otherwise, if the top-level symbol is a function
symbol but the arity of the function symbol is unequal to the length of the argument list,
then the term is not wellformed (Axiom (2.6)). The negative definedness literals are added
to the defining rules to fulfill the admissibility conditions.

{ Well(V(x )) = true } (2.4)

{ Well(F(f , ts)) = Well tl(ts),
arity(f ) 6= length(ts),
¬def arity(f ),
¬def length(ts) }

(2.5)

{ Well(F(f , ts)) = false,
arity(f ) = length(ts),
¬def arity(f ),
¬def length(ts) }

(2.6)
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In an empty list of terms, each term is wellformed (Axiom (2.7)). If the first term of the
list is wellformed then the whole list is wellformed iff this holds true for the list of the
remaining terms without the first term (Axiom (2.8)). Otherwise, if the first term in the
list is not wellformed, then the wellformedness property does not hold for all terms in the
list (Axiom (2.9)).

{ Well tl(nil) = true } (2.7)

{ Well tl(cons(u, us)) = Well tl(us),
Well(u) 6= true }

(2.8)

{ Well tl(cons(u, us)) = false,
Well(u) = true,
¬def Well(u) }

(2.9)

We want to prove that function symbol Well is defined for all terms (Lemma (2.10)). For its
proof, we require a corresponding property for lists of terms, namely, that function symbol
Well tl is defined for all lists of terms (Lemma (2.11)).

{ def Well(t) } (2.10)

{ def Well tl(us) } (2.11)

For the proofs of Lemmas (2.10) and (2.11), we require the following lemmas: Function
symbol arity is defined for all function symbols (Lemma (2.12)). Function symbol length
is defined for all lists of terms (Lemma (2.13)). Their inductive proofs are trivial.

{ def arity(f ) } (2.12)

{ def length(us) } (2.13)

The proofs for Lemmas (2.10) and (2.11) are represented with proof state trees in Fig-
ures 2.11 and 2.12, respectively. The root goal node consists of the conjecture to be proved
and is displayed at the top of the proof state tree. Goal nodes are illustrated in rectangular
boxes. They contain the clause of the goal in set notation with curly braces, and the weight
of the goal in the last line of the goal node. Inference nodes are illustrated in rounded boxes.
To keep the presentation concise, we do not present all the parameters of the inference rules.
Only for the inference rules subst-add and lit-add, we add all the parameters, i.e. the
substitutions and literals, respectively, that the case splits are based on. Furthermore, the
inference rules for rewriting and subsumption refer to the lemmas5 that they apply. The
other parameters of the inference rules can be determined as follows: If the parameter of
an inference rule refers to a literal in the goal clause this literal is underlined. For inference
rules that apply lemmas for rewriting, we underline the subterm to be rewritten. This
allows for the determination of the position required for the inference rule. With boxes
we mark literals that are used as cut-off literals in the application of a lemma. From this
information it is easy to complete the parameters of the inference rules such as the literal
in the lemma clause that is used as head literal for rewriting or the matching substitution.

As we want to present closed proof state trees in the figures, the weight variables have
already been instantiated. This need not be done at the beginning of the proof but before
the order subgoals resulting from inductive applications are proved. In Figures 2.11 and

5In the following, we use the term “lemma” as generic term for both, axioms and lemmas.
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{ def Well(t) }
t

subst-add [t ← V(x )] [t ← F(f , ts)]

{ def Well(V(x )) }
V(x )

axiom-rewrite (2.4)

{ def true }
V(x )

def-decomp

{ def Well(F(f , ts)) }
F(f , ts)

lit-add ¬def arity(f ) ¬def length(ts) arity(f ) = length(ts)

{ def arity(f ) ,

def Well(F(f , ts)) }
F(f , ts)

lemma-subs (2.12)

{ def length(ts) ,

¬def arity(f ),
def Well(F(f , ts)) }

F(f , ts)

lemma-subs (2.13)

{ arity(f ) 6= length(ts) ,

¬def length(ts) ,

¬def arity(f ) ,

def Well(F(f , ts)) }
F(f , ts)

axiom-rewrite (2.5)

{ arity(f ) 6= length(ts),
¬def length(ts),
¬def arity(f ),

def Well tl(ts) }
F(f , ts)

ind-subs (2.11)

{ ts < F(f , ts),

arity(f ) 6= length(ts),
¬def length(ts),
¬def arity(f ),
def Well tl(ts) }

F(f , ts)

<-decomp

{ arity(f ) = length(ts) ,

¬def length(ts) ,

¬def arity(f ) ,

def Well(F(f , ts)) }
F(f , ts)

axiom-rewrite (2.6)

{ arity(f ) = length(ts),
¬def length(ts),
¬def arity(f ),
def false }

F(f , ts)

def-decomp

Figure 2.11: Proof State Tree for Lemma (2.10)
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{ def Well tl(us) }
us

subst-add [us ← nil] [us ← cons(u, us)]

{ def Well tl(nil) }
nil

axiom-rewrite (2.7)

{ def true }
nil

def-decomp

{ def Well tl(cons(u, us)) }
cons(u, us)

lit-add Well(u) = true

{ Well(u) 6= true ,

def Well tl(cons(u, us)) }
cons(u, us)

axiom-rewrite (2.8)

{ Well(u) 6= true,

def Well tl(us) }
cons(u, us)

ind-subs (2.11)

{ us < cons(u, us),

Well(u) 6= true,
def Well tl(us) }

cons(u, us)

<-decomp

{ Well(u) = true ,

def Well tl(cons(u, us)) }
cons(u, us)

axiom-rewrite (2.9)

{ def Well(u) ,

Well(u) = true,
def Well tl(cons(u, us)) }

cons(u, us)

ind-subs (2.10)

{ u < cons(u, us),

def Well(u),
Well(u) = true,
def Well tl(cons(u, us)) }

cons(u, us)

<-decomp

{ ¬def Well(u),
Well(u) = true,
def false }

cons(u, us)

def-decomp

Figure 2.12: Proof State Tree for Lemma (2.11)
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2.12, the lowest subgoals—that are generated by inference rule ind-subs—are the order
subgoals. Before the instantiation, the weights of the two proof state trees are represented
by two different weight variables: instead of weight t the proof for Lemma (2.10) starts with
weight w2.10(t), and at the beginning of the proof for Lemma (2.11), weight us is replaced
with weight w2.11(us) where w2.10 and w2.11 are free existential variables.

The figures present typical examples for inductive proofs performed with QuodLibet:
At first, an inductive case split is performed with inference rules subst-add and lit-add in
such a way that the axioms of at least one defined operator can be applied. After that, the
resulting subgoals are simplified as much as possible until no new subgoals are generated
(in the base cases); or the lemma itself—or other mutually dependent lemmas—can be
applied as induction hypotheses (in the step cases). If the proof process is successful, this
results in some (unproved) order subgoals that are to guarantee the wellfoundedness of the
induction scheme. After the induction order has been fixed by instantiating the weight
variables associated with the proof state trees, these order constraints have to be proved to
close the proof attempt.

In our example, the simplification process would have resulted in the following order
constraints if the weight variables had not already been instantiated:

• w2.11(ts) < w2.10(F(f , ts))

• w2.11(us) < w2.11(cons(u, us))

• w2.10(u) < w2.11(cons(u, us))

In this case, the weight variables can simply be instantiated by a projection on the first
argument. This results in the order constraints shown in the proof state trees which can
be closed immediately. As the proof state trees are closed, Lemmas (2.10) and (2.11) are
inductively valid provided that this holds true for the applied Lemmas (2.12) and (2.13).

Certainly, the proof process may also stop unsuccessfully. This may be caused by an
unsuitable case split or some missing auxiliary lemmas. In this case, the user has to provide
additional information.

The proof state tree for Lemma (2.11) in Figure 2.12 is generated by the automatic proof
control presented in this thesis. Lemma (2.10) is also proved automatically but the proof
state tree that is generated automatically is slightly more complicated than that presented
in Figure 2.11: In the case split with inference rule lit-add only equality literals are con-
sidered in the automatically generated proof attempt. Subgoals similar to the following two
left-most subgoals starting with the definedness atoms def arity(f ) and def length(ts),
respectively, are created twice as condition subgoals for the rewrite steps with Axioms (2.5)
and (2.6) (cf. the application of Axiom (2.9) in Figure 2.12). Thus, the automatic proof
control creates two additional subgoals.

2.3 The Architecture

In this section, we give a brief overview of the system architecture of QuodLibet. Further
information can be found e.g. in [Küh00] and [Kai02]. In particular, we do not present any
details about the command language or the graphical user interface.
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The system architecture is illustrated in Figure 2.13. QuodLibet is designed in a
modular way on three levels:

• The basic level realizes an inference machine kernel . It is responsible for the compli-
ance with the logic presented in Section 2.2. In particular, it ensures the admissibility
of the given specification. Since the proof state graph can be altered only by applying
inference rules implemented in the kernel, the inductive validity of the proved lem-
mas is guaranteed—regardless whether the proof is done manually or automatically—
provided that the implementation of the kernel is error-free.

• On the highest level, there are two user interfaces for the communication with the
system: On the one hand, a text-based user interface is realized by a simple command
language. This language is also used for saving proof scripts to files. In this way, we
can establish libraries for specifications and proofs. On the other hand, there is a
graphical user interface XQL that is an add-on for the text-based interface, i.e. the
actions of XQL are translated into commands of the text-based interface. In this way,
XQL realizes most commands of the command language with graphical shortcuts that
are easy to use. Furthermore, XQL provides a sophisticated back-end for presenting
proof state trees which makes the analysis of failed proof attempts a lot easier.

• An optional intermediate level allows for the automation of the proof process. It
essentially consists of a compiler that translates routines written in an adapted im-
perative programming language called QML (QuodLibet meta language) into exe-
cutable code. The code of the public routines may be called via the text-based user
interface just like the inference rules of the kernel. For ease of use, the routines are
automatically integrated into the graphical user interface as well. As it is the most
important level for this thesis, an overview of QML is given in Section 2.3.1.

The command language allows the user to

• initialize the inference machine kernel;

• enter specifications and lemmas;

• apply inference rules and instantiate weight variables manually;

• navigate in proof state trees;

• delete (subtrees of) proof state trees;

• load and save proof scripts;

• compile QML code for the automation of proof control;

• call public routines from the automatic proof control; and

• display all kinds of information such as specifications, proof state trees and their
dependencies which are managed automatically.
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Figure 2.13: High Level System Structure of QuodLibet
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2.3.1 Tactic-Based Proof Control

In comparison to a “hard-wired” proof control, a tactic-based proof control provides much
more flexibility. Tactics allow the user to combine applications of inference rules in a
flexible way using a programming language. Tactics may be interpreted as derived inference
rules that handle a certain proof pattern. Often, the functional programming language ML

[Pau96] is used for implementing tactics. In contrast to this, QuodLibet provides its own
adapted imperative programming language QML for this task due to the following reasons:
For implementing control, an imperative programming seems to be more adequate than
a functional one. It provides the usual control structures such as loops and conditional
statements. On the one hand, the similarity of QML to PASCAL eases the usage of QML for
many programmers. On the other hand, the adaptation to QuodLibet provides them with
an easy access to the relevant data structures of the prover. Furthermore, the adaptation
allows to restrict the programming language to the required concepts. This facilitates both,
to port tactic code to other (subsequent) provers, as well as, to add new concepts or change
previous concepts during system evolution.

In this section, we summarize the basic concepts of QML. The QML compiler was de-
signed and implemented based on concepts developed in [Spr96]. A detailed description of
QML and the realization of the compiler can be found in [SS97]. In the meanwhile, QML

has been modified only to a little extent. Most notably, another type constructor for hashes
has been introduced. Furthermore, the library of predefined routines provided by the kernel
has been extended. For instance, it is now possible not only to apply inference rules auto-
matically but also to delete subtrees of proof state trees during an automatic proof attempt.
As a result, some concepts for tactics could not be realized efficiently anymore and have
been abandoned: Tactics do not fail automatically anymore even if they do not alter the
proof state graph. The mechanism of applying automatically a list of tactics—associated
with a tactic T—to each open subgoal that is generated during a call to tactic T has been
eliminated.

2.3.1.1 Modules

QML allows for the structuring of code into modules using the principle of information
hiding. Each module is implemented in a single file and provides its own namespace, i.e. the
same name in two different modules may be used for two different entities. This enables
the development of large QML-programs for proof control implemented by different users.

Entities that are to be shared between different modules have to be declared in the
import/export interfaces of the modules. Tactics and procedures may be called from the
user interface of QuodLibet only if they are made publicly available in the export interface.

2.3.1.2 Data Types

QML is a typed language with static type checking as far as possible. Thus, for each variable
and for each routine, its type has to be declared. QML provides some basic types as well as
type constructors to build new composite types.

Beside standard types for integers, reals, strings and boolean values, QML possesses
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predefined types for all important data structures of the inference machine kernel such as
sorts and operators to access signatures; terms, literals, formulas, substitutions, positions
and weights for the so-called prover objects; goal and inference nodes to handle proof state
trees. Primitive routines for these data types are made available through a library which
can be easily extended.

Furthermore, QML provides type constructors for building lists of elements of the same
type, structures of elements with possibly different types, enumeration types, and hashes
mapping one primitive type such as integers, strings or goal nodes to another type.

2.3.1.3 Routines

The executable part of the code is structured in routines . QML distinguishes three types
of routines: procedures, functions, and tactics. Procedures and functions are well-known
from other programming languages. Whereas procedures never return a value, functions
always return a value. Tactics are special forms of procedures. Only within a tactic, proof
state trees may be changed by applying inference rules or deleting subtrees. As tactics are
considered as derived inference rules, for each tactic, the first parameter is mandatorily a
goal node the tactic is applied to.

2.3.1.4 Statements

The body of a routine is composed of statements . QML provides statements for

• calling procedures and tactics;

• assigning values to variables;

• repeating statements with for, foreach, while, repeat-until and general loop

constructs with explicit break statements;

• executing statements conditionally with if-then-else constructs;

• returning from a loop or routine immediately; and

• handling exceptions with a try and fail mechanism.

2.3.1.5 Expressions

Expressions are used for computing values. QML provides the usual constructs for

• listing constants of standard types;

• accessing (sub-)values of (composed) variables;

• calling functions; and

• applying predefined operators such as arithmetic operators, comparison operators,
boolean connectives and operators working on lists.
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Furthermore, there are special expressions e.g. for constructing prover objects such as terms,
literals, formulas and substitutions; and for matching prover objects to patterns containing
QML-variables that are automatically bound if a match exists.

In the following chapters, we illustrate some of our concepts with code fragments. Not
to overwhelm the reader with too many technical details, we do not present these code
fragments in QML but in a simplified pseudo code that omits e.g. the declaration of variables.
This pseudo code, however, can be easily translated into QML.



Chapter 3

Automating Inductive Theorem
Proving

In the literature, there exist many different proof search techniques for automating inductive
proofs. [Bun01] contains a survey based on seminal work done in [BM79], [BM88a] and
[BM88b]. Some of the proof search techniques are not restricted to inductive theorem
proving only, such as simplification techniques that

(1a) apply lemmas for rewriting or subsumption,

(1b) use equality information for cross fertilization, and

(1c) employ decision procedures.

Others are special to inductive theorem proving, such as finding suitable

(2a) induction schemes,

(2b) generalizations of lemmas, and

(2c) intermediate lemmas.

Whereas some proof search techniques, such as (1a)–(1c) and (2a), can often be automated
in a suitable way based on syntactical information, the speculation of auxiliary lemmas in
(2b) and (2c) usually requires the support of an experienced user with domain knowledge.
In this thesis, we attempt to improve the automation of inductive theorem provers in
combination with a suitable form of user-interaction.

• In Chapter 4, for instance, we investigate whether the close integration of decision
procedures can enhance the speculation of auxiliary lemmas.

• Most work in the automated proof process is caused by the application of (conditional)
lemmas. In our case studies, they cause at least 50% of all successful proof steps. In
Chapter 6, we present novel heuristics that are particularly useful for this important
task. The efficiency and extent of our novel heuristics may be influenced manually in
an easy way.

45
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In this chapter, we present the top-level proof control used for the automation. For the
integration of the different search techniques into a single proof process, successful inductive
theorem provers such as NQTHM and ACL2 use a waterfall model. In Section 3.2, we refine a
simple waterfall (3.2.1) to a more flexible one (3.2.2). In Chapter 7, we enhance the simple
waterfall even more by complementing the proof search techniques with reuse techniques.

One of the most distinguishing features among inductive theorem provers is concerned
with the integration of induction schemes into the proof process. In Section 3.1, we present
a brief survey of the different integration techniques such as proof by consistency (3.1.1),
explicit induction (3.1.2) and descente infinie (3.1.3). For the automation of QuodLibet,
we use an inductive proof process based on descente infinie because this process is most
suitable for supporting user-interaction. The skeleton for integrating descente infinie into
QuodLibet is retained from the former proof control described in [Küh00] based on ideas
from [BM79] and [Wal94]. An improved version is sketched in Section 3.1.4, more details
can be found in [SS04].

3.1 Inductive Theorem Proving

The induction scheme determines the base and step cases into which the proof is split. Fur-
thermore, it identifies the induction hypotheses that can be used for proving the induction
conclusion in the step case. It has to be proved that the induction hypotheses are smaller
than the induction conclusion w.r.t. a wellfounded induction order. The following methods
differ in the way how and when they acquire the needed information.

Suitable induction schemes can often be computed automatically using recursion anal-
ysis techniques. Nevertheless, for complicated proofs user-interaction may be required as
well. Therefore, we prefer those methods that allow the user to provide the needed infor-
mation manually in an easy way.

3.1.1 Proof by Consistency

Proof by consistency is a method based on completion techniques. In the purely equational
case, an unfailing Knuth-Bendix completion procedure may be used as described in [Mus80]
and [Bac88]. An extension for arbitrary clauses with equality based on a superposition
calculus can be found in [GS92].

In [Bac88], the axioms are given as a ground convergent rewrite system R, i.e. the
induced rewrite relation is confluent and terminating on ground terms. An equation is
consistent with a specification if every ground instance is joinable, i.e. both sides of the
instance are reducible to the same term. In this case, the equation is inductively valid. To
prove consistency, the absence of any inconsistencies is shown. The approach is based on an
inference system that reduces inconsistencies to smaller ones—e.g. by adding critical pairs
of rewrite rules in R on equations to be proved—until a provably inconsistent equality is
derived. The absence of inconsistencies is guaranteed for fair derivations of the inference
system that terminate without generating any provably inconsistent equalities (cf. [Bac88]
for details).

The method is also named inductionless induction in [Com01] because it does not make
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use of explicit induction rules. But this also complicates the manual provision of induction
schemes. In [Wir05b], the disadvantages of the approach are summarized as follows:

’[It] produces a high number of irrelevant inferences under which the ones rel-
evant for induction can hardly be made explicit in an automatic way. “Induc-
tionless induction” has shown to be practically useless, mainly due to too many
superfluous inferences, typically infinite runs, and too restrictive admissibility
conditions. [. . . ] Roughly speaking, the conceptual flaw in “inductionless induc-
tion” seems to be that, instead of finding a sufficient set of reasonable inferences,
the research follows the paradigm of ruling out as many irrelevant inferences as
possible.’

Therefore, we do not consider this approach furthermore.

3.1.2 Explicit Induction

Explicit induction is used in many inductive theorem provers such as NQTHM [BM88a], ACL2
[KMM00], and RRL [KZ95]. The method is described, for instance, in [Wal94] and [Bun01].

In explicit induction, a deductive inference system is enhanced with one inductive rule
that introduces an induction scheme. An application of the inductive rule performs a case
split, generates the induction hypotheses that can be used in the step cases, and proves the
wellfoundedness of the induction scheme at once. For each induction step, an implication is
constructed relating induction hypotheses to induction conclusions. No further induction
hypotheses may be used in the induction step. The induction schemes can be generated
only according to (combinations of) terminating total function definitions that guarantee
the wellfoundedness of the associated induction order. The automatic application of the
inductive rule depends on a strong recursion analysis process. Recursion analysis is, for
instance, described in [BM88a] and, under the name cover set method , in [ZKK88].

Explicit induction can take advantage of the early introduction of the induction hy-
potheses if they are appropriate:

• The simplification process can be guided in a goal-directed way using heuristics such
as rippling techniques (cf. [BSvH+93, Hut97]).

• The application of lemmas, as e.g. transitivity lemmas, can be supported by providing
additional information about the instantiation of free variables (cf. Example 3.3 in
[Wir04]).

• The information can be used for the generalization of lemmas and the speculation of
additional lemmas (cf. [BM88a]).

But there are some problems with the explicit induction approach as well: As explained
in [Pro94] it is not always possible to compute appropriate induction hypotheses at the
beginning of a proof attempt. Thus, the method of explicit induction may fail even for
relatively simple examples unless the user provides an appropriate induction scheme himself.
In NQTHM and ACL2 this can be done by indicating the defined operator whose recursive
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definition scheme is to be used as induction scheme. This often leads to the definition
of dummy operators just to provide an appropriate induction scheme. Especially, when
dealing with mutually recursive functions this seems to raise great difficulties.

3.1.3 Descente Infinie

In descente infinie (cf. [Wir04]), it is not necessary to provide the whole induction scheme
in a single step as in explicit induction. Instead, the information may be given in three
different steps. Therefore, we may fix the induction hypotheses and the induction order as
late as needed. This approach is similar to lazy induction described in [Pro94].

To be more precise, an inductive proof for a clause Γ performed by descente infinie can
be divided into the following steps:

1. At first, a case analysis is performed leading to a case split. This step may be
performed automatically according to the recursion analysis of the operators in Γ
using similar techniques as for explicit induction [BM88a, ZKK88] without fixing the
induction hypotheses.

2. Each case is simplified by applying inference rules and using the given lemmas in
order to reduce it to a valid formula (base case) or to apply a smaller instance of Γ
(induction step) or other lemmas that are used by mutual induction.

3. It has to be shown that only smaller instances are used in the induction step. There-
fore an appropriate wellfounded induction order has to be selected and the order
constraints have to be proved.

On the one hand, the eager generation of induction hypotheses may be advantageous for
the automation of the simplification process and the speculation of auxiliary lemmas as de-
scribed in Section 3.1.2. Therefore, the lazy generation of induction hypotheses in descente
infinie may result in a slightly less automated proof process. In [Pro94], however, rippling
techniques are modified in such a way that they are independent from eager hypotheses
generation: Instead of using rippling techniques to rewrite an induction conclusion to a
concrete induction hypothesis it is only important to move the differences of the induction
conclusion (w.r.t. the original lemma) to tolerable positions, i.e. to top-level or variable
positions.

On the other hand, a proof process based on descente infinie provides much more flex-
ibility. Each single step may be performed independently. Therefore, it is much easier to
acquire the needed information regardless of whether this is done automatically or manually.
The benefits can be illustrated best for mutually recursive operators: Proofs of properties
for mutually recursive operators often have to be performed by mutual induction. This
causes difficulties in speculating auxiliary lemmas for each recursive operator and gener-
ating appropriate induction schemes for each lemma. The complexity of the latter can be
reduced by choosing the inductive case split, the induction hypotheses and the induction
order independently as soon as the needed information is available. Often, the inductive
case split is performed in such a way that the axioms of some defined operators are applica-
ble. But this information is independent of the recursive dependencies. Therefore, it may
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be acquired for mutually recursive operators automatically as easily as for non-mutually
recursive operators. The same holds true for the simplification process except that, of
course, the step cases that have to use properties of mutually dependent operators cannot
be closed. But often the resulting subgoals support the user in speculating the needed aux-
iliary lemmas. Therefore, we get a synergetic effect resulting from the interplay between
automation and user-interaction.

This approach for proving properties of mutually recursive operators may be illustrated
with the simple example proofs of Lemmas (2.10) and (2.11) in Section 2.2.3 that are de-
picted in Figures 2.11 and 2.12, respectively. If we try to prove the lemmas independently of
each other, the proof attempts will stop exactly for those two subgoals that the other lemma
is applied to by inference rule ind-subs. But these subgoals provide enough information
for speculating the corresponding lemmas easily. This approach has been extensively used
for performing the case study about the LPO (cf. Chapter 8).

Even if the case split cannot be generated automatically, it may be given by the user
more easily. The user does not have to define dummy operators to provide an induction
scheme as in explicit induction. Instead, the case split may be introduced directly. The
user does not even have to worry about induction hypotheses in this step at all. He can
simply start the simplification process for the subgoals resulting from the case split, see
whether the required induction hypotheses are applied automatically, and analyze failed
proof attempts.

With descente infinie, we may use induction schemes that do not perform an inductive
case split based on the recursive structure of defined operators explicitly. Instead, we may
derive smaller instances by applying lemmas. This is illustrated in the following example
taken from our case study that

√
2 is irrational with a proof based on ideas from Euclid of

Alexandria. The lemma is proved automatically with our proof control based on descente
infinie.

Example 3.1 For this example, we assume sorts Bool and Nat to be defined as in Sec-
tion 2.2.3. Furthermore, we require the following defined operators

• not : Bool→ Bool

• even : Nat→ Bool

• half : Nat→ Nat

• + : Nat, Nat→ Nat

• * : Nat, Nat→ Nat

defined with axioms

{ not(true) = false } (3.1)

{ not(false) = true } (3.2)

{ even(0) = true } (3.3)

{ even(s(m)) = not(even(m)) } (3.4)
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{ *(m,m) 6= +(*(n, n), *(n, n)) ,

n = 0 }
n

lemma-subs (3.17)

{ +(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n) ,

*(m,m) 6= +(*(n, n), *(n, n)),
n = 0 }

n

lemma-subs (3.17)

{ def half(m) ,

. . .
*(m,m) 6= +(*(n, n), *(n, n)),
. . . }

n

lemma-subs (3.13)

{ even(m) = true ,

. . .

*(m,m) 6= +(*(n, n), *(n, n)) ,

. . . }
n

lemma-subs (3.16)

{ def *(n, n) ,

. . . }
n

lemma-subs (3.12)

{ +(*(half(n), half(n)), *(half(n), half(n))) 6= *(half(m), half(m)) ,

¬def half(m) ,

+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n),
. . .
n = 0 }

n

ind-subs (3.11)

{ def half(n) ,

. . .
¬def half(m),
+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n),
. . . }

n

lemma-subs (3.13)

{ even(n) = true ,

. . .
¬def half(m),

+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n) ,

. . . }
n

lemma-subs (3.16)

{ def *(half(m), half(m)) ,

. . .

¬def half(m) ,

. . . }
n

lemma-subs (3.12)

{ half(n) 6= 0 ,

. . .
¬def half(m),
+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n),
. . .

n = 0 }
n

lemma-subs (3.14)

{ even(n) = true ,

. . .
¬def half(m),

+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n) ,

. . . }
n

lemma-subs (3.16)

{ def *(half(m), half(m)) ,

. . .

¬def half(m) ,

. . . }
n

lemma-subs (3.12)

{ half(n) < n ,

. . .
¬def half(m),
+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n),
. . .

n = 0 }
n

lemma-subs (3.15)

{ even(n) = true ,

. . .
¬def half(m),

+(*(half(m), half(m)), *(half(m), half(m))) 6= *(n, n) ,

. . . }
n

lemma-subs (3.16)

{ def *(half(m), half(m)) ,

. . .

¬def half(m) ,

. . . }
n

lemma-subs (3.12)
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{ half(0) = 0 } (3.5)

{ half(s(s(m))) = s(half(m)) } (3.6)

{ +(m, 0) = m } (3.7)

{ +(m, s(n)) = s(+(m, n)) } (3.8)

{ *(m, 0) = 0 } (3.9)

{ *(m, s(n)) = +(*(m, n),m) } (3.10)

Note that operator half is defined only for even natural numbers resulting in a partial
definition.

To prove the irrationality of
√

2 it is sufficient that, for each pair m, n of natural
numbers (with n 6= 0), m2/n2 6= 2, or equivalently m2 6= 2n2. This may be expressed with
the following lemma:

{ *(m,m) 6= +(*(n, n), *(n, n)),
n = 0 }

(3.11)

Informally, this may be proved by contradiction: Assume that m2 = 2n2. Then, m is
even (cf. Lemma (3.16)). Thus, m/2 is defined and 2(m/2)2 = n2 (cf. Lemma (3.17)).
With the same argument, we derive (m/2)2 = 2(n/2)2. But this is a smaller instance of
the assumption w.r.t. to a wellfounded order (cf. Lemma (3.15)) leading to a contradic-
tion. For a formal proof, we additionally require definedness properties for operators * (cf.
Lemma (3.12)) and half (cf. Lemma (3.13)) as well as the property that m/2 is positive if
it is defined and m 6= 0 (cf. Lemma (3.14)).

{ def *(m, n) } (3.12)

{ def half(m),
even(m) 6= true }

(3.13)

{ half(m) 6= 0,
even(m) 6= true,
m = 0 }

(3.14)

{ half(m) < m,
even(m) 6= true,
m = 0 }

(3.15)

{ even(m) = true,
*(m,m) 6= +(n, n) }

(3.16)

{ +(*(half(m), half(m)), *(half(m), half(m))) = *(n, n),
*(m,m) 6= +(*(n, n), *(n, n)) }

(3.17)

The resulting proof state tree for Lemma (3.11) is sketched in Figure 3.1. Due to lack
of space, we omit literals in the goal clauses that are not used in the subsequent proof
attempt anymore. Omitted literals are indicated with ellipsis “. . . ”. The proof state tree
resembles the informal argumentation by first applying Lemma (3.17) twice, followed by
one application of the induction hypothesis. Note that neither an inductive case split is
introduced explicitly nor a single axiom is applied in the proof.
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The proof of the main Lemma (3.11) is quite simple provided that the auxiliary Lem-
mas (3.12) to (3.17) are given. It is generated automatically by our proof control. The main
difficulty arises from having to speculate appropriate auxiliary lemmas. Lemma (3.17), for
instance, depends on operator half which is not present in Lemma (3.11). Therefore, the
lemma can hardly be speculated automatically but it has to be supplied by a knowledge-
able user who is familiar with the application domain. However, it is not difficult to derive
the auxiliary lemmas from the informal proof. For further examples on the speculation of
auxiliary lemmas, we refer to Section 8.2.2.

A minor problem consists in proving the auxiliary lemmas themselves as they make
use of arithmetic properties. For their proofs, we require additional auxiliary lemmas.
Furthermore, we apply two inference rules manually. In Chapter 4, we try to lessen this
problem by integrating a decision procedure for linear arithmetic into QuodLibet.

In [Wie03], the proof of the irrationality of
√

2 is used as a challenging problem for com-
paring 15 different theorem provers w.r.t. their ability to formalize and prove mathematics.
The systems are evaluated w.r.t. “the size of their library, the strength of their logic and
their level of automation”. For the proof development system Ωmega [SBB+02], a more
detailed description of this case study can be found in [SBF+03], allowing for a comparison
with our approach. There, three different approaches are considered for the automation of
the proof: an interactive proof where Ωmega is used as usual tactical theorem prover; a
proof based on interactive “island planning”; and a fully automatically planned proof.

In Ωmega, different levels of abstractions may be considered: Proofs may be planned at
a high level of abstraction; plans have to be expanded into lower levels of abstraction until,
finally, a proof at the level of the logical calculus is established. The difference between the
first two approaches is the initial level of abstraction resulting in different orders in which
the proof steps on the lower levels are performed: In the tactical approach, the proofs are
performed directly on the lowest level one after the other; in the island planing approach,
first, the whole proof plan is generated on an abstract level, then, the gaps are filled on the
lower levels. This results in a top-down approach for performing the proof. Note that both
approaches may be modeled in QuodLibet. The information supplied in the island steps
may be used for speculating auxiliary lemmas. If we decide to prove the auxiliary lemmas
immediately, we get the tactical approach. If we delay the proofs of the auxiliary lemmas
until the main lemma is proved, we get the island planning approach.

In the third approach, domain knowledge is encoded in a predefined lemma base and
the tactics of the proof control themselves. Thus, it is a specialized approach restricted to a
special application domain. In contrast to this, we are interested in general approaches for
proof control. Domain knowledge is merely encoded in auxiliary lemmas which is sufficient
for this example. 2

3.1.4 The Realization in QuodLibet

With the inference rules of QuodLibet (cf. Section 2.2.2), it is possible to realize both—
explicit induction and descente infinie. For descente infinie, this may be done in the follow-
ing way:

• Step 1 may be realized with inference rules subst-add and lit-add to introduce case
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splits according to constructor and destructor recursion, respectively.

• Whereas the simplification process in Step 2 may use all inference rules, induction
hypotheses may be applied with inference rules ind-subs and ind-rewrite resulting
in additional order subgoals to guarantee the wellfoundedness of the induction order.

• Because of the weight variables the induction order need not be fixed at the beginning
of an inductive proof attempt in accordance with Step 3. It may be instantiated
manually or automatically using a special command set weight of the command
language of QuodLibet. After the instantiation of the weight variables, all inference
rules may be applied to prove the order subgoals. Certainly, those inference rules
concerned with order atoms are particularly suitable.

For the modeling of explicit induction, inductive case splits with inference rules subst-add
and lit-add, the application of induction hypotheses with inference rules ind-subs and
ind-rewrite, the instantiation of the weight variables with command set weight to fix the
induction order, and the verification of the order constraints is performed at the beginning
of an inductive proof attempt. But as we are interested in complicated inductive proofs
that require an interplay of automation and user-interaction, and since this interplay is best
supported by descente infinie, we concentrate on this proof process in the rest of this thesis.

A sensible approach for structuring the inductive proof process based on descente infinie
into QML-modules is described in [Küh00]. Beside some auxiliary modules, it consists of
the following modules that provide public routines:

Database: The database stores all information about analyzed operators and activated
lemmas. The information about operators is used for creating the initial case split in
an inductive proof. Only the activated lemmas are used for rewriting and subsumption
during the simplification process. With the analysis of operators and the activation of
lemmas, the user can guide the proof process on various levels. During the activation
of a lemma, for instance, the user may fix those literals that may be used as head
literals (cf. Section 2.2.2.10).

Inductive-Case-Analyses: This module contains routines for performing the inductive
case split from Step 1. Additionally, it applies the axioms of the defined operators
that the case split is based on.

Simplification: The routines in this module are responsible for simplifying goals as re-
quired for Step 2—including the application of lemmas as induction hypotheses—and
proving the order constraints in Step 3.

Proof-Strategies: This module implements the whole proof process using the public
routines from the other modules.

We have refined the structuring of the modules and improved their realization in [SS04]. In
this thesis, we concentrate on some of the improvements of the simplification process that
promise the highest profit. We give only a short summary of further improvements here.
For a detailed description we refer to [SS04].
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• Regarding Step 1, the analysis of defined operators for creating an inductive case split
for a clause Γ automatically is already described in [Küh00]: The expandable operator
calls of Γ, that do not obstruct other operator calls in the clause, are merged into one
inductive case split. Our improvements enable the user to perform the case split semi-
automatically by selecting the operator calls that should be considered or manually by
specifying the induction variables themselves. In the latter case, an induction variable
of sort s—defined with n constructors c1, . . . , cn—is instantiated with n different terms
in a canonical way: For each constructor ci, one term is generated with top-level
symbol ci and pairwise different new1 constructor variables as arguments. For the
specification presented in Section 2.2.3, variable ts of sort Termlist, for instance, is
instantiated with nil and cons(t , ts) where t is a new variable. If more than one
induction variable is selected all possible combinations are considered.

• The simplification process in Step 2 is completely reorganized in comparison to the
approach in [Küh00] providing much more flexibility by a parameterized proof process.
An even more improved organization is presented in Section 3.2. Furthermore, the
application of conditional and permutative lemmas, the application of lemmas as
induction hypotheses, the handling of order and negated equality atoms, the provision
of alternative literal representations and the avoidance of repetitions of equal inference
steps are improved.

• The instantiation of weight variables in Step 3 is improved by the introduction of
weight modifiers . These enable the automatic proof control, for instance, to set the
weight for sorting algorithms to the length of the sorted list instead of the list itself
which leads to simpler proofs of the order constraints.

• The tactics that model the whole proof process are called strategies . A strategy is
recursive iff it starts another inductive proof when it gets stuck. The two strategies
in [Küh00] perform an automatic inductive case split, simplify the resulting goals
possibly using the lemma to be proved as induction hypothesis. The strategies differ
only in whether they are recursive. Our improved strategies, additionally, enable
the user to choose whether the case split is to be performed automatically, semi-
automatically or manually, leading to six different strategies. Furthermore, the user
may activate lemmas in such a way that they may be used as induction hypotheses.

The refined structuring introduces in particular the following two new modules:

Default-Settings: The user may influence the proof process to a large extent with (op-
tional) parameters. If the user does not supply a value for an optional parameter
when calling a tactic a default value will be used. To provide more flexibility, these
global default values themselves may also be specified by the user. This mechanism
is realized in this module.

Protected-Inference-Machine: This module provides wrapper functions for the inference
rules which add further functionality to each inference rule in a uniform way:

1New means that the variables must not occur in the instantiated clauses. Yet, the variable that is
instantiated may be used again.
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• The repeated application of the same inference rule in one path of a proof state
tree or the same top-level application as in an alternative proof path is prevented.

• Literals in goal clauses may be marked to restrict proof search (cf. Chapter 6).

• We provide a debug mode that behaves exactly in the same way as the regular
mode but does not physically delete failed proof attempts. Therefore, debug
mode supports the user in analyzing failed proof attempts.

3.2 Top-Level Proof Control

In this section, we present waterfall models that are used for integrating different proof
search techniques into a single proof process: The goals to be proved are collected in a
pool. The proof techniques are grouped in phases. A phase may be interpreted as a derived
inference rule: If a phase is applied to a goal successfully, the goal is reduced to new subgoals
(which will not be deleted during the automatic proof attempt anymore). Otherwise, the
phase must not change the proof state tree. More precisely, the phase may apply inference
rules in the meantime but, finally, it has to restore the previous state of the tree. Thus,
it has to delete all proof steps applied by itself. Each goal passes through each phase
successively until one of them can be applied successfully. The subgoals are put into the
pool again starting the proof process from the beginning. Thus, we get a recursive control
structure for the proof process. The idea of a waterfall model is to start with the cheapest
phases that promise the highest profit.

In NQTHM and its successor ACL2, the whole inductive proof process is structured in a
single waterfall. In contrast to this, we implement the inductive proof process as described
in Section 3.1.4 and use a waterfall model to structure only the simplification process. This
can be motivated as follows: In provers based on explicit induction, induction schemes are
solely introduced with inductive rules and do not pose any restrictions on the applications
of other inference rules. Therefore, the phases are independent from each other. But in
our automation of descente infinie, the steps in the proof process depend on each other.
The choice of the induction order, for instance, is delayed typically until all other subgoals
except for order subgoals have been proved. Then, the automatic proof control can take
into account all order constraints for choosing the induction order. Therefore, Step 3 is
performed after the first two steps. Similarly the simplification process in Step 2 depends on
those lemmas for which inductive case splits have been performed in Step 1. These lemmas
may be applied during the simplification process as induction hypotheses—in addition to
those supplied by the user. Because of these dependencies, the steps are not well suited for
the integration in a single waterfall.

3.2.1 A Simple Waterfall

The application of a phase p to a goal G may be modeled with a boolean-valued function
apply-phase as follows: apply-phase(p, G,G) returns whether p has been applied to G suc-
cessfully. For a successful application, the reference parameter G contains the new subgoals
generated by p.

Function simple-waterfall contains the realization of a simple waterfall in pseudo code
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foreach p ∈ phases do1

if apply-phase(p, G,G ′) then2

G ← ∅;3

foreach G′ ∈ G ′ do4

G ← G + simple-waterfall(G′, phases);5

return G;6

return {G};7

Figure 3.2: Function simple-waterfall(G, phases)

(cf. Figure 3.2). It is called with the goal G to be simplified and the phases phases that
define the waterfall. The function returns normalized goals w.r.t. the waterfall, i.e. goals
that cannot be reduced with any phase of the waterfall anymore: If none of the phases
can be applied successfully, a set consisting of the original goal is returned (Line 7). Oth-
erwise, simple-waterfall is called recursively for each new goal and the resulting subgoals
are returned (Line 3–6). We will enhance this simple waterfall with reuse mechanisms in
Chapter 7.

The waterfall of ACL2, for instance, uses the following phases (cf. [KMM00]):

Simplify: This phase is “the heart of the theorem prover”. For instance, it uses decision
procedures for rational linear arithmetic and applies lemmas for rewriting. It normal-
izes formulas according to a propositional calculus and exploits type information.

Eliminate Destructors: In ACL2, destructor style is used for specifying defined functions.
In this phase, destructor style is converted to constructor style which is more suitable
for the remaining phases.

Use Equivalences: Negated equations in the goal clause can be used for replacing one
side of the negated equation by the other side in another goal literal (cf. inference
rule const-rewrite in Section 2.2.2.7). In this phase negated equations are used
extensively, restricted by some heuristics to avoid infinite loops. Furthermore, this
phase is not limited to negated equations but may also exploit other equivalence
relations.

Generalize: This phase generalizes goals e.g. by replacing common terms with new vari-
ables.

Eliminate Irrelevance: This phase attempts to eliminate literals in the goals that seem
to be irrelevant.

Induct: This phase constructs an induction scheme according to explicit induction (cf.
Section 3.1.2).
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3.2.2 A Flexible Waterfall

We use a waterfall for controlling the simplification process which is modeled with one
single phase in ACL2. Therefore, we pose additional requirements on our waterfall model:

• It should be easy to integrate new phases into the waterfall. This property is ex-
ploited in Chapter 4 for integrating a decision procedure for linear arithmetic into the
simplification process.

• It should be easy to configure the waterfall by exchanging phases: There is a great
dependency between the order of the phases and the performance of the whole proof
process. Little changes of the order may lead to significant improvements or losses in
efficiency. But the dependency is fragile: What is good for one example may be bad
for another example. We believe that—if there is a best order at all—it cannot be
determined by theoretical considerations alone as the proof process is too complex.
Therefore, we regard the search for a good order of the phases in the waterfall model
as an engineering task: It has to be determined and validated by experiments.

• It should take into account that our waterfall—controlling the simplification process—
works on a much more fine-grained level than a waterfall that implements the whole
inductive proof process. Therefore, our waterfall should be highly configurable. The
simple waterfall e.g. does not make any use of the information that a phase has been
applied successfully. The handling of new subgoals always starts with the first phase.
Instead, we want to be able to define a specific behavior as a response to a successful
phase in an easy way.

To satisfy these requirements, we enhance the simple waterfall: To realize a more fine-
grained control we divide the phases into operations . An operation focuses on one single
literal in the goal. Furthermore, the implementation of our waterfall is split into three
parts:

• a fixed control tactic which implements the recursive structure of the waterfall;

• the operations which constitute the basic elements of the phases; and

• a table-based configuration which establishes a connection between the first two parts
and allows the user to fix the continuations of successful operations in a simple way.

3.2.2.1 The Control Tactic

The use of a single control tactic allows us to hide the complexity of the recursive structure
within one fixed tactic which does not have to be modified when integrating new phases or
operations into the waterfall. Furthermore, improvements of this control tactic have global
effects on the whole waterfall.

Due to the complexity of the control tactic we do not provide any pseudo code for it
in this thesis. In a nutshell, the recursive control structure is realized as a sequence of
iterations. This allows us to choose the continuation of the waterfall in a flexible way
according to the table-based configuration.
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In comparison to the simple waterfall, the implementation of a phase is fixed in such
a way that each literal is used as focus literal in succession. A focus literal is handled by
calling those operations of the phase that are associated with the type of the literal. The
type of a literal consists of the predicate symbol of the literal (=, def, <) and a flag whether
the literal is negated.

If an operation is successful the table-based configuration may influence the behavior of
the waterfall in two ways:

• Special actions may be determined for the new literals as well as for the (changed)
focus literal in the new subgoals.

• It is determined whether the handling of new subgoals continues with the next phase
or whether the waterfall is restarted from the beginning.

3.2.2.2 Operations

Operations contain the code to handle one focus literal in a goal. To enable code sharing, the
operations may be parameterized. The parameters may be instantiated in the table-based
configuration or manually when the user calls the control tactic. If no value is supplied
a global default value will be used. Parameters are e.g. used for determining whether all
lemmas should be considered for rewriting or subsumption or only the directly applicable
lemmas.

We pose some simple requirements on the implementation of the operations so that the
control tactic is able to perform its task:

• As for the phases of the simple waterfall, successful operations will not be deleted
during the automatic proof attempt anymore. Therefore, operations are responsible
for checking whether they are applicable. To achieve this, operations may recursively
call the simplification process. But these calls should be restricted to perform com-
plete proofs of certain subgoals. If an operation is not successful it is responsible for
deleting all performed proof attempts.

• The control tactic has to determine the positions of the new literals and the focus
literal in the new subgoals. As all the inference rules in QuodLibet add new literals
to the front of the goal clause this is quite simple. To support this task, operations
may at most remove the focus literal in the goal clause. Furthermore, they have
to inform the control tactic in which of the new subgoals the focus literal has been
removed. More precisely, the operations define, for each new subgoal, a literal that
should be used as focus literal (if there exists any).

3.2.2.3 Table-Based Configuration

The control may be influenced in a simple way by two tables: the operation and the phase
table. The entries in the operation table refer to the code templates of the operations.
Operations are combined to phases in the phase table. The parameters of the code templates
may be instantiated in both tables preferring the local values given in the operation table.
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An entry in the operation table consists of

(o1) a name to refer to the operation in the phase table;

(o2) a pointer to the parameterized code template of the operation;

(o3) an optional list of values to instantiate the parameterized operation;

(o4) flags whether the new literals and the (changed) focus literal of the new subgoals
created by the operation should be handled with special actions;

(o5) an indicator for the continuation of the waterfall.

An entry in the phase table consists of

(p1) a name of the phase;

(p2) for each type of literal, a list of operations that are checked for applicability in suc-
cession;

(p3) an optional list of values to instantiate the operations of the phase in a uniform way;

(p4) an optional list of phases that should be applied to the new literals in the new subgoals
created by a successful operation in this phase;

(p5) an optional list of phases that should be applied to the (changed) focus literals in the
new subgoals created by a successful operation in this phase.

The waterfall handles all the phases in the phase table in succession until one of them
can be applied successfully. The reactions to a successful operation are determined in the
following way: First, the new literals in the new subgoals are handled with the phases
defined in Item (p4) of the successful phase unless this is prevented with the corresponding
flag in Item (o4) of the successful operation. Then, the focus literal is handled analogously
with the phases in Item (p5) of the successful phase. At last, the waterfall is continued for
the resulting subgoals as defined in Item (o5) of the successful operation. The waterfall may
be restarted from the beginning immediately. Furthermore, we may choose to complete the
phase for all the literals that were already present in the original goal, before we start the
simplification process from the beginning. In this way, we can realize a fair handling of
every literal in the goal clause. We may even choose to continue the simplification process
with the next phase. This is sensible if we know that the first phases will fail anyway so
that we do not have to check them once again. This is the case e.g. for a phase that only
removes literals.

3.2.2.4 Phases of the Simplification Process of QuodLibet

As a starting point for the simplification process in this thesis, we use the waterfall as it is
presented in [SS04]. The waterfall is divided into the following five2 phases:

2As there are no means to prove negated definedness or negated order atoms apart from using them as
complementary literals, they are not considered by the last three phases at all.
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prove-taut: This phase proves simple tautologies that can be shown by a single application
of one inference rule without using any lemmas. To be more precise, the inference
rules for simple tautologies compl-lit, 6=-taut and <-taut, as well as the inference
rules for decomposing atoms =-decomp, def-decomp and <-decomp are applied as
long as they do not produce any new subgoals. Certainly, for each type of literal, only
those inference rules are tried which are sensible for that type.

remove-redundant: During this phase all inference rules that remove redundant liter-
als, i.e., mult-lit, =-removal, <-removal, 6=-removal and ¬def-removal, are
attempted.

reduce1: This phase tries to apply non-permutative lemmas that are directly applicable to
the goal clause. If the goal clause can be subsumed by one lemma, the goal is proved;
otherwise, a normal form w.r.t. the directly applicable rewrite lemmas is computed
testing for simple tautologies and redundant literals after each rewrite step. This
phase has been split from reduce2 to prefer directly applicable lemmas as they lead
to easier proofs.

reduce2: During this phase a great effort is undertaken to prove the goal with the con-
sidered literal. Nearly all inference rules (except const-rewrite) that have not been
applied during the first three phases are attempted. There are some special macro
inference steps, i.e., sequences of inference steps that are linked together to simplify
goals that contain a special pattern. They are used e.g. for removing constructor
prefixes of definedness atoms and equational literals as well as for guessing interme-
diate weights for order atoms. Above all, the main focus of this phase is on applying
subsumption and (possibly permutative) rewrite lemmas even if they are not directly
applicable to the goal clause. During this phase some inference rules are tested, sim-
plifying their derived subgoals by the whole simplification process recursively. But if
some of the conditions, represented by the subgoals, cannot be established, the whole
subtree is deleted again. This guarantees that at most one goal results from this phase
(without counting goals with order atoms containing weight variables).

cross-fertilize: This phase affects only negated equational atoms. They are used for
replacing in another literal the occurrence of one side of the negated equation with
the other side by applying inference rule const-rewrite. To prevent infinite loops,
the operations in this phase do not perform applications that undo former ones.
Furthermore, the application of this phase is controlled by some heuristics to obtain
“simpler” literals.

The waterfall is extended with new phases in Chapters 4 and 7. Heuristics for controlling
the application of conditional lemmas in phases reduce1 and reduce2 are described in
Chapter 6.



Chapter 4

An Even Closer Integration of Linear
Arithmetic

In general, inductive validity is not even semi-decidable. However, it is decidable for some
important theories such as linear arithmetic which occurs in many application domains.
The corresponding specialized decision procedures are much more efficient than the heuris-
tic search strategies which apply inference rules of a generic calculus. Furthermore, they
relieve the user of the burden of having to speculate auxiliary lemmas of the theory. The
properties expressed with the auxiliary lemmas are taken into account by the decision
procedure automatically. To sum up, it is beneficial to integrate decision procedures for
decidable subtheories into (inductive) theorem provers for two reasons: to gain efficiency
and to broaden the scope of the (inductive) theorem prover, i.e. enhance its capabilities to
prove theorems automatically. Because of their importance, decision procedures, the combi-
nation of decision procedures over disjunctive domains, and their integration into theorem
provers have been studied for many decades. Research about the combination of decision
procedures has been initiated by fundamental work in [NO79] and [Sho84]. Seminal work
on the integration of decision procedures is presented in [BM88b] integrating a decision pro-
cedure for rational numbers based on Hodes [Hod71] (credited to Fourier in [KN94]) into
their inductive theorem prover NQTHM. As we want to improve the automation of inductive
theorem proving we focus on this last approach for integrating decision procedures.

Decision procedures decide the validity—or, its dual, unsatisfiability—of formulas over
their underlying domain. If decision procedures are combined or integrated into theorem
provers additional requirements arise: For efficiency reasons it is beneficial if the decision
procedures do not provide only boolean answers but make explicit further consequences of
the input formulas. These consequences may be exchanged with the other decision proce-
dures or theorem provers. Therefore, not all the input formulas for a decision procedure
need to be present at once but they may be added during the reasoning process. This favors
online procedures [BGD03] which allow for adding and removing input formulas efficiently.
For this, the decision procedure keeps track of its internal state. The internal state may be
augmented with new formulas or reset to a former state with backtracking.

A decision procedure for theory T may be used for an extension of T by generalizing
those terms whose top-level symbol is alien or uninterpreted , i.e. it is not covered by T .
These alien subterms are replaced with new variables in a variable abstraction step in a
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uniform way, i.e. identical subterms are replaced with the same new variable. After having
eliminated all alien subterms the formula belongs to T . Thus, the decision procedure is
applicable to this generalized formula. If the generalized formula is unsatisfiable this holds
true for the original formula as well. Otherwise, we have to “check” the solutions in the
extended theory. For this, the result of the decision procedure may be adapted to the
original problem by substituting the alien subterms for the corresponding new variables
again. In practice, we do not have to introduce new variables at all. Instead, it suffices to
slightly modify the decision procedures in such a way that they consider alien subterms as
variables.

To integrate a decision procedure into an (inductive) theorem prover in a meaningful
way, we have to make assumptions about the functioning of the decision procedure and the
theorem prover. Following [BM88b], we assume that the decision procedure performs two
major kinds of steps:

• A variable elimination step that combines two subformulas to a new formula elim-
inating at least one variable that occurs in both subformulas. The new formula is
added to the state of the decision procedure.

• A check of ground instances for unsatisfiability (or validity).

Similar to ordered resolution, variable elimination steps need to be performed only for
heaviest variables w.r.t. a fixed, total and wellfounded order: To get a ground instance, all
variables have to be eliminated. Thus, the order of the variable elimination steps may be
fixed without affecting satisfiability.

A theorem may be unsatisfiable in an extended theory but not in the theory of the
decision procedure itself (cf. Example 4.2). Then, the unsatisfiability cannot be proved
solely with the decision procedure. Instead, we have to use additional facts about the
extension. These facts are usually given in the form of (conditional) lemmas. The conclusion
of a lemma can be applied if the conditions of the lemma can be proved valid. These proofs
may be performed by the decision procedure or the theorem prover. Thus, we get mutual
dependencies.

The decision procedure and the theorem prover have to cooperate to find the right
instance of an appropriate lemma. If the conclusion of a lemma is an inequality, it may be
added to the state of the decision procedure to enable another variable elimination step of
a heaviest variable. This mechanism is called augmentation in [BM88b]. It is suitable as
long as the required lemmas are present but it does not provide any information if they are
missing.

In this chapter, we present a new approach to incorporate a decision procedure closely
into an (inductive) theorem prover. We strictly distinguish the logic part of the decision
procedure from its control aspects: Each elementary step of the decision procedure is rep-
resented by a new inference rule providing the state of the decision procedure explicitly in
the goals. Local properties of the inference rules guarantee the soundness of our approach.
They may be applied automatically within tactics.

Our approach provides the following advantages: The fragmentation of the decision
procedure into elementary steps—realized with inference rules—provides us with detailed
proof objects which can be checked easily with an external proof checker. It also enables a
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uniform and flexible integration into our simplification process. This allows us to evaluate
different integration schemes which are defined on a much more fine-grained level than in
previous approaches. It also gives us the opportunity to implement different strategies: The
integration into the simplification process uses the heuristics known from the literature to
automate the decision procedure and to guide the augmentation mechanism. Furthermore,
we have implemented a special purpose tactic that performs all possible variable elimination
steps (but no other steps). We call this tactic only if the simplification process fails and we
need more information to speculate an auxiliary lemma.

The new inference rules resulting from our close integration depend on the decision
procedure and the theorem prover. Therefore, we have to fix these two parameters. Because
of the importance of linear arithmetic for the verification of program and hardware designs,
we integrate a decision procedure for this theory into our inductive theorem prover Quod-

Libet. As explained in [BM88b], the efficiency of the decision procedure itself is irrelevant
when using it in an extended theory (cf. Section 4.4). Therefore, we choose the rather simple
decision procedure based on Hodes which is well suited for the augmentation mechanism.

In Section 4.1, we present an overview of linear arithmetic, Hodes’ decision procedure,
and the augmentation mechanism. We illustrate the difficulties in speculating lemmas with
an example. In Section 4.2, we present our new approach of a close integration. We enhance
the logic of QuodLibet with new inference rules for the elementary steps of the decision
procedure, and the waterfall with new phases that integrate the decision procedure into
the automatic proof control of the theorem prover. Furthermore, we present a specialized
tactic that supports the speculation of auxiliary lemmas. In Section 4.3, we validate our
new approach with some case studies. We conclude this chapter with a survey of related
work in Section 4.4.

4.1 Linear Arithmetic

By linear arithmetic we mean the first-order theory over predicate symbols <, ≤, =, 6=, ≥,
> for order relations on numbers, and function symbols 0, s and + for constant zero, unary
successor function and binary addition.1 We consider only the universally quantified frag-
ment of linear arithmetic. Depending on the underlying domain, these theories are called
Presburger rational arithmetic (PRA), Presburger integer arithmetic (PIA), and Presburger
natural arithmetic (PNA) in [JB02]. We are interested in a semi-decision procedure for an
extended theory of PNA containing additional predicate or function symbols. These sym-
bols are uninterpreted for the decision procedure, but may be constrained by the theorem
prover.

4.1.1 Hodes’ Decision Procedure for Linear Arithmetic

Hodes’ procedure can be used as a decision procedure for PRA and as a semi-decision
procedure for PIA and PNA. It checks for unsatisfiability of a set of inequalities. The key
idea is to “cross-multiply and add” [BM88b] two inequalities to eliminate a common variable

1For ease of use, we will also consider constant symbols for all numbers, − for subtraction, and · for
multiplication with constants (n · x abbreviates the sum that contains n times x).
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in a variable elimination step. Variable elimination steps can be restricted to the heaviest
variables in an inequality w.r.t. a fixed wellfounded order. In previous work, the inequalities
are stored in an internal state of the decision procedure called linear arithmetic data base
in [BM88b] or constraint store in [AR03, ARS02]. If an unsatisfiable (ground) inequality
is derived, the original inequalities are unsatisfiable over rationals, integers, and naturals.
Otherwise, if the set is closed under variable elimination steps, the original inequalities
are satisfiable over the rationals but may be unsatisfiable over integers or naturals (cf.
Section 4.2.3.4). We illustrate Hodes’ procedure with a simple example.

Example 4.1 (derived from [BM88b]) We want to prove the validity of Formula (4.1)
over the naturals. Therefore, we check its negation for unsatisfiability.

∀K,L,Max ,Min.(L ≤ Min ∧ 0 < K ∧Min ≤ Max → L < Max +K) (4.1)

After normalizing the negation of (4.1), we get the conjunctively combined Inequalities (4.2)
to (4.5). Note that we use the integral property of the naturals in Inequality (4.3): The
difference of two unequal naturals is at least one.

L ≤ Min (4.2)

1 ≤ K (4.3)

Min ≤ Max (4.4)

Max +K ≤ L (4.5)

We restrict variable elimination steps using an alphabetic order on variable names. The
heaviest variable of each inequality is underlined. Thus, we derive the following inequalities
with an unsatisfiable ground Inequality (4.8):

L ≤ Max from (4.2) and (4.4) eliminating Min (4.6)

K ≤ 0 from (4.6) and (4.5) eliminating Max (4.7)

1 ≤ 0 from (4.3) and (4.7) eliminating K (4.8)

2

Example 4.1 falls into the decidable theory of PNA. But if we replace variables Min and Max
with terms MIN (A) and MAX (A) as well as the third condition Min ≤ Max with A 6= nil
where A ranges over lists, then the formula is no longer valid in pure PNA, but contains
uninterpreted function symbols. Therefore, we require a relationship between MIN (A) and
MAX (A) which is valid only in the extended theory over lists. To apply this relationship,
we use the augmentation mechanism described in [BM88b].

4.1.2 Augmentation

As already explained, additional facts of an extended theory are usually given in form of
(conditional) lemmas. Following [KMM00], we call a lemma a rewrite rule if the conclusion
of the lemma is an equation s = t; we call it a linear rule if the conclusion is an inequality
u ≤ v. The application of a rewrite rule replaces an instance of s with the same instance
of t. In contrast to this, the application of a linear rule adds an instance of u ≤ v to the
state of the decision procedure so that it can benefit from the new inequality. According
to [BM88b], we augment the linear data base.
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Example 4.2 (derived from [BM88b]) We want to prove the validity of Formula (4.9)
over the naturals. We assume that Formula (4.10) is valid in the extended theory.

∀A,K,L.(L ≤ MIN (A) ∧ 0 < K ∧ A 6= nil → L < MAX (A) +K) (4.9)

∀A.(A 6= nil → MIN (A) ≤ MAX (A)) (4.10)

The decision procedure can make use of Inequalities (4.11) to (4.13) derived from the
negation of (4.9). We assume that the decision procedure handles terms starting with
uninterpreted function symbols just like variables over the naturals. Therefore, we omit
explicit generalizations.

L ≤ MIN (A) (4.11)

1 ≤ K (4.12)

MAX (A) +K ≤ L (4.13)

As the decision procedure tries to eliminate only the underlined heaviest terms in an in-
equality, it does not perform a single step (assuming the same order on the terms as in
Example 4.1). But Lemma (4.10) may be applied as it contains additional information
about the heaviest2 term of (4.11). The condition of the lemma can be relieved because
the same literal occurs in Formula (4.9). Therefore, we can augment the data base of the
decision procedure with the conclusion of the lemma, namely MIN (A) ≤ MAX (A). Then
we can replay the proof from Example 4.1. 2

Example 4.2 can be complicated further by replacing the condition A 6= nil in Formula (4.9)
with length(A) > 0, introducing another uninterpreted function symbol. Then, the con-
dition of Lemma (4.10) is not directly present in Formula (4.9) but has to be relieved by
recursively calling the simplifier of the theorem prover and the decision procedure. Accord-
ing to [HKM04], the integration of linear arithmetic into ACL2 leads to four dependencies
between the simplifier and the arithmetic package. Therefore, it is questionable whether
the integration of linear arithmetic as a separate module is reasonable.

4.1.3 Lemma Speculation

The situation gets worse if the required lemmas are not present. To speculate rewrite rules
automatically, successful approaches have been proposed e.g. in [KS03, GK03]. But for the
automatic speculation of linear rules no general approach has been proposed yet. There
exist approaches only for nonlinear arithmetic [HKM03, AR01]. As a linear rule contains
an estimate, it is more difficult than for rewrite rules to speculate lemmas that are both—
valid and useful. In our opinion, lemma speculation is a very creative task which has to
be done by humans in most cases. But this task must be supported as far as possible.
Therefore, we require an appropriate interaction scheme providing the human user with
all the information needed. Previous approaches lack information for two reasons: First,
they do not explicitly present the state of the decision procedure to the user. Instead, the
information is hidden in the internal state of the decision procedure. Second, the decision
procedure eliminates only heaviest terms.

2Typically, the augmentation mechanism is restricted in the same way as the variable elimination steps.
Otherwise, it would not be guaranteed that the new inequality enabled further variable elimination steps.
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Since we want to prove inductive validity instead of unsatisfiability with QuodLibet,
we transform the procedure sketched in Section 4.1.1 using negation. The state of the
decision procedure is represented directly within the goal clauses in form of new literals
changed or added by the inference rules. The inference rules are flexible: They do not
restrict variable elimination steps to heaviest terms but allow for the realization of different
strategies. In the following example, we want to indicate how our new integration scheme
supports the speculation of auxiliary lemmas required for the augmentation mechanism if
these lemmas are not present.

Example 4.3 We consider Formula (4.9) from Example 4.2 (in clausal form) and want
to derive Lemma (4.10). Figure 4.1 illustrates our derivation in form of a proof state tree
(without displaying definedness subgoals and (negated) definedness atoms).

First, we try to prove the clause automatically using an extended waterfall which con-
tains Hodes’ decision procedure (cf. Section 4.2.4). This automatic proof attempt starts
by normalizing all literals with inference rule la-norm (cf. Section 4.2.3). The literals (or
terms) that are used by an inference rule are framed in Figure 4.1. Since the waterfall
uses the heuristics to eliminate only heaviest terms, the proof attempt fails after the three
normalization steps.

With a special purpose tactic for supporting the speculation of auxiliary lemmas (cf.
Section 4.2.5), all variable elimination steps with inference rule ≤-var-elim are performed.
This results in a last goal node which contains the needed auxiliary lemma as subformula,
marked with frames in Figure 4.1. Therefore, we get a hypothesis for an auxiliary lemma.

2

4.2 An Even Closer Integration

In this section, we describe our actual integration scheme. It consists of new derived
inference rules for the elementary steps of the decision procedure and an automatic proof
control realized with tactics. A preliminary version of the approach can be found in [Ron04].

To guarantee the soundness and safeness of our integration scheme, we start in Sec-
tion 4.2.1 with a base specification spec0 that defines the required sorts and function sym-
bols for the integration. The naturals provide one of the data models for spec0. In spec0,
Hodes’ decision procedure may be realized with tactics applying the generic inference rules
from Section 2.2.2 and inductively valid lemmas w.r.t. spec0. But this realization is by far
too inefficient. Therefore, we use the inductively valid lemmas only to prove the soundness
and safeness of some derived inference rules. These inference rules make use of special
normal forms of terms and literals over natural numbers which are particularly suitable for
the steps of the decision procedure. These normal forms are defined in Section 4.2.2. In
Section 4.2.3, we present the nine derived inference rules in detail. We integrate the new
inference rules in the simplification process in Section 4.2.4, and present a special purpose
tactic for supporting the speculation of auxiliary lemmas in Section 4.2.5.
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{ L < +(MAX(A),K ) ,

¬(L ≤ MIN(A)),
¬(0 < K ),
A = nil }

la-norm

{ +(1,L) ≤ +(K , MAX(A)),

¬(L ≤ MIN(A)) ,

¬(0 < K ),
A = nil }

la-norm

{ +(1,L) ≤ +(K , MAX(A)),
+(1, MIN(A)) ≤ L,

¬(0 < K ) ,

A = nil }

la-norm

{ +(1, L ) ≤ +(K , MAX(A)),

+(1, MIN(A)) ≤ L ,
K ≤ 0,
A = nil }

≤-var-elim

{ +(1, MIN(A)) ≤ +( K , MAX(A)),
+(1,L) ≤ +(K , MAX(A)),
+(1, MIN(A)) ≤ L,

K ≤ 0,
A = nil }

≤-var-elim

{ MIN(A) ≤ MAX(A),
+(1, MIN(A)) ≤ +(K , MAX(A)),

+(1,L) ≤ +( K , MAX(A)),
+(1, MIN(A)) ≤ L,

K ≤ 0,
A = nil }

≤-var-elim

{ L ≤ MAX(A),

MIN(A) ≤ MAX(A) ,

+(1, MIN(A)) ≤ +(K , MAX(A)),
+(1,L) ≤ +(K , MAX(A)),
+(1, MIN(A)) ≤ L,
K ≤ 0,

A = nil }

Figure 4.1: Derivation of Lemma (4.10) from Formula (4.9)
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4.2.1 The Base Specification spec0

Our base specification spec0 consists of two sorts

Bool for boolean values with constructors

• true : → Bool

• false : → Bool

Nat for natural numbers with constructors

• 0 : → Nat

• s : Nat→ Nat

and the following defined operators:

• leq : Nat, Nat→ Bool

• + : Nat, Nat→ Nat

• - : Nat, Nat→ Nat

• * : Nat, Nat→ Nat

specified with the axioms presented in Figure 4.2 where m and n are constructor variables
of sort Nat. If we want to prove theorems in an extended theory we may introduce new
sorts with constructors, or defined operators with defining rules as usual, considering a
constructor-consistent extension of spec0 according to Definition 2.12.

In the following sections, we present a couple of inductively valid lemmas—such as the
domain lemmas depicted in Figure 4.3—which may be used for implementing an extended

{ leq(0, n) = true } (4.14)

{ leq(s(m), 0) = false } (4.15)

{ leq(s(m), s(n)) = leq(m, n) } (4.16)

{ +(m, 0) = m } (4.17)

{ +(m, s(n)) = s(+(m, n)) } (4.18)

{ -(m, 0) = m } (4.19)

{ -(0, s(n)) = 0 } (4.20)

{ -(s(m), s(n)) = -(m, n) } (4.21)

{ *(m, 0) = 0 } (4.22)

{ *(m, s(n)) = +(*(m, n),m) } (4.23)

Figure 4.2: Axioms of the Base Specification spec0
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{ def leq(m, n) } (4.24)

{ def +(m, n) } (4.25)

{ def -(m, n) } (4.26)

{ def *(m, n) } (4.27)

Figure 4.3: Inductively Valid Lemmas of spec0 for Proving Definedness Properties

version of Hodes’ decision procedure. We employ these lemmas to prove the soundness and
safeness properties of our new derived inference rules. To ease comprehension, we introduce
the required lemmas just when needed.

Because of their importance for the decision procedure we represent constructor ground
terms of sort Nat with the usual decimal constants, i.e. we write i ∈ N as an abbreviation
for si(0). Thus, top(i) ∈ {0, s} for each constant i ∈ N. Furthermore, we introduce ≤ as
another predefined predicate symbol: we write m ≤ n instead of leq(m, n) = true and
¬(m ≤ n) instead of leq(m, n) 6= true. This allows us to abandon sort Bool from the
base specification. We call m ≤ n (resp. ¬(m ≤ n)) a (negated) inequality . Furthermore,
a (negated) equation, inequality or order atom with exactly one term of sort Nat on each
side of the literal is called a binary literal over sort Nat.

4.2.2 Normal Forms

To support the variable elimination steps, we have to determine the number of occurrences
of each term in a binary literal over sort Nat. Therefore, we define polynomials (cf. Sec-
tion 4.2.2.1) and normalized binary literals over sort Nat (cf. Section 4.2.2.2). Note that,
in other approaches, the representation of normal forms is hidden in the internal state of
the decision procedure. In contrast to this, we represent normal forms explicitly in our
close integration. This allows us to inform the user about the internal state of the decision
procedure and, thus, to support the speculation of auxiliary lemmas. Normal forms are
omnipresent in the specification of our derived inference rules. They have to obey only
some simple requirements. Therefore, there are many ways to realize them appropriately.
Finally, we fix one realization on a highly technical level to guarantee the uniqueness of the
normal forms and, thus, of the subgoals generated with our derived inference rules.

4.2.2.1 Normal Forms for Terms of Sort Nat

The normal forms for terms of sort Nat are computed essentially by splitting the terms into
single constituents, rearranging these single constituents, and combining identical ones. For
this, we exploit fundamental properties of linear arithmetic such as the associativity and
commutativity of addition and multiplication as well as the distributivity of multiplication
over addition and subtraction. The required inductively valid lemmas are summarized in
Figure 4.4.

In the following, we state this simple idea more precisely. We start with the definition of
polynomials which contains the most important requirements on our normal forms. Then,
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{ +(m, n) = +(n,m) } (4.28)

{ +(+(m1 ,m2 ),m3 ) = +(m1 , +(m2 ,m3 )) } (4.29)

{ *(m, n) = *(n,m) } (4.30)

{ *(*(m1 ,m2 ),m3 ) = *(m1 , *(m2 ,m3 )) } (4.31)

{ *(m, +(n1 , n2 )) = +(*(m, n1 ), *(m, n2 )) } (4.32)

{ *(m, -(n1 , n2 )) = -(*(m, n1 ), *(m, n2 )) } (4.33)

{ -(+(m, n1 ), +(m, n2 )) = -(n1 , n2 ) } (4.34)

Figure 4.4: Inductively Valid Lemmas of spec0 for Normalizing Terms

we present an algorithm for computing specific normal forms. The latter representation
provides the details for performing the splits, rearrangements and combinations of the
constituents in our current implementation.

We assume <Term to be a fixed, total, wellfounded order on terms Term(F, V ) over
an admissible specification spec = (Σ, C,R) (cf. Definition 2.5)—which is a constructor-
consistent extension of spec0 according to Definition 2.12—with signature Σ = (S, F, α)
and a set V of variable symbols.

Definition 4.4 (Polynomials/Addends/Coefficients/Multiplicands/Constants)
P is a polynomial if P ≡ c +

∑n

i=1 citi and for each i, j ∈ {1, . . . , n}: c, ci ∈ N, ci 6= 0,
ti ∈ Term(F, V ), top(ti) /∈ {0, s, +} and ti <Term tj for i < j. citi is called addend , ci
coefficient , ti multiplicand , and c constant of the polynomial P . 2

A polynomial can be easily represented as a term if we construct the sum with operators
+ and * with parenthesis associating to the right. Additionally, we eliminate factors with
value 1 and constants with value 0. We identify polynomials with their term representation.
Thus, we can use them e.g. in binary literals over sort Nat.

We present an algorithm poly that converts a term of sort Nat into a polynomial. As we
are interested in merging as many common subterms as possible into one multiplicand, we
exploit properties of the defined operators such as the commutativity of the multiplication
and the distributivity of multiplication over the addition and subtraction. Therefore, we
get polynomials that obey further restrictions. To formulate these restrictions we define
products.

Definition 4.5 (Products / Factors) π is a product if π ≡ ∏n

i=1 ti and for each i, j ∈
{1, . . . , n}: ti ∈ Term(F, V ), top(ti) /∈ {0, s, *} and ti ≤Term tj for i < j. ti is called factor
of the product π. 2

Again, a product can be easily represented as a term using operator * with parenthesis
associating to the right. We identify products with their term representation.

Algorithm poly obeys the following invariant (I) w.r.t. the generated polynomial P ≡ c +
∑n

i=1 citi:

• If top(ti) = -, i.e. ti ≡ -(u, v) for two terms u, v of sort Nat, then u and v are
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polynomials without any common multiplicand (obeying invariant (I) themselves).
Furthermore, only one of the constants is unequal to 0.

• If top(ti) = *, then ti ≡
∏m

j=1 uj is a product and top(uj) /∈ {+, -} for each j ∈
{1, . . . ,m}.

We present algorithm poly in a functional style. It depends on algorithms for adding, sub-
tracting and multiplying two polynomials represented with symbols +p, −p and ∗p; adding
and multiplying constants with polynomials represented with +c and ∗c; and multiplying
two multiplicands represented with ∗m. We only sketch these algorithms in the following.

• poly(t) =











































0 if t ≡ 0

1 +c poly(u) if t ≡ s(u)

poly(u) +p poly(v) if t ≡ +(u, v)

poly(u)−p poly(v) if t ≡ -(u, v)

poly(u) ∗p poly(v) if t ≡ *(u, v)

t otherwise, i.e. if top(t) /∈ {0, s, +, -, *}
Thus, algorithm poly is recursively called for the arguments of operators s, +, -, and *.
Then, the results are handled with the corresponding operations on polynomials. Note
that a term starting with an uninterpreted function symbol is left unchanged although
it may contain further interpreted function symbols in its subterms. This decision
is motivated by the fact that recursive operators over the natural numbers have to
be specified using s instead of + because of the confluence criterion of QuodLibet

(cf. Theorem 2.7). Therefore, axioms are less likely applicable to terms containing
normalized subterms.

• The addition of a constant c to a polynomial P ≡ d +
∑m

j=1 djvj is represented with
c+c P . The constant of the new polynomial is c+ d, the addends are left unchanged
w.r.t. P .

• The addition of two polynomials P1 ≡ c +
∑n

i=1 ciui and P2 ≡ d +
∑m

j=1 djvj is
represented with P1 +p P2. The constant of the new polynomial is c+ d, the sums are
merged into one sum in ascending order of the multiplicands adding the coefficients
of equal multiplicands.

The addition of polynomials is associative and commutative. Therefore, we may omit
parentheses and may swap polynomials which we want to add. We use the notion
⊕k

i=1 Pi to add k polynomials P1, . . . , Pk.

• The subtraction of two polynomials P1 ≡ c +
∑n

i=1 ciui and P2 ≡ d +
∑m

j=1 djvj is
represented with P1 −p P2.

First, for each polynomial Pi, i ∈ {1, 2} a new polynomial P ′
i is computed: The

constant of P ′
1 is c − d using a subtraction operator on natural numbers as specified

with Axioms (4.19) to (4.21), i.e. the result is 0 if c is less or equal to d. The addends
of P ′

1 are derived from P1 by subtracting the coefficients of common multiplicands in
P2. Analogously, P ′

2 is derived from P2 (and P1). The resulting polynomials do not
share any multiplicands, and at least one of the constants is 0.
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If P ′
1 is equal to 0, i.e. the constant is 0 and there are no addends, then the result of

the subtraction P1−pP2 is also 0. If P ′
2 is equal to 0, then the result is P ′

1. Otherwise,
the result is P ′

1 − P ′
2. In each case, our invariant (I) is fulfilled.

• The multiplication of a constant c with a polynomial P ≡ d+
∑m

j=1 djvj is represented
with c ∗c P . The constant of the new polynomial is c · d. For each multiplicand vj,
the coefficient is changed to c · dj.

• The multiplication of two polynomials P1 ≡ c+
∑n

i=1 ciui and P2 ≡ d+
∑m

j=1 djvj is
represented with P1 ∗p P2. The resulting polynomial is
c · d+c c ∗c

∑m

j=1 djvj +p d ∗c
∑n

i=1 ciui +p

⊕n

i=1

⊕m

j=1(ci · dj) ∗c (ui ∗m vj).

• The multiplication of two multiplicands u and v is represented with u ∗m v. The
computation results in a polynomial and depends on the top-level symbols of the
multiplicands:

– If top(u) = top(v) = -, i.e. u ≡ -(u1, u2) and v ≡ -(v1, v2) for polynomials
u1, u2, v1, v2, then the result is ((u1 ∗p v1)−p (u2 ∗p v1))−p ((u1 ∗p v2)−p (u2 ∗p v2)).

– If top(u) = -, i.e. u ≡ -(u1, u2) for polynomials u1, u2, but top(v) 6= -, then the
result is (u1 ∗p v) −p (u2 ∗p v). Note that a multiplicand may be interpreted as
polynomial with a single addend and coefficient 1.

– If top(v) = -, i.e. v ≡ -(v1, v2) for polynomials v1, v2, but top(u) 6= -, then the
result is (u ∗p v1)−p (u ∗p v2).

– Otherwise, we consider u and v as products. A term whose top-level symbol is
unequal to * may be interpreted as product with a single factor. The factors of u
and v are merged into a single new product with ascending order of the factors.
The result is a polynomial that consists of one addend with coefficient 1 and the
new product as multiplicand.

Note that algorithm poly obeys Definition 4.4 and invariant (I). A term can be transformed
into (the term representation of) a polynomial using the axioms of Figure 4.2 and the
inductively valid lemmas of Figure 4.4 as long as the term is defined. If necessary, the new
derived inference rules introduce a case split to guarantee the definedness of the terms and
literals they are applied to. They make use of the total definedness of operators +, -, and *

(cf. Figure 4.3). This results in the following definedness conditions w.r.t. linear arithmetic.

Definition 4.6 (Definedness Conditions w.r.t. Linear Arithmetic)
The minimal definedness positions w.r.t. linear arithmetic MinDefPosLA(t) of a term t are
defined as the minimal positions in {p ∈ Pos(t) | top(t/p) /∈ (C ∪ {+, -, *} ∪ V C)}.
The definedness conditions w.r.t. linear arithmetic of a term t are defined as
DefCondLA(t) = {¬def t/p | p ∈ MinDefPosLA(t)}.
The definedness conditions w.r.t. linear arithmetic are lifted to binary literals λ over sort
Nat with top-level terms u and v by DefCondLA(λ) = DefCondLA(u)∪DefCondLA(v). 2

Lemma 4.7 (Soundness Property of Algorithm poly) Let 〈Γ;w〉 be a goal, m ∈ N,
and p ∈ Pos(Γ[m]) such that t ≡ Γ[m]/p is a term of sort Nat. If Γ contains DefCondLA(t),
then there exists a derivation using the inference rules of Section 2.2.2, the axioms of
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Figure 4.2 and the lemmas of Figure 4.3 and 4.4 such that 〈Γ[poly(t)]m.p;w〉 is the only
open subgoal in the derivation. 2

We illustrate algorithm poly with the following example.

Example 4.8 Let f, g, h : Nat→ Nat be uninterpreted function symbols.

poly(*(-(f(m), h(m)), +(-(+(f(m), g(m)), g(m)), f(m))))

= poly(-(f(m), h(m))) ∗p poly(+(-(+(f(m), g(m)), g(m)), f(m))) (1)

= -(f(m), h(m)) ∗p ((+(f(m), g(m))−p g(m)) +p f(m)) (2)

= -(f(m), h(m)) ∗p (f(m) +p f(m)) (3)

= -(f(m), h(m)) ∗p *(2, f(m)) (4)

= 2 ∗c (-(f(m), h(m)) ∗m f(m)) (5)

= 2 ∗c ((f(m) ∗p f(m))−p (h(m) ∗p f(m))) (6)

= *(2, -(*(f(m), f(m)), *(f(m), h(m)))) (7)

In Line (1), algorithm poly is recursively called for the arguments of operator *. The results
will be combined with ∗p. In Line (2), all recursive calls to poly have been performed. Fur-
thermore, operations −p and +p have been applied for those terms that do not change. In
Line (3), the common multiplicand g(m) is eliminated while subtracting two polynomials.
In Line (4), common addends are combined while adding two polynomials. The multipli-
cation of two polynomials is reduced to the multiplication of two multiplicands in Line (5).
The result is presented in Line (6). Once again, the multiplication of the simplified polyno-
mials is reduced to the multiplication of the multiplicands. During this multiplication the
factors are sorted in ascending order leading to the result in Line (7).

The definedness conditions w.r.t. linear arithmetic are

DefCondLA(*(-(f(m), h(m)), +(-(+(f(m), g(m)), g(m)), f(m))))

= {¬def f(m),¬def g(m),¬def h(m)}.

Note that ¬def g(m) is one of the definedness conditions although g is not present in the
resulting polynomial. 2

4.2.2.2 Normal Forms for Binary Literals over Sort Nat

We lift the normalization from terms of sort Nat to binary literals over sort Nat. For
our extended version of Hodes’ decision procedure, inequalities and negated equations are
particularly suited. They may be used for eliminating variables (cf. Sections 4.2.3.4 and
4.2.3.5). Our first aim is to reduce the literals to a uniform representation as far as possible.
For this, we may

• replace order atoms over sort Nat with inequalities;3

3Note that the fixed wellfounded order of QuodLibet based on the length of constructor terms compares
two natural numbers according to the usual less predicate on natural numbers. Therefore, we can use the
decision procedure for order literals over sort Nat as well.
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• eliminate top-level occurrences of operator - in multiplicands using Axioms (4.19) to
(4.21);

• replace equations over sort Nat with two goals containing one new inequality each.

Whereas the first transformation results in a single new subgoal, the other two transforma-
tions generate at least two new subgoals. These case splits may be unnecessary: Assume,
for instance, that we have two inequalities P1 ≤ P2 and P ′

1 ≤ P ′
2 such that P2 and P ′

1

contain a common multiplicand -(x, y). Then we can perform a variable elimination step
eliminating -(x, y) without having to introduce a case split for operator -. Our second aim
is to avoid case splits as far as possible. To cope with these two contradicting aims, we offer
three different levels for normalizing binary literals over sort Nat. The first level performs
those transformations that do not introduce case splits except for those required for the
definedness conditions w.r.t. linear arithmetic. The second level, additionally, eliminates
top-level occurrences of operator - in multiplicands. The third level, additionally, replaces
equations with two inequalities to enable further variable elimination steps.

Each normalized literal obeys the following definition.

Definition 4.9 (Normalized Binary Literals over Sort Nat) A binary literal λ over
sort Nat is normalized if λ ≡ (P1 ≤ P2), λ ≡ (P1 = P2), or λ ≡ (P1 6= P2), where P1 and P2

are polynomials that do not share any multiplicand, one of the constants is equal to 0, and
the set of coefficients of P1 and P2 is coprime, i.e. there does not exist a natural number
greater than 1 that divides each coefficient of P1 and P2. 2

The first normalization level performs only those transformations that are required for
obeying Definition 4.9. Algorithm norm1 returns for each binary literal λ over sort Nat

a single literal—the normal form of λ w.r.t. the first normalization level. It performs the
following steps, essentially using the lemmas of Figure 4.5:

(1) (Negated) order atoms and negated inequalities over sort Nat are replaced with inequal-
ities using Lemmas (4.35) to (4.38):
This step transforms u < v into +(1, u) ≤ v

¬(u < v) into v ≤ u and
¬(u ≤ v) into +(1, v) ≤ u.

The result is a literal t1 ≎ t2 where t1 and t2 are terms of sort Nat and ≎ ∈ {≤,=, 6=}.

(2) The algorithm computes the polynomials P1 ≡ poly(t1) and P2 ≡ poly(t2) of t1 and t2.

(3) The algorithm eliminates common multiplicands and constants of P1 and P2 using
Lemmas (4.39) to (4.41). Let P ′

1 and P ′
2 be the resulting polynomials. They do not

share any multiplicand and one of the constants is equal to 0.

(4) In the last step, coprimality of all the coefficients of P ′
1 and P ′

2 is achieved by dividing
each coefficient by the greatest common divisor g of all coefficients. If g divides the con-
stants of P ′

1 and P ′
2, then norm1 returns the corresponding literal where all coefficients

and constants are divided by g using Lemmas (4.42) to (4.44).

Otherwise, i.e. if g does not divide the constant of P ′
1 (resp. P ′

2), the result is adapted
depending on the predicate symbol ≎:
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{ leq(m, n) 6= true,
leq(s(n),m) 6= true }

(4.35)

{ leq(s(n),m) = true,
leq(m, n) = true }

(4.36)

{ m < n,
leq(s(m), n) 6= true }

(4.37)

{ leq(s(m), n) = true,
¬(m < n) }

(4.38)

{ leq(+(m, n1 ), +(m, n2 )) = leq(n1 , n2 ) } (4.39)

{ +(m, n1 ) = +(m, n2 ),
n1 6= n2 }

(4.40)

{ +(m, n1 ) 6= +(m, n2 ),
n1 = n2 }

(4.41)

{ leq(*(m, n1 ), *(m, n2 )) = leq(n1 , n2 ),
m = 0 }

(4.42)

{ *(m, n1 ) = *(m, n2 ),
n1 6= n2 ,
m = 0 }

(4.43)

{ *(m, n1 ) 6= *(m, n2 ),
n1 = n2 ,
m = 0 }

(4.44)

{ leq(+(*(m, n1 ), k), *(m, n2 )) = leq(s(n1 ), n2 ),
leq(m, k) = true,
k = 0 }

(4.45)

{ leq(*(m, n1 ), +(*(m, n2 ), k)) = leq(n1 , n2 ),
leq(m, k) = true }

(4.46)

{ *(m, n1 ) 6= +(*(m, n2 ), k),
leq(m, k) = true,
k = 0 }

(4.47)

Figure 4.5: Inductively Valid Lemmas of spec0 for Normalizing Literals (1)

• If ≎ ≡ ≤, then the result is rounded up for the constant of P ′
1 (cf. Lemma (4.45))

and rounded down for the constant of P ′
2 (cf. Lemma (4.46)).

• If ≎≡=, then the equation can be removed using inference rule appl-lit-removal
and Lemma (4.47). In this case, norm1 returns 0 = 1 which is obviously redun-
dant.

• If ≎ ≡ 6=, then the negated equation can be proved with Lemma (4.47). In this
case, norm1 returns 0 6= 1 which is obviously inductively valid.

Note that the returned normalized literal obeys Definition 4.9. The new derived inference
rules—except for those that normalize literals or terms—assume that the handled literals
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{ leq(+(k1 , -(m, n)), k2 ) = leq(+(k1 ,m), +(k2 , n)),
leq(n,m) 6= true }

(4.48)

{ leq(k1 , +(k2 , -(m, n))) = leq(+(k1 , n), +(k2 ,m)),
leq(n,m) 6= true }

(4.49)

{ +(k1 ,m) = +(k2 , n),
+(k1 , -(m, n)) 6= k2 ,
leq(n,m) 6= true }

(4.50)

{ +(k1 , -(m, n)) = k2 ,
+(k1 ,m) 6= +(k2 , n),
leq(n,m) 6= true }

(4.51)

{ -(m, n) = 0,
leq(n,m) = true }

(4.52)

Figure 4.6: Inductively Valid Lemmas of spec0 for Normalizing Literals (2)

are normalized. This is checked using the applicability condition norm1 (λ) = λ.

The second normalization level eliminates top-level occurrences of operator - in multi-
plicands. Note that the elimination of operator - in favor of operator + causes difficulties
because we do not consider integers but only natural numbers. Therefore, algorithm norm2
has to introduce case splits according to Axioms (4.19) to (4.21). Thus, the algorithm does
not return a single literal but a set of pairs {(Γ1;λ1), . . . , (Γk;λk)} where Γi is a set of
normalized inequalities and λi is a normalized literal w.r.t. the second normalization level
for each i ∈ {1, . . . , k}. The inequalities in Γi introduce a case split. They are called lin-
earization hypothesis in [BM88b]. Literal λi is the normal form of the input literal λ w.r.t.
the linearization hypothesis Γi. Basically, λ is equivalent to (

∨

Γ1 ∨ λ1) ∧ · · · ∧
∨

(Γk ∨ λk)
(cf. Lemma 4.10). Thus, we define the linearization hypotheses in such a way that they
can be added to the subgoal clauses directly. For ease of comprehension, we may consider
the results as implications using the conjunctively combined negated literals of the lin-
earization hypotheses as premises. To reduce the complexity of the algorithm, we define an
algorithm norm2aux which normalizes all the literals in a pair (Γ;λ). Algorithms norm2
and norm2aux are defined by mutual recursion. First, we present algorithm norm2 which
handles a single binary literal over sort Nat:

(1) The algorithm computes λ′ ≡ norm1 (λ)—the normal form of the input literal λ w.r.t.
the first normalization level.

(2) Let λ′ ≡ P1 ≎ P2 with P1 ≡ c+
∑n

i=1 ciui, P2 ≡ d+
∑m

j=1 djvj and ≎ ∈ {≤,=, 6=}.
If none of the multiplicands of P1 and P2 contains operator - as top-level operator,
then {(∅;λ′)} is returned.

Otherwise, let us assume that there exists an addend uh in P1 such that uh ≡ t1 − t2
for h ∈ {1, . . . , n}. Let P ′

1 be the polynomial that is derived from P1 by eliminating
the addend uh, i.e. P ′

1 ≡ c+
∑h−1

i=1 ciui +
∑n

i=h+1 ciui. Then, the algorithm returns:
norm2aux (({¬(t2 ≤ t1)};P ′

1 + cht1 ≎ P2 + cht2)) ∪ norm2aux (({t2 ≤ t1};P ′
1 ≎ P2)).
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Otherwise, there exists an addend vh in P2 such that vh ≡ t1 − t2 for h ∈ {1, . . . ,m}.
This case is handled analogously to the previous case.

This step is justified because of the lemmas presented in Figure 4.6.

Algorithm norm2aux handles its input ({λ′1, . . . , λ′m};λ) as follows:

(1) First, the algorithm computes the normal forms of all input literals w.r.t. the second
normalization level. Let

norm2 (λ) = {(Γ1;λ1), . . . , (Γn;λn)}
norm2 (λ′k) = {(Γ(k)

1 ;λ
(k)
1 ), . . . , (Γ(k)

nk
;λ(k)

nk
)} for k ∈ {1, . . . ,m}.

(2) The algorithm returns the combination of all normal forms:

{(Γi ∪ Γ
(1)
i1
∪ · · · ∪ Γ

(m)
im
∪ {λ(1)

i1
, . . . , λ

(m)
im
};λi) |

i ∈ {1, . . . , n}, i1 ∈ {1, . . . , n1}, . . . , im ∈ {1, . . . , nm}}.

Note that the algorithms norm2 and norm2aux terminate as the number of occurrences of
operator - decreases in each recursive call to norm2 . The returned literals are normalized
and do not contain any occurrence of operator - as top-level symbol of a multiplicand.

The third normalization level is only applicable to equations. It replaces the equation
with two inequalities. It is computed with algorithm norm3 which transforms an input
literal λ into a set of pairs {(Γ1;λ1), . . . , (Γk;λk)}.

(1) First, the algorithm computes the normal form of the input literal λ w.r.t. the second
normalization level. Let norm2 (λ) = {(Γ1;u1 = v1), . . . , (Γn;un = vn)}.

(2) The algorithm replaces each equation with two inequalities according to the lemmas in
Figure 4.7. Thus, it returns {(Γi;ui ≤ vi), (Γi; vi ≤ ui) | i ∈ {1, . . . , n}}.

To provide a uniform interface for the three normalization levels, we define algorithm norm
that expects a binary literal λ over sort Nat and a normalization level as input. It returns
a set of pairs {(Γ1;λ1), . . . , (Γk;λk)} that represents the normalization of λ w.r.t. the given
normalization level:

{ m = n,
leq(m, n) 6= true,
leq(n,m) 6= true }

(4.53)

{ leq(m, n) = true,
m 6= n }

(4.54)

{ leq(m, n) = true,
leq(n,m) = true }

(4.55)

Figure 4.7: Inductively Valid Lemmas of spec0 for Normalizing Literals (3)
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• norm(λ, i) =











{(∅; norm1 (λ))} if i = 1

norm2 (λ) if i = 2

norm3 (λ) if i = 3

Lemma 4.10 (Soundness Property of Algorithm norm)
Let 〈Γ;w〉 be a goal, and m ∈ N such that Γ[m] is a binary literal over sort Nat. Let
i ∈ {1, 2, 3}, and norm(Γ[m], i) ≡ {(Γ1;λ1), . . . , (Γk;λk)}. If Γ contains DefCondLA(Γ[m]),
then there exists a derivation using the inference rules of Section 2.2.2, the axioms of
Figure 4.2 and the lemmas of Figures 4.3 to 4.7 such that

〈Γ1 ∪ Γ[λ1]m;w〉, . . . , 〈Γk ∪ Γ[λk]m;w〉

are the only open subgoals in the derivation. 2

We illustrate the different normalization levels with the following example.

Example 4.11 (a) norm1 (*(2,m) < +(2, *(2, n))) = m ≤ n:

First, *(2,m) < +(2, *(2, n)) is transformed into +(1, *(2,m)) ≤ +(2, *(2, n)). Then,
the common parts of both sides are eliminated by subtracting one constant from the
other and vice versa. This results in *(2,m) ≤ +(1, *(2, n)). Finally, the coefficients
and constants are divided by the greatest common divisor of all coefficients, which is
2. As the constant appears on the right-hand side, the result of its division is rounded
down.

(b) norm(-(m, n) = -(m, k), 1) = { (∅; -(m, n) = -(m, k)) }.
Thus, the equation is already normalized w.r.t. the first normalization level.

(c) norm(-(m, n) = -(m, k), 2) = { ({+(1,m) ≤ n, +(1,m) ≤ k}; k = n),
({+(1,m) ≤ n, k ≤ m}; m = n),
({n ≤ m, +(1,m) ≤ k}; k = m),
({n ≤ m, k ≤ m}; 0 = 0) } :

Since the equation is normalized w.r.t. the first normalization level, the computation of
the second normalization level starts by performing a case split w.r.t. the first top-level
occurrence of operator - in a multiplicand, namely -(m, n).

norm2 (-(m, n) = -(m, k)) = norm2aux ( ({¬(n ≤ m)};m = +(-(m, k), n)) ) ∪
norm2aux ( ({n ≤ m}; 0 = -(m, k)) )

Thus, if we interpret the resulting pairs as implications, we get:

(1) if n ≤ m, the subtrahend n is transferred to the right-hand side;

(2) if m < n, the difference -(m, n) is replaced with 0.

Algorithm norm2aux calls norm2 recursively for each literal resulting in

norm2 (¬(n ≤ m)) = (∅; +(1,m) ≤ n)
norm2 (m = +(-(m, k), n)) = norm2aux ( ({¬(k ≤ m)}; +(m, k) = +(n,m)) ) ∪

norm2aux ( ({k ≤ m};m = n) )
= { ({+(1,m) ≤ k}; k = n) } ∪ { ({k ≤ m};m = n) }
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and

norm2 (n ≤ m) = (∅; n ≤ m)
norm2 (0 = -(m, k)) = norm2aux ( ({¬(k ≤ m)}; k = m) ) ∪

norm2aux ( ({k ≤ m}; 0 = 0) )
= { ({+(1,m) ≤ k}; k = m) } ∪ { ({k ≤ m}; 0 = 0) }

Then, the results are combined to the four normal forms above.

(d) norm(-(m, n) = -(m, k), 3) = { ({+(1,m) ≤ n, +(1,m) ≤ k}; k ≤ n),
({+(1,m) ≤ n, +(1,m) ≤ k}; n ≤ k),
({+(1,m) ≤ n, k ≤ m}; m ≤ n),
({+(1,m) ≤ n, k ≤ m}; n ≤ m),
({n ≤ m, +(1,m) ≤ k}; k ≤ m),
({n ≤ m, +(1,m) ≤ k}; m ≤ k),
({n ≤ m, k ≤ m}; 0 ≤ 0),
({n ≤ m, k ≤ m}; 0 ≤ 0) } :

In the third normalization level, each equation resulting from the second normalization
level is replaced with two inequalities. Note that equation 0 = 0 may be proved with
=-decomp. Thus, we will get an unnecessary case split if we do not simplify those
literals that result from a previous normalization level.

2

4.2.3 Derived Inference Rules for Linear Arithmetic

In this section, we present the new inference rules which may be used for implementing
Hodes’ decision procedure for linear arithmetic. The inference rules are sound and safe as
they are derived from the inference rules in Section 2.2.2.

Definition 4.12 (Derived Inference Rules) An inference rule of the form

<rule name> <parameters>

〈Γ;w〉
〈Γ1;w1〉 . . . 〈Γn;wn〉

if <applicability conditions>

is a derived inference rule w.r.t. spec0 if, for each instantiation that fulfills the applicability
conditions, there exists a proof state tree with root goal node 〈Γ;w〉—generated with the
inference rules of Section 2.2.2, the axioms of spec0 of Figure 4.2, and inductively valid
lemmas w.r.t. spec0—such that 〈Γ1;w1〉 . . . 〈Γn;wn〉 are the only open goal nodes in the
proof state tree. 2

Lemma 4.13 (Soundness and Safeness of Derived Inference Rules)
Every derived inference rule is sound and safe. 2

For each new inference rule, we present its formal definition, describe its task within the
decision procedure and sketch its derivation with the inference rules of Section 2.2.2. De-
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tailed derivations of the inference rules as well as further examples of their usage can be
found in [Ron04]. From this, we get the following lemma.

Lemma 4.14 (Soundness and Safeness of the New Inference Rules)
All the inference rules for linear arithmetic presented in this section are derived inference
rules. Thus, they are sound and safe. 2

4.2.3.1 Derived Inference Rules for Normalizing Literals and Terms

In other approaches that integrate decision procedures into theorem provers there is no
explicit correspondence to our inference rules for normalizing terms of and literals over sort
Nat. Instead, these normal forms are hidden in the internal data structures of the decision
procedure. Nevertheless, normal forms are essential for implementing decision procedures
in an efficient way. The explicit representation of these normal forms in our close integration
is a distinctive feature in comparison to other approaches. It allows for the representation of
the internal state of the decision procedure which supports the user in speculating auxiliary
lemmas without sacrificing efficiency.

Normal forms are omnipresent in all other derived inference rules. The inference rules
require normalized literals as input and generate normalized literals as output. Because of
their importance, normal forms have been presented extensively in Section 4.2.2. Therefore,
we give only a short summary here: Inference rule la-norm normalizes binary literals over
sort Nat (cf. Figure 4.8). The inference rule determines the multiplicands of the literal
as well as the number of occurrences of each multiplicand as required for the variable
elimination steps. Furthermore, this normal form facilitates the identification of tautological
and redundant literals w.r.t. linear arithmetic. On the one hand, we want to simplify the
literals as much as possible. On the other hand, we want to avoid unnecessary case splits.
As a compromise, we provide the user with three different normalization levels. Whereas the
first one avoids case splits as far as possible, the second one eliminates top-level occurrences
of - introducing case splits w.r.t. the linearization hypotheses, and the third one replaces
an equation with two inequalities. Because of the confluence criterion of QuodLibet (cf.
Theorem 2.7), constructor recursion of a defined operator over sort Nat may be specified
only with constructors 0 and s but not with the defined operator +. Therefore, inference
rule la-norm does not normalize any subterms of uninterpreted function symbols. This
facilitates the application of the axioms of the defined operator. Instead, we provide an
additional inference rule la-term-norm to initiate the normalization of a subterm explicitly.

la-norm is applicable if the considered literal is a binary literal over sort Nat. The second
parameter of the inference rule determines the normalization level i. If i = 3, the
considered literal has to be an equation. The inference rule creates, for each normal
form computed with algorithm norm, one new subgoal replacing the considered literal
with this normal form. Furthermore, the corresponding linearization hypothesis for
the computation of the normal form is added to the subgoal. If the normal form
differs from the considered literal in the original goal, then additional definedness
subgoals are created for those definedness conditions w.r.t. linear arithmetic that are
not present in the original goal.
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la-norm m i

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈Γ1,Λ,Γ[λ1]m;w〉 . . . 〈Γn,Λ,Γ[λn]m;w〉

if there is an n ∈ N and there are literals λ1, . . . , λn and clauses Γ1, . . . ,Γn, and a
minimal clause Θ such that

• Γ[m] is a binary literal over sort Nat

• i ∈ {1, . . . , 3}
• if i = 3, then Γ[m] is an equation

• norm(Γ[m], i) = {(Γ1;λ1), . . . , (Γn;λn)}
• if n = 1, Γ1 = ∅, and λ1 = Γ[m], then Θ = ∅;

otherwise, Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

la-term-norm m p

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈Λ,Γ[poly(Γ[m]/p)]m.p;w〉

if there is a minimal clause Θ such that

• p ∈ Pos(Γ[m])

• Γ[m]/p is a term of sort Nat

• if poly(Γ[m]/p) = Γ[m]/p, then Θ = ∅;
otherwise, Γ,Θ contains DefCondLA(Γ[m]/p)

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

Figure 4.8: Derived Inference Rules for Normalizing Literals and Terms

la-term-norm is applicable if the considered subterm is of sort Nat. The inference rule
replaces the considered subterm with its polynomial as computed with algorithm
poly . If the polynomial differs from the considered subterm in the original goal, then
additional definedness subgoals are created for those definedness conditions w.r.t.
linear arithmetic that are not present in the original goal.

For all derived inference rules, a formal derivation starts by possibly introducing a case
split with inference rule lit-add for those definedness conditions w.r.t. linear arithmetic
that are not present in the original goal. We do not present this part of the derivation for
each inference rule explicitly but concentrate on the essential part that is different for each
inference rule.

For la-norm and la-term-norm, the existence of the remaining derivation follows di-
rectly from the soundness properties of the algorithms poly and norm (cf. Lemmas 4.7 and
4.10).
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≤-taut m

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉

if there is a polynomial P and a minimal clause Θ such that

• Γ[m] is a normalized binary literal, i.e. norm1 (Γ[m]) = Γ[m]

• Γ[m] = (0 ≤ P )

• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

Figure 4.9: Derived Inference Rule for Proving Tautologies

4.2.3.2 Derived Inference Rule for Proving Tautologies

With inference rule≤-taut (cf. Figure 4.9), we can identify inequalities that are tautological
as required for Hodes’ decision procedure.

≤-taut is applicable if the considered literal is a normalized inequality of the form 0 ≤
P . Since we are concerned with inequalities over natural numbers only, each such
inequality is inductively valid provided that the definedness conditions w.r.t. linear
arithmetic are fulfilled. For those conditions that are not present in the goal, the
inference rule generates corresponding definedness subgoals.

Note that we test arbitrary instances for tautologies with inference rule ≤-taut, not only
ground ones.

A formal derivation of the inference rule just applies Axiom (4.14) (cf. Figure 4.2) for
subsumption. We provide an inference rule for this derivation because we replace the defined
operator leq with the predefined predicate symbol ≤. Therefore, we fix the semantics of
≤ with inference rules instead of axioms.

4.2.3.3 Derived Inference Rules for Removing Redundant Literals

We provide two inference rules for removing redundant inequalities (cf. Figure 4.10): Infer-
ence rule ≤-removal eliminates inequalities that are unsatisfiable by themselves. Inference
rule ≤-subs-removal removes an inequality if it is more “restrictive” than another inequal-
ity in the goal. These inference rules are not required for the decision procedure but they
clean up the goals making the presentation more concise. This helps the user to identify
the important literals that are useful for speculating auxiliary lemmas.

≤-removal is applicable if the considered literal is a normalized inequality of the form
P ≤ 0 and the constant in P is unequal to 0. The considered literal can be removed
safely in the generated subgoal since it is unsatisfiable over natural numbers as long as
P is defined. For this, a definedness subgoal is created for each definedness condition
w.r.t. linear arithmetic that is not present in the original goal.
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≤-removal m

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈Λ,Γ[−]m;w〉

if there is a polynomial P ≡ c+
∑k

i=1 citi and a minimal clause Θ such that

• Γ[m] is a normalized binary literal, i.e. norm1 (Γ[m]) = Γ[m]

• Γ[m] = (P ≤ 0)

• c > 0

• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

≤-subs-removal m n

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈Λ,Γ[−]n;w〉

if there are polynomials P1 ≡ c+ A1, P2 ≡ d+ A2,
P ′

1 ≡ c′ + A1, P ′
2 ≡ d′ + A2

where A1 ≡
∑k1

i=1 ciui and A2 ≡
∑k2

j=1 djvj,
and a minimal clause Θ such that

• m 6= n

• Γ[m],Γ[n] are normalized literals, i.e. norm1 (Γ[m]) = Γ[m], norm1 (Γ[n]) = Γ[n]

• Γ[m] = (P1 ≤ P2)

• Γ[n] = (P ′
1 ≤ P ′

2)

• c+ d′ ≤ d+ c′

• Γ,Θ contains DefCondLA(Γ[m]),DefCondLA(Γ[n])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

Figure 4.10: Derived Inference Rules for Removing Redundant Literals

≤-subs-removal is applicable if the two considered literals are inequalities with identical
addends. Furthermore, the second one is more restrictive than the first one, i.e.
the difference of the constants of the right-hand side and left-hand side of the first
inequality is greater than or equal to that of the second inequality. In this case, the
second inequality does not contain any additional information and can be removed
safely provided that the definedness conditions w.r.t. linear arithmetic are fulfilled.
This is guaranteed by generating corresponding definedness subgoals if needed.

With this inference rule, we may, e.g., remove m ≤ n using m ≤ +(1, n).

In the formal derivation of ≤-removal, we essentially apply appl-lit-removal with Ax-
iom (4.15) (cf. Figure 4.2). For ≤-subs-removal, we apply appl-lit-removal with
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Lemma (4.56) exploiting the condition c+ d′ ≤ d+ c′:4

{ leq(+(m, c), +(n, d)) = true,
leq(+(m, c ′), +(n, d ′)) 6= true,
leq(+(c, d ′), +(d , c ′)) 6= true }

(4.56)

4.2.3.4 Derived Inference Rules for Eliminating Variables in Inequalities

One of the main steps of Hodes’ decision procedure consists in performing variable elim-
ination steps with inequalities: Two inequalities are cross-multiplied and added to elimi-
nate a common multiplicand. In our approach, this step is performed with inference rule
≤-var-elim which generates the new inequality in which at least one common multiplicand
of the two considered input inequalities is eliminated (cf. Figure 4.11). Note that Hodes’
decision procedure tests for unsatisfiability whereas our inference rules test for (inductive)
validity. This transformation results in an adjustment (k1 + k2 − 1) on the right-hand side
of the new inequality (cf. Figure 4.11) caused by the negation of the inequalities.

If we apply Hodes’ decision procedure to a set of inequalities over pure linear arithmetic,
i.e. the inequalities do not contain any uninterpreted function symbols, then the following
holds true: If we derive an unsatisfiable ground instance performing variable elimination
steps, then the set of input inequalities is unsatisfiable over the rationals, the integers, and
the naturals. Otherwise, if we close the set under variable elimination steps, the set of
input inequalities is satisfiable over the rationals but may be unsatisfiable over integers
or naturals. Therefore, in this simple form, Hodes’ procedure is a decision procedure for
rationals only. For each variable, we may derive an interval in which all constraints are
satisfied. Whereas these intervals are guaranteed to be non-empty for rationals, there may
be no integral solutions within the intervals. We may extend Hodes’ procedure to get a
decision procedure for integers and naturals. In short, we have to check the intervals for
integral solutions. Extensions are presented e.g. in [KN94] and under the name of “Omega
test” in [Pug92, BGD03].

In our approach, the same holds true for (inductive) validity: We have to provide another
inference rule for checking the intervals of the rational solutions for integral ones to get a
decision procedure for the naturals. This is done with ≤-case-split by introducing a
case split which allows us to check each integral value of the intervals. More precisely,
the inference rule performs a case split in those cases where ≤-var-elim generates an
unsatisfiable ground instance ĉ ≤ 0 with ĉ ∈ N and ĉ > 0. The case split introduces ĉ
new negated equations, one negated equation for each integral value of the interval. These
negated equations may be used for removing one of the multiplicands with inference rules
la-const-rewrite and 6=-var-elim presented in Section 4.2.3.5.

≤-var-elim is applicable if the two considered literals are normalized inequalities which
contain at least one common multiplicand. More precisely, there exists a common
multiplicand in the right-hand side of the first inequality and in the left-hand side of

4More precisely, we introduce a case split with lit-add according to this literal. The subgoal that
contains this literal can be proved with la-norm and ≤-taut. The subgoal that contains its negation is
applicable for appl-lit-removal with Lemma (4.56). Finally, the negation can be removed with la-norm

and ≤-removal.
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≤-var-elim m n p

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈λ,Λ,Γ;w〉

if there are polynomials P1, P2, P
′
1, P

′
2, a literal λ and a minimal clause Θ such that

• Γ[m],Γ[n] are normalized literals, i.e. norm1 (Γ[m]) = Γ[m], norm1 (Γ[n]) = Γ[n]

• Γ[m] = (P1 ≤ P2)

• Γ[n] = (P ′
1 ≤ P ′

2)

• p ∈ Pos(Γ[m]) is a position that refers to a multiplicand t in P2

with coefficient k2 > 0

• P ′
1 contains multiplicand t with coefficient k1 > 0

• λ = norm1 (k1 ∗ P1 + k2 ∗ P ′
1 ≤ k1 ∗ P2 + k2 ∗ P ′

2 + (k1 + k2 − 1))

• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

≤-case-split m n

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈λ1,Λ,Γ;w〉 . . . 〈λ(c+c′)−(d+d′+1),Λ,Γ;w〉

if there are polynomials P1 ≡ c+ A1, P2 ≡ d+ A2,
P ′

1 ≡ c′ + A2, P ′
2 ≡ d′ + A1,

where A1 ≡
∑k1

i=1 ciui and A2 ≡
∑k2

j=1 djvj,
and a minimal clause Θ such that

• Γ[m],Γ[n] are normalized literals, i.e. norm1 (Γ[m]) = Γ[m], norm1 (Γ[n]) = Γ[n]

• Γ[m] = (P1 ≤ P2)

• Γ[n] = (P ′
1 ≤ P ′

2)

• c+ c′ > d+ d′ + 1

• λi = norm1 (P1 6= i+ P2) for i ∈ {1, . . . , (c+ c′)− (d+ d′ + 1)}
• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

Figure 4.11: Derived Inference Rules for Eliminating Variables in Inequalities

the second inequality. The common multiplicand to be eliminated is identified with
the third parameter which is the position of the multiplicand in the first inequality.

Beside the usual definedness subgoals to fulfill the definedness conditions w.r.t. linear
arithmetic, the inference rule generates one subgoal that contains a new inequality in
which the considered multiplicand is eliminated.

The soundness of the inference rule essentially depends on the monotonicity of the
addition in both arguments. Thus, we can add the left-hand sides and the right-hand
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sides of two inequalities, respectively, to derive a new inequality. The normalization of
the new inequality eliminates a common multiplicand if the number of occurrences of
the multiplicand is the same on both sides of the inequality. This is guaranteed if we
add k1 occurrences of the first inequality and k2 occurrences of the second inequality
where k1 (resp. k2) is the coefficient of the multiplicand in the second (resp. first)
inequality.

The adjustment of the right-hand side of the new inequality with (k1+k2−1) is justified
as we actually exploit the monotonicity of the addition w.r.t. the less predicate on
natural numbers: Since we use the input inequalities as premises they have to be
negated (cf. Example 4.15 and Lemma (4.57) below).

≤-case-split is applicable if the two considered literals are normalized inequalities. Fur-
thermore, the addends of the left-hand side of one inequality are identical to the
addends of the right-hand side of the other inequality and vice versa. The sum c+ c′

of the constants of the left-hand side of both inequalities is at least greater by 2 than
the sum d+ d′ of the constants of the right-hand side of both inequalities.

Beside the usual definedness subgoals to fulfill the definedness conditions w.r.t. linear
arithmetic, the inference rule generates (c+ c′)− (d+ d′ + 1) new subgoals. For each
i ∈ {1, . . . , (c+ c′)− (d+ d′ +1)}, the ith new subgoal contains an additional negated
equation—the normalization of P1 6= i+P2 where P1 (resp. P2) is the left-hand (resp.
right-hand) side of the first considered inequality.

With the new negated equations, we explicitly consider those cases that prevent a
proof with inference rules ≤-var-elim and ≤-taut: We consider the original goal
under the assumption that P1 = i+ P2 for i ∈ {1, . . . , (c+ c′)− (d+ d′ + 1)}.

Note that we do not restrict inference rule ≤-var-elim to heaviest terms since this is not
important for its soundness. Instead, our inference rule is more general. Its automatic
application is restricted by heuristics implemented with tactics.

Example 4.15 (a) We may apply ≤-var-elim to a goal containing literals

+(k , *(2, n)) ≤ +(1, *(3,m)) and

+(*(2, k),m) ≤ *(3, n).

If we want to eliminate variable n, then three occurrences of the first inequality are
added to two occurrences of the second inequality. After having combined common
multiplicands on each side, the resulting inequality is

+(*(7, k), +(*(2,m), *(6, n))) ≤ +(7, +(*(9,m), *(6, n))).

Note that the constant contains the adjustment (3+2− 1) = 4. The elimination of the
common multiplicands on both sides results in

*(7, k) ≤ +(7, *(7,m)).

Intuitively, we may derive this inequality as follows: First note that λ1 ∨ λ2 is logically
equivalent to λ1 ∨ λ2 ∨ λ3 provided that (¬λ1 ∧ ¬λ2) entails ¬λ3. Therefore, we may
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add a literal λ3 to a goal clause if its negation follows from the negation of literals λ1

and λ2 of the clause. If the two input inequalities do not hold, then

+(k , *(2, n)) > +(1, *(3,m)) and

+(*(2, k),m) > *(3, n).

From this, we get

+(2, *(3,m)) ≤ +(k , *(2, n)) and

+(1, *(3, n)) ≤ +(*(2, k),m).

Multiplying the first inequality with 3 and the second one with 2, we get

+(6, *(9,m)) ≤ +(*(3, k), *(6, n)) and

+(2, *(6, n)) ≤ +(*(4, k), *(2,m)).

The addition of the two inequalities results in

+(8, *(7,m)) ≤ *(7, k).

Then, its negation may be added to the goal, namely,

*(7, k) ≤ +(7, *(7,m)).

In fact, the inference rule divides all coefficients and constants by the greatest common
divisor of all coefficients, which is 7. Thus, we get the new inequality

k ≤ +(1,m)

which is added to the front of the new subgoal.

We may also eliminate variable m by combining one occurrence of the first inequality
with three occurrences of the second inequality. This results in the new literal

k ≤ n.

Note that we do not have to perform both variable elimination steps to get a com-
plete decision procedure. Instead, it suffices to eliminate heaviest variables in both
inequalities—in this case variable n.

(b) The inequalities

+(1, max(m, n)) ≤ m and

+(1,m) ≤ max(m, n)

contain the same addends on opposite sides. Since the difference of the constants on
the left-hand sides and on the right-hand sides is 2, we may apply ≤-case-split. The
application results in one new negated equation, namely

max(m, n) 6= m

which is added to the front of the new subgoal.



88 An Even Closer Integration of Linear Arithmetic

Intuitively, if the two input inequalities do not hold, then

m ≤ max(m, n) and

max(m, n) ≤ m

Therefore,

max(m, n) = m

and we may add its negation to the goal.

In general, the inference rule may result in huge case splits. We restrict its automatic
application in such a way that only a single new subgoal is created (except for defined-
ness subgoals). Nevertheless, sometimes it may be beneficial to apply the inference rule
manually even if it introduces more than one new subgoal.

2

In the formal derivation of ≤-var-elim, we essentially apply inference rule lemma-subs

with Lemma (4.57):

{ leq(+(*(k1 ,m1 ), *(k2 , n1 )), +(*(k1 ,m2 ), +(*(k2 , n2 ), -(+(k1 , k2 ), 1)))) 6= true,
leq(m1 ,m2 ) = true,
leq(n1 , n2 ) = true,
k1 = 0,
k2 = 0 }

(4.57)

For ≤-subs-removal, we introduce a case split with inference rule lit-add and literals
P1 = i+ P2 for i ∈ {1, . . . , (c+ c′)− (d+ d′ + 1)} resulting in the following clauses for the
new subgoals:

P1 6= 1 + P2, Λ,Γ

P1 6= 2 + P2, P1 = 1 + P2, Λ,Γ

. . .

P1 6= (c+ c′)− (d+ d′ + 1) + P2, P1 = (c+ c′)− (d+ d′ + 2) + P2, . . . , P1 = 1 + P2, Λ,Γ

P1 = (c+ c′)− (d+ d′ + 1) + P2, P1 = (c+ c′)− (d+ d′ + 2) + P2, . . . , P1 = 1 + P2, Λ,Γ

Except for the last subgoal, the additional equations may be handled by applying inference
rule const-rewrite with the first negated equation to replace P1 with the right-hand
side of the negated equation. After normalization, the resulting equations are unsatisfiable
ground instances which may be removed with =-removal. Therefore, we derive the required
subgoals.

In the last subgoal, we may derive P1 ≤ (c+ c′)− (d+ d′ + 1) +P2 using Lemma (4.58)
with the first inequality P1 ≤ P2 and each of the new equations in succession:

{ leq(m, n) = true,
leq(m, +(1, n)) 6= true,
m = +(1, n) }

(4.58)

We may handle the resulting inequality by applying ≤-var-elim with the second inequality
P ′

1 ≤ P ′
2. This results in inequality 0 ≤ 0 which may be proved with ≤-taut finishing the

derivation of ≤-case-split.



4.2 An Even Closer Integration 89

4.2.3.5 Derived Inference Rules for Eliminating Variables with Negated Equa-
tions

Theoretically, we could replace each negated equation with two inequalities and apply
≤-var-elim to perform variable elimination steps with inequalities. But it is much more
efficient to exploit the equality information of negated equations directly as proposed in an
extended version of Hodes’ decision procedure in [KN94] based on [Knu81]. We can use
negated equations for constantly rewriting the other literals in the goal clause as provided
by inference rule const-rewrite (cf. Section 2.2.2.7). In doing so, we may remove one of
the multiplicands of the negated equation in the other literals of the goal. This is possible as
long as the coefficient of the multiplicand in the negated equation divides the coefficient of
the multiplicand in the other literal. To achieve this property, we may “solve” the negated
equation, i.e. we may derive a set of negated equations which represents a general integral
solution of the negated equation using Euclid’s algorithm. Each negated equation of the
general integral solution contains at least one addend with coefficient 1. Therefore, the
negated equation may be used for eliminating the corresponding multiplicand in all other
literals of the goal.

In a nutshell, the general integral solution is computed as follows (cf. Example 4.16): If
one of the coefficients in the considered (normalized) negated equation is equal to 1, we are
done. Otherwise, we choose one addend A in the negated equation with minimal coefficient
n. We divide each coefficient and the constant of the negated equation by n, rounding
up (resp. down) for coefficients and constants that appear on the same (resp. opposite)
side of the negated equation w.r.t. A. In doing so, we get a new negated equation where
the coefficient of A is equal to 1. To compensate for the rounding error, we add a new
addend consisting of a new constructor variable with coefficient 1 to the opposite side of
the new negated equation w.r.t. A. The new negated equation allows us to eliminate the
multiplicand of A in all other literals of the goal, in particular, in the negated equation
considered first. For this negated equation, the elimination has the following consequences:
The addend A is replaced with a new addend consisting of the new constructor variable
and the same coefficient n; the constant and the coefficients of the other multiplicands
are reduced to the reminder of the corresponding division by n. We may repeat this
computation of introducing new negated equations and eliminating one of the multiplicands
in the original negated equation until one of the coefficients in this negated equation is equal
to 1. In doing so, we add a set of “solved” negated equations to the goal and “solve” the
original negated equation itself. The general solution replaces one negated equation with
N + 1 negated equations containing N new variables. As each negated equation in the
general solution contains an addend with coefficient 1, we may replace N +1 multiplicands
in favor of N new variables. Therefore, the number of different multiplicands in the other
literals of the goal is reduced by one.

For the implementation of this approach, we provide two inference rules that perform
the elementary steps (cf. Figure 4.12): The first inference rule actually performs an elim-
ination step. It can be applied for those multiplicands in a negated equation whose coef-
ficient is 1 to eliminate this multiplicand in another normalized binary literal. It is called
la-const-rewrite because of its affinity with const-rewrite. Inference rule 6=-var-elim

supports the applicability of la-const-rewrite: It introduces a new negated equation
which contains a new variable. The new negated equation may be used for reducing the
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la-const-rewrite m n p

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈Λ,Γ[λ]n;w〉

if there are polynomials P1, P2, P
′
1, P

′
2, a literal λ and a minimal clause Θ such that

• Γ[m],Γ[n] are normalized literals, i.e. norm1 (Γ[m]) = Γ[m], norm1 (Γ[n]) = Γ[n]

• Γ[m] = (P1 6= P2)

• Γ[n] = (P ′
1 ≎ P ′

2) with ≎ ∈ {≤,=, 6=}
• p ∈ Pos(Γ[m]) is a position that refers to a multiplicand t with coefficient 1

• P ′
1 or P ′

2 contains multiplicand t with coefficient c > 0

• if multiplicand t occurs in P1 and P ′
1 or in P2 and P ′

2, then

λ = norm1 (P ′
1 + c ∗ P2 ≎ P ′

2 + c ∗ P1);

otherwise, multiplicand t occurs in P1 and P ′
2 or in P2 and P ′

1, and

λ = norm1 (P ′
1 + c ∗ P1 ≎ P ′

2 + c ∗ P2)

• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

6=-var-elim m p x

〈Γ;w〉
〈Λ1,Γ;w〉 . . . 〈Λk,Γ;w〉 〈λ,Λ,Γ;w〉

if there are polynomials P1 ≡ c+
∑k1

i=1 ciui, P2 ≡ d+
∑k2

j=1 djvj

P ′
1, P

′
2, a literal λ and a minimal clause Θ such that

• Γ[m] is a normalized binary literal, i.e. norm1 (Γ[m]) = Γ[m]

• x is a constructor variable of sort Nat with x /∈ V (Γ, w)

• Γ[m] = (P1
˙6= P2) such that p ∈ Pos(Γ[m]) is a position

that refers to a multiplicand t in P1 with coefficient n > 1

• n ≤ ci and n ≤ dj for each i ∈ {1, . . . , k1} and for each j ∈ {1, . . . , k2}
• P ′

1 =
⌈

c
n

⌉

+
∑k1

i=1

⌈

ci
n

⌉

ui and P ′
2 =

⌊

d
n

⌋

+
∑k2

j=1

⌊

dj

n

⌋

vj

• λ = norm1 (x+ P ′
2 6= P ′

1)

• Γ,Θ contains DefCondLA(Γ[m])

• Λ1, . . . ,Λk,Λ is the case analysis resulting from Θ.

Figure 4.12: Derived Inference Rules for Eliminating Variables in Negated Equations
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coefficients of the original negated equation by applying la-const-rewrite according to
the description above.

la-const-rewrite is applicable if the two considered literals are normalized. Furthermore,
the first literal is a negated equation. The third parameter is a position that refers to
a multiplicand with coefficient 1 in this negated equation. The multiplicand is also
present in the second literal with coefficient c > 0.

Beside the usual definedness subgoals to fulfill the definedness conditions w.r.t. linear
arithmetic, the inference rule generates one additional subgoal in which the second
considered literal is replaced with a new literal of the same type in which the consid-
ered multiplicand is eliminated. For this, c occurrences of the first negated equation
are added to the second literal in such a way that the considered multiplicand occurs c
times on both sides of the literal. The multiplicand is then removed via normalization.

6=-var-elim is applicable if the considered literal is a normalized negated equation. Fur-
thermore, the second parameter is a position that refers to a multiplicand in the
negated equation with a smallest coefficient n > 1 in the negated equation. The third
parameter is a new constructor variable of sort Nat.

Beside the usual definedness subgoals to fulfill the definedness conditions w.r.t. linear
arithmetic, the inference rule generates one new subgoal that contains a new negated
equation. The new negated equation is derived from the old one by dividing all
coefficients and constants by n. The result is rounded up (resp. down) for those
coefficients and constants that belong to the same (resp. opposite) side of the negated
equation as the considered multiplicand. To compensate for the rounding, the new
constructor variable is added to the opposite side.

Note that the coefficient of the considered multiplicand is 1 in the new negated equa-
tion. Therefore, we may apply la-const-rewrite to eliminate the multiplicand from
the original negated equation reducing the coefficients of the other multiplicands.

Example 4.16 To illustrate the usage of 6=-var-elim and la-const-rewrite we consider
a goal containing the negated equation

*(6,m1 ) 6= +(2, +(*(7,m2 ), *(5,m3 ))).

Since none of the coefficients is 1, in general, the negated equation cannot be exploited
to eliminate one of the variables in the other binary literals over sort Nat. But we may
apply 6=-var-elim using variable m3 to reduce the other coefficients in the literal. The
application generates a new subgoal with

+(m1 , n) 6= +(1, +(*(2,m2 ),m3 ))

added to the front of the subgoal. In the negated equation, n is a new constructor variable
of sort Nat. All coefficients and constants are divided by 5—the coefficient of m3 . We add
the new variable to the left-hand side—the opposite side w.r.t. m3 . Therefore, the results
are rounded down (resp. up) on the left-hand (resp. right-hand) side. In the new negated
equation, at least two variables have coefficient 1, namely, the new variable n and variable
m3 for which the inference rule is applied. We may use this negated equation for eliminating
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m3 in all other literals of the goal with inference rule la-const-rewrite. The application
to the original negated equation adds five occurrences of the new negated equation (with
swapped sides) to the original one. The resulting normalized negated equation

+(3, +(m1 , *(3,m2 ))) 6= *(5, n)

replaces the original negated equation. The coefficient of the new variable n is equal to the
coefficient of the eliminated variable m3 but all other coefficients are reduced. In this case,
the coefficient of variable m1 is 1. Therefore, we may apply la-const-rewrite to eliminate
m1 in all other literals of the goal. The negated equation introduced by 6=-var-elim, for
instance, may be replaced with

*(6, n) 6= +(4, +(*(5,m2 ),m3 )).

Altogether, we get two negated equations which allow for the elimination of the old variables
m1 and m3 in favor of the new variable n. 2

In the formal derivation of la-const-rewrite, we essentially apply Lemmas (4.39) to
(4.41) (cf. Figure 4.5) to add c occurrences of the left-hand side of the first literal to both
sides of the second literal. Then, we apply const-rewrite to replace the left-hand side of
the first literal with its right-hand side in the second literal in such a way that both sides
contain c occurrences of the considered multiplicand. Finally, the new literal is normalized
with la-norm.

Essentially, we start the formal derivation of 6=-var-elim by applying lit-add with
literal ¬def (P ′

1 − P ′
2) resulting in two new subgoals with clauses

def (P ′

1 − P ′

2), Λ, Γ

¬def (P ′

1 − P ′

2), Λ, Γ

The definedness atom of the first subgoal can be proved with the lemmas of Figure 4.3 and
the definedness conditions w.r.t. linear arithmetic. To the negated definedness atom in the
second subgoal, we apply ctr-var-add with the new constructor variable x resulting in the
negated equation x 6= P ′

1−P ′
2. With Axiom (4.17) (cf. Figure 4.2) and Lemmas (4.50) and

(4.51) (cf. Figure 4.6) this negated equation may be replaced with x + P ′
2 6= P ′

1 possibly
generating an additional condition subgoal with a new literal P ′

2 ≤ P ′
1. Because of the

rounding in the definition of P ′
1 and P ′

2, there exist two terms t1 and t2 such that P ′
1 = P1+t1

and P ′
2 = P2− t2. We can perform this restructuring with the lemmas of Figure 4.4. Thus,

we may replace P ′
2 ≤ P ′

1 with P2− t2 ≤ P1 + t1. To this literal, we may apply Lemma (4.59)
generating another condition subgoal with a new inequality P2 ≤ P1.

{ leq(-(m, k1 ), +(n, k2 )) = true,
leq(m, n) 6= true }

(4.59)

But this may be proved with Lemma (4.54) (cf. Figure 4.7) using the negated equation
P1 6= P2.

4.2.3.6 Concluding Remarks about the Derived Inference Rules

In Sections 4.2.3.1 to 4.2.3.5, we have presented our new derived inference rules for the
integration of an extended version of Hodes’ decision procedure for linear arithmetic into
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our inductive theorem prover QuodLibet. For the proof of the soundness and safeness of
the inference rules, we have sketched formal derivations w.r.t. spec0 using the axioms of
Figure 4.2 and the lemmas of Figures 4.3 to 4.7 as well as Lemmas (4.56) to (4.59). Except
for Lemma (4.38), we have formally proved the inductive validity of these lemmas with
QuodLibet using the inference rules in Section 2.2.2. Lemma (4.38) can be proved as well
if we assume the inductive validity of the following lemmas:

{ ¬(m < n),
m 6= n }

(4.60)

{ ¬(m < n),
¬(n < m) }

(4.61)

These lemmas hold true in all data models because < is a wellfounded order for each data
model.5

4.2.4 Enhancing the Simplification Process

For the integration of Hodes’ decision procedure for linear arithmetic into the simplification
process of the inductive theorem prover QuodLibet, we have to enhance its waterfall (cf.
Section 3.2.2). Essentially, we have to

• identify and implement appropriate operations; and

• adapt and extend the table-based configuration.

4.2.4.1 Identification of Operations

Most of the operations are determined directly by the decision procedure and the corre-
sponding inference rules. Therefore, we get operations that

• normalize binary literals over sort Nat w.r.t. the different normalization levels;

• normalize terms of sort Nat;

• prove simple tautologies for inequalities;

• remove redundant inequalities;

• perform variable elimination steps using negated equations; and

• perform variable elimination steps for two inequalities.

Since we are concerned with a decision procedure on natural numbers, we may exploit the
fact that 0 ≤ t holds true for each defined term t of sort Nat. Therefore, we get another
operation that introduces a case split with inference rule lit-add using literal ¬(0 ≤ t) for

5Nevertheless, we cannot prove these lemmas formally with the inference rules of QuodLibet because
they do not provide means for proving negated order atoms except for inference rule compl-lit which does
not help.
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a term t that is the heaviest multiplicand in an inequality and appears on its right-hand
side. Whereas 0 ≤ t can be proved with ≤-taut, norm1 (¬(0 ≤ t)) = 1 +c t ≤ 0 allows us
to eliminate multiplicand t in the inequality with ≤-var-elim.

To handle extended theories, we provide operations that implement the augmentation
mechanism. They apply linear rules, i.e. lemmas whose head literal is an inequality, for
subsumption even if the instantiated head literal is not present in the goal. It is only
required that the head literal allows for at least one variable elimination step.

Furthermore, we have to introduce new operations and adapt some of the old operations
because our normal forms introduce an alternative representation for terms of sort Nat.
They favor operator + in combination with constants for natural numbers over operator s
which in turn must be used for specifying axioms of defined operators. This complicates
the application of axioms and lemmas. Theoretically, it would be beneficial to perform
rewriting modulo the theory of linear arithmetic including associativity and commutativity
of operators + and *. We may achieve this with the present inference rules by introducing
a case split using lit-add with t 6= t̂ where t̂ is an alternative representation of t w.r.t.
linear arithmetic. Then, the equation t = t̂ is provable with inference rules la-norm and
=-decomp. The negated equation t 6= t̂may be used for replacing t with t̂ with inference rule
const-rewrite. This allows us to use the alternative representation, e.g., for performing
a rewrite step. The additional literal may be removed with la-norm and 6=-removal.

In practice, rewriting modulo linear arithmetic “can get very expensive” [KS96b]. There-
fore, we have not implemented the corresponding matching operation. Instead, we consider
only the equivalence of (c +

∑n

i=1 citi) and s((c − 1) +
∑n

i=1 citi) if c > 0. This allows us
to use axioms and lemmas for rewriting even if they are specified with operator s. We also
exploit this equivalence to prove goals containing a negated equation c+

∑n

i=1 citi 6= 0 with
c > 0 using 6=-taut.

4.2.4.2 Implementation of Operations

For the implementation of the operations, we essentially employ heuristics known from the
literature—in particular [BM88b]—to restrict proof search. Therefore, we do not present
any technical details of the implementation in this thesis but give only a short summary of
the restrictions.

• During the simplification process we restrict variable elimination steps with inference
rule ≤-var-elim to heaviest multiplicands in both inequalities. For this purpose we
use a fixed total simplification order on terms that at first depends on the number of
variables, the term length and the name of the top-level operator or variable. If all
these values are equal for both terms, the first unequal argument terms are considered
recursively. This order is inspired by [BM88a].

• During variable elimination steps with negated equations, the applications of inference
rule la-const-rewrite are restricted to one fixed multiplicand with coefficient 1 to
prevent infinite loops.

• Case splits with ¬(0 ≤ t) are performed only if this enables another variable elimina-
tion step (with ≤-var-elim or ≤-case-split) or the augmentation mechanism.
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• The augmentation mechanism is essentially restricted in three ways:

(1) Its applicability is checked only for those multiplicands that have been activated
by the user. Multiplicands may be activated only if their top-level operators are
uninterpreted.

(2) Extra variables—i.e. those variables in the lemma that are not bound by match-
ing the activated multiplicand to a multiplicand in the focus literal—have to be
bound by matching other multiplicands or literals of the lemma to corresponding
multiplicands or literals in the goal.

(3) According to the restrictions of variable elimination steps for inequalities, the
augmentation mechanism applies only those lemmas that allow for the elimina-
tion of a heaviest multiplicand.

4.2.4.3 The New Table-Based Configuration

Our new proof control integrates the operations for linear arithmetic into the former water-
fall (cf. Section 3.2.2) on a fine-grained level. It combines the phases in such a way that the
cheapest phases that promise the highest profit are handled first. Therefore, we interleave
previous phases with new phases. Altogether, we get the following phases:

prove-taut: This phase is retained from the former waterfall. It is enhanced with the op-
eration that proves simple tautologies for inequalities. Furthermore, the operation for
negated equations over sort Nat takes into account the alternative term representation
of polynomials.

remove-redundant: The former phase is supplemented with the new operation that re-
moves redundant inequalities.

def1: Since all the inference rules for linear arithmetic may generate new definedness sub-
goals, these are handled first. Therefore, we provide this new phase which contains
those operations of the former phase reduce1 that handle definedness atoms.

def2: Analogously, this phase contains those operations of the former phase reduce2 that
handle definedness atoms.

la-norm1: This phase normalizes binary literals over sort Nat w.r.t. the first normalization
level.

la-norm2: This phase normalizes binary literals over sort Nat w.r.t. the second normal-
ization level. Note that the separation of the normalization levels in different phases
may be beneficial although our waterfall contains both phases in succession: If the
first normalization phase is applied successfully the waterfall will be restarted. Thus,
tautological literals are proved and redundant literals are removed before the second
normalization phase is considered.

reduce1-nonaltrep: In this phase, we perform the operations of the former phase reduce1
without considering alternative term representations. This allows the user to speed
up computations by providing appropriate auxiliary lemmas.
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la-var-elim1: In this phase, we perform variable elimination steps with negated equations
over sort Nat that do not contain any uninterpreted function symbols. Thus, we prefer
those negated equations that are “pure” w.r.t. linear arithmetic.

la-var-elim2: In this phase, we perform variable elimination steps with negated equations
over sort Nat that contain at least one uninterpreted function symbol.

la-var-elim3: In this phase, we perform variable elimination steps with inequalities.

reduce1: This phase is retained from the former waterfall. It is enhanced by considering
alternative term representations.

reduce2: This phase is also improved in comparison to the former waterfall by considering
alternative term representations.

la-term-norm: In this phase, subterms of sort Nat are normalized.

subsume-left-leq: In this phase, the augmentation mechanism is applied for multipli-
cands that occur on the left-hand side of an inequality in the goal. Since an inequality
is tautological if its left-hand side is equal to 0, we prefer those augmentation steps
that eliminate multiplicands on the left-hand side.

subsume-right-leq: In this phase, the augmentation mechanism is applied for multipli-
cands that occur on the right-hand side of an inequality in the goal.

subsume-negeq: In this phase, the augmentation mechanism is applied for multiplicands
that occur in a negated equation.

la-add-multiplicand: In this phase, we call the operation that performs a case split with
¬(0 ≤ t) to eliminate a multiplicand on the right-hand side of an inequality.

la-norm3: This phase normalizes binary literals over sort Nat w.r.t. the third normalization
level.

cross-fertilize: This phase is retained from the former waterfall.

4.2.5 A Tactic for Supporting Speculation of Auxiliary Lemmas

Independently from our simplification process, we have implemented a special purpose tactic
to facilitate the speculation of auxiliary lemmas for the augmentation mechanism. This
tactic performs all variable elimination steps possible, without considering the heuristics to
eliminate only heaviest terms. To guarantee termination, the tactic performs all variable
elimination steps for a term only once. It starts with the heaviest multiplicand w.r.t. <Term

that occurs in an inequality. Finally, we purge the new clause with the phases prove-taut
and remove-redundant of the waterfall. The effects of this tactic on the manual speculation
of auxiliary lemmas are considered in Section 4.3.3.
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4.3 Case Studies

In this section, we validate our new approach in three ways: Within QuodLibet, we
compare the old proof control before the integration with the new proof control after the
integration (cf. 4.3.1). The comparison of our new approach with other approaches such as
the extended proof method EPM [JB02] and constraint contextual rewriting CCR(X) [AR03]
demonstrates that our approach is quite competitive (cf. 4.3.2). Furthermore, we illustrate
the additional benefits of our new approach w.r.t. the speculation of auxiliary lemmas (cf.
4.3.3).

4.3.1 Effects on Proof Control Within QuodLibet

In this section, we evaluate the effects of the integration of linear arithmetic into the sim-
plification process of QuodLibet with some case studies. The results are summarized in
Table 4.1. Certainly, examples are suited for the integration to a greater or lesser extent.
We expect most benefits for examples that contain many “linear dependencies”, i.e. literals
that combine operators + and ≤. Furthermore, the evaluation of arithmetic expressions
containing large constants is supported well because normalization is performed in a single
step instead of dozens of lemma applications. For examples that do not contain any of the
interpreted operators of linear arithmetic, we may, at best, expect unchanged runtimes. In
practice, the runtimes usually slightly increase because the phases for linear arithmetic are
checked for applicability unsuccessfully.

For the comparison we use the following case studies which are listed in ascending order
w.r.t. their suitability for linear arithmetic:

sortalgos: This example contains a collection of sorting algorithms such as bubblesort,
insertionsort, mergesort and quicksort. More details on the specifications can be
found in [Kai02]. Although the algorithms are specified on natural numbers using
≤ for sorting, they are not well suited for linear arithmetic as there are only a few
occurrences of operator + in the specifications.

gcd: In this case study, we prove that the greatest common divisor of two natural numbers
is associative, commutative and idempotent. For the proofs, we exploit dependencies
between divisibility and order relations. Nevertheless, only a few lemmas contain
linear dependencies.

exp-exhelp: This example is taken from [KS96a]. It states the equivalence of call-by-value
and call-by-name evaluations for simple arithmetic expressions containing function
calls. Linear dependencies arise, in particular, in the termination proofs of the mutu-
ally recursive operators.

sqrt (H): In this case study, we prove the irrationality of
√

2 based on geometric ideas
of Hippasus of Metapontum. The proofs contain linear and non-linear dependencies,
i.e. dependencies between products.

f91: In this example, we prove termination of McCarthy’s f91 function [MM70]:
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Example sortalgos

Cfg. Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
(A)
(B)
(C)
(D)

111
111
117
111

1 + 0
1 + 0
1 + 0
1 + 0

2233
2200
2299
2253

40
45
63
49

2193
2155
2236
2204

5.95
6.07
6.80
6.66

Example gcd

Cfg. Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
(A)
(B)
(C)
(D)

85
85
86
57

8 + 2
8 + 2
8 + 2
8 + 2

1114
1114
963
830

13
13
10
10

1101
1101
953
820

2.92
2.79
4.30
3.85

Example exp-exhelp

Cfg. Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
(A)
(B)
(C)
(D)

27
27
31
18

0 + 6
0 + 6
0 + 6
0 + 6

1278
1275
718
675

116
116

0
0

1162
1159
718
675

7.22
7.86
2.82
2.70

Example sqrt (H)

Cfg. Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
(A)
(B)
(C)
(D)

51
51
49
18

11 + 1
11 + 1
7 + 1
3 + 1

1062
1007
516
352

14
14
27
23

1048
993
489
329

5.91
5.38
2.82
1.51

Example f91

Cfg. Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
(D) 11 0 + 3 443 13 430 1.85

Table 4.1: Comparison of Different Configurations Within QuodLibet

f91(m) =

{

m− 10 if m > 100

f91(f91(m+ 11)) otherwise

The proof is based on linear dependencies stated with two auxiliary lemmas without
exploiting the fact that

f91(m) =

{

m− 10 if m > 100

91 otherwise

which would simplify the proof a lot. Note that the function is defined with large
constants. Therefore, we cannot prove termination without linear arithmetic.
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To be able to study solely the effects of the integration, we compare the proof control with
and without linear arithmetic with as few differences as possible. For all our case studies, we
use the same base system in which the new inference rules have been integrated. Differences
may occur in the simplification process and in the specifications that are used. Altogether,
we compare four different configurations:

(A) In this configuration, we use the old waterfall which does not apply any of the new
inference rules for linear arithmetic. In the specifications, we do not use the predefined
sort and operators for linear arithmetic. Instead, we model natural numbers with a
new sort nat with constructors O and S and defined operators plus, minus, times,
and leq.

(B) In comparison to Configuration (A), we use the new waterfall with linear arithmetic in
this and the following configurations. But in this configuration we still use the same
specifications as in Configuration (A). Thus, none of the phases for linear arithmetic
is applicable. But since they are checked for applicability, we expect slightly increased
runtimes. The computations may differ only in that definedness atoms are preferred in
the new waterfall: The handling of definedness atoms in the new phases def1 and def2

has been split from the handling of the other atoms in phases reduce1 and reduce2.

(C) In this configuration, we replace sort nat and its constructors and defined operators
with the predefined sort Nat and the predefined constructors and defined operators.
Apart from this, we try to leave the specifications unchanged as far as possible. We
prepend each specification only with an additional simple and uniform base specifica-
tion that contains basic properties of the predefined operators such as their definedness
and the associativity, commutativity and distributivity of operator *. Therefore, the
number of lemmas may slightly increase.

(D) In the last configuration, we exploit the advantages of the integration. Therefore,
we delete unused lemmas in the specification. Furthermore, we slightly modify the
specifications to achieve a better automation.

In Table 4.1, we list for each example and each configuration, in column

Lemmas the number of lemmas that have to be supplied manually. Roughly speaking,
the degree of automation is “inversely proportional” to this number.

Man. Interact. the number of manual interactions. More precisely, the column contains
the number of manually applied inference rules and the number of manual instanti-
ations of weight variables to choose appropriate induction orders. These values also
reflect the degree of automation.

Autom. Appl. the number i of inference rules that are applied automatically during the
proof (including those that are applied tentatively and deleted again).

Del. the number d of deleted applications of inference rules. The runtime essentially de-
pends on the automatic applications and deletions.

Fin. P. the number of applied inference rules in the final proof, i.e. i−d. This is a measure
for the complexity of the resulting proofs.
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Runtime the runtime in seconds measured by a CMU Common Lisp system on a machine
with a 1 GHz Intel III processor and 4 GB RAM. Note that this measurement is not
very precise. Sometimes we observed rather large deviations.

From the statistics in Table 4.1, we draw the following conclusions:

• If the specifications do not contain the interpreted symbols of linear arithmetic, then
normally the runtime increases slightly for the new waterfall (cf. Configurations (A)
and (B)) as long as the proofs remain the same. The case study sqrt (H), however,
benefits from the preference of definedness atoms in the new waterfall. Thus, it
generates a simpler proof with reduced runtime.

• The more suitable the case studies are for linear arithmetic the more profit we gain
by using the interpreted symbols (cf. Configurations (B) and (C)). Whereas inter-
preted symbols result in even more complicated proofs with increased runtimes for
sortalgos, the proofs become easier for the other case studies with significantly
reduced runtimes for exp-exhelp and sqrt (H).

• In the same way, the number of auxiliary lemmas may be reduced for suitable speci-
fications (cf. Configuration (A) and (D)).

• We may improve the degree of automation as well as the simplicity of the proofs and
their runtime if we adapt the specifications to linear arithmetic (cf. Configurations (C)
and (D)).

• The integration allows us to handle case studies with large constants such as f91 that
were out of scope of the old simplification process.

To summarize, for case studies where the new inference rules are hardly applicable, the
efficiency of the new proof control with linear arithmetic may slightly decrease. But for
the other case studies, we often get a significant speed-up and an improved degree of
automation. In particular, the decreased number of auxiliary lemmas is beneficial.

4.3.2 Comparison with Other Approaches

In this and the next section, we have a closer look at six case studies (cf. Table 4.2).
Five of them are taken from the literature [BM88b, KN94]. These problems were used
as benchmarks for the incorporation of the extended proof method EPM into Clam [JB02],
and constraint contextual rewriting CCR(X) into RDL [AR03], respectively. The last problem
corresponds to sqrt (H) and is considered only in the next section. Table 4.2 contains for
each problem the auxiliary lemmas L that are available to prove goal G.

Table 4.3 contains the runtime in seconds for the systems Clam, RDL and QuodLibet,
respectively. An entry ‘—’ means that the test was not performed with the system, ‘?’
means that the goal was not proved. Note that we did not perform the experiments for
Clam and RDL on our own. Instead we quote the results mentioned for Clam in [JB02] and
for RDL in [AR03]. The tests for Clam were performed on a 433 MHz PC, whereas the
tests for RDL and QuodLibet were made on a 1 GHz PC. Note that our measurements
contain the output of a detailed proof log. From the results in Table 4.3, we can see that
our integration scheme is competitive.
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Prob# Problem

1 [BM88b] G { L < +(MAX(A),K ), ¬(L ≤ MIN(A)), ¬(0 < K ), A = nil }
L (i) { MIN(A) ≤ MAX(A), A = nil }

2 [BM88b] G { +(I , DELTA1(PAT ,LP ,C )) ≤ MAXINT , ¬(+(LP ,LT ) ≤ MAXINT ),
¬(I ≤ LT ) }

L (i) { DELTA1(PAT ,LP ,C ) ≤ LP }

3 [BM88b] G { +(W , LEN(DEL(Z ,A))) < +(K ,V ), MEMB(Z ,A) 6= true,
¬(+(W , LEN(A)) ≤ K ) }

L (i) { LEN(DEL(X , S )) < LEN(S ), MEMB(X , S ) 6= true }

4 [BM88b] G { +(+(MS(c), *(MS(a), MS(a))), *(MS(b), MS(b)))
< +(+(+(MS(c), *(MS(b), MS(b))), *(2, *(MS(a), *(MS(a), MS(b))))),

*(MS(a), *(MS(a), *(MS(a), MS(a))))) }
L (i) { J ≤ *(I , J ), ¬(0 < I ) }

(ii) { 0 < MS(x ) }

5 [KN94] G { z < +(g(x ), y), p(x ) 6= true, ¬(z ≤ f(max(x , y))), ¬(0 < min(x , y)),
¬(x ≤ max(x , y)), ¬(max(x , y) ≤ x ) }

L (i) { f(x ) ≤ g(x ), p(x ) 6= true }
(ii) { min(x , y) = y , max(x , y) 6= x }

6 G { *(2, *(y , y)) 6= *(x , x ), y = 0 }
L (i) { *(w , x ) ≤ *(y , z ), +(1, y) ≤ w , +(1, z ) ≤ x }

(ii) { *(y , y) 6= 0, y = 0 }

Table 4.2: Benchmark Problems

Prob# Clam [433 MHz] RDL [1 GHz] QuodLibet [1 GHz]
1 0.14 — 0.03
2 0.23 0.01 0.03
3 — 0.01 0.02
4 5.73 0.03 0.23
5 ? 0.06 0.10

Table 4.3: Runtimes for the Benchmark Problems (taken from [JB02] and [AR03])
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P# T. Literals (Framed Literals are Important for Lemma Speculation) S.L.

1 S +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, K ≤ 0, A = nil —

E L ≤ MAX(A), MIN(A) ≤ MAX(A) , +(1, MIN(A)) ≤ +(K , MAX(A)), . . . (i)

2 S +(I , DELTA1(PAT ,LP ,C )) ≤ MAXINT ,
+(1,MAXINT ) ≤ +(LP ,LT ), +(1,LT ) ≤ I —

E +(LT , DELTA1(PAT ,LP ,C )) ≤ MAXINT ,
+(MAXINT , DELTA1(PAT ,LP ,C )) ≤ +(*(2,LP),LT ),

+(1,MAXINT ) ≤ +(I ,LP), DELTA1(PAT ,LP ,C ) ≤ LP ,

+(I , DELTA1(PAT ,LP ,C )) ≤ +(LP ,LT ), . . . (i)

3 S +(1, +(W , LEN(DEL(Z ,A)))) ≤ +(K ,V ), MEMB(Z ,A) 6= true ,

+(1,K ) ≤ +(W , LEN(A)) —

E +(1, LEN(DEL(Z ,A))) ≤ +(V , LEN(A)) , . . . (i)

4 S +(1, *(MS(a), MS(a))) ≤ +(*(2, *(MS(a), *(MS(a), MS(b)))),
*(MS(a), *(MS(a), *(MS(a), MS(a))))) (i)

S *(MS(a), *(MS(a), MS(a))) 6= *(MS(a), MS(a)), *(MS(a), MS(b)) 6= 0 (ii)

5 S max(x , y) 6= x , +(1, z ) ≤ +(y , g(x )), p(x ) 6= true,

+(1, f(x )) ≤ z , min(x , y) ≤ 0 (ii)

S max(x , y) 6= x , +(1, z ) ≤ +(y , g(x )), p(x ) 6= true ,

+(1, f(x )) ≤ z , y ≤ 0 —

E z ≤ g(x ), f(x ) ≤ g(x ) , +(1, f(x )) ≤ +(y , g(x )), . . . (i)

6 S +(1, y) ≤ x , *(2, *(y , y)) 6= *(x , x ) , y = 0 (i)

S *(y , y) 6= 0 , +(1, y) ≤ x , 0 6= *(x , x ), y = 0 (ii)

Table 4.4: Speculation of Auxiliary Lemmas

4.3.3 Effects on the Speculation of Auxiliary Lemmas

In this section, we want to investigate how our close integration into QuodLibet supports
the speculation of auxiliary lemmas. Thus, we consider the problems from Table 4.2 once
again but without any auxiliary lemmas. We sketch the process of deriving these lemmas
with QuodLibet in Table 4.4. For each problem, we list the tactics (T.) we call: the usual
simplification process is represented with S, the special purpose tactic that performs all
variable elimination steps is abbreviated with E. The literals of the resulting subgoal are
given in the next column (without regarding (negated) definedness atoms). For the special
purpose tactic E, we display only the new literals; the ellipses stand for the literals after the
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last execution of the simplification process S given in the previous line. Literals that are
used to speculate a lemma are framed. The last column contains the speculated lemmas
(S.L.) w.r.t. Table 4.2. The number of literals measures the complexity of the goal: The
more literals are present, the more difficult it is to find the important literals, and thus an
auxiliary lemma. We believe that their identification has to be done with human expertise.
We assume that this task is rather easy if the auxiliary lemma of the considered problem
in Table 4.2 is a subformula of the resulting subgoal clause in Table 4.4.

The first two problems do not cause any difficulties. After applying both tactics, the
auxiliary lemmas are subformulas of the resulting goal clauses. This is, however, not the
case if we call only the simplification process S. For Problem 1, the derivation of the subgoal
can be found in Figure 4.1 (cf. Section 4.1.3). The first important literal can be identified
if we look for a literal that contains at least one uninterpreted function symbol but as
few extra variables as possible. In this context, by an extra variable of a literal we mean
a variable that does not occur in a subterm of the literal with an uninterpreted function
symbol as top-level symbol. The last goal node in Figure 4.1 contains the extra variable
L for the first and fifth literal; K for the third and sixth literal; L and K for the fourth
literal; and A for the seventh literal. But a lemma that consists only of the second literal
MIN(A) ≤ MAX(A) is not inductively valid. Instead, a human expert has to add the last
literal A = nil to get an inductively valid lemma. For Problem 3, the resulting subgoal
contains an additional variable V . This can be eliminated if we use the fact that we deal
with naturals only. But at the moment, this is done automatically by the simplification
process S only if this seems to be advantageous. Nevertheless, if only one lemma is missing,
our close integration facilitates the speculation of auxiliary lemmas quite well.

For the remaining problems, two auxiliary lemmas are missing. For Problems 4 and
6, our tactics do not provide any additional information for the first lemma. This is not
very surprising since in these examples no variable elimination steps can be performed
at all. Note that the first important literal for Problem 6 is introduced by a manual
inductive case split. With the two important literals for the first lemma of Problem 6, it
is not difficult for a human user with domain knowledge about multiplication to guess the
required monotonicity property as auxiliary lemma. To speculate the first auxiliary lemma
for Problem 5, an experienced user needs to know only the first important literal and the
left-hand side of the second one. Then, the relationship between max and min is obvious.
Note that in the original goal clause presented in Table 4.2, the first important literal is not
present. This complicates the speculation of the required auxiliary lemma for the original
goal. Only for Problem 4, the second auxiliary lemma is not a subformula of the considered
subgoal clause. But the important literal of this problem suggests an auxiliary lemma that
may be used as well.

To conclude, seven of nine lemmas can be speculated easily with our integration scheme.
Four of them require an additional call to the special purpose tactic E because the simpli-
fication process S does not provide enough information. For the speculation of auxiliary
lemmas, 14 of 42 literals are important. In the presented case studies there is no exponential
blow-up of the number of inequalities.
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4.4 Related Work

In the literature, there exist many other decision procedures for linear arithmetic besides
that of Hodes [Hod71]. They differ in their principle approach as well as their underlying
domain. The approaches are, for instance, based on

• eliminating variables as e.g. in Hodes’ decision procedure for the rationals and in
Cooper’s decision procedure for the integers [Coo72].

• calculating lower and upper bounds (on rational numbers) and testing the resulting
intervals for (integral) solutions as e.g. in the SUP-INF method [Ble75, Sho77].

• constructing finite automata which accept exactly the solutions of a set of constraints
over linear arithmetic. Therefore, the satisfiability problem is reduced to the problem
whether the language of the constructed automaton is non-empty [BC96].

• using Hodes’ decision procedure to reduce linear arithmetic to boolean satisfiability.
For this, satisfiable constraints are represented with boolean variables, unsatisfiable
constraints with the boolean value false, and variable elimination steps with implica-
tions which relate the different constraints [Str02].

• using linear programming techniques such as the Simplex method.

In general, decision procedures for linear arithmetic over the rationals are simpler w.r.t.
their time complexity than those over the integers or naturals. Furthermore, the universal
fragment over the integers (PIA) or naturals (PNA)—which we are concerned with in this
chapter—is simpler than the full theory. Cooper’s decision procedure for the full theory over

the integers, for instance, has time complexity 222
N

in the length N of the input formula.
The universal fragment can be decided with the SUP-INF method in 2N . Even for the
rationals, Hodes’ decision procedure has time complexity in m2n

where m is the number
of constraints and n the number of variables in the input formula. But as explained in
[BM88b], the efficiency of the decision procedure itself is irrelevant when using it in an
extended theory. In the cited case study with NQTHM, an instantaneous oracle for linear
inequalities would reduce the overall runtime by less than 3%. Instead, the interaction
between the decision procedure and the theorem prover is more important. The advantage
of Hodes’ decision procedure is its simplicity. Therefore, we have not investigated other
decision procedures in detail.

Our work is inspired by [BM88b], where Boyer & Moore describe many helpful heuristics
to restrict the search space. But their description is sometimes hard to read as they use
internal data structures special to their theorem prover NQTHM. Instead, we use inference
rules for the incorporation.

In [KN94], Kapur & Nie extend the approach from [BM88b] at least in two ways:
They do not convert equations into two inequalities but use equations directly to eliminate
variables. This handling of equality information is more efficient than that in [BM88b].
Furthermore, they extend the decision procedure for PRA in such a way that it is also a
decision procedure for PIA and PNA: At first, the closure under the variable elimination
steps is calculated. If no unsatisfiable inequality can be found, then there exists a rational
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solution which is determined by the inequalities. This solution has to be checked for a
solution over integers (or naturals). These improvements are realized, on the one hand,
with la-const-rewrite and 6=-var-elim, and on the other hand, with ≤-case-split.
Our automatic proof control does not realize the whole decision procedure for PNA as this
may result in a huge case distinction. Instead, we use this method only if the intervals that
have to be checked are small. Otherwise, we have to use other proof techniques such as
induction.

Janicic, Bundy & Green [JBG99] formalize and generalize the approach from [BM88b].
Their presentation is independent from the theory and the decision procedure to be used.
Instead, they assume that the decision procedure can be divided into two steps: the elimi-
nation of variables and a check on ground instances. This approach is further developed in
[JB02] taking into account the combination of decision procedures. Our fragmentation of
the decision procedure into inference rules is influenced by [JBG99]. As a third major step
of a decision procedure, we identify the normalization of literals.

The approach proposed by Armando & Ranise [AR03] is similar to that in [JBG99].
But they combine the decision procedure more closely with rewriting. They pose additional
demands on the rewriting mechanism and the decision procedure. This allows them to prove
soundness and termination properties for their approach. The soundness of our approach
is guaranteed by local properties of our inference rules. Termination properties may be
proved by constraining the control in a similar way as in [AR03].

In [BGD03], Berezin, Ganesh & Dill propose an inference system for their integration
scheme. Our inference rules are on a higher level. Therefore, they can be easier applied
manually. Although their inference rules can be easier checked with an external proof
checker this is also possible for ours.

[KS03] and [GK03] contain proposals for the speculation of rewrite rules. For nonlinear
equations, Armando, Rusinowitch & Stratulat propose the use of Buchberger’s algorithm
based on Gröbner basis in [ARS02]. In [AR01] and [HKM03], approaches are described
to extend the integration of linear arithmetic to nonlinear arithmetic. These extensions
just improve the heuristics for choosing and speculating lemmas which may be used for
the augmentation mechanism in this special domain. Therefore, the integration of these
extensions into our approach should be easy by using special purpose tactics. This is subject
of further research.
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Chapter 5

Adaptable Inference Systems

The inference rules of QuodLibet (cf. Sections 2.2.2 and 4.2.3) are given by parameterized
schemes. The applicability of an inference rule as well as the new subgoals essentially depend
on some of the elements in the parent goal only—called the principal elements. Therefore,
we can adapt single proof steps as well as whole proofs from one goal to another if only the
“essential” elements of the former one are present in the latter one. We define the essence of
a proof with the notion of contribution. In this chapter, we provide a first abstract definition
of contribution which depends on the principal elements in the goals w.r.t. the single proof
steps performed. This definition of contribution is refined w.r.t. a heuristics for selecting
appropriate subgoals for non-contributing proof steps in Chapter 7 where contribution is
exploited for reusing performed proofs. As a second application, local contribution can be
used for guiding proof search (cf. Chapter 6).

The notion of contribution is not restricted to the inference system of QuodLibet but
may be applied to many other reductive inference systems—i.e. those that reduce goals
to new subgoals—working on proof state trees. Therefore, we abstract from the concrete
inference system of QuodLibet. Instead, we introduce notions on inference systems that
enable the definition of contribution and its applications such as guiding proof search and
reusing proofs.

In this and the next two chapters, we provide three different views on contribution. In
this chapter, we lay the foundations without considering the applications. Instead, we start
in a bottom-up style: We identify commonalities among the inference rules of QuodLibet

in Section 5.1. This leads to the notion of adaptable inference systems in Section 5.2. We
conclude this chapter with a first abstract definition of contribution in Section 5.3. In the
next two chapters, we make up for the applications.

5.1 Identification of Commonalities Among the Infer-

ence Rules of QuodLibet

To identify commonalities among the inference rules of QuodLibet, we first have a look
at some examples of applications.

107
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(a)
{ elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true,
¬def merge(cons(m, l1 ), l2 ),
elemleqlist-p(n, l2 ) 6= true,
elemleqlist-p(m, l1 ) 6= true,
m ≤ n,
sorted-p(cons(n, merge(cons(m, l1 ), l2 ))) = true,
sorted-p(l1 ) 6= true,
sorted-p(l2 ) 6= true }

lemma-rewrite 1 [1] (5.1) 1 [m ← n, l1 ← cons(m, l1 ), l2 ← l2 ]

{ elemleqlist-p(n, cons(m, l1 )) = true,
elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true,
¬def merge(cons(m, l1 ), l2 ),
elemleqlist-p(n, l2 ) 6= true,
elemleqlist-p(m, l1 ) 6= true,
m ≤ n,
sorted-p(cons(n, merge(cons(m, l1 ), l2 ))) = true,
sorted-p(l1 ) 6= true,
sorted-p(l2 ) 6= true }

{ elemleqlist-p(n, cons(m, l1 )) 6= true,
true = true,
¬def merge(cons(m, l1 ), l2 ),
elemleqlist-p(n, l2 ) 6= true,
elemleqlist-p(m, l1 ) 6= true,
m ≤ n,
sorted-p(cons(n, merge(cons(m, l1 ), l2 ))) = true,
sorted-p(l1 ) 6= true,
sorted-p(l2 ) 6= true }

(b)
{ elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true,
elemleqlist-p(n, l2 ) 6= true }

lemma-rewrite 1 [1] (5.1) 1 [m ← n, l1 ← cons(m, l1 ), l2 ← l2 ]

{ elemleqlist-p(n, cons(m, l1 )) = true,
elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true,
elemleqlist-p(n, l2 ) 6= true }

{ elemleqlist-p(n, cons(m, l1 )) 6= true,
true = true,
elemleqlist-p(n, l2 ) 6= true }

(c)
{ elemleqlist-p(n, cons(m, l1 )) 6= true,
elemleqlist-p(m, l1 ) 6= true,
elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true,
¬def merge(cons(m, l1 ), l2 ),
elemleqlist-p(n, l2 ) 6= true }

lemma-rewrite 3 [1] (5.1) 1 [m ← n, l1 ← cons(m, l1 ), l2 ← l2 ]

{ elemleqlist-p(n, cons(m, l1 )) 6= true,
elemleqlist-p(m, l1 ) 6= true,
true = true,
¬def merge(cons(m, l1 ), l2 ),
elemleqlist-p(n, l2 ) 6= true }

Figure 5.1: Three Applications of Lemma (5.1) for Rewriting
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Example 5.1 We assume that we have entered a specification containing a lemma

{ elemleqlist-p(m, merge(l1 , l2 )) = true,
elemleqlist-p(m, l1 ) 6= true,
elemleqlist-p(m, l2 ) 6= true }

(5.1)

Figure 5.1 illustrates its application to three different goals. The first application in Fig-
ure 5.1(a) is taken from a case study about mergesort. The applicability of Lemma (5.1) for
rewriting depends only on the first literal in the goal. This focus literal (cf. Section 2.2.2.10)
is rewritten with the lemma. The number of new subgoals is additionally influenced by the
third literal in the goal which cuts off one of the new condition subgoals because it directly
fulfills the last literal of the lemma. Thus, the first and the third literal are essential for the
application. We call these goal literals principal for the application according to [Gen35].
The other literals in the goal are left unchanged by the application. They are passively
inherited to the new subgoals. We call these goal literals context literals.

If we extract the essence from the goal w.r.t. the application of Lemma (5.1), i.e., if we
consider a goal that contains only the two principal literals, the lemma is still applicable.
Its application results essentially in the same new subgoals (cf. Figure 5.1(b)). The same
literals are generated in the new subgoals by the principal literals. The empty context does
not generate any further literals.

Lemma (5.1) is also applicable to the goal in Figure 5.1(c) since it contains the principal
literals for the application. In general, additional literals in the goal may result in fewer
new subgoals because they may be used as cut-off literals. In this case, the first literal is
an additional cut-off literal which cuts off the first new subgoal. Note that the literal that
is rewritten is in third place. Therefore, we have to adapt the application of the inference
rule which refers to the position of this literal in the goal clause.

The new subgoal in Figure 5.1(c) is similar to the second new subgoal in Figures 5.1(a)
and 5.1(b):

• The literals generated by the principal literals in the second new subgoal of Fig-
ures 5.1(a) and 5.1(b) are also present in the new subgoal of Figure 5.1(c).

• The common context literals—such as ¬def merge(cons(m, l1 ), l2 ) in Figures 5.1(a)
and Figure 5.1(c)—generate the same new literals in the new subgoals.

2

Example 5.2 Figure 5.2 illustrates the application of inference rule 6=-unif. The example
is also taken from our case study about mergesort. The applicability of the inference rule
depends only on the first literal. Therefore, it is the only principal literal for the application.
In this case, the context literals are modified in a uniform way by applying a substitution
that is solely determined by the principal literal. Once again, if we apply the inference rule
to another goal with the same principal literal, then common context literals in both goals
will generate the same new literals in the new subgoals. 2

These two examples are typical for the inference rules of QuodLibet. The literals in the
goal clause may be partitioned into principal and context literals w.r.t. the applied inference
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{ l 6= nil,
split2(l) < l ,
cons(n, split2(l)) < cons(n, l),
cons(n, split2(l)) < cons(m, cons(n, l)) }

6=-unif 1

{ split2(nil) < nil,
cons(n, split2(nil)) < cons(n, nil),
cons(n, split2(nil)) < cons(m, cons(n, nil)) }

Figure 5.2: Application of Inference Rule 6=-unif

rule. On the one hand, those literals that determine the applicability of an inference rule
must be principal. In QuodLibet, the positions of these literals have to be provided as
parameters of the inference rule. On the other hand, the fewer literals are principal the more
flexibility for guiding proof search we get and the more reuse of proofs becomes possible.
Both for heuristic guidance and reuse of proofs, it has turned out to be appropriate, however,
that the principal literals should also include those literals that just cut off certain subgoals.
We call the latter kind of literals cut-off literals.

For the following rules in QuodLibet cut-off literals are taken into account automat-
ically: =-decomp, def-decomp, <-decomp, 6=-removal, ¬def-removal, lemma-rewrite,
lemma-subs, axiom-rewrite, axiom-subs, appl-lit-removal, ind-rewrite, ind-subs,
and all the new derived inference rules in Section 4.2.3. Basically, the occurrence of addi-
tional cut-off literals just results in the deletion of some subgoals in the proof state tree.
Missing cut-off literals, however, would result in additional subgoals that may cause a fail-
ure of the proof, both when searching for or reusing it. Thus, cut-off literals should be
considered principal literals. A special treatment of cut-off literals in comparison to other
principal literals is rarely needed. In fact, for the applications presented in this thesis, we
need such a special treatment only for modeling Contextual and Case Rewriting with a
forbidden marking as presented in Section 6.2.2. Therefore, we consider the distinction
between cut-off literals and other principal literals only as a last add-on in Definition 5.6.

We consider inference systems that work on goals. In the following, we state more
precisely how the new subgoals are generated w.r.t. the principal part and the context.
This is done with a couple of functions illustrated in Figure 5.3. The notions are partially
inspired by Gentzen’s notions on sequent calculi [Gen35]. The meaning of the functions
is described in an informal way in this section. The requirements on these functions are
formally defined in Section 5.2 with the notion of adaptable inference systems.

An (instance of an) inference rule1 I is applied to a parent goal PG(I). The application
results in nbSGs(I) new subgoals SGs(I). To enhance readability, in the illustration on
the left-hand side of Figure 5.3, we assume that the application of inference rule I to
parent goal G results in exactly two new subgoals. For our approach it is essential that
the applicability of I to G does not depend on the whole goal but only on a part of it—
called the principal part (princ(I) ⊆ G). The remaining part of the goal is called context

1In the following, we consider only instances of inference rules. For brevity, we call these instances just
inference rules.
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nside-src

G

selectAG

adaptI

PG

I ′

G′

SGs
SGs non-sideside

princ(I ′)

SG1(I) SG1(I
′)SG2(I)

context(I ′)context(I)princ(I)

Figure 5.3: Illustration of the Notions for Adaptable Inference Systems

(context(I) ⊆ G). Furthermore, the new subgoals must not be generated in an arbitrary
way but their derivation from G is fixed. We require that we get similar new subgoals if we
adapt inference rule I to another goal that contains the principal part princ(I), resulting in
the inference rule I ′ on the right-hand side of Figure 5.3. The principal part determines the
essential appearance of the new subgoals. In the subgoals, some elements of the principal
part may be removed or changed, new elements may be added. We model this by replacing
the whole principal part with a new part in each new subgoal. This new part is generated by
function side. Furthermore, the principal part determines how the context is changed in the
new subgoals. Often the context is transferred to the new subgoals without modifications
but it may also be changed in a uniform way e.g. by applying a substitution to each element.
We model this modification with a monotonic function non-side. This modification has to
be done in such a way that we can determine the source within the context that generates
certain elements in the non-side part of a new subgoal, i.e. that part in the new subgoal
that is generated with function non-side. This is done with function nside-src.

To state the adaptation of an inference rule more precisely, we use functions adaptI and
selectAG . An inference rule I with parent goal G can be adapted to goal G′ if G′ contains
the principal part of G (for I). Function adaptI returns an adapted inference rule I ′ that
can be applied to G′. The principal part princ(I ′) ⊆ G′ may contain additional elements
in comparison to princ(I) ⊆ G, illustrated with a dashed line in goal G′ in Figure 5.3.
We require only that for each new subgoal of I ′, function selectAG selects a subgoal of I
that generates the same elements for the common parts of G and G′. In Figure 5.3, this
is illustrated by hatching the common parts of the goals. In QuodLibet, the adaptation
of an inference rule is achieved by possibly changing those parameters of the inference rule
that contain the positions of the principal literals in the parent goal.
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5.2 Adaptable Inference Systems: Formal Definitions

In this section, we present abstract requirements on inference systems that allow the def-
inition of contribution and its applications. These requirements are defined in four steps
using the functions described in Section 5.1 (cf. Figure 5.3).

Definition 5.3 (Inference Systems) An inference system IS = (I,PG , SGs) consists
of a set I and two functions PG and SGs . The elements I ∈ I are called inference rules ,
the goal PG(I) is called parent goal of I and the (possibly empty list of) finitely many goals
SGs(I) are called (new) subgoals of I. Let nbSGs(I) be the number of new subgoals of I,
and SGi(I) be the ith subgoal in SGs(I) for i ∈ {1, . . . , nbSGs(I)}. 2

An inference rule I with parent goal G and new subgoals SG1, . . . , SGn is often represented
as

I =
G

SG1 . . . SGn

.

For Definitions 5.4 to 5.6, we assume that the following operations are defined on goals
in a suitable way: A subset relation ⊆, a union ∪, an intersection ∩, a sum +, a difference −
operation, and a partition relation ⊎ (cf. the corresponding operations on sets and multisets
in Section 2.1). A goal G may, for instance, consist of n components 〈g1; . . . ; gn〉. Many
inference systems just have one component—the clause Γ to be proved. QuodLibet uses
a weight w as second component to explicitly represent the induction order. Components
may consist of sets, multisets or single elements. We may define the operations on goals
by defining them on the n components of the goals using the usual definitions for sets and
multisets. If the component consists of a single element, we may interpret it as singleton
set containing this element. This is done for the weight component in QuodLibet.

The operations on goals are defined in a suitable way if the following properties hold
true for goals G1, . . . , Gn and G:

⋃n

i=1Gi ⊆ G if for each i ∈ {1, . . . , n} : Gi ⊆ G (5.2)

Gj ⊆
⋃n

i=1Gi for each j ∈ {1, . . . , n} (5.3)

G ⊆
⋂n

i=1Gi if for each i ∈ {1, . . . , n} : G ⊆ Gi (5.4)
⋂n

i=1Gi ⊆ Gj for each j ∈ {1, . . . , n} (5.5)

G1 +G2 = G2 +G1 (5.6)

G1 +G3 ⊆ G2 +G3 if G1 ⊆ G2 (5.7)

G1 −G3 ⊆ G2 −G3 if G1 ⊆ G2 (5.8)

G1 ⊆ G2 +G3 iff G1 −G2 ⊆ G3 (5.9)

G = G1 +G2 if G = G1 ⊎G2 (5.10)

(G1 +G2)−G1 = G2 if there exist G3, G4 with G3 = G1 ⊎G4 and G2 ⊆ G4 (5.11)

Note that these properties hold true for the usual definitions of the operations on sets and
multisets as presented in Section 2.1. Property (5.11), for instance, holds true for multisets
even unconditionally. For sets, condition G3 = G1 ⊎ G4 implies that G1 and G4 do not
have a common element. Due to condition G2 ⊆ G4, this also holds true for G1 and G2.
Therefore, the difference (G1 +G2)−G1 eliminates exactly the elements in G1 but none of
the elements in G2. Thus, (G1 +G2)−G1 = G2 holds true for sets.
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Usually, the new subgoals SG1, . . . , SGn of the inference rule I are derived from parent
goal G by possibly adding a new part, changing some old part, or removing some old
part. According to Section 5.1 we partition G into two parts: the principal part and the
context (cf. Definition 5.4(a)). The generation of the new part that replaces the principal
part is modeled with function side. The transformation of the context is modeled with a
monotonic function non-side (cf. Definition 5.4(b1) and (b2)). For the definition of essential
contribution (cf. Section 7.2), we also require a function nside-src. This function computes
those elements—the source—within the context that are responsible for the generation of
a given set of elements in the non-side part of a new subgoal (cf. Definition 5.4(b3)).

Definition 5.4 (Inference Systems Defined with Principal Part and Context)
An inference system IS = (I,PG , SGs) is defined with principal part and context if there
exist functions princ, context , side, non-side and nside-src such that the following proper-
ties are fulfilled for each inference rule I ∈ I:

(a) PG(I) = princ(I) ⊎ context(I);

(b) and for each i ∈ {1, . . . , nbSGs(I)},

(1) function non-side is monotonic in the last argument, i.e.,
for each pair of goals G, G′ with G ⊆ G′ ⊆ context(I):

non-side(I, i, G) ⊆ non-side(I, i, G′);

(2) SGi(I) is generated w.r.t. side, non-side as follows:
SGi(I) = side(I, i) + non-side(I, i, context(I));

(3) function nside-src is defined such that for each SG′ ⊆ non-side(I, i, context(I)):

• nside-src(I, i, SG′) ⊆ context(I) and

• non-side(I, i, nside-src(I, i, SG′)) = SG′.

2

Note that every inference system can be defined with principal part and context: We
may define princ(I) = PG(I), context(I) = ∅, side(I, i) = SGi, non-side(I, i,∅) = ∅,
and nside-src(I, i,∅) = ∅ for each i ∈ {1, . . . , nbSGs(I)}. But, as already explained in
Section 5.1, to enhance the reusability of proofs we should define the principal part with as
few elements as possible (cf. Section 7.3).

For adaptable inference systems, we also require that, if there is an inference rule I
and a goal G′ that contains the principal part of I, then there exists an inference rule I ′

with parent goal G′. Furthermore, each of the new subgoals of I ′ “corresponds” to a new
subgoal of I. Thus, the same elements in the new subgoals are generated for the common
part of G and G′. We use function adaptI to perform the adaptation of an inference rule
to another goal (cf. Definition 5.5(a)). Function selectAG relates the new subgoals of the
two applications, i.e. for each subgoal generated by inference rule I ′, one of the subgoals
generated by I is selected that is a candidate for further adaptations since the same elements
are generated for the common part ofG andG′ (cf. Definition 5.5(b)). Therefore, AG stands
for “adaptable goal”.
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Definition 5.5 (Adaptable Inference Systems) Let IS = (I,PG , SGs) be an infer-
ence system defined with principal part and context as in Definition 5.4. IS is adaptable
if there exist functions adaptI and selectAG such that the following properties are fulfilled
for each inference rule I ∈ I and for each goal G′ with princ(I) ⊆ G′:

(a) adaptI (I,G′) = I ′ such that I ′ ∈ I and PG(I ′) = G′;

(b) let G′′ := (PG(I)∩G′)− princ(I) be the common non-principal part of PG(I) and G′;
then, for each SG′ ∈ SGs(I ′):

• selectAG(I, I ′, SG′) ∈ {1, . . . , nbSGs(I)};
• side(I, i) + non-side(I, i, G′′) ⊆ SG′ where i = selectAG(I, I ′, SG′).

2

For the definition of (essential) contribution (cf. Sections 5.3 and 7.2), the inference system
only has to be defined with principal part and context. For reusing proofs (cf. Section 7.3),
however, the inference system has to be adaptable.

As a last add-on to adaptable inference systems, we consider cut-off elements which
are needed only for modeling Contextual Rewriting and Case Rewriting with a forbidden
marking in Section 6.2.2. The underlying idea of cut-off elements is that they have no
bearing on the applicability of an inference rule but they have a bearing on the number of
generated subgoals. Thus, if we have an inference rule I with parent goal G, and if goal G′

results from G by eliminating all the cut-off elements in G, then there exists an inference
rule I ′ such that G′ is the parent goal of I ′ and I results from adapting I ′ to G.

Definition 5.6 (Adaptable Inference Systems with Cut-Off Part)
Let IS = (I,PG , SGs) be an adaptable inference system as in Definition 5.5. IS is an
adaptable inference system with cut-off part if there exist functions cut-off and adaptI-src
such that the following properties are fulfilled for each inference rule I ∈ I:

(a) cut-off(I) ⊆ princ(I);

(b) adaptI-src(I) ∈ I;

(c) PG(adaptI-src(I)) = PG(I)− cut-off(I);

(d) princ(adaptI-src(I)) ⊆ princ(I);

(e) adaptI (adaptI-src(I),PG(I)) = I.

2

Lemma 5.7 The inference system of QuodLibet is an adaptable inference system with
cut-off part. 2

We skip the simple but lengthy proof. Instead, we present only the idea for defining the
corresponding functions and illustrate the proof with an example:
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• The identification of the principal and cut-off literals has already been sketched in
Section 5.1. The weight is principal iff we apply a lemma as induction hypothesis.

• For inference rules 6=-unif and subst-add, function non-side applies an appropriate
substitution σi to the context, i.e. non-side(I, i, G) = Gσi for each G ⊆ context(I).
In this case, if substitution application is not injective, function nside-src may pick
an arbitrary inverse of non-side such that Definition 5.4(b3) is fulfilled.

• For all other inference rules, non-side(I, i, G) = G for each G ⊆ context(I), and
nside-src(I, i, SG′) = SG′ for each SG′ ⊆ non-side(I, i, context(I)).

• Function side is defined w.r.t. function non-side as
side(I, i) = SGi(I)− non-side(I, i, context(I)) for each i ∈ {1, . . . , nbSGs(I)}.

• Functions adaptI and adaptI-src adapt the parameters of the inference rule that
contain the positions of the principal literals in the goal.

• Function selectAG chooses an appropriate new subgoal taking into account new cut-
off literals.

We illustrate the proof of Lemma 5.7 with the instance of inference rule lemma-rewrite

(cf. Section 2.2.2.10) as given in Example 5.1 (cf. Figure 5.1(a) and (c) on Page 108).

Example 5.8 Let G be the root goal node in Figure 5.1(a), I be the inference rule applied
to it, SG1(I) and SG2(I) be the resulting condition subgoal on the left-hand side and the
rewrite subgoal on the right-hand side, respectively.2 As already mentioned in Example 5.1,
the first and the third literal in G, i.e.

elemleqlist-p(n, merge(cons(m, l1 ), l2 )) = true and

elemleqlist-p(n, l2 ) 6= true

are principal for the application of I. More precisely, the third literal is a cut-off literal
as it cuts off one condition subgoal. The remaining literals—i.e. the second, fourth, fifth,
sixth, seventh and eighth literal—form the context of the lemma application.

The context literals are passively inherited to the new subgoals, i.e. without any modi-
fications. Thus, non-side(I, i, G1) = G1 for each G1 ⊆ context(I); and nside-src(I, i, SG) =
SG for each SG ⊆ non-side(I, i, context(I)) = context(I).

The other literals in the new subgoals are generated by function side, i.e. side(I, i) =
SGi(I) − non-side(I, i, context(I)). In the rewrite subgoal SG2(I), e.g., the first, second
and fourth literal, i.e.

elemleqlist-p(n, cons(m, l1 )) 6= true,

true = true and

elemleqlist-p(n, l2 ) 6= true

are generated by function side.

2Since the non-inductive application of a lemma with inference rule lemma-rewrite does not depend on
and does not modify the weight we ignore it in this example and concentrate on the goal clause. Technically,
the weight belongs to the context.
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Let us check the conditions of Definition 5.4 for this lemma application:

(a) Obviously, the classification of the goal clause into principal part and context described
above partitions the goal clause into two disjunctive lists of literals.

(b) For each i ∈ {1, 2}, we get

(1) for each pair of goals G1, G2 with G1 ⊆ G2 ⊆ context(I):
non-side(I, i, G1) = G1 ⊆ G2 = non-side(I, i, G2).

(2) SGi(I) = side(I, i) + non-side(I, i, context(I)) holds true
because of the definition of function side above.

(3) for each SG ⊆ non-side(I, i, context(I)) = context(I):

• nside-src(I, i, SG) = SG ⊆ context(I) and

• non-side(I, i, nside-src(I, i, SG)) = non-side(I, i, SG) = SG.

To illustrate the compliance with Definition 5.5 with a concrete example, we consider the
root goal node in Figure 5.1(c) which we abbreviate with G′. Since G′ contains the principal
literals princ(I) for the application of inference rule I to G as third and fifth literal, the
inference rule may be adapted to G′. For this, we check the conditions of Definition 5.5:

(a) The inference rule I is adapted to G′ by modifying the parameter which refers to the
position of the focus literal. This parameter is set to 3 instead of 1. Then, the adapted
inference rule I ′ is applicable to G′.

(b) Let G′′ be the common part of G and G′ without those literals that are principal for
the application of I. G′′ consists of the second and fourth literal of G which are the
fourth and the second literal of G′:

¬def merge(cons(m, l1 ), l2 ) and

elemleqlist-p(m, l1 ) 6= true

As G′ contains another cut-off literal for the application of I ′—namely, the first one—
only one new subgoal is generated—the rewrite subgoal SG1(I

′).

• Function selectAG associates the two rewrite subgoals, i.e.
selectAG(I, I ′, SG1(I

′)) = 2 ∈ {1, 2}.
• side(I, 2) contains the first, second and fourth literal; non-side(I, 2, G′′) the third

and fifth literal of SG2(I). These literals, i.e.

elemleqlist-p(n, cons(m, l1 )) 6= true,

true = true,

elemleqlist-p(n, l2 ) 6= true,

¬def merge(cons(m, l1 ), l2 ) and

elemleqlist-p(m, l1 ) 6= true

are present in SG1(I
′) as first, third, fifth, fourth, and second literal. Therefore,

side(I, 2) + non-side(I, 2, G′′) ⊆ SG1(I
′) holds true.
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At last, we check the compliance with Definition 5.6 for the application of inference rule I
to goal G:

(a) As already mentioned above, cut-off(I) consists of the third literal of G which is also
principal. Let G′′ be derived from G by eliminating this cut-off literal.

(b) An inference rule I ′′ with the same parameters as I may be applied to G′′.

(c) The application of I ′′ to G′′ is assigned to I by function adaptI-src.

(d) Now the focus literal of the lemma application, i.e. the first literal in G′′, is the only
principal literal for I ′′ and it is also principal for I.

(e) The application of I ′′ to G′′ generates one additional condition subgoal in comparison
to the application of I to G. Since the principal literals for application I ′′ are present in
G the inference rule may be adapted to G again. This adaptation leaves the parameters
unchanged resulting in inference rule I.

2

This argumentation can be transferred to all inference rules of QuodLibet resulting in a
proof for Lemma 5.7.

5.2.1 Representation of Proof Attempts with Proof State Trees

We assume that proof attempts are represented with proof state trees as described for
QuodLibet in Section 2.2.2.2. A proof state tree consists of goal and inference nodes
which refer to goals and inference rules. The nodes additionally contain information about
their position in the tree, i.e. their parents and children. We will abuse these notions and
identify goals with goal nodes and inference rules with inference nodes.

To simplify the presentation, we restrict ourselves to single proof attempts where for
each goal at most one proof step is performed. The extension for arbitrary proof state trees
is straightforward. Let RG(P ) be the root goal of proof state tree P . Let SI (G) be the
successor inference rule applied to G in proof state tree P (as long as there is one) and
PI (G) the parent inference rule of G (unless G is the root goal of P ).

According to Section 2.2.2.2, a proof attempt is closed if there are no open goal nodes
in the proof attempt, i.e. if all its leaves are inference nodes. In our abstract setting of
adaptable inference systems, we call a closed proof attempt for a goal G just a proof 3 for
G. In this case, goal G is proved .

Most of the properties of our approaches presented in the next two chapters are proved
by induction on proof state trees. More precisely, they are proved by induction w.r.t. the
following order ≺P : N1 ≺P N2 if N1 is an offspring of N2 in a proof state tree P . Note that
≺P is a wellfounded order on goal and inference nodes.

3Note that this notion of “proof” slightly differs from the notion in QuodLibet as defined in Sec-
tion 2.2.2.2 where additionally all non-inductively applied lemmas have to be inductively valid. This
relaxed notion suffices for the applications of contribution presented in the following chapters.
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5.3 Contribution

Analyzing a proof performed with an adaptable inference system, a proof step I (i.e. the
application of inference rule I) may contribute to a proof for a goal in two ways: Firstly, no
new subgoals are created at all; thus, the goal is proved. Secondly, each subgoal contains
new information in the form of new (i.e. added or changed) elements that are needed for
the proof (i.e. become principal in a subsequent contributing proof step). Otherwise, the
proof step is non-contributing and can be eliminated: If one subgoal can be proved without
using one of the new elements, this proof can also be adapted to the original goal.

For the definition of contribution, we first state the phrase that an “element becomes
principal in a subsequent proof step” more precisely. It depends on the performed proof
attempt. Furthermore, we have to cope with the fact that the elements of the context
may be changed with function non-side when transferred to the new subgoals whereas the
principal elements are replaced with a new part generated by function side. Therefore,
we define an inheritance relation on the elements in the goals of a proof attempt w.r.t.
functions side and non-side.

Definition 5.9 (Inherited Elements in Goals of Proof State Trees)
Let IS = (I,PG , SGs) be an inference system defined with principal part and context as
in Definition 5.4.

(a) Let I be an inference rule and G′ ⊆ PG(I) be a subset of the parent goal of I. For
i ∈ {1, . . . , nbSGs(I)}, we define the inheritance of G′ from parent goal PG(I) to the
ith subgoal SGi(I) as follows:

inh(I, i, G′) =

{

non-side(I, i, G′) if G′ ∩ princ(I) = ∅

side(I, i) + non-side(I, i, G′ − princ(I)) otherwise

(b) Let P be a proof state tree. We define an inheritance relation
∗−→inh on pairs of goals4 as

the reflexive-transitive closure that contains (PG(I), G′) −→inh (SGi(I), inh(I, i, G′))
for each proof step I in P , each i ∈ {1, . . . , nbSGs(I)}, and each subset G′ ⊆ PG(I).

An element λ1 in goal G1 inherits to an element λ2 in goal G2 if (G1, {λ1}) ∗−→inh

(G2, G
′
2) with λ2 in G′

2.

2

Definition 5.10 (Contributing Proof Steps / Elements) Let IS = (I,PG , SGs) be
an inference system defined with principal part and context as in Definition 5.4. A proof
step I in proof state tree P for goal G contributes to P if every direct subgoal SG in SGs(I)
contains a new element that contributes to the proof state tree for SG in P . An element of
a goal G contributes to a proof state tree P for G if it inherits to an element in the principal
part of a contributing proof step in P . 2

4More precisely, the first component is a goal node which contains a position within the proof state tree
whereas the second one is goal without a position.
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We aim at

• guiding proof search to avoid non-contributing proof steps (cf. Chapter 6); and

• removing non-contributing proof steps to enhance the reusability of proofs (cf. Chap-
ter 7). Furthermore, with the deletion of non-contributing proof steps some of the
proof obligations may become redundant.

We illustrate our notions of inheritance and contribution and motivate our applications of
guiding proof search and reusing proofs with an extended version of Example 5.2.

Example 5.11 We consider a proof for the root goal node of Figure 5.2 on Page 110 which
is displayed in Figure 5.4. After applying inference rule 6=-unif as in Example 5.2 the proof
is completed with applications of Axiom (5.12) and inference rule <-decomp.

{ split2(nil) = nil } (5.12)

{ l 6= nil,
split2(l) < l ,
cons(n, split2(l)) < cons(n, l),
cons(n, split2(l)) < cons(m, cons(n, l)) }

6=-unif 1

{ split2(nil) < nil ,

cons(n, split2(nil)) < cons(n, nil) ,

cons(n, split2(nil)) < cons(m, cons(n, nil)) }

axiom-rewrite 1 [1] (5.12) 1 []

{ nil < nil ,
cons(n, split2(nil)) < cons(n, nil),

cons(n, split2(nil)) < cons(m, cons(n, nil)) }

axiom-rewrite 2 [1 : 2] (5.12) 1 []

{ nil < nil,

cons(n, nil) < cons(n, nil) ,

cons(n, split2(nil)) < cons(m, cons(n, nil)) }

axiom-rewrite 3 [1 : 2] (5.12) 1 []

{ nil < nil,
cons(n, nil) < cons(n, nil),

cons(n, nil) < cons(m, cons(n, nil)) }

<-decomp 3

Figure 5.4: Illustration of Inheritance and Contribution
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Let us calculate the contributing proof steps and elements for this proof according to Def-
inition 5.10. For this, we have to identify the principal literals for the applied inference
rules, the new literals in the resulting subgoals, and we have to consider the inheritance
relation as given in Definition 5.9.

We enumerate the goal and inference nodes in Figure 5.4 top-down: Let G1 be the root
goal node, Ii be the inference rule applied to Gi for i ∈ {1, . . . , 5}, and Gi+1 be the resulting
subgoal for i ∈ {1, . . . , 4}.

The first parameter of each inference rule in Figure 5.4 refers to the principal literal for
the application in the parent goal. Principal literals are underlined whereas new literals in
the resulting subgoals are framed in Figure 5.4. Note that there are no cut-off literals in
this example.

In this example, the inheritance relation is rather simple: The first literal in G1 is
eliminated, i.e. it does not inherit to any literal in G2. Each other literal inherits to exactly
one literal in each subgoal. More precisely, the second (resp. third and fourth) literal of G1

inherits to the first (resp. second and third) literal in each other goal Gi, i ∈ {1, . . . , 5}.
Thus, the inheritance relation for single literals essentially consists of

(G1, {l 6= nil})
−→inh (G2, ∅)

(G1, {split2(l) < l})
−→inh (G2, {split2(nil) < nil})
−→inh (G3, {nil < nil})
−→inh (G4, {nil < nil})
−→inh (G5, {nil < nil})

(G1, {cons(n, split2(l)) < cons(n, l)})
−→inh (G2, {cons(n, split2(nil)) < cons(n, nil)})
−→inh (G3, {cons(n, split2(nil)) < cons(n, nil)})
−→inh (G4, {cons(n, nil) < cons(n, nil)})
−→inh (G5, {cons(n, nil) < cons(n, nil)})

(G1, {cons(n, split2(l)) < cons(m, cons(n, l))})
−→inh (G2, {cons(n, split2(nil)) < cons(m, cons(n, nil))})
−→inh (G3, {cons(n, split2(nil)) < cons(m, cons(n, nil))})
−→inh (G4, {cons(n, split2(nil)) < cons(m, cons(n, nil))})
−→inh (G5, {cons(n, nil) < cons(m, cons(n, nil))})

Now, we may easily classify the applications of I1, . . . , I5 as well as the literals in G1, . . . , G5

as contributing or non-contributing. For this, we consider the applications and goals
bottom-up:

• I5 is contributing as it does not generate any new subgoal. The fourth literal in
G1 and the third literal in G2, . . . , G5 are contributing because they inherit to the
principal literal for the application of I5.

• I4 is contributing as it modifies the third literal which is principal in the next con-
tributing proof step I5.
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• I3 and I2 are non-contributing because they modify only the second resp. the first
literal but these literals do not contribute to the subsequent proof, i.e. they do not
inherit to literals that become principal in a contributing proof step.

• I1 is contributing as it modifies all literals in the resulting subgoal, in particular, the
third literal which becomes principal in the contributing proof steps I4 and I5. The
principal literal for the application—the first one—contributes to the proof for G1.

2

For adaptable inference systems, we may eliminate non-contributing proof steps from a
performed proof, resulting in a pruned proof. With our new proof techniques for guiding
proof search, we aim at avoiding non-contributing proof steps at all. In the following
chapters, we present these applications in more detail.
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Chapter 6

Guiding Proof Search with Forbidden
and Mandatory Markings in Goals,
and Obligatory and Generous
Markings in Lemmas

In this chapter, we present a flexible framework for guiding proof search for adaptable
inference systems (cf. Section 5.2). To simplify matters, we concentrate on one major
task during the simplification process in (inductive) theorem proving: the application of
conditional lemmas for rewriting or subsumption. In our case studies with QuodLibet,
lemmas are applied in at least 50% of all proof steps. Due to its practical importance, this
task has been studied for more than three decades, mostly under the label of “contextual
rewriting”.

For a deeper understanding of this chapter, it is necessary to recall the introduced
notions for applying conditional lemmas such as head, condition, focus and context literals
as well as definedness, condition, rewrite and order subgoals in Section 2.2.2.10 and 2.2.2.11;
the partitioning of goals into principal part, cut-off part and context in Sections 5.1 and
5.2; and the notion of contribution in Section 5.3. Most of these notions are illustrated in
Example 6.1 in Section 6.1. Roughly speaking, in clausal first-order logic, the goals to be
proved and the lemmas that may be applied are given as clauses. A clause {λ1, . . . , λn} may
be interpreted as an implication λ1∧· · ·∧λn−1 ⇒ λn. We fix one literal in the lemma clause
by calling it the head literal ; the conjugates of the other literals are called condition literals.
For each inference step, we also fix one literal in the goal clause, called focus literal ; the
conjugates of the other literals are called context literals. The conclusion of the lemma—its
head literal—may be applied for proving the goal if the condition literals can be proved
valid in the “context”. According to [BM88a], we have to relieve the conditions.

In general, the process for applying a lemma can be divided into two steps: choosing a
lemma; and checking the lemma for applicability and relieving its conditions. The first step
can be supported by rippling techniques [BSvH+93, Hut97]. The relief test during the sec-
ond step has to be done by recursively calling the simplification process. We are interested
in an extensive but efficient relief test. By “extensive”, we mean that the test should not
fail too often if the lemma application may contribute to the proof. Our flexible framework

123
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allows us to control the balance between extent and efficiency manually. Therefore, it is
particularly suited for interactive theorem proving.

The elements in the goals that can be used during the relief test have to be restricted
since the condition subgoals contain the original goal (cf. Section 2.2.2.10). Thus, without
restrictions the relief test may result in an infinite process: the lemma can be applied to
the condition subgoals over and over again. We concentrate on the question which elements
can be used during the relief test.

Practically, there are two major ways to restrict proof steps that may be used during
the relief test by marking elements in the goals:

1. In previous approaches known from the literature such as Contextual Rewriting in
[Zha95] and Case Rewriting in [BR93], elements are excluded from certain condition
subgoals. In the original approaches, excluded elements are completely eliminated
from the subgoals resulting in unsafe applications, i.e. we may derive invalid goals by
applying valid lemmas to valid goals (cf. Section 2.2.2.2). Within our safe inference
system, we may model these approaches by marking excluded elements as forbidden.
The meaning is that a forbidden element in a goal must not be principal in the
application of an inference rule.

2. We propose a novel, alternative approach by marking elements in goals as mandatory :
If we apply an inference rule to a goal, one of the mandatory elements must be
principal. With a mandatory marking we may favor those proof steps that locally
contribute to the proof.

By marking elements as mandatory instead of forbidden, we overcome some difficulties
of previous approaches [Zha95, BR93]: As we can use every element during the relief test
provided that there is also one mandatory element involved, we can achieve a more extensive
relief test. Furthermore, we develop techniques to restrict the relief test in a user-defined
way with obligatory and generous markings in the lemmas to achieve the right balance
between efficiency and extent. Our flexible framework allows us to combine the different
markings in an arbitrary way.

The influence of the markings in the goals on proof search can be defined in two steps:

1. we restrict the proof steps I that can be applied to a goal G according to the markings
and the partitioning of goal G into principal part, cut-off part and context w.r.t. I;

2. we define the markings for the new subgoals.

Whereas we fix Step 1, the inheritance procedure in Step 2 may be realized in different
ways. Step 2 may also be influenced manually. Therefore, we get a flexible mechanism to
restrict proof search.

In Section 6.1, we present a simple example illustrating the advantages of our novel
heuristics based on a mandatory marking in comparison to previous approaches based on a
forbidden marking. In Section 6.2, we motivate, describe and illustrate our heuristics based
on markings. For each heuristics, we identify proof patterns that cannot be handled with
this heuristics. For our novel heuristics based on a mandatory marking, we can solve these
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problems at the expense of additional auxiliary lemmas or by using a generous marking
which extends proof search. We compare the different heuristics in Section 6.3. There,
we also provide evidence for the adequacy of our modeling of Contextual Rewriting with a
forbidden marking. We conclude this chapter with some remarks in Section 6.4.

6.1 A Simple Example

The following example presents a proof pattern that can be handled by our novel heuristics
but cannot be proved by previous approaches such as Contextual and Case Rewriting
summarized in Section 6.2.2. It is taken from our case study that the greatest common
divisor (gcd) of two natural numbers is idempotent, commutative and associative (at least
if the numbers are unequal to zero).

Example 6.1 We consider an extension of the base specification from Section 4.2.1 con-
sisting of sorts Bool (for boolean values with constructors true and false) and Nat (for
natural numbers with constructors 0 and s) and defined operators +, *, -, div, gcd, leq
and div-p which represent the corresponding arithmetic operations on natural numbers, a
less-or-equal and a divisibility predicate on natural numbers. We consider the formal spec-
ification of gcd only, given by Axioms (6.1) to (6.4). The gcd of two natural numbers is
defined if at least one of its arguments is unequal to zero. If exactly one of the arguments is
unequal to zero this argument is the result of the operation. Otherwise, we recursively call
gcd with the smaller argument and the difference of greater and smaller argument which
ensures that the definition is terminating.

{ gcd(x , y) = x ,
y 6= 0,
x = 0 }

(6.1)

{ gcd(x , y) = y ,
x 6= 0,
y = 0 }

(6.2)

{ gcd(x , y) = gcd(x , -(y , x )),
leq(x , y) 6= true,
x = 0,
y = 0 }

(6.3)

{ gcd(x , y) = gcd(-(x , y), y),
leq(x , y) = true,
¬def leq(x , y),
x = 0,
y = 0 }

(6.4)

As auxiliary lemma for the associativity of gcd, we want to prove the following lemma on
divisibility:

{ div-p(gcd(x , y), z ) = true,
div-p(x , z ) 6= true,
x = 0 }

(6.5)
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{ div-p(gcd(x , y), z ) = true , div-p(x , z ) 6= true , x = 0 }

lemma-rewrite (6.8)

{ def gcd(x , y) ,

div-p(gcd(x , y), z ) = true,
div-p(x , z ) 6= true,
x = 0 }

lemma-subs (6.6)

{ div-p(gcd(x , y), x ) = true ,

¬def gcd(x , y) ,

div-p(gcd(x , y), z ) = true,
div-p(x , z ) 6= true,
x = 0 }

lemma-rewrite (6.7)

{ y 6= 0 , div-p(gcd(x , y), x ) = true,

¬def gcd(x , y), div-p(gcd(x , y), z ) = true,
div-p(x , z ) 6= true, x = 0 }

axiom-rewrite (6.1)

{ y 6= 0 , div-p(x , x ) = true ,

¬def gcd(x , y), div-p(gcd(x , y), z ) = true,

div-p(x , z ) 6= true, x = 0 }

axiom-rewrite (6.1)

{ y 6= 0 , div-p(x , x ) = true ,

¬def gcd(x , y), div-p(x , z ) = true ,

div-p(x , z ) 6= true, x = 0 }

compl-lit

{ y = 0 , true = true ,

¬def gcd(x , y) , div-p(gcd(x , y), z ) = true,

div-p(x , z ) 6= true, x = 0 }

=-decomp

{ div-p(gcd(x , y), x ) 6= true ,

¬def gcd(x , y) ,

true = true ,

div-p(x , z ) 6= true ,

x = 0 }

=-decomp

Figure 6.1: Proof State Tree for Goal (6.5) of Example 6.1

We assume that the following lemmas are activated for automatic applications:

{ def gcd(x , y),
x = 0 }

(6.6)

{ div-p(gcd(x , y), x ) = true,
y = 0 }

(6.7)

{ div-p(x , z ) = true,
div-p(x , y) 6= true,
div-p(y , z ) 6= true }

(6.8)

For each of the axioms and lemmas, we choose the first literal as head literal for the
following reasons:

• The axioms define operator gcd using the first literal as rewrite rule from left to right.
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• Lemma (6.6) contains a definedness atom as first literal. Due to our monotonic
semantics based on data models, we cannot prove negated definedness literals as focus
literals. Therefore, the definedness atom should be present in the goal the lemma is
applied to. Such a lemma is called a domain lemma as it establishes the domain of a
(partial) operator.

• In Lemma (6.7), the left-hand side of the first literal is the only term that binds all
variables of the lemma.

• In Lemma (6.8), the first literal is the positive literal in a Horn clause.

Figure 6.1 contains the whole proof state tree for Goal (6.5) as it is created by our novel
heuristics (without regarding the weight component which is not relevant for the proof).
The root goal node is rewritten by the conditional Lemma (6.8) using the substitution
[x ← gcd(x , y), z ← z , y ← x ]. The substitution can be determined by using the first
literal of the root goal as focus literal and matching the head literal to the focus literal.
The uninstantiated extra variable y can be bound by matching the third lemma literal to
the second goal literal (cf. Section 6.2.5). Then, the third lemma literal is directly fulfilled
by the second goal literal which itself is a cut-off literal. Thus, the first two goal literals are
principal for the application. In Figure 6.1, principal literals are underlined and mandatory
literals are framed. Our novel heuristics applies an inference rule automatically only if
one of the principal literals is also mandatory, i.e. if one of the underlined literals is also
framed. The application results in three new subgoals: one definedness subgoal (since the
substitution binds a constructor variable to a non-constructor term), one condition subgoal
and one rewrite subgoal. As there is a condition subgoal, the lemma is not directly applicable.
The definedness subgoal is proved by a direct application of Lemma (6.6) for subsumption.
Rewriting the condition subgoal with Lemma (6.7) leads to another condition subgoal. For
its proof we rewrite the second and fourth literal with Axiom (6.1). Note that these literals
have been the focus literals of the previous lemma applications that have generated the
considered condition subgoal. Thus, these applications are possible only with our novel
heuristics (cf. Section 6.2). Altogether, we get a closed proof state tree, i.e. a proof state
tree whose leaves are inference nodes. Therefore, Lemma (6.5) is inductively valid provided
that this holds true for the applied lemmas.

Analyzing the contribution of the proof steps, we observe that the only non-contributing
proof step is the first application of Axiom (6.1) to rewrite the second literal. Indeed, this
literal—the only new one—does not contribute to the proof for its subgoal. 2

6.2 Flexible Control with Markings

Lemmas are provided to guide the proof process. On the one hand, they should be applied
automatically as far as possible1 to free the user from routine work. On the other hand,
heuristics have to control the applications to guarantee the termination of the process within
a reasonable amount of time. Thus, we have to find the right balance between extensiveness
and efficiency.

1at least if they may contribute to the proof (cf. Section 5.3)
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We essentially restrict proof search with markings in goals and lemmas (cf. Sections 6.2.1
to 6.2.4). To get a practicable method, we adapt additional heuristics known from the
literature—in particular those presented in [BM88a]. We summarize these restrictions in
Section 6.2.5.

Note that, in general, in our domain neither confluence nor termination properties can
be assumed for rewriting with lemmas (cf. Example 6.20). Therefore, heuristics based
on wellfounded orders are not always applicable. If applicable, these heuristics may be
combined with our marking techniques.

6.2.1 Mandatory Markings in Goals

In this section, we present a novel heuristics based on a mandatory marking in goals. With
this heuristics, we aim at avoiding non-contributing proof steps (cf. Section 5.3). The notion
of contribution captures what we want but cannot be directly exploited for proof search: As
contribution of a proof step depends on the proof performed, it can be checked only after
the proof has been completed. But we can easily ensure that we perform only contributing
proof steps by using one of the new elements as principal element in the next proof step.

Definition 6.2 (Locally Contributing Proof Steps)
Let IS = (I,PG , SGs) be an inference system defined with principal part and context as
in Definition 5.4. A proof step I in a proof P for a goal G locally contributes to P if every
direct subgoal SG created by I contains a new element that becomes principal in the proof
step performed for SG in P . 2

Lemma 6.3 If every proof step in a proof P locally contributes to P , then every proof
step contributes to P .

Proof. This lemma is proved easily by induction w.r.t. ≺P (cf. Section 5.2.1): Since P
is a proof, every leaf is an inference node. Let G be an arbitrary goal node in P and
SI (G) the inference rule applied to G. If nbSGs(SI (G)) = 0, i.e. the applied inference rule
does not generate any new subgoals, then proof step SI (G) is contributing according to
Definition 5.10. Otherwise, let SG be an arbitrary new subgoal generated by SI (G). Since
SG ≺P G, the induction hypothesis is applicable to SG. Thus, the proof step SI (SG)
applied to SG contributes to P . Because every proof step locally contributes to P , one of
the new elements in SG becomes principal w.r.t. SI (SG) which is contributing. Since the
inheritance relation defined in Definition 5.9 contains the reflexive closure, the new element
in SG contributes to P . Therefore, proof step SI (G) contributes to P . 2

Note that, in general, a proof step does not have to be contributing even if it is locally
contributing, because the new elements may become principal only in non-contributing
proof steps.

As we will see, this strict usage of local contribution is too restrictive for guiding proof
search. It excludes too many proofs in which all proof steps are contributing but some of
them do not contribute locally. To be able to define local restrictions on proof steps in a
flexible way, we introduce a mandatory marking in goals.
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Restriction 6.4 (Caused by Mandatory Marking) An inference rule may be applied
to a goal G with a mandatory marking only if one of the mandatory elements is principal
in the proof step applied to G. 2

If we mark only new elements in a subgoal as mandatory in a proof, it is ensured that all
proof steps (locally) contribute to that proof. But then, the proof search is too restricted.
It will find only “linear” proofs: We can apply only those inference rules that also use new
elements introduced by the previous proof step. For a successful proof, however, it may
be necessary to apply inference rules “in parallel” that are not linearizable. Such proofs
are impossible with this strict usage of a mandatory marking as the following example
illustrates.

Example 6.5 Given three boolean valued constants p1, p2, p3, we assume the activation
of Lemmas (6.9) and (6.10) and want to prove Goal (6.11)

{ p1 = p3 } (6.9)

{ p2 = p3 } (6.10)

{ p1 = true,
p2 6= true }

(6.11)

To prevent trivial loops we use equations for rewriting just in one direction. We present
our examples in such a way that equations are always applied for rewriting from left to
right.2 Therefore, the only way to prove Goal (6.11) is to rewrite p1 and p2 to p3. Then
the resulting subgoal is tautological as it contains complementary literals. But if we mark
only new elements as mandatory, this proof is prohibited since the second rewrite step does
not use a new element. 2

Alternatively, if all elements of subgoals are marked as mandatory, the marking has no
effect and the search space contains too many proof steps that do not contribute to the
proof. Our compromise results in the following default heuristics which can be fine-tuned
with a generous marking in the lemmas as explained in Section 6.2.4:

Heuristics 6.6 (for Marking Elements as Mandatory) At the beginning of a proof
attempt for a goal every element in the clause is marked as mandatory. Thus, there are no
restrictions for performing proof steps.

For applicability subgoals—i.e. definedness or condition subgoals of applicative inference
rules—the marking of the parent goal is not inherited to the subgoal, but a new set of
mandatory elements is introduced that consists exactly of the new elements of the subgoal.
With this strict marking heuristics, it is guaranteed that one of the new definedness or
condition literals is used in the next proof step.

For order subgoals, we mark only the single new order atom as mandatory. In this case,
the proof has to proceed by treating the order atom.

2Some lemmas such as the distributivity of multiplication over addition do not suggest a direction for
rewriting themselves. In one situation it may be beneficial to apply them from left to right and in another
situation vice versa. Therefore, the user may fix (during the activation of the lemma) the direction that is
used for automatic applications.
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For all other subgoals—i.e. rewrite subgoals or subgoals created by other inference
rules—the mandatory elements of the parent goal stay mandatory in the subgoal (unless
they are deleted) and are supplemented with all new elements of the subgoal. Thus, we use
a relaxed marking heuristics. We can perform rewrite steps even if they do not contribute
to the proof. This is helpful for the speculation of auxiliary lemmas. 2

Example 6.7 (6.1 continued) In Figure 6.1, mandatory literals are framed, principal
literals are underlined. Thus, we can apply an inference rule only if at least one of the
underlined literals is also framed.

The proof starts at the root goal node with all literals marked as mandatory. After
applying Lemma (6.8), the resulting definedness subgoal has one mandatory literal—the
first one—that is handled by the following subsumption with Lemma (6.6). The mandatory
literals of the condition subgoal—the second subgoal—are the first two literals. Note that
the repeated application of Lemma (6.8) is prevented as none of its principal literals is
mandatory anymore. Instead, the first literal is handled by the following rewrite step
with Lemma (6.7), that introduces the first literal as the only mandatory literal for the new
condition subgoal. This single mandatory literal is used in the rewrite step with Axiom (6.1).
As this inference rule modifies the second literal of the resulting rewrite subgoal, it is added
to the set of mandatory literals. Analogously, literal four is added to this set after the next
rewrite step with Axiom (6.1). Finally, the inference rule compl-lit can be applied to the
rewritten subgoal although not both literals are mandatory. It suffices that one mandatory
literal is principal for the application. Note that all literals in the rewrite subgoal of the
application of Lemma (6.8) are mandatory since the goal is not an applicability subgoal
(cf. Heuristics 6.6). This is justified by the fact that an infinite loop of the same lemma
application is already avoided because the original goal is not contained in the new subgoal.
The relaxed mandatory markings heuristics for rewrite subgoals is, for instance, required
for the second application of Axiom (6.1): Otherwise, y 6= 0 would not stay mandatory
after the first rewrite step with Axiom (6.1) and the second application would not obey the
restrictions caused by the mandatory marking. 2

Example 6.8 As another example, we consider the defined operators less and +, given
by the following axioms:

{ less(0, s(y)) = true } (6.12)

{ less(x , 0) = false } (6.13)

{ less(s(x ), s(y)) = less(x , y) } (6.14)

{ +(x , 0) = x } (6.15)

{ +(x , s(y)) = s(+(x , y)) } (6.16)

Given the additional lemmas

{ def +(x , y) } (6.17)

{ less(x , +(x , y)) = true,
y = 0 }

(6.18)

{ less(x , z ) = true,
less(x , y) 6= true,
less(y , z ) 6= true }

(6.19)
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{ less(x , +(y , z )) = true ,

less(x , y) 6= true }

lemma-rewrite (6.19)

{ def +(y , z ) ,

less(x , +(y , z )) = true,
less(x , y) 6= true }

lemma-subs (6.17)

{ less(y , +(y , z )) = true ,

¬def +(y , z ) ,

less(x , +(y , z )) = true,
less(x , y) 6= true }

lemma-rewrite (6.18)

{ z 6= 0 , less(y , +(y , z )) = true,

¬def +(y , z ), less(x , +(y , z )) = true,
less(x , y) 6= true }

6=-unif

{ less(y , +(y , 0)) = true , ¬def +(y , 0) ,

less(x , +(y , 0)) = true , less(x , y) 6= true }

axiom-rewrite (6.15)

{ less(y , y) = true , ¬def +(y , 0) ,

less(x , +(y , 0)) = true , less(x , y) 6= true }

axiom-rewrite (6.15)

{ less(y , y) = true , ¬def +(y , 0) ,

less(x , y) = true , less(x , y) 6= true }

compl-lit

{ z = 0 , true = true ,

¬def +(y , z ) , less(x , +(y , z )) = true,

less(x , y) 6= true }

=-decomp

{ less(y , +(y , z )) 6= true ,

¬def +(y , z ) ,

true = true ,

less(x , y) 6= true }

=-decomp

Figure 6.2: Proof State Tree for Goal (6.20) of Example 6.8

we want to prove the inductive validity of the following goal by simplification:

{ less(x , +(y , z )) = true,
less(x , y) 6= true }

(6.20)

For each of the axioms and lemmas, we choose the first literal as head literal for the following
reasons: The axioms define operators less and + using the first literal as rewrite rule from
left to right. In Lemma (6.18), the left-hand side of the first literal is the only term that
binds all variables of the lemma. In Lemma (6.19), the first literal is the positive literal in
a Horn clause.

Figure 6.2 contains the whole proof state tree for Goal (6.20) as it is created by our
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novel heuristics with a mandatory marking. Again, mandatory literals are framed, principal
literals are underlined.

The proof starts at the root goal node with all literals marked as mandatory. The root
goal node is rewritten by the conditional Lemma (6.19) using the substitution [z ← +(y , z )].
The substitution can be determined by using the first literal of the root goal as focus literal
and matching the head literal to the focus literal. The second lemma literal is directly
fulfilled by the second goal literal (binding the extra variable y to itself). The application
results in three new subgoals (from left to right): one definedness subgoal, one condition
subgoal and one rewrite subgoal. The definedness subgoal has one mandatory literal—the
first one—that is handled by the following subsumption with Lemma (6.17). The mandatory
literals of the condition subgoal are the first two literals. Note that these mandatory literals
prevent the repeated application of Lemma (6.19). Instead, the first literal is handled by
the following rewrite step with Lemma (6.18), that introduces the first literal as the only
mandatory literal for the new condition subgoal. This single mandatory literal is used by the
inference rule 6=-unif. As this inference rule modifies the first three literals of the resulting
subgoal, they become the mandatory literals. The following rewrite steps do not alter the
sets of mandatory literals as we do not start new sets for rewrite goals. This results in one
rewrite step that does not contribute to the proof. Finally, the inference rule compl-lit

can be applied to the rewritten subgoal although not both literals are mandatory. It suffices
that one mandatory literal is principal for the application. 2

Examples 6.1 and 6.8 contain a basic proof pattern that cannot be proved with Contextual
Rewriting (cf. Section 6.2.2.1) but with our novel heuristics. This proof pattern is illustrated
in Example 6.9 in an abstract way. We use it for comparing our novel heuristics (cf.
Figure 6.3a described in Example 6.9) with Contextual Rewriting (cf. Figure 6.3b described
in Example 6.14) and Case Rewriting according to [BR93] (cf. Figure 6.3c described in
Example 6.16).

Example 6.9 ([Zha95], simplified) Given three boolean valued constants q1, q2, q3, we
assume the activation of the following lemmas

{ q1 = true,
q2 6= true }

(6.21)

{ q1 = true,
q3 6= true }

(6.22)

{ q2 = true,
q3 = true }

(6.23)

and want to prove the goal

{ q1 = true } (6.24)

As Lemmas (6.21) and (6.22) are Horn clauses we use the first literal as head literal.
Lemma (6.23) does not suggest a head literal itself. We may use an arbitrary one or both
literals. Due to efficiency considerations and as the lemmas are symmetric in q2 and q3,
we decide to choose just the first one.

Using a mandatory marking, the proof is found automatically (cf. Figure 6.3a). In the
condition subgoal after applying Lemma (6.23), literal q1 = true can be used as focus
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a) Rewriting with Mandatory Literals { q1 = true }

lemma-rewrite (6.21)

{ q2 = true ,

q1 = true }

lemma-rewrite (6.23)

{ q3 6= true ,

q2 = true,
q1 = true }

lemma-rewrite (6.22)

{ q3 6= true ,

q2 = true,
true = true }

=-decomp

{ q3 = true ,

true = true ,

q1 = true }

=-decomp

{ q2 6= true ,

true = true }

=-decomp

b) Modeling Contextual Rewriting { q1 = true }

lemma-rewrite (6.21)

{ q2 = true,

q1 = true }

lemma-rewrite (6.23)

{ q3 6= true,
q2 = true,
q1 = true }

{ q3 = true,
true = true,
q1 = true }

=-decomp

{ q2 6= true,
true = true }

=-decomp

c) Modeling Case Rewriting of [BR93] { q1 = true }

lemma-rewrite (6.21)

{ q2 = true,
q1 = true }

lemma-rewrite (6.22)

{ q3 = true,

q2 = true,

q1 = true }

lemma-subs (6.23)

{ q3 6= true,
q2 = true,
true = true }

=-decomp

{ q2 6= true,
true = true }

=-decomp

Figure 6.3: Proof State Trees for Example 6.9
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literal to rewrite q1 to true although this literal is not mandatory. This can be done since
the condition literal of the applied lemma is mandatory. 2

For an extensive relief test, the following property would be useful: If a goal can be proved
by simplification without any restrictions on the elements that can be used then it can also
be proved obeying the restrictions caused by a mandatory marking. Unfortunately, this
strong property does not hold as will be shown in Example 6.10, a simple generalization of
Example 6.9.

The interaction of head literals in lemma clauses and mandatory literals in goal clauses
restricts the search space of the simplification process very much: In most cases, a lemma
will be applied to a goal only if the head literal of the lemma is mandatory in the goal.
The proof step then transfers the mandatory marking from the head literal to its condition
literals. This direction can be inverted automatically only if the gap between the head
literal and one of the condition literals can be closed in one step within the goal clause,
i.e. if one condition literal is a mandatory literal of the goal clause as in Example 6.9.
Otherwise, we have to use auxiliary lemmas to bridge the gap.

Example 6.10 Given five boolean valued constants r1, . . . , r5, we assume the activation
of the following lemmas

{ r1 = true,
r2 6= true }

(6.25)

{ r1 = true,
r3 6= true }

(6.26)

{ r2 = true,
r4 6= true }

(6.27)

{ r3 = true,
r5 6= true }

(6.28)

{ r4 = true,
r5 = true }

(6.29)

and want to prove the goal

{ r1 = true } (6.30)

The specification is illustrated in Figure 6.4 by solid lines. We assume that the first
literal is used as head literal for each lemma. There is a gap of two steps e.g. between
r1 = true and r5 = true that cannot be closed automatically. Using the mandatory
markings heuristics, our automatic proof control performs two proof attempts which are

r1 = true

r2 = true r3 = true

r4 = true r5 = true
∨

∨

Figure 6.4: Illustration of Example 6.10
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{ r1 = true }

lemma-rewrite (6.26)

{ r3 = true ,

r1 = true }

lemma-rewrite (6.28)

{ r5 = true ,
r3 = true,
r1 = true }

{ r5 6= true ,

true = true ,

r1 = true }

=-decomp

{ r3 6= true ,

true = true }

=-decomp

lemma-rewrite (6.25)

{ r2 = true ,

r1 = true }

lemma-rewrite (6.27)

{ r4 = true ,

r2 = true,
r1 = true }

lemma-rewrite (6.29)

{ r5 6= true ,

r4 = true,
r2 = true,
r1 = true }

{ r5 = true ,
true = true ,

r2 = true,
r1 = true }

=-decomp

{ r4 6= true ,

true = true ,

r1 = true }

=-decomp

{ r2 6= true ,

true = true }

=-decomp

Figure 6.5: Two Failed Proof Attempts for Goal (6.30) of Example 6.10

illustrated in Figure 6.5. None of the lemmas can be applied to one of the two open goals
without violating the restrictions caused by the mandatory marking. In the open goal
of the first proof attempt, for instance, only literal r5 = true is marked as mandatory.
Therefore, the only way to obey the restriction caused by the mandatory marking would be
to apply Lemma (6.29). But as r4 is not present in the goal, we cannot apply the lemma
for rewriting r4 as required by the activation. The same argument holds true for the open
goal of the second proof attempt, Lemma (6.28) and operator r3 which is not present in
the goal.

We can overcome this situation by introducing e.g. one of the following auxiliary lemmas
(illustrated in Figure 6.4 by dashed lines):

{ r2 = true,
r3 = true }

(6.31)

{ r1 = true,
r5 6= true }

(6.32)

Each of these lemmas as well as Goal (6.30) (after activating one of (6.31), (6.32)) can be
proved automatically. Goal (6.30), for instance, can be proved analogously to Goal (6.24)
in Example 6.9 if we activate Lemma (6.31) (cf. Figure 6.3a replacing qi with ri). If we
activate Lemma (6.32) we can prove the open goal of the second proof attempt in Figure 6.5.
Thus, we can bridge the gap. 2

Theorem 6.11 states that we can always close gaps with auxiliary lemmas.
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Theorem 6.11 If a goal can be proved by simplification without any restrictions on the
elements that can be used then it can also be proved with a mandatory marking with the
help of some auxiliary lemmas which themselves can be proved with a mandatory marking.
More precisely, if a proof violates the restrictions at n goal nodes then we need at most n
auxiliary lemmas.

Proof. A proof step that creates a subgoal that does not possess any new literal cannot
contribute to a proof. Hence, it can be eliminated from the proof. Thus, we can assume
that a proof contains at least one new literal in each subgoal. As we mark at least one of
the new literals as mandatory, each subgoal contains at least one mandatory literal. If a
proof step applied to a goal G in the proof violates the restrictions caused by a mandatory
marking we can introduce a new lemma consisting of this goal G. As each proof attempt
for a new lemma starts with all literals marked as mandatory, the proof of the lemma
succeeds with a mandatory marking. Whatever head literal is chosen for this lemma, it can
be applied to prove goal G which formerly violated the restrictions caused by a mandatory
marking. The lemma is applicable because at least one literal in G is mandatory. 2

Unfortunately, the required auxiliary lemmas cannot be calculated automatically. In fact,
the automatic generation of lemmas according to the last proof would counteract the manda-
tory marking because proof search would continue for the auxiliary lemmas with all elements
marked as mandatory again. Nevertheless, the auxiliary lemmas may be manually extracted
from failed proof attempts. In contrast to this, Contextual Rewriting may not even be able
to make use of auxiliary lemmas simply because one cannot build a bridge when a bank is
forbidden.

6.2.2 Forbidden Markings in Goals

Other approaches known from the literature perform the relief test in such a way that certain
elements are excluded from the generated subgoals. In these approaches, excluded elements
are completely eliminated from the subgoals, resulting in unsafe lemma applications. Within
our flexible framework, we model these approaches in a safe way by introducing a forbidden
marking in goals. In this section, we consider adaptable inference systems defined with
cut-off part (cf. Definition 5.6).

Restriction 6.12 (Caused by Forbidden Marking) An inference rule may be applied
to a goal G with a forbidden marking only if all forbidden elements that are principal in
this proof step are cut-off elements. 2

We account for the elimination of forbidden elements in the approaches known from the
literature in the following way: Once an element is marked as forbidden in a goal G,
it remains forbidden in the whole proof attempt for G. Our modeling with a forbidden
marking improves the versions in the literature insofar as forbidden elements may serve as
cut-off elements. Let G be a goal with a forbidden marking and G′ be the goal derived from
G by eliminating all forbidden elements. According to Definition 5.6, an inference rule I ′

is applicable to a goal G′ iff the inference rule adaptI (I ′, G) is applicable to G. Therefore,
proof search is essentially the same in both cases except that the approaches that eliminate
forbidden elements have to prove
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• additional subgoals that are cut off by the forbidden elements;

• stronger goals since conditions in form of forbidden elements are missing. This may
even cause a failure of a proof attempt because of a subgoal which is, in fact, trivial
if we do not eliminate forbidden elements.

Thus, we consider the use of a forbidden marking as an adequate and safe alternative for
modeling previous approaches from the literature. The additional cut-off elements do not
change the search space, but relax the success criterion of our proof search. In Section 6.3,
we perform case studies to validate the adequacy of our modeling of Contextual Rewriting
and to demonstrate the additional benefits of using forbidden elements as cut-off elements.

6.2.2.1 Contextual Rewriting

Contextual Rewriting in the narrower sense is used e.g. in NQTHM [BM88a], ACL2 [KMM00],
RRL [Zha95], and more recently in RDL [AR03]. These approaches vastly differ in their sim-
plification process e.g. in the way they use equality information. NQTHM [BM88a] and ACL2

[KMM00] use the cross fertilization technique while RRL [Zha95] uses a constant congruence
closure algorithm. In RDL [AR03], decision procedures can be used by the simplification pro-
cess. Nevertheless, they use the same literals to perform the relief test: The focus literal in
the applicability subgoals as well as all downfolded literals are marked as forbidden. On the
one hand, Contextual Rewriting is not very restrictive because it admits non-contributing
proof steps. On the other hand, it is often too restrictive as can be seen in our examples:

Example 6.13 (6.7 continued) The second application of Axiom (6.1) in Figure 6.1
rewrites a literal initially used as focus literal. Thus, Contextual Rewriting fails. 2

Example 6.14 (6.9 continued) Two lemmas have to be applied to the same goal literal
to perform a successful proof. But after applying one lemma, the focus literal is forbidden
for the rest of the proof attempt. This situation is depicted for one proof attempt in
Figure 6.3b where forbidden literals are marked by crossing them out. The proof attempt
fails at the left-most leaf as q1 = true cannot be used anymore. It is not possible to
overcome this situation with auxiliary lemmas. 2

Not surprisingly, Example 6.10—a generalization of Example 6.9—cannot be proved with
Contextual Rewriting either. Nevertheless, a slight modification changes the example in
such a way that it can be proved with Contextual Rewriting but not with our novel heuristics
with a mandatory marking (in the simple form presented in Section 6.2.1 and without
auxiliary lemmas).

Example 6.15 Given six boolean valued constants s1, . . . , s6, we assume the activation
of the following lemmas

{ s1 = true,
s3 6= true }

(6.33)

{ s2 = true,
s4 6= true }

(6.34)
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s1 = true, s2 = true

s3 = true s4 = true

s5 = true s6 = true
∨

Figure 6.6: Illustration of Example 6.15

{ s3 = true,
s5 6= true }

(6.35)

{ s4 = true,
s6 6= true }

(6.36)

{ s5 = true,
s6 = true }

(6.37)

and want to prove the goal

{ s1 = true,
s2 = true }

(6.38)

The specification is illustrated in Figure 6.6. We assume that the first literal is used as
head literal for each lemma. Whereas Contextual Rewriting can apply Lemmas (6.33) to
(6.37) one after the other, our heuristics based on mandatory markings cannot close the
gap without auxiliary lemmas or generous literals (cf. Sections 6.2.1 and 6.2.4). 2

6.2.2.2 Case Rewriting

Case Rewriting tries to overcome the difficulties of Contextual Rewriting by a special treat-
ment of lemmas that can be applied to rewrite the same redex alternatively, such as e.g.
Lemmas (6.21) and (6.22) in Example 6.9. In this sense, our approach with a mandatory
marking is a novel form of Case Rewriting. There are at least two further approaches known
from the literature [BR93, KR90].

The approach for Case Rewriting proposed in [KR90] restricts the relief test by order
constraints which we cannot use in general for our application domain as we allow non-
terminating operator definitions.

In the approach of Case Rewriting in [BR93], a term is rewritten by a set of n lemmas
resulting in n+1 new subgoals: For each lemma one rewrite subgoal is created; additionally
one well-coveredness subgoal is produced. This last subgoal is to guarantee the completeness
of the case split w.r.t. the given lemmas.

Example 6.16 (6.9 continued) For the specification of Example 6.9, this Case Rewrit-
ing approach can be modeled by applying the two lemmas in succession as depicted in
Figure 6.3c. In the well-coveredness goal—i.e. the left-most goal—only the condition liter-
als may be used. As the case split for Lemmas (6.21) and (6.22) is complete according to
Lemma (6.23), the proof can be completed. 2
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The approach of [BR93] seems to have the following limitations: The set of lemmas applied
depends only on the focus literal but not on the context. A single well-coveredness goal is
sufficient only if all lemmas differ only in a single condition literal. The well-coveredness
goal cannot be proved if the case split is incomplete.

Example 6.17 (6.13 continued) The applications of Lemma (6.8) and Axiom (6.1) in
Figure 6.1 do not form a complete case split. Actually, they even do not rewrite the same
redex. Thus, Case Rewriting according to [BR93] cannot be applied. Moreover, in contrast
to [BR93], our approach with a mandatory marking can make use of other goal literals to
prove the well-coveredness subgoal. 2

6.2.3 Obligatory Markings in Lemmas

On the one hand, the use of a mandatory marking as explained in Section 6.2.1 results in an
extensive relief test. But as we call the simplification process recursively for any condition
subgoal whose condition literal is not directly fulfilled in the goal (cf. Section 2.2.2.10), it
may be very time-consuming. On the other hand, using only directly applicable lemmas is
a very efficient but not extensive relief test because it checks only syntactic equality. As
a compromise, we introduce an obligatory marking in lemmas that restricts the relief test
for obligatory elements to the efficient syntactic test. This guides the proof search in a
user-defined way, manually controlling the degree of extent and efficiency for each lemma
separately.

Restriction 6.18 (Caused by Obligatory Marking)
A lemma with an obligatory marking may be applied to a goal G only if all obligatory
elements are directly fulfilled in the goal. 2

Thus, a lemma with an obligatory marking is only applicable if the instantiated obligatory
elements are present in the goal. Therefore, we may interpret the obligatory marking as a
user-defined means to extend the principal part in the goal w.r.t. the applied lemma.

By marking elements as obligatory, we restrict proof search. In doing so, we may prevent
the automatic derivation of proofs. Thus, elements are automatically marked as obligatory
only if the head literal of the lemma is an equation that is used as rewrite rule with a general
term as left-hand side, i.e. a term of the form f(x1, . . . , xn) in which the xi are pairwise
different variables. Without obligatory elements, the relief test would be invoked too often
in this case, most of the time unsuccessfully.

Heuristics 6.19 (for Marking Elements as Obligatory)
Our automatic default heuristics chooses one obligatory element3 if the lemma is used as
rewrite rule with a general term as left-hand side. 2

3More precisely, the next literal after the head literal is marked as obligatory. Therefore, the user may
influence this heuristics with the order of the literals in the lemma clause. Certainly, this default heuristics
may also be completely overwritten manually.
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{ div1(x , y , 0, 0) = . . . }

axiom-rewrite (6.40)

{ x = 0 , div1(x , y , 0, 0) = . . . }

axiom-rewrite (6.41)

{ x = 0 , div1(x , y , s(0), +(0, y)) = . . . }

axiom-rewrite (6.40)

.

.

.

{ x 6= 0 , 0 = . . . }

Figure 6.7: Non-terminating Relief Test in Example 6.21

Example 6.20 If we use the first literal of the trichotomy of less

{ less(x , y) = true,
less(y , x ) = true,
x = y }

(6.39)

as head literal then it is activated as rewrite rule for operator less with a general term as
left-hand side. When applying this lemma, the relief test reduces the question whether x is
less than y to the question whether y is not less than x and whether they are unequal. But
this relief test is in most cases not simpler than the original problem. In Example 6.8, the
activation of Lemma (6.39) would increase the number of inference steps from 9 to 12. But
if the context says that neither x is less than y nor y is less than x then we can derive that
x is equal to y by Lemma (6.39). Thus, we may prove the remaining literals of the clause in
the possibly very useful context that x is equal to y . Therefore, the automatic application
of the lemma should be restricted by marking the second lemma literal as obligatory. 2

Example 6.21 Another example is given by the axioms of a division operator:

{ div1(x , y , u, v) = u,
x 6= v }

(6.40)

{ div1(x , y , u, v) = div1(x , y , s(u), +(v , y)),
x = v }

(6.41)

Without marking literals as obligatory the relief test illustrated in Figure 6.7 does not
terminate. During the relief test for Axiom (6.40), Axiom (6.41) can be applied for rewriting
because the mandatory literal directly fulfills the condition literal of Axiom (6.41). Since
the rewriting changes the second goal literal it becomes mandatory and thus can be used
for further rewrite steps with the axioms. If the conditions of the axioms are marked as
obligatory, already the first relief test is prevented. 2
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6.2.4 Generous Markings in Lemmas

The efficiency of the relief test can be improved and manually controlled with obligatory
markings. To enhance the extent of the relief test based on a mandatory marking in a
user-defined way, we now introduce generous markings in lemmas.

The idea of our mandatory markings is to prefer (locally) contributing proof steps,
and, therefore, to prevent non-contributing proof steps. But as explained in Example 6.5,
applying only those proof steps that locally contribute to a proof, restricts proof search too
much and prevents too many proofs where all proof steps are contributing but some of them
do not locally contribute to the proof. Therefore, our default Heuristics 6.6 for marking
mandatory elements in subgoals applies strict or relaxed mandatory marking heuristics
depending on the type of the subgoal, i.e. whether it is an applicability subgoal, an order
subgoal or another subgoal. But even with this default Heuristics 6.6, proof search is
restricted in such a way that we may require auxiliary lemmas just to compensate for
the restrictions caused by our mandatory markings (cf. Example 6.10 and Theorem 6.11).
Auxiliary lemmas may be required for two reasons:

1. to find a proof at all (cf. Example 6.10); or

2. to improve the efficiency of proof search by introducing shortcuts in the search space.
With auxiliary lemmas, proof search may be guided on a fine-grained level. But this
burdens the user with having to pick suitable auxiliary lemmas.

Instead of introducing auxiliary lemmas that just compensate for the restrictions caused by
mandatory markings, we may vary the mandatory markings heuristics. On the one hand,
if we use only the strict mandatory markings heuristics, all proof steps locally contribute
to the proof. On the other hand, if we use only the relaxed mandatory markings heuristics,
we do not pose any restrictions on proof search at all. As a compromise, we introduce
generous markings of lemma literals. With generous elements the default behavior for
marking mandatory elements in the subgoals as described in Heuristics 6.6 can be changed
in a flexible way.

Restriction 6.22 (Caused by Generous Marking) If a lemma with a generous mark-
ing is applied to a goal G, it causes the following restriction on the mandatory marking of
a condition or rewrite subgoal SG:

If SG is generated from a lemma literal which is marked as generous, then the mandatory
marking of SG is inherited from G and supplemented with all the new elements of SG.
Thus, the marking is generated with the relaxed marking heuristics used for rewrite subgoals
in Heuristics 6.6.

If the corresponding lemma literal is not generous, then a new set of mandatory elements
is introduced for SG consisting exactly of the new elements in SG. In this case, the marking
is generated with the strict marking heuristics used for condition subgoals in Heuristics 6.6.

2

Heuristics 6.23 (for Marking Elements as Generous) Our automatic default heuris-
tics marks exactly the head literal of every rewrite lemma as generous. 2
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Note that, with Heuristics 6.23, the mandatory marking Heuristics 6.6 in Section 6.2.1 now
works exactly as without a generous marking before.

Generous elements relax the restrictions caused by a mandatory marking. Therefore,
we may avoid some auxiliary lemmas.

Example 6.24 (6.10 continued) If all literals in Lemmas (6.25) and (6.26) are generous,
we may first apply these two lemmas. This results in the following clause:

{ r2 = true,
r3 = true,
r1 = true }

(6.42)

Due to the generous marking, all literals in this clause are mandatory. Therefore, we can
prove this clause in the same way as Lemma (6.31). 2

Using the relaxed mandatory markings heuristics for generous elements clearly extends the
search space. Therefore, one would expect that we get a less efficient relief test. Often, this
holds true but, in general, it is not that easy to analyze the effects of generous elements
on proof search. Generous elements enable more proof steps that do not locally contribute
to the proof. For these proof steps, we do not know whether they contribute to the proof.
Often, they are non-contributing. But, sometimes, they may enable additional proof steps
that introduce shortcuts during proof search. They may avoid many failed proof attempts
resulting in improved efficiency. Thus, generous elements may have similar effects on proof
search as auxiliary lemmas: They may enable a proof at all and they may increase the
efficiency of proof search. But they also extend the search space—just as auxiliary lemmas
do—which may decrease the efficiency of proof search as well.

In general, the introduction of auxiliary lemmas allows us to guide proof search on a more
fine-grained level than this can be done by marking elements as generous. In the former
case, we may introduce just the lemma instance required for closing the proof state tree,
whereas, in the latter case, many lemmas may become applicable—most of them resulting
in unsuccessful proof attempts. Therefore, auxiliary lemmas do not extend the search space
as much as generous markings do. Thus, for efficiency reasons it is advantageous to use
auxiliary lemmas. But generous markings relieve the user of the burden of picking these
auxiliary lemmas. Thus, we recommend their use in a limited way for complicated proofs.
This is done for the case study about LPO in Chapter 8.

Often, the coarse-grained extension of the search space caused by generous elements
introduces too many non-contributing proof steps which contain unnecessary proof obli-
gations in terms of open goal nodes. These additional proof obligations countervail the
benefits of the generous markings in such a way that, actually, the efficiency of proof search
decreases when using generous markings on their own. In Chapter 7, we introduce upward
propagation—a reuse technique that prunes a proof by eliminating all non-contributing
proof steps. The combination of generous markings and upward propagation allows us

1. to search for a proof performing proof steps that do not locally contribute; and

2. to eliminate proof obligations of non-contributing proof steps.
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Only in this combination, generous markings can display their full power. Therefore, we do
not consider generous markings in this chapter anymore. Instead, we validate the benefits
of generous markings in Section 8.2.2.3 on the basis of our case study about the LPO after
having introduced upward propagation in Chapter 7.

Even in combination with upward propagation, generous markings should be used with
caution. We recommend their use if a lemma (or a literal in a goal) is expected to be
essential for the proof, i.e. a proof cannot be found without using the lemma (or the literal
in the goal), and the proof itself is expected to be easy but not necessarily linear. Usually,
we assume that these properties hold true for goals containing definedness atoms which are
proved by applying corresponding domain lemmas. Therefore, we usually mark as generous:

• negated definedness atoms in all lemmas because they generate definedness atoms in
the corresponding condition subgoals; and

• all literals in domain lemmas.

Furthermore, if an operator f is defined in terms of other function symbols using defining
rules which are not recursive, we may decide to reduce terms containing operator f with
its defining rules in any case. Then, the literals in the defining rules of operator f should
be marked as generous.

6.2.5 Further Heuristics for Guiding Proof Search

To get a practicable method for guiding proof search we apply further heuristics:

• We prevent repeated applications of the same inference rule with the same principal
literals within one proof attempt (disregarding cut-off literals): For the application of
an inference rule I to a goal G, we inspect all the applications on the branch of the
proof state tree from the root goal to G.

In particular, when using generous markings for condition literals in lemmas, this
mechanism is required for avoiding trivial rewrite loops: As the condition subgoal
generated from a generous condition literal inherits the mandatory marking from its
parent goal, the same inference step is applicable again.

• We do not apply lemmas that apparently do not support the proof of the goal. There
may be two reasons for this: Firstly, the conditions of the lemma and the context
of the goal are inconsistent, i.e. the context contains the negation of one condition.
Secondly, the focus literal of the goal is rewritten to an obviously unsatisfiable literal
as e.g. t 6= t.

• During an automatic proof attempt, we do not want to guess any instantiations of
lemma variables. Thus, extra variables—i.e. variables that are not bound by matching
the head literal to the focus literal—must be instantiated by matching condition
literals to context literals.

• Permutative lemmas as e.g. the commutativity of + are applied only w.r.t. a fixed
wellfounded total term order. By this, we hope to prevent infinite rewrite chains with
permutative lemmas.
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• To prevent infinite loops when proving applicability subgoals, the maximal recursion
depth can be restricted.

6.3 Case Studies

In this chapter, we have presented novel heuristics to restrict the relief test for conditional
lemmas. To validate our novel heuristics on some real case studies, we have to integrate
them into an inductive proof process. As in Section 4.3.1 we want to study solely the effects
on proof search caused by the different heuristics based on markings. Therefore, we compare
the different heuristics with as few differences as possible. Instead of comparing different
systems that implement the various heuristics, we use the same proof process as well as
the same specifications within a single system. Thus, we realize Contextual Rewriting as
explained in Section 6.2.2.1. At the end of this section we will also point out how the results
obtained by our simulations carry over to other provers.

Due to its flexible inference system (cf. Sections 2.2.2 and 4.2.3), we choose our inductive
theorem prover QuodLibet to perform the simulations. The inference rules for rewriting
and subsumption allow for the simulation of the different heuristics easily. Note that systems
based on Contextual Rewriting eliminate the focus literal from the condition subgoals.
Thus, their underlying inference systems would have to be changed to simulate our novel
heuristics.

Since our heuristics are particularly suited for the application of lemmas but do not
provide special means for the application of linear arithmetic we use the simpler waterfall
of Section 3.2.2 for the comparison. Thus, we use Configuration (A) from Section 4.3.1
which triggers more applications of lemmas. In the following, we present further details
about the automatic application of lemmas during the phases reduce1 and reduce2 of
the waterfall. As explained in Section 3.1.4, lemmas may be applied automatically only
if they are activated. During the activation of a lemma the user may provide the head
and the obligatory and generous literals of the lemma. Otherwise, they are determined
by some heuristics (cf. Section 6.2.3 for obligatory, Section 6.2.4 for generous, and [SS04]
for head literals). Lemmas are tested in reverse activation order, which may be changed
to influence the proof search. If a head literal is an equation (whose left-hand side is not
a variable), it is used for rewriting ; otherwise, for subsumption. Subsumption is checked
for first; then the subterms of the focus literal are tested for rewriting, using an innermost
left-to-right strategy. If a lemma can be applied and all its applicability subgoals can be
proved, its application will not be deleted anymore. Thus, no alternative proof attempts for
successful applications will be tried out during this tactic execution. Contrariwise, a lemma
application—together with all proof attempts of the applicability subgoals—is deleted if the
relief test fails. This results in a backtracking step. Further details can be found in [SS04].

For a fair evaluation of forbidden markings, we have slightly modified the automatic
application of axioms during our simplification process when using a forbidden marking:
If axioms can be applied to the same redex alternatively (such as the axioms of the gcd

in Example 6.1) a Cut with the condition literal(s) will be performed automatically using
inference rule lit-add. This then enables the application of all axioms. Otherwise, already
the second application would be prevented because the rewrite literal becomes forbidden
after the first application. This simulates the operator unfolding operation in systems like
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Example Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtime
sqrt (E)

Lpo

38
154

2 + 0
5 + 67

529
5458

2
404

527
5054

1.46
36.89

Table 6.1: Complexity of the Additional Case Studies

NQTHM where all axioms are given in one operator definition. Together with the additional
admission of forbidden literals as cut-off literals, this results in a modeling where Contextual
Rewriting can display its full power.

Beside the case studies sortalgos, gcd, exp-exhelp, and sqrt (H) from Section 4.3.1,
we use the following additional case studies for the comparison:

sqrt (E): This example contains another proof of the irrationality of
√

2 based on ideas
of Euclid of Alexandria.

Lpo: This is a simplified version of our case study about the lexicographic path order LPO
(cf. Chapter 8). In this version, we prove that every LPO is a simplification order.
Furthermore, we prove the equivalence of two different implementations of the LPO
[Löc04].

Table 6.1 illustrates the complexity of the additional case studies. It contains the number
of lemmas (constant for all heuristics), and, for our novel heuristics with a mandatory and
obligatory marking, the number of manual interactions (manually applied inference rules
+ manually chosen induction order), the number of automatically applied inference rules
(including the later deleted ones), the number of deleted inference rules due to a failed
relief test, the number of inference rules in the final proof and the runtime in seconds
measured by a CMU Common Lisp system on a machine with a 1 GHz Intel III processor
and 4 GB RAM. For the complexity of the other case studies, we refer to the entries of
Configuration (A) in Table 4.1.

Table 6.2 contains for each example and each heuristics based on a combination of
obligatory, mandatory and forbidden markings the following statistics: in column “Open
Lemmas”, the number p of proof state trees that cannot be closed with this heuristics;
the entries in the other columns take into account only those proof state trees that are
closed with all heuristics: We do not count applications and deletions of inference steps of
open proof state trees because failed proof attempts tend to create large proof state trees,
tampering our results.

From the statistics in Table 6.2, we draw the following conclusions:

• Since the specification of gcd contains non-terminating rewrite rules, it can be per-
formed only with an obligatory marking. For the other examples, obligatory markings
restrict the search space without influencing the resulting proofs very much: The num-
ber of inference steps in the final proof is nearly the same regardless of the usage of
obligatory markings.

• The best heuristics w.r.t. efficiency (as underlined in the table) use a combination of
mandatory/obligatory {m,o} and forbidden/obligatory {f,o} markings, respectively.
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Heur. Open Lemmas Autom. Appl. Del. Fin. P. Runtime

Example sortalgos

∅

{o}
{m}

{m,o}
{f}

{f,o}

2
0
0
0
0
0

2348
2143
2072
2007
2354
2168

143
19

107
40

234
60

2205
2124
1965
1967
2120
2108

6.77
5.56
5.53
5.09
6.31
5.13

Example gcd

∅

{o}
{m}

{m,o}
{f}

{f,o}

—
0
—
0
—
9

—
911
—

893
—

974

—
5

—
9

—
18

—
906
—

884
—

956

—
2.13

—
2.14

—
2.07

Example exp-exhelp

∅

{o}
{m}

{m,o}
{f}

{f,o}

0
0
0
0
0
0

3290
3290
1278
1278
1342
1342

9
9

116
116
204
204

3281
3281
1162
1162
1138
1138

299.28
298.90

7.26
7.22
7.85
7.77

Example sqrt (H)
∅

{o}
{m}

{m,o}
{f}

{f,o}

1
0
0
0
0
0

2008
1059
1064
1046
1021
980

969
26
31
13
60
25

1039
1033
1033
1033
961
955

16.11
5.98
6.22
5.85
5.40
5.28

Example sqrt (E)
∅

{o}
{m}

{m,o}
{f}

{f,o}

0
0
0
0
3
3

477
471
477
471
483
467

4
0
4
0

16
0

473
471
473
471
467
467

1.24
1.18
1.24
1.25
1.27
1.26

Example Lpo

∅

{o}
{m}

{m,o}
{f}

{f,o}

1
0
0
0
1
1

11125
7621
5746
4988

32946
8050

1089
848
971
330

26667
2135

10036
6773
4775
4658
6279
5915

291.37
153.85
46.44
31.28

370.79
50.89

Table 6.2: Comparison of the Different Heuristics
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As the same simplification process is used, these two heuristics can differ only if a
proof step cannot be applied due to the restrictions caused by mandatory or forbid-
den markings. Only for the Lpo example, a major advantage in efficiency can be
determined, favoring our novel {m,o} heuristics.

• As printed in bold in the table, of 466 lemmas in total 13 lemmas cannot be proved
with {f,o}, but our novel {m,o} heuristics proves all of them.

Note that in our modeling of Contextual Rewriting with {f,o}, 13528 subgoals are created,
but 1296 definedness and 648 condition subgoals—as well as the proof trees rooted in
them—are cut-off by using forbidden literals as cut-off literals.

Finally, to answer the question about the adequacy of our simulation of Contextual
Rewriting, we converted one of our case studies into a proof script for a prover based on
Contextual Rewriting. We chose the gcd example as it contains most failed proof attempts
with a forbidden marking. As prover we used NQTHM [BM88a] because we did not want to
use the decision procedures for linear arithmetics integrated in ACL2. Instead, we used the
shell principle to define our own type for natural numbers. We applied the following trans-
formations to the original proof script: The specification style is changed from constructor
to destructor recursion. Partial definitions are simulated using F as undefined value. As
NQTHM is untyped, we explicitly restrict all lemmas to natural numbers only. These trans-
formations were quite easy. Additionally, we added one operator definition just to provide
a suitable induction scheme for the proof of one lemma as well as four auxiliary lemmas to
enable the proof of two lemmas—namely Lemma (6.7) of Example 6.1 and a similar lemma
that are proved in QuodLibet by mutual induction. These are two of the nine lemmas
that failed with our simulation of {f,o} in QuodLibet. From the remaining seven lemmas,
only two are not proved automatically. Note that this is not a weakness of our simulation
of Contextual Rewriting. Instead, the difference is caused by different induction principles:
NQTHM uses explicit induction (cf. Section 3.1.2). Thus, it does not apply lemmas induc-
tively but splits, at the beginning of a proof, the induction steps of conditional lemmas in
different cases and immediately adds a promising induction hypothesis. In contrast to this,
we use descente infinie (cf. Section 3.1.3). Therefore, we have to use the relief test more
often in QuodLibet. Beside the failed proofs in the statistics, two lemmas proved by our
novel heuristics with simplification are proved by induction in NQTHM. Thus, these proofs
are more complex in NQTHM.

6.4 Concluding Remarks

Rewriting with conditional lemmas is at the heart of many (inductive) theorem provers.
Especially for interactive theorem provers, it is essential not only to prove as many lemmas
automatically as possible but also to restrict proof search in a suitable way such that the
proof process stops within a reasonable amount of time.

In this chapter, we have developed a framework that allows us to restrict proof search
in a flexible way using heuristics based on markings in goals and lemmas. Within our
framework we can simulate Case Rewriting and Contextual Rewriting with a forbidden
marking in goals. The adequacy of our simulation of Contextual Rewriting is demonstrated
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by carrying over a case study to NQTHM. Furthermore, we have developed a novel heuris-
tics {m,o} based on the orthogonal concepts of a mandatory marking in the goals and an
obligatory marking in the lemmas. For the comparison of the heuristics we chose the well
established application domain of rewrite-based simplification in inductive theorem prov-
ing. Our simulation of Contextual Rewriting {f,o} is competitive with our novel heuristics
{m,o} regarding efficiency but not regarding extent. Nevertheless, the benefits of our novel
heuristics are slightly decreased in theorem provers using explicit induction because they
do not perform a relief test for induction hypotheses.

Neither Case Rewriting nor Contextual Rewriting nor our novel heuristics are perfect.
For all of them, we have identified proof patterns that cannot be handled with the basic
version of these heuristics. For our novel heuristics, we can always overcome these difficulties
using auxiliary lemmas or a generous marking in the lemmas relaxing the restrictions caused
by a mandatory marking. This is not possible e.g. for Contextual Rewriting. Furthermore,
our framework allows us to choose between the different heuristics and to combine them
easily. With obligatory and generous markings in lemmas we can fine-tune the degree of
extent and efficiency of the proof search manually.

Our framework depends only on the partitioning of goals into principal part, cut-off
part and context according to the inference rule applied. The basic distinction between
principal part and context was already introduced in Gentzen’s seminal work on sequent
calculi [Gen35]. Therefore, this partitioning (and also the refinement with cut-off formulas)
should pose no problems for inference systems based on sequent calculi. Indeed, a similar
form of lemma application occurs in all practice-oriented mathematical assistance systems
and the concepts behind our marking as mandatory, forbidden, obligatory, and generous are
all in great demand and applicable, provided that we extend the inheritance procedures to
the new inference rules in a meaningful way. As explained in Section 6.3, systems based on
Contextual Rewriting eliminate the focus literal from the condition subgoals. Thus, their
underlying inference systems have to be changed as a prerequisite for the integration of
our marking techniques. This may require significant technical effort. Then, the marking
techniques may be realized using wrapper functions for the inference rules as it is done in
QuodLibet.



Chapter 7

Reusing Contributing Proofs

Primarily, the automatic proof control searches for a proof by applying inference rules to
goals based on heuristics. This proof search is often very time-consuming. Since we do not
have perfect heuristics, we cannot decide a priori whether a proof step will contribute to
a proof, is superfluous, or—even worse—prevents a successful proof. In the latter case, we
have to backtrack to revise a former proof step. Contrariwise, if we can reuse an old proof,
we are able to perform only contributing proof steps without any backtracking. Therefore,
reuse is much more efficient than proof search. But the reuse capabilities are often rather
limited. In this chapter, we try to enhance these capabilities for adaptable inference systems
(cf. Section 5.2).

Usually, arbitrary proofs are searched for. Minimal proofs are not considered unless
proofs are presented to human users or proof checkers. This seems to be reasonable because
finding a minimal proof for a clause Γ may be more difficult than finding arbitrary proofs
at all. Nevertheless, minimal proofs may indicate that some of the premises in Γ are not
needed for the validity of Γ. The elimination of these unused elements delivers a stronger
theorem with higher potential for reuse. This is particularly useful for lemmas that have
been speculated automatically.

In this chapter, we refine our notion of contribution (cf. Section 5.3). More precisely, we
present algorithmic definitions of essentially contributing proof steps and essentially con-
tributing elements in a goal which mutually depend on each other. Instead of searching
for minimal proofs, we analyze and prune each proof found w.r.t. its (essential) contri-
bution.1 We derive a pruned proof by deleting each non-contributing proof step. Every
non-contributing element of goal G for proof P is superfluous for the validity of G. There-
fore, the notion of contribution extracts the essence of a proof.

We do not apply this pruning only for the whole proof of the root goal but for every
subgoal. We may reuse the proof for a goal if the following reuse property holds:

Proof P for goal G is reusable for goal G′

if G′ contains all contributing elements of G for P .
(RP)

1In this chapter, we usually write “contribution” instead of “(essential) contribution”. The proposed
reuse techniques may be applied with “contribution” as defined in Definition 5.10 as well as with “essential
contribution” as defined in Definition 7.4. Note that “essential contribution” entails “contribution”. Thus,
more non-contributing proof steps may be identified and eliminated if we apply Definition 7.4.

149
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Reuse can be exploited in two different ways: Firstly, we can check property (RP) directly.
This is sensible if we transfer a proof sidewards in the proof state tree. Secondly, we can
propagate a proof for a subgoal upwards in the proof state tree as long as on the path
upwards none of its contributing elements has been introduced by the parent inference rule
of the subgoal, i.e. the parent goal contains all contributing elements of the subgoal. This
deletes proof steps that turned out to be superfluous and automatically improves the proof
in a restricted way. The deletion of the proof steps may also remove open proof obligations.

Sideward reuse may be interpreted as a restricted form of lemma application. Note that
we do not allow for any modifications to the contributing elements in property (RP) as e.g.
instantiation with a substitution σ. Therefore, we can check this property very efficiently.
The usefulness of our reuse mechanism depends on the fact that similar subgoals with the
same contributing elements will be generated within one proof. Our case studies provide
evidence for this.

In Section 7.1, we illustrate our reuse mechanisms for adaptable inference systems with
an example on an abstract level. In the subsequent sections, we present our approach in
more detail: We refine the notion of contribution in Section 7.2. Upward propagation and
sideward reuse as well as their integration into a simple waterfall model are described in
Section 7.3. In Section 7.4, we validate our approach with some case studies and conclude
this chapter with a survey of related work in Section 7.5.

7.1 A Motivating Example

In this section, we illustrate our reuse mechanisms on an abstract level. Figure 7.1 contains
a proof state tree for an abstract adaptable inference system IS with inference rules Ij (cf.
Section 5.2). As usual, goals are illustrated by their clauses given in rectangular boxes.
For reference purposes, we display a unique number for each goal in the lower right corner
enumerating goals in the tree in preorder. A clause is represented by the literals λi it con-
tains. The applied inference rules are illustrated in rounded boxes. For reference purposes,
we annotate each inference rule with an index that corresponds to the goal it is applied to.
Note that the tree contains the open goals G10 and G12. Thus, the clause in the root goal
G1 is not proved. Our approach restructures the given proof state tree automatically:

• It propagates a pruned proof for G3 upwards in the proof state tree to prove G2. In
doing so, the open goal G10 is eliminated.

• It reuses another pruned proof for goal G4 to prove goal G12.

Therefore, this restructuring results in a closed proof state tree. Furthermore, our approach
identifies literal λ4 as superfluous. Figure 7.2 displays the pruned proof state tree for
this strengthened clause. The labeling of the goals in this proof state tree refers to the
corresponding goals in the original proof state tree—e.g. goals G9′ and G9′′ in Figure 7.2
are derived from goal G9 in Figure 7.1. The same holds true for inference rules.

To perform the restructuring of the proof, we do not have to know the concrete inference
rules. Instead, we need information only about the partitioning of the goals into principal
part and context w.r.t. the applied inference rules, and about the elements that are modified
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{ λ1 , λ2, λ3, λ4 } 1

I1

{ λ5, λ1, λ2 ,

λ3, λ4 } 2

I2

{ λ6, λ5 , λ1,

λ2, λ3 , λ4 } 3

I3

{ λ7 , λ6, λ5, λ1,

λ2, λ3 , λ4 } 4

I4

{ ¬λ8 , λ7,

λ6, λ5, λ1,
λ2, λ3, λ4 } 5

I5

{ λ9 , λ8, λ7,

λ6, λ5, λ1 ,

λ2, λ3, λ4 } 6

I6

{ λ9 , λ8, λ7,

λ6, λ5, λ
′′
1,

λ2, λ3, λ4 } 7

I7

{ λ8σ, λ7σ, λ6σ,

λ5σ, λ
′′
1σ, λ2σ ,

λ3σ , λ4σ } 8

I8

{ ¬λ9, λ8 , λ7,

λ6, λ5, λ1,

λ2, λ
′
3 , λ4 } 9

I9

{ ¬λ6, λ5, λ1,
λ′2, λ3, λ4 } 10

{ ¬λ5 , λ
′
1 ≡ λ8,

λ2, λ3, λ4 } 11

I11

{ λ7,¬λ5, λ8,
λ2, λ3, λ4 } 12

Figure 7.1: Proof State Tree with Two Open Goals

in the new subgoals w.r.t. the parent goal. This information is given for adaptable inference
systems with functions princ, context , side, non-side and nside-src (cf. Section 5.2). In
Figures 7.1 and 7.2, principal literals are framed; the other literals form the context. If a
literal is derived from a principal literal in the parent goal, we use a primed version of this
principal literal in the subgoal. For new literals we use new indices. But this distinction
is not essential. In G11, literal λ′1 is derived from λ1 in G1 whereas ¬λ5 is a new literal.
We assume that λ′1 happens to be the same as λ8 indicated by λ′1 ≡ λ8 in G11. For all
inference rules in Figure 7.1 except for I7, non-side and nside-src are identity functions,
i.e. the context is transferred to the subgoals unmodified. The remaining literals in the
subgoals are generated by function side. In G8, the principal literal λ9 of G7 is removed.
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{ λ1 , λ2, λ3 } 1′

I1′

{ λ5 , λ1, λ2,

λ3 } 2′

I3′

{ λ7 , λ5, λ1,

λ2, λ3 } 4′

I4′

{ ¬λ8 , λ7,

λ5, λ1,
λ2, λ3 } 5′

I5′

{ λ9 , λ8, λ7,

λ5, λ1,
λ2, λ3 } 6′

I7′

{ λ8σ, λ7σ,

λ5σ, λ1σ, λ2σ ,

λ3σ } 8′

I8′

{ ¬λ9, λ8 , λ7,

λ5, λ1,

λ2, λ
′
3 } 9′

I9′

{ ¬λ5 , λ
′
1 ≡ λ8,

λ2, λ3 } 11′

I11′

{ λ7 ,¬λ5, λ8 ,

λ2, λ3 } 12′

I4′′

{ λ9 , λ7,¬λ5,

λ8, λ2, λ3 } 6′′

I7′′

{ λ7σ,¬λ5σ,

λ8σ, λ2σ , λ3σ } 8′′

I8′′

{ ¬λ9, λ7,¬λ5,

λ8 , λ2, λ
′
3 } 9′′

I9′′

Figure 7.2: Proof State Tree Closed with Upward Propagation and Sideward Reuse

All other literals in G8 are modified in a uniform way applying substitution σ. This is done
by function non-side. In this case, for a set Γ′ of literals in G8 generated from context(I7),
function nside-src may return an arbitrary set Γ ⊆ context(I7) such that Γσ = Γ′.

Note that the proof state tree is not generated arbitrarily. For each abstract inference
rule, we can find a concrete inference rule of QuodLibet that uses the same principal
elements and performs the same modifications to derive the new subgoals from the parent
goal. Consider, for instance, I4 in Figure 7.1. Assume that we are given a conditional
rewrite lemma { ¬λ9, λ8, λ7, s = t }, and that s = t may be used to rewrite λ3 to λ′3. For
the application of the lemma, we have to guarantee that the conditions of the lemma are
fulfilled. Therefore, inference rule lemma-rewrite generates a case split for every condition
that is not directly present in G4 resulting in condition subgoals G5 and G6. The rewrite
subgoal G9 establishes all conditions of the lemma. Thus, we can replace λ3 with λ′3 in G9.
Note that all other literals in G4 are transferred to subgoals G5, G6 and G9 without any
modifications. In this example, literals λ3 and λ7 are principal: Literal λ3 is rewritten in
G9, literal λ7 prevents the creation of one condition subgoal. As a second example, consider
inference rule I7. It corresponds to 6=-unif in QuodLibet.

For adaptable inference systems, an inference rule I with parent goal G can be adapted
to goal G′ if only G′ contains the principal part of G (for I). More precisely, function adaptI
returns an adapted inference rule I ′ that can be applied to G′. For each new subgoal of I ′,
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Goal Contributing Elements Contributing Proof Steps
G5 ¬λ8 I5
G8 λ2σ, λ3σ I8
G7 λ9, λ2, λ3 I7
G6 λ9, λ2, λ3 I7
G9 λ8, λ

′
3 I9

G4 λ7, λ2, λ3 I4
G3 λ5, λ2, λ3 I3

Table 7.1: Contribution for the Proof of G3 in Figure 7.1

function selectAG selects a subgoal of I that generates the same elements for the common
parts of G and G′. In Figure 7.2, we can adapt inference rule I4′ to G12′ because G12′

contains the principal literals λ3 and λ7 of G4′ . Note that the adapted inference rule I4′′
applied to G12′ generates one subgoal less than the application of I4′ to G4′ . We assume
that λ8 is used as cut-off literal in G12′ . It cuts off the subgoal that corresponds to G5′ .
As cut-off literals are considered to be principal, λ8 is framed in G12′ . Furthermore, λ8 in
goals G6′′ and G9′′ is not newly created but inherited from G12′ . The literals common in
G12′ and G4′ , however, generate the same literals in the corresponding subgoals.

How do we find out whether a whole proof P for G can be reused for G′ in our setting
for adaptable inference system? We can adapt the first proof step of P if G′ contains at
least the principal elements of G. There will be created at most as many new subgoals for
G′ as for G. If we can reuse the proofs of the subgoals of G for those of G′ we are done.
For this, we have to guarantee that the subgoals of G′ contain the principal elements of the
corresponding subgoals of G. Furthermore, we have to guarantee this property recursively
for all offspring goals.

With function nside-src we can determine the source in the parent goal of those elements
in a subgoal SG that are required for the proof of SG. Thus, we can precompute in a
bottom-up style all the elements in G that are required for P .2 We call these elements
contributing elements of G for P . During their computation we may recognize that some
proof steps are not really needed for the proof: If a goal G contains all the contributing
elements of one of its subgoals SG, we can reuse the proof of SG for G eliminating the
proof step originally applied to G. The remaining proof steps are called contributing proof
steps. The computations of contributing elements and proof steps mutually depend on each
other. The computations are performed bottom-up in the proof state tree.

Table 7.1 contains the contributing elements and contributing proof steps for the proof of
G3 in Figure 7.1. The contributing literals of G5, G8 and G9 are the principal literals. In G7,
literals λ2 and λ3 are contributing as they are responsible for generating the contributing
literals in G8. Proof step I6 is not contributing since the contributing literals of G7 are
present in G6. Thus, for computing the contributing elements of G6, the principal literal λ1

in G6 w.r.t. I6 is not added to the contributing elements of G7. Eventually, we get λ5, λ2

and λ3 as contributing literals of G3 which are present in G2. Therefore, we can propagate
the proof of G3 upwards to G2. Note that this implies that we need not find a proof for
G10. This shows that pruning a proof may save time since unnecessary proof obligations are

2This computation refines the notion of contribution as presented in Definition 5.10 (cf. Section 5.3).
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{ λ1, λ2, λ3 } 1

I1

{ λ4, λ1 , λ2, λ3 } 2

I2

{ λ5 , λ4 , λ1, λ2, λ3 } 3

I3

{ ¬λ5, λ4, λ
′
1, λ2 , λ3 } 4

I4

{ ¬λ4, λ1, λ2, λ
′
3 } 5

I5

Figure 7.3: Illustration of Problems with Preliminary Definition of Contribution

detected. Since the contributing literals of G4 are present in G12, we can reuse its pruned
proof to close the whole proof state tree as presented in Figure 7.2. Note that we cannot
reuse the original proof of G4 for G12 because the non-contributing proof step I6 requires
literal λ1 which is not present in G12.

7.2 Essential Contribution

In this section, we present a refined definition of contribution in comparison to Defini-
tion 5.10. This definition is technically more involved. But it may identify more non-
contributing proof steps. Therefore, more proof steps may be eliminated by pruning the
proof state tree.

If a proof contains at least one non-contributing proof step, Definition 5.10 may classify
too many elements and proof steps as contributing although they are not relevant for the
proof.

This problem is illustrated in Figure 7.3. According to Definition 5.10, proof steps I3, I4
and I5 are contributing because they do not generate any new subgoals. Therefore, literals
λ5, λ4 are contributing for G3, literals λ2, λ3 for G4, and literal λ′3 for G5. Proof step I2 is
non-contributing since none of the new literals ¬λ5 and λ′1 in its second subgoal G4 becomes
principal in the proof of this subgoal. But according to the preliminary definition, literals
λ4, λ2, λ3 contribute to the proof of G2 as they become principal in contributing proof steps.
Therefore, proof step I1 is also contributing because in its first subgoal G2 the new literal
λ4 contributes to the proof of this subgoal, and in its second subgoal G5 the new literal λ′3
contributes to the proof of this subgoal.

Since I2 is non-contributing because of its second subgoal, we may reuse its proof for G2,
i.e. we may prove G2 with I4. Therefore, we should not consider the contributing elements
λ5, λ4 of G3 as contributing for G2 but only the contributing elements λ2, λ3 of G4. Then,
I1 is non-contributing because in the proof of its first subgoal G2 the new literal λ4 does
not contribute to the proof.
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I ← SI (G);1

if nbSGs(I) = 0 then2

contribI (G)← I;3

contrib(G)← princ(I);4

else5

foreach SG ∈ SGs(I) do6

calc-contrib(SG);7

G ← {SG ∈ SGs(I) | contrib(SG) ⊆ G};8

if G 6= ∅ then9

SG← selectCG(G);10

contribI (G)← contribI (SG);11

contrib(G)← contrib(SG);12

else13

contribI (G)← I;14

contrib(G)← princ(I)+
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)) ;15

Figure 7.4: Procedure calc-contrib(G)

For each non-contributing proof step I applied to goal G, there exists a set G of subgoals
that are responsible for the non-contribution of I, i.e., for each subgoal SG ∈ G, none of the
new literals in SG contributes to the proof of SG. In the definition of essential contribution
(cf. Definition 7.4), for each non-contributing proof step I applied to goal G, we transfer
the contributing elements of just one of the subgoals SG ∈ G to G. The contributing proof
steps and elements resulting from the proofs of other subgoals are not considered anymore.
Note that the uniqueness of the definition of essential contribution depends on a heuristics
that chooses exactly one of the subgoals in G. We model this heuristics with function
selectCG . CG stands for “contributing goal”.

Let P be a proof for G, and I = SI (G) the proof step performed for G (cf. Section 5.2.1).
If G′ is a goal with princ(I) ⊆ G′, we can apply I ′ = adaptI (I,G′) to G′. If we can
recursively apply this adaptation for every new subgoal SGj(I

′) using SGi(I) with i =
selectAG(I, I ′, SGj(I

′)), then we can reuse the whole proof.

We aim at defining a contributing part contrib(G) of G in such a way that (a pruned
version of) proof P for G can be applied to G′ if contrib(G) ⊆ G′. During the analysis of
proof P , we may recognize proof steps that are superfluous, i.e. the contributing part of a
subgoal is present in one of its ancestor goals. We use this information to extract from P a
pruned proof P ′. This pruned proof is identified by storing in contribI (G) the contributing
inference rule that can be adapted to G.

Procedure calc-contrib calculates contrib(SG) and contribI (SG) for each offspring SG
of a proved goal G in a bottom-up style (cf. Figure 7.4). contrib(SG) and contribI (SG) are
stored in global hashes as a side-effect of the procedure.

• If G is proved with a single inference rule, i.e. no new subgoals are created, princ(I)
defines the contributing part, and the inference rule is contributing (Lines 2–4).
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• Otherwise, we first calculate the contribution of each subgoal (Lines 6–7). If the
contributing part of at least one subgoal is present in goal G we select one such
subgoal SG with function selectCG and transfer its contributing part and inference
rule to G (Lines 9–12). Otherwise, the inference rule applied to G is contributing.
Beside princ(I) we have to adapt the contributing elements of each subgoal that are
generated by context(I) (Lines 13–15). This is done using function nside-src.

Function selectCG in Line 10 provides a heuristics for selecting a subgoal whose contribution
is propagated upwards in the proof state tree. In our current implementation, we prefer
those subgoals whose contributing part consists of as few elements as possible. Thereby,
we hope to increase the probability that we can further propagate the proof upwards in
the proof state tree. From these subgoals again, we choose one with as few proof steps as
possible to get shorter proofs.

Obviously, we can improve procedure calc-contrib as we do not have to recalculate the
contribution for a goal SG if we call calc-contrib for its ancestor G. Instead, we can just use
the hashed values contrib(SG) and contribI (SG). We may also use procedure calc-contrib
for proof state trees with multiple proof attempts. In this case, we just have to iterate over
all inference rules applied.

For inference systems defined with principal part and context as in Definition 5.4, pro-
cedure calc-contrib (cf. Figure 7.4) has the following properties which can be proved by
induction w.r.t. ≺P (cf. Section 5.2.1):

Lemma 7.1 Let IS be an inference system defined with principal part and context as in
Definition 5.4. Then, procedure calc-contrib is terminating (cf. Figure 7.4).

Proof. We have to prove that each call calc-contrib(G) is terminating. We perform induc-
tion on goal G w.r.t. ≺P : The only recursive call is in Line 7 for subgoals SG ∈ SGs(I).
As SG ≺P I ≺P G, each recursive call terminates by induction hypothesis. Since all loops
terminate, procedure calc-contrib is terminating. 2

Lemma 7.2 Let IS be an inference system defined with principal part and context as in
Definition 5.4. Then, for each goal G contribI (G) ≺P G.

Proof. This is proved with induction on G w.r.t. ≺P : contribI (G) is set in Lines 3, 11 and
14 of procedure calc-contrib(G) (cf. Figure 7.4), respectively.

• In Lines 3 and 14, contribI (G) is set to I = SI (G) ≺P G. Thus, contribI (G) ≺P G
in these cases.

• In Line 11, contribI (G) is set to contribI (SG) for a subgoal SG ∈ G ⊆ SGs(I).
Thus, SG ≺P I ≺P G. By induction hypothesis for SG, we get contribI (G) =
contribI (SG) ≺P SG ≺P G.

2
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Lemma 7.3 Let IS be an inference system defined with principal part and context as in
Definition 5.4 and I = contribI (G). Then the following holds true:

(a) contrib(PG(I)) = contrib(G) ⊆ G;

(b) princ(I) ⊆ contrib(G);

(c) for each i ∈ nbSGs(I) :
contrib(SGi(I)) ⊆ side(I, i) + non-side(I, i, contrib(PG(I))− princ(I)).

Proof. The following technical proof depends on Properties (5.2) to (5.11) defined for the
operations on goals in Section 5.2.

We perform induction on G w.r.t. ≺: contrib(G) is set in Lines 4, 12 and 15 of procedure
calc-contrib(G) (cf. Figure 7.4), respectively.

(a) We first prove contrib(PG(I)) = contrib(G):

• In Lines 4 and 15, PG(I) = G because contribI (G) is set to SI (G) in Lines 3 and
14, respectively. Thus, contrib(PG(I)) = contrib(G) in these cases.

• In Line 12, contrib(G) is set to contrib(SG) for a subgoal SG ∈ G ⊆ SGs(I).
Thus, SG ≺P I ≺P G. By induction hypothesis for SG, we get
contrib(PG(contribI (SG))) = contrib(SG).
Due to Line 11, PG(contribI (SG)) = PG(contribI (G)) = PG(I).
Thus, we get contrib(PG(I)) = contrib(G).

It remains to prove contrib(G) ⊆ G:

• In Line 4, contrib(G) is set to princ(I) ⊆ PG(I) = G. Thus, contrib(G) ⊆ G in
this case.

• In Line 12, contrib(G) is set to contrib(SG) for a subgoal SG with contrib(SG) ⊆
G. Thus, contrib(G) ⊆ G in this case.

• In Line 15, contrib(G) is set to

princ(I) +
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)).

Because of PG(I) = G, it suffices to prove

princ(I) +
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)) ⊆ PG(I).

Due to Definition 5.4(a) and Properties (5.7) and (5.10), this can be further re-

duced to
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)) ⊆ context(I).

Due to Property (5.2), it suffices to prove for each i ∈ {1, . . . , nbSGs(I)}:
nside-src(I, i, contrib(SGi(I))− side(I, i)) ⊆ context(I).

By induction hypothesis for SGi(I) ≺P G, contrib(SGi(I)) ⊆ SGi(I). With
Definition 5.4(b2), we get contrib(SGi(I)) ⊆ side(I, i)+non-side(I, i, context(I)).
Because of Property (5.9), contrib(SGi(I))−side(I, i) ⊆ non-side(I, i, context(I)).
With Definition 5.4(b3), the claim follows.

(b) • In Line 4, contrib(G) is set to princ(I). Thus, princ(I) ⊆ contrib(G) in this case.
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• In Lines 11 and 12, contribI (G) is set to contribI (SG) and contrib(G) is set to
contrib(SG) for a subgoal SG. By induction hypothesis for SG ≺P G, we get
princ(contribI (SG)) ⊆ contrib(SG). Therefore, princ(I) ⊆ contrib(G) in this
case.

• In Line 15, contrib(G) is set to

princ(I) +
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)).

Thus, princ(I) ⊆ contrib(G).

(c) • In Line 4, nbSGs(I) = 0, i.e., there are no subgoals. Thus, nothing has to be
shown.

• In Line 12, the claim follows from the induction hypothesis for SG ≺P G since
contrib(G) = contrib(SG) and contribI (G) = contribI (SG).

• Due to (a) and Property (5.8), contrib(SGi(I))− side(I, i) ⊆ SGi(I)− side(I, i).
With Definition 5.4(b2) and Property (5.9), we get contrib(SGi(I))− side(I, i) ⊆
non-side(I, i, context(I)). Because of Definition 5.4(b3), we get

nside-src(I, i, contrib(SGi(I))− side(I, i)) ⊆ context(I) (7.1)

non-side(I, i, nside-src(I, i, contrib(SGi(I))− side(I, i)))

= contrib(SGi(I))− side(I, i)
(7.2)

In Line 15, PG(I) = G and

contrib(PG(I)) = princ(I) +
⋃

nbSGs(I)
i=1 nside-src(I, i, contrib(SGi(I))− side(I, i)).

Because of Properties (5.3) and (5.7), we get for each i ∈ {1, . . . , nbSGs(I)}:
princ(I) + nside-src(I, i, contrib(SGi(I))− side(I, i)) ⊆ contrib(PG(I)).
Because of (7.1) and Definition 5.4(a), we can apply Property (5.11). Together
with Property (5.8), this results in
nside-src(I, i, contrib(SGi(I))− side(I, i)) =

(princ(I) + nside-src(I, i, contrib(SGi(I))− side(I, i)))− princ(I) ⊆
contrib(PG(I))− princ(I).

Thus, we get
contrib(SGi(I))− side(I, i) ⊆ non-side(I, i, contrib(PG(I))−princ(I)) from (7.2)
using Definition 5.4(b1). The claim follows from Property (5.9).

2

Definition 7.4 (Essentially Contributing Proof Steps /Elements w.r.t. selectCG)
Let IS be an inference system defined with principal part and context as in Definition 5.4.
Let P be a proof for goal G. Let contrib(G) and contribI (G) be computed with procedure
calc-contrib(G) and heuristics selectCG as presented in Figure 7.4. Then, the elements in
contrib(G) are called the (essentially) contributing elements of G for P w.r.t. selectCG .
Elements in (G − contrib(G)) are called non-contributing . The inference rule I = SI (G)
applied to G is called (essentially) contributing for P w.r.t. selectCG if contribI (G) = I.
Otherwise, I is called non-contributing . 2
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I ← contribI (G);1

I ′ ← adaptI (I,G′);2

apply inference rule I ′ to goal G′;3

for j = 1 to nbSGs(I ′) do4

i← selectAG(I, I ′, SGj(I
′));5

reuse-proof(SGi(I), SGj(I
′));6

Figure 7.5: Procedure reuse-proof (G, G′) with Precondition contrib(G) ⊆ G′

7.3 Reuse

For adaptable inference systems (cf. Definition 5.5), we can exploit Lemma 7.3 to reuse
the proof of a goal G for G′ if contrib(G) ⊆ G′. For this, procedure reuse-proof adapts
inference rule I = contribI (G) to G′ (cf. Figure 7.5). For each new subgoal SGj(I

′), we find
one subgoal SGi(I) such that the precondition contrib(SGi(I)) ⊆ SGj(I

′) for procedure
reuse-proof is fulfilled. Thus, we can apply it recursively to SGi(I) and SGj(I

′). The
following lemma states the soundness of procedure reuse-proof.

Lemma 7.5 Let IS be an adaptable inference system as defined in Definition 5.5. Let
G be a proved goal and contrib(G) as well as contribI (G) be computed with procedure
calc-contrib (cf. Figure 7.4). If contrib(G) ⊆ G′ then the following properties hold true:

(a) each recursive call reuse-proof(SGi(I), SGj(I
′)) obeys the precondition

contrib(SGi(I)) ⊆ SGj(I
′);

(b) the call of reuse-proof(G,G′) is terminating;

(c) reuse-proof(G,G′) creates a closed proof state tree for G′.

Proof.

(a) Due to Lemma 7.3(b), princ(I) ⊆ contrib(G). From the assumption contrib(G) ⊆ G′,
we get princ(I) ⊆ G′. According to Definition 5.5, function adaptI (I,G′) returns
an inference rule I ′ that can be applied to G′. Furthermore, selectAG(I, I ′, SGj(I

′))
chooses for each subgoal SGj(I

′) an index i such that for the subgoal SGi(I) the
following holds true: side(I, i) + non-side(I, i, (PG(I) ∩G′)− princ(I)) ⊆ SGj(I

′).

We have to prove: contrib(SGi(I)) ⊆ SGj(I
′). Because of Lemma 7.3(c), it suffices to

prove side(I, i) + non-side(I, i, contrib(PG(I))− princ(I)) ⊆ SGj(I
′).

Due to Lemma 7.3(a), contrib(PG(I)) ⊆ PG(I). Because of Lemma 7.3(a) and the
assumption, contrib(PG(I)) = contrib(G) ⊆ G′.
Therefore, contrib(PG(I)) ⊆ PG(I) ∩G′ because of Property (5.4).
Due to Property (5.8), contrib(PG(I)) − princ(I) ⊆ (PG(I) ∩ G′) − princ(I). Thus,
the claim follows from Definition 5.4(b1) and Property (5.7). Note that (PG(I) ∩
G′) − princ(I) ⊆ PG(I) − princ(I) ⊆ context(I) because of Definition 5.4(a) and
Properties (5.5), (5.9) and (5.10).
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(b) This holds true since in each recursive call, the first argument decreases w.r.t. ≺P , i.e.
SGi(I) ≺P G.

(c) This holds true asG′ and each of its subgoals is handled with recursive calls to procedure
reuse-proof and this computation terminates.

2

Note that we may call function reuse-proof with the same goal G for both arguments.
The call reuse-proof(G,G) replaces the former proof for G with its pruned proof where all
non-contributing proof steps are eliminated.

7.3.1 Upward Propagation and Sideward Reuse

For the usefulness of our reuse mechanism it is crucial that we can efficiently find a proved
goal G and an unproved goal G′ such that contrib(G) ⊆ G′. We do not perform this search
arbitrarily, but we fix one goal and perform this search in two directions: upwards and
sidewards in the proof state tree. Our upward propagation fixes the proved goal G. It is
very efficient because we try to propagate the (contributing) proof for G only to its unproved
ancestor goals as far as possible. During sideward reuse, however, we fix one unproved goal
G′ and test for each proved goal G whose first proof step SI (G) is contributing whether its
(contributing) proof can be reused for G′. Note that we do not have to consider a goal G
whose first proof step SI (G) is non-contributing because the same proof is performed for
PG(contribI (G)), i.e. for the father of the contributing inference rule contribI (G) that can
be adapted to G. To perform the sideward check efficiently, we use indexing techniques
[RSV01]. In our current implementation, we use a simple trie-like data structure [Fre60].
The leaves of the trie are labeled with the proved goals. The path to goal G is labeled with
the contributing elements contrib(G). Since in a trie common prefixes are shared, we may
exclude many goals at once if one of their contributing elements is not present in G′.

We do not present any further technical details for an efficient implementation of the
checks for upward propagation and sideward reuse. Instead, we assume some abstract
functions that perform these tasks:

• Upward propagation: Let propagate-proof-p(G) be a boolean valued function that
returns true if the proof for goal G (or the proof for an ancestor goal of G whose
proof is completed by proving G) can be propagated upwards in the proof state tree to
an unproved ancestor goal G′ of G. As a side-effect, if function propagate-proof-p(G)
returns true, it stores G′ in a global variable whose value is returned by function
propagated-goal().

Function propagate-proof-p(G) has to calculate the contribution of the newly proved
goals. This information may be stored in a trie-like data structure to support sideward
reuse (cf. Example 7.6).

• Sideward reuse: Let reusable-proof-p(G′) be a boolean valued function that returns
true if there is a proved goal G whose proof can be reused for G′. As a side-effect,
if function reusable-proof-p(G′) returns true, it stores G in a global variable whose
value is returned by function reusable-goal().
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7.3.2 Integration into a Simple Waterfall

In this section, we want to demonstrate that our approach can be integrated easily into a
waterfall model for proof control. For this, we enhance the simple waterfall—modeled with
function simple-waterfall in Section 3.2.1—with our new reuse mechanisms. Whereas we
integrate upward propagation directly into the waterfall resulting in a new control structure
simple-waterfall-with-reuse (cf. Figure 7.6), sideward reuse is modeled with a separate phase
reuse-phase (cf. Figure 7.7).

First, we illustrate our integration with the abstract example presented in Section 7.1.
Then, we comment on the pseudo code which sketches the integration.

Example 7.6 To simplify matters, we assume that the simple waterfall simple-waterfall
(cf. Section 3.2.1) generates the proof state tree presented in Figure 7.1 in the following
way:

• The inference rules are applied in ascending order.

• Each successful phase applies exactly one inference rule.

• All the subgoals generated by an inference rule are put into the pool of open goals
and handled with recursive calls to the waterfall.

Thus, the first successful phase of simple-waterfall applies inference rule I1 to goal G1. The
generated subgoals G2 and G11 are handled with recursive calls of simple-waterfall. The
proof state tree corresponds to the dynamic call structure of simple-waterfall. The handling
ofG3 in simple-waterfall(G3, phases), for instance, is initiated by simple-waterfall(G2, phases)
which, in turn, is called by simple-waterfall(G1, phases).

The new waterfall simple-waterfall-with-reuse differs from simple-waterfall only after the
first subgoal has been proved. As soon as a subgoal is proved, simple-waterfall-with-reuse

• computes the contribution of all newly proved goals.

• tries to propagate the proof of the highest newly proved goal upwards in the proof
state tree.

• enables sideward reuse for all newly proved goals whose first proof step is contributing
by storing the goals in a trie-like data structure. Sideward reuse itself is integrated
into the waterfall as a separate phase reuse-phase. This is possible because we want
to apply it only to open goals which are leaves of the proof state tree. In the waterfall
presented in Section 3.2.2.4, it is sensible to apply reuse-phase before or just after
prove-taut which tests for simple tautologies.

For the proof state tree presented in Figure 7.1, the following actions are performed:

• Until goal G5 has been proved, nothing changes: Sideward reuse is checked during
each call of the waterfall but it is not applicable because none of the goals is proved
up to now.
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foreach p ∈ phases do1

if apply-phase(p, G,G ′) then2

if G ′ = ∅ then3

if propagate-proof-p(G) then4

throw propagation;5

else6

return ∅;7

else8

G ← ∅;9

while G ′ 6= ∅ do10

choose a goal G′ ∈ G ′;11

G ′ ← G ′ − {G′};12

try13

G ′′ ← simple-waterfall-with-reuse(G′, phases);14

catch propagation15

Gp ← propagated-goal();16

if G ≺P Gp then17

throw propagation;18

else if G = Gp then19

reuse-proof(Gp, Gp);20

return ∅;21

else22

G ← {G′′ ∈ G | G′′ 6�P Gp};23

G ′ ← {G′′ ∈ G ′ | G′′ 6�P Gp};24

G ′′ ← ∅;25

reuse-proof(Gp, Gp);26

G ← G + G ′′;27

return G;28

return {G};29

Figure 7.6: Function simple-waterfall-with-reuse(G, phases)

if reusable-proof-p(G) then1

reuse-proof(reusable-goal(), G);2

G ← ∅;3

return true;4

else5

return false;6

Figure 7.7: Function reuse-phase(G, REF G)
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Figure 7.8: Trie-like Data Structure for Sideward Reuse

• As soon as G5 is proved, the applicability of upward propagation is checked by calling
propagate-proof-p(G5). This function computes the contribution w.r.t. all goals that
are newly proved which in this case applies only to G5. Since ¬λ8—the contributing
element in G5 (cf. Table 7.1 in Section 7.1)—is not present in the parent goal G4,
upward propagation is not applicable.

To support sideward reuse, G5 and its contributing elements are stored in a trie-like
data structure. In Figure 7.8, we sketch one possible instance of this data structure
after having inserted the parent goals of all contributing proof steps. Right now, only
the left-most branch is inserted. It indicates that the proof of G5 can be adapted to a
goal G if only the contributing element ¬λ8 is present in G. This property is checked
by reuse-phase for all goals that are handled by the waterfall subsequently. But, since
¬λ8 is not present in any other goal, the proof cannot be reused in this proof state
tree.

• The next proof of a subgoal is completed by applying inference rule I8. Beside G8,
this application also proves G7 and G6. The call of propagate-proof-p(G8) computes
the contribution of these three goals and tries to propagate the proof of the highest
goal G6 upwards in the proof state tree which is not possible in this case. The trie-
like data structure used for sideward reuse is supplemented with G8 and G7 and their
contributing elements (cf. Figure 7.8). Note that G6 is not added because proof step
I6 performed for G6 is not contributing.

• With the application of I9, goals G9, G4 and G3 are proved. This time, the contribut-
ing elements in G3 are present in its parent goal G2. Therefore, the proof can be
propagated upwards in the proof state tree. The call of propagate-proof-p(G9) returns
true. Goal G2 is stored in a global variable whose value is returned by function
propagated-goal(). Furthermore, goals G9, G4 and G3 are added to the trie-like data
structure (cf. Figure 7.8).

Right now, we are still handling goal G9 but we know that we have found a proof that
can be used for an ancestor goal ofG9. Therefore, we wish to abort all recursive calls of
the waterfall up to the ancestor goal that can be proved. Due to this abortion, we have
to integrate upward propagation directly into the control structure of the waterfall—
instead of implementing it as a separate phase which would be much easier. With the
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abortion, we avoid to handle open goals that are eliminated in the pruned proof that
results from upward propagation. For the implementation of upward propagation, we
use an exception handling mechanism (see below).

• Goal G2 is proved by upward propagation. For this, the pruned proof for G3 is reused.

• After applying inference rule I11, the last open goal is G12. According to the trie-
like data structure in Figure 7.8 sideward reuse is applicable, since the contributing
elements in G4—namely λ2, λ3 and λ7—are present in G12. Therefore, function
reusable-proof-p(G12) returns true. Goal G4 is stored in a global variable which is
returned by function reusable-goal(). This information is exploited by phase reuse-
phase which adapts the proof for G4 to G12 and closes the whole proof state tree.

2

Sideward reuse is realized as a separate phase reuse-phase(G, REF G) (cf. Figure 7.7). With
the introduced functions, its implementation is straightforward: By calling reusable-proof-p,
it looks for a proved goal whose proof can be reused for G. In this case, G can be proved
by reusing the proof for the goal returned by reusable-goal. Thus, the set of new subgoals
is empty and the function returns true. Otherwise, it returns false.

The realization of upward propagation in the new waterfall modeled with function
simple-waterfall-with-reuse is more difficult as a proof may be propagated for more than
one level (cf. Figure 7.6). We have to take care that we remove those goals from the pool
that are affected by upward propagation, and that we transfer control to the right place in
the recursive call stack of function simple-waterfall-with-reuse. For ease of presentation, we
assume an exception handling mechanism with throw, try and catch to transfer control.
This mechanism can be found in many programming languages such as C++ [Str00] or Java
[GJSB05]. Similar mechanisms are also available in Common Lisp using just the keywords
throw and catch [Ste99] and in ML using keywords raise and handle [Pau96].

As in simple-waterfall (cf. Section 3.2.1), our new control function simple-waterfall-with-
reuse considers each phase of the waterfall successively until one of them can be applied
successfully to the input goal G. In this case, variable G ′ contains the new subgoals resulting
from the successfully applied phase. These subgoals have to be handled by recursive calls of
simple-waterfall-with-reuse (cf. Line 9–28). The resulting subgoals are collected in variable
G and returned at the end of simple-waterfall-with-reuse. Otherwise, if none of the phases
can be applied to G, a set consisting of G itself is returned.

Upward propagation is realized in function simple-waterfall-with-reuse as follows: If the
application of a phase proves the input goal G—i.e. the set of new subgoals G ′ is empty—we
try to propagate the proof upwards in the proof state tree (Line 3–7). The applicability of
upward propagation is checked by calling function propagate-proof-p. If the proof can be
propagated upwards, we throw an exception propagation. This exception is caught in each
recursive call of simple-waterfall-with-reuse (Line 13–26). Let Gp be the goal to which the
proof can be propagated. Since Gp can be proved, we do not have to care about any of its
offsprings even if they represent open proof obligations. These are eliminated by pruning
the proof state tree. Therefore, we consider the following cases:

• If Gp is an ancestor of goal G for which simple-waterfall-with-reuse is called, we pass
the propagation exception on (Line 17–18). All open proof obligations in G and G ′ are
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automatically eliminated from the proof state tree when it is pruned by propagating
the contributing proof upwards to the ancestor goal.

• If Gp is equal to G, the input goal is proved by upward propagation. Therefore,
function simple-waterfall-with-reuse returns an empty set of new subgoals (Line 19–
21).

• Otherwise, Gp is an offspring of G (Line 22–26). Therefore, G is not proved by
upward propagation w.r.t. Gp. But still, there may be some offsprings of Gp in the
pool given by G and G ′. As we do not have to consider these offsprings anymore
they are eliminated in Line 23–24. We assume that at least goal G′—for which the
waterfall has been called recursively—is proved by upward propagation. Otherwise,
the exception would have been handled previously. In our realization, the actual
upward propagation is applied only after all affected goals have been removed from
the pool.

7.4 Case Studies

In this section, we validate our reuse mechanisms with some case studies. At the same time,
we present the final version of our proof control for QuodLibet developed in this thesis.
Due to Lemma 5.7, the inference system of QuodLibet is adaptable and, thus, our reuse
mechanisms are applicable.

As a starting point for the validation we use Configuration (D) of Section 4.3.1. In
this configuration, linear arithmetic is built-in; proof search is controlled with mandatory,
obligatory and generous literals. We enhance the proof control with upward propagation
and sideward reuse according to Section 7.3. For the integration, we have to answer one
additional important question: Which of the proved goals are considered for sideward reuse?
On the one hand, if we consider too many goals, the search for an appropriate one may
be too time-consuming. On the other hand, if we consider too few goals, sideward reuse
is rarely applicable. As a compromise, we consider exactly the proved goals in the same
proof state tree for sideward reuse. This is justified because the goals in one proof state
tree usually share some elements as they are derived from a common root goal. Therefore,
we get a high probability that we may reuse the proof of a goal within one proof state
tree. Between arbitrary proof state trees, this property is not guaranteed. Therefore, the
applicability of sideward reuse is by far less probable.

With our implementation of the reuse mechanism, we aim at reducing the runtime for
creating closed proof state trees as much as possible. On the one hand, we prune a proof
state tree by propagating a proof upwards only if this eliminates some proof obligations.
Therefore, we could derive much shorter final proofs if we applied further pruning. This is
sensible if proofs are presented to human users or proof checkers. On the other hand, we
do not only mark a goal as proved if we can apply the reuse mechanism to it but we really
carry out the proof for the goal by adaptation. Thus, we may speed up the computation
if we are interested only in whether a lemma is valid but not in a proof itself. Instead
of “replaying” a proof each time it can be reused, we could also introduce new lemmas
consisting of the contributing elements in the root goal of the reusable proof. This may
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Str. Lemmas Reuse UP SR Autom. Appl. Del. Fin. P. Runtime

Example sortalgos

0 / 111
—
X

—
1

—
120

2253
2216

49
54

2204
2162

6.66
7.08

+6.3%

Example gcd

1 / 57
—
X

—
0

—
35

830
819

10
10

820
809

3.85
3.53

-8.3%

Example exp-exhelp

0 / 18
—
X

—
0

—
53

675
659

0
0

675
659

2.70
2.54

-5.9%

Example sqrt (H)

0 / 18
—
X

—
0

—
18

352
297

23
23

329
274

1.51
1.26

-16.6%

Example sqrt (E)

0 / 34
—
X

—
1

—
19

464
466

8
13

456
453

1.44
1.53

+6.2%

Example Lpo (A)

23 / 273
—
X

—
41

—
1993

20270
18637

2583
2715

17687
15922

369.73
250.79

-32.2%

Example f91

1 / 11
—
X

—
0

—
36

443
392

13
0

430
392

1.85
1.46

-21.1%

Example mjrty

0 / 8
—
X

—
0

—
67

693
553

119
3

574
550

3.39
1.92

-43.4%

Table 7.2: Statistics for Case Studies with and without Reuse using Heuristics {m,o}

speed up the computation if a proof is reused more than once. But as this would blow up
the lemma data base, we have not investigated this variant, yet.

For the comparison we use the case studies presented in Sections 4.3.1 and 6.3. In the
case study about the LPO, we use the full version (denoted by (A) for all) as presented in
Chapter 8 and Appendix A. As an additional case study, we use

mjrty: In this example, we prove the soundness of a majority voting protocol according to
[BM91].

Table 7.2 contains the statistics for the case studies with (resp. without) reuse enabled
as indicated in column “Reuse” with “X” (resp. “—”). For each case study, column
“Str. Lemmas” contains two entries. The second entry is the number of lemmas proved, the
first one the number of lemmas that can be strengthened by eliminating non-contributing
literals. The remaining columns are split into two lines. The first (resp. second) line presents
the statistics without (resp. with) reuse enabled. Column “UP” contains the number of
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applications of upward propagation, column “SR” the number of applications of sideward
reuse. As for the statistics in Sections 4.3.1 and 6.3, the remaining columns contain the
number of inference rules applied during the whole proof search, the number of inference
rules deleted, the number of inference rules in the final proof, and the runtime in seconds
measured by a CMU Common Lisp system on a machine with a 1 GHz Intel III processor
and 4 GB RAM. Now, an inference rule may be deleted for two reasons: firstly, if the proof
search gets stuck and has to backtrack; secondly, if a proof is propagated upwards.

From the statistics in Table 7.2, we draw the following conclusions:

• In the case studies, the final proofs become shorter when applying the reuse mech-
anism. As already mentioned, we apply upward propagation only if this eliminates
some proof obligations. Therefore, we may get much shorter proofs if we apply upward
propagation at the end of each proof once more.

• The reuse mechanism introduces some overhead. Thus, the runtime may increase
with reuse enabled

– if the heuristics for proof search are well suited for the case study: this applies
to sqrt (E); or

– if the case study consists of very simple lemmas only: this applies to sortalgos.

But typically, with our reuse mechanism, the runtime decreases by 15 to 30% for our
case studies. For some case studies, we even get speed-ups of more than 40%.

• Upward propagation is rarely used in the case studies. The main reason for this—
beside the reason given in the first item—is that our proof search based on a manda-
tory marking favors proof steps that use new literals. Therefore, these proof steps are
locally contributing and can rarely be eliminated. Thus, we expect greater benefits
for systems that apply other heuristics for guiding proof search. We will comment on
this claim below.

Note, however, that upward propagation is frequently applicable in the case study
about the LPO. This case study is by far the most complicated one. Furthermore, it
is the only case study where we exploit a generous marking which admits proof steps
that do not locally contribute. We discuss the interplay between generous markings
and upward propagation in Section 8.2.2.3.

• Of 530 lemmas in total 25 lemmas can be strengthened by eliminating non-contributing
literals. This is astonishing as we do not speculate lemmas automatically. But as the
case studies indicate, a user may get lost without computer assistance when speculat-
ing lemmas for complicated examples manually. For lemmas speculated automatically,
we expect an even higher degree of lemmas that can be strengthened.

We now comment on the claim stated in the third item, namely, that we expect greater
benefits for systems that apply other heuristics for guiding proof search. For this, we apply
our reuse techniques to the case studies in Section 6.3 without restricting proof search with
markings, i.e. with heuristics ∅ in Table 6.2. Even in this case proof steps that involve new
literals are preferred but other proof steps are not excluded from proof search as it is done
with the strict mandatory markings heuristics. The results are summarized in Table 7.3.
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Reuse Open Lemmas UP SR Autom. Appl. Del. Fin. P. Runtime

Example sortalgos

—
X

2
1

—
18

—
109

2348
2351

143
287

2205
2064

6.77
6.96

+2.8%

Example exp-exhelp

—
X

0
0

—
33

—
193

3290
2747

9
1448

3281
1299

299.28
232.90

-22.2%

Example sqrt (H)
—
X

1
1

—
3

—
87

2008
2018

969
1005

1039
1013

16.11
17.12

+6.3%

Example sqrt (E)
—
X

0
0

—
0

—
23

477
477

4
4

473
473

1.24
1.22

-1.6%

Example Lpo

—
X

1
1

—
102

—
520

11125
6952

1089
2435

10036
4517

291.37
68.38

-76.5%

Table 7.3: Statistics for Case Studies with and without Reuse using Heuristics ∅

• For sortalgos and sqrt (E), neither between the different search heuristics (cf. Ta-
ble 6.2) nor w.r.t. the usage of the reuse mechanisms applied to heuristics {m,o} (cf.
Table 7.2), there is major difference w.r.t. the efficiency of proof search. Therefore, it
is not astonishing that this situation does not change with heuristics ∅ (cf. Table 7.3).
Note, however, that one additional lemma of sortalgos can be proved with reuse
mechanisms.

• With regard to the other three case studies, only the efficiency of sqrt (H) is not
improved with reuse enabled (cf. Table 7.3). For exp-exhelp and Lpo, the speed-up
is substantial. Note the correlation between the achieved speed-up and the number of
applications of upward propagation. Therefore, it seems to be beneficial to improve
the applicability of upward propagation. This is subject of further research.

To summarize, with our reuse mechanisms we get simpler proofs, normally shorter runtimes
and may strengthen some of the lemmas automatically.

7.5 Related Work

We have developed our reuse mechanisms independently from other approaches. On a
very abstract level, however, the basic ideas have been successfully used in other research
areas as e.g. SAT (boolean satisfiability) based on DPLL, CSP (constraint satisfaction) and LP

(logic programming). In all these application domains, extensive search algorithms based on
backtracking are employed. The basic idea is to improve the efficiency of search by learning
from previous attempts. More precisely, previous attempts are analyzed, the essential
information is extracted and reused. This is done
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• to improve the backtracking mechanism: We call this upward propagation. It is
called non-chronological backtracking for SAT, conflict-directed backjumping for CSP

and intelligent backtracking for LP.

• to handle similar situations during the subsequent search: We call this sideward reuse.
It is called conflict-driven learning for SAT, no-goods for CSP and selective reset for
LP.

Although the basic ideas are the same on an abstract level, the approaches vastly differ
in their specific implementation. This is caused by the different application domains and
their intended usage. In the following, we point out some of these differences w.r.t. our
approach.

The simplest of the problems mentioned above is SAT. It is concerned with deciding
whether a given propositional formula is satisfiable. Provers based on the DPLL procedure
[DLL62] systematically search the space of all variable assignments for a satisfying one.
This search may be illustrated with a semantic tree. On each level, one variable is assigned
a truth value. The problem arises in the exponential blow-up of the search space w.r.t. the
number of different variables. Non-chronological backtracking and conflict-driven learning
introduced in [MSS96] and [BS97] help to prune the search space. These techniques have
dramatically increased the scope of SAT solvers based on DPLL. See [ZM02] for a survey.

A simple generalization of SAT is CSP. Instead of the two truth values, each variable may
be assigned a value from a finite set. Nevertheless, the search space for CSP is still finite.
Conflict-driven backjumping [Pro93] and the use of no-goods [SV93] laid the foundations
for the approaches in SAT.

Both problems—SAT and CSP—have the same characteristics w.r.t. the search per-
formed:

• A search step corresponds to an assignment of a variable. Therefore, their are no
restrictions on performing these steps. The order in which variables are assigned a
value may be chosen arbitrarily. This facilitates the implementation of the basic ideas.

• The search space is finite.

• Negative results are exploited for the reuse mechanisms: Backtracking is performed to
a state which may be extended to a solution—i.e. a satisfying assignment. Previous
conflicts may be stored to abort the search for those states that cannot be extended
to a solution.

A more general problem is addressed in LP. In engines for logic programming languages such
as PROLOG, a query is handled by resolution and unification of horn clauses over first-order
logic. The nodes in the search tree are labeled with single literals. Intelligent backtracking
aims at pruning the resulting search tree without losing any solutions. This technique
can also be extended to non-horn clauses. See [Bru91] for a survey. The search may be
characterized as follows:

• A search step corresponds to an application of a lemma. Therefore, search steps are
restricted w.r.t. the applicability of the considered lemmas.
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• In general, the search space is infinite.

• Negative results are exploited for the reuse mechanisms: If the unification problems
resulting from lemma applications cannot be solved, backtracking is performed to a
state which may be extended to a solution. As for SAT and CSP, previous conflicts may
be stored to abort the search for those states that cannot be extended to a solution.
This is modeled with a predicate at the meta-level and hyper-resolution in [Bru91].

There are even more application domains which exploit the basic ideas of reuse mentioned
above. For tableaux, for instance, similar approaches have been proposed with the factor-
ization and folding up rule. See [LS01] for a survey.

In this chapter, we have applied the basic ideas to adaptable inference systems—a
special class of reductive inference systems working on proof state trees. In doing so, we do
not restrict ourselves to concrete inference systems. Instead, we have presented a generic
approach which is based on some easy requirements. The nodes in the proof search trees
may consist of complex goals. In QuodLibet, a goal consists of two components—a clause
and a weight. Our proof search has the following characteristics:

• A search step corresponds to an application of an inference rule. Therefore, search
steps are restricted w.r.t. the applicability of the inference rules

• In general, the search space is infinite.

• Positive results are exploited for the reuse mechanisms: Instead of aborting proof
attempts that cannot be completed, we try to complete proof attempts by reusing
former proofs according to their contribution. Due to our generic approach and the
complex structure of our goal nodes, the implementation of our reuse mechanisms is
technically more involved. In particular, this holds true for computing the contribu-
tion of proofs which is required for the applicability of our reuse mechanisms.

To provide an efficient reuse mechanism, we have restricted ourselves to reusing pruned
proofs without any modifications such as instantiation. Other reuse mechanisms such as
the one described in [KW94] allow slight modifications of proofs. The combination of these
approaches may be subject of further research. But it is questionable whether a reuse
mechanism with higher complexity will pay off.

The application of our reuse mechanisms is not restricted to automatic proof attempts.
Instead, it may also be applied for evaluating and improving proofs performed manually.
The notion of contribution may be used for identifying the relevant proof steps in a proof.
This is required for implementing intelligent tutoring systems.



Chapter 8

A Comprehensive Case Study: LPO

As explained in Chapter 1, different semantics exist for first-order logic. Whereas deductive
theorem proving is concerned with the validity in all models, we are interested in inductive
theorem proving. In contrast to deductive validity (in all models), inductive validity (e.g.
in all data models) is not semi-decidable even for first-order logic. Thus, there is no hope
for full automation and we have to cope with user-interaction.

Different inductive theorem provers vary in their interaction schemes. Furthermore,
there is no agreement on the semantics of inductive theorem provers. Our semantics, for
instance, is based on data models; other systems use the initial model of a specification.
Therefore, different inductive theorem provers are difficult to compare. There does not
exist a library of problems for inductive theorem provers such as the TPTP for deductive
theorem provers [SS98]. Various attempts have been made towards this direction without
success. One of the latest contains the following statement [Den05]:

‘It is not practical for inductive theorem provers to follow the pattern of the
TPTP library. Various attempts have been made to build a similar corpus of
problems requiring inductive reasoning. The most mature of these was based
on the Boyer-Moore corpus (This has become known as the Dmac corpus after
David McAllester who translated a fragment of the NQTHM corpus into a simpler
language.). This corpus was unpopular partly because there was repetition
within the problem set and partly because many problems depended on a few
particular function definitions. But the major objection was that inductive
theorem provers use a number of different logics, some of which are typed and
some of which are not, which made it difficult to agree on a standard format.
The use of other logics also raised translation issues and a fully automated
process for converting the theorems, even into an agreed typed language was
never produced.’

As a consequence, it is problematic to compare different proof systems for inductive theorem
proving. Furthermore, it is much more time-consuming to perform case studies for inductive
theorem proving than for deductive theorem proving due to the required user-interaction.
Therefore, we have performed only a few case studies within this thesis. Instead, we have
focused on the development of new proof techniques which support user-interaction required
for inductive theorem proving (cf. Chapters 4–7).

171
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Our new proof techniques are particularly suited for complicated induction schemes as
required for proofs about mutually recursive functions. Thus, we have concentrated on case
studies that are specified with mutual recursion in a natural way. Note that specifications
with mutual recursion pose problems to many other inductive theorem provers such as NQTHM
[BM88a]. In these systems, mutually recursive function definitions are combined into one
complex function definition. Then, the former functions are accessed with projections. But
this results in complex proofs that are not human-oriented and in difficulties in supporting
manual interactions.

In this chapter, we give a survey of our most challenging case study—a proof of the
equivalence of various implementations of the lexicographic path order LPO [KL80] based
on [Löc04]. This case study helped us to

• validate and refine some of our proof techniques,

• develop new proof techniques, and

• envision perspectives of further research which could not be worked out in this thesis.

Nevertheless, all the proof techniques proposed in this thesis are independent from a special
application domain. They do not use any special knowledge, for instance, about the LPO.
Instead, they are defined on a very abstract level such as the proof search heuristics based
on markings presented in Chapter 6.

In Section 8.1, we give an overview on the application domain LPO. From this, we sketch
the derivation of a proof script for QuodLibet in Section 8.2 focusing on the problems
encountered in the case study. A proof script contains the complete input for Quod-

Libet consisting of the specifications, manual applications and calls to the automatic proof
control. The output is called proof log . It contains information about all performed and
deleted proof steps. The whole proof script for this case study can be found in Appendix A.
In Section 8.3, we conclude this chapter pointing out some directions for further research.

8.1 The Application Domain

The case study about the LPO was initiated by Löchner [Löc04]. The LPO is in widespread
use in automated theorem provers based on rewriting techniques such as Waldmeister

[LH02]. In Waldmeister, up to 50% of the total running time is spent on order compar-
isons. Therefore, it is essential to provide an efficient implementation for these comparisons.
From a standard definition of the LPO, Löchner derived an efficient implementation using
program transformation techniques mainly based on some standard Unfold/Fold-calculus
[BD77, PP93]. Whereas a straightforward implementation of the definition has exponential
complexity his efficient implementation requires polynomial runtime only. To exclude bugs
resulting from oversights during the transformation he wanted to prove the equivalence
of the different implementations with a formal proof system such as QuodLibet. Quod-

Libet is particularly suited for this task as it allows for the specification of partially defined
functions based on mutual recursion as well as the verification of properties about these
functions in a natural way. Our case study results from a collaboration with Löchner. He
accounted for the specifications of the different implementations as well as an initial proof
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plan in terms of proofs performed manually. From this, the author of this thesis derived a
proof script for QuodLibet by adding auxiliary lemmas and hints e.g. for choosing suit-
able induction orders. Furthermore, the proof control of QuodLibet and its interaction
scheme were improved. At the end, the case study was performed successfully, the manual
interactions were reduced, and the runtime was reduced from more than 30000 seconds to
nearly 250 seconds. We achieved these improvements without any “tricks”. More details on
the improvements can be found at the end of Section 8.2.1.3. With the formal proofs im-
plicit assumptions in the informal proofs were identified. The reuse mechanisms described
in Section 7 helped us to strengthen lemmas by eliminating unnecessary conditions.

As already mentioned in Section 2.2.3, the LPO provides a scheme of wellfounded orders
on wellformed terms over function symbols with fixed arity and variable symbols. It depends
on a precedence on function symbols. The following definition corresponds to the original
one given in [KL80] which may also be found in [Ave95, BN98, Der87].

Definition 8.1 (The Lexicographic Path Order LPO) Let >F be a partial order on
F and t, u ∈ Term(F, V ). Then t ≻lpo u iff either t ≡ f(t1, . . . , tn), u ≡ g(u1, . . . , um), and

(α) ti �lpo u for some i ∈ {1, . . . , n} or

(β) f >F g and t ≻lpo uk for each k ∈ {1, . . . ,m} or

(γ) f = g, there is an i ∈ {1, . . . ,m} such that tj ≡ uj for each j ∈ {1, . . . , i − 1} and
ti ≻lpo ui, and t ≻lpo uk for each k ∈ {1, . . . ,m}

or t ≡ f(t1, . . . , tn), u ∈ V and

(δ) u ∈ V (t),

where v �lpo w iff v ≡ w or v ≻lpo w for v, w ∈ Term(F, V ). 2

The derivation of an efficient implementation makes use of the fact that each LPO defines
a simplification order [Der87].

Definition 8.2 (Simplification Orders) An order ≻ on terms is a simplification order
if

• it is monotonic, i.e. if the sorts of t/p, u, v agree, u ≻ v implies t[u]p ≻ t[v]p for each
p ∈ Pos(t);

• it contains the subterm order ≻ST

where u ≻ST v iff there exists a position p ∈ Pos(u) with p 6≡ ε and u/p ≡ v.

• it fulfills the deletion property , i.e. f(t1, . . . , tn) ≻ f(t1, . . . , ti−1, ti+1, . . . , tn) for each
i ∈ {1, . . . , n}.1

2

1We consider terms over function symbols with fixed arity only. Therefore, the deletion property is not
relevant for our case study about the LPO.
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lex
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Figure 8.1: Recursive Dependencies in the Definition of lpo

Lemma 8.3 For each precedence >F over a set F of function symbols with fixed arity, the
lexicographic path order ≻lpo is a simplification order. 2

We have formally proved this lemma with QuodLibet within our case study (cf. Exam-
ple 8.5 for more details on the proof of the transitivity and Section A.7 for the resulting
proof script).

Definition 8.1 can be transformed into a functional program in a straightforward manner
as it is done for variant lpo1 below. The order comparisons are represented with boolean
valued functions. The definition is realized with seven operators: An operator lpo which
returns the final result of the comparison; operators alpha, beta, gamma, and delta which
implement the four cases in the definition; and operators majo and lex which are used for
the quantifications in cases (β) and (γ). This results in recursive dependencies between
the operators as illustrated in Figure 8.1. Operators alpha, beta, gamma, and delta, for
instance, are used in the definition of lpo; and alpha recursively calls lpo as well as itself.

During the derivation of an efficient implementation, six different variants of the LPO are
defined. We distinguish the different variants by adding indices to the operators. Operator
alpha in variant lpo2, for instance, is denoted by alpha2. An operator is defined in terms
of operators of the same variant only. Often, two consecutive variants essentially differ in
the definitions of a few operators only. The other definitions remain “the same”, i.e. the
definition of the latter variant is derived from the former one by replacing the operators of
the former variant with the corresponding operators of the latter one. We do not present
these implicit definitions. Therefore, we define only the first variant completely. For the
other variants, we concentrate on those definitions that really differ from the previous
variant. In a nutshell, the following variants are developed in [Löc04]:

lpo1: This variant acts as reference implementation. It is derived from Definition 8.1 in
a straightforward manner and has exponential runtime. In the functional program
depicted in Figure 8.2, with =t (resp. =F ) two terms (resp. functions symbols) are
compared w.r.t. syntactical equality. The boolean valued function containstl returns
true iff the variable in the second argument is contained in the first argument which is
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lpo1(F(f , ts), F(g , us)) = alpha1(ts , F(g , us)) ∨ beta1(F(f , ts), F(g , us)) (8.1)

∨ gamma1(F(f , ts), F(g , us))

lpo1(F(f , ts), V(y)) = delta1(F(f , ts), V(y)) (8.2)

lpo1(V(x ), u) = false (8.3)

alpha1(nil, u) = false (8.4)

alpha1(cons(t , ts), u) = t =t u ∨ lpo1(t , u) ∨ alpha1(ts , u) (8.5)

beta1(F(f , ts), F(g , us)) = f >F g ∧ majo1(F(f , ts), us) (8.6)

gamma1(F(f , ts), F(g , us)) = f =F g ∧ lex1(ts , us) ∧ majo1(F(f , ts), us) (8.7)

delta1(F(f , ts), V(y)) = containstl(ts , y) (8.8)

majo1(t , nil) = true (8.9)

majo1(t , cons(u, us)) = lpo1(t , u) ∧ majo1(t , us) (8.10)

lex1(nil, nil) = false (8.11)

lex1(cons(t , ts), cons(u, us)) = if t =t u then lex1(ts , us) else lpo1(t , u) (8.12)

Figure 8.2: Functional Program for Variant lpo1

a list of terms. It is defined by mutual recursion using another boolean valued function
contains which performs the same check for a term as first argument. Using =V to
compare two variables w.r.t. syntactical equality, this may be defined as follows:

contains(V(x ), y) = x =V y (8.13)

contains(F(f , ts), y) = containstl(ts , y) (8.14)

containstl(nil, y) = false (8.15)

containstl(cons(t , ts), y) = contains(t , y) ∨ containstl(ts , y) (8.16)

Note that lex1 is a partial function. It is defined only for wellformed terms (cf.
Example 8.4).

lpo2: This variant is derived from lpo1 by rearranging the order in which cases (α) to (γ)
are checked. Therefore, only the definition of lpo2 changes in comparison to variant
lpo1:

lpo2(F(f , ts), F(g , us)) = beta2(F(f , ts), F(g , us)) ∨ gamma2(F(f , ts), F(g , us)) (8.17)

∨ alpha2(ts , F(g , us))

lpo2(F(f , ts), V(y)) = delta2(F(f , ts), V(y)) (8.18)

lpo2(V(x ), u) = false (8.19)

lpo3: In comparison to lpo2 this variant takes advantage of positive knowledge obtained
from previous order comparisons for optimizing conjunctions of conditions. Therefore,
it prevents some order comparisons by exploiting properties of simplification orders
such as transitivity and containedness of the subterm relation.
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More precisely, a new operator lexM is introduced which combines operators lex and
majo. It is used in the definition of operator gamma:

gamma3(F(f , ts), F(g , us)) = f =F g ∧ lexM3(F(f , ts), ts , us) (8.20)

lexM3(t , nil, nil) = false (8.21)

lexM3(t , cons(ti , ts), cons(ui , us)) = if ti =t ui then lexM3(t , ts , us) (8.22)

else lpo3(ti , ui) ∧ majo3(t , us)

In variant lpo3, operator majo is applied only to subterms not already known to be
smaller than t .

lpo4: This variant, additionally, makes use of knowledge about negative results from pre-
vious comparisons. These are used for optimizing disjunctions of conditions. For this
optimization, recursive calls are unfolded and rearranged exploiting the properties of
simplification orders once again, before being folded back. As shown in [Löc04], this
variant has polynomial runtime because of the reduced number of lpo invocations via
alpha.

In this variant, operators alpha and lexM are combined to a new operator lexMA

which is used in the definition of lpo4:

lpo4(F(f , ts), F(g , us)) = if f >F g then majo4(F(f , ts), us) (8.23)

elsif f =F g then lexMA4(F(f , ts), F(g , us), ts , us)

else alpha4(ts , F(g , us))

lpo4(F(f , ts), V(y)) = delta4(F(f , ts), V(y)) (8.24)

lpo4(V(x ), u) = false (8.25)

lexMA4(t , u, nil, nil) = false (8.26)

lexMA4(t , u, cons(ti , ts), cons(ui , us)) = if ti =t ui then lexMA4(t , u, ts , us) (8.27)

elsif lpo4(ti , ui) then majo4(t , us)

else alpha4(ts , u)

lpoR5: For operators alpha and lex, we need information whether two terms are syntacti-
cally equal. Instead of two independent boolean valued checks for syntactic equality
and the LPO, we may define one combined check called lpoR returning a three valued
result of sort Res. The call lpoR(t, u) returns

• E if t ≡ u;

• G if t ≻lpo u; and

• N otherwise.

Variant lpoR5 optimizes this check by unfolding, rearranging, and folding back again.
It is defined using new operators lexMAE, majoR, and alphaR. Operator lexMAE

combines operator lexMA with a check for syntactic equality. Operators majoR and
alphaR convert the interface of majo and alpha to sort Res. We skip the lengthy
formal definition of these operators which can be found in [Löc04]. The corresponding
specification for QuodLibet is presented in Section A.13.
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clpo6: In an application domain it is sometimes necessary to determine whether t ≻lpo u
or u ≻lpo t holds true. We may combine these two comparisons to one bidirectional
comparison. This is realized with function clpo. For this variant, sort Res is extended
with L. The call clpo(t, u) returns

• E if t ≡ u;

• G if t ≻lpo u;

• L if u ≻lpo t; and

• N otherwise.

Once again, unfold/fold techniques are used for deriving an optimized variant clpo6.
It depends on the new operators cMA, cLMA, and cAA. Roughly speaking, operator
cMA performs a bidirectional comparison which combines operators majo and alpha.
During the comparison of two terms t and u, it is called if the top-level operators of t
and u are comparable and one of them is smaller than the other w.r.t. the considered
precedence. Operator cLMA is the bidirectional version of operator lexMA. It performs
the comparison if the top-level operators of t and u are equal. Operator cAA is the
bidirectional version of operator alpha. It is called if the top-level operators of t and
u are not comparable w.r.t. the considered precedence. Details on the formalization
can be found in [Löc04] and Section A.17.

8.2 A Proof Script for QuodLibet

In informal proofs, properties such as the wellformedness of the arguments or the transitivity
of simplification orders are often used implicitly. In formal proofs, these implicit proof steps
have to be made explicit. This improves the accuracy of the proofs and possibly uncovers
bugs, caused e.g. by missing assumptions.

In inductive theorem proving, some kind of interaction is usually required to perform
proofs successfully. These interactions may be given in terms of auxiliary lemmas or more
specific hints such as the provision of a suitable induction scheme or the manual application
of a required lemma. For a successful proof attempt, the user usually has to think about
a manual proof first. In a second step, the proof is transformed into the representation of
the theorem prover. Imprecise informal arguments have to be worked out more precisely.
The analysis of failed proof attempts helps in this endeavor.

Certainly, these two steps need not be separated in such a strict manner but their exe-
cutions may be intertwined. Note that there are often many ways to formalize a problem.
One formalization may be more suited for human understanding, another for implemen-
tation purposes, and yet another for performing formal proofs. The same holds true for
informal versus formal proofs performed within a special theorem prover. The automatic
proof control may guide proof search in another direction than that taken in the informal
proof. Therefore, the initial manual proof plan may require some kind of revision. The
intertwining of these two steps helps the user to learn from (un)successful previous proof
attempts in such a way that suitable formalization and proof ideas can be found.

The realization of the case study about the LPO was quite challenging. Firstly, we had
to find suitable auxiliary lemmas. Secondly, we had to implement new proof techniques
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in terms of new tactics and, actually, to improve the base system for efficiency reasons.
Finally, we had to apply some tricks to complete the case study despite some deficiencies
of the induction order. The integrated decision procedure for linear arithmetic helped us
in this endeavor.

Because of the sheer size of this effort, we cannot present all the details of the proof
engineering process. Nevertheless, we sketch this process in Section 8.2.1. In Section 8.2.2,
we present details about the resulting proof script pointing out some problems and par-
ticularities of the case study as well as our solutions. The whole proof script is given in
Appendix A.

8.2.1 The Proof Engineering Process

For the case study about the LPO, Löchner provided us with a preliminary version of his
paper [Löc04] containing data structures, functional definitions of the defined operators as
well as specifications of some auxiliary lemmas required for his manually performed proof
sketches. This information could be used as proof plan. Note that the cited paper has been
developed in parallel with the formal proofs. Therefore, the development of the paper and
the derivation of the formal proofs discussed here influenced each other. As a consequence,
the specifications in the final version of the paper can be used—via some straightforward
translation—as the input specification for QuodLibet.

In the following sections, we describe the process that allowed us to produce the final
proof script. We concentrate on those aspects that are specific for the derivation of formal
proofs.

8.2.1.1 Data Structures

Most of the data structures required for this case study have already been introduced and
motivated in Section 2.2.3: For the definition of terms, we require a sort Term for the
representation of terms themselves, a sort Termlist for lists of terms used as arguments,
and sorts VID and FID for variable and function symbols, respectively. In our case study, we
consider function symbols with fixed arity and a total precedence only. This can be modeled
using a constructor Fid for function symbols with two natural numbers as arguments: The
first one is used for calculating the precedence, the second one contains the arity of the
function symbol. As usually, we use sort Bool for boolean values and sort Nat for natural
numbers. Furthermore, we define the following sorts:

Position for positions with constructors

• nnil : → Position

• ncons : Nat, Position→ Position

Positions are represented as lists over natural numbers. They are used e.g. for the
specification and verification that every LPO is a simplification order.

Res for the representation of the result for operators lpoR5 and clpo6 with constructors

• E : → Res
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• G : → Res

• L : → Res

• N : → Res

For the meaning of the constructors, we refer to Section 8.1.

8.2.1.2 Defining Rules

The functional programs presented in [Löc04] for the different variants of the LPO can
be used as specifications in QuodLibet with just slight modifications. We illustrate this
transformation with variant lpo1 illustrated in Figure 8.2 (cf. Section 8.1).

• For the equality checks =t and =F , we do not introduce new function symbols but use
the predefined equality predicate. In doing so, we follow the paradigm that predefined
symbols should be preferred in comparison to user-defined symbols as far as possible
because, otherwise, humans would have problems (cf. [Wir05a]). Furthermore, the
automatic proof control can make much more use of predefined symbols since they
are fixed. A more detailed justification as well as a collection of further guidelines for
developing suitable proof scripts for QuodLibet can be found in [SS04].

Note that the representation of variable and function symbols is unique. Therefore,
it is possible to use the predefined equality predicate for the comparison of terms.

• For if-then-else statements, we use the following transformation:

l = if λ then r1 else r2 −→ { l = r1, ¬λ }
{ l = r2, λ }

This means that an if-then-else statement produces two defining rules which differ
according to condition λ.

• For the boolean connectives ∨ and ∧, the precedence >F , and functions contains

and containstl, we provide new function symbols or, and, prec, contains and
contains tl, respectively.

We could also use the specification of ∨ and ∧ in [Löc04], namely

b1 ∨ b2 = if b1 then true else b2 (8.28)

b1 ∧ b2 = if b1 then b2 else false (8.29)

and then transform the if-then-else statement as above. This would allow us to replace
the user-defined symbols or and and in favor of some more defining rules which exploit
the predefined disjunction of the clause form. In fact, we use both formalizations:

– With lpo1, we try to mimic the original specification for lpo1 as close as possible
for two reasons: Firstly, we try to avoid any unnecessary modifications of the
specifications in [Löc04] even if they are quite obvious. Instead, we want to prove
the properties for the original specification as far as possible. Secondly, we want
to exploit properties of and and or such as associativity and commutativity.
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Note that we have to perform the transformation in those cases where we use
the predefined equality predicate instead of =t and =F . This has to be done
since equality atoms cannot be used as arguments of function symbols.

– We also specify an internal representation Lpo which applies the transformations
much more to support the automatic proof control. We prove that the LPO is a
simplification order only for this internal representation. For the other variants
this property follows from the equivalence proofs between the different variants
and the internal representation.

Altogether, the transformation results in the following specification for lpo1:

{ lpo1(F(f , ts), F(g , us)) = or(alpha1(ts , F(g , us)),
or(beta1(F(f , ts), F(g , us)),

gamma1(F(f , ts), F(g , us)))) }

(8.30)

{ lpo1(F(f , ts), V(y)) = delta1(F(f , ts), V(y)) } (8.31)

{ lpo1(V(x ), u) = false } (8.32)

{ alpha1(nil, u) = false } (8.33)

{ alpha1(cons(t , ts), u) = true,
t 6= u }

(8.34)

{ alpha1(cons(t , ts), u) = or(lpo1(t , u), alpha1(ts , u)),
t = u }

(8.35)

{ beta1(F(f , ts), F(g , us)) = and(prec(f , g), majo1(F(f , ts), us)) } (8.36)

{ gamma1(F(f , ts), F(g , us)) = and(lex1(ts , us), majo1(F(f , ts), us)),
f 6= g }

(8.37)

{ gamma1(F(f , ts), F(g , us)) = false,
f = g }

(8.38)

{ delta1(F(f , ts), V(y)) = contains tl(ts , y) } (8.39)

{ majo1(t , nil) = true } (8.40)

{ majo1(t , cons(u, us)) = and(lpo1(t , u), majo1(t , us)) } (8.41)

{ lex1(nil, nil) = false } (8.42)

{ lex1(cons(t , ts), cons(u, us)) = lex1(ts , us),
t 6= u }

(8.43)

{ lex1(cons(t , ts), cons(u, us)) = lpo1(t , u),
t = u }

(8.44)

and the following internal representation Lpo:

{ Lpo(F(f , ts), F(g , us)) = true,
Alpha(ts , F(g , us)) 6= true }

(8.45)

{ Lpo(F(f , ts), F(g , us)) = true,
Beta(F(f , ts), F(g , us)) 6= true }

(8.46)
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{ Lpo(F(f , ts), F(g , us)) = Gamma(F(f , ts), F(g , us)),
Alpha(ts , F(g , us)) = true, ¬def Alpha(ts , F(g , us)),
Beta(F(f , ts), F(g , us)) = true, ¬def Beta(F(f , ts), F(g , us)) }

(8.47)

{ Lpo(F(f , ts), V(y)) = Delta(F(f , ts), V(y)) } (8.48)

{ Lpo(V(x ), u) = false } (8.49)

{ Alpha(nil, u) = false } (8.50)

{ Alpha(cons(t , ts), u) = true,
t 6= u }

(8.51)

{ Alpha(cons(t , ts), u) = true,
t = u,
Lpo(t , u) 6= true }

(8.52)

{ Alpha(cons(t , ts), u) = Alpha(ts , u),
t = u,
Lpo(t , u) = true, ¬def Lpo(t , u) }

(8.53)

{ Beta(F(f , ts), F(g , us)) = Majo(F(f , ts), us),
prec(f , g) 6= true }

(8.54)

{ Beta(F(f , ts), F(g , us)) = false,
prec(f , g) = true, ¬def prec(f , g) }

(8.55)

{ Gamma(F(f , ts), F(g , us)) = Majo(F(f , ts), us),
f 6= g ,
Lex(ts , us) 6= true }

(8.56)

{ Gamma(F(f , ts), F(g , us)) = false,
f 6= g ,
Lex(ts , us) = true, ¬def Lex(ts , us) }

(8.57)

{ Gamma(F(f , ts), F(g , us)) = false,
f = g }

(8.58)

{ Delta(F(f , ts), V(y)) = contains tl(ts , y) } (8.59)

{ Majo(t , nil) = true } (8.60)

{ Majo(t , cons(u, us)) = Majo(t , us),
Lpo(t , u) 6= true }

(8.61)

{ Majo(t , cons(u, us)) = false,
Lpo(t , u) = true, ¬def Lpo(t , u) }

(8.62)

{ Lex(nil, nil) = false } (8.63)

{ Lex(cons(t , ts), cons(u, us)) = Lex(ts , us),
t 6= u }

(8.64)

{ Lex(cons(t , ts), cons(u, us)) = Lpo(t , u),
t = u }

(8.65)

The same transformations can be used for deriving the other variants from the specifications
in [Löc04].
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8.2.1.3 Auxiliary Lemmas and Formal Proofs

In this section, we describe the process of performing the formal proofs and finding suitable
auxiliary lemmas without going into the details. These are presented in Section 8.2.2.

We started with an initial proof plan given by the proof sketches of the informal proofs.
As properties of simplification orders such as transitivity and containedness of the subterm
relation are omnipresent in the informal proofs, our first milestone was the verification of the
property that Lpo defines a simplification order. For this, we proved some auxiliary lemmas
about terms and the internal representation Lpo. The auxiliary lemmas originated from
our domain knowledge as well as from the analysis of failed proof attempts. After having
proved these basic properties, we proceeded by showing our main goal—the equivalence of
the different variants as illustrated in Figure 8.3. During these proof attempts, we extended
the data base of auxiliary lemmas if necessary.

The variants are organized in a hierarchy. The main variants are those variants described
in [Löc04]. The auxiliary variants are introduced in the proof script e.g. to simplify the
proofs for the main variants or to enable their definition. In the first case, the auxiliary
variant is defined by means of another main variant such as lpoR4 and clpo4 which are both
derived from lpo4 (cf. Example 8.12). In this case, no optimizations—such as unfold/fold
techniques—are applied to the auxiliary variant. It just converts the interface of the main
variant. The second case applies to lpoR6 which is required for the definition of clpo6.

Since we model the different variants of the LPO with boolean valued functions, equiv-

is equivalent to

is defined by means of

uses

lpo5

lpoR6 clpo6

clpo5lpoR5

lpoR4 clpo4lpo4

lpo3

lpo2

lpo1

Lpo

auxiliary variant

main variant

Figure 8.3: Relations Between the Different Variants of the LPO
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alences between different variants are formulated as equations. We use these equations for
rewriting from higher levels to lower levels. This is the reason for representing the equiv-
alences as directed rewrite relations illustrated with arrows in Figure 8.3. The partiality
of the operators is reflected in the specification of the equivalences: The equivalences hold
true only for wellformed terms (cf. Examples 8.6 and 8.7).

The application of these equivalences as rewrite rules allows us to reduce the number of
auxiliary lemmas dramatically: We specify auxiliary lemmas only for one variant, namely,
the lowest variant w.r.t. the hierarchy illustrated in Figure 8.3 that allows for its formulation.
Properties containing operator lexM, for instance, cannot be specified for variant Lpo but
only for variants lpoi with i ≥ 3 because the operator is introduced in variant lpo3.

2

Properties between alpha and majo, however, are specified in variant Lpo using Alpha and
Majo even if they are required only for variant lpo3. To apply the property in variant lpo3,
we have to perform some more rewrite steps. But this approach allows us to formulate each
property only once in the whole proof, and not for each variant separately.

The proofs of the equivalences are performed bottom-up w.r.t. the hierarchy in Fig-
ure 8.3. To simplify these proofs, we introduce auxiliary operators in one level that imitate
the behavior of the new operators introduced in the next level. In doing so, we can isolate
the proof of the the main property of the new operator from the proof of the equivalence
relation between the two levels which has to be performed by mutual induction. In contrast
to this, the isolated proof of the main property requires only simple induction. This will
be explained in detail in Example 8.8.

We also faced the common problem of generalization in inductive theorem proving,
namely, that lemmas cannot be proved by induction themselves but have to be generalized
in such a way that an inductive proof can be performed. Then, the original lemma is proved
by applying the generalized lemma. The generalization of a lemma may even require the
introduction of new auxiliary operators (cf. Example 8.9).

The main challenge of the case study about the LPO is the use of mutual recursion in
the definitions. Therefore, proofs have to be performed by mutual induction. If we want to
prove a property for one operator defined by mutual recursion, appropriate lemmas for all
dependent operators have to be specified and proved as well. Our lazy induction approach
based on descente infinie (cf. Section 3.1.3) supports us in this endeavor. It allows us to
provide the required information about the auxiliary lemmas, the inductive case split, and
the induction order independently of each other and just when needed.

Note that our automatic proof control supports the proof of properties for mutually
recursive operators only rudimentarily. The analysis process does not recognize mutual
recursion but inspects each operator separately under the assumption that every other
operator is terminating. This suffices to generate an inductive case split but other tasks
have to be performed manually like

• the specification of auxiliary lemmas for the mutually recursive operators;

• the activation of the auxiliary lemmas for inductive applications;

• the instantiation of the weight variables to get an appropriate induction order.

2More precisely, we introduce lexM as an auxiliary operator for variant lpo
2

in Example 8.8 to simplify
the equivalence proofs. Then, properties for lexM may also be specified for variant lpo

2
.
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Furthermore, the simplification process is not directed to use one special inductive instance
of one of the mutually dependent lemmas as in explicit induction. This leads to many faulty
inductive applications that have to be deleted again resulting in a less efficient simplification
process because of the bigger search space. But it enables our proof control to find a proof
at all with a less precise analysis of the operators. Therefore, our proof control succeeds
in finding the proofs for the mutually recursive operators provided that the hints described
above are given.

In the case study about the LPO, one of the most complicated steps in performing
the mutual inductive proofs was the instantiation of the weight variables to get a suitable
induction order. Recall that a weight variable may be instantiated with a tuple of terms
containing the constructor variables of the goal to be proved. Weights—i.e. tuples of terms—
are compared with a fixed wellfounded order, namely, the lexicographic order induced by
the term lengths of the corresponding constructor terms (cf. Sections 2.2.1.1 and 2.2.3).
Whereas the instantiation of the weight variables can be performed in a similar (and simple)
way up to variant lpo4, it requires some ingenuity for the last two variants (cf. Examples 8.6
and 8.7). The last variant, for instance, swaps its arguments (cf. the definition of clpo6

in Section A.17). Therefore, our lexicographic order is not really appropriate. Instead,
the use of a multiset extension would be beneficial. We comment on such an extension
in Section 8.3. For our case study, it was sufficient to instantiate the weight variables
essentially with the sums of the lengths of the involved terms. Then, the swapping of the
arguments can be compensated by using the commutativity of the addition. The integration
of Hodes’ decision procedures for linear arithmetic (cf. Chapter 4) supported us in this task.

Our first successful proof required more than 30000 seconds. Profiling the core system
as well as the analysis of the statistics gathered during each proof attempt, revealed the
reasons for some of these deficiencies:

• Within a tactic, inference rules may be called. If an inference rule is not applicable,
its call will fail automatically. In the previous version of QML, this feature was
extended to tactics themselves: The QML compiler generated code that determined
whether the proof state tree had been modified at the end of an execution of a tactic.
This information was used for throwing a failure automatically if the proof state tree
did not change. Unfortunately, in general, this nice feature cannot be implemented
efficiently in the presence of deletion operations which undo former applications of
inference rules. Therefore, it has been abandoned in the new version of the core
system. This causes a little more effort in the implementation of tactics because tests
for determining a failure of a tactic have to be coded explicitly. However, efficiency
increases dramatically since the specialized tests are often very simple.

• The analysis of the statistics revealed lemmas that were checked for applicability
quite often but, in fact, the applications were never successful or at least only in very
few cases. The use of obligatory markings—or even more drastic, the deactivation of
lemmas—helped us to reduce unsuccessful checks for applicability (cf. Chapter 6).

Another reason for failed proof attempts was the use of the strict mandatory markings
heuristics for applicability subgoals (cf. Definition 6.6 in Section 6.2.1); proofs failed
because of the restrictions caused by mandatory markings. Even worse, sometimes,
these proofs were repeated for the subgoals again after another inference rule had
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been applied to the original goal. This observation resulted in the introduction of
generous markings to relax the mandatory markings heuristics.

The use of a generous marking allows the automatic proof control to perform proof
steps even if they do not contribute (locally). In general, the introduction of non-
contributing proof steps decreases efficiency. This effect is compensated by our reuse
mechanisms (cf. Chapter 7): Upward propagation restructures a performed proof by
eliminating non-contributing proof steps. In doing so, it eliminates some open proof
obligations.

In the end, we succeeded in reducing the runtime for the complete proof to nearly 250
seconds, a speed-up factor of 120.

The improvements described here as well as the proof techniques presented in Chapters 4
to 7 are not restricted to and have not been fine-tuned for this special case study. What we
have learned here by analyzing the case study and improving our proof control is generally
applicable as shown in the previous chapters.

8.2.2 The Resulting Proof Script: Problems and Particularities

The final proof script is divided into different modules: For each sort, there exists a separate
file which contains the constructors, defined operators, and lemmas for these operators
together with their proofs. There are modules for the boolean connectives, for terms and
lists of terms as well as for each (main) variant of the LPO. In the following sections,
we present some examples illustrating the problems in developing a proof script and their
solutions in more detail.

8.2.2.1 Mutual Recursion/Induction

To get familiar with inductive reasoning over mutually recursive functions, we start with
the simplest property of Lpo—its domain lemma. With this example we illustrate some
of the most important steps that have to be performed manually when proving properties
over mutually recursive operators with QuodLibet: the speculation of auxiliary lemmas
and the instantiation of the weight variables to choose an appropriate induction order.

Example 8.4 At first, we have to speculate suitable domain lemmas for each of the oper-
ators Lpo, Alpha, Beta, Gamma, Delta, Majo, and Lex (cf. Axioms (8.45) to (8.65)). Note
that Lex is defined only if the lists in both arguments have the same length. Lex is used
only in the definition of Gamma. In this case, it is applied to the argument lists of two
terms that start with the same function symbol. Since we consider function symbols with
fixed arity only, we can guarantee the definedness property if both terms are wellformed
(cf. Section 2.2.3). The restriction of wellformedness is then inherited to all other domain
lemmas. Furthermore, Beta and Gamma are defined only if both argument terms start with
a function symbol, whereas Delta is defined only if the first argument starts with a function
symbol and the second argument term consists of a variable symbol. Therefore, we try to
prove the domain Lemmas depicted in Figure 8.4 by mutual induction.

The inductive dependencies between the domain lemmas are illustrated in Figure 8.5.
Lemmas (8.67), (8.68), and (8.69), for instance, are used as induction hypotheses in the
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{ def Lpo(t , u),
Well(t) 6= true,
Well(u) 6= true }

(8.66)

{ def Alpha(ts , t),
Well tl(ts) 6= true,
Well(t) 6= true }

(8.67)

{ def Beta(t , u),
Well(t) 6= true,
Well(u) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.68)

{ def Gamma(t , u),
Well(t) 6= true,
Well(u) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.69)

{ def Delta(t , u),
Well(t) 6= true,
Well(u) 6= true,
Fun(t) 6= true,
Var(u) 6= true }

(8.70)

{ def Majo(t , us),
Well(t) 6= true,
Well tl(us) 6= true }

(8.71)

{ def Lex(ts , us),
length(ts) 6= length(us),
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.72)

Figure 8.4: Domain Lemmas for Lpo

8.66

8.68 8.69

8.71 8.72

8.67

Figure 8.5: Inductive Dependencies Between the Domain Lemmas (8.66) to (8.72)

proof of Lemma (8.66). Note that the inductive dependencies in Figure 8.5 correspond to
the recursive dependencies in the definition of the operators (cf. Figure 8.1).

There are different ways to express the properties that a term starts with a function
symbol or consists only of a variable symbol: We may, for instance use, the corresponding
constructor terms F(f , ts) and V(x ), respectively. Then, the properties are guaranteed by
matching operations. Instead, we use boolean valued operators Fun and Var defined as

{ Fun(F(f , ts)) = true } (8.73)

{ Fun(V(x )) = false } (8.74)

{ Var(V(x )) = true } (8.75)

{ Var(F(f , ts)) = false } (8.76)
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w8.67(ts , F(g , us)) < w8.66(F(f , ts), F(g , us)) (8.77)

w8.68(F(f , ts), F(g , us)) < w8.66(F(f , ts), F(g , us)) (8.78)

w8.69(F(f , ts), F(g , us)) < w8.66(F(f , ts), F(g , us)) (8.79)

w8.66(u, t) < w8.67(cons(u, ts), t) (8.80)

w8.67(ts , t) < w8.67(cons(u, ts), t) (8.81)

w8.71(F(f , ts), us) < w8.68(F(f , ts), F(g , us)) (8.82)

w8.71(F(f , ts), us) < w8.69(F(f , ts), F(g , us)) (8.83)

w8.72(ts , us) < w8.69(F(f , ts), F(g , us)) (8.84)

w8.71(t , us) < w8.71(t , cons(u, us)) (8.85)

w8.66(t , u) < w8.71(t , cons(u, us)) (8.86)

w8.72(ts , us) < w8.72(cons(t , ts), cons(u, us)) (8.87)

w8.66(t , u) < w8.72(cons(t , ts), cons(u, us)) (8.88)

Figure 8.6: Order Constraints in the Proofs of the Domain Lemmas for Lpo

In doing so, the lemmas have additional conditions. On the one hand, these additional
conditions reduce the efficiency of the proof process: If we apply Lemma (8.69) to a goal
containing literal def Gamma(F(f , ts), F(g , us)) then we get two additional condition subgoals
containing literal Fun(F(f , ts)) = true and Fun(F(g , us)) = true, respectively. These
condition subgoals can be proved immediately by applying Axiom (8.73). On the other
hand, these lemmas are more often applicable. Lemma (8.69) can be applied additionally
to a goal containing literals def Gamma(t , F(g , us)) and Fun(t) 6= true.

If we perform the proofs of Lemmas (8.66) to (8.72) with our automatic proof control, the
inductive applications of the lemmas result in order subgoals. Each order subgoal contains
one of the order constraints depicted in Figure 8.6. We have to find a suitable instantiation
of the weight variables such that every order subgoal can be proved. In general, we may
use other literals of the order subgoals during their proofs as well. But in this case, the
instantiated order constraints are sufficient to prove the order subgoals.

Recall that the weight variables have to be instantiated with tuples of terms which
are compared with a lexicographic order based on the length of constructor terms (cf.
Section 2.2.1). Thus, a constructor term t is smaller than a constructor term u if t is a
strict subterm of u, i.e. a subterm which is unequal to u. Note that the constraints in
Figure 8.6 contain different weight variables which may be instantiated in different ways.
To cope with the resulting complexity, we ignore the different weight variables at first.
Instead, we compare the corresponding arguments of the weight variables on the left-hand
and right-hand side of the constraints as if we have instantiated each weight variable with
the identity function. This approach is sensible since the arguments of the weight variables
correspond to the arguments of the comparison operators Lpo, Alpha, Beta, Gamma, Majo,
and Lex in the domain lemmas.

In Figure 8.6, we have underlined those arguments on the left-hand side which are
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definitely smaller than the arguments on the right-hand side as they are strict constructor
subterms of the corresponding terms on the right-hand side. In Constraint (8.77) the second
argument and in Constraint (8.82) the first argument remains the same. Therefore, both
arguments are required to fulfill all order constraints. In the considered instantiation with
the identity function, all constraints except for (8.78) and (8.79) are fulfilled. For these two
constraints, we can exploit the fact that the weight variables on the left-hand and on the
right-hand side are different. We may add a third component to the previous instantiation
of w8.66. This third component may consist of an arbitrary constructor term e.g. 0. Then,
all order constraints are fulfilled and the proofs can be completed. 2

The next example illustrates the most complicated inductive proof performed within this
case study: the proof of the transitivity of Lpo (cf. Lemma (8.89)) which mutually depends
on the proof of the irreflexivity of Lpo (cf. Lemma (8.106)).

Example 8.5 We cannot describe the process in detail that has led to the specification of
the 22 Lemmas (8.89) to (8.110) which express the transitivity and irreflexivity of the Lpo

and the mutually dependent operators (cf. Figures 8.7 and 8.8). But the process was guided
by the following considerations: We did not want to convert proofs of these properties from
a textbook step-by-step. Instead, we wanted to exploit the automation of our proof control
as far as possible. Therefore, most lemmas originated from the analysis of failed proof
attempts. Certainly, we had to generalize the formulas of the failed proofs using our domain
knowledge to derive suitable auxiliary lemmas. The proof attempt for Lemma (8.98) using
our standard strategy without any lemmas activated for mutual induction, for instance,
resulted in the following two open subgoals:

{ ¬def length(us),
arity(g) 6= length(us),
¬def length(vs),
arity(g) 6= length(vs),
¬def length(ts),
¬def arity(g),
arity(g) 6= length(ts),
Lex(ts , vs) 6= true,
Lex(us , vs) 6= true,
Lex(ts , us) 6= true,
Majo(F(g , ts), us) 6= true,
Majo(F(g , us), vs) 6= true,
Majo(F(g , ts), vs) = true,
Well tl(ts) 6= true,
Well tl(vs) 6= true,
Well tl(us) 6= true }

(8.111) { ¬def length(us),
arity(g) 6= length(us),
¬def length(vs),
arity(g) 6= length(vs),
¬def length(ts),
¬def arity(g),
arity(g) 6= length(ts),
¬def Lex(ts , vs),
Lex(ts , vs) = true,
Lex(us , vs) 6= true,
Lex(ts , us) 6= true,
Majo(F(g , ts), us) 6= true,
Majo(F(g , us), vs) 6= true,
Well tl(ts) 6= true,
Well tl(vs) 6= true,
Well tl(us) 6= true }

(8.112)

Using our domain knowledge we derived the auxiliary Lemmas (8.101) and (8.102). We
noticed, for instance, that Goal (8.111) generated by our automatic proof control remains
true if nearly half of the literals is eliminated, resulting in Lemma (8.101).

Furthermore, some of the lemmas were introduced due to symmetry considerations.
Lemmas (8.90) to (8.98), for instance, handle the nine cases where the comparisons in the
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{ Lpo(t , v) 6= true,
Lpo(v , u) 6= true,
Lpo(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(v) 6= true }

(8.89)

{ Alpha(ts , F(h, vs)) 6= true,
Alpha(vs , u) 6= true,
Alpha(ts , u) = true,
Well tl(ts) 6= true,
Well(u) 6= true,
Well tl(vs) 6= true,
arity(h) 6= length(vs),
Fun(u) 6= true }

(8.90)

{ Alpha(ts , v) 6= true,
Beta(v , u) 6= true,
Alpha(ts , u) = true,
Well tl(ts) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.91)

{ Alpha(ts , v) 6= true,
Gamma(v , u) 6= true,
Alpha(ts , u) = true,
Well tl(ts) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.92)

{ Beta(t , F(h, vs)) 6= true,
Alpha(vs , u) 6= true,
Lpo(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well tl(vs) 6= true,
arity(h) 6= length(vs),
Fun(t) 6= true,
Fun(u) 6= true }

(8.93)

{ Beta(t , v) 6= true,
Beta(v , u) 6= true,
Beta(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(t) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.94)

{ Beta(t , v) 6= true,
Gamma(v , u) 6= true,
Beta(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(t) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.95)

{ Gamma(t , F(h, vs)) 6= true,
Alpha(vs , u) 6= true,
Lpo(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well tl(vs) 6= true,
arity(h) 6= length(vs),
Fun(t) 6= true,
Fun(u) 6= true }

(8.96)

{ Gamma(t , v) 6= true,
Beta(v , u) 6= true,
Beta(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(t) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.97)

Figure 8.7: Auxiliary Lemmas for the Proof of the Transitivity of Lpo (1)
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{ Gamma(t , v) 6= true,
Gamma(v , u) 6= true,
Gamma(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(v) 6= true,
Fun(t) 6= true,
Fun(u) 6= true,
Fun(v) 6= true }

(8.98)

{ Majo(t , vs) 6= true,
Alpha(vs , u) 6= true,
Lpo(t , u) = true,
Well(t) 6= true,
Well(u) 6= true,
Well tl(vs) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.99)

{ Majo(F(f , ts), us) 6= true,
Majo(F(g , us), vs) 6= true,
Majo(F(f , ts), vs) = true,
prec(f , g) 6= true,
Well tl(ts) 6= true,
arity(f ) 6= length(ts),
Well tl(us) 6= true,
arity(g) 6= length(us),
Well tl(vs) 6= true }

(8.100)

{ Majo(F(g , ts), us) 6= true,
Majo(F(g , us), vs) 6= true,
Majo(F(g , ts), vs) = true,
Lex(ts , us) 6= true,
Well tl(ts) 6= true,
arity(g) 6= length(ts),
Well tl(us) 6= true,
arity(g) 6= length(us),
Well tl(vs) 6= true }

(8.101)

{ Lex(ts , us) 6= true,
Lex(us , vs) 6= true,
Lex(ts , vs) = true,
length(ts) 6= length(us),
length(ts) 6= length(vs),
Well tl(ts) 6= true,
Well tl(vs) 6= true,
Well tl(us) 6= true }

(8.102)

{ Alpha(ts , u) 6= true,
Delta(u, V(y)) 6= true,
Delta(F(f , ts), V(y)) = true,
Well tl(ts) 6= true,
arity(f ) 6= length(ts),
Well(u) 6= true,
Well(V(y)) 6= true,
Fun(u) 6= true }

(8.103)

{ Beta(t , u) 6= true,
Delta(u, V(y)) 6= true,
Delta(t , V(y)) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(V(y)) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.104)

{ Gamma(t , u) 6= true,
Delta(u, V(y)) 6= true,
Delta(t , V(y)) = true,
Well(t) 6= true,
Well(u) 6= true,
Well(V(y)) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.105)

{ Lpo(t , t) = false,
Well(t) 6= true }

(8.106)

{ Alpha(ts , F(g , us)) = false,
sublist(ts , us) 6= true,
Well tl(us) 6= true,
arity(g) 6= length(us),
Well tl(ts) 6= true }

(8.107)

{ Beta(t , t) = false,
Well(t) 6= true,
Fun(t) 6= true }

(8.108)

{ Gamma(t , t) = false,
Well(t) 6= true,
Fun(t) 6= true }

(8.109)

{ Lex(ts , ts) = false,
Well tl(ts) 6= true }

(8.110)

Figure 8.8: Auxiliary Lemmas for the Proof of the Transitivity of Lpo (2)
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Figure 8.9: Inductive Dependencies in the Proof of the Transitivity of Lpo

premise of the transitivity are performed with one of the operators Alpha, Beta, and Gamma,
respectively.

Lemmas (8.103), (8.104), (8.105), (8.108), (8.110), and (8.109) (using Lemma (8.110)
non-inductively) can be proved in advance without mutual induction. The inductive de-
pendencies between the remaining lemmas are illustrated in Figure 8.9.

The inductive applications in the proof attempts result in order subgoals which con-
tain the 36 different order constraints presented in Figure 8.10. Since we have inductive
dependencies between 16 lemmas, there are just as many weight variables that have to be
instantiated. Therefore, there exist numerous different possibilities to instantiate them and
many solutions that fulfill all the order constraints. We present one possible approach in
doing this which extends the approach used in Example 8.4.

In Example 8.4, each domain lemma contained exactly two constructor variables (cf.
Figure 8.4) which formed the arguments of the corresponding weight variables (cf. Fig-
ure 8.6). In the domain lemmas, these constructor variables were used as the arguments of
the comparison operators. Therefore, it was sensible to ignore the different weight variables
and to consider only their arguments at first.

The lemmas depicted in Figures 8.7 and 8.8, however, contain one to five constructor
variables which serve different purposes. Therefore, it does not make sense to compare, for
instance, the second argument of w8.90, which is a single function symbol, with the second
argument of w8.89, which is a term. To apply the approach used in Example 8.4, we merge
arguments of weight variables into virtual arguments. The merging process depends on
the usage of the constructor variables in the corresponding lemmas. In Lemma (8.90), for
instance, constructor variables h and vs form one single term F(h, vs) as second argument
of Alpha in the first literal. Therefore, we merge the second and the third argument of
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w8.90(us , f , ts , F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.113)

w8.91(us , F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.114)

w8.92(us , F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.115)

w8.93(F(g , us), f , ts , F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.116)

w8.94(F(g , us), F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.117)

w8.95(F(g , us), F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.118)

w8.96(F(g , us), f , ts , F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.119)

w8.97(F(g , us), F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.120)

w8.98(F(g , us), F(f , ts), F(h, vs)) < w8.89(F(g , us), F(f , ts), F(h, vs)) (8.121)

w8.89(t , F(h, vs), u) < w8.90(cons(t , ts), h, vs , u) (8.122)

w8.90(ts , h, vs , u) < w8.90(cons(t , ts), h, vs , u) (8.123)

w8.89(t , v , u) < w8.91(cons(t , ts), v , u) (8.124)

w8.91(ts , v , u) < w8.91(cons(t , ts), v , u) (8.125)

w8.89(t , v , u) < w8.92(cons(t , ts), v , u) (8.126)

w8.92(ts , v , u) < w8.92(cons(t , ts), v , u) (8.127)

w8.99(F(f , ts), vs , u) < w8.93(F(f , ts), h, vs , u) (8.128)

w8.100( g , us , ts , f , vs) < w8.94(F(g , us), F(f , ts), F(h, vs)) (8.129)

w8.100( g , us , ts , h , vs) < w8.95(F(g , us), F(h, ts), F(h, vs)) (8.130)

w8.99(F(f , ts), vs , u) < w8.96(F(f , ts), h, vs , u) (8.131)

w8.101( f , us , ts , vs) < w8.97(F(f , us), F(f , ts), F(h, vs)) (8.132)

w8.101( h, us , ts , vs) < w8.98(F(h, us), F(h, ts), F(h, vs)) (8.133)

w8.102(us , ts , vs) < w8.98(F(h, us), F(h, ts), F(h, vs)) (8.134)

w8.89(t , v , u) < w8.99(t , cons(v , vs), u) (8.135)

w8.99(t , vs , u) < w8.99(t , cons(v , vs), u) (8.136)

w8.100( f , ts , us , g , vs) < w8.100( f , ts , us , g , cons(u, vs)) (8.137)

w8.89(F(f , ts), F(g , us), u) < w8.100( f , ts , us , g , cons(u, vs)) (8.138)

w8.101( g , ts , us , vs) < w8.101( g , ts , us , cons(u, vs)) (8.139)

w8.89(F(g , ts), F(g , us), u) < w8.101( g , ts , us , cons(u, vs)) (8.140)

w8.102(ts , us , vs) < w8.102(cons(v , ts), cons(v , us), cons(v , vs)) (8.141)

w8.89(u, t , v) < w8.102(cons(u, ts), cons(t , us), cons(v , vs)) (8.142)

w8.106(v) < w8.102(cons(v , ts), cons(t , us), cons(v , vs)) (8.143)

w8.89(v , t , v) < w8.102(cons(v , ts), cons(t , us), cons(v , vs)) (8.144)

w8.107(ts , f , ts ) < w8.106(F(f , ts)) (8.145)

w8.106(u) < w8.107(cons(u, ts), g , us ) (8.146)

w8.89(u, F(g , us), u) < w8.107(cons(u, ts), g , us ) (8.147)

w8.107(ts , g , us ) < w8.107(cons(u, ts), g , us ) (8.148)

Figure 8.10: Order Constraints in the Proof of the Transitivity of Lpo
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the weight variable w8.90 into one virtual argument. In Figure 8.10, virtual arguments
that consist of more than one argument are framed. Note that in Lemma (8.101), function
symbol g is used with argument lists ts and us . This is illustrated in Figure 8.10 by framing
g ,ts and us in w8.101. Instead of the three arguments g , ts and us , we consider the two
virtual arguments F(g , ts) and F(g , us). After this merging, w8.106 has one, w8.107 has two,
and all other weight variables have three virtual arguments.

Now, we proceed as in Example 8.4, but compare the virtual arguments of the weight
variables. In Figure 8.10, we have underlined those virtual arguments that are smaller
w.r.t. the constructor term length than the corresponding virtual arguments on the other
side of the constraint. Only the left-hand sides of the constraints contain smaller virtual
arguments. If we instantiate each weight variable by the list of virtual arguments, all
constraints except for (8.116) to (8.121) are fulfilled. These constraints can be fulfilled
additionally if we add a fourth component such as 0 to the instantiation of w8.89. We may
simplify these instantiations by eliminating those components that are never used in the
lexicographic comparison. In doing so, we derive the following instantiations:

w8.89(t , v , u) = (t , v , u, 0)

w8.90(ts , h, vs , u) = ts

w8.91(ts , v , u) = ts

w8.92(ts , v , u) = ts

w8.93(t , h, vs , u) = (t , F(h, vs))

w8.94(t , v , u) = (t , v , u)

w8.95(t , v , u) = (t , v , u)

w8.96(t , h, vs , u) = (t , F(h, vs))

w8.97(t , v , u) = (t , v , u)

w8.98(t , v , u) = (t , v , u)

w8.99(t , vs , u) = (t , vs)

w8.100(f , ts , us , g , vs) = (F(f , ts), F(g , us), vs)

w8.101(g , ts , us , vs) = (F(g , ts), F(g , us), vs)

w8.102(ts , us , vs) = ts

w8.106(t) = t

w8.107(ts , g , us) = ts

With these instantiations, all order subgoals can be proved completing the proofs of the
lemmas depicted in Figures 8.7 and 8.8.

This example illustrates the benefits of a proof process based on descente infinie for
complicated inductive proofs. Both tasks, the speculation of the lemmas as well as the
choice of the induction order are complicated on their own. With descente infinie, we are
able to consider both tasks in isolation exploiting the information gathered so far, such as
the order constraints for instantiating the weight variables. In contrast to this, in explicit
induction all the information would have to be present right at the beginning of the proof
attempt. 2

The previous example suggests a structured approach for the instantiation of the weight
variables. In principle, such an approach can be implemented as tactic to improve the
automatic proof control. This is true for problems with a simple structure of mutual
dependencies. But as the next two examples illustrate, the problems in finding a suitable
instantiation of weight variables may become very hard in practice. In general, the problem
whether there exists a suitable instantiation is undecidable. Therefore, we suppose that,
often, this task still has to be done with human ingenuity in the future.

Example 8.6 In this example, we consider the equivalence proof between lpoR5 and
lpoR4. The defining rules of these variants can be found in Sections A.12 and A.13. The
auxiliary lemmas that we have used for the proof are illustrated in Figure 8.11. Originally,
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{ lpoR5(t , u) = lpoR4(t , u),
Well(t) 6= true,
Well(u) 6= true }

(8.149)

{ lexMAE5(F(f , vs), F(g ,ws), ts , us) = lexMAE4(F(f , vs), F(g ,ws), ts , us),

sublist(ts , vs) 6= true ,

sublist(us ,ws) 6= true ,

arity(f ) 6= length(vs),
arity(g) 6= length(ws),
length(ts) 6= length(us),
Well tl(vs) 6= true,
Well tl(ws) 6= true,
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.150)

{ alphaR5(ts , u) = alphaR4(ts , u),
Well tl(ts) 6= true,
Well(u) 6= true }

(8.151)

{ majoR5(t , us) = majoR4(t , us),
Well tl(us) 6= true,
Well(t) 6= true }

(8.152)

Figure 8.11: Auxiliary Lemmas for the Proof of the Equivalence Between lpoR5 and lpoR4

w8.150( g , us , g , us , us , us) < w8.149(F(g , us), F(g , us))
∗ (8.153)

w8.152(F(f , ts), us) < w8.149(F(f , ts), F(g , us)) (8.154)

w8.150( g , ts , g , us , ts , us) < w8.149(F(g , ts), F(g , us))
∗ (8.155)

w8.151(ts , F(g , us)) < w8.149(F(f , ts), F(g , us)) (8.156)

w8.150( f , vs , g ,ws , us , us) < w8.150( f , vs , g ,ws , cons(u, us), cons(u, us)) (8.157)

w8.149(t , u) < w8.150( f , vs , g ,ws , cons(t , ts), cons(u, us))∗∗ (8.158)

w8.150( f , vs , g ,ws , ts , us) < w8.150( f , vs , g ,ws , cons(u, ts), cons(u, us)) (8.159)

w8.152(F(f , vs), us) < w8.150( f , vs , g ,ws , cons(t , ts), cons(u, us))∗∗ (8.160)

w8.151(ts , F(g ,ws)) < w8.150( f , vs , g ,ws , cons(t , ts), cons(u, us))∗∗ (8.161)

w8.151(ts , u) < w8.151(cons(t , ts), u) (8.162)

w8.149(t , u) < w8.151(cons(t , ts), u) (8.163)

w8.152(t , us) < w8.152(t , cons(u, us)) (8.164)

w8.149(t , u) < w8.152(t , cons(u, us)) (8.165)

Figure 8.12: Order Constraints in the Proof of the Equivalence Between lpoR5 and lpoR4
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we tried to prove Lemma (8.150) without the framed literals. But for this stronger version
we could not prove the order constraints using our fixed lexicographic order. The framed
literals define a context in which the order constraints marked with two asterisks (∗∗) in
Figure 8.12 can be proved exploiting the following definition of sublist:

{ sublist(nil, us) = true } (8.166)

{ sublist(cons(t , ts), nil) = false } (8.167)

{ sublist(cons(t , ts), cons(u, us)) = sublist(ts , us),
t 6= u }

(8.168)

{ sublist(cons(t , ts), cons(u, us)) = sublist(cons(t , ts), us),
t = u }

(8.169)

More precisely, the inductive applications in the proof attempts of the lemmas illustrated in
Figure 8.11 result in order subgoals containing the order constraints depicted in Figure 8.12.
For the proofs of those order subgoals that contain order constraints marked with two
asterisks, it is essential that they also contain the following literals:

sublist(cons(t, ts), vs) 6= true (8.170)

sublist(cons(u, us),ws) 6= true (8.171)

which are derived from the framed literals in Lemma (8.150).

To derive an instantiation of the weight variables, we use the same approach as in
Example 8.5: We merge function symbols and argument lists into virtual arguments—
illustrated by framing in Figure 8.12—according to their appearance as single terms in
the corresponding lemmas in Figure 8.11. If we use these virtual arguments to instantiate
the weight variables, the constraints that are not marked with an asterisk can be proved
inductively valid because of the underlined arguments. These arguments are smaller than
the corresponding ones on the right-hand side. Constraints marked with one asterisk hold
true if we duplicate the arguments for the instantiation of w8.149 (cf. below). Constraints
marked with two asterisks can be proved inductively valid by exploiting Literals (8.170)
and (8.171). In doing so, it suffices, for instance, to prove Constraint (8.158) under the
condition that cons(t , ts) is a sublist of vs . But then, t < F(f , vs) holds true. Thus, we get
the following instantiations of the weight variables:

w8.149(t , u) = (t , u, t , u)

w8.150(f , vs , g ,ws , ts , us) = (F(f , vs), F(g ,ws), ts , us)

w8.151(ts , u) = (ts , u)

w8.152(t , us) = (t , us)

With these instantiations of the weight variables, the proofs of the lemmas depicted in
Figure 8.11 can be completed with QuodLibet.

If we were allowed to use a multiset extension instead of the lexicographic order we
could prove the strengthened version of Lemma (8.150) without the framed literals by
using the same instantiations of the weight variables. This example illustrates that it may
be beneficial to admit other wellfounded orders for performing the proofs of the order
constraints. We comment on such an extension in Section 8.3.1. 2
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{ clpo6(t , u) = clpo4(t , u),
Well(t) 6= true,
Well(u) 6= true }

(8.172)

{ cLMA6(F(f , vs), F(g ,ws), ts , us) = cLMA4(F(f , vs), F(g ,ws), ts , us),

sublist(ts , vs) 6= true ,

sublist(us ,ws) 6= true ,

arity(f ) 6= length(vs),
arity(g) 6= length(ws),
length(ts) 6= length(us),
Well tl(vs) 6= true,
Well tl(ws) 6= true,
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.173)

{ cMA6(t , us) = cMA4(t , us),
Well(t) 6= true,
Well tl(us) 6= true }

(8.174)

{ cAA6(t , u, ts , us) = cAA4(t , u, ts , us),
Well(t) 6= true,
Well(u) 6= true,
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.175)

Figure 8.13: Auxiliary Lemmas for the Proof of the Equivalence Between clpo6 and clpo4

w8.173( g , us , g , us , us , us) < w8.172(F(g , us), F(g , us))
∗ (8.176)

w8.173( g , ts , g , us , ts , us) < w8.172(F(g , ts), F(g , us))
∗ (8.177)

w8.174(F(f , ts), us) < w8.172(F(f , ts), F(g , us)) (8.178)

w8.174(F(g , us), ts) < w8.172(F(f , ts), F(g , us))
∗∗∗ (8.179)

w8.173( f , vs , g ,ws , us , us) < w8.173( f , vs , g ,ws , cons(ui , us), cons(ui , us)) (8.180)

w8.172(ti , ui) < w8.173( f , vs , g ,ws , cons(ti , ts), cons(ui , us))∗∗ (8.181)

w8.173( f , vs , g ,ws , ts , us) < w8.173( f , vs , g ,ws , cons(ui , ts), cons(ui , us)) (8.182)

w8.174(F(f , vs), us) < w8.173( f , vs , g ,ws , cons(ti , ts), cons(ui , us))∗∗ (8.183)

w8.174(F(g ,ws), ts) < w8.173( f , vs , g ,ws , cons(ti , ts), cons(ui , us))∗∗,∗∗∗ (8.184)

w8.174(t , us) < w8.174(t , cons(u, us)) (8.185)

w8.172(t , u) < w8.174(t , cons(u, us)) (8.186)

Figure 8.14: Order Constraints in the Proof of the Equivalence Between clpo6 and clpo4
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Example 8.7 This example is similar to but still a little bit more complicated than Exam-
ple 8.6. It illustrates the equivalence proof between clpo6 and clpo4 (cf. Sections A.15 and
A.17 for their definitions). The additional problem is that during the bidirectional com-
parison in clpo6, arguments are swapped in the recursive calls occurring in the defining
rules.

Figure 8.13 contains the auxiliary lemmas used for the proof. As for Lemma (8.150)
in Example 8.6, the framed literals in Lemma (8.173) are present just to facilitate the
proof of those order subgoals that contain order constraints marked with two asterisks in
Figure 8.14. In these order subgoals the framed literals are instantiated to

sublist(cons(ti , ts), vs) 6= true (8.187)

sublist(cons(ui , us),ws) 6= true (8.188)

The definition of cAA6 does not depend on the other three operators. Therefore, the
proof can be performed by simple induction. The inductive applications in the proofs
of the remaining lemmas of Figure 8.13 result in order subgoals which contain the order
constraints depicted in Figure 8.14. The figure is annotated by framing and underlining as
well as with asterisks in the same way as Figure 8.12 in Example 8.6:

• arguments are merged into virtual arguments by framing;

• virtual arguments in the left-hand side that are smaller than the corresponding argu-
ments in the right-hand are underlined;3

• for the instantiation of w8.172, we duplicate its arguments due to the order constraints
marked with one asterisk;

• the proofs of the order constraints marked with two asterisks exploit Literals (8.187)
and (8.188) which are contained in the corresponding order subgoals;

• the order constraints marked with three asterisks contain weight variables with swapped
arguments. To be able to prove these constraints, we combine the first two arguments
with a commutative operator in all the instantiations of the weight variables. This
last item is new in comparison to Example 8.6.

Therefore, we get the following instantiations for the weight variables which allow us to
prove the order constraints in Figure 8.14 with our lexicographic order:

w8.172(t , u) = (+(term-size(t), term-size(u)),

term-size(t))

w8.173(f , vs , g ,ws , ts , us) = (+(term-size(F(f , vs)), term-size(F(g ,ws))),

term-size tl(ts))

w8.174(t , us) = +(term-size(t), term-size tl(us))

The auxiliary operators term-size and term-size tl measure the size of terms and lists of
terms. We define the size of a term similarly to its length except that for each argument list

3taking into account the instantiation of the weight variables according to the asterisks
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the size is additionally incremented by 1. This simplifies the proofs of the order subgoals.
We get the following definitions:

{ term-size(V(x )) = 1 } (8.189)

{ term-size(F(f , ts)) = s(term-size tl(ts)) } (8.190)

{ term-size tl(nil) = 1 } (8.191)

{ term-size tl(cons(t , ts)) = +(term-size(t), term-size tl(ts)) } (8.192)

Hodes’ decision procedure for linear arithmetic (cf. Section 4) helps us to prove the order
subgoals with QuodLibet by exploiting the commutativity of the addition.

Once again, using a multiset extension instead of the lexicographic order as fixed well-
founded order for comparing the order constraints would allow us to prove the strengthened
version of Lemma (8.173) without the framed literals and to simplify the proofs of the order
subgoals using the following instantiations of the weight variables:

w8.172(t , u) = (t , u, t , u)

w8.173(f , vs , g ,ws , ts , us) = (F(f , vs), F(g ,ws), ts , us)

w8.174(t , us) = (t , us)

We will comment on such an extension in Section 8.3.1. 2

With the last example in this section, we concretize the use of auxiliary operators to simplify
the mutually inductive proofs of the equivalences between the different levels.

Example 8.8 In variant lpo3 a new operator lexM3 is defined which replaces the calls to
lex and majo in gamma3 to avoid the redundant calls to majo for k ≤ i in Definition 8.1.
We have the following definitions:

{ gamma3(F(f , ts), F(g , us)) = lexM3(F(f , ts), ts , us),
f 6= g }

(8.193)

{ gamma3(F(f , ts), F(g , us)) = false,
f = g }

(8.194)

{ lexM3(v , nil, nil) = false } (8.195)

{ lexM3(v , cons(t , ts), cons(u, us)) = lexM3(v , ts , us),
t 6= u }

(8.196)

{ lexM3(v , cons(t , ts), cons(u, us)) = and(lpo3(t , u), majo3(v , us)),
t = u }

(8.197)

In contrast to this, gamma2 is defined with the following axioms:

{ gamma2(F(f , ts), F(g , us)) = and(lex2(ts , us), majo2(F(f , ts), us)),
f 6= g }

(8.198)

{ gamma2(F(f , ts), F(g , us)) = false,
f = g }

(8.199)
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If we want to prove the equivalence between the two variants lpo2 and lpo3, we have to
verify among other things:

{ gamma3(t , u) = gamma2(t , u),
Well(t) 6= true,
Well(u) 6= true,
Fun(t) 6= true,
Fun(u) 6= true }

(8.200)

For this, we could try to prove:

{ lexM3(F(f , ts), ts , us) = and(lex2(ts , us), majo2(F(f , ts), us)),
length(ts) 6= length(us),
arity(f ) 6= length(ts),
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.201)

But then, the mutual inductive proofs of the equivalence would become more difficult. In
fact, we could not prove Lemma (8.201) immediately by induction but we would have to
generalize it first (cf. Example 8.9).

Since we want to facilitate the mutual inductive proofs as far as possible, we prefer to
decouple the proof of the main property of the new operator lexM from the proof of the
equivalence relation. For this, we introduce a corresponding operator lexM2 for variant
lpo2 with the following axioms:

{ lexM2(t , nil, nil) = false } (8.202)

{ lexM2(v , cons(t , ts), cons(u, us)) = lexM2(v , ts , us),
t 6= u }

(8.203)

{ lexM2(v , cons(t , ts), cons(u, us)) = and(lpo2(t , u), majo2(v , us)),
t = u }

(8.204)

Then, we prove the main property of lexM for variant lpo2, namely:

{ lexM2(F(f , ts), ts , us) = and(Lex(ts , us), Majo(F(f , ts), us)),
length(ts) 6= length(us),
arity(f ) 6= length(ts),
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.205)

Just like Lemma (8.201), Lemma (8.205) cannot be proved immediately by induction but
we have to generalize it first. But then, its generalization (8.207) can be proved by simple
induction instead of mutual induction (cf. Example 8.9).

With Lemma (8.205), we can prove Lemma (8.200) as well as the following lemma easily
by mutual induction:

{ lexM3(v , ts , us) = lexM2(v , ts , us),
length(ts) 6= length(us),
Well(v) 6= true,
Well tl(ts) 6= true,
Well tl(us) 6= true }

(8.206)

The proof depends on further lemmas for lpo3, alpha3, beta3, and majo3. 2
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8.2.2.2 Speculation of Auxiliary Lemmas

In inductive theorem proving, the application of lemmas is very important for perform-
ing proofs successfully and efficiently. Therefore, the speculation of appropriate auxiliary
lemmas as well as the integration of the lemma application mechanism into the automatic
proof control is essential. In this section, we concentrate on the speculation of auxiliary
lemmas. The efficiency of proof search is considered in Section 8.2.2.3.

Often, a failed proof attempt calls for an additional lemma and the analysis of one of the
open goal nodes results in an appropriate candidate. The final version of a useful auxiliary
lemma usually requires some kind of generalization (cf. Example 8.5). A lemma may be
generalized by eliminating some of its premises, i.e. literals in its clause, or by replacing
common subterms in the lemma with new variables. The following example illustrates that
the derivation of suitable generalizations is sometimes very difficult. In these cases, we have
to perform this task manually.

Example 8.9 In Example 8.8, we have identified Lemma (8.205) as an appropriate aux-
iliary lemma. But this lemma cannot be proved by induction immediately: An inductive
proof would have to be performed on the second and third argument of operator lexM2,
namely on the variables ts and us . But as ts also occurs in the first argument, none of the
induction hypotheses would be applicable.

This problem can be solved by separating the two “occurrences” of ts , i.e. one “occur-
rence” is replaced uniformly with a new variable ts1 . This means that we check for each
individual appearance of ts to which “occurrence” it refers, possibly replacing it with the
new variable ts1 . This results in the following lemma which can be proved by induction:

{ lexM2(F(f , ts1 ), ts , us) = and(Lex(ts , us), Majo(F(f , ts1 ), us)),
sublist(ts , ts1 ) 6= true,
arity(f ) 6= length(ts1 ),
Well tl(ts1 ) 6= true,
Well tl(ts) 6= true,
Well tl(us) 6= true,
length(ts) 6= length(us) }

(8.207)

The inductive validity of this lemma depends on the second literal. It manifests the relation-
ship between the two “occurrences” ts and ts1 using the new operator sublist which does
not appear in Lemma (8.205) (cf. Axioms 8.166 to 8.169 in Example 8.6 for the definition
of sublist).

For these two reasons, it is difficult to speculate Lemma (8.207) automatically: Firstly,
we replace only some individual appearances of variable ts with the new variable ts1 .
This is just in the realm of syntactic automatization as found e.g. in NQTHM. Secondly, the
relationship between both occurrences has to be expressed using a new operator symbol.
This requires semantic knowledge and would be possible only if a special treatment for
list operations was built in. In general, however, for each new application domain, human
interaction for lemma generalization will be required.

Although Lemma (8.207) is a generalization of Lemma (8.205), it is beneficial to prove
Lemma (8.205) as well by applying Lemma (8.207). Thereafter, Lemma (8.205) may be
activated instead of Lemma (8.207) to reduce the search space. 2
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In addition to patching proofs, additional auxiliary lemmas may also be useful for enhancing
the efficiency of the proofs performed. This is illustrated in Example 8.10.

8.2.2.3 Improving the Efficiency of Proof Search

In this section, we demonstrate the benefits of our flexible framework for guiding proof
search with markings (cf. Chapter 6). In particular, we illustrate the usage of generous
markings and its interplay with upward propagation (cf. Chapter 7) in Examples 8.11 and
8.12.

Primarily, the efficiency of proof search in inductive theorem provers such as Quod-

Libet, NQTHM and ACL2 depends on the lemmas that may be applied during proof search. In
NQTHM and ACL2, only activated lemmas are considered for automatic applications. Further-
more, the applications of conditional lemmas are controlled by Contextual Rewriting. Our
new framework based on markings allows us to influence the automatic application of acti-
vated lemmas even more. Our default heuristics with mandatory markings restricts proof
search based on the idea of local contribution. With obligatory markings, we may restrict
lemma applications furthermore. With generous markings, we may relax the restrictions of
our default heuristics.

Sometimes, proof attempts fail (cf. Chapter 6) or proof search lacks efficiency (cf. Exam-
ple 8.10) just because of the restrictions on lemma applications. In our flexible framework,
we may cope with these problems by

• introducing specialized additional auxiliary lemmas (cf. Example 8.10); or

• changing the behavior of proof search with markings (cf. Examples 8.11).

Usually, the use of specialized auxiliary lemmas improves the efficiency of proof search even
more but it requires additional human effort for formulating or speculating suitable lemmas.

Example 8.10 In the proof of Lemma (8.66), the following subgoal is generated:

{ def Alpha(ts , F(g , us)),
Beta(F(f , ts), F(g , us)) 6= true,
Alpha(ts , F(g , us)) = true,
def Lpo(F(f , ts), F(g , us)),
Well(F(f , ts)) 6= true,
Well(F(g , us)) 6= true }

(8.208)

In this example, we consider various proof attempts for this goal. At first, we assume the
activation of the axioms and lemmas for the involved operators as presented in Section 2.2.3
and the previous sections of this chapter. Furthermore, we assume the activation of the
following domain lemma for the precedence relation prec:

{ def prec(f , g) } (8.209)

The first proof attempt of the automatic proof control is sketched in Figure 8.15. Mandatory
literals are framed, principal literals are underlined (cf. Chapters 5 and 6). Whereas the
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{ def Alpha(ts , F(g , us)) ,

Beta(F(f , ts), F(g , us)) 6= true ,

Alpha(ts , F(g , us)) = true ,

def Lpo(F(f , ts), F(g , us)) ,

Well(F(f , ts)) 6= true ,

Well(F(g , us)) 6= true }

ind-subs (8.67)

{ Well tl(ts) = true ,

def Alpha(ts , F(g , us)),
Beta(F(f , ts), F(g , us)) 6= true,
Alpha(ts , F(g , us)) = true,
def Lpo(F(f , ts), F(g , us)),
Well(F(f , ts)) 6= true,
Well(F(g , us)) 6= true }

{ (ts , F(g , us)) < (F(f , ts), F(g , us), 0) ,

. . . }

tuple-<-reduct

{ ts < F(f , ts) ,

. . . }

<-decomp

Figure 8.15: First Proof Attempt for Goal (8.208) of Example 8.10

proof of the order subgoal—the second one—succeeds, the conditional subgoal cannot be
proved with the present axioms and lemmas due to the restrictions caused by the mandatory
marking. To be more precise, the condition subgoal contains the following subformula

{ Well(F(f , ts)) 6= true,
Well tl(ts) = true }

(8.210)

Goal (8.210) can be proved easily as illustrated in Figure 8.16. But the first proof step
depends only on the first literal. Therefore, it cannot be applied to the condition subgoal
in Figure 8.15 because of the mandatory marking.

Instead, the proof attempt fails and another one is started automatically as sketched
in Figure 8.17. In fact, this proof attempt succeeds by inverting the order in which
Lemma (8.67) and Axiom (2.5) are applied. Additionally, the proof attempt contains many
unnecessary applications of further axioms and lemmas. Thus, it is very inefficient.

In contrast to this, the first proof attempt for Goal (8.208) as illustrated in Figure 8.15
can be closed immediately if we use Lemma (8.210) as auxiliary lemma. The activation of
this lemma guides proof search in the right direction: It eliminates the unsuccessful proof
attempt and avoids unnecessary applications of inference rules.

In fact, we prefer to formulate lemmas as rewrite rules if possible. Therefore, we have
replaced Lemma (8.210) with

{ Well(F(f , ts)) = false,
Well tl(ts) = true }

(8.211)
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{ Well(F(f , ts)) 6= true ,

Well tl(ts) = true }

axiom-rewrite (2.5)

{ arity(f ) = length(ts) ,

Well(F(f , ts)) 6= true,

Well tl(ts) = true }

axiom-rewrite (2.6)

{ def arity(f ) ,

arity(f ) = length(ts),
Well(F(f , ts)) 6= true,
Well tl(ts) = true }

lemma-subs (2.12)

{ def length(ts) ,

¬def arity(f ) ,

arity(f ) = length(ts),
Well(F(f , ts)) 6= true,
Well tl(ts) = true }

lemma-subs (2.13)

{ ¬def length(ts) ,

¬def arity(f ) ,

arity(f ) = length(ts) ,

false 6= true ,

Well tl(ts) = true }

6=-taut

{ def arity(f ) ,

arity(f ) 6= length(ts) ,

Well(F(f , ts)) 6= true,
Well tl(ts) = true }

lemma-subs (2.12)

{ def length(ts) ,

¬def arity(f ) ,

arity(f ) 6= length(ts) ,

Well(F(f , ts)) 6= true,
Well tl(ts) = true }

lemma-subs (2.13)

{ ¬def length(ts) ,

¬def arity(f ) ,

arity(f ) 6= length(ts) ,

Well tl(ts) 6= true ,

Well tl(ts) = true }

compl-lit
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{ def Alpha(ts , F(g , us)),
Beta(F(f , ts), F(g , us)) 6= true,
Alpha(ts , F(g , us)) = true,
def Lpo(F(f , ts), F(g , us)),
Well(F(f , ts)) 6= true,
Well(F(g , us)) 6= true }

axiom-rewrite (8.54)

{ . . . }

axiom-rewrite (8.55)

{ . . . }

lemma-subs (8.209)

{ . . . }

6=-taut

{ . . . }

axiom-rewrite (2.5)

{ . . . }

axiom-rewrite (2.6)

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

6=-taut

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

axiom-rewrite (2.5)

{ . . . }

axiom-rewrite (2.6)

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

6=-taut

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

ind-subs (8.67)

{ . . . }

axiom-rewrite (2.5)

{ . . . }

compl-lit

{ . . . }

tuple-<-reduct

{ . . . }

<-decomp
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Lemmas (8.211) and (8.212) Autom. Appl. Del. Fin. P. Runtime
not activated 4329 1028 3301 43.66

activated 2722 253 2469 20.93

Table 8.1: Statistics for the 66 Lemmas about Lpo w.r.t. the Activation of Lemmas

In the same way, we have identified a similar auxiliary lemma:

{ Well tl(cons(t , ts)) = false,
Well tl(ts) = true }

(8.212)

The activation of these two lemmas results in dramatic improvements in efficiency. This is
illustrated for the 66 lemmas about the internal representation Lpo in Table 8.1. 2

The analysis of proof attempts for patching failed ones or improving the efficiency of success-
ful ones may be time-consuming. Due to our case study about the LPO, we have introduced
a new concept—generous markings—for influencing our automatic proof control manually.

Generous markings can be used for relaxing the mandatory markings heuristics (cf.
Section 6.2.4). Thus, generous markings enhance the extent of the relief test. But they may
also enhance the efficiency provided that they are used with caution. Generous markings are
intended to relax the mandatory markings heuristics for those subgoals that are expected
to be proved easily. Usually, this holds true for subgoals that contain new definedness
atoms. Therefore, our proof control offers a new default setting. If this setting is activated,
a suitable generous marking w.r.t. definedness atoms is accomplished automatically. In this
case, definedness subgoals are generated with the relaxed mandatory markings heuristics.
Furthermore, in all lemmas, negated definedness atoms—which generate definedness atoms
in the corresponding condition subgoals—and, in domain lemmas, all literals are marked
as generous by default. In doing so, elements remain mandatory if subgoals with new
definedness atoms are generated or if domain lemmas are applied. By this procedure, proof
search for domain properties is extended.

If we extend proof search with generous markings, many additional proof steps may be
non-contributing. Therefore, generous markings on their own often reduce the efficiency of
proof search. But in combination with upward propagation (cf. Chapter 7), this weakness
is compensated: Non-contributing proof steps which may contain open proof obligations
are eliminated with hindsight.

Example 8.11 We analyze the effect of generous markings w.r.t. definedness atoms on the
proof of Goal (8.208) in Example 8.10. With generous markings, the first proof attempt
succeeds as sketched in Figure 8.18 since all literals remain mandatory in the first condition
subgoal. Essentially, the proof consists of the first proof attempt of Example 8.10 as illus-
trated in Figure 8.15 and the proof of the wellformedness property depicted in Figure 8.16.
Additionally, it contains four unnecessary proof steps.

Table 8.2 contains statistics for the 66 Lemmas about Lpo. It compares configurations
with generous markings and reuse enabled (resp. disabled) as indicated with “X” (resp.
“—”):
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{ def Alpha(ts , F(g , us)),
Beta(F(f , ts), F(g , us)) 6= true,
Alpha(ts , F(g , us)) = true,
def Lpo(F(f , ts), F(g , us)),
Well(F(f , ts)) 6= true,
Well(F(g , us)) 6= true }

ind-subs (8.67)

{ . . . }

axiom-rewrite (8.54)

{ . . . }

axiom-rewrite (8.55)

{ . . . }

lemma-subs (8.209)

{ . . . }

6=-taut

{ . . . }

axiom-rewrite (2.5)

{ . . . }

axiom-rewrite (2.6)

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

6=-taut

{ . . . }

lemma-subs (2.12)

{ . . . }

lemma-subs (2.13)

{ . . . }

compl-lit

{ . . . }

tuple-<-reduct

{ . . . }

<-decomp
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Generous Markings Reuse Autom. Appl. Del. Fin. P. Runtime
— — 4511 1152 3359 58.74
X — 5219 1381 3838 72.64
— X 4329 1028 3301 43.66
X X 4462 1020 3442 39.29

Table 8.2: Statistics for the 66 Lemmas about Lpo w.r.t. Generous Markings and Reuse

• Comparing the statistics with reuse disabled, we notice that both—the runtime and
the size of the final proofs—increase with generous markings enabled. This is caused
by non-contributing proof steps which are introduced with generous markings and
cannot be eliminated afterwards (since reuse is disabled).

• With reuse enabled, generous markings reduce the runtime because fewer proof at-
tempts fail. Therefore, they improve the efficiency of proof search although the size
of the final proofs increases.

This illustrates that the mechanisms introduced with generous markings and reuse benefit
from each other: Generous markings relax proof search in such a way that fewer proof
attempts fail. Our reuse mechanism—more precisely, upward propagation—enables proof
control to eliminate unnecessary proof steps containing additional proof obligations with
hindsight. The combination of both mechanisms improves the efficiency of our proof control.
Nevertheless, the use of specialized auxiliary lemmas is still superior but at the expense of
having to speculate these auxiliary lemmas, usually by user-interaction. 2

In addition to the proofs of domain properties, we may use generous markings for the
defining rules of “auxiliary” operators which are specified without recursion in terms of
other “main” operators. If we mark every literal in the defining rules of an auxiliary
operator as generous, terms starting with this auxiliary operator are reduced with the
defining rules in any case. The resulting condition subgoals contain additional information
about the main operators which may be exploited for the proofs of the condition subgoals.
Therefore, we do not have to specify auxiliary lemmas for the auxiliary operators. We use
this approach for the auxiliary operators lpoR4 and clpo4.

Example 8.12 The following axioms define the auxiliary operator lpoR4 in terms of syn-
tactic equality and the main operator lpo4:

{ lpoR4(t , u) = E,
t 6= u }

(8.213)

{ lpoR4(t , u) = G,
t = u,
lpo4(t , u) 6= true }

(8.214)

{ lpoR4(t , u) = N,
t = u,
lpo4(t , u) = true,
¬def lpo4(t , u) }

(8.215)

For lpoR4, we do not define any auxiliary lemmas (except of its domain lemma). Instead,
we mark all the literals in Axioms (8.213) to (8.215) as generous. Each term with top-level
operator lpoR4 may be reduced using these axioms. The mandatory marking of the parent
goal is inherited to the generated condition subgoals. The added literals in the generated
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condition subgoals contain information about the main operator lpo4 which may facilitate
the proofs of the condition subgoals.

If we did not use these generous markings, four goals would remain open in the equiva-
lence proof between variant lpoR5 and lpoR4. Thus, we would have to speculate additional
auxiliary lemmas to perform the proofs. 2

8.3 Concluding Remarks

In this chapter, we have validated our new proof techniques with a comprehensive case
study. The case study about the LPO is challenging because of its omnipresent use of
mutual recursion which calls for proofs based on mutual induction. In QuodLibet, the
original definitions can be formalized in a very natural and straightforward way using par-
tially defined operators. Proofs based on mutual induction cause difficulties in speculating
auxiliary lemmas for all dependent operators, in performing appropriate inductive case
splits, in applying suitable induction hypotheses, in finding suitable wellfounded induction
orders, and in proving the corresponding order constraints. Our proof process based on
descente infinie supports us in solving these tasks as the required information has to be
supplied just when needed. Therefore, we can exploit intermediate results for acquiring the
information. We may, for instance, delay the choice of the induction order by instantiating
the weight variables until all order constraints are present.

We cannot imagine to perform such complicated proofs based on mutual induction
completely automatically. Therefore, our proof techniques aim at supporting manual inter-
actions in a suitable way. In this chapter, we have described the process itself as well as
the proof script resulting from our proof engineering process.

In the case study about the LPO, we apply all of our new proof techniques: the in-
tegration of Hodes’ decision procedure for linear arithmetic; guiding proof search with
mandatory, obligatory and generous markings; and the new reuse mechanisms consisting of
upward propagation and sideward reuse.

At the moment, Hodes’ decision procedure is used only rudimentally for simplifying the
proofs of order constraints that exploit the commutativity of addition (cf. Example 8.7).
In the future, we intend to perform all the proofs of order constraints with the decision
procedure. We will concretize this approach in Section 8.3.1.

Conditional lemmas are omnipresent in inductive theorem proving. Thus, the specula-
tion and automatic application of auxiliary lemmas is essential for the success of the proof
process. Auxiliary lemmas may be derived from open goals of failed proof attempts by
generalization. Thus, our proof control supports the user in this task. Nevertheless, we
do not perform it fully automatically because, for complicated lemmas, the generalization
cannot be based on purely syntactical considerations: It requires some kind of ingenuity
based on domain knowledge. This manifests itself in the need for new operators to specify
auxiliary lemmas as e.g. in Example 8.9.

We have developed new proof techniques to control the automatic application of con-
ditional lemmas using markings in goals and lemmas. The usefulness of mandatory and
obligatory markings are demonstrated in Chapter 6. In this chapter, we have focused on
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the benefits of generous markings which allow us to abandon some auxiliary lemmas. Alto-
gether, our approach based on markings provides for a fine-grained manual control of proof
search which allows the user to change the default behavior in various ways. This is par-
ticularly useful for supporting the interactions required for complicated proofs in inductive
theorem proving.

Our reuse mechanism is based on the contribution of proof steps in a performed proof.
Upward propagation simplifies proofs by eliminating non-contributing proof steps. In doing
this, open proof obligations may be eliminated as well. But according to Table 7.2 in
Section 7.4, upward propagation is rarely applicable within our proof control. This is
caused by the fact that our proof control favors inference rules that use new literals and
thus result in contributing proof steps. Additionally, our proof control prevents most of
the non-contributing proof steps due to the use of mandatory markings. In the case study
about the LPO, the mandatory markings heuristics are relaxed by using generous markings.
Example 8.11 demonstrates the synergetic effect which results from the combination of
generous markings and upward propagation.

8.3.1 Future Improvements

The case study about the LPO allowed us to validate new proof techniques such as manda-
tory and obligatory markings for guiding proof search. Furthermore, it initiated the de-
velopment of new proof techniques such as generous markings. In this section, we want to
sketch further insights in the development of new proof techniques which have not been
realized so far.

The integration of Hodes’ decision procedure for linear arithmetic calls for a stronger
provision of this procedure for proving order constraints in inductive proofs. This may be
realized by representing the present wellfounded order based on the length of construc-
tor ground terms explicitly. For this, we may define an operator s-size for each sort s
automatically. More precisely, if s is defined with constructors ci : si,1, . . . , si,ki

→ si for
i ∈ {1, . . . , n}, then s-size may be specified with the following n defining rules

s-size(ci(xi,1, . . . , xi,ki
)) = 1 +

ki
∑

j=1

si,j-size(xi,j) for i ∈ {1, . . . , n}.

This allows us to perform the proofs of order constraints using the decision procedure
instead of the inference rules <-decomp, <-mono, and <-trans. In doing this, we hope to
improve the degree of automation and the efficiency in proving order constraints.

Examples 8.6 and 8.7 provide evidence that, in some cases, it would be beneficial to use a
multiset extension for comparing order constraints instead of the given lexicographic order.
Unfortunately, we have to perform all comparisons of order constraints in inductive proofs
with one fixed wellfounded order. But this restriction can be softened by using defined
function symbols during the instantiation of the weight variables. Since single components
are compared w.r.t. the length of the corresponding constructor terms using the usual total
order on natural numbers, it is possible to simulate a multiset extension in an easy way.
In fact, the comparison of finite tuples w.r.t. a multiset extension of a total order can be
achieved by
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• sorting the tuples on both sides in decreasing order; and

• comparing the sorted tuples with a lexicographic order.

Therefore, it is possible to combine a multiset extension with a lexicographic order. In
principle, we require only two defined operators for sorting tuples of natural numbers and
for projecting single components from a tuple of natural numbers. But using these defined
operators would by far be too inefficient.

Instead, we suggest to adapt the approach used for the integration of Hodes’ decision pro-
cedure: We suggest to extend the inference rules <-taut, <-removal, tuple-<-reduct,
and tuple-=-reduct, which realize the lexicographic comparison, in such a way that they
may also be used for the multiset extension. Weight variables may be instantiated with
“unsorted” tuples of terms as before or with “decreasingly sorted” tuples of terms. The
difference may be denoted during the instantiation of the weight variable by using a special
keyword such as sort in the latter case. An order constraint consisting of two unsorted
tuples is compared with the lexicographic order as before. An order constraint consisting of
two sorted tuples is compared with the multiset extension. In fact, we may even compare
a sorted tuple with an unsorted tuple if the order constraint results from a proof based on
mutual induction. The provision of specialized inference rules will improve the efficiency of
the approach: One application of the new inference rules will replace many rewrite steps
with the axioms of the defined operators for sorting and projecting.

Since finding a suitable induction order and proving the order constraints with this
induction order is one of the most important and challenging problems in our case study, it
may be beneficial to consider further proof techniques for automating termination proofs,
such as the dependency pair approach [AG00, TG05]. In the future, we may integrate these
techniques into QuodLibet or use a specialized external proof system, such as AProVE

[GTSKF04], for performing the termination proofs.



Chapter 9

Conclusion

In this thesis, we have developed techniques for the automation of theorem proving with a
special focus on user-interaction. In our conclusion, we want to discuss our work in a wider
context.

The necessity for user-interaction. In theorem proving, the search space is usually so
huge that domain knowledge is needed for guiding proof search into the right direction. In
inductive theorem proving, we have to cope with additional problems: From a theoretical
point of view, the inductive validity is not even semi-decidable. In practice, additional
lemmas have to be speculated or generalized which may even have to contain new operators.
For well known domains, we may integrate the needed domain knowledge directly into the
proof process. But in general, user-interaction is indispensable for speculating auxiliary
lemmas and guiding proof search.

The state-of-the-art. Nowadays, it is much easier to “sell” improvements w.r.t. the au-
tomation of a theorem prover than w.r.t. the integration of user-interaction. Probably this
is caused by the fact that the latter improvements can hardly be measured whereas the
former ones are easily shown by decreased runtimes or fewer applications of inference rules.
Therefore, user-interaction is handled in many systems only rudimentally. Nevertheless, the
importance of a knowledgeable user to guide the proof process is recognized and described
e.g. for ACL2 in [KMM00]. In ACL2, the user mainly guides proof search by speculating and
activating suitable auxiliary lemmas. Furthermore, the user may provide hints. With hints,
phases of the waterfall may be excluded from the proof process, disabling, for instance, the
cross-fertilization or the induction phase; induction schemes may be provided by terminat-
ing recursion schemes of defined operators; or the application of special lemma instances
may be forced. To our knowledge, there is no way to influence proof search in ACL2 on a
more fine-grained level. The relief test for conditional lemmas, for instance, is fixed w.r.t.
Contextual Rewriting.

Additional demands on interactive theorem proving. The need for user-interaction
poses additional demands on the whole proof system and, in particular, on the techniques
for automating proofs. On the basis of our experience with complex case studies such as
the one about the lexicographic path order LPO, we recommend that such an interactive
proof system (resp. its automatic proof control) should be

211
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flexible: The user has to be able to interact with the proof system on various levels. The
needed information should be acquired in a suitable way when needed.

restricted: Automated proof attempts should stop within a reasonable amount of time
allowing for the analysis of failed proof attempts.

informative: The system should support the user in analyzing (failed) proof attempts.
For this, the information provided by the system should be

understandable: The output should be readable for humans in an easy way.

comprehensive: The output should provide the user with as much useful informa-
tion as possible.

essential: The output should provide the user with as little unnecessary information
as possible.

Our contributions. For the most part, our new proof techniques are independent from
a special proof system. Nevertheless, we have integrated them into the inductive theorem
prover QuodLibet to validate their applicability. From the outset, QuodLibet has been
developed with a special focus on user-interaction. Therefore, it offers special features
that support this task as e.g. an inductive proof process based on descente infinie. In the
following, we discuss the benefits of our new proof techniques w.r.t. the criteria established
for interactive theorem proving above:

• Our close integration of Hodes’ decision procedure for linear arithmetic provides the
user with information that is hidden in the internal state of the decision procedure
in other approaches. Furthermore, it allows the user to derive further useful conse-
quences automatically. This supports the user in speculating auxiliary lemmas needed
for patching failed proof attempts. In our approach, the output is better understand-
able and more comprehensive.

• Our new framework for controlling proof search based on markings is very flexible. It
enables to user to combine different approaches on an abstract level. The extent and
efficiency of proof search can be controlled on a fine-grained level, i.e. for each lemma
separately. This allows the user to restrict proof search in a suitable way.

• Our new reuse techniques supplement our proof search techniques. The proposed
reuse techniques enable the derivation of minimized proofs based on the notion of con-
tribution. In doing so, unnecessary information is eliminated automatically. There-
fore, the user may focus on the essential information.

We have demonstrated the usefulness of these proof techniques by performing complex
case studies with QuodLibet such as the case study about the LPO. This case study is
challenging in particular because of the heavy use of mutual recursion/induction.

Future directions of research. Naturally, we could not “solve” the problem of integrating
user-interaction into (inductive) theorem provers. Nevertheless, we hope that our work will
motivate other researchers to spend more time for developing proof techniques that support
user-interaction in a suitable way.
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In addition to this, there is always the need for better automation. In the previous
chapters we have already pointed out some topics for future developments:

• The integration of linear arithmetic (cf. Chapter 4) may be extended to non-linear
arithmetic. The close integration of other theories and their combination may be
considered as well.

• The effects of the different markings controlling proof search (cf. Chapter 6), in par-
ticular the effects resulting from their combination, call for a more detailed analysis.

• Enhancing the applicability of upward propagation (cf. Chapter 7) would be beneficial
to improve reusability.

• The proof engineering process sketched in Chapter 8 may be used for deriving further
proof techniques, e.g. for computing suitable induction orders.

Therefore, much promising work still is to be done.
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Appendix A

The Proof Script for the Case Study
About LPO

In this appendix, we present the complete final version of our proof script for the case
study about the lexicographic path order LPO. It can be executed with the final version
of the core system of QuodLibet and the proof control developed in this thesis. The
final version contains Hodes’ decision procedure for linear arithmetic (cf. Chapter 4); proof
search is controlled with mandatory, obligatory, and generous literals (cf. Chapter 6); and
the reuse mechanisms (cf. Chapter 7) are enabled.

With this appendix, we want to illustrate the size and the complexity of the case study,
and the readability of the resulting proof scripts. We neither discuss the proof engineering
process nor comment on the resulting proof script in detail. For parts of the specification,
this is done in Chapter 8. Here, we just give a short overview of the command language
used for the proof script. Further details may be found in [Küh00, Kai02, SS04].

For our proof script, the following commands are relevant:

initialize resets the internal data structures of the inference machine kernel.

execute loads a proof script from a file.

define sort introduces a new sort together with its constructors.

declare constructor variables introduces a set of new constructor variables.

declare operators introduces a set of new defined operators fixing their signatures.

assert allows the user to specify the defining rules of defined operators. The defining rules
are given by conditional equations.

assume introduces a new conjecture. For each conjecture, a new proof state tree is gener-
ated which is used for representing inductive proof attempts of the conjecture.

set weight allows the user to instantiate the weight variable of a proof state tree.

apply allows the user to apply an inference rule manually to a goal node in a proof state
tree.

215
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call executes a public QML-routine. Our automatic proof control provides

• the following procedures:

initialize-database resets the internal data structures of our proof control.

analyze-operator performs a recursion analysis of the defining rules of a de-
fined operator. By default, the defining rules are activated, i.e. they are
checked for applicability during the simplification process. Furthermore, a
domain lemma for the operator is generated if possible. The default behavior
may be changed with optional parameters.

activate-axiom(s)/(-linear)-lemma(s) activates (a set of) defining rules or
lemmas in such a way that their applicability is checked during the simpli-
fication process.

deactivate-axioms/-lemmas changes the state of the proof control in such a
way that the given axioms or lemmas are not considered for automatic ap-
plications during the simplification process anymore.

set-default-settings changes the default behavior of the procedures and tac-
tics of the proof control globally.

• the following tactics which are applied to a goal node in a proof state tree:

auto-/operators-/variables-strategy starts an automatic proof attempt for
the root goal of a proof state tree. The initial case split is generated automat-
ically (auto), semi-automatically (operators) or manually (variables), cf.
Section 3.1.4 for more details.

cont-proof-attempt continues a proof attempt by simplifying each open goal
in the proof state tree.

simplify applies the simplification process to a goal.

A proof script is parsed line by line. If at the end of a line a complete command has been
parsed, this command will be executed. Otherwise, parsing is continued in the next line.
The same behavior may be forced by ending a line with two dots. This allows the user to
split a command into two lines even if the first line contains a complete command. Lines
starting with two slashes are considered as comments and ignored. The behavior of QML-
routines may be changed with optional parameters. The values of these parameters are
preceded with keywords which start with a colon and identify the corresponding optional
parameters.

A.1 The Overall Proof Script: Lpo-all

The proof script of the case study is partitioned into different files: one file for each sort,
one file for each variant of the LPO, and one file for the whole proof. This file essentially
initializes the core system and the proof control and executes the remaining files.

initialize

call initialize-database

call set-default-settings :allow-alternative-free-var-bindings-p FALSE
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execute "basics" echo

execute "bool" echo

execute "res" echo

execute "nat" echo

execute "term" echo

execute "Lpo" echo

execute "lpo1" echo

execute "lpo2" echo

execute "lpo3" echo

execute "lpo4" echo

execute "lpoR4" echo

execute "lpoR5" echo

execute "lpoR6" echo

execute "clpo4" echo

execute "clpo5" echo

execute "clpo6" echo

A.2 basics

This file contains the defining rules of the predefined operators resulting from the integration
of linear arithmetic (cf. Chapter 4).

declare constructor variables cv-Nat_1, cv-Nat_2, cv-Nat_3 : Nat.

assert

+-1 :

+(cv-Nat_1,0) = cv-Nat_1

+-2 :

+(cv-Nat_1,s(cv-Nat_2)) = s(+(cv-Nat_1,cv-Nat_2))

.

call analyze-operator + :auto-insert-axioms-p FALSE

// analyze-operator generates the domain lemma

// { def +(cv-Nat_1,cv-Nat_2) } named +-def-auto

call auto-strategy +-def-auto

call activate-lemma +-def-auto

assert

*-1 :

*(cv-Nat_1,0)=0

*-2 :

*(cv-Nat_1,s(cv-Nat_2))=+(*(cv-Nat_1,cv-Nat_2),cv-Nat_1)

.

call analyze-operator * :auto-insert-axioms-p FALSE

// analyze-operator generates the domain lemma

// { def *(cv-Nat_1,cv-Nat_2) } named *-def-auto

call auto-strategy *-def-auto

call activate-lemma *-def-auto

assert

--1 :

-(cv-Nat_1,0) = cv-Nat_1

--2 :

-(0,s(cv-Nat_2)) = 0

--3 :
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-(s(cv-Nat_1),s(cv-Nat_2)) = -(cv-Nat_1,cv-Nat_2)

.

call analyze-operator - :auto-insert-axioms-p FALSE

// analyze-operator generates the domain lemma

// { def -(cv-Nat_1,cv-Nat_2) } named --def-auto

call auto-strategy --def-auto

call activate-lemma --def-auto

A.3 Bool

This file defines a sort for boolean values and contains basic properties of conjunctions and
disjunctions.

define sort Bool with constructors

true : --> Bool

false : --> Bool

.

declare constructor variables

b, b1, b2, b3, b4 : Bool.

assume

{ b = true,

b = false }

bool-complete

call auto-strategy bool-complete

call activate-lemma bool-complete

declare operators

and : Bool Bool --> Bool

.

assert

and-1 :

and(true,b2) = b2

and-2 :

and(false,b2) = false

.

call analyze-operator and

// analyze-operator generates the domain lemma

// { def and(b2,b) } named and-def-auto

call auto-strategy and-def-auto

call activate-lemma and-def-auto

assume

{ and(b1,b2) = and(b2,b1) }

and-commutative

call auto-strategy :recursive-strategy-p TRUE and-commutative

call activate-lemma and-commutative

assume

{ and(b1,and(b2,b3)) = and(b2,and(b1,b3)) }

and-extended-commutativity

call auto-strategy and-extended-commutativity

call activate-lemma and-extended-commutativity
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assume

{ and(and(b1,b2),b3) = and(b1,and(b2,b3)) }

and-associative

call auto-strategy and-associative

call activate-lemma and-associative

assume

{ and(b1,b2) = false,

b1 = true }

and-true-1

call auto-strategy and-true-1

call activate-lemma and-true-1

assume

{ and(b1,b2) = false,

b2 = true }

and-true-2

call auto-strategy and-true-2

call activate-lemma and-true-2

assume

{ and(b1,b2) = b2,

b1 = false }

and-false-1

call auto-strategy and-false-1

call activate-lemma and-false-1

assume

{ and(b1,b2) = b1,

b2 = false }

and-false-2

call auto-strategy and-false-2

call activate-lemma and-false-2

declare operators

or : Bool Bool --> Bool

.

assert

or-1 :

or(true,b2) = true

or-2 :

or(false,b2) = b2

.

call analyze-operator or

// analyze-operator generates the domain lemma

// { def or(b2,b) } named or-def-auto

call auto-strategy or-def-auto

call activate-lemma or-def-auto

assume

{ or(b1,b2) = or(b2,b1) }

or-commutative

call auto-strategy :recursive-strategy-p TRUE or-commutative

call activate-lemma or-commutative

assume
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{ or(b1,or(b2,b3)) = or(b2,or(b1,b3)) }

or-extended-commutativity

call auto-strategy or-extended-commutativity

call activate-lemma or-extended-commutativity

assume

{ or(or(b1,b2),b3) = or(b1,or(b2,b3)) }

or-associative

call auto-strategy or-associative

call activate-lemma or-associative

assume

{ or(b1,b2) = b2,

b1 = true }

or-true-1

call auto-strategy or-true-1

call activate-lemma or-true-1

assume

{ or(b1,b2) = b1,

b2 = true }

or-true-2

call auto-strategy or-true-2

call activate-lemma or-true-2

assume

{ or(b1,b2) = true,

b1 = false }

or-false-1

call auto-strategy or-false-1

call activate-lemma or-false-1

assume

{ or(b1,b2) = true,

b2 = false }

or-false-2

call auto-strategy or-false-2

call activate-lemma or-false-2

A.4 Res

This file defines sort Res required for the variants lpoR (cf. Sections A.12 to A.14) and
clpo (cf. Sections A.15 to A.17).

define sort Res with constructors

E : --> Res

G : --> Res

L : --> Res

N : --> Res

.

declare constructor variables

r, r1, r2, r3, r4 : Res.

assume
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{ r = E,

r = G,

r = L,

r = N }

res-complete

call auto-strategy res-complete

call activate-lemma res-complete

declare operators

flip : Res --> Res

.

assert

flip-1 :

flip(E) = E

flip-2 :

flip(N) = N

flip-3 :

flip(L) = G

flip-4 :

flip(G) = L

.

call analyze-operator flip

// analyze-operator generates the domain lemma

// { def flip(r) } named flip-def-auto

call auto-strategy flip-def-auto

call activate-lemma flip-def-auto

A.5 Nat

Since the predefined operators of sort Nat are already defined in file basics (cf. Section A.2),
in this file we just introduce some additional constructor variables.

declare constructor variables

n, m, n1, n2, n3, n4, m1, m2, m3, m4 : Nat

.

A.6 term

This file contains the definitions and lemmas for terms and lists of terms which mutually
depend on each other. Most important are the wellformedness properties and different
types of subterm relations.

define sort FID with constructors

Fid : Nat Nat --> FID

.

declare constructor variables

f, g, h, f1, f2, f3, f4 : FID

.

declare operators
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prec : FID FID --> Bool

.

assert

prec-1:

prec(Fid(n,m),Fid(n1,m1)) = true

if ~(n <= n1)

prec-2:

prec(Fid(n,m),Fid(n1,m1)) = false

if n <= n1

.

call analyze-operator prec

// analyze-operator generates the domain lemma

// { def prec(f,g) } named prec-def-auto

call auto-strategy prec-def-auto

call activate-lemma prec-def-auto

assume

{ prec(f,g) = true,

prec(f,h) =/= true,

prec(h,g) =/= true }

prec-trans

call auto-strategy prec-trans

call activate-lemma prec-trans

assume

{ prec(f,f) = false }

prec-irrefl

call auto-strategy prec-irrefl

call activate-lemma prec-irrefl

assume

{ prec(f,g) =/= true,

prec(g,f) =/= true }

prec-irrefl-trans

apply lemma-subs

prec-trans

[f <-- f , h <-- g, g <-- f] ..

prec-irrefl-trans

call simplify prec-irrefl-trans

call activate-lemma prec-irrefl-trans :head-litnbs { 1 } :obl-litnbs-list { { 2 } }

declare operators

arity : FID --> Nat

.

assert

arity-1 :

arity(Fid(n,m)) = m

.

call analyze-operator arity

// analyze-operator generates the domain lemma

// { def arity(f) } named arity-def-auto

call auto-strategy arity-def-auto

call activate-lemma arity-def-auto

define sort VID with constructors

Vid : Nat --> VID
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.

declare constructor variables

x, y, z, x1, x2, x3, x4 : VID

.

declare sorts Term.

declare sorts Termlist.

define sort Term with constructors

V : VID --> Term

F : FID Termlist --> Term

.

define sort Termlist with constructors

nil : --> Termlist

cons : Term Termlist --> Termlist

.

declare constructor variables

ts, us, vs, ws, ts1, ts2, ts3, ts4, us1 : Termlist.

declare constructor variables

t, u, v, w, t1, t2, t3, t4, ti, ui : Term.

declare operators

length : Termlist --> Nat

.

assert

length-1 :

length(nil) = 0

length-2 :

length(cons(u,us)) = s(length(us))

.

call analyze-operator length

// analyze-operator generates the domain lemma

// { def length(us) } named length-def-auto

call auto-strategy length-def-auto

call activate-lemma length-def-auto

declare operators

Fun : Term --> Bool

.

assert

Fun-1 :

Fun(F(f,ts)) = true

Fun-2 :

Fun(V(x)) = false

.

call analyze-operator Fun

// analyze-operator generates the domain lemma

// { def Fun(t) } named Fun-def-auto

call auto-strategy Fun-def-auto

call activate-lemma Fun-def-auto

declare operators

Var : Term --> Bool

.

assert

Var-1 :

Var(V(x)) = true
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Var-2 :

Var(F(f,ts)) = false

.

call analyze-operator Var

// analyze-operator generates the domain lemma

// { def Var(t) } named Var-def-auto

call auto-strategy Var-def-auto

call activate-lemma Var-def-auto

declare operators

Well : Term --> Bool

Well_tl : Termlist --> Bool

.

assert

Well-1 :

Well(V(x)) = true

Well-2 :

Well(F(f,ts)) = Well_tl(ts)

if arity(f) = length(ts),

def arity(f),

def length(ts)

Well-3 :

Well(F(f,ts)) = false

if arity(f) =/= length(ts),

def arity(f),

def length(ts)

Well_tl-1 :

Well_tl(nil) = true

Well_tl-2 :

Well_tl(cons(u,us)) = Well_tl(us)

if Well(u) = true

Well_tl-3 :

Well_tl(cons(u,us)) = false

if Well(u) =/= true, def Well(u)

.

call analyze-operator Well

// analyze-operator generates the domain lemma

// { def Well(t) } named Well-def-auto

call analyze-operator Well_tl

// analyze-operator generates the domain lemma

// { def Well_tl(us) } named Well_tl-def-auto

set weight t Well-def-auto

set weight us Well_tl-def-auto

call auto-strategy :ind-lemmas { Well_tl-def-auto Well-def-auto } Well-def-auto

call auto-strategy :ind-lemmas { Well-def-auto Well_tl-def-auto } Well_tl-def-auto

call activate-lemmas { Well_tl-def-auto Well-def-auto }

assume

{ Well_tl(cons(t,ts)) = false,

Well_tl(ts) = true }

Well_tl-Well_tl

call simplify Well_tl-Well_tl

call activate-lemma Well_tl-Well_tl :obl-litnbs-list { { 2 } }

assume

{ Well(F(f,ts)) = false,
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Well_tl(ts) = true }

Well_tl-Well

call simplify Well_tl-Well

call activate-lemma Well_tl-Well :obl-litnbs-list { { 2 } }

assume

{ Well(F(f,us)) =/= true,

Well(F(f,ts)) =/= true,

length(us) = length(ts) }

length-Well

call simplify length-Well

call activate-lemma length-Well :head-litnbs { 1 } :obl-litnbs-list { { 2 3 } } ..

:free-vars-bindings { { "lit(3)" } }

declare operators

contains_tl : Termlist VID --> Bool

contains : Term VID --> Bool

.

assert

contains_tl-1 :

contains_tl(nil,y) = false

contains_tl-2 :

contains_tl(cons(t,ts),y) = true

if contains(t,y) = true

contains_tl-3 :

contains_tl(cons(t,ts),y) = contains_tl(ts,y)

if contains(t,y) =/= true,

def contains(t,y)

contains-1 :

contains(V(x),y) = true

if x = y

contains-2 :

contains(V(x),y) = false

if x =/= y

contains-3 :

contains(F(f,ts),y) = contains_tl(ts,y)

.

call analyze-operator contains

// analyze-operator generates the domain lemma

// { def contains(t,y) } named contains-def-auto

call analyze-operator contains_tl

// analyze-operator generates the domain lemma

// { def contains_tl(ts,y) } named contains_tl-def-auto

set weight ts contains_tl-def-auto

set weight t contains-def-auto

call auto-strategy :ind-lemmas { contains_tl-def-auto contains-def-auto } ..

contains-def-auto

call auto-strategy :ind-lemmas { contains-def-auto contains_tl-def-auto } ..

contains_tl-def-auto

call activate-lemmas { contains_tl-def-auto contains-def-auto }

declare operators

subterm : Term Term --> Bool

subterm_tl : Term Termlist --> Bool

.

assert
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subterm-1 :

subterm(t,V(y)) = false

subterm-2 :

subterm(t,F(g,us)) = subterm_tl(t,us)

subterm_tl-1 :

subterm_tl(t,nil) = false

subterm_tl-2 :

subterm_tl(t,cons(u,us)) = true

if t = u

subterm_tl-3 :

subterm_tl(t,cons(u,us)) = true

if t =/= u,

subterm(t,u) = true

subterm_tl-4 :

subterm_tl(t,cons(u,us)) = subterm_tl(t,us)

if t =/= u,

subterm(t,u) =/= true,

def subterm(t,u)

.

call analyze-operator subterm

// analyze-operator generates the domain lemma

// { def subterm(t,u) } named subterm-def-auto

call analyze-operator subterm_tl

// analyze-operator generates the domain lemma

// { def subterm_tl(t,us) } named subterm_tl-def-auto

set weight u subterm-def-auto

set weight us subterm_tl-def-auto

call auto-strategy :ind-lemmas { subterm_tl-def-auto subterm-def-auto } ..

subterm-def-auto

call auto-strategy :ind-lemmas { subterm-def-auto subterm_tl-def-auto } ..

subterm_tl-def-auto

call activate-lemmas { subterm_tl-def-auto subterm-def-auto }

assume

{ Well(u) = true,

Well(t) =/= true,

subterm(u,t) =/= true}

subterm-Well

assume

{ Well(u) = true,

Well_tl(ts) =/= true,

subterm_tl(u,ts) =/= true}

subterm-Well_tl

set weight t subterm-Well

set weight ts subterm-Well_tl

call auto-strategy :ind-lemmas { subterm-Well subterm-Well_tl} subterm-Well

call auto-strategy :ind-lemmas { subterm-Well subterm-Well_tl} subterm-Well_tl

call activate-lemma subterm-Well :obl-litnbs-list { { 2 } }

call activate-lemma subterm-Well_tl :obl-litnbs-list { { 2 } }

assume

{ subterm(t,u) = true,

subterm(t,v) =/= true,

subterm(v,u) =/= true }

subterm-trans

call auto-strategy :recursive-strategy-p TRUE subterm-trans
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call activate-lemma subterm-trans

assume

{ subterm_tl(u,cons(t,ts)) = true,

subterm_tl(u,ts) =/= true }

subterm_tl-cons

call simplify subterm_tl-cons

call activate-lemma subterm_tl-cons

declare operators

subterms : Termlist Term --> Bool

.

assert

subterms-1 :

subterms(nil,u) = true

subterms-2 :

subterms(cons(t,ts),u) = subterms(ts,u)

if subterm(t,u) = true

subterms-3 :

subterms(cons(t,ts),u) = false

if subterm(t,u) =/= true,

def subterm(t,u)

.

call analyze-operator subterms

// analyze-operator generates the domain lemma

// { def subterms(ts,t) } named subterms-def-auto

call auto-strategy subterms-def-auto

call activate-lemma subterms-def-auto

declare operators

subterms_tl : Termlist Termlist --> Bool

.

assert

subterms_tl-1 :

subterms_tl(nil,us) = true

subterms_tl-2 :

subterms_tl(cons(t,ts),us) = subterms_tl(ts,us)

if subterm_tl(t,us) = true

subterms_tl-3 :

subterms_tl(cons(t,ts),us) = false

if subterm_tl(t,us) =/= true,

def subterm_tl(t,us)

.

call analyze-operator subterms_tl

// analyze-operator generates the domain lemma

// { def subterms_tl(ts,us) } named subterms_tl-def-auto

call auto-strategy subterms_tl-def-auto

call activate-lemma subterms_tl-def-auto

assume

{ subterms_tl(us,cons(t,ts)) = true,

subterms_tl(us,ts) =/= true }

subterms_tl-cons

call auto-strategy subterms_tl-cons

call activate-lemma subterms_tl-cons
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assume

{ subterms(ts,F(g,us)) = true,

subterms_tl(ts,us) =/= true }

subterms-subterms_tl

call auto-strategy subterms-subterms_tl

call activate-lemma subterms-subterms_tl

assume

{ subterms_tl(ts,ts) = true }

subterms_tl-refl

call auto-strategy subterms_tl-refl

call activate-lemma subterms_tl-refl

assume

{ subterm_tl(t,ts) = false,

subterms(ts,t) =/= true }

subterm_tl-subterms

assume

{ subterm(t,t) = false }

subterm-irrefl

set weight ts subterm_tl-subterms

set weight t subterm-irrefl

call auto-strategy :ind-lemmas { subterm-irrefl subterm_tl-subterms } ..

subterm_tl-subterms

apply lemma-subs

subterm-trans

[t <-- u , v <-- t] ..

subterm_tl-subterms

call simplify :ind-lemmas { subterm-irrefl } subterm_tl-subterms

call activate-ind-lemma subterm_tl-subterms :obl-litnbs-list { }

call auto-strategy :ind-lemmas { subterm_tl-subterms } subterm-irrefl

call activate-lemma subterm-irrefl

declare operators

sublist : Termlist Termlist --> Bool

.

assert

sublist-1 :

sublist(nil,us) = true

sublist-2 :

sublist(cons(t,ts),nil) = false

sublist-3 :

sublist(cons(t,ts),cons(u,us)) = sublist(ts,us)

if t = u

sublist-4 :

sublist(cons(t,ts),cons(u,us)) = sublist(cons(t,ts),us)

if t =/= u

.

call analyze-operator sublist

// analyze-operator generates the domain lemma

// { def sublist(ts,us) } named sublist-def-auto

call auto-strategy sublist-def-auto

call activate-lemma sublist-def-auto

assume
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{ sublist(ts,ts) = true }

sublist-refl

call auto-strategy sublist-refl

call activate-lemma sublist-refl

assume

{ sublist(cons(u,ts),us) = false,

sublist(ts,us) =/= false }

sublist-cons

call auto-strategy sublist-cons

call activate-lemma sublist-cons

assume

{ sublist(cons(u,ts),us) = false,

subterm_tl(u,us) = true }

subterm_tl-sublist

call auto-strategy subterm_tl-sublist

call activate-lemma subterm_tl-sublist :obl-litnbs-list { { 2 } }

assume

{ sublist(cons(t,ts),us) = false,

subterms(us,t) =/= true }

sublist-subterms

call auto-strategy sublist-subterms

call activate-lemma sublist-subterms

assume

{ contains(u,y) = true,

subterm(V(y),u) =/= true }

contains-subterm

assume

{ contains_tl(ts,y) = true,

subterm_tl(V(y),ts) =/= true }

contains-subterm_tl

set weight u contains-subterm

set weight ts contains-subterm_tl

call auto-strategy :ind-lemmas { contains-subterm_tl contains-subterm } ..

contains-subterm

call auto-strategy :ind-lemmas { contains-subterm contains-subterm_tl } ..

contains-subterm_tl

call activate-lemmas { contains-subterm contains-subterm_tl }

declare operators

term-arg_tl : Termlist Nat --> Term

.

assert

term-arg_tl-1 :

term-arg_tl(cons(t,ts),s(0)) = t

term-arg_tl-2 :

term-arg_tl(cons(t,ts),s(s(n))) = term-arg_tl(ts,s(n))

.

call analyze-operator term-arg_tl

assume

{ def term-arg_tl(ts,n),

n = 0,

+(1,length(ts)) <= n }
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def-term-arg_tl

call auto-strategy def-term-arg_tl

call activate-lemma def-term-arg_tl

define sort Position with constructors

nnil : --> Position

ncons : Nat Position --> Position

.

declare constructor variables l : Position.

declare operators

pos-p : Position Term --> Bool

.

assert

pos-p-1 :

pos-p(nnil,t) = true

pos-p-2 :

pos-p(ncons(n,l),V(x)) = false

pos-p-3 :

pos-p(ncons(n,l),F(f,ts)) = false

if n = 0

pos-p-4 :

pos-p(ncons(n,l),F(f,ts)) = false

if n =/= 0,

~(n <= length(ts))

pos-p-5 :

pos-p(ncons(n,l),F(f,ts)) = pos-p(l,term-arg_tl(ts,n))

if n =/= 0,

n <= length(ts)

.

call analyze-operator pos-p

// analyze-operator generates the domain lemma

// { def pos-p(l,t) } named pos-p-def-auto

call auto-strategy pos-p-def-auto

call activate-lemma pos-p-def-auto

declare operators

elem : Term Termlist --> Bool

.

assert

elem-1 :

elem(t,nil) = false

elem-2 :

elem(t,cons(u,us)) = true

if t = u

elem-3 :

elem(t,cons(u,us)) = elem(t,us)

if t =/= u

.

call analyze-operator elem

// analyze-operator generates the domain lemma

// { def elem(t,us) } named elem-def-auto

call auto-strategy elem-def-auto

call activate-lemma elem-def-auto

assume
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{ sublist(cons(t,ts),us) = false,

elem(t,us) = true }

elem-sublist

call auto-strategy elem-sublist

call activate-lemma elem-sublist

assume

{ subterm_tl(u,ts) = true,

elem(u,ts) =/= true }

subterm_tl-elem

call auto-strategy subterm_tl-elem

call activate-lemma subterm_tl-elem

assume

{ subterm(u,F(f,ts)) = true,

elem(u,ts) =/= true }

subterm-elem

call simplify subterm-elem

call activate-lemma subterm-elem

declare operators

replace1_tl : Termlist Nat Term --> Termlist

.

assert

replace1_tl-1 :

replace1_tl(cons(t,ts),s(0),u) = cons(u,ts)

replace1_tl-2 :

replace1_tl(cons(t,ts),s(s(n)),u) = cons(t,replace1_tl(ts,s(n),u))

.

call analyze-operator replace1_tl

assume

{ def replace1_tl(ts,n,u),

n = 0,

+(1,length(ts)) <= n }

def-replace1_tl

call auto-strategy def-replace1_tl

call activate-lemma def-replace1_tl

assume

{ Well_tl(replace1_tl(ts,n,u)) = Well(u),

Well_tl(ts) =/= true,

n = 0,

+(1,length(ts)) <= n }

Well_tl-replace1_tl

call auto-strategy Well_tl-replace1_tl

call activate-lemma Well_tl-replace1_tl

assume

{ replace1_tl(ts,n,u) =/= replace1_tl(ts,n,v),

n = 0,

+(1,length(ts)) <= n,

u = v }

replace1_tl-id

call auto-strategy replace1_tl-id

call activate-lemma replace1_tl-id
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assume

{ length(replace1_tl(ts,n,u)) = length(ts),

n = 0,

+(1,length(ts)) <= n }

length-replace1_tl

call auto-strategy length-replace1_tl

call activate-lemma length-replace1_tl

assume

{ elem(t,replace1_tl(ts,n,u)) = true,

elem(t,replace1_tl(ts,n,v)) =/= true,

t = v,

n = 0,

+(1,length(ts)) <= n }

elem-replace1_tl

call auto-strategy elem-replace1_tl

call activate-lemma elem-replace1_tl

assume

{ elem(u,replace1_tl(ts,n,u)) = true,

n = 0,

+(1,length(ts)) <= n }

elem-replace1_tl-1

call auto-strategy elem-replace1_tl-1

call activate-lemma elem-replace1_tl-1

assume

{ sublist(cons(t,us),replace1_tl(ts,n,v)) =/= true,

elem(t,replace1_tl(ts,n,u)) = true,

t = v,

n = 0,

+(1,length(ts)) <= n }

elem-sublist-replace1_tl

call simplify elem-sublist-replace1_tl

call activate-lemma elem-sublist-replace1_tl

assume

{ Well(term-arg_tl(ts,n)) = true,

Well_tl(ts) =/= true,

n = 0,

+(1,length(ts)) <= n }

Well-term-arg_tl

call auto-strategy Well-term-arg_tl

call activate-lemma Well-term-arg_tl

declare operators

replace : Term Position Term --> Term

.

declare operators

replace_tl : Termlist Nat Position Term --> Termlist

.

assert

replace-1 :

replace(t,nnil,u) = u

replace-2 :

replace(F(f,ts),ncons(n,l),u) = F(f,replace_tl(ts,n,l,u))
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replace_tl-1 :

replace_tl(cons(t,ts),s(0),l,u) = cons(replace(t,l,u),ts)

replace_tl-2 :

replace_tl(cons(t,ts),s(s(n)),l,u) = cons(t,replace_tl(ts,s(n),l,u))

.

call analyze-operator replace

call analyze-operator replace_tl

assume

{ def replace(t,l,u),

Well(t) =/= true,

pos-p(l,t) =/= true }

def-replace

assume

{ def replace_tl(ts,n,l,u),

Well_tl(ts) =/= true,

n = 0,

+(1,length(ts)) <= n,

pos-p(l,term-arg_tl(ts,n)) =/= true }

def-replace_tl

set weight t def-replace

set weight ts def-replace_tl

call auto-strategy :ind-lemmas { def-replace_tl def-replace } def-replace

call auto-strategy :ind-lemmas { def-replace def-replace_tl } def-replace_tl

call activate-lemmas { def-replace def-replace_tl }

assume

{ length(replace_tl(ts,n,l,u)) = length(ts),

Well_tl(ts) =/= true,

n = 0,

+(1,length(ts)) <= n,

pos-p(l,term-arg_tl(ts,n)) =/= true }

length-replace_tl

call auto-strategy length-replace_tl

call activate-lemma length-replace_tl

assume

{ Well(replace(t,l,u)) = Well(u),

Well(t) =/= true,

pos-p(l,t) =/= true }

Well-replace

assume

{ Well_tl(replace_tl(ts,n,l,u)) = Well(u),

Well_tl(ts) =/= true,

n = 0,

+(1,length(ts)) <= n,

pos-p(l,term-arg_tl(ts,n)) =/= true }

Well_tl-replace_tl

set weight t Well-replace

set weight ts Well_tl-replace_tl

call auto-strategy :ind-lemmas { Well_tl-replace_tl Well-replace } Well-replace

call auto-strategy :ind-lemmas { Well-replace Well_tl-replace_tl } Well_tl-replace_tl

call activate-lemmas { Well-replace Well_tl-replace_tl }

assume

{ replace_tl(ts,n,l,u) = replace1_tl(ts,n,replace(term-arg_tl(ts,n),l,u)),

Well_tl(ts) =/= true,
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Well(u) =/= true,

n = 0,

+(1,length(ts)) <= n,

pos-p(l,term-arg_tl(ts,n)) =/= true }

replace_tl-replace1_tl

call auto-strategy replace_tl-replace1_tl

call activate-lemma replace_tl-replace1_tl :head-litnbs { 1 } :obl-litnbs-list { }

assume

{ subterm(ti,F(f,ts)) = true,

elem(ti,ts) =/= true,

arity(f) =/= length(ts),

Well_tl(ts) =/= true }

arg-subterm

call auto-strategy arg-subterm

call activate-lemmas {arg-subterm}

assume

{ Well(ti) = true,

Well_tl(ts) =/= true,

elem(ti,ts) =/= true }

elem-Well_tl

call auto-strategy elem-Well_tl

call activate-lemmas {elem-Well_tl}

assume

{ Well(ti) = true,

elem(ti,ts) =/= true,

arity(f) =/= length(ts),

Well_tl(ts) =/= true }

arg-Well

call auto-strategy arg-Well

call activate-lemmas {arg-Well}

assume

{ length(cons(t,ts)) =/= length(nil) }

length-length

call auto-strategy length-length

call activate-lemma length-length

assume

{ Well_tl(ts1) = true,

sublist(ts1,ts) =/= true,

Well_tl(ts) =/= true}

sublist-Well_tl

call auto-strategy sublist-Well_tl

call activate-lemma sublist-Well_tl :obl-litnbs-list { { 3 } }

declare operators

term-size : Term --> Nat

term-size_tl : Termlist --> Nat

.

assert

term-size-1 :

term-size(V(x)) = 1

term-size-2 :
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term-size(F(f,ts)) = s(term-size_tl(ts))

term-size_tl-1 :

term-size_tl(nil) = 1

term-size_tl-2 :

term-size_tl(cons(t,ts)) = +(term-size(t),term-size_tl(ts))

.

call analyze-operator term-size

// analyze-operator generates the domain lemma

// { def term-size(t) } named term-size-def-auto

call analyze-operator term-size_tl

// analyze-operator generates the domain lemma

// { def term-size_tl(ts) } named term-size_tl-def-auto

set weight t term-size-def-auto

set weight ts term-size_tl-def-auto

call auto-strategy :ind-lemmas { term-size-def-auto term-size_tl-def-auto } ..

term-size-def-auto

call auto-strategy :ind-lemmas { term-size-def-auto term-size_tl-def-auto } ..

term-size_tl-def-auto

call activate-lemmas { term-size-def-auto term-size_tl-def-auto }

assume

{ 1 <= term-size(t) }

term-size-pos

call auto-strategy term-size-pos

call activate-linear-lemma term-size-pos { 1 } { [2] }

assume

{ 1 <= term-size_tl(ts) }

term-size_tl-pos

call auto-strategy term-size_tl-pos

call activate-linear-lemma term-size_tl-pos { 1 } { [2] }

assume

{ term-size_tl(ts) <= term-size_tl(us),

sublist(ts,us) =/= true }

term-size_tl-sublist

call auto-strategy :allow-simplification-before-induction-p FALSE term-size_tl-sublist

call activate-linear-lemma term-size_tl-sublist { 1 1 } { [1] [2] }

assume

{ ts < us,

ts = us,

sublist(ts,us) =/= true }

sublist-ind

call variables-strategy { ts us } sublist-ind

call activate-lemma sublist-ind

assume

{ us < F(f,ts),

sublist(us,ts) =/= true }

F-sublist-ind

apply lit-add

us = ts

. ..

F-sublist-ind

call simplify F-sublist-ind
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apply <-trans 2 ts F-sublist-ind

call simplify F-sublist-ind

call simplify F-sublist-ind

call deactivate-lemmas { sublist-ind }

assume

{ t < u,

subterm(t,u) =/= true }

subterm-ind

assume

{ t < F(g,us),

subterm_tl(t,us) =/= true }

subterm_tl-ind

set weight u subterm-ind

set weight us subterm_tl-ind

call auto-strategy :ind-lemmas { subterm-ind subterm_tl-ind } subterm-ind

call auto-strategy :ind-lemmas { subterm-ind subterm_tl-ind } subterm_tl-ind

apply <-trans 4 F(g,us) subterm_tl-ind

call simplify :ind-lemmas { subterm-ind subterm_tl-ind } subterm_tl-ind

call simplify subterm_tl-ind

apply <-trans 3 u subterm_tl-ind

call simplify :ind-lemmas { subterm-ind subterm_tl-ind } subterm_tl-ind

call simplify subterm_tl-ind

A.7 Lpo

This file contains the internal representation Lpo of the lexicographic path order. First, we
prove general auxiliary lemmas such as the transitivity, irreflexivity and containedness of
the subterm relation. Then, we consider specialized lemmas required for the equivalence
proofs between the different variants.

declare operators

Lpo : Term Term --> Bool

Alpha : Termlist Term --> Bool

Beta : Term Term --> Bool

Gamma : Term Term --> Bool

Delta : Term Term --> Bool

Majo : Term Termlist --> Bool

Lex : Termlist Termlist --> Bool

.

assert

Lpo-1 :

Lpo(F(f,ts),F(g,us)) = true

if Alpha(ts,F(g,us)) = true

Lpo-2 :

Lpo(F(f,ts),F(g,us)) = true if Beta(F(f,ts),F(g,us)) = true

Lpo-3 :

Lpo(F(f,ts),F(g,us)) = Gamma(F(f,ts),F(g,us))

if Alpha(ts,F(g,us)) =/= true,

def Alpha(ts,F(g,us)),

Beta(F(f,ts),F(g,us)) =/= true,

def Beta(F(f,ts),F(g,us))

Lpo-4 :
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Lpo(F(f,ts),V(y)) = Delta(F(f,ts),V(y))

Lpo-5 :

Lpo(V(x),u) = false

Alpha-1 :

Alpha(nil,u) = false

Alpha-2 :

Alpha(cons(t,ts),u) = true

if t = u

Alpha-3 :

Alpha(cons(t,ts),u) = true

if t =/= u,

Lpo(t,u) = true

Alpha-4 :

Alpha(cons(t,ts),u) = Alpha(ts,u)

if t =/= u,

Lpo(t,u) =/= true,

def Lpo(t,u)

Beta-1 :

Beta(F(f,ts),F(g,us)) = Majo(F(f,ts),us)

if prec(f,g) = true

Beta-2 :

Beta(F(f,ts),F(g,us)) = false

if prec(f,g) =/= true,

def prec(f,g)

Gamma-1 :

Gamma(F(f,ts),F(g,us)) = Majo(F(f,ts),us)

if f = g,

Lex(ts,us) = true

Gamma-2 :

Gamma(F(f,ts),F(g,us)) = false

if f =/= g

Gamma-3 :

Gamma(F(f,ts),F(g,us)) = false

if f = g,

Lex(ts,us) =/= true,

def Lex(ts,us)

Delta-1 :

Delta(F(f,ts),V(y)) = contains_tl(ts,y)

Majo-1 :

Majo(t,nil) = true

Majo-2 :

Majo(t,cons(u,us)) = Majo(t,us)

if Lpo(t,u) = true

Majo-3 :

Majo(t,cons(u,us)) = false

if Lpo(t,u) =/= true,

def Lpo(t,u)

Lex-1 :

Lex(nil,nil) = false

Lex-2 :

Lex(cons(t,ts),cons(u,us)) = Lex(ts,us)

if t = u

Lex-3 :

Lex(cons(t,ts),cons(u,us)) = Lpo(t,u)

if t =/= u

.
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call analyze-operator Lpo :speculate-domain-lemma-p FALSE

call analyze-operator Alpha :speculate-domain-lemma-p FALSE

call analyze-operator Beta :speculate-domain-lemma-p FALSE

call analyze-operator Gamma :speculate-domain-lemma-p FALSE

call analyze-operator Delta :speculate-domain-lemma-p FALSE

call analyze-operator Majo :speculate-domain-lemma-p FALSE

call analyze-operator Lex :speculate-domain-lemma-p FALSE

assume

{ def Lpo(t,u),

Well(t) =/= true,

Well(u) =/= true }

Lpo-def-manuell

assume

{ def Alpha(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

Alpha-def-manuell

assume

{ def Beta(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Beta-def-manuell

assume

{ def Gamma(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Gamma-def-manuell

assume

{ def Delta(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

Delta-def-manuell

assume

{ def Majo(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

Majo-def-manuell

assume

{ def Lex(ts,us),

length(ts) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lex-def-manuell

set weight (t,u,0) Lpo-def-manuell

set weight (ts,t) Alpha-def-manuell

set weight (t,u) Beta-def-manuell

set weight (t,u) Gamma-def-manuell

set weight (ts,us) Lex-def-manuell

set weight (t,us) Majo-def-manuell

call operators-strategy { 1 } { [1] } Delta-def-manuell
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call activate-lemma Delta-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Alpha-def-manuell

Beta-def-manuell Gamma-def-manuell } Lpo-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-def-manuell

Alpha-def-manuell } Alpha-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Majo-def-manuell

Beta-def-manuell } Beta-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Majo-def-manuell

Lex-def-manuell Gamma-def-manuell } Gamma-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-def-manuell

Majo-def-manuell } Majo-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-def-manuell

Lex-def-manuell } Lex-def-manuell

call activate-lemmas { Lpo-def-manuell

Alpha-def-manuell

Beta-def-manuell

Gamma-def-manuell

Majo-def-manuell

Lex-def-manuell }

assume

{ Lpo(t,u) = false,

contains(t,y) = true,

contains(u,y) =/= true,

Well(t) =/= true,

Well(u) =/= true }

contains-Lpo

assume

{ Alpha(ts,t) = false,

contains_tl(ts,y) = true,

contains(t,y) =/= true,

Well_tl(ts) =/= true,

Well(t) =/= true }

contains-Alpha

assume

{ Beta(t,u) = false,

contains(t,y) = true,

contains(u,y) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

contains-Beta

assume

{ Gamma(t,u) = false,

contains(t,y) = true,

contains(u,y) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

contains-Gamma

assume

{ Delta(t,u) = false,

contains(t,y) = true,

contains(u,y) =/= true,
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Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

contains-Delta

assume

{ Majo(t,us) = false,

contains(t,y) = true,

contains_tl(us,y) =/= true,

Well(t) =/= true,

Well_tl(us) =/= true }

contains-Majo

set weight (t,u,0) contains-Lpo

set weight (ts,t) contains-Alpha

set weight (t,u) contains-Beta

set weight (t,u) contains-Gamma

set weight (t,us) contains-Majo

call operators-strategy { 1 } { [1] } contains-Delta

call activate-lemma contains-Delta

call operators-strategy { 1 } { [1] } :ind-lemmas { contains-Alpha

contains-Beta contains-Gamma contains-Lpo } contains-Lpo

call operators-strategy { 1 } { [1] } :ind-lemmas { contains-Lpo

contains-Alpha } contains-Alpha

call operators-strategy { 1 } { [1] } :ind-lemmas { contains-Lpo

contains-Majo contains-Beta } contains-Beta

call operators-strategy { 1 } { [1] } :ind-lemmas { contains-Lpo

contains-Majo contains-Gamma } contains-Gamma

call operators-strategy { 1 } { [1] } :ind-lemmas { contains-Lpo

contains-Majo } contains-Majo

call activate-lemmas { contains-Lpo

contains-Alpha

contains-Beta

contains-Gamma

contains-Majo }

assume

{ Lpo(F(f,ts),u) = true,

Alpha(ts,u) =/= true,

Well_tl(ts) =/= true,

arity(f) =/= length(ts),

Well(u) =/= true,

Fun(u) =/= true }

Lpo-Alpha

call variables-strategy { u } Lpo-Alpha

assume

{ Lpo(t,u) = true,

Beta(t,u) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Lpo-Beta

call auto-strategy Lpo-Beta

assume
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{ Lpo(t,u) = true,

Gamma(t,u) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Lpo-Gamma

call auto-strategy Lpo-Gamma

assume

{ Lpo(u,t) = true,

subterm(t,u) =/= true,

Well(t) =/= true,

Well(u) =/= true }

Lpo-subterm

assume

{ Alpha(us,t) = true,

subterm_tl(t,us) =/= true,

Well(t) =/= true,

Well_tl(us) =/= true }

Alpha-subterm_tl

set weight u Lpo-subterm

set weight us Alpha-subterm_tl

call variables-strategy { u t } :ind-lemmas { Alpha-subterm_tl } Lpo-subterm

call auto-strategy :ind-lemmas { Lpo-subterm Alpha-subterm_tl } Alpha-subterm_tl

call activate-lemma Alpha-subterm_tl

assume

{ Lpo(F(g,us),t) = true,

subterm_tl(t,us) =/= true,

Well(t) =/= true,

Well_tl(us) =/= true,

arity(g) =/= length(us) }

Lpo-subterm_tl

call variables-strategy { t } Lpo-subterm_tl

call activate-lemma Lpo-subterm_tl

assume

{ Lpo(t,v) =/= true,

Lpo(v,u) =/= true,

Lpo(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true }

Lpo-trans

assume

{ Alpha(ts,F(h,vs)) =/= true,

Alpha(vs,u) =/= true,

Alpha(ts,u) = true,

Well_tl(ts) =/= true,

Well(u) =/= true,

Well_tl(vs) =/= true,

arity(h) =/= length(vs),

Fun(u) =/= true }

Alpha-Alpha-trans

assume
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{ Alpha(ts,v) =/= true,

Beta(v,u) =/= true,

Alpha(ts,u) = true,

Well_tl(ts) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Alpha-Beta-trans

assume

{ Alpha(ts,v) =/= true,

Gamma(v,u) =/= true,

Alpha(ts,u) = true,

Well_tl(ts) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Alpha-Gamma-trans

assume

{ Beta(t,F(h,vs)) =/= true,

Alpha(vs,u) =/= true,

Lpo(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well_tl(vs) =/= true,

arity(h) =/= length(vs),

Fun(t) =/= true,

Fun(u) =/= true }

Beta-Alpha-trans

assume

{ Beta(t,v) =/= true,

Beta(v,u) =/= true,

Beta(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(t) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Beta-Beta-trans

assume

{ Beta(t,v) =/= true,

Gamma(v,u) =/= true,

Beta(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(t) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Beta-Gamma-trans

assume

{ Gamma(t,F(h,vs)) =/= true,

Alpha(vs,u) =/= true,

Lpo(t,u) = true,
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Well(t) =/= true,

Well(u) =/= true,

Well_tl(vs) =/= true,

arity(h) =/= length(vs),

Fun(t) =/= true,

Fun(u) =/= true }

Gamma-Alpha-trans

assume

{ Gamma(t,v) =/= true,

Beta(v,u) =/= true,

Beta(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(t) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Gamma-Beta-trans

assume

{ Gamma(t,v) =/= true,

Gamma(v,u) =/= true,

Gamma(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true,

Fun(t) =/= true,

Fun(u) =/= true,

Fun(v) =/= true }

Gamma-Gamma-trans

assume

{ Majo(t,vs) =/= true,

Alpha(vs,u) =/= true,

Lpo(t,u) = true,

Well(t) =/= true,

Well(u) =/= true,

Well_tl(vs) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Majo-Alpha-trans

assume

{ Majo(F(f,ts),us) =/= true,

Majo(F(g,us),vs) =/= true,

Majo(F(f,ts),vs) = true,

prec(f,g) =/= true,

Well_tl(ts) =/= true,

arity(f) =/= length(ts),

Well_tl(us) =/= true,

arity(g) =/= length(us),

Well_tl(vs) =/= true }

Majo-Majo-trans

assume

{ Majo(F(g,ts),us) =/= true,

Majo(F(g,us),vs) =/= true,

Majo(F(g,ts),vs) = true,

Lex(ts,us) =/= true,

Well_tl(ts) =/= true,
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arity(g) =/= length(ts),

Well_tl(us) =/= true,

arity(g) =/= length(us),

Well_tl(vs) =/= true }

Majo-Majo-Lex-trans

assume

{ Lex(ts,us) =/= true,

Lex(us,vs) =/= true,

Lex(ts,vs) = true,

length(ts) =/= length(us),

length(ts) =/= length(vs),

Well_tl(ts) =/= true,

Well_tl(vs) =/= true,

Well_tl(us) =/= true }

Lex-Lex-trans

assume

{ Alpha(ts,u) =/= true,

Delta(u,V(y)) =/= true,

Delta(F(f,ts),V(y)) = true,

Well_tl(ts) =/= true,

arity(f) =/= length(ts),

Well(u) =/= true,

Well(V(y)) =/= true,

Fun(u) =/= true }

Alpha-Delta-trans

assume

{ Beta(t,u) =/= true,

Delta(u,V(y)) =/= true,

Delta(t,V(y)) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(V(y)) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Beta-Delta-trans

assume

{ Gamma(t,u) =/= true,

Delta(u,V(y)) =/= true,

Delta(t,V(y)) = true,

Well(t) =/= true,

Well(u) =/= true,

Well(V(y)) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

Gamma-Delta-trans

assume

{ Lpo(t,t) = false,

Well(t) =/= true }

Lpo-irrefl

assume

{ Alpha(ts,F(g,us)) = false,

sublist(ts,us) =/= true,

Well_tl(us) =/= true,

arity(g) =/= length(us),

Well_tl(ts) =/= true }

Alpha-irrefl
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assume

{ Beta(t,t) = false,

Well(t) =/= true,

Fun(t) =/= true }

Beta-irrefl

assume

{ Gamma(t,t) = false,

Well(t) =/= true,

Fun(t) =/= true }

Gamma-irrefl

assume

{ Lex(ts,ts) = false,

Well_tl(ts) =/= true }

Lex-irrefl

call set-default-settings :activate-first-lit-p TRUE

call auto-strategy Beta-irrefl

call activate-lemma Beta-irrefl

call auto-strategy Lex-irrefl

call activate-lemma Lex-irrefl

call auto-strategy Gamma-irrefl

call activate-lemma Gamma-irrefl

call simplify Alpha-Delta-trans

call activate-lemma Alpha-Delta-trans

call operators-strategy { 1 } { [1] } Beta-Delta-trans

call activate-lemma Beta-Delta-trans

call operators-strategy { 1 } { [1] } Gamma-Delta-trans

call activate-lemma Gamma-Delta-trans

set weight (t,v,u,0) Lpo-trans

set weight (ts) Alpha-Alpha-trans

set weight (ts) Alpha-Beta-trans

set weight (ts) Alpha-Gamma-trans

set weight (t,F(h,vs)) Beta-Alpha-trans

set weight (t,v,u) Beta-Beta-trans

set weight (t,v,u) Beta-Gamma-trans

set weight (t,F(h,vs)) Gamma-Alpha-trans

set weight (t,v,u) Gamma-Beta-trans

set weight (t,v,u) Gamma-Gamma-trans

set weight (t,vs) Majo-Alpha-trans

set weight (F(f,ts),F(g,us),vs) Majo-Majo-trans

set weight (F(g,ts),F(g,us),vs) Majo-Majo-Lex-trans

set weight (ts) Lex-Lex-trans

set weight (t) Lpo-irrefl

set weight (ts) Alpha-irrefl

call deactivate-axioms { Alpha-1 Alpha-2 Alpha-3 Alpha-4 Beta-1 Beta-2

Gamma-1 Gamma-2 Gamma-3 Delta-1 }

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Alpha-Alpha-trans

Alpha-Beta-trans Alpha-Gamma-trans Beta-Alpha-trans Beta-Beta-trans

Beta-Gamma-trans Gamma-Alpha-trans Gamma-Beta-trans Gamma-Gamma-trans } ..

Lpo-trans

call activate-axioms { Delta-1 Gamma-3 Gamma-2 Gamma-1 Beta-2 Beta-1

Alpha-4 Alpha-3 Alpha-2 Alpha-1 }

call activate-lemma Lpo-Alpha

call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-trans

Alpha-Alpha-trans } Alpha-Alpha-trans

call deactivate-lemmas { Lpo-Alpha }

call activate-lemma Lpo-Beta
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call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-trans

Alpha-Beta-trans } Alpha-Beta-trans

call deactivate-lemmas { Lpo-Beta }

call activate-lemma Lpo-Gamma

call operators-strategy { 1 } { [1] } :ind-lemmas { Lpo-trans

Alpha-Gamma-trans } Alpha-Gamma-trans

call deactivate-lemmas { Lpo-Gamma }

call variables-strategy { t } :ind-lemmas { Majo-Alpha-trans } Beta-Alpha-trans

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Majo-Majo-trans

Beta-Beta-trans } Beta-Beta-trans

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Majo-Majo-trans

Beta-Gamma-trans } Beta-Gamma-trans

call variables-strategy { t } :ind-lemmas { Majo-Alpha-trans } Gamma-Alpha-trans

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Majo-Majo-Lex-trans

Gamma-Beta-trans } Gamma-Beta-trans

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Majo-Majo-Lex-trans

Lex-Lex-trans Gamma-Gamma-trans } Gamma-Gamma-trans

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Lpo-trans

Majo-Alpha-trans } Majo-Alpha-trans

call operators-strategy { 2 } { [1] } :ind-lemmas { Lpo-trans

Majo-Majo-trans } Majo-Majo-trans

apply ind-subs

Lpo-trans

[t<--F(f,ts),v <-- F(g,us) , u <-- u] ..

Majo-Majo-trans

call cont-proof-attempt :ind-lemmas { Majo-Majo-trans } Majo-Majo-trans

call operators-strategy { 2 } { [1] } :ind-lemmas { Lpo-trans

Majo-Majo-Lex-trans } Majo-Majo-Lex-trans

apply ind-subs

Lpo-trans

[t <-- F(g,ts) , u <-- u, v<--F(g,us)] ..

Majo-Majo-Lex-trans

call cont-proof-attempt :ind-lemmas { Majo-Majo-Lex-trans } Majo-Majo-Lex-trans

call activate-lemma Lpo-subterm

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { Lpo-trans

Lpo-irrefl Lex-Lex-trans } Lex-Lex-trans

call deactivate-lemmas { Lpo-subterm }

call auto-strategy :ind-lemmas { Alpha-irrefl Lpo-irrefl } Lpo-irrefl

call auto-strategy Alpha-irrefl

apply lemma-rewrite

4

[1]

subterm_tl-sublist

1

[u <-- u , ts <-- ts , us <-- us] ..

Alpha-irrefl

apply ind-subs

Lpo-trans

[t <-- u , v <-- F(g,us)] ..

Alpha-irrefl

call activate-lemma Lpo-subterm

call cont-proof-attempt :ind-lemmas { Lpo-irrefl } Alpha-irrefl

call deactivate-lemmas { Lpo-subterm }

call deactivate-lemmas { Alpha-Delta-trans Beta-Delta-trans Gamma-Delta-trans }

call activate-lemma Lpo-trans :head-litnbs { 3 } :obl-litnbs-list { { 1 } { 2 } }

call activate-lemma Alpha-Alpha-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }
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call activate-lemma Alpha-Beta-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Alpha-Gamma-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Beta-Alpha-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Beta-Beta-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Beta-Gamma-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Gamma-Alpha-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Gamma-Beta-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Gamma-Gamma-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Majo-Alpha-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Majo-Majo-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 4 } }

call activate-lemma Majo-Majo-Lex-trans :head-litnbs { 1 2 } ..

:obl-litnbs-list { { 1 2 4 } }

call activate-lemma Lex-Lex-trans :head-litnbs { 1 2 } :obl-litnbs-list { { 1 2 } }

call activate-lemma Lpo-irrefl

call activate-lemma Alpha-irrefl :obl-litnbs-list { { 2 } }

call set-default-settings :activate-first-lit-p FALSE

assume

{ Lpo(t,u) =/= true,

Lpo(u,t) =/= true,

Well(t) =/= true,

Well(u) =/= true }

Lpo-irrefl-trans

apply lemma-subs

Lpo-trans

[t <-- t , v <-- u, u <-- t] ..

Lpo-irrefl-trans

call simplify Lpo-irrefl-trans

call activate-lemma Lpo-irrefl-trans :head-litnbs { 1 } :obl-litnbs-list { { 2 } }

assume

{ Lex(replace1_tl(ts,n,u),replace1_tl(ts,n,v)) = true,

Lpo(u,v) =/= true,

Well_tl(ts) =/= true,

Well(u) =/= true,

Well(v) =/= true,

n = 0,

+(1,length(ts)) <= n }

Lex-replace1_tl

call operators-strategy { 1 1 } { [1:1] [1:2] } Lex-replace1_tl

call activate-lemma Lex-replace1_tl

assume

{ Majo(F(f,replace1_tl(ts,n,u)),us) = true,

sublist(us,replace1_tl(ts,n,v)) =/= true,

Lpo(u,v) =/= true,

Well_tl(ts) =/= true,

arity(f) =/= length(ts),

Well_tl(us) =/= true,

Well(u) =/= true,

n = 0,

+(1,arity(f)) <= n }

Majo-replace1_tl

call activate-lemma Lpo-subterm :head-litnbs { 1 } :obl-litnbs-list { }

call activate-lemma subterm_tl-elem :head-litnbs { 1 } :obl-litnbs-list { }

call auto-strategy Majo-replace1_tl
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call activate-lemma Majo-replace1_tl

call activate-lemma Lpo-subterm

call activate-lemma subterm_tl-elem

assume

{ Gamma(F(f,replace1_tl(ts,n,u)),F(f,replace1_tl(ts,n,v))) = true,

Lpo(u,v) =/= true,

arity(f) =/= length(ts),

Well_tl(ts) =/= true,

Well(u) =/= true,

Well(v) =/= true,

n = 0,

+(1,length(ts)) <= n }

Gamma-replace1_tl

call simplify Gamma-replace1_tl

call activate-lemma Gamma-replace1_tl

assume

{ Lpo(F(f,replace1_tl(ts,n,u)),F(f,replace1_tl(ts,n,v))) = true,

Lpo(u,v) =/= true,

Well_tl(ts) =/= true,

arity(f) =/= length(ts),

Well(u) =/= true,

Well(v) =/= true,

n = 0,

+(1,length(ts)) <= n }

Lpo-replace1_tl

call simplify Lpo-replace1_tl

call activate-lemma Lpo-replace1_tl

assume

{ Lpo(replace(t,l,u),replace(t,l,v)) = true,

Lpo(u,v) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Well(v) =/= true,

pos-p(l,t) =/= true }

Lpo-replace

call deactivate-axioms { Lpo-1 Lpo-2 Lpo-3 Lpo-4 Lpo-5 }

call operators-strategy { 1 1 } { [1:1] [1:2] } Lpo-replace

call activate-axioms { Lpo-5 Lpo-4 Lpo-3 Lpo-2 Lpo-1 }

call activate-lemma Lpo-replace

declare operators

Lpoeq : Term Term --> Bool

.

assert

Lpoeq-1 :

Lpoeq(t,u) = true

if t = u

Lpoeq-2 :

Lpoeq(t,u) = Lpo(t,u)

if t =/= u

.

call analyze-operator Lpoeq :speculate-domain-lemma-p FALSE

call activate-axiom Lpoeq-2 :obl-litnbs-list { }
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call activate-axiom Lpoeq-1 :obl-litnbs-list { }

assume

{ def Lpoeq(t,u),

Well(t) =/= true,

Well(u) =/= true }

Lpoeq-def-manuell

call operators-strategy { 1 } { [1] } Lpoeq-def-manuell

call activate-lemma Lpoeq-def-manuell

assume

{ Lpo(t1,t3) = true,

subterm(t2,t1) =/= true,

Lpoeq(t2,t3) =/= true,

Well(t1) =/= true,

Well(t2) =/= true,

Well(t3) =/= true }

Lemma2

call operators-strategy { 2 3 } { [1] [1] } Lemma2

call activate-lemma Lemma2 :head-litnbs { 1 } :obl-litnbs-list { { 2 } { 3 } }

assume

{ Lpo(F(f,ts1),u) = true,

Lpo(t,u) =/= true,

sublist(cons(t,ts),ts1) =/= true,

arity(f) =/= length(ts1),

Well_tl(ts1) =/= true,

Well(u) =/= true,

Well(t) =/= true,

Well_tl(ts) =/= true }

Lpo-sublist

call simplify Lpo-sublist

assume

{ Lpo(t,v) = true,

subterm(u,t) =/= true,

Lpo(u,v) =/= true,

Well(t) =/= true,

Well(v) =/= true }

subterm-Lpo-trans

call auto-strategy subterm-Lpo-trans

call activate-lemma subterm-Lpo-trans :obl-litnbs-list { { 2 } { 3 } }

assume

{ Lpo(t,v) = true,

subterm(u,t) =/= true,

Lpoeq(u,v) =/= true,

Well(t) =/= true,

Well(v) =/= true }

subterm-Lpoeq-trans

call auto-strategy subterm-Lpoeq-trans

call activate-lemma subterm-Lpoeq-trans

assume

{ Lpo(t,v) = true,

subterm(v,u) =/= true,
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Lpo(t,u) =/= true,

Well(t) =/= true,

Well(u) =/= true }

Lpo-subterm-trans

call auto-strategy Lpo-subterm-trans

assume

{ Lpo(F(f,ts),ti) = true,

elem(ti,ts) =/= true,

arity(f) =/= length(ts),

Well_tl(ts) =/= true }

arg-Lpo

call auto-strategy arg-Lpo

call activate-lemma arg-Lpo

assume

{ Lpo(t,w) = true,

subterm(u,t) =/= true,

Lpoeq(u,v) =/= true,

subterm(w,v) =/= true,

Well(t) =/= true,

Well(v) =/= true }

subterm-Lpo-subterm-trans

call simplify :allow-alternative-free-var-bindings-p TRUE subterm-Lpo-subterm-trans

call activate-lemma subterm-Lpo-subterm-trans

assume

{ Lpo(F(f,ts),ui) = true,

elem(ti,ts) =/= true,

elem(ui,us) =/= true,

Lpoeq(ti, F(g,us)) =/= true,

arity(f) =/= length(ts),

arity(g) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lemma3

apply lemma-rewrite

1

[1]

subterm-Lpo-subterm-trans

1

[t <-- F(f,ts) , w <-- ui, u <-- ti, v <-- F(g,us)] ..

Lemma3

call cont-proof-attempt Lemma3

assume

{ Lpoeq(u,t) =/= true,

Well(t) =/= true,

Well(u) =/= true,

Lpo(t,u) =/= true}

Lpo-implies-notLpoeq-converse

call simplify Lpo-implies-notLpoeq-converse

call activate-lemma Lpo-implies-notLpoeq-converse

assume
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{ Alpha(cons(t,ts),w) = Alpha(ts,w),

Lpo(w,t) =/= true,

Well(t) =/= true,

Well_tl(ts) =/= true,

Well(w) =/= true }

Alpha-chop

call simplify Alpha-chop

call activate-lemma Alpha-chop

assume

{ Alpha(cons(t,ts),F(g,us)) = Alpha(ts,F(g,us)),

sublist(cons(u,us1),us) =/= true,

Lpo(t,u) = true,

t = u,

arity(g) =/= length(us),

Well(u) =/= true,

Well(t) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

Well_tl(us1) =/= true }

Alpha-chop1

call simplify Alpha-chop1

call activate-lemma Alpha-chop1

assume

{ Alpha(ts,u) = true,

sublist(us,ts) =/= true,

Alpha(us,u) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Alpha-sublist

call auto-strategy Alpha-sublist

call activate-lemma Alpha-sublist :obl-litnbs-list { { 2 } }

assume

{ Lpo(F(f,ts),ui) = true,

sublist(ts1,ts) =/= true,

elem(ui,us) =/= true,

Alpha(ts1,F(g,us)) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

arity(f) =/= length(ts),

arity(g) =/= length(us) }

Lemma3-consequence-2

apply lemma-subs

Lpo-trans

[t <-- F(f,ts), v <-- F(g,us) , u <-- ui] ..

Lemma3-consequence-2

call cont-proof-attempt :ind-lemmas { } Lemma3-consequence-2

call activate-lemma Lemma3-consequence-2 :obl-litnbs-list { { 4 } }

call deactivate-lemmas { Alpha-sublist }

assume

{ Majo(F(f,ts),us1) = true,

Alpha(ts1,F(g,us)) =/= true,
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sublist(ts1,ts) =/= true,

sublist(us1,us) =/= true,

arity(g) =/= length(us),

arity(f) =/= length(ts),

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

Well_tl(ts1) =/= true,

Well_tl(us1) =/= true }

Lemma3-consequence-3

call operators-strategy { 1 } { [1] } Lemma3-consequence-3

call activate-lemma Lemma3-consequence-3

call deactivate-lemmas { Lemma3-consequence-2 }

assume

{ Majo(F(f,ts),us1) = true,

Alpha(ts1,F(g,us)) =/= true,

sublist(ts1,ts) =/= true,

sublist(us1,us) =/= true,

arity(g) =/= length(us),

arity(f) =/= length(ts),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lemma3-consequence-4

call simplify Lemma3-consequence-4

call activate-lemma Lemma3-consequence-4

call deactivate-lemmas { Lemma3-consequence-3 }

assume

{ or(Alpha(ts1,F(g,us)), Majo(F(f,ts),us1)) = Majo(F(f,ts),us1),

sublist(ts1,ts) =/= true,

sublist(us1,us) =/= true,

arity(f) =/= length(ts),

arity(g) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lemma3-consequence-5

call simplify :allow-alternative-free-var-bindings-p TRUE Lemma3-consequence-5

call activate-lemma Lemma3-consequence-5

call deactivate-lemmas { Lemma3-consequence-4 }

assume

{ or(Majo(F(f,ts),us1), Alpha(ts1,F(g,us))) = Majo(F(f,ts),us1),

sublist(ts1,ts) =/= true,

sublist(us1,us) =/= true,

arity(f) =/= length(ts),

arity(g) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lemma3-consequence-5a

call simplify Lemma3-consequence-5a

call activate-lemma Lemma3-consequence-5a

assume

{ or(Alpha(ts,F(g,us)), Majo(F(f,ts),us)) = Majo(F(f,ts),us),

arity(f) =/= length(ts),

arity(g) =/= length(us),
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Well_tl(ts) =/= true,

Well_tl(us) =/= true }

Lemma3-consequence-6

call simplify Lemma3-consequence-6

call activate-lemma Lemma3-consequence-6

call deactivate-lemmas { Lpo-trans sublist-subterms Lpo-subterm_tl }

A.8 lpo1

This file (as well as each of the following files) contains exactly one variant of the LPO and
an equivalence proof w.r.t. a previous variant.

declare operators

lpo1 : Term Term --> Bool

alpha1 : Termlist Term --> Bool

beta1 : Term Term --> Bool

gamma1 : Term Term --> Bool

delta1 : Term Term --> Bool

majo1 : Term Termlist --> Bool

lex1 : Termlist Termlist --> Bool

.

assert

lex1-1 :

lex1(nil,nil) = false

lex1-2 :

lex1(cons(t,ts),cons(u,us)) = lex1(ts,us)

if t = u

lex1-3 :

lex1(cons(t,ts),cons(u,us)) = lpo1(t,u)

if t =/= u

majo1-1 :

majo1(t,nil) = true

majo1-2 :

majo1(t,cons(u,us)) = and(lpo1(t,u),majo1(t,us))

delta1-1 :

delta1(F(f,ts),V(y)) = contains_tl(ts,y)

gamma1-1 :

gamma1(F(f,ts),F(g,us)) = and(lex1(ts,us),majo1(F(f,ts),us))

if f = g

gamma1-2 :

gamma1(F(f,ts),F(g,us)) = false

if

f =/= g

beta1-1 :

beta1(F(f,ts),F(g,us)) = and(prec(f,g),majo1(F(f,ts),us))

alpha1-1 :

alpha1(nil,u) = false

alpha1-2 :

alpha1(cons(t,ts),u) = true

if t = u

alpha1-3 :

alpha1(cons(t,ts),u) = or(lpo1(t,u),alpha1(ts,u))

if t =/= u
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lpo1-1 :

lpo1(V(x),u) = false

lpo1-2 :

lpo1(F(f,ts),V(y)) = delta1(F(f,ts),V(y))

lpo1-3 :

lpo1(F(f,ts),F(g,us)) = or(alpha1(ts,F(g,us)),or(beta1(F(f,ts),F(g,us)),

gamma1(F(f,ts),F(g,us))))

.

call analyze-operator lpo1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator alpha1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator beta1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator gamma1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator delta1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator majo1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator lex1 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lpo1(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo1-def-manuell

assume

{ def alpha1(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha1-def-manuell

assume

{ def beta1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta1-def-manuell

assume

{ def gamma1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

gamma1-def-manuell

assume

{ def delta1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta1-def-manuell

assume

{ def majo1(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo1-def-manuell

assume

{ def lex1(ts,us),

length(ts) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }
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lex1-def-manuell

set weight (t,u,0) lpo1-def-manuell

set weight (ts,t) alpha1-def-manuell

set weight (t,u) beta1-def-manuell

set weight (t,u) gamma1-def-manuell

set weight (ts,us) lex1-def-manuell

set weight (t,us) majo1-def-manuell

call operators-strategy { 1 } { [1] } delta1-def-manuell

call activate-lemma delta1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { alpha1-def-manuell

beta1-def-manuell gamma1-def-manuell } lpo1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo1-def-manuell

alpha1-def-manuell } alpha1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { majo1-def-manuell

beta1-def-manuell } beta1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { majo1-def-manuell

lex1-def-manuell gamma1-def-manuell } gamma1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo1-def-manuell

majo1-def-manuell } majo1-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo1-def-manuell

lex1-def-manuell } lex1-def-manuell

call activate-lemmas { lpo1-def-manuell

alpha1-def-manuell

beta1-def-manuell

gamma1-def-manuell

majo1-def-manuell

lex1-def-manuell }

assume

{ lpo1(t,u) = Lpo(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo1-Lpo

assume

{ alpha1(ts,t) = Alpha(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha1-Alpha

assume

{ beta1(t,u) = Beta(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta1-Beta

assume

{ gamma1(t,u) = Gamma(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

gamma1-Gamma

assume

{ delta1(t,u) = Delta(t,u),

Well(t) =/= true,

Well(u) =/= true,
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Fun(t) =/= true,

Var(u) =/= true }

delta1-Delta

assume

{ majo1(t,us) = Majo(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo1-Majo

assume

{ lex1(ts,us) = Lex(ts,us),

length(ts) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lex1-Lex

set weight (t,u,0) lpo1-Lpo

set weight (ts,t) alpha1-Alpha

set weight (t,u) beta1-Beta

set weight (t,u) gamma1-Gamma

set weight (ts,us) lex1-Lex

set weight (t,us) majo1-Majo

call operators-strategy { 1 1 } { [1] [2] } delta1-Delta

call activate-lemma delta1-Delta :obl-litnbs-list { }

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { alpha1-Alpha

beta1-Beta gamma1-Gamma } lpo1-Lpo

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { alpha1-Alpha

lpo1-Lpo } alpha1-Alpha

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { beta1-Beta

majo1-Majo } beta1-Beta

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { majo1-Majo

lex1-Lex gamma1-Gamma } gamma1-Gamma

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { majo1-Majo

lpo1-Lpo } majo1-Majo

call operators-strategy { 1 1 } { [1] [2] } :ind-lemmas { lpo1-Lpo

lex1-Lex } lex1-Lex

call activate-lemma lpo1-Lpo :obl-litnbs-list { }

call activate-lemma alpha1-Alpha :obl-litnbs-list { }

call activate-lemma beta1-Beta :obl-litnbs-list { }

call activate-lemma gamma1-Gamma :obl-litnbs-list { }

call activate-lemma majo1-Majo :obl-litnbs-list { }

call activate-lemma lex1-Lex :obl-litnbs-list { }

A.9 lpo2

declare operators

lpo2 : Term Term --> Bool

alpha2 : Termlist Term --> Bool

beta2 : Term Term --> Bool

gamma2 : Term Term --> Bool

delta2 : Term Term --> Bool

majo2 : Term Termlist --> Bool

lex2 : Termlist Termlist --> Bool

.

assert

lex2-1 :
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lex2(nil,nil) = false

lex2-2 :

lex2(cons(t,ts),cons(u,us)) = lex2(ts,us)

if t = u

lex2-3 :

lex2(cons(t,ts),cons(u,us)) = lpo2(t,u)

if t =/= u

majo2-1 :

majo2(t,nil) = true

majo2-2 :

majo2(t,cons(u,us)) = and(lpo2(t,u),majo2(t,us))

delta2-1 :

delta2(F(f,ts),V(y)) = contains_tl(ts,y)

gamma2-1 :

gamma2(F(f,ts),F(g,us)) = and(lex2(ts,us),majo2(F(f,ts),us))

if f = g

gamma2-2 :

gamma2(F(f,ts),F(g,us)) = false

if f =/= g

beta2-1 :

beta2(F(f,ts),F(g,us)) = and(prec(f,g),majo2(F(f,ts),us))

alpha2-1 :

alpha2(nil,u) = false

alpha2-2 :

alpha2(cons(t,ts),u) = true

if t = u

alpha2-3 :

alpha2(cons(t,ts),u) = or(lpo2(t,u),alpha2(ts,u))

if t =/= u

lpo2-1 :

lpo2(V(x),u) = false

lpo2-2 :

lpo2(F(f,ts),V(y)) = delta2(F(f,ts),V(y))

lpo2-3 :

lpo2(F(f,ts),F(g,us)) = or(beta2(F(f,ts),F(g,us)),or(gamma2(F(f,ts),F(g,us)),

alpha2(ts,F(g,us))))

.

call analyze-operator lpo2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator alpha2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator beta2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator gamma2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator delta2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator majo2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator lex2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lpo2(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo2-def-manuell

assume

{ def alpha2(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha2-def-manuell

assume

{ def beta2(t,u),
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Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta2-def-manuell

assume

{ def gamma2(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

gamma2-def-manuell

assume

{ def delta2(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta2-def-manuell

assume

{ def majo2(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo2-def-manuell

assume

{ def lex2(ts,us),

length(ts) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lex2-def-manuell

set weight (t,u,0) lpo2-def-manuell

set weight (ts,t) alpha2-def-manuell

set weight (t,u) beta2-def-manuell

set weight (t,u) gamma2-def-manuell

set weight (ts,us) lex2-def-manuell

set weight (t,us) majo2-def-manuell

call operators-strategy { 1 } { [1] } delta2-def-manuell

call activate-lemma delta2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { alpha2-def-manuell

beta2-def-manuell gamma2-def-manuell } lpo2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo2-def-manuell

alpha2-def-manuell } alpha2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { majo2-def-manuell

beta2-def-manuell } beta2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { majo2-def-manuell

lex2-def-manuell gamma2-def-manuell } gamma2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo2-def-manuell

majo2-def-manuell } majo2-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo2-def-manuell

lex2-def-manuell } lex2-def-manuell

call activate-lemmas { lpo2-def-manuell

alpha2-def-manuell

beta2-def-manuell

gamma2-def-manuell

majo2-def-manuell

lex2-def-manuell }
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assume

{ lpo2(t,u) = lpo1(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo2-lpo1

assume

{ alpha2(ts,t) = alpha1(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha2-alpha1

assume

{ beta2(t,u) = beta1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta2-beta1

assume

{ gamma2(t,u) = gamma1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

gamma2-gamma1

assume

{ delta2(t,u) = delta1(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta2-delta1

assume

{ majo2(t,us) = majo1(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo2-majo1

assume

{ lex2(ts,us) = lex1(ts,us),

length(ts) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lex2-lex1

set weight (t,u,0) lpo2-lpo1

set weight (ts,t) alpha2-alpha1

set weight (t,u) beta2-beta1

set weight (t,u) gamma2-gamma1

set weight (ts,us) lex2-lex1

set weight (t,us) majo2-majo1

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE delta2-delta1

call activate-lemma delta2-delta1 :obl-litnbs-list { }

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { alpha2-alpha1 beta2-beta1 gamma2-gamma1 } lpo2-lpo1

call operators-strategy { 1 1 } { [1] [2] } ..
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:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { alpha2-alpha1 lpo2-lpo1 } alpha2-alpha1

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { beta2-beta1 majo2-majo1 } beta2-beta1

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { majo2-majo1 lex2-lex1 gamma2-gamma1 } gamma2-gamma1

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { majo2-majo1 lpo2-lpo1 } majo2-majo1

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { lpo2-lpo1 lex2-lex1 } lex2-lex1

call activate-lemma lpo2-lpo1 :obl-litnbs-list { }

call activate-lemma alpha2-alpha1 :obl-litnbs-list { }

call activate-lemma beta2-beta1 :obl-litnbs-list { }

call activate-lemma gamma2-gamma1 :obl-litnbs-list { }

call activate-lemma majo2-majo1 :obl-litnbs-list { }

call activate-lemma lex2-lex1 :obl-litnbs-list { }

declare operators

lexM2 : Term Termlist Termlist --> Bool

.

assert lexM2-1 :

lexM2(t,nil,nil) = false

.

assert lexM2-2 :

lexM2(v,cons(t,ts),cons(u,us)) = lexM2(v,ts,us)

if t = u

.

assert lexM2-3 :

lexM2(v,cons(t,ts),cons(u,us)) = and(lpo2(t,u),majo2(v,us))

if t =/= u

.

call analyze-operator lexM2 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lexM2(v,ts,us),

Well(v) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

length(ts) =/= length(us)}

lexM2-def-manuell

call auto-strategy lexM2-def-manuell

call activate-lemma lexM2-def-manuell

assume

{ lexM2(F(f,ts1),ts,us) = and(Lex(ts,us),Majo(F(f,ts1),us)),

sublist(ts,ts1) =/= true,

arity(f) =/= length(ts1),

Well_tl(ts1) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

length(ts) =/= length(us) }

lexM2-lex2-majo2-h

call activate-lemma Lpo-sublist
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call auto-strategy lexM2-lex2-majo2-h

call activate-lemma lexM2-lex2-majo2-h

call deactivate-lemmas { Lpo-sublist }

assume

{ lexM2( F(f,ts),ts,us) = and(Lex(ts,us),Majo( F(f,ts),us)),

length(ts) =/= length(us),

arity(f) =/= length(ts),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexM2-lex2-majo2

call auto-strategy lexM2-lex2-majo2

call deactivate-lemmas { lexM2-lex2-majo2-h }

call activate-lemma lexM2-lex2-majo2

A.10 lpo3

declare operators

lpo3 : Term Term --> Bool

alpha3 : Termlist Term --> Bool

beta3 : Term Term --> Bool

gamma3 : Term Term --> Bool

delta3 : Term Term --> Bool

majo3 : Term Termlist --> Bool

lexM3 : Term Termlist Termlist --> Bool

.

assert

lexM3-1 :

lexM3(v,nil,nil) = false

lexM3-2 :

lexM3(v,cons(t,ts),cons(u,us)) = lexM3(v,ts,us)

if t = u

lexM3-3 :

lexM3(v,cons(t,ts),cons(u,us)) = and(lpo3(t,u),majo3(v,us))

if t =/= u

majo3-1 :

majo3(t,nil) = true

majo3-2 :

majo3(t,cons(u,us)) = and(lpo3(t,u),majo3(t,us))

delta3-1 :

delta3(F(f,ts),V(y)) = contains_tl(ts,y)

gamma3-1 :

gamma3(F(f,ts),F(g,us)) = lexM3(F(f,ts),ts,us)

if f = g

gamma3-2 :

gamma3(F(f,ts),F(g,us)) = false

if f =/= g

beta3-1 :

beta3(F(f,ts),F(g,us)) = and(prec(f,g),majo3(F(f,ts),us))

alpha3-1 :

alpha3(nil,u) = false

alpha3-2 :

alpha3(cons(t,ts),u) = true
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if t = u

alpha3-3 :

alpha3(cons(t,ts),u) = or(lpo3(t,u),alpha3(ts,u))

if t =/= u

lpo3-1 :

lpo3(V(x),u) = false

lpo3-2 :

lpo3(F(f,ts),V(y)) = delta3(F(f,ts),V(y))

lpo3-3 :

lpo3(F(f,ts),F(g,us)) = or(beta3(F(f,ts),F(g,us)),or(gamma3(F(f,ts),F(g,us)),

alpha3(ts,F(g,us))))

.

call analyze-operator lpo3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator alpha3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator beta3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator gamma3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator delta3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator majo3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator lexM3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lpo3(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo3-def-manuell

assume

{ def alpha3(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha3-def-manuell

assume

{ def beta3(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta3-def-manuell

assume

{ def gamma3(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

gamma3-def-manuell

assume

{ def delta3(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta3-def-manuell

assume

{ def majo3(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo3-def-manuell

assume
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{ def lexM3(v,ts,us),

Well(v) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

length(ts) =/= length(us)}

lexM3-def-manuell

set weight (u,t,0) lpo3-def-manuell

set weight (t,ts) alpha3-def-manuell

set weight (u,t) beta3-def-manuell

set weight (u,t) gamma3-def-manuell

set weight (us) lexM3-def-manuell

set weight (us,t) majo3-def-manuell

call operators-strategy { 1 } { [1] } delta3-def-manuell

call activate-lemma delta3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { alpha3-def-manuell

beta3-def-manuell gamma3-def-manuell } lpo3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo3-def-manuell

alpha3-def-manuell } alpha3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { majo3-def-manuell

beta3-def-manuell } beta3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lexM3-def-manuell

gamma3-def-manuell } gamma3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo3-def-manuell

majo3-def-manuell } majo3-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo3-def-manuell

majo3-def-manuell lexM3-def-manuell } lexM3-def-manuell

call activate-lemmas { lpo3-def-manuell

alpha3-def-manuell

beta3-def-manuell

gamma3-def-manuell

majo3-def-manuell

lexM3-def-manuell }

assume

{ lpo3(t,u) = lpo2(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo3-lpo2

assume

{ alpha3(ts,t) = alpha2(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha3-alpha2

assume

{ beta3(t,u) = beta2(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }

beta3-beta2

assume

{ gamma3(t,u) = gamma2(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Fun(u) =/= true }
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gamma3-gamma2

assume

{ delta3(t,u) = delta2(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta3-delta2

assume

{ majo3(t,us) = majo2(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo3-majo2

assume

{ lexM3(v,ts,us) = lexM2(v,ts,us),

length(ts) =/= length(us),

Well(v) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexM3-lexM2

set weight (u,t,0) lpo3-lpo2

set weight (t,ts) alpha3-alpha2

set weight (u,t) beta3-beta2

set weight (u,t) gamma3-gamma2

set weight (us) lexM3-lexM2

set weight (us,t) majo3-majo2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE delta3-delta2

call activate-lemma delta3-delta2 :obl-litnbs-list { }

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { alpha3-alpha2 beta3-beta2 gamma3-gamma2 } lpo3-lpo2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { alpha3-alpha2 lpo3-lpo2 } alpha3-alpha2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { beta3-beta2 majo3-majo2 } beta3-beta2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { majo3-majo2 lexM3-lexM2 gamma3-gamma2 } gamma3-gamma2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { majo3-majo2 lpo3-lpo2 } majo3-majo2

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { lpo3-lpo2 majo3-majo2 lexM3-lexM2 } lexM3-lexM2

call activate-lemma lpo3-lpo2 :obl-litnbs-list { }

call activate-lemma alpha3-alpha2 :obl-litnbs-list { }

call activate-lemma beta3-beta2 :obl-litnbs-list { }

call activate-lemma gamma3-gamma2 :obl-litnbs-list { }

call activate-lemma delta3-delta2 :obl-litnbs-list { }

call activate-lemma majo3-majo2 :obl-litnbs-list { }

call activate-lemma lexM3-lexM2 :obl-litnbs-list { }

declare operators
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lexMA3 : Term Term Termlist Termlist --> Bool

.

assert

lexMA3-1 :

lexMA3(v,w,nil,nil) = false

lexMA3-2 :

lexMA3(v,w,cons(t,ts),cons(u,us)) = lexMA3(v,w,ts,us)

if t = u

lexMA3-3 :

lexMA3(v,w,cons(t,ts),cons(u,us)) = majo3(v,us)

if t =/= u,

lpo3(t,u) = true

lexMA3-4 :

lexMA3(v,w,cons(t,ts),cons(u,us)) = alpha3(ts,w)

if t =/= u,

lpo3(t,u) =/= true,

def lpo3(t,u)

.

call analyze-operator lexMA3 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lexMA3(v,w,ts,us),

Well(v) =/= true,

Well(w) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true,

length(ts) =/= length(us)}

lexMA3-def-manuell

call auto-strategy lexMA3-def-manuell

call activate-lemma lexMA3-def-manuell

assume

{ lexMA3(F(f,ts1),F(g,us1),ts,us) = or(Alpha(ts,F(g,us1)),and(Lex(ts,us),

Majo(F(f,ts1),us))),

sublist(ts,ts1) =/= true,

sublist(us,us1) =/= true,

length(ts) =/= length(us),

arity(f) =/= length(ts1),

arity(g) =/= length(us1),

Well_tl(ts1) =/= true,

Well_tl(us1) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMA3-lexM3-majo3-h

call deactivate-axioms { Alpha-2 Alpha-3 Alpha-4 }

call operators-strategy { 1 } { [1] } lexMA3-lexM3-majo3-h

call activate-axioms { Alpha-4 Alpha-3 Alpha-2 Alpha-1 }

call activate-lemma lexMA3-lexM3-majo3-h

assume

{ lexMA3(F(f,ts),F(g,us),ts,us) = or(alpha3(ts,F(g,us)),lexM3(F(f,ts),ts,us)),

length(ts) =/= length(us),

arity(f) =/= length(ts),

arity(g) =/= length(us),

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMA3-lexM3-majo3
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call simplify lexMA3-lexM3-majo3

call activate-lemma lexMA3-lexM3-majo3

call deactivate-lemmas { lexMA3-lexM3-majo3-h }

A.11 lpo4

declare operators

lpo4 : Term Term --> Bool

alpha4 : Termlist Term --> Bool

delta4 : Term Term --> Bool

majo4 : Term Termlist --> Bool

lexMA4 : Term Term Termlist Termlist --> Bool

.

assert

lexMA4-1 :

lexMA4(v,w,nil,nil) = false

lexMA4-2 :

lexMA4(v,w,cons(t,ts),cons(u,us)) = lexMA4(v,w,ts,us)

if t = u

lexMA4-3 :

lexMA4(v,w,cons(t,ts),cons(u,us)) = majo4(v,us)

if t =/= u,

lpo4(t,u) = true

lexMA4-4 :

lexMA4(v,w,cons(t,ts),cons(u,us)) = alpha4(ts,w)

if t =/= u,

lpo4(t,u) =/= true,

def lpo4(t,u)

majo4-1 :

majo4(t,nil) = true

majo4-2 :

majo4(t,cons(u,us)) = and(lpo4(t,u),majo4(t,us))

delta4-1 :

delta4(F(f,ts),V(y)) = contains_tl(ts,y)

alpha4-1 :

alpha4(nil,u) = false

alpha4-2 :

alpha4(cons(t,ts),u) = true

if t = u

alpha4-3 :

alpha4(cons(t,ts),u) = or(lpo4(t,u),alpha4(ts,u))

if t =/= u

lpo4-1 :

lpo4(V(x),u) = false

lpo4-2 :

lpo4(F(f,ts),V(y)) = delta4(F(f,ts),V(y))

lpo4-3 :

lpo4(F(f,ts),F(g,us)) = majo4(F(f,ts),us)

if prec(f,g) = true

lpo4-4 :

lpo4(F(f,ts),F(g,us)) = lexMA4(F(f,ts),F(g,us),ts,us)

if prec(f,g) =/= true,

def prec(f,g),

f = g
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lpo4-5 :

lpo4(F(f,ts),F(g,us)) = alpha4(ts,F(g,us))

if prec(f,g) =/= true,

def prec(f,g),

f =/= g

.

call analyze-operator lpo4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator alpha4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator delta4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator majo4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator lexMA4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lpo4(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo4-def-manuell

assume

{ def alpha4(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha4-def-manuell

assume

{ def delta4(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta4-def-manuell

assume

{ def majo4(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majo4-def-manuell

assume

{ def lexMA4(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMA4-def-manuell

set weight (t,u,t,u,0) lpo4-def-manuell

set weight (ts,t,ts,t) alpha4-def-manuell

set weight (t,us,t,us) majo4-def-manuell

set weight (F(f,vs),F(g,ws),ts,us) lexMA4-def-manuell

call operators-strategy { 1 } { [1] } delta4-def-manuell

call activate-lemma delta4-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { alpha4-def-manuell

majo4-def-manuell lexMA4-def-manuell } lpo4-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo4-def-manuell

alpha4-def-manuell } alpha4-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo4-def-manuell



268 The Proof Script for the Case Study About LPO

majo4-def-manuell } majo4-def-manuell

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 } { [1] } :ind-lemmas { lpo4-def-manuell

majo4-def-manuell alpha4-def-manuell lexMA4-def-manuell } lexMA4-def-manuell

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call activate-lemmas { lpo4-def-manuell

alpha4-def-manuell

majo4-def-manuell

lexMA4-def-manuell }

assume

{ lpo4(t,u) = lpo3(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo4-lpo3

assume

{ alpha4(ts,t) = alpha3(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alpha4-alpha3

assume

{ delta4(t,u) = delta3(t,u),

Well(t) =/= true,

Well(u) =/= true,

Fun(t) =/= true,

Var(u) =/= true }

delta4-delta3

assume

{ majo4(t,us) = majo3(t,us),

Well_tl(us) =/= true,

Well(t) =/= true }

majo4-majo3

assume

{ lexMA4(F(f,vs),F(g,ws),ts,us) = lexMA3(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMA4-lexMA3

set weight (t,u,t,u,0) lpo4-lpo3

set weight (ts,t,ts,t) alpha4-alpha3

set weight (t,us,t,us) majo4-majo3

set weight (F(f,vs),F(g,ws),ts,us) lexMA4-lexMA3

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE delta4-delta3

call activate-lemma delta4-delta3 :obl-litnbs-list { }

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { alpha4-alpha3 lexMA4-lexMA3 majo4-majo3 } lpo4-lpo3

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..
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:ind-lemmas { alpha4-alpha3 lpo4-lpo3 } alpha4-alpha3

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { majo4-majo3 lpo4-lpo3 } majo4-majo3

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE ..

:ind-lemmas { lpo4-lpo3 majo4-majo3 alpha4-alpha3 lexMA4-lexMA3 } lexMA4-lexMA3

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call activate-lemma lpo4-lpo3 :obl-litnbs-list { }

call activate-lemma alpha4-alpha3 :obl-litnbs-list { }

call activate-lemma delta4-delta3 :obl-litnbs-list { }

call activate-lemma majo4-majo3 :obl-litnbs-list { }

call activate-lemma lexMA4-lexMA3 :obl-litnbs-list { }

A.12 lpoR4

declare operators

lpoR4 : Term Term --> Res

.

assert

lpoR4-1 :

lpoR4(t,u) = E

if t = u

lpoR4-2 :

lpoR4(t,u) = G

if t =/= u,

lpo4(t,u) = true

lpoR4-3 :

lpoR4(t,u) = N

if t =/= u,

lpo4(t,u) =/= true,

def lpo4(t,u)

.

call analyze-operator lpoR4 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def lpoR4(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpoR4-def-manuell

call operators-strategy { 1 } { [1] } lpoR4-def-manuell

call activate-lemma lpoR4-def-manuell

declare operators

alphaR4 : Termlist Term --> Res

.

assert

alphaR4-1 :

alphaR4(ts,u) = G

if alpha4(ts,u) = true

alphaR4-2 :

alphaR4(ts,u) = N

if alpha4(ts,u) =/= true,
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def alpha4(ts,u)

.

call analyze-operator alphaR4 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def alphaR4(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR4-def-manuell

call operators-strategy { 1 } { [1] } alphaR4-def-manuell

call activate-lemma alphaR4-def-manuell

declare operators

majoR4 : Term Termlist --> Res

.

assert

majoR4-1 :

majoR4(t,us) = G

if majo4(t,us) = true

majoR4-2 :

majoR4(t,us) = N

if majo4(t,us) =/= true,

def majo4(t,us)

.

call analyze-operator majoR4 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def majoR4(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majoR4-def-manuell

call operators-strategy { 1 } { [1] } majoR4-def-manuell

call activate-lemma majoR4-def-manuell

declare operators

lexMAE4 : Term Term Termlist Termlist --> Res

.

assert

lexMAE4-1 :

lexMAE4(v,w,ts,us) = E

if ts = us

lexMAE4-2 :

lexMAE4(v,w,ts,us) = G

if ts =/= us,

lexMA4(v,w,ts,us) = true

lexMAE4-3 :

lexMAE4(v,w,ts,us) = N

if ts =/= us,

def lexMA4(v,w,ts,us),

lexMA4(v,w,ts,us) =/= true

.

call analyze-operator lexMAE4 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def lexMAE4(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,
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sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE4-def-manuell

call operators-strategy { 1 } { [1] } lexMAE4-def-manuell

call activate-lemma lexMAE4-def-manuell

assume

{ lpoR4(t,u) = E,

lpoR4(t,u) = G,

lpoR4(t,u) = N,

Well(t) =/= true,

Well(u) =/= true }

lpoR4-welldefined

call operators-strategy { 1 2 3 } { [1] [1] [1] } lpoR4-welldefined

call activate-lemma lpoR4-welldefined :head-litnbs { 1 2 3 } :obl-litnbs-list { }

assume

{ alphaR4(ts,t) = G,

alphaR4(ts,t) = N,

Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR4-welldefined

call operators-strategy { 1 2 } { [1] [1] } alphaR4-welldefined

assume

{ majoR4(t,us) = G,

majoR4(t,us) = N,

Well(t) =/= true,

Well_tl(us) =/= true }

majoR4-welldefined

call operators-strategy { 1 2 } { [1] [1] } majoR4-welldefined

assume

{ lexMAE4(F(f,vs),F(g,ws),ts,us) = E,

lexMAE4(F(f,vs),F(g,ws),ts,us) = G,

lexMAE4(F(f,vs),F(g,ws),ts,us) = N,

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE4-welldefined

call operators-strategy { 1 2 3 } { [1] [1] [1] } lexMAE4-welldefined

call activate-axiom lpoR4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 }

call activate-axiom lpoR4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }
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call activate-axiom lpoR4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom alphaR4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }

call activate-axiom alphaR4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom majoR4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }

call activate-axiom majoR4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom lexMAE4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 }

call activate-axiom lexMAE4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }

call activate-axiom lexMAE4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

A.13 lpoR5

declare operators

lpoR5 : Term Term --> Res

alphaR5 : Termlist Term --> Res

majoR5 : Term Termlist --> Res

lexMAE5 : Term Term Termlist Termlist --> Res

.

assert

lexMAE5-1 :

lexMAE5(v,w,nil,nil) = E

lexMAE5-2 :

lexMAE5(v,w,cons(t,ts),cons(u,us)) = lexMAE5(v,w,ts,us)

if lpoR5(t,u) = E

lexMAE5-3 :

lexMAE5(v,w,cons(t,ts),cons(u,us)) = majoR5(v,us)

if lpoR5(t,u) = G

lexMAE5-4 :

lexMAE5(v,w,cons(t,ts),cons(u,us)) = alphaR5(ts,w)

if lpoR5(t,u) = N

majoR5-1 :

majoR5(t,nil) = G

majoR5-2 :

majoR5(t,cons(u,us)) = majoR5(t,us)

if lpoR5(t,u) = G

majoR5-3 :

majoR5(t,cons(u,us)) = N

if lpoR5(t,u) = E

majoR5-4 :

majoR5(t,cons(u,us)) = N

if lpoR5(t,u) = N

alphaR5-1 :

alphaR5(nil,u) = N

alphaR5-2 :

alphaR5(cons(t,ts),u) = G

if lpoR5(t,u) = E

alphaR5-3 :

alphaR5(cons(t,ts),u) = G

if lpoR5(t,u) = G

alphaR5-4 :

alphaR5(cons(t,ts),u) = alphaR5(ts,u)

if lpoR5(t,u) = N

lpoR5-1 :

lpoR5(V(x),V(y)) = E

if x = y
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lpoR5-2 :

lpoR5(V(x),V(y)) = N

if x =/= y

lpoR5-3 :

lpoR5(F(f,ts),V(y)) = G

if contains_tl(ts,y) = true

lpoR5-4 :

lpoR5(F(f,ts),V(y)) = N

if contains_tl(ts,y) =/= true,

def contains_tl(ts,y)

lpoR5-5 :

lpoR5(V(x),F(g,us)) = N

lpoR5-6 :

lpoR5(F(f,ts),F(g,us)) = majoR5(F(f,ts),us)

if prec(f,g) = true

lpoR5-7 :

lpoR5(F(f,ts),F(g,us)) = lexMAE5(F(f,ts),F(g,us),ts,us)

if f = g,

prec(f,g) =/= true,

def prec(f,g)

lpoR5-8 :

lpoR5(F(f,ts),F(g,us)) = alphaR5(ts,F(g,us))

if prec(f,g) =/= true,

f =/= g,

def prec(f,g)

.

call analyze-operator lpoR5 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator alphaR5 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator majoR5 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator lexMAE5 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def lpoR5(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpoR5-def-manuell

assume

{ def alphaR5(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR5-def-manuell

assume

{ def majoR5(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majoR5-def-manuell

assume

{ def lexMAE5(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),
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Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE5-def-manuell

assume

{ lpoR5(t,u) = E,

lpoR5(t,u) = G,

lpoR5(t,u) = N,

Well(t) =/= true,

Well(u) =/= true }

lpoR5-welldefined

assume

{ alphaR5(ts,t) = G,

alphaR5(ts,t) = N,

Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR5-welldefined

assume

{ majoR5(t,us) = G,

majoR5(t,us) = N,

Well(t) =/= true,

Well_tl(us) =/= true }

majoR5-welldefined

assume

{ lexMAE5(F(f,vs),F(g,ws),ts,us) = E,

lexMAE5(F(f,vs),F(g,ws),ts,us) = G,

lexMAE5(F(f,vs),F(g,ws),ts,us) = N,

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE5-welldefined

set weight (t,u,t) lpoR5-def-manuell

set weight (ts,t) alphaR5-def-manuell

set weight (t,us) majoR5-def-manuell

set weight (F(f,vs),F(g,ws),ts) lexMAE5-def-manuell

set weight (t,u,t) lpoR5-welldefined

set weight (ts,t) alphaR5-welldefined

set weight (t,us) majoR5-welldefined

set weight (F(f,vs),F(g,ws),ts) lexMAE5-welldefined

call operators-strategy { 1 } { [1] } :ind-lemmas { alphaR5-def-manuell

majoR5-def-manuell lexMAE5-def-manuell } lpoR5-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR5-def-manuell

alphaR5-def-manuell lpoR5-welldefined } alphaR5-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR5-def-manuell

majoR5-def-manuell lpoR5-welldefined } majoR5-def-manuell

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR5-def-manuell

majoR5-def-manuell alphaR5-def-manuell lexMAE5-def-manuell

lpoR5-welldefined } lexMAE5-def-manuell
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call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 2 3 } { [1] [1] [1] } :ind-lemmas { alphaR5-def-manuell

majoR5-def-manuell lexMAE5-def-manuell majoR5-welldefined

lexMAE5-welldefined alphaR5-welldefined} lpoR5-welldefined

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { lpoR5-def-manuell

lpoR5-welldefined alphaR5-welldefined} alphaR5-welldefined

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { lpoR5-def-manuell

lpoR5-welldefined majoR5-welldefined} majoR5-welldefined

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 2 3 } { [1] [1] [1] } :ind-lemmas { lpoR5-def-manuell

majoR5-def-manuell alphaR5-def-manuell lexMAE5-def-manuell

lpoR5-welldefined lexMAE5-welldefined majoR5-welldefined

alphaR5-welldefined} lexMAE5-welldefined

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call activate-lemmas { lpoR5-def-manuell alphaR5-def-manuell majoR5-def-manuell

lexMAE5-def-manuell }

assume

{ lpoR5(t,u) = lpoR4(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpoR5-lpoR4

assume

{ lexMAE5(F(f,vs),F(g,ws),ts,us) = lexMAE4(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE5-lexMAE4

assume

{ majoR5(t,us) = majoR4(t,us),

Well_tl(us) =/= true,

Well(t) =/= true }

majoR5-majoR4

assume

{ alphaR5(ts,u) = alphaR4(ts,u),

Well_tl(ts) =/= true,

Well(u) =/= true }

alphaR5-alphaR4

set weight (t,u,t) lpoR5-lpoR4

set weight (ts,u) alphaR5-alphaR4

set weight (t,us) majoR5-majoR4

set weight (F(f,vs),F(g,ws),ts) lexMAE5-lexMAE4

call activate-lemma Lemma3-consequence-4 :free-vars-bindings { { "lit(2)" } }

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR5-lpoR4

lexMAE5-lexMAE4 majoR5-majoR4 alphaR5-alphaR4 } ..

:allow-simplification-before-induction-p FALSE lpoR5-lpoR4

call activate-lemma lexMA3-lexM3-majo3-h

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call deactivate-axioms { Lpo-1 Lpo-2 Lpo-3 Lpo-4 Lpo-5 }

call deactivate-lemmas { Lemma3-consequence-5 Lemma3-consequence-5a }
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call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR5-lpoR4

lexMAE5-lexMAE4 majoR5-majoR4 alphaR5-alphaR4 } ..

:allow-simplification-before-induction-p FALSE lexMAE5-lexMAE4

call activate-axioms { Lpo-5 Lpo-4 Lpo-3 Lpo-2 Lpo-1 }

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR5-lpoR4

lexMAE5-lexMAE4 majoR5-majoR4 alphaR5-alphaR4 } ..

:allow-simplification-before-induction-p FALSE majoR5-majoR4

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR5-lpoR4

lexMAE5-lexMAE4 majoR5-majoR4 alphaR5-alphaR4 } ..

:allow-simplification-before-induction-p FALSE alphaR5-alphaR4

call activate-lemma lpoR5-lpoR4 :obl-litnbs-list { }

call activate-lemma lexMAE5-lexMAE4 :obl-litnbs-list { }

call activate-lemma majoR5-majoR4 :obl-litnbs-list { }

call activate-lemma alphaR5-alphaR4 :obl-litnbs-list { }

declare operators

lpo5 : Term Term --> Bool

.

assert

lpo5-1 :

lpo5(t,u) = true

if lpoR5(t,u) = G

lpo5-2 :

lpo5(t,u) = false

if lpoR5(t,u) = E

lpo5-3 :

lpo5(t,u) = false

if lpoR5(t,u) = N

.

call analyze-operator lpo5 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def lpo5(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo5-def-manuell

call operators-strategy { 1 } { [1] } lpo5-def-manuell

call activate-lemma lpo5-def-manuell

assume

{ lpo5(t,u) = lpo4(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpo5-lpo4

call activate-lemma Alpha-irrefl

call operators-strategy { 1 1 } { [1] [2] } ..

:allow-simplification-before-induction-p FALSE lpo5-lpo4

call activate-lemma Alpha-irrefl :obl-litnbs-list { { 2 } }

call activate-lemma lpo5-lpo4 :obl-litnbs-list { }

A.14 lpoR6

declare operators

lpoR6 : Term Term --> Res
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alphaR6 : Termlist Term --> Res

majoR6 : Term Termlist --> Res

lexMAE6 : Term Term Termlist Termlist --> Res

.

assert

lexMAE6-1 :

lexMAE6(v,w,nil,nil) = E

lexMAE6-2 :

lexMAE6(v,w,cons(t,ts),cons(u,us)) = lexMAE6(v,w,ts,us)

if lpoR6(t,u) = E

lexMAE6-3 :

lexMAE6(v,w,cons(t,ts),cons(u,us)) = majoR6(v,us)

if lpoR6(t,u) = G

lexMAE6-4 :

lexMAE6(v,w,cons(t,ts),cons(u,us)) = alphaR6(ts,w)

if lpoR6(t,u) = N

majoR6-1 :

majoR6(t,nil) = G

majoR6-2 :

majoR6(t,cons(u,us)) = majoR6(t,us)

if lpoR6(t,u) = G

majoR6-3 :

majoR6(t,cons(u,us)) = N

if lpoR6(t,u) = E

majoR6-4 :

majoR6(t,cons(u,us)) = N

if lpoR6(t,u) = N

alphaR6-1 :

alphaR6(nil,u) = N

alphaR6-2 :

alphaR6(cons(t,ts),u) = G

if lpoR6(t,u) = E

alphaR6-3 :

alphaR6(cons(t,ts),u) = G

if lpoR6(t,u) = G

alphaR6-4 :

alphaR6(cons(t,ts),u) = alphaR6(ts,u)

if lpoR6(t,u) = N

lpoR6-1 :

lpoR6(V(x),V(y)) = E

if x = y

lpoR6-2 :

lpoR6(V(x),V(y)) = N

if x =/= y

lpoR6-3 :

lpoR6(F(f,ts),V(y)) = G

if contains_tl(ts,y) = true

lpoR6-4 :

lpoR6(F(f,ts),V(y)) = N

if contains_tl(ts,y) =/= true,

def contains_tl(ts,y)

lpoR6-5 :

lpoR6(V(x),F(g,us)) = N

lpoR6-6 :

lpoR6(F(f,ts),F(g,us)) = majoR6(F(f,ts),us)

if prec(f,g) = true
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lpoR6-7 :

lpoR6(F(f,ts),F(g,us)) = lexMAE6(F(f,ts),F(g,us),ts,us)

if f = g,

prec(f,g) =/= true,

def prec(f,g)

lpoR6-8 :

lpoR6(F(f,ts),F(g,us)) = alphaR6(ts,F(g,us))

if prec(f,g) =/= true,

f =/= g,

def prec(f,g)

.

call analyze-operator lpoR6 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator alphaR6 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator majoR6 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

call analyze-operator lexMAE6 :auto-insert-axioms-p FALSE ..

:speculate-domain-lemma-p FALSE

assume

{ def lpoR6(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpoR6-def-manuell

assume

{ def alphaR6(ts,t),

Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR6-def-manuell

assume

{ def majoR6(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

majoR6-def-manuell

assume

{ def lexMAE6(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE6-def-manuell

assume

{ lpoR6(t,u) = E,

lpoR6(t,u) = G,

lpoR6(t,u) = N,

Well(t) =/= true,

Well(u) =/= true }

lpoR6-welldefined

assume

{ alphaR6(ts,t) = G,

alphaR6(ts,t) = N,
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Well_tl(ts) =/= true,

Well(t) =/= true }

alphaR6-welldefined

assume

{ majoR6(t,us) = G,

majoR6(t,us) = N,

Well(t) =/= true,

Well_tl(us) =/= true }

majoR6-welldefined

assume

{ lexMAE6(F(f,vs),F(g,ws),ts,us) = E,

lexMAE6(F(f,vs),F(g,ws),ts,us) = G,

lexMAE6(F(f,vs),F(g,ws),ts,us) = N,

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE6-welldefined

set weight (t,u,t) lpoR6-def-manuell

set weight (ts,t) alphaR6-def-manuell

set weight (t,us) majoR6-def-manuell

set weight (F(f,vs),F(g,ws),ts) lexMAE6-def-manuell

set weight (t,u,t) lpoR6-welldefined

set weight (ts,t) alphaR6-welldefined

set weight (t,us) majoR6-welldefined

set weight (F(f,vs),F(g,ws),ts) lexMAE6-welldefined

call operators-strategy { 1 } { [1] } :ind-lemmas { alphaR6-def-manuell

majoR6-def-manuell lexMAE6-def-manuell } lpoR6-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR6-def-manuell

alphaR6-def-manuell lpoR6-welldefined } alphaR6-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR6-def-manuell

majoR6-def-manuell lpoR6-welldefined } majoR6-def-manuell

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 } { [1] } :ind-lemmas { lpoR6-def-manuell

majoR6-def-manuell alphaR6-def-manuell lexMAE6-def-manuell

lpoR6-welldefined } lexMAE6-def-manuell

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 2 3 } { [1] [1] [1] } :ind-lemmas { alphaR6-def-manuell

majoR6-def-manuell lexMAE6-def-manuell majoR6-welldefined

lexMAE6-welldefined alphaR6-welldefined} lpoR6-welldefined

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { lpoR6-def-manuell

lpoR6-welldefined alphaR6-welldefined} alphaR6-welldefined

call operators-strategy { 1 2 } { [1] [1] } :ind-lemmas { lpoR6-def-manuell

lpoR6-welldefined majoR6-welldefined} majoR6-welldefined

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 2 3 } { [1] [1] [1] } :ind-lemmas { lpoR6-def-manuell

majoR6-def-manuell alphaR6-def-manuell lexMAE6-def-manuell

lpoR6-welldefined lexMAE6-welldefined majoR6-welldefined

alphaR6-welldefined} lexMAE6-welldefined

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call activate-lemmas { lpoR6-def-manuell alphaR6-def-manuell majoR6-def-manuell
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lexMAE6-def-manuell }

assume

{ lpoR6(t,u) = lpoR5(t,u),

Well(t) =/= true,

Well(u) =/= true }

lpoR6-lpoR5

assume

{ alphaR6(ts,u) = alphaR5(ts,u),

Well_tl(ts) =/= true,

Well(u) =/= true }

alphaR6-alphaR5

assume

{ majoR6(t,us) = majoR5(t,us),

Well_tl(us) =/= true,

Well(t) =/= true }

majoR6-majoR5

assume

{ lexMAE6(F(f,vs),F(g,ws),ts,us) = lexMAE5(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

lexMAE6-lexMAE5

set weight (t,u,t) lpoR6-lpoR5

set weight (ts,u) alphaR6-alphaR5

set weight (t,us) majoR6-majoR5

set weight (F(f,vs),F(g,ws),ts) lexMAE6-lexMAE5

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR6-lpoR5

alphaR6-alphaR5 majoR6-majoR5 lexMAE6-lexMAE5 } ..

:allow-simplification-before-induction-p FALSE lpoR6-lpoR5

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR6-lpoR5

alphaR6-alphaR5 majoR6-majoR5 lexMAE6-lexMAE5 } ..

:allow-simplification-before-induction-p FALSE alphaR6-alphaR5

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR6-lpoR5

alphaR6-alphaR5 majoR6-majoR5 lexMAE6-lexMAE5 } ..

:allow-simplification-before-induction-p FALSE majoR6-majoR5

call activate-lemmas { F-sublist-ind subterm_tl-ind }

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { lpoR6-lpoR5

alphaR6-alphaR5 majoR6-majoR5 lexMAE6-lexMAE5 } ..

:allow-simplification-before-induction-p FALSE lexMAE6-lexMAE5

call deactivate-lemmas { F-sublist-ind subterm_tl-ind }

call activate-lemma lpoR6-lpoR5 :obl-litnbs-list { }

call activate-lemma alphaR6-alphaR5 :obl-litnbs-list { }

call activate-lemma majoR6-majoR5 :obl-litnbs-list { }

call activate-lemma lexMAE6-lexMAE5 :obl-litnbs-list { }
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A.15 clpo4

declare operators

clpo4 : Term Term --> Res

.

assert

clpo4-1 :

clpo4(t,u) = E

if t = u

clpo4-2 :

clpo4(t,u) = G

if t =/= u,

lpo4(t,u) = true

clpo4-3 :

clpo4(t,u) = L

if t =/= u,

def lpo4(t,u),

lpo4(t,u) =/= true,

lpo4(u,t) = true

clpo4-4 :

clpo4(t,u) = N

if t =/= u,

def lpo4(t,u),

lpo4(t,u) =/= true,

def lpo4(u,t),

lpo4(u,t) =/= true

.

call analyze-operator clpo4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def clpo4(t,u),

Well(t) =/= true,

Well(u) =/= true }

clpo4-def-manuell

call operators-strategy { 1 } { [1] } clpo4-def-manuell

call activate-lemma clpo4-def-manuell

declare operators

cMA4 : Term Termlist --> Res

.

assert

cMA4-1 :

cMA4(t,us) = G

if majo4(t,us) = true

cMA4-2 :

cMA4(t,us) = L

if def majo4(t,us),

majo4(t,us) =/= true,

alpha4(us,t) = true

cMA4-3 :

cMA4(t,us) = N

if def majo4(t,us),

majo4(t,us) =/= true,

def alpha4(us,t),

alpha4(us,t) =/= true

.

call analyze-operator cMA4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE
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assume

{ def cMA4(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

cMA4-def-manuell

call operators-strategy { 1 } { [1] } cMA4-def-manuell

call activate-lemma cMA4-def-manuell

declare operators

cLMA4 : Term Term Termlist Termlist --> Res

.

assert

cLMA4-1 :

cLMA4(t,u,ts,us) = E

if ts = us

cLMA4-2 :

cLMA4(t,u,ts,us) = G

if ts =/= us,

lexMA4(t,u,ts,us) = true

cLMA4-3 :

cLMA4(t,u,ts,us) = L

if ts =/= us,

def lexMA4(t,u,ts,us),

lexMA4(t,u,ts,us) =/= true,

lexMA4(u,t,us,ts) = true

cLMA4-4 :

cLMA4(t,u,ts,us) = N

if ts =/= us,

def lexMA4(t,u,ts,us),

lexMA4(t,u,ts,us) =/= true,

def lexMA4(u,t,us,ts),

lexMA4(u,t,us,ts) =/= true

.

call analyze-operator cLMA4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def cLMA4(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cLMA4-def-manuell

call operators-strategy { 1 } { [1] } cLMA4-def-manuell

call activate-lemma cLMA4-def-manuell

declare operators

cAA4 : Term Term Termlist Termlist --> Res

.

assert

cAA4-1 :

cAA4(t,u,ts,us) = G

if alpha4(ts,u) = true



A.15 clpo4 283

cAA4-2 :

cAA4(t,u,ts,us) = L

if def alpha4(ts,u),

alpha4(ts,u) =/= true,

alpha4(us,t) = true

cAA4-3 :

cAA4(t,u,ts,us) = N

if def alpha4(ts,u),

alpha4(ts,u) =/= true,

def alpha4(us,t),

alpha4(us,t) =/= true

.

call analyze-operator cAA4 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def cAA4(t,u,ts,us),

Well(t) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cAA4-def-manuell

call operators-strategy { 1 } { [1] } cAA4-def-manuell

call activate-lemma cAA4-def-manuell

assume

{ cMA4(t,us) = G,

cMA4(t,us) = L,

cMA4(t,us) = N,

Well(t) =/= true,

Well_tl(us) =/= true}

cMA4-welldefined

call operators-strategy { 1 2 3 } { [1] [1] [1] } cMA4-welldefined

assume

{ cAA4(t,u,ts,us) = G,

cAA4(t,u,ts,us) = L,

cAA4(t,u,ts,us) = N,

Well(t) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true}

cAA4-welldefined

call operators-strategy { 1 2 3 } { [1] [1] [1] } cAA4-welldefined

call activate-axiom clpo4-4 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 6 }

call activate-axiom clpo4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 }

call activate-axiom clpo4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }

call activate-axiom clpo4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom cMA4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 }

call activate-axiom cMA4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 }

call activate-axiom cMA4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom cLMA4-4 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 6 }

call activate-axiom cLMA4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 }

call activate-axiom cLMA4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 }

call activate-axiom cLMA4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

call activate-axiom cAA4-3 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 5 }

call activate-axiom cAA4-2 :obl-litnbs-list { } :generous-litnbs { 1 2 3 4 }
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call activate-axiom cAA4-1 :obl-litnbs-list { } :generous-litnbs { 1 2 }

A.16 clpo5

declare operators

clpo5 : Term Term --> Res

.

assert

clpo5-1 :

clpo5(t,u) = E

if lpoR5(t,u) = E

clpo5-2 :

clpo5(t,u) = G

if lpoR5(t,u) = G

clpo5-3 :

clpo5(t,u) = flip(lpoR5(u,t))

if lpoR5(t,u) = N

.

call analyze-operator clpo5 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def clpo5(t,u),

Well(t) =/= true,

Well(u) =/= true }

clpo5-def-manuell

call operators-strategy { 1 } { [1] } clpo5-def-manuell

call activate-lemma clpo5-def-manuell

assume

{ clpo5(t,u) = clpo4(t,u),

Well(t) =/= true,

Well(u) =/= true }

clpo5-clpo4

call operators-strategy { 1 1 } { [2] [1] } ..

:allow-simplification-before-induction-p FALSE clpo5-clpo4

call activate-lemma clpo5-clpo4 :obl-litnbs-list { }

call deactivate-axioms { clpo5-1 clpo5-2 clpo5-3 }

A.17 clpo6

declare operators

clpo6 : Term Term --> Res

cMA6 : Term Termlist --> Res

cLMA6 : Term Term Termlist Termlist --> Res

cAA6 : Term Term Termlist Termlist --> Res

.

assert

clpo6-1 :

clpo6(F(f,ts),V(y)) = G

if

contains_tl(ts,y) = true

clpo6-2 :
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clpo6(F(f,ts),V(y)) = N

if def contains_tl(ts,y),

contains_tl(ts,y) =/= true

clpo6-3 :

clpo6(V(x),F(g,us)) = L

if contains_tl(us,x) = true

clpo6-4 :

clpo6(V(x),F(g,us)) = N

if def contains_tl(us,x),

contains_tl(us,x) =/= true

clpo6-5 :

clpo6(V(x),V(y)) = E

if x = y

clpo6-6 :

clpo6(V(x),V(y)) = N

if x =/= y

clpo6-7 :

clpo6(F(f,ts),F(g,us)) = cLMA6(F(f,ts),F(g,us),ts,us)

if f = g

clpo6-8 :

clpo6(F(f,ts),F(g,us)) = cMA6(F(f,ts),us)

if f =/= g,

prec(f,g) = true

clpo6-9 :

clpo6(F(f,ts),F(g,us)) = flip(cMA6(F(g,us),ts))

if f =/= g,

def prec(f,g),

prec(f,g) =/= true,

prec(g,f) = true

clpo6-10 :

clpo6(F(f,ts),F(g,us)) = cAA6(F(f,ts),F(g,us),ts,us)

if f =/= g,

def prec(f,g),

prec(f,g) =/= true,

def prec(g,f),

prec(g,f) =/= true

cMA6-1 :

cMA6(t,nil) = G

cMA6-2 :

cMA6(t,cons(u,us)) = cMA6(t,us)

if clpo6(t,u) = G

cMA6-3 :

cMA6(t,cons(u,us)) = L

if clpo6(t,u) = E

cMA6-4 :

cMA6(t,cons(u,us)) = L

if clpo6(t,u) = L

cMA6-5 :

cMA6(t,cons(u,us)) = flip(alphaR6(us,t))

if clpo6(t,u) = N

cLMA6-1 :

cLMA6(t,u,nil,nil) = E

cLMA6-2 :

cLMA6(t,u,cons(ti,ts),cons(ui,us)) = cLMA6(t,u,ts,us)

if clpo6(ti,ui) = E

cLMA6-3 :
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cLMA6(t,u,cons(ti,ts),cons(ui,us)) = cMA6(t,us)

if clpo6(ti,ui) = G

cLMA6-4 :

cLMA6(t,u,cons(ti,ts),cons(ui,us)) = flip(cMA6(u,ts))

if clpo6(ti,ui) = L

cLMA6-5 :

cLMA6(t,u,cons(ti,ts),cons(ui,us)) = cAA6(t,u,ts,us)

if clpo6(ti,ui) = N

cAA6-1 :

cAA6(t,u,ts,us) = G

if alphaR6(ts,u) = G

cAA6-2 :

cAA6(t,u,ts,us) = flip(alphaR6(us,t))

if alphaR6(ts,u) = N

.

call analyze-operator clpo6 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator cMA6 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator cLMA6 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

call analyze-operator cAA6 :auto-insert-axioms-p FALSE :speculate-domain-lemma-p FALSE

assume

{ def clpo6(t,u),

Well(t) =/= true,

Well(u) =/= true }

clpo6-def-manuell

assume

{ def cMA6(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

cMA6-def-manuell

assume

{ def cLMA6(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cLMA6-def-manuell

assume

{ def cAA6(t,u,ts,us),

Well(t) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cAA6-def-manuell

assume

{ cMA6(t,us) = G,

cMA6(t,us) = L,

cMA6(t,us) = N,

Well(t) =/= true,

Well_tl(us) =/= true}

cMA6-welldefined

assume
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{ cAA6(t,u,ts,us) = G,

cAA6(t,u,ts,us) = L,

cAA6(t,u,ts,us) = N,

Well(t) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true}

cAA6-welldefined

set weight (+(term-size(t),term-size(u)),term-size(t)) clpo6-def-manuell

set weight (+(term-size(t),term-size_tl(us))) cMA6-def-manuell

set weight (+(term-size(F(f,vs)),term-size(F(g,ws))),term-size_tl(ts)) cLMA6-def-manuell

set weight (+(term-size(t),term-size_tl(us))) cMA6-welldefined

call operators-strategy { 1 } { [1] } cAA6-def-manuell

call activate-lemma cAA6-def-manuell

call operators-strategy { 1 2 3 } { [1] [1] [1] } cAA6-welldefined

call operators-strategy { 1 } { [1] } :ind-lemmas { cMA6-def-manuell

cLMA6-def-manuell } clpo6-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { clpo6-def-manuell

cMA6-def-manuell } cMA6-def-manuell

call operators-strategy { 1 } { [1] } :ind-lemmas { clpo6-def-manuell

cMA6-def-manuell cLMA6-def-manuell cMA6-welldefined } cLMA6-def-manuell

call operators-strategy { 1 2 3 } { [1] [1] [1] } :ind-lemmas { clpo6-def-manuell

cMA6-welldefined } cMA6-welldefined

call activate-lemmas { clpo6-def-manuell cMA6-def-manuell cLMA6-def-manuell }

assume

{ clpo6(t,u) = clpo4(t,u),

Well(t) =/= true,

Well(u) =/= true }

clpo6-clpo4

assume

{ cMA6(t,us) = cMA4(t,us),

Well(t) =/= true,

Well_tl(us) =/= true }

cMA6-cMA4

assume

{ cLMA6(F(f,vs),F(g,ws),ts,us) = cLMA4(F(f,vs),F(g,ws),ts,us),

sublist(ts,vs) =/= true,

sublist(us,ws) =/= true,

arity(f) =/= length(vs),

arity(g) =/= length(ws),

length(ts) =/= length(us),

Well_tl(vs) =/= true,

Well_tl(ws) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cLMA6-cLMA4

assume

{ cAA6(t,u,ts,us) = cAA4(t,u,ts,us),

Well(t) =/= true,

Well(u) =/= true,

Well_tl(ts) =/= true,

Well_tl(us) =/= true }

cAA6-cAA4

set weight (+(term-size(t),term-size(u)),term-size(t)) clpo6-clpo4

set weight (+(term-size(t),term-size_tl(us))) cMA6-cMA4
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set weight (+(term-size(F(f,vs)),term-size(F(g,ws))),term-size_tl(ts)) cLMA6-cLMA4

call operators-strategy { 1 1 } { [2] [1] } ..

:allow-simplification-before-induction-p FALSE cAA6-cAA4

call activate-lemma cAA6-cAA4 :obl-litnbs-list { }

call activate-lemma Lpo-irrefl-trans

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { cMA6-cMA4

cLMA6-cLMA4 } :allow-simplification-before-induction-p FALSE clpo6-clpo4

call activate-lemma Lpo-irrefl-trans :head-litnbs { 1 } :obl-litnbs-list { { 2 } }

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { clpo6-clpo4

cMA6-cMA4 } :allow-simplification-before-induction-p FALSE cMA6-cMA4

call deactivate-axioms { Beta-1 Beta-2 Gamma-1 Gamma-2 Gamma-3 }

call operators-strategy { 1 1 } { [2] [1] } :ind-lemmas { clpo6-clpo4

cMA6-cMA4 cLMA6-cLMA4 } :allow-simplification-before-induction-p FALSE ..

:rule-type-order { IND LMA AX } cLMA6-cLMA4

call activate-axioms { Beta-2 Beta-1 Gamma-3 Gamma-2 Gamma-1 }

call activate-lemma clpo6-clpo4 :obl-litnbs-list { }

call activate-lemma cMA6-cMA4 :obl-litnbs-list { }

call activate-lemma cLMA6-cLMA4 :obl-litnbs-list { }
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burg, Arnoldstr. 49, D–27763 Hamburg, 1997. ISBN 3-86064-551-X, http://
www.ags.uni-sb.de/~cp/p/diss/welcome.html.

[Wir04] C.-P. Wirth. Descente infinie + Deduction. Logic Journal of the IGPL,
12(1):1–96, 2004. http://www.ags.uni-sb.de/~cp/p/d/welcome.html.

[Wir05a] C.-P. Wirth. Consistency of Recursive Definitions via Shallow Confluence of
Non-Terminating Non-Orthogonal Conditional Term Rewriting Systems with
any kind of Extra Variables. SEKI-Report SR–2005–02 (ISSN 1437–4447).
SEKI Publications, Saarland Univ., 2005. http://www.ags.uni-sb.de/~cp/
p/shallow/welcome.html.

[Wir05b] C.-P. Wirth. History and future of implicit and inductionless induction: Be-
ware the old jade and the zombie! In Mechanizing Mathematical Reasoning:
Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birth-
day, number 2605 in LNAI, pages 192–203. Springer, 2005. http://www.ags.
uni-sb.de/~cp/p/zombie/welcome.html.

[Zha95] H. Zhang. Contextual rewriting in automated reasoning. Fundam. Inform.,
24(1/2):107–123, 1995.

[ZKK88] H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction
principle for equational specifications. In E. L. Lusk and R. A. Overbeek,
editors, CADE, volume 310 of LNCS, pages 162–181. Springer, 1988.

[ZM02] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers.
In Voronkov [Vor02], pages 295–313.

http://www.ags.uni-sb.de/~cp/p/diss/welcome.html
http://www.ags.uni-sb.de/~cp/p/diss/welcome.html
http://www.ags.uni-sb.de/~cp/p/d/welcome.html
http://www.ags.uni-sb.de/~cp/p/shallow/welcome.html
http://www.ags.uni-sb.de/~cp/p/shallow/welcome.html
http://www.ags.uni-sb.de/~cp/p/zombie/welcome.html
http://www.ags.uni-sb.de/~cp/p/zombie/welcome.html


Index

∗c, see operations on polynomials
∗m, see operations on polynomials
∗p, see operations on polynomials
+, see operations on sets and multisets
+c, see operations on polynomials
+p, see operations on polynomials
−, see operations on sets and multisets
−p, see operations on polynomials
<, see order
A∗, see finite sequence
Γ[−]m, 20
∩, see operations on sets and multisets
∪, see operations on sets and multisets
〈Γ;w〉, see goal
↓, see joinability relation
λ =lit λ

′, 21
≤A, see semantical order ≤A

., see (quasi-)order

.lex, see lexicographic order
≪, see multiset extension
≤prefix, see prefix relation
−→, see rewrite relation
−→R, see rewrite relation −→R

←→, see symmetric closure
+−→, see transitive closure
∗−→, see reflexive-transitive closure

∆, 13
λ, see conjugate of a literal
l = r ⇐ ∆, see conditional equation
t = u, see equality atom
w1 < w2, see order atom
u =̇ v, 15
u ˙6= v, 15
←−, see reverse relation
⊆, see operations on sets and multisets
|p|, see depth of a position
|t|, see length of a term
|t|x, see occurrences of a variable in a term

⊎, see operations on sets and multisets
t ≻ST u, see subterm order
t/p, see subterm at a position
t[u]p, see replacement of a subterm
m ≤ n, see inequality atom

A, see universe
ACs , 15
A, see Σ-algebra
A-counterexample, 18
activated lemmas, 53
adaptable inference system, 114
∼ with cut-off part, 114

adaptI (I,G), 114
adaptI-src(I), 114
addend of a polynomial, 70
admissible specification, 14
algorithm

apply-phase(p, G,G), 55
calc-contrib(G), 155
norm(λ, i), 77
norm1 (λ), 74
norm2 (λ), 76
norm2aux ((Γ;λ)), 77
norm3 (λ), 77
poly(t), 71
reuse-proof(G,G′), 159
reuse-phase(G, REF G), 161
simple-waterfall-with-reuse(G, phases),

161
simple-waterfall(G, phases), 55

alien function symbol, 61
α, see arity of a function symbol
analyzed operators, 53
applicability
∼ condition, 18
∼ subgoal, 129

applicative inference rule, 18
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arity of a function symbol, 8
atom, 12

Σ-algebra satisfies ∼, 16
definedness ∼, 12
equality ∼, 12
inequality ∼, 69
order ∼, 12

augmentation, 62, 64, 94
automatic inductive case split, 54

base specification spec0, 68
binary literal over sort Nat, 69

C, see constructor
C-front, 21
case analysis resulting from literals, 21
case study

Lpo, 145
Lpo (A), 166
exp-exhelp, 97
f91, 97
gcd, 97
mjrty, 166
sortalgos, 97
sqrt (E), 145
sqrt (H), 97

clause, 12
a ∼ contains a ∼, 21
a literal occurs in a ∼, 21
inductively valid ∼, 16
valid ∼, 16

closed proof attempt, 20, 117
closure

reflexive-transitive ∼, 10
symmetric ∼, 10
transitive ∼, 10

coefficient of a polynomial, 70
combination of decision procedures, 61
complementary critical pair, 15
composition of substitutions, 10
conclusion, 17
condition
∼ literal, 29
∼ subgoal, 29
definedness ∼, 21

conditional
∼ equation, 13
∼ lemma, 29

∼ rewrite rule, 13
confluent rewrite relation, 10
conjugate of a literal, 12
constant, 8
∼ of a polynomial, 70

constructor, 12
∼ substitution, 12
∼ variable, 12
free ∼s, 13

constructor-consistent extension, 17
contains, 21

a clause ∼ a clause, 21
context, 113
∼ literal, 29

context(I), see context
contrib(G), 155
contribI (G), 155
contributing
∼ element, 118

(essentially) ∼, 158
∼ proof step, 118

(essentially) ∼, 158
cover set
∼ method, 47
∼ of substitutions, 21

critical pair, 15
complementary ∼, 15

cut-off
∼ literal, 30
∼ part, 114

cut-off(I), see cut-off part

D, see defined function symbol
data model, 16

standard ∼, 16
debug mode, 55
decision procedure, 61

combination of ∼s, 61
integration of ∼s into theorem provers,

61
def t, see definedness atom
DefCond(µ,Γ), see definedness condition
DefCondLA(λ), see definedness condition

w.r.t. linear arithmetic
DefCondLA(t), see definedness condition

w.r.t. linear arithmetic
defined function symbol, 12
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definedness
∼ atom, 12
∼ condition, 21
∼ condition w.r.t. linear arithmetic, 72
∼ subgoal, 29

defining rule, 13
deletion property

order fulfills the ∼, 173
depth of a position, 9
derived inference rule, 79
descente infinie, 48
difference, see operations on sets and mul-

tisets
directly
∼ applicable lemma, 30
∼ fulfilled literal, 29

DMod(spec), see data model
domain lemma, 12

effectively quasi-normal rewrite system, 15
efficient relief test, 123
empty position, 9
ε, see empty position
equality atom, 12
equation

conditional ∼, 13
(essentially) contributing
∼ element, 158
∼ proof step, 158

evalA(t), 10
evalAϕ (w), 15

evalAϕ (t), 10
explicit induction, 47
extended theory, 62
extensive relief test, 123
extra variable, 95, 143

F , see function (symbol)
FA, see function
factor of a product, 70
finite sequence, 11
focus literal, 29
forbidden marking, 136
free constructors, 13
function, 10
function (symbol), 8

alien ∼, 61

arity of a ∼, 8
constructor, 12
defined ∼, 12
uninterpreted ∼, 61

G, see goal
general
∼ term, 139
∼ variable, 12

generous marking, 141
goal, 17
∼ node, 19

open ∼, 20
root ∼, 19

parent ∼, 112
proved ∼, 117
reusable ∼, 149

ground term, 8

head literal, 29
heaviest term, 65

I, see inference rule
inductionless induction, 46
inductive
∼ case split

automatic ∼, 54
manual ∼, 54
semi-automatic ∼, 54
∼ substitution, 12

inductively valid clause, 16
inequality atom, 69
inference
∼ machine kernel, 40
∼ node, 19
∼ rule, 112
∼ in QuodLibet, 18
appl-lit-removal, 32
compl-lit, 21
const-rewrite, 26
ctr-var-add, 27
def-decomp, 24
=-decomp, 22
=-removal, 24
la-const-rewrite, 91
la-norm, 80
la-term-norm, 81
lemma-rewrite, 29
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lemma-subs, 30
≤-case-split, 86
≤-removal, 82
≤-subs-removal, 83
≤-taut, 82
≤-var-elim, 84
<-decomp, 24
<-mono, 27
<-removal, 24
<-taut, 22
<-trans, 27
lit-add, 28
mult-lit, 24
¬def-removal, 26
6=-removal, 24
6=-taut, 22
6=-unif, 27
6=-var-elim, 91
subst-add, 28
tuple-=-reduct, 27
tuple-<-reduct, 27
applicative ∼, 18
derived ∼, 79
non-applicative ∼, 18
safe ∼, 19
sound ∼, 18
unsafe ∼, 124
∼ system, 112
∼ defined with principal part and con-

text, 113
adaptable ∼, 114
adaptable ∼ with cut-off part, 114

inherits
element ∼ to an element, 118

integration of decision procedures into the-
orem provers, 61

intersection, see operations on sets and mul-
tisets

invariant (I), 70
IS, see inference system

joinability relation, 10

lazy induction, 48
left-linear rewrite system, 15
lemma

conditional ∼, 29
directly applicable ∼, 30

domain ∼, 12
permutative ∼, 143
strengthened ∼, 166

length of a term, 8
lexicographic
∼ order, 11
∼ path order LPO, 173

linear
∼ arithmetic, 63
∼ data base, 64
pure ∼, 84
∼ rule, 64
∼ term, 9

linearization hypothesis, 76
literal, 12

a ∼ occurs in a clause, 21
binary ∼ over sort Nat, 69
case analysis resulting from ∼s, 21
condition ∼, 29
conjugate of a ∼, 12
context ∼, 29
cut-off ∼, 30
directly fulfilled ∼, 29
focus ∼, 29
head ∼, 29
normalized binary ∼ over sort Nat, 74
type of a ∼, 58

locally contributing proof step, 128
LPO, see lexicographic path order LPO

M(spec), see standard data model
mandatory marking, 129

relaxed ∼, 130
strict ∼, 129

manual inductive case split, 54
marking

forbidden ∼, 136
generous ∼, 141
mandatory ∼, 129

relaxed ∼, 130
strict ∼, 129

obligatory ∼, 139
match, 10
mgu(u, v), see most general unifier
MinNonCPos(t), see minimal non-constructor

positions



300 INDEX

MinDefPosLA(t), see minimal definedness
positions w.r.t. linear arithmetic

MinDifPos(t1, t2, d), see minimal difference
positions

minimal
∼ definedness positions w.r.t. linear arith-

metic, 72
∼ difference positions, 21
∼ non-constructor positions, 21
∼ position, 9

model
data ∼, 16

standard ∼, 16
monotonic
∼ order, 173
∼ semantics, 17

most general unifier, 10
multiplicand of a polynomial, 70
multiset, 11
∼ extension, 11

nbSGs(I), see number of new subgoals
new element in subgoal, 118
node

goal ∼, 19
root ∼, 19

inference ∼, 19
non-applicative inference rule, 18
non-contributing
∼ element, 158
∼ proof step, 158

non-side(I, i, G), 113
normal form, 69
normalized binary literal over sort Nat, 74
nside-src(I, i, SG), 113
number of new subgoals, 112

obligatory marking, 139
occurrences of a variable in a term, 9
occurs

a literal ∼ in a clause, 21
online procedure, 61
open goal node, 20
operation, 57
∼ table, 58
∼s on polynomials
∗c, 71
∗m, 71

∗p, 71
+c, 71
+p, 71
−p, 71
∼s on sets and multisets

difference −, 11
intersection ∩, 11
partition relation ⊎, 11
subset relation ⊆, 11
sum +, 11
union ∪, 11

operator, see function (symbol)
∼ unfolding, 144

order, see (quasi-)order
∼ atom, 12
∼ fulfills the deletion property, 173
∼ subgoal, 32
lexicographic ∼, 11
lexicographic path ∼, 173
monotonic ∼, 173
multiset extension, 11
simplification ∼, 173
subterm ∼, 173

parent goal, 112
partition relation, see operations on sets

and multisets
permutative lemma, 143
PG(I), see parent goal
phase, 55
∼ table, 58
cross-fertilize, 60, 96
def1, 95
def2, 95
la-add-multiplicand, 96
la-norm1, 95
la-norm2, 95
la-norm3, 96
la-term-norm, 96
la-var-elim1, 96
la-var-elim2, 96
la-var-elim3, 96
prove-taut, 60, 95
reduce1-nonaltrep, 95
reduce1, 60, 96
reduce2, 60, 96
remove-redundant, 60, 95
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subsume-left-leq, 96
subsume-negeq, 96
subsume-right-leq, 96

ϕ, see valuation
polynomial, 70

addend of a ∼, 70
coefficient of a ∼, 70
constant of a ∼, 70
multiplicand of a ∼, 70

Pos(t), see positions of a term
position
∼s of a term, 9
depth of a ∼, 9
empty ∼, 9
minimal ∼, 9
minimal definedness∼s w.r.t. linear arith-

metic, 72
minimal difference ∼s, 21
minimal non-constructor ∼s, 21
prefix of a ∼, 9
subterm at a ∼, 9

PIA, see Presburger integer arithmetic
PNA, see Presburger natural arithmetic
PRA, see Presburger rational arithmetic
precedence, 33
prefix
∼ of a position, 9
∼ relation, 9

prefix(p, d), see prefix of a position
premise, 17
Presburger
∼ integer arithmetic PIA, 63
∼ natural arithmetic PNA, 63
∼ rational arithmetic PRA, 63

princ(I), see principal part
principal part, 113
product, 70

factor of a ∼, 70
proof, 20, 117
∼ attempt, 20

closed ∼, 20, 117
∼ by consistency, 46
∼ log, 172
∼ script, 172
∼ state
∼ graph, 19
∼ tree, 19

∼ step, 118
(essentially) contributing ∼, 158
contributing ∼, 118
locally contributing ∼, 128

pruned ∼, 149
propagated-goal(), 160
propagate-proof-p(G), 160
property (RP), 149
proved goal, 117
pruned proof, 149
pure linear arithmetic, 84

QML, 40
data type, 42
expression, 43
function, 43
module, 42
Database, 53
Default-Settings, 54
Inductive-Case-Analyses, 53
Proof-Strategies, 53
Protected-Inference-Machine, 54
Simplification, 53

procedure, 43
routine, 43
statement, 43
tactic, 43

(quasi-)order, 11
wellfounded ∼, 11

QuodLibet, 7

R, see rewrite system R
recursive strategy, 54
reductive, 17
reflexive-transitive closure, 10
relation

joinability ∼, 10
reverse ∼, 10
rewrite ∼, 10
rewrite ∼ −→R, 14

relaxed mandatory marking, 130
relief test, 123

efficient ∼, 123
extensive ∼, 123

replacement of a subterm, 10
reusable goal, 149
reusable-goal(), 160
reusable-proof-p(G), 160
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reuse
sideward ∼, 160
upward propagation, 160

reverse relation, 10
rewrite
∼ relation, 10

confluent ∼, 10
terminating ∼, 10
∼ relation −→R, 14
∼ rule, 64

conditional ∼, 13
∼ subgoal, 29
∼ system
∼ R, 13
effectively quasi-normal ∼, 15
left-linear ∼, 15

root goal node, 19
rule

linear ∼, see linear rule
rewrite ∼, see rewrite rule

S, see sort
safe inference rule, 19
satisfies

Σ-algebra ∼ atom, 16
selectAG(I, I ′, SG), 114
selectCG(G), 156
semantical order ≤A, 15
semi-automatic inductive case split, 54
sensible, 12
sequence

finite ∼, 11
sequent calculus, 17
SGi(I), 112
SGs(I), 112
side(I, i), 113
sideward reuse, 160
Σ, see signature
Σ-algebra, 10
∼ satisfies atom, 16

Σ-model, 16
signature, 8
simplification order, 173
sort, 8
sound inference rule, 18
spec0, see base specification spec0

specification, 13

admissible ∼, 14
base ∼ spec0, 68

standard data model, 16
strategy, 54

recursive ∼, 54
strengthened lemma, 166
strict mandatory marking, 129
subgoal

(new) ∼s, 112
number of ∼, 112

applicability ∼, 129
condition ∼, 29
definedness ∼, 29
new element in ∼, 118
order ∼, 32
rewrite ∼, 29
well-coveredness ∼, 138

subset relation, see operations on sets and
multisets

substitution, 10
composition of ∼s, 10
constructor ∼, 12
cover set of ∼s, 21
inductive ∼, 12

subterm, 9
∼ at a position, 9
∼ order, 173
replacement of a ∼, 10

sum, see operations on sets and multisets
symbol

function ∼, see function (symbol)
top-level ∼, 9
variable ∼, see variable (symbol)

symmetric closure, 10

tA, see evalA(t)
Term(F ), see ground term
Term(F, V ), see term
term, 8
∼ heaviest, 65
general ∼, 139
ground ∼, 8
length of a ∼, 8
linear ∼, 9
occurrences of a variable in a ∼, 9
position of a ∼, 9
subterm of a ∼, 9
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wellformed ∼, 8
terminating rewrite relation, 10
top(t), see top-level symbol
top-level symbol, 9
transitive closure, 10
type of a literal, 58

unifier, 10
most general ∼, 10

uninterpreted function symbol, 61
union, see operations on sets and multisets
universe, 10
unsafe inference rule, 124
upward propagation, 160

V , see variable (symbol)
V (t), 8
V C , see constructor variable
V G, see general variable
valid clause, 16
valuation, 10
variable
∼ abstraction step, 61
∼ elimination step, 62

variable (symbol), 8
∼s of a term, 8
constructor ∼, 12
extra ∼, 95, 143
general ∼, 12
occurrences of a ∼ in a term, 9

virtual argument, 191

w, see weight
waterfall, 55
weight, 12
∼ modifier, 54

well-coveredness subgoal, 138
wellformed term, 8
wellfounded (quasi-)order, 11

XQL, 40
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