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Abstract

Linear and integer programs are considered whose coefficient matrices can be partitioned
into K consecutive ones matrices. Mimicking the special case of K = 1 which is well-known
to be equivalent to a network flow problem we show that these programs can be transformed
to a generalized network flow problem which we call semi-simultaneous (se-sim) network flow
problem.

Feasibility conditions for se-sim flows are established and methods for finding initial
feasible se-sim flows are derived. Optimal se-sim flows are characterized by a generalization
of the negative cycle theorem for the minimum cost flow problem. The issue of improving
a given flow is addressed both from a theoretical and practical point of view. The paper
concludes with a summary and some suggestions for possible future work in this area.
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1 Introduction

It is well known that efficient computer codes solving a linear program (LP)

minimize cTx subject to x ∈ {x ∈ Rn : Ax = b, x ≥ 0} (1)

defined by an integer matrix A ∈ Zm×n and two integer vectors b ∈ Zm and c ∈ Zn rely on
the detection of hidden structures in the matrix A. If such a hidden structure is detected,
combinatorial algorithms can be used to speed up any general purpose LP algorithm.

If A is, for instance, the (node-arc) incidence matrix of a digraph, then the resulting special
instance of LP is a network flow problem, which can be solved with strongly polynomial algo-
rithms (see, e.g., Ahuja et al. (1993), Bazaraa et al. (2005) or Hamacher and Klamroth (2006)).
The validity of these algorithms also establishes the integrality property, i.e., the fact that such
LPs always have an integer optimal solution. Hence, the resulting integer program (IP)

minimize cTx subject to x ∈ {x ∈ Rn : Ax = b, x ≥ 0} ∩ Zn (2)

is also solvable in polynomial time.
If parts of A are incidence matrices, this information is used to improve the computation

and updating of basis solutions, and, thus, to speed up LP codes. Obviously, if A is itself not
an incidence matrix, the integrality property does in general no longer hold.

An extension of node-arc matrices - and thus an example of a hidden structure - is a coef-
ficient matrix which is binary and has the consecutive ones property (C1), i.e., in each row (or
column) the ones occur in a single consecutive block. It is well-known (see, e.g., Nemhauser and
Wolsey (1988) or Schrijver (2003)) that the corresponding linear program can be transformed
into an equivalent network flow problem by m row subtractions. Thus, linear programs with C1
coefficient matrices are solvable in strongly polynomial time and have the integrality property.

In this paper, we consider the generalization of the preceding situation where the coefficient
matrix A consists of K > 1 C1 matrices instead of just a single one. The resulting linear
and integer programs are highly relevant, since they are of importance in various applications
including cancer radiation planning (Baatar et al. (2005), Boland et al. (2004)) or the design
of stops in public transportation (Schöbel et al. (2002), Poetranto et al. (2006)). To the best
of our knowledge, this problem has not been considered in the literature. The closest paper we
are aware of is Ruf and Schöbel (2004) where integer programs are considered with few blocks
of ones per row.

In the next section, we introduce (integer) linear programs with a coefficient matrix A
consisting of K > 1 C1 matrices (KC1, for short) and show - first via example - their relation
to so-called semi-simultaneous network flow problems. We show that KC1, which has the
integrality property for K = 1, loses this property already for K = 2. The relevance of KC1
for integer programs is emphasized by a result stating that every integer program with binary
coefficient matrix is equivalent to KC1. In Section 3, we consider semi-simultaneous flows in
more detail. We derive characterizations for feasibility, which are based on feasibility arguments
for classical network problems, and give an analog to the well-known negative cycle result as
optimality criterion. The resulting improvement procedure is investigated in the last subsection
of Section 3 and used in algorithms proposed in Section 4. In the concluding section our results
are summarized and several suggestions for further research related to simultaneous flow and
graph theory problems are given.
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2 Integer Linear Programs, Consecutive Ones Matrices, and
Semi-Simultaneous Flows

In this section, we discuss the interrelation between a given integer linear program (IP)
min{cTx : Ax = b, x ≥ 0 integer} with binary, m × n coefficient matrix A and consecutive
ones matrices. Using this interrelation, we show that the dual of the linear programming relax-
ation of IP can be formulated as a semi-simultaneous network flow problem.

Definition 1. A binary matrix is a consecutive ones (C1) matrix if the ones occur consecutively
in a single block in each row.

If we want to emphasize the fact that the ones are blocks in each row, we also call these
matrices row C1 matrices and use the notion of column C1 matrices, if the ones of the matrix
occur consecutively in a single block for each column. It is well-known (see, for instance,
Nemhauser and Wolsey (1988) or Schrijver (2003)) that IPs which have column C1 matrices as
coefficient matrices are equivalent to network flow problems and, thus, polynomially solvable.
The purpose of our paper is to discuss the extension of this relation to general binary matrices.

Definition 2. Let K ∈ N be a given positive integer, let Ak ∈ Bm×nk , k = 1, . . . ,K be C1
matrices, let b ∈ Zm

+ be a nonnegative integer vector and let ck ∈ Znk , k = 1, . . . ,K be integer
vectors. Then the K consecutive ones integer program (KC1-IP) is defined by

minimize
K∑

k=1

ckT
xk

subject to
K∑

k=1

Akxk = b,

xk ≥ 0 and integer for all k = 1, . . . ,K.

(3)

Proposition 1. Any integer program with binary coefficient matrix and integer data is equiva-
lent to KC1-IP for some K ≤ dn

2 e. The smallest K with this property can be found in polynomial
time.

Proof. Given KC1-IP, we use A = (A1 . . . AK) ∈ Bm×n, c = (c1 . . . cK) ∈ Zn and x =
(x1 . . . xK) with n =

∑K
k=1 nk to obtain the equivalent IP min{cTx : Ax = b, x ≥ 0 integer}

with binary coefficient matrix A and integer data.
Conversely, given any IP with A ∈ Bm×n, we can always find some partition A =

(A1 . . . AK) so that each Ak, k = 1 . . . , K is C1. Trivially, we can choose K = n so that
the matrix A is partitioned into its n column vectors, A = (a1 . . . an), with ak ∈ Bm being C1
for all k = 1, . . . , n. In fact, K can be chosen so that K ≤ dn

2 e, as any matrix consisting of only
two binary column vectors is necessarily C1 as well. To find the smallest K such that a binary
IP is equivalent to KC1-IP, the polynomial decomposition algorithm of Baatar et al. (2005) can
be applied. �

If K = 1, then the matrix A is itself C1 and hence totally unimodular. Therefore, we know
that 1C1-IP is solvable by linear programming relaxation. The following example, however,
shows that this property is already lost for K = 2. (Examples were independently found by
Schöbel (2004) and Engau (2005))

Example 1. Choose K = n1 = n2 = 2, m = 3, A1 =
(

0 1
1 0
1 1

)
, A2 =

(
1 1
1 1
0 1

)
, b =

(
1
1
1

)
, and

c1 = c2 = ( 1
3 ) with xT = (x1

1 x1
2 x2

1 x2
2). Then, the 2C1-IP problem

min
{

(1 3 1 3)x :
(

0 1 1 1
1 0 1 1
1 1 0 1

)
x =

(
1
1
1

)
, x ≥ 0 integer

}
(4)
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has the optimal solution x1
1 = x1

2 = x2
1 = 0, x2

2 = 1 with objective 3. Its linear programming
relaxation 2C1-LP, however, yields the improved, fractional solution x1

1 = x1
2 = x2

1 = 0.5, x2
2 = 0

with objective 2.5. Clearly, this also implies that the combined matrix A = (A1 A2) cannot be
TU, which is verified easily.

We concentrate in the following on the linear, continuous problem KC1-LP and its dual
KC1-LPD given by

max
{

bTπ : AkT
π ≤ ck for all k = 1, . . . ,K, π ∈ Rm

}
. (5)

Since the matrices Ak in (3) are row C1, the matrices AkT in (5) are column C1. Thus, after
introducing nonnegative slack variables αk ∈ Rnk

+ , we obtain the equality constraints

AkT
π + Ink

αk = ck

which now can be transformed into K systems of flow conservation constraints in K underlying
networks Gk, k = 1, . . . ,K. A solution of problem (5) thus corresponds to vectors π ∈ Rm,
α1 ∈ Rn1

+ , . . . , αK ∈ RnK
+ so that for each k = 1, . . . ,K, the pair (αk, π) establishes a feasible

flow in network Gk with π maximizing the objective bTπ. Since each such pair consists of
an individual flow αk and the common flow π that has to be chosen simultaneously for all K
networks, we call the collection of all these flows a semi-simultaneous network flow and the
associated problem the semi-simultaneous network flow problem.

Example 2. Consider the linear programming dual 2C1-LPD of Example 1 with πT =
(π1 π2 π3), α1 = (α1

1 α1
2) and α2 = (α2

1 α2
2),

max
{
π1 + π2 + π3 : ( 0 1 1

1 0 1 ) π + α1 = ( 1
3 ) , ( 1 1 0

1 1 1 ) π + α2 = ( 1
3 )

}
. (6)

To transform this problem into a semi-simultaneous network flow problem, first append an
additional zero row to the constraints, and then subtract its preceding row from all but the
first, yielding the two systems of flow conservation constraints(

0 1 1
1 −1 0

−1 0 −1

)
π +

(
1 0

−1 1
0 −1

)
α1 =

(
1
2

−3

)
and

(
1 1 0
0 0 1

−1 −1 −1

)
π +

(
1 0

−1 1
0 −1

)
α2 =

(
1
2

−3

)
. (7)

Hence, 2C1-LPD is equivalent to finding a flow (α1, α2, π) that maximizes bTπ subject to flow
conservation at each node, flow capacities α1, α2 ≥ 0 and identical partial flow π in both
networks (see Figure 1). Notice that although the values of π1, π2 and π3 are required to be
identical in both parts of the semi-simultaneous network, the corresponding edges connect, in
general, different nodes.

��
��

1
1

α1
1-��

��
2

2
α1

2-��
��

3
-3

� �π1� �π2

� �π3

? ?

6
��
��

1
1

α2
1-��

��
2

2
α2

2-��
��

3
-3

� �π1 + π2

� �π3

?

6

Figure 1: Semi-simultaneous flow corresponding to 2C1-LPD of Example 2 with common flow
π and individual flows α1 and α2.

It is easy to see that this problem has the optimal fractional solution π1 = 1.5, π2 = −0.5
and π3 = 1.5 with slack variables α1

1 = 0, α1
2 = 1, α2

1 = 0 and α2
2 = 0.5 and objective 2.5 - thus

confirming the result of Example 1.
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3 Semi-Simultaneous Network Flows

In this section, we formally define semi-simultaneous network flows as motivated in the previous
section, derive feasibility and optimality conditions, and introduce improvement flows which will
be useful in the algorithms of the subsequent section.

Definition 3. A semi-simultaneous network (se-sim network) is a collection G ={
Gk =

(
V k, Dk ∪ Ek

)
: k = 1, . . . ,K

}
of K individual networks Gk. The node sets are V k ={

vk
1 , vk

2 , . . . , vk
nk+1

}
and the arc sets are partitioned into the sets Dk =

{
ek
1, e

k
2, . . . , e

k
nk

}
={

(vk
1 , vk

2 ), (vk
2 , vk

3 ), . . . , (vk
nk

, vk
nk+1)

}
of individual arcs and Ek = {e1, e2, . . . , em} of common

arcs.

In this paper, we only consider se-sim networks related to KC1-LP. Hence, in each individual
network Gk the individual arcs ek ∈ Dk arise from the node-arc incidence matrix obtained from
the slack identity matrix. They thus form the special structure of a Hamiltonian path

vk
1

ek
1−→ vk

2

ek
2−→ · · ·

ek
nk−1−→ vk

nk

ek
nk−→ vk

nk+1. (8)

For any two nodes vk
i , vk

j ∈ V k with i < j, we define the node interval
[
vk
i , vk

j

]
={

vk
i , vk

i+1, . . . , v
k
j

}
. For each individual network Gk, we let gk, hk : Dk ∪ Ek → V k be the

tail and head functions, such that gk(ek
i ) = vk

i and hk(ek
i ) = vk

i+1 for all individual arcs ek
i ∈ Dk.

For the common arcs e ∈ Ek, we denote gk(ei) = gk
i and hk(ei) = hk

i and then observe that
by construction, gk

i precedes hk
i , or equivalently gk

i 6= hk
i and

[
gk
i , hk

i

]
6= ∅ in every network

Gk. In particular, this implies that all networks Gk are free of loops, δ+(vk
i ) ∩ δ−(vk

i ) = ∅
for all vertices vk

i ∈ V k, where δ+(vk
i ) =

(
gk

)−1 (
{vk

i }
)

=
{
e ∈ Dk ∪ Ek : gk(e) = vk

i

}
and

δ−(vk
i ) =

(
hk

)−1 (
{vk

i }
)

=
{
e ∈ Dk ∪ Ek : hk(e) = vk

i

}
are the set of arcs leaving and arriving

at node vk
i , respectively.

Definition 4. Given a se-sim network G =
{
Gk : k = 1, . . . ,K

}
, a semi-simultaneous flow

(se-sim flow) f in G is defined as a collection f =
{
fk : k = 1, . . . ,K

}
of K flows fk for the

individual networks Gk with identical flow value on all common arcs, i.e., fk1(ei) = fk2(ei) for
all i = 1, . . . ,m and k1, k2 = 1, . . . ,K. For each individual network Gk, the flow fk restricted
to single and common arcs, fk|Dk and fk|Ek , is called the individual and common network flow
associated with fk, respectively.

Given a flow fk in some individual network Gk, we often use the notation fk(ei) =
πk

i for all i = 1, . . . ,m and fk(ek
j ) = αk

j for all j ∈ 1, . . . , nk, so that a collec-
tion

{
fk = (αk, πk) : k = 1, . . . ,K

}
of K flows fk for the individual networks Gk is semi-

simultaneously feasible if and only if πk1
i = πk2

i for all i = 1, . . . ,m and k1, k2 = 1, . . . ,K.
In this case, we also write πk = π and f = (α1, α2, . . . , αK , π), and in analogy to Section 2,
we restrict the flow along individual arcs to be nonnegative, i.e., αk ≥ 0, while the flow π on
common arcs remains unrestricted.

The right-hand side vectors for the K systems of flow conservation constraints are defined by
ck : V k → Z : vk

i 7→ ck(vk
i ) = ck

i and satisfy
∑nk+1

i=1 ck(vk
i ) =

∑nk+1
i=1 ck

i = 0. Since we maximize
we refer to the objective as benefit. Each individual arc ek

i ∈ Dk has a benefit b(ek
i ) = bk

i = 0
and each common arc ei ∈ Ek a nonnegative benefit b(ei) = bi ≥ 0. Then the total benefit of a
se-sim network flow f is defined by b(f) =

∑m
i=1 b(ei)f(ei) =

∑m
i=1 biπi = bTπ.
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Definition 5. Let G =
{
Gk : k = 1, . . . ,K

}
be a given se-sim network with benefits b and flow

conservation right-hand-sides ck for each individual network Gk. Then the se-sim flow problem
(SE-SIM-FLOP) is defined as

maximize b(f) =
m∑

i=1

b(ei)f(ei) (9)

subject to∑
e∈δk

+(vk
i )

fk(e)−
∑

e∈δk
−(vk

i )

fk(e) = ck(vk
i ) i = 1, . . . , nk + 1, k = 1, . . . ,K, (9a)

fk1(ei) = fk2(ei) i = 1, . . . ,m, k1, k2 = 1, . . . ,K, (9b)

fk(ek
j ) ≥ 0 j = 1, . . . , nk, k = 1, . . . ,K. (9c)

For fixed k = 1, . . . ,K, the associated subproblem is called individual network flow problem
(IN-FLOP).

Note how each IN-FLOP can be characterized as a minimum cost flow problem by treating
the negative benefit subject to minimization. Moreover, based on the chain structure of the
underlying networks, observe that SE-SIM-FLOP can equivalently be written as

maximize bTπ (10)
subject to

αk
1 +

∑
{i:gk

i =vk
1}

πi −
∑

{i:hk
i =vk

1}

πi = ck
1, k = 1, . . . ,K, (10a)

αk
j +

∑
{i:gk

i =vk
j }

πi − αk
j−1 −

∑
{i:hk

i =vk
j }

πi = ck
j j = 2, . . . , nk, k = 1, . . . ,K, (10b)

∑
{i:gk

i =vk
nk+1}

πi − αk
nk
−

∑
{i:hk

i =vk
nk+1}

πi = ck
nk+1 k = 1, . . . ,K, (10c)

αk
j ≥ 0 j = 1, . . . nk, k = 1, . . . ,K. (10d)

Proposition 2. Any feasible se-sim network flow f =
{
fk = (αk, π) : k = 1, . . . ,K

}
for SE-

SIM-FLOP is uniquely determined by the common flow π.

Proof. The proof follows for each individual network Gk by induction on the flow values αk
i

along the individual arcs ek
i = (vk

i , vk
i+1), i = 1, . . . , nk. Let k = 1, . . . ,K be fixed and rewrite

the flow conservation constraint (10a) at node vk
1 as

αk
1 = ck

1 +
∑

{i:hk
i =vk

1}

πi −
∑

{i:gk
i =vk

1}

πi. (11)

Hence, the flow αk
1 along individual arc ek

1 is uniquely determined by the flow π and ck
1. Now

assume that for any j = 2, . . . , nk, the flow along individual arc ek
j−1 has been uniquely deter-

mined by the given common flow π. It then follows from the flow conservation constraint (10b)
at node vk

j that the individual flow αk
j along individual arc ek

j must satisfy

αk
j = ck

j + αk
j−1 +

∑
{i:hk

i =vk
j }

πi −
∑

{i:gk
i =vk

j }

πi, (12)

so the flow αk
j along individual arc ek

j is also uniquely determined by the given common flow π.
�
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Note that we also could have argued that the individual flows αk in networks Gk correspond
to the slack variables in the LPR dual and thus are uniquely determined by the dual variable
or common flow vector π.

3.1 Feasible se-sim flows

The goal of this section is to establish that the feasibility of IN-FLOP is necessary and sufficient
for the feasibility of SE-SIM-FLOP. The first part of this statement is obvious.

Proposition 3. Given a feasible se-sim flow f =
{
fk : k = 1, . . . ,K

}
for SE-SIM-FLOP, then

each of the flows fk is feasible for its associated individual network flow problems IN-FLOP.

To prove the converse we first show the following result.

Lemma 1. Let SE-SIM-FLOP be given and let k ∈ {1, . . . ,K} be fixed. For the kth IN-FLOP,
let fk = (αk, πk) be a feasible flow and let π ≤ πk. Then the flow determined by π according to
Proposition 2 is also feasible for IN-FLOP.

Intuitively, this result follows from the special chain structure in the individual networks
Gk: since the common flow along all common arcs is unrestricted, we can reduce the flow along
some common arc ei by the respective nonnegative flow difference πk −π while maintaining the
flow balance constraints by increasing the flow along the individual arcs connecting its tail and
head nodes gk

i and hk
i by the same amount. This idea is made more precise in the following

proof.

Proof. If π = πk, then nothing needs to be shown. Hence, assume that πi < πk
i for some

i = 1, . . . ,m, and first assume that l is the only such index for which πl < πk
l , i.e., πi = πk

i for
all i 6= l. Define the new flow (βk, ρ) by

βk
j =

{
αk

j + πk
l − πl if vk

j ∈ [gk
l , hk

l ),
αk

j if vk
j /∈ [gk

l , hk
l ),

(13)

and ρ = π. By feasibility of fk = (αk, πk), equations (10b) and (10d) imply that

αk
j +

∑
{i:gk

i =vk
j }

πk
i − αk

j−1 −
∑

{i:hk
i =vk

j }

πk
i = ck

j (14)

and αk
j ≥ 0 for all j = 1, . . . , nk. Since πk

l − πl > 0 by assumption, it then also follows that
βk

j ≥ 0, and hence, all that remains to show feasibility of (βk, ρ) is to verify the flow conservation
constraints (10a-c). By setting βk

0 = βk
nk+1 = 0 for j = 1 or j = nk + 1, equations (10a+c) can

be discussed as special cases of (10b),

βk
j +

∑
{i:gk

i =vk
j }

ρi − βk
j−1 −

∑
{i:hk

i =vk
j }

ρi = ck
j , (15)

and now the proof distinguishes the following four cases.

1. Case vk
j /∈ [gk

l , hk
l ]. Then vk

j−1 /∈ [gk
l , hk

l ) and hence βk
j = αk

j and βk
j−1 = αk

j−1 by (13).
Furthermore, l /∈ {i : gk

i = vk
j } and l /∈ {i : hk

i = vk
j } and thus ρi = πi = πk

i for all
i ∈ {i : gk

i = vk
j } ∪ {i : hk

i = vk
j }. Therefore

βk
j +

∑
{i:gk

i =vk
j }

ρi − βk
j−1 −

∑
{i:hk

i =vk
j }

ρi

= αk
j +

∑
{i:gk

i =vk
j }

πk
i − αk

j−1 −
∑

{i:hk
i =vk

j }

πk
i = ck

j . (15a)

7



2. Case vk
j = gk

l . Then vk
j ∈ [gk

l , hk
l ) and vk

j−1 /∈ [gk
l , hk

l ) and hence βk
j = αk

j + πk
l − πl and

βk
j−1 = αk

j−1 by (13). Furthermore, l ∈ {i : gk
i = vk

j } and l /∈ {i : hk
i = vk

j } and thus
ρi = πi = πk

i only for i ∈ {i 6= l : gk
i = vk

j } ∪ {i : hk
i = vk

j }, while ρl = πl 6= πk
l . Therefore

βk
j +

∑
{i:gk

i =vk
j }

ρi − βk
j−1 −

∑
{i:hk

i =vk
j }

ρi

=
(
αk

j + πk
l − πl

)
+

 ∑
{i6=l:gk

i =vk
j }

πk
i + πl

− αk
j−1 −

∑
{i:hk

i =vk
j }

πk
i (15b)

= αk
j +

∑
{i:gk

i =vk
j }

πk
i − αk

j−1 −
∑

{i:hk
i =vk

j }

πk
i = ck

j . (15c)

3. Case vk
j ∈ (gk

l , hk
l ). Then vk

j−1 ∈ [gk
l , hk

l ) and hence βk
j = αk

j + πk
l − πl and βk

j−1 =
αk

j−1 + πk
l − πl by (13). Furthermore, l /∈ {i : gk

i = vk
j } and l /∈ {i : hk

i = vk
j } and thus

ρi = πi = πk
i for all i ∈ {i : gk

i = vk
j } ∪ {i : hk

i = vk
j }. Therefore

βk
j +

∑
{i:gk

i =vk
j }

ρi − βk
j−1 −

∑
{i:hk

i =vk
j }

ρi

=
(
αk

j + πk
l − πl

)
+

∑
{i:gk

i =vk
j }

πk
i −

(
αk

j−1 + πk
l − πl

)
−

∑
{i:hk

i =vk
j }

πk
i (15d)

= αk
j +

∑
{i:gk

i =vk
j }

πk
i − αk

j−1 −
∑

{i:hk
i =vk

j }

πk
i = ck

j . (15e)

4. Case vk
j = hk

l . Then vk
j /∈ [gk

l , hk
l ) and vk

j−1 ∈ [gk
l , hk

l ) and hence βk
j = αk

j and βk
j−1 =

αk
j−1 + πk

l − πl by (13). Furthermore, l /∈ {i : gk
i = vk

j } and l ∈ {i : hk
i = vk

j } and thus
ρi = πi = πk

i only for i ∈ {i : gk
i = vk

j } ∪ {i 6= l : hk
i = vk

j }, while ρl = πl 6= πk
l . Therefore

βk
j +

∑
{i:gk

i =vk
j }

ρi − βk
j−1 −

∑
{i:hk

i =vk
j }

ρi

= αk
j +

∑
{i:gk

i =vk
j }

πk
i −

(
αk

j−1 + πk
l − πl

)
−

 ∑
{i6=l:hk

i =vk
j }

πk
i + πl

 (15f)

= αk
j +

∑
{i:gk

i =vk
j }

πk
i − αk

j−1 −
∑

{i:hk
i =vk

j }

πk
i = ck

j . (15g)

Note that the last equality in each of the four cases follows from (14) by feasibility of fk =
(αk, πk) for IN-FLOP.

Therefore, flow (βk, ρ) satisfies the flow conservation constraints and is, thus, feasible for
IN-FLOP. To show the lemma, we iteratively repeat this argument for all i = 1, . . . ,m with
πi < πk

i . �

Using this result, we are now able to show that individual feasibility for all IN-FLOPs is
sufficient for the feasibility of SE-SIM-FLOP.
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Proposition 4. Let SE-SIM-FLOP be given and assume that for each k = 1, . . . ,K, there
exists a feasible individual flow fk =

(
αk, πk

)
for the associated IN-FLOP. Then there exists a

feasible se-sim network flow for SE-SIM-FLOP.

Proof. Let
{
fk =

(
αk, πk

)
: k = 1, . . . ,K

}
be a collection of feasible flows for the IN-FLOPs,

and define a common flow π = π1 ∧ π2 ∧ . . . ∧ πK as the componentwise minimum among all
flows πk, i.e., πi = min

{
πk

i : k = 1, . . . ,K
}
. Clearly π ≤ πk for all k = 1, . . . ,K, and hence, by

Lemma 1, the common flow π determines feasible flows (βk, π) in all individual networks Gk.
Hence, the collection f =

{(
βk, π

)
: k = 1, . . . ,K

}
of all such flows establishes a feasible se-sim

network flow for SE-SIM-FLOP. �

By combining Propositions 3 and 4, we conclude that se-sim feasibility is equivalent to
individual feasibility for each individual network.

Theorem 1. SE-SIM-FLOP is feasible if and only if all IN-FLOPs are feasible.

3.2 Optimal se-sim flows

Since each feasible se-sim flow defines a feasible flow for each IN-FLOP, we immediately obtain
the following upper bound on the optimal objective value for SE-SIM-FLOP.

Proposition 5. Let f be any feasible flow for SE-SIM-FLOP, and let{
f̂k = (α̂k, π̂k) : k = 1, . . . ,K

}
be a collection of optimal flows for the associated IN-FLOPs.

Then b(f) ≤ min
{

b(f̂k) = bTπ̂k : k = 1, . . . ,K
}
.

It also follows that, if one IN-FLOP is bounded, then SE-SIM-FLOP must be bounded.
Furthermore, since SE-SIM-FLOP is a linear program, we can state the following sufficient
condition for the existence of an optimal flow.

Proposition 6. SE-SIM-FLOP has an optimal solution if it is feasible and if at least one
associated IN-FLOP is bounded.

The following example demonstrates, however, that the converse of Proposition 6 is, in
general, not true.

Example 3. Consider the two networks in Figure 2 with zero right hand sides for the flow
conservation constraints at all nodes and uniform benefits b1 = b2 = b3 = 1 for all common arcs.
Then every flow of the form f1 = (α1, π1) =

(
(0 0 0)T, (ρ ρ 0 − ρ)T

)
with ρ ∈ R is feasible

��
��

v1
1

-
α1

1

��
��

v1
2

-
α1

2

��
��

v1
3

-
α1

3

��
��

v1
4

� �π1 � �π2 � �π3

� �π4

? ? ?

6
��
��

v2
1

-
α2

1

��
��

v2
2

-
α2

2

��
��

v2
3

-
α2

3

��
��

v2
4

� �π1 � �π2 � �π3

� �π4

? ? ?

6

Figure 2: Illustration of Example 3 (semi-simultaneous boundedness)

for the first network and may achieve arbitrary benefit ρ. Similarly, for the second network,
every flow f2 = (α2, π2) =

(
(0 0 0)T, (0 ρ ρ − ρ)T

)
with ρ ∈ R is feasible with benefit ρ, so

that both IN-FLOPs are unbounded. However, it is easily verified that the optimal se-sim flow
is the zero flow with zero benefit.
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In order for a given flow to be optimal, we can state the following sufficient condition.

Proposition 7. Let SE-SIM-FLOP be given and let
{

f̂k =
(
α̂k, π̂k

)
: k = 1, . . . ,K

}
be a col-

lection of optimal flows for the associated IN-FLOPs. If there exists an index j = 1, . . . ,K such
that π̂j ≤ π̂k for all k = 1, . . . ,K, then π = π̂j determines an optimal se-sim network flow for
SE-SIM-FLOP.

Proof. Let π̂j ≤ π̂k for all k = 1, . . . ,K, or equivalently, π̂1 ∧ π̂2 ∧ . . . ∧ π̂K = π̂j . Since all
benefits are assumed to be nonnegative, it follows that bTπ̂j ≤ bTπ̂k, and hence b(f) ≤ bTπ̂j

for all feasible se-sim flows f by Proposition 5. As was shown in the proof of Proposition 4, the
common flow π = π̂1 ∧ π̂2 ∧ . . . ∧ π̂K = π̂j determines a feasible se-sim flow for SE-SIM-FLOP
with maximal benefit bTπ = bTπ̂j , and hence the se-sim flow determined by π = π̂j is optimal.
�

Another sufficient optimality condition is based on se-sim residual flows.

Proposition 8. Let SE-SIM-FLOP be given and let f and f̄ be two given feasible se-sim
network flows with b(f) < b(f̄). Then the difference flow f̃ = f̄ − f defines a se-sim flow
with positive residual benefit b(f̃) = b(f̄)− b(f) > 0 in the semi-simultaneous residual network
Gf =

{
Gk

f : k = 1, . . . ,K
}
, where Gk

f denotes the residual network of network Gk induced by

the flow fk.

Proof. Let f =
{
fk = (αk, π) : k = 1, . . . ,K

}
and f̄ =

{
f̄k = (ᾱk, π̄) : k = 1, . . . ,K

}
be the

given flows and let f̃ =
{

f̃k =
(
α̃k, π̃

)
: k = 1, . . . ,K

}
with f̃k = f̄k−fk = (ᾱk−αk, π̄−π). By

the assumptions of the proposition, it immediately follows that b(f̃) = b(f̄−f) = b(f̄)−b(f) > 0.
In order to verify that f̃ is a feasible flow in each individual residual network Gk

f it remains to
show that f̃ satisfies the flow conservation as given in (10a-c) with vanishing right-hand side.
Then, by setting αk

0 = αk
nk+1 = 0 for the special cases j = 1 and j = nk + 1 in (10a+c), it is

sufficient to consider (10b), so

α̃k
j +

∑
{i:gk

i =vk
j }

π̃i − α̃k
j−1 −

∑
{i:hk

i =vk
j }

π̃i (16)

= ᾱk
j − αk

j +
∑

{i:gk
i =vk

j }

(π̄i − πi)− (ᾱk
j−1 − αk

j−1)−
∑

{i:hk
i =vk

j }

(π̄i − πi) (16a)

= ᾱk
j +

∑
{i:gk

i =vk
j }

π̄i − ᾱk
j−1 −

∑
{i:hk

i =vk
j }

π̄i −

αk
j +

∑
{i:gk

i =vk
j }

πi − αk
j−1 −

∑
{i:hk

i =vk
j }

πi


(16b)

= ck
j − ck

j = 0, (16c)

where the last step follows from the fact that both f and f̄ are feasible for SE-SIM-FLOP. �

Definition 6. Let SE-SIM-FLOP be given and let f be a feasible se-sim flow. The se-sim flow
f̃ is called an improvement (flow) for f if f̃ is feasible in the se-sim residual network Gf with
positive residual benefit b(f̃) > 0.

The next result shows that improvement flows take over the role of negative cycles in the
theory of classical network flow theory.
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Theorem 2. Let SE-SIM-FLOP be given and f̂ be a feasible se-sim flow. Then f̂ is optimal if
and only if there does not exist an improvement.

Proof. If f̂ is optimal, then b(f̂) ≥ b(f) for all other flows f and thus, by definition and
Proposition 8, there cannot exist an improvement.

Conversely, for any other se-sim flow f Proposition 8 implies that the flow f̃ = f̂ − f is a
feasible se-sim flow in the residual network Gf̂ which - by the assumption of the theorem - has

a residual benefit b(f̃) = b(f̂)− b(f) = b(f̂ − f) ≥ 0. Hence, the se-sim flow f̂ is optimal. �

3.3 Improvement flows

Since the benefit of a se-sim flow is only depending on its flow along common arcs, we are
interested to know by how much this flow can be further increased.

Definition 7. Let SE-SIM-FLOP be given and let f =
{
fk = (αk, π) : k = 1, . . . ,K

}
be a given

feasible se-sim flow. Then the arc potential of common arc ei with respect to f is defined by

φi = min
{

αk
j : vk

j ∈ [gk
i , hk

i ), j = 1, . . . , nk, k = 1, . . . ,K
}

. (17)

By (10d) we know that φi ≥ 0 for all common arcs ei. If φi > 0 for some arc ei, then this
means that in each individual network Gk, all individual arcs connecting that common arc’s tail
gk
i and head hk

i have positive flow value. Then, provided ei has a positive flow benefit bi > 0,
we can improve the overall flow value by increasing the flow along arc ei while correspondingly
reducing the flows along its associated individual arcs.

Proposition 9. Let SE-SIM-FLOP be given and let f =
{
fk = (αk, π) : k = 1, . . . ,K

}
be a

feasible se-sim flow. If there exists a common arc el with associated nonzero benefit bl > 0, and
positive arc potential φl > 0, then there exists an improvement flow for f .

Proof. Given that the arc potential associated with common arc el is positive,

φl = min
{

αk
j : vk

j ∈ [gk
l , hk

l ), j = 1, . . . , nkk = 1, . . . ,K
}

> 0, (18)

let π̃i = φl for i = l and zero otherwise, so in particular π̃ ≥ 0 and bTπ̃ = blπ̃l = blφl > 0.
Now let f̃ be the se-sim flow in the residual network Gf determined by π̃. To verify that f̃ is

an improvement flow for f , we need to show that the flow f̂ =
{

f̂k = (α̂k, π̂) : k = 1, . . . ,K
}

defined by f̂ = f + f̃ is semi-simultaneously feasible. Flow conservation can easily be derived
from Proposition 8. Since f̃ is a residual se-sim flow in Gf , we can, similar to the proof of
Lemma 1, verify that

α̂k
j =

{
αk

j − φl if vk
j ∈ [gk

l , hk
l ),

αk
j if vk

j /∈ [gk
l , hk

l ),
and π̂i =

{
πi + φl if i = l,

πi if i 6= l.
(19)

Hence, it only remains to show that the flow capacities α̂k
j ≥ 0 are satisfied. First note that

α̂k
j = αk

j ≥ 0 for all vk
j /∈ [gk

l , hk
l ), since f is feasible. Further, if vk

j ∈ [gk
l , hk

l ), then αk
j is

considered in the computation of the minimum in (18), i.e., α̂k
j = αk

j − φl ≥ 0. �

Although easily detectable, a positive arc potential is sufficient, but not necessary for further
improvement.
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Example 4. Consider the individual network shown in Figure 3. The initial feasible flow
f = (α, π) =

(
(1 0 1)T, (0 0)T

)
is given on the left and has an associated benefit of b(f) =

bTπ = 1π1+2π2 = 0. Note that both arc potentials are zero, φ1 = min {α1, α2} = min{1, 0} = 0
and φ2 = min {α2, α3} = min{0, 1} = 0, and hence, there does not exist a direct improvement
for any of the common arcs. However, observe that the feasible flow indicated in the right,
f̂ = (α̂, π̂) =

(
(2 0 0)T, (−1 1)T

)
, has flow benefit of b(f̂) = bTπ̂ = 1π̂1 +2π̂2 = −1+2 = 1 and

can be found by the improvement flow f̃ = (α̃, π̃) =
(
(1 0 − 1)T, (−1 1)T

)
.

��
��
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1
-1

��
��

v2

-1
-0

��
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Figure 3: Illustration of Example 4 (flow improvement with zero arc potentials)

If all arc potentials are zero, then increasing the flow along some common arc is only possible
while simultaneously decreasing the flow along others.

Theorem 3. Let SE-SIM-FLOP be given and let f be any feasible but not optimal se-sim flow.
Then, for any ρ > 0, there exists an improvement flow f̃ =

{
f̃k = (α̃k, π̃) : k = 1, . . . ,K

}
with

π̃i ≥ −ρ for all i = 1, . . . ,m.

Proof. Let f =
{
fk = (αk, π) : k = 1, . . . ,K

}
be the given flow and let f̂ ={

f̂k = (α̂k, π̂) : k = 1, . . . ,K
}

be any other flow with b(f) < b(f̂). The difference flow

f̄ = f̂ − f by f̄ =
{
f̄k = (ᾱk, π̄) : k = 1, . . . ,K

}
=

{
(α̂k − αk, π̂ − π) : k = 1, . . . ,K

}
, is

by Proposition 8 a se-sim flow in the se-sim residual network Gf which improves f , since
b(f̄) = b(f̂ − f) = b(f̂)− b(f) > 0.

If π̄i ≥ 0 for all i = 1, . . . ,m, the theorem holds with f̃ = f̄ and π̃ = π̄. Otherwise, there
exists π̄i < 0 and p = max{−π̄i : π̄i < 0, i = 1, . . . ,m} > 0. We define the se-sim residual flow
f̃ by scaling f̄ with the scalar ρ

p , i.e., f̃ =
(

ρ
p

)
f̄ with b(f̃) = b

(
ρ
p f̄

)
=

(
ρ
p

)
b(f̄) > 0 and

π̃k
i =

(
ρ
p

)
π̄k

i

{
≥ 0 if π̄i ≥ 0,

≥ −ρ if π̄i < 0.
(20)

Hence, π̃i ≥ −ρ for all i = 1, . . . ,m. �

Theorem 3 suggests the following heuristic for detection of improvements: first, we reduce the
flow along all common arcs by some amount ρ and send this flow along the associated individual
arcs instead. Although this temporarily decreases the objective value, it also results in positive
arc potentials for all common arcs of at least ρ. Hence, based on some selection strategy, we
then may iteratively select common arcs for improvement according to Proposition 9. With each
such improvement, we also reduce the flow along the associated individual arcs and therefore,
after updating the arc potentials with each improvement, will eventually reduce all of them
back to zero. This process can be iterated and, as based merely on the repeated computation
and selection of arc potentials, accomplished very efficiently. The remaining question, however,
is which selection strategy to choose to maximize the overall benefit.

12



4 Algorithms and Examples

We start with a generic procedure for the se-sim network flow problem which can be interpreted
as generalization of cycle canceling algorithm of classical network flow theory.

Procedure 1. Solving SE-SIM-FLOP:

1. Given SE-SIM-FLOP, find a feasible se-sim flow f .
IF no feasible flow exists, STOP – the problem is infeasible.

2. Given feasible se-sim flow f , find an improvement f̃ .
IF no further improvement exists, STOP – f is optimal.

3. Update f := f + f̃ and repeat step 2.

The validity of Procedure 1 follows from the results of the previous sections. Here we discuss
some implementation details of the first two steps and give several examples.

4.1 Checking feasibility of SE-SIM-FLOP

Theorem 1 together with Proposition 3 and 4 suggests Procedure 2 for finding an initial feasible
se-sim flow.

Procedure 2. Finding a feasible se-sim flow:

1.1. Given SE-SIM-FLOP, find a feasible flow fk for each individual network Gk.
IF one of the individual problems is infeasible, STOP - SE-SIM-FLOP is infeasible.

1.2. Combine the flows fk, k ∈ [1,K] into a se-sim network flow.

A naive way to implement this generic approach is to apply standard max flow algorithms to
each of the individual networks Gk, k = 1, . . . , nk. By taking advantage of the special network
structure of SE-SIM-FLOP we can, however, solve the individual feasibility problem with a
worst case complexity of O(mnk) using Algorithm 1.

Algorithm 1 Finding a feasible flow fk = {αk, πk} in an individual network
αk

1 = ck
1

for j = 2 to nk do
αk

j = αk
j−1 + ck

j

end for
for i = 1 to m do

πk
i = min

{
αk

j : vk
j ∈

[
gk
i , hk

i

)}
for all j ∈

{
j : vk

j ∈
[
gk
i , hk

i

)}
do

αk
j = αk

j − πk
i

end for
end for

Proposition 10. Algorithm 1 is correct. In particular, if at termination

1. αk
j ≥ 0 for all j = 1, . . . , nk, then the flow fk = (αk, πk) is individually feasible;

2. αk
j < 0 for some j = 1, . . . , nk, then the individual problem is infeasible.

13



The complexity of the algorithm can be bounded by O(mnk).

Proof. To show correctness, first observe that during the first for loop, the flow αk is iteratively
assigned so that the flow conservation constraints (10a-c) are satisfied at all nodes vk

j , j =
1, . . . , nk, using flow along individual arcs only. During the second for loop, the flow πk on
common arc is assigned to guarantee αk ≥ 0. If there remains some αk

j < 0, then αk
j =∑j

i=1 ck
i < 0 by definition of αk

j in the first for loop and, together with
∑nk

i=1 ci = 0, it follows
that

∑nk
i=j+1 ck

i > 0. Moreover, from the second for loop, we see that j /∈ [gk
i , hk

i ) for all
i = 1, . . . ,m, and thus there does not exist a common arc along which the overflow into nodes{

vk
j+1, v

k
j+1, . . . , v

k
nk

}
flow could be sent back to

{
vk
1 , . . . , vk

j

}
. Therefore, if at termination

αk
j < 0 for some j = 1, . . . , nk, the problem is infeasible.

The claimed complexity bound follows from the fact that after the first for loop of order
O(nk), the algorithm performs m outer loops. In each of these loops a minimum among at
most nk values needs to be found and at most nk values need to be updated. Thus, the overall
complexity is O(nk) + O(m) (O(nk) + O(nk)) = O(mnk). �

Example 5. Consider the se-sim network given in Figure 4a, formed by K = 2 individual
networks with n1 = 4 and n2 = 5 individual arcs and m = 3 common arcs. After applying
Algorithm 1 through Figures 4b-d, we obtain the two individually feasible flows shown in Figure
4e.

If a collection f =
{
fk = (αk, πk) : k = 1, . . . ,K)

}
of K feasible individual flows has been

found by Algorithm 1, Proposition 4 suggests Algorithm 2 in order to combine these flows to a
feasible se-sim network flow.

Algorithm 2 Combining individual to a se-sim flow
for i = 1 to m do

π = min
{
πk

i : k ∈ [1,K]
}

for k = 1 to K do
for all j ∈

{
j : vk

j ∈
[
gk
i , hk

i

)}
do

αk
j = αk

j + πk
i − πi

end for
πk

i = π
end for

end for

Proposition 11. Algorithm 2 is correct and its complexity can be bounded by O(mn).

Proof. The correctness is established in the proof of Proposition 4. The complexity bound
follows from the observation that the algorithm performs m outer loops. In each of these loops
a minimum needs to be found among K values and at most

∑K
k=1 nk = n values αk

j and K

values πk
i need to be updated. Using the fact that K ≤ n and combining then yields a total

complexity of O(m) (K + O(n) + K) = O(mn). �

Example 6. Starting from Figure 4e in Example 5 with f1 = (α1, π1) =(
(2 0 0 1)T, (−1 3 0)T

)
and f2 = (α2, π2) =

(
(0 0 2 4 0)T, (2 − 1 − 1)T

)
, Algorithm 2 de-

termines the common flow π = π1 ∧ π2 = (−1 − 1 − 1)T, illustrated in Figure 5.

14



Combining Propositions 10 and 11 yields the overall complexity for finding a feasible flow
for SE-SIM-FLOP.

Theorem 4. The feasibility problem of SE-SIM-FLOP can be solved in O(mn) using Algorithms
1 and 2.

4.2 Generalization of cycle canceling algorithm

Theorem 2 suggests to successively determine improvement flows, similar to successive cycle-
canceling algorithms for solving minimum cost flow problems. The following example shows
that the detection of improvements may be easy if the situation of Proposition 9 applies.

Example 7. Starting from Figure 5 in Example 6 with feasible se-sim flow f =
(α1, α2, π) =

(
(2 4 1 2)T, (3 0 2 4 0)T, (−1 − 1 − 1)T

)
, the three arc potentials are φ1 =

min
{
α1

1, α
1
2, α

1
3, α

2
1

}
= 1, φ2 = min

{
α1

2, α
2
2, α

2
3, α

2
4

}
= 0 and φ3 = min

{
α1

3, α
1
4, α

2
3, α

2
4, α

2
5

}
= 0.

Hence, since we obtain a positive arc potential for common arc e1, the initial flow f can be
increased along this arc by φ1 = 1. Note that the new flow in Figure 6 improves the previous
one in Figure 5 if b1 > 0.

The next example illustrates that in contrast to the case of non-simultaneous network flows,
finding improvements for SE-SIM-FLOP may require the detection of multiple cycles in each
individual residual network.

Example 8. The two individual networks shown in Figure 7a are almost identical except that
common arcs e2 and e4 are swapped. In particular, both cases require that one unit of flow has
to be sent from node v2 to node v3 and from v5 to v6.

In the initial se-sim flow shown in Figure 7a, this flow is carried only along individual arcs
with a benefit of zero. It can be improved in two ways. In the first network, the flow from v1

2

to v1
3 can also be sent along common arc e1 back to node v1

1 and then along common arc e2 to
node v1

3. Similarly, the flow from v1
5 to v1

6 can also be sent along common arc e3 back to node
v1
4 and then along common arc e4 to node v1

6, both yielding a benefit of one. Alternatively,

the two positive benefit cycles v1
3

e1
2−→ v1

2
e1−→ v1

1
e2−→ v1

3 and v1
6

e1
5−→ v1

5
e3−→ v1

4
e4−→ v1

6 can be
detected in the residual of the first network, both yielding a benefit of one. Analogously, in the
second network, the flow from v2

2 to v2
3 can also be sent along common arc e1 back to node v2

1

and then along common arc e4 to node v2
3, and similarly, the flow from v2

5 to v2
6 can also be

sent along common arc e3 back to node v2
4 and then along common arc e1 to node v2

6, again
yielding an improved benefit of one, respectively. Correspondingly, the two associated cycles in

the residual network are given by v2
3

e2
2−→ v2

2
e1−→ v2

1
e4−→ v2

3 and v2
6

e2
5−→ v2

5
e3−→ v2

4
e2−→ v2

6. Note
that each of these cycles involves different common arcs, and hence that there does not exist a
se-sim improvement using only one of the two cycles in each individual network. However, by
simultaneous combination of all above cycles, a se-sim improvement can be found and improves
the flow benefit by two. The resulting flow is shown in Figure 7b.

Due to the remaining difficulty of finding multiple cycles that combine to a feasible se-sim
improvement, Theorem 3 motivates the following heuristic for finding a se-sim improvement.

Procedure 3. Finding a se-sim improvement:

3.1. Reduce the current flow f on all common arcs by some given amount ρ > 0.

3.2. Compute the arc potentials φi and choose any common arc ei with φi > 0.
IF all φi = 0, compute the benefit b(f̄) of the new flow f̄ and GOTO 3.4.
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3.3. Increase the flow along arc ei by its arc potential φi and REPEAT 3.2.

3.4. IF b(f̄) > b(f), update the best flow by setting f = f̄ and REPEAT 3.1.
ELSE STOP – the algorithm terminates with flow f as best solution found.

Algorithms 3, 4 and 5 are derived directly from equations (13) in Lemma 1 and (17) and
(19) in Proposition 9.

Algorithm 3 Flow reduction along common arcs
for i = 1 to m do

for k = 1 to K do
for all j ∈

{
j : vk

j ∈
[
gk
i , hk

i

)}
do

αk
j = αk

j + ρ
end for

end for
πi = πi − ρ

end for

Algorithm 4 Computation of arc potentials φi

for i = 1 to m do
for k = 1 to K do

φk
i = min

{
αk

j : vk
j ∈

[
gk
i , hk

i

)}
end for
φi = min

{
φk

i : k ∈ [1,K]
}

end for

Algorithm 5 Improvement of common arc ei by arc potential φi

for k = 1 to K do
for all j ∈

{
j : vk

j ∈
[
gk
i , hk

i

)}
do

αk
j = αk

j − φi

end for
end for
πi = πi + φi

Example 9. Again consider the individual network in Figure 3 from Example 4. After an
initial flow reduction of ρ = 1 on all common arcs, the new flow is given in the network on
the left in Figure 8. In particular, note that the reduction of 1 unit increases the flow along
the middle individual arc by 2. Also observe that the new benefit has decreased from 0 to
−3. The new arc potentials can be computed as φ1 = min {α1, α2} = min{2, 2} = 2 and
φ2 = min {α2, α3} = min{2, 2} = 2, and hence allow for subsequent improvement along either
of the two common arcs. In particular, by choosing the second common arc, we obtain the same
optimal flow as before in Example 4. Clearly, all arc potentials again are reduced to zero.

As pointed out earlier, the success of Procedure 3 depends significantly on which common
arcs ei are chosen for improvement. Two alternative Greedy strategies are proposed in Procedure
4.

Procedure 4. Greedy strategies for finding a se-sim improvement:
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3.2.1 Among all common arcs ei which have positive arc potential φi > 0,
choose the arc with maximum benefit value bi,

bi ≥ bj for all j = 1, . . . ,m.

3.2.1′ Among all common arcs ei which have positive arc potential φi > 0,
choose the arc with maximum improvement benefit,

bi · φi ≥ bj · φj for all j = 1, . . . ,m.

It is not difficult, however, to construct examples for which both Greedy strategies are non-
optimal. Nevertheless, based on an implementation of the above algorithms and a comparison of
the results obtained with the optimal LP solutions on several randomly generated test problems,
we found that on most small instances (K ≤ 3, m ≤ 10, nk ≤ 20) we were still able to find the
optimal solution using the procedure with Greedy selection strategies. The difference between
our non-exact solutions and the optimal solutions increased significantly with increased problem
size.

Therefore, the question if it is possible to define a simple optimal selection strategy still
remains open, although its affirmative answer is rather unlikely.

5 Conclusion

We considered linear programs whose coefficient matrices consist of K matrices with the row
consecutive ones (C1) property. While the special case of K = 1 has the integrality property
this is no longer true for K ≥ 2. On the other hand, the transformation to a network flow
problem which is well-known for K = 1 has an analog for general K by introducing semi-
simultaneous (se-sim) flows. For the latter, feasibility can be tested in polynomial time by
a reduction to a sequence of feasibility tests for classical network flows. As an analogue to
the negative cycle theorem an optimality criterion based on the notion of improvement semi-
simultaneous flows is proved. We finally showed how these results translate into algorithms
for solving semi-simultaneous flows defined by linear programs with consecutive ones coefficient
matrices.

Various additional research questions are motivated by the results of this paper.
Instead of starting with coefficient matrices which have the row C1 property, one may want

to consider binary matrices that are column consecutive ones, or - equivalently - by partitioning
a binary matrix A ∈ Bm×n into matrices that are column consecutive one, A = (A1 . . . AL)
with Al ∈ Bml×n, l = 1, . . . , L and

∑L
l=1 ml = m. The resulting LP is equivalent to

minimize
L∑

l=1

cTx

subject to Alx = bl for all l = 1, . . . , L,

x ∈ Rn
+.

(21)

and the equality constraints Alx = bl can directly be transformed into L systems of flow con-
servation constraints in L underlying networks Gl, l = 1, . . . , L. A solution of problem (21)
then corresponds to a vector x ∈ Zn

+ so that for each l = 1, . . . , L, the vector x establishes a
feasible flow in each of the networks Gl while minimizing the objective cTx. In contrast to the
semi-simultaneous flows considered in this paper, in this approach there are no individual flows.
We can therefore call x a simultaneous flow.
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Another interesting topic is to generalize the concept of se-sim flows to more general se-
sim networks. In our paper, the se-sim networks were defined by the underlying KC1 linear
program. This implies by Equation 8 that the individual arcs in each of the individual networks
have a Hamiltonian path structure. If we allow an arbitrary set of individual arcs, an interesting
question is to characterize structures which allow a duplication of the feasibility, optimality and
improvement results of Section 3.

Even more general, the topic of this paper motivates research on simultaneous graph theory
problems defined on a collection G =

{
Gk =

(
V k, Dk ∪ Ek

)
: k = 1, . . . ,K

}
of directed or undi-

rected individual graphs Gk. Feasibility and optimality characterizations of (semi-)simultaneous
shortest path, spanning tree, matching, etc. are interesting in their own right, but may also be
of practical interest in the same way as the (semi-)simultaneous network flow theory developed
in this paper.
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Figure 4a: Illustration of Example 5 (initial networks without flows)
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Figure 4b: Illustration of Example 5 (assignment of individual arc flows αk)
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Figure 4c: Illustration of Example 5 (assignment of common arc flow πk
1 )

����
v1
1

1
-

2 ����
v1
2

1
-

0 ����
v1
3

-3
-

0 ����
v1
4

2
-

1 ����
v1
5

-1

& %π1
1 = −1

� �π1
2 = 3 � �π1

3

6

? ?

����
v2
1

2
-

0 ����
v2
2

-3
-

0 ����
v2
3

1
-

1 ����
v2
4

2
-

3 ����
v2
5

-3
-

-1 ����
v2
6

1
� �π2

1 = 2

& %π2
2 = −1

� �π2
3

?

6

?

Figure 4d: Illustration of Example 5 (assignment of common arc flow πk
2 )
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Figure 4e: Illustration of Example 5 (assignment of common arc flow πk
3 )

����
v1
1

1
-

2 ����
v1
2

1
-

4 ����
v1
3

-3
-

1 ����
v1
4

2
-

2 ����
v1
5

-1

� �π1 = −1

� �π2 = −1� �π3 = −1

6

? ?

����
v2
1

2
-

3 ����
v2
2

-3
-

0 ����
v2
3

1
-

2 ����
v2
4

2
-

4 ����
v2
5

-3
-

0 ����
v2
6

1
� �π1 = −1

� �π2 = −1

� �π3 = −1

?

6

?

Figure 5: Illustration of Example 6 (se-sim network flow)
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Figure 6: Illustration of Example 7 (improvement along e1 by φ1 = 1)
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Figure 7a: Illustration of Example 8 (initial se-sim flow)
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Figure 7b: Illustration of Example 8 (improvement along multiple cycles)
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Figure 8: Illustration of Example 9 (heuristic approach for finding improvements)
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