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Abstract
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1 Introduction

This paper is a continuation of the previous articles of Lang et al. [6], in which
the difference of the solutions of the quasistatic elastic and elastoplastic boundary
value problem (with hysteretic phenomena) has been analysed. We assume again
linear kinematic hardening material, where we have the linear coupling

α = Bεpl

between the backstress α and the plastic strain εpl. Additionally in [6], the error
between a postprocessing correction method and the elastoplastic solution has been
studied. And it is exactly this correction method that gives us now an explicit
homotopy between both solutions. We give as well error estimates in dependence
of the homotopy parameter λ ∈ [0, 1].

Throughout the paper, we will make frequently use of the following abbreviations.

(CS) Cauchy-Schwarz inequality
n−→ limit n →∞, strong convergence

a.e. almost everywhere
e. everywhere

2 The two boundary value problems

Let Ω be a bounded domain in R3 with sufficiently smooth boundary ∂Ω = ∂1Ω ∪̇ ∂2Ω.
We summarize the gouverning equations. The reader finds more details in [6].

The elastic model (E). The Newton balance equations are in its weak form
eε(t) = Deu(t), D?eσ(t) = F (t). (1)

The constitutive material law is linear Hooke’s law
eσ(t) = Ceε(t). (2)

For each t equations (1) and (2) build up a linear elliptic static problem.
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The elastoplastic model (EP). The Newton balance equations are in its weak
form

ε(t) = Du(t), D?σ(t) = F (t). (3)

Linear Hooke’s law and the linear kinematic hardening law

σ(t) = Cε(t), α(t) = Bεpl(t), (4)

together with the additive decomposition of strain and stress

ε(t) = εel(t) + εpl(t), σ(t) = α(t) + β(t) (5)

and the normality rule
ε̇pl(t) ∈ ∂χZ

(
β(t)

)
(6)

build up the constitutive material law.

All the relations (1), ..., (6) are assumed to be valid for almost every t ∈ [0, T ],
where T > 0. In both models, quasi-staticity and linearised geometry is assumed.
With the scalar products/norms

〈
u, v

〉
U

=
∫

Ω

u(x) · v(x) +∇u(x) : ∇v(x) dV (x), ‖u‖2
U =

〈
u, u

〉
U

,〈
ε, η

〉
Σ

=
∫

Ω

ε(x) : η(x) dV (x), ‖ε‖2
Σ =

〈
ε, ε

〉
Σ
,

the Sobolev space U = W 1,2
0 (Ω, ∂1Ω, R3) and the Lebesgue space Σ = L2(Ω, R3×3

s )
are separable Hilbert spaces. We have

U = space of displacements (e)u, Σ = space of strains (e)ε, (e)εel, (e)εpl,
U? = space of outer forces F, Σ? = space of stresses (e)σ, (e)α, (e)β.

By the Riesz-Fréchet representation theorem, we identify U ' U?, Σ ' Σ? in the
usual sense. Hooke’s tensor and the linear kinematic hardening tensor

B, C ∈ L
(
Σ, Σ?

)
are assumed to linear, continuous, symmetric and strongly positive

‖Bε‖Σ ≤ ‖B‖ ‖ε‖Σ,
〈
Bε, η

〉
=

〈
ε,Bη

〉
,

〈
Bε, ε

〉
Σ
≥ κB‖ε‖2

Σ, (7)

with κB > 0. Analogeously for C. The differential operator D ∈ L(U,Σ), and its
adjoint D? ∈ L(Σ?, U?) are given by

Du =
1
2
(
∇u +∇ut

)
,

〈
D?σ, v

〉
=

∫
Ω

σ : Dv dV.
(
σ ∈ Σ?, u, v ∈ U

)
We apply the same outer force F〈

F (t), v
〉

=
∫

Ω

f(t) · v dV +
∫

∂2Ω

g(t) · v dV
(
v ∈ U, t ∈ [0, T ]

)
(8)

with given volume and boundary terms

f ∈ W 1,2
(
[0, T ], L2(Ω)

)
, g ∈ W 1,2

(
[0, T ], L2(∂2Ω)

)
(9)

to the body Ω in both models. We set further for abbreviation

S = CD(D?CD)−1 ∈ L(U?,Σ?), R = PC + B ∈ L(Σ,Σ?),
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where
Q = SD? ∈ L(Σ?,Σ?), P = I −Q ∈ L(Σ?,Σ?).

The operator R is strongly positive and symmetric with〈
Rε, ε

〉
≥ κR‖ε‖2, κR > 0. (10)

(See again [6].) Consequently, the inverse R−1 exists and is strongly positive and
symmetric. The same holds for B and its existing inverse B−1. We define equivalent
scalar products on Σ? by〈

σ, τ
〉
R =

〈
R−1σ, τ

〉
,

〈
σ, τ

〉
B =

〈
B−1σ, τ

〉
with equivalence constants, given by

cB‖ · ‖ ≤ ‖ · ‖B ≤ CB‖ · ‖, cR‖ · ‖ ≤ ‖ · ‖R ≤ CR‖ · ‖. (11)

The elastic domain is the convex, closed set

Z =
{
β ∈ Σ? : ‖dev β(x)‖ ≤ ρ for almost every x in Ω

}
for a fixed radius ρ > 0. The subdifferential of its indicator function is denoted by

∂χZ(β) =
{
τ ∈ Σ? : χ(∗) ≥ χ(β) +

〈
τ, ∗ − β

〉
for all ∗ ∈ Σ?

}
.

We have the following result.

2.1 Theorem (Existence and uniqueness of solution) (1) For each given outer
force

F ∈ W 1,q
(
[0, T ], U?

)
, (1 ≤ q < ∞) (12)

there exists a uniquely determined triple

eu ∈ W 1,q
(
[0, T ], U

)
, eε ∈ W 1,q

(
[0, T ],Σ

)
, eσ ∈ W 1,q

(
[0, T ],Σ?

)
,

satisfying the elastic relations (E).

(2) For each given outer force and initial memory

F ∈ W 1,2
(
[0, T ], U?

)
and β0 ∈ Z,

there exists a uniquely determined septuple

u ∈ W 1,2
(
[0, T ], U?

)
, ε, εel, εpl ∈ W 1,2

(
[0, T ],Σ

)
, σ, α, β ∈ W 1,2

(
[0, T ],Σ?

)
,

satisfying the elastoplastic relations (EP) with initial condition β(0) = β0.

Proof: Cf. [6], theorems 3.1 and 3.2. A proof of (2) given in [7], theorem 66.A. �

There holds for the elastic stress at each t ∈ [0, T ]

eσ(t) = CD(D?CD)−1F (t) = SF (t) (13)

All unknowns of the elastoplastic model can be expressed with the aid of

β(t), γ(t) =
(
SF − β

)
(t) and β0 ∈ Z. (14)

It is possible to express α, β and γ as stop and play operators with respect to
different sclar products, cf. [6].
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(A) W.r.t. the input σ and the scalar product 〈·, ·〉B:
〈
B−1α̇, β − ∗

〉
=

〈
α̇, β − ∗

〉
B ≥ 0 for all ∗ ∈ Z a.e. in [0, T ]

α + β = σ e. in [0, T ]
β(0) = β0

or equivalently
α = PB(σ, β0), β = SB(σ, β0), (15)

(B) W.r.t. the input eσ and the scalar product 〈·, ·〉R:
〈
R−1γ̇, β − ∗

〉
=

〈
γ̇, β − ∗

〉
R ≥ 0 for all ∗ ∈ Z a.e. in [0, T ]

γ + β = eσ e. in [0, T ]
β(0) = β0

or equivalently
γ = PR(eσ, β0), β = SR(eσ, β0), (16)

where P·, S· denote the stop and play operator with the respective scalar products.
For definition of the stop and play operators, we refer to the articles of Brokate
and Krejci [1, 2, 4] or Lang et al. [5] or the monograph [3].

3 Homotopy between (E) and (EP)

In this section, we assume for the sake of simplicity that we have virgin material,
i.e.

εpl(0) = 0. (17)

For λ ∈ [0, 1], the operator eBλ : Σ → Σ? defined by

eBλ = λR+ (1− λ)B = B + λPC, (18)

is linear, continuous, symmetric and strongly positive, such that〈
σ, τ

〉
eBλ

=
〈

eBλ
−1σ, τ

〉
, ceBλ

‖ · ‖ ≤ ‖ · ‖eBλ
≤ CeB‖ · ‖. (19)

We introduce the elastic decomposition of

(eBλ) the input eσ with respect to the product 〈·, ·〉eBλ
, namely

〈
eBλ

−1eα̇λ, eβλ − ∗
〉

≥ 0 for all ∗ ∈ Z a. e. in [0, T ]
eαλ + eβλ = SF e. in [0, T ]

eβλ(0) = β0

,

i.e. with the definition of stop and play

eαλ = PeBλ
(SF, β0), eβλ = SeBλ

(SF, β0). (20)

We define the λ-stresses by

α̂λ = BeBλ
−1eαλ, β̂λ = eβλ, σ̂λ = α̂λ + β̂λ, (21)

the λ-strains by

ε̂pl
λ = λeBλ

−1eαλ, ε̂el
λ = C−1σ̂λ, ε̂λ = ε̂el

λ + ε̂pl
λ , (22)

and the λ-displacements by

ûλ = (D?CD)−1D?C ε̂λ. (23)



homotopy between the elastic and elastoplastic bvp solutions 5

We arrive at the following error expressions w.r.t. the elastoplastic solution

∆α = α̂λ − α = BeBλ
−1PeBλ

(SF, β0)− BR−1PR(SF, β0), (24)

∆β = β̂λ − β = SeBλ
(SF, β0)− SR(SF, β0). (25)

Then we receive

eBλ − B = λ PC, R− eBλ = (1− λ)PC, R− B = PC,

for λ = 0, i.e. eB0 = B, the elastic solution

σ̂0 = eσ, ε̂0 = eε, û0 = eu,

and for λ = 1, i.e. eB1 = R, the elastoplastic solution

α̂1 = α, β̂1 = β, σ̂1 = σ, ε̂1 = ε, ε̂pl
1 = εpl, ε̂el

1 = εel, û1 = u.

The choice λ = 0 gives rise to define the remaining elastic quantities, which are
originally not present in model (E), namely

eα := α̂0,
eβ := β̂0,

eεel := ε̂0 = ε̂el
0 , eεpl := ε̂pl

0 = 0.

3.1 Remark. For eu resp. u note that – cf. proof of theorem 4.1 in [6] –

eu = (D?CD)−1F = (D?CD)−1D? eσ = (D?CD)−1D?C eε

and

u = (D?CD)−1D?(σ + Cεpl) = (D?CD)−1D?(Cεel + Cεpl) = (D?CD)−1D?C ε.

3.2 Theorem (Homotopy) (a) The map

H : [0, 1]×W 1,2
(
[0, T ], U?

)
→ C

(
[0, T ], (Σ?)3 × Σ3 × U

)
(λ, F ) 7→

(
α̂λ, β̂λ, σ̂λ, ε̂el

λ , ε̂pl
λ , ε̂λ, ûλ

)
(F )

is a homotopy

from the elastic solution H(0, F ) =
(
eα, eβ, eσ, eεel, eεpl, eε, eu

)
(F )

to the elastoplastic solution H(1, F ) =
(

α, β, σ, εel, εpl, ε, u
)
(F ).

(b) For each λ ∈ [0, 1], the map

H(λ, ·) : W 1,2
(
[0, T ], U?

)
→ W 1,2

(
[0, T ], (Σ?)3 × Σ3 × U

)
is continuous.

Proof: First, some preliminaries.

(1) It is sufficient to prove the homotopy property for the maps (λ, F ) 7→ α̂λ(F ),
(λ, F ) 7→ β̂λ(F ) because of (21), ..., (23) and the definition of the product
topology.

(2) We estimate downwards〈
eBλε, ε

〉 (18)
= λ

〈
Rε, ε

〉
+ (1− λ)

〈
Bε, ε

〉
(7),(10)

≥ λκR‖ε‖2 + (1− λ)κB‖ε‖2

=
(
λκR + (1− λ)κB

)
‖ε‖2

≥ min{κB, κR}‖ε‖2,

(26)
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i.e. eBλ is strongly positive. From this

‖eBλε‖
(CS)

≥ min{κB, κR}‖ε‖,

so that the inverse eB−1
λ exists. Further – due to the symmetry of eBλ and the

subsitution σ = eBλε –

‖eB−1
λ σ‖ ‖σ‖

(CS)

≥
〈

eB−1
λ σ, σ

〉
=

〈
ε, eBλε

〉
(26)

≥
(
λκR + (1− λ)κB)

)
‖eB−1

λ σ‖2,

(27)

thus

‖eB−1
λ σ‖ ≤ 1

λκR + (1− λ)κB
‖σ‖ ≤ 1

min{κB, κR}
‖σ‖

and

‖eB−1
λ ‖ ≤ 1

λκR + (1− λ)κB
≤ 1

min{κB, κR}
. (28)

Further

‖σ‖2
eBλ

=
〈

eB−1
λ σ, σ

〉 (CS)

≤ 1
min{κR, κB}

‖σ‖2 =: C2
RB‖σ‖2.

All rightmost estimates are independent of λ.

(3) We estimate upwards

‖eBλε‖
(18)

≤
(
λ‖R‖+ (1− λ)‖B‖

)
‖ε‖,

thus – with σ = eBλε –

‖eB−1
λ σ‖ ≥ 1

λ‖R‖+ (1− λ)‖B‖
‖σ‖ ≥ 1

max{‖R‖, ‖B‖}
‖σ‖

and

‖σ‖2
eBλ

=
〈

eB−1
λ σ, σ

〉 (27)

≥ λκR + (1− λ)κB
(λ‖R‖+ (1− λ)‖B‖)2

‖σ‖2

≥ min{κR, κB}
max2{‖R‖, ‖B‖}

‖σ‖2 =: c2
RB‖σ‖2.

Again, all the rightmost estimates are independent of λ.

(4) From the steps (2) and (3) above, we have a norm equivalence, which is
independent of λ

cRB‖ · ‖ ≤ ‖ · ‖eBλ
≤ CRB‖ · ‖. (29)

(5) Let a sequence (λn) be given such that [0, 1] 3 λn → λ ∈ [0, 1]. Then there
holds

‖eBλn
− eBλ‖ = ‖(λnR+ (1− λn)B)− (λR+ (1− λ)B)‖

= |λn − λ| ‖R − B‖ n−→ 0,
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i.e.
eBλn

n−→ eBλ in L
(
Σ,Σ?

)
.

Also for the inverse, we have

‖eB−1
λn
− eB−1

λ ‖ = ‖eB−1
λn

(eBλ − eBλn
)eB−1

λ ‖
≤ ‖eB−1

λn
‖ ‖eB−1

λ ‖ ‖eBλn
− eBλ‖

(28)

≤ 1
min2{κB, κR}

‖eBλn
− eBλ‖

n−→ 0,

i.e.
eB−1

λn

n−→ eB−1
λ in L

(
Σ,Σ?

)
, (30)

thus
eB−1

λn

n−→ eB−1
λ in L

(
W 1,2([0, T ],Σ?),W 1,2([0, T ],Σ)

)
and

eB−1
λn

n−→ eB−1
λ in L

(
C([0, T ],Σ?), C([0, T ],Σ)

)
. (31)

(a) Let us put all the pieces together. Let sequences

λn
n−→ λ in [0, 1], Fn

n−→ F in W 1,2
(
[0, T ], U?

)
be given. According to (21) and (20), we have to show

BeB−1
λn
PeBλn

(SFn, β(0)) = α̂λn
(Fn) n−→ α̂λ(F ) = BeB−1

λ PeBλ
(SF, β(0)), (32)

SeBλn
(SFn, β(0)) = β̂λn(Fn) n−→ β̂λ(F ) = SeBλ

(SF, β(0)) (33)

in C
(
[0, T ],Σ?

)
. To this end we show amongst others

PeBλn
(SFn, β(0)) = eαλn

(Fn) n−→ eαλ(F ) = PeBλ
(SF, β(0)) (34)

in C([0, T ],Σ?). First, clearly due to the continuity of S,

eσn = SFn
n−→ SF = σ in W 1,q([0, T ],Σ?) for each 1 ≤ q ≤ 2 (35)

thus
eσn = SFn

n−→ SF = σ in C([0, T ],Σ?) (36)

We apply the generalised stop estimate theorem 3.1 in [5] with (29) and identical
initial memories in order to receive

‖β̂λn(Fn)(t)− β̂λ(F )(t)‖ =
∥∥SeBλn

(SFn, β(0))(t)− SeBλ
(SF, β(0))(t)

∥∥
≤ CRB

cRB

∫ t

0

‖S(Ḟn − Ḟ )‖dτ

+
1

c2
RB

‖eB−1
λn
− eB−1

λ ‖
∫ t

0

‖dtPeBλ
(SF, β(0))‖dτ.

Thus – with of n independent constants, because of (30), (35) –

‖β̂λn
(Fn)− β̂λ(F )‖∞ ≤ const

∫ T

0

‖S(Ḟn − Ḟ )‖dτ

+const ‖eB−1
λn
− eB−1

λ ‖ n−→ 0,
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giving (33). We next show (34) in the same way. Applying the generalised play
estimate, corollary 3.4 in [5], to obtain

‖eαλn(Fn)(t)− eαλ(F )(t)‖ =
∥∥PeBλn

(SFn, β(0))(t)− PeBλ
(SF, β(0))(t)

∥∥
≤ ‖S(F − Fn)(t)‖+

CRB
cRB

∫ t

0

‖S(Ḟn − Ḟ )‖dτ

+
1

c2
RB

‖eB−1
λn
− eB−1

λ ‖
∫ t

0

‖dtPeBλ
(SF, β(0))‖dτ.

Thus – with of n independent constants, because of (30), (35), (36) –

‖eαλn
(Fn)− eαλ(F )‖∞ ≤ const

(
‖S(Fn − F )‖∞ +

∫ T

0

‖S(Ḟn − Ḟ )‖dτ

)
+ const ‖eB−1

λn
− eB−1

λ ‖ n−→ 0,

giving (34). Finally clearly – because of (34) and (31) –

BeB−1
λn

eαλn
(Fn) n−→ BeB−1

λ
eαλ(F ) in C([0, T ],Σ?),

which is (32).
(b) This assertion is clear because of the continuity of stop and play W 1,2 → W 1,2,
see [3, 4]. �

Recall from theorem 4.6 in [6]

ϕF (t) =
∫ t

0

‖SḞ‖dτ, ϕ
eα
F (t) = ‖eαλ(0)‖+ ϕF (t), ϕγ

F (t) = ‖γ(0)‖+ ϕF (t)

and
h =

∥∥eB−1
λ −R−1

∥∥
Σ,Σ? , hB =

∥∥B(eB−1
λ −R−1)

∥∥
Σ?,Σ? .

3.3 Theorem (Error Homotopy) Let ∆λ· = ·̂λ − ·. For ∆λα, ∆λβ, ∆λσ, ∆λεel and
eαλ − γ, there hold the same estimates as in [6], theorem 4.6.

For ∆λεpl, there holds

‖∆λεpl(t)‖Σ ≤ r1‖∆λβ(t)‖Σ? + qeBh(λ) ϕ
eα
F (t),

‖∆λεpl(t)‖Σ ≤ λeb1‖∆λβ(t)‖Σ? + qRh(λ) ϕγ
F (t).

For ∆λε, there holds

‖∆λε(t)‖Σ ≤
(
r1 + c1(rb

1 + 1)
)
‖∆λβ(t)‖Σ? + qeB

(
h(λ) + c1hB

)
ϕ

eα
F (t),

‖∆λε(t)‖Σ ≤
(
λeb1 + c1(ebb

1 + 1)
)
‖∆λβ(t)‖Σ? + qR

(
h(λ) + c1hB

)
ϕγ

F (t).

For ∆λu, there holds

‖∆λu(t)‖U ≤ d
(
r1 + c1(rb

1 + 1)
)
‖∆λβ(t)‖Σ? + qeBd

(
h(λ) + c1hB

)
ϕ

eα
F (t),

‖∆λu(t)‖U ≤ d
(
λeb1 + c1(ebb

1 + 1)
)
‖∆λβ(t)‖Σ? + qRd

(
h(λ) + c1hB

)
ϕγ

F (t).

Here
h(λ) =

∥∥λeB−1
λ −R−1

∥∥
Σ,Σ? . (37)

All estimates are valid e. in [0, T ]. For λ = 1, all rightmost sides are vanishing.
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Proof: It is similar to the proof of the cited theorem. The estimates for ∆λα, ∆λβ,
∆λσ and ∆λεel are clearly identical. But we have now

∆λεpl = λeB−1
λ

eαλ −R−1γ. (38)

We receive

‖∆λεpl(t)‖Σ? ≤ ‖R−1∆λβ(t)‖Σ? + ‖(λeB−1
λ −R−1)eα(t)‖Σ? , (39)

‖∆λεpl(t)‖Σ? ≤ λ‖eB−1
λ ∆λβ(t)‖Σ? + ‖(λeB−1

λ −R−1)γ(t)‖Σ? . (40)

The second summand in (39) resp. (40) is estimated with (11), (19) and the aid of
[5](16). The rest is again straightforward. �

3.4 Corollary (Error homotopy II) Assume (17). Then there exist positive con-
stants – dependencies in brackets – such that the following estimates are valid e. in
the interval [0, T ].

1. Estimates for the stresses. There holds

‖∆λα(t)‖Σ? ≤ cα(R,B)hλϕF (t),
‖∆λβ(t)‖Σ? ≤ cβ(R,B)hλϕF (t),
‖∆λσ(t)‖Σ? ≤ cσ(R,B)hλϕF (t).

2. Estimates for the strains. There holds

‖∆λεpl(t)‖Σ ≤
(
cεpl(R,B)hλ + kεpl(R,B)h(λ)

)
ϕF (t),

‖∆λεel(t)‖Σ ≤ cεel(R,B, C)hλϕF (t),
‖∆λε(t)‖Σ ≤

(
cε(R,B, C)hλ + kε(R,B, C)h(λ)

)
ϕF (t).

3. Estimates for the displacement. There holds

‖∆λu(t)‖U ≤
(
cu(R,B, C,D)hλ + ku(R,B, C,D)h(λ)

)
ϕF (t).

4. Estimates for eα− γ. There holds

‖(eαλ − γ)(t)‖Σ? ≤ cβ(R,B)hλϕF (t).

Here ∆λ· = ·̃λ − · again. The function

[0, 1] 3 λ 7→ hλ = (1− λ)
‖R−1‖ ‖PC‖
min{κB, κR}

is strictly decreasing. The functions hλ and h(λ) satisfy

h1 = h(1) = 0, h0 =
h(0) ‖PC‖Σ?,Σ?

min{κB, κR}
, h(0) = ‖R−1‖Σ,Σ? . (41)

Proof: Note (28) and (29), thus

λeb1 ≤ eb1,
eb1 ≤

1
min{κR, κB}

, ebb
1 ≤

‖B‖Σ?,Σ

min{κR, κB}
, qeB ≤

CRB
cRB

in theorem 3.3 is possible. We have h ≤ hλ and hB ≤ ‖B‖hλ. For h(λ) such an
estimate is not possible. �
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3.5 Corollary (Model differences) Assume (17). There exist positive constants –
dependencies in brackets – such that

‖(eσ − σ)(t)‖Σ? ≤ Cσ(R,B)ϕF (t),
‖(eε− ε)(t)‖Σ ≤ Cε(R,B, C)ϕF (t),
‖(eu− u)(t)‖U ≤ Cu(R,B, C,D)ϕF (t).

All estimates are valid e. in [0, T ].

Proof: Let λ = 0 in theorem 3.3 and corollary 3.4, giving h0 and h(0) as stated in
(41). �
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