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�� ������	
�����

The new international capital standard for credit institutions (“Basel II” ) allows banks to use 

internal rating systems in order to determine the risk weights that are relevant for the 

calculation of capital charge. Therefore, it is necessary to develop a system that enfolds the 

main practices and methods existing in the context of credit rating. The aim of this thesis is to 

give a suggestion of setting up a credit rating system, where the main techniques used in 

practice are analyzed, presenting some alternatives and considering the problems that can 

arise from a statistical point of view. Finally, we will set up some guidelines on how to 

accomplish the challenge of credit scoring. 

���� �
����	���

The credit institutions offer their customers a variety of financial services and bring together 

investors and credit receivers. As a result, financial institutions face a multitude of risks such 

as credit, market and operational risks. These risks have to be covered with sufficient quantity 

of own capital. 

The current regulations for credit risks are the result of a recommendation of the Committee 

on Banking Supervision in Basel, (“Basel II” ), which started with a discussion 1988 that has 

been successfully concluded by the compromise formula of July 10, 2002. The amendment of 

the Basle commission is supposed to substitute the current flat rate equity capital securities of 

8% of the standard risk-weighted credit positions (“Basel I” ) at the end of 2006, including 

equity capital securities that depend on the credit risk. 

The judgement of the quality of a credit with respect to the probability of default is called 

credit rating. A method based on a multi-dimensional criterion seems to be natural, due to 

the numerous effects that can influence this rating. However, owing to governmental rules, 

the tendency is that typically one-dimensional criteria will be required in the future as a 

measure for the credit worthiness or for the quality of a credit. 

���� ������
��

The problem as described above can be resolved via transformation of a multi-dimensional 

data set into a one-dimensional one while keeping some monotonicity properties and also 
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keeping the loss of information (due to the loss of dimensionality) at a minimum level. The 

following scheme will help us to understand better the process of credit rating: 

Figure 1.1: Concept of a credit rating system 

The steps that are required for a method to evaluate credits are very briefly described as 

follows: 

• Selection of rating criteria. 

• Conception of ratings: identification and choice of influence factors with respect to 

their ability to distinguish between default and non-default. 

• Estimation of scores: determination of the optimal weighting of the relevant influent 

factors with the help of econometric models (logit, probit, and extensions). 

• Allocation of the scores in rating classes. 

Data 

Validation 

Calibration 

Selection of criteria 

Backtesting 
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• Estimation of the default probabilities: binary choice models, panel models for the 

estimation of data covering several years; neural networks, nonparametric and 

semiparametric methods for the estimation of non-monotonous effects. 

• Evaluation and comparison of scores and ratings with respect to their discriminatory 

power. 

• Evaluation of a rating system: validation and backtesting using historical data. 

These steps are developed along this thesis, which is organized in the following sections: 

Section 2 is devoted to the study of the discriminatory power of credit ratings. There, we will 

study the different techniques that are used in practice, like the overlapping area, accuracy 

ratio, Lorenz curve or Gini index. In addition, the criterion for reduction in impurity is 

presented as another option to assess the discriminatory power of a score. We found out that 

the entropy-based criterion is also a valid discriminatory power measure, since hypothesis can 

be tested—contrary to the misconception in the Basel Committee on Banking Supervision 

(2005), that there are no applicable tests for the entropy-based measures. Further, we will 

review other measures, e.g. the misclassification rate, questioning their suitability for credit 

rating. To complete, we do a comparison of the most appropriate measures, i.e. overlapping 

area, accuracy ratio and the entropy-based criterion, evaluating their pros and cons in diverse 

situations. 

In Section 3 we offer an overview of the different methods for estimating the default 

probability and some aspects related, like the generation of rating classes. The well-known 

logit and probit models will be discussed in relation to other estimation methods, e.g. 

nonparametric and semiparametric, neural networks, panel data models and CART. 

Section 4 introduces some tests for the validation and backtesting of PDs. As there is no 

single method that suits for alls situations in practice, a combination of the different 

techniques should be favoured. The binomial test and the chi-square test can be applied under 

the assumption of independence of default events, although default events are in fact 

correlated. The one factor threshold model of Basel II and the derived tests observe this 

correlation. In order to determine the adequacy of a forecasted default probability for time 

series, we may use the normal test or the extended traffic lights approach. 
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This work concludes with a summary in Section 5, where we recommend a standard 

procedure for credit scoring. 

Finally, in the Appendix it can be found a summary of the literature about rating criteria. 
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�� � ��
��� ����������� ������
���������������

���� ������	
�����

Suppose we deal with the following classification problem: we consider random variables 

1� � �� ��  and ������ �  as a group indicator. A score �� ����� ��� � � �� � � , used to rate 

applicants for a loan, is an aggregation of the variables 1� � �� ��  into a single number. Each 

individual variable can also be regarded as a score� although here we will only refer to the 

relation between the random variables �  and � . 

In the following we will agree that a reasonable score function should assign higher score 

values to credit applicants who have higher probabilities of default. Formally, it means that 

the distribution of defaults dominates stochastically over the non-defaults. A basic feature of a 

credit score function is consequently the efficiency to separate the two groups of observations 

according to � ��  (default) and �� �  (non-default). A measure for the discriminatory 

power can thus be used as a performance measure for a credit score. 

A measure of discriminatory power is not required to quantify the goodness of fit of the 

estimated probabilities of default (see section 3) to the real PDs. Suppose that we consider as 

our score the probability of default estimated by the model. Then, for any (strictly) monotone 

transformation of � , the discriminatory power would not change, although the output of such 

a transformation has nothing to do with the original range of values. 

We will describe here the measures that are being used in the credit rating practice. The 

overlapping area criterion and its associated Kolmogorov-Smirnov test are introduced in 

section 2.2. In section 2.3 we will depict the well-known accuracy ratio, which is related to 

the Wilcoxon-Mann-Whitney �  test. An alternative discriminatory power measure is given 

by the standardized maximal distance (2.4.4) defined in section 2.4. Furthermore, we will see 

in section 2.4.5, that the entropy-based criterion for reduction in impurity (2.4.10) is linked to 

the test for homogeneity in 	 	�  contingency tables. 

On the other hand, there are also measures (section 2.5) that are not appropriate for assessing 

the discriminatory power of a score, i.e. misclassification rate (2.5.2), although they can be 

found in the literature or used in practice. 
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At the end of this section, we will compare the most suitable measures, analysing their 

behaviour under specific circumstances. An important feature of these measures is that they 

actually remain constant under (strictly) monotone transformation of the score. 

As it is easier to see graphically how some measures separate the data, we will picture the 

kernel density estimates of non-defaults (blue) and defaults (red) with a Gaussian smoothing 

kernel for score1 (2.1.2), score2 (2.1.3) in the following example, and other simulated 

examples. 

Example 2.1 

We bui l t  up t wo scor es f r om a sampl e of  pr i vat e l oans we got  f r om Fahr mei r  & 

Hamer l e ( 1984) ,  havi ng on account  some var i abl es l i ke per sonal  char act er i st i cs,  

cr edi t  char act er i st i cs and cr edi t  hi st or y.  The sampl e si ze i s 1000;  300 of  t hem 

ar e def aul t s.  For  t he cal i br at i on and val i dat i on of  t he model ,  we chose at  r andom 

t wo sampl es wi t h 80% and 20% of  t he dat a and def aul t  r at es 0. 3075 and 0. 27,  

r espect i vel y.  I n pr act i ce,  t he pr opor t i on of  def aul t s i s nor mal l y l ower .  The 

var i abl es used ar e l i st ed i n t he f ol l owi ng t abl e:  

Var i abl e Speci f i cat i on 1 Speci f i cat i on 2 

Bank account  �  

Dur at i on of  t he cr edi t  �  

Payment  pr evi ous cr edi t s �  

Amount  of  cr edi t  �  

Savi ngs � � 

Ti me cur r ent  j ob � � 

Mont hl y payment  % i ncome �  

Mar i t al  s t at us,  sex � � 

Pr oper t i es �  

Age �  

Pr evi ous cr edi t s �  

Table 2.1: Variables selected for each specification 

The scor es wer e det er mi ned by a l ogi t  model  ( see sect i on 3. 2. 2) ,  such t hat ,  gi ven 

t he vect or  of  r eal i zat i ons of  t he expl anat or y var i abl es,  i . e.  � ���� ����� ��� � � ��
T

,  

t he est i mat ed pr obabi l i t y of  def aul t  i s gi ven:  
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� �

� �
� �


���
� �  �

� 
�� � 
��

�
�� � �

� �

�

� �
� � � �

� � �

T

T T
, (2.1.1) 

�  bei ng t he vect or  of  r egr essi on par amet er s.  For  ever y speci f i cat i on,  t he scor es 

� ��� T
 wer e cal cul at ed:  

1 389 0 574 0 031 0 537

5 024 05 0 160 0 256

0 241 0 114 0 009 0 325

� � � � � � � �������� � � � � ��������� � � � � ����

� ���������	��� � � �������� � � ����
 � � � ������

� ������� � ����
���
� � ��
 � ���
� ��
����

�

� � � �

� � � � �
� � � �

score1

(2.1.2) 

 

0 826 0 258 0 177 0 208� � � � � � � �������� � � � ����
 � �������� � � �score2  (2.1.3) 

* ,  * * ,  * * * ,  * * * *  denot e si gni f i cant  coef f i ci ent s at  t he 10%,  5%,  1%,  0. 1% l evel ,  

r espect i vel y.  

���� � ����������������

In this section we will show the construction of the overlapping area criterion—which goes 

back to the work of Kraft, Kroisandt & Müller (2004)—and its associated Kolmogorov-

Smirnov test. The distance between defaults and non-defaults scores can be simply assessed 

by calculating the overlapping area of their respective densities. Let us denote by �	 , �	  the 

cumulative distribution functions of �� 
� �  and  �� � � . We will first observe the case 

of two normal distributions having one point of intersection; the conditional densities ��  and 

��  are easy to visualize and to compute: 

Figure 2.1: Overlapping area of two normal densities 

The horizontal coordinate of this intersection is denoted by � � � , which is the separation 

threshold such that all score values � ��  are predicted as default. 
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Let us assume a normal distribution means that both densities ��  and ��  are determined by 

their expectations �� , ��  and standard deviations �� , �� . Without loss of generality we can 

suppose from now on that �� > �� . Then the region of overlapping   for both densities can be 

calculated as 

 1 0( ) 1 ( )� � �O F s F s . (2.2.1) 

There is exactly one point of intersection if both standard deviations are identical ( 0 1� �� ) 

for the normal case, which is given by 

� �

	
�
� ��

� . 

On the other hand, if they are different ( 0 1� �	 ), then there may be one or two points of 

intersection (as in quadratic discriminate analysis) and the horizontal coordinates are given by 

�� ��� ��� � � � , i.e. as solutions of the quadratic equation 

 � � � � � � � � � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	 	 	 	 	
� � � � � � � � � � � � � � �� � 	 � � 	 �!��� � !����� �� � . 

If we do not make distributional assumption for � , then the definition of   can be easily 

generalized to the nonparametric case 

� �������� ��� � � � � ��� 
 , 

which allows any number of intersection points. 

Assume only one optimal point of intersection. For a positive monotone relationship between 

the score �  and the default probability, the overlapping area is defined by 

 � ����� �� � ������
�

 	 � 	 �� � � . (2.2.2) 

Alternatively, for a negative monotone influence of the score values �  on � , we set 

 � ����� �� � ������
�

 	 � 	 �� � � . (2.2.3) 

For a monotone relationship it obviously holds 

 ���� � ���� ��� ���  � , 
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It is clear that for perfectly separated distributions the region of overlapping   is zero. If  

both distributions are identical, then 1�O . A measure of the discriminatory power is then 

given by 

 � �� ��� �� �����
�

�  	 � 	 �� � � � . (2.2.4) 

The discriminatory power indicator �  takes on values in the interval [0, 1], where 1T �  

stands for perfect separation and 0T �  means no separation. The positive- and negative-

monotone versions of �  are settled 

 � �� ���� �� ������ ���
�

�  	 � 	 �� � � �  (2.2.5) 

 � �� ���� �� ������ ���
�

�  	 � 	 �� � � �  (2.2.6) 

In the monotone case, �  can be estimated by nonparametric estimates of the cumulative 

distribution functions 0F , 1F , i.e. the empirical distribution functions. Under the assumption 

of normality,   (and hence � ) can be computed by their empirical moments ��� , ��� , ��� , 

and ��� . Under more general assumptions on the distributions,   and �  can be calculated for 

example by nonparametric estimates of the densities, like histograms or kernel density 

estimators. For more information on this topic, see Härdle (1991) or Silverman (1986). 

������ � ��� ������ !� �����������

We remark that the measure �  is related to the Kolmogorov-Smirnov test statistics. If we 

consider the hypotheses: 

� � �� � �

� � �� � �

� � � �

1 0

1 0

1

0 1

0 11 0 0 1 1

1 01 0 0 1 1

0 11 0 1 0

1

2

3

� "

� "

�

�� �� �� �� �� ��� �� ��

�� �� �� �� �� ��� �� ��

�� �� �� �� �� ��� �� ��

��� ��� � �
�

��� ��� � �
�

�
�

� � �

	 � 	 � 	 � 	 � � 	 � 	 � �

	 � 	 � 	 � 	 � � 	 � 	 � �

	 � 	 � 	 � 	 � � 	 � 	 � �

�

�

�

�

� � � � � 

� � � � � 

� 	 � � � 

Test tatistic Reject condition

0 1 2" #� ��

 

then we can use the test statistics in (1) and (2) to check for the stochastic dominance of �	  

over �	  and vice versa. The critical values are given in Miller (1956), as follows: 

1 0

0 1
1 1

0 1

with� " "� � �

� �
�

� �
� �� �

� ��� � �  � � ��� �
, 
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where 0�  and 1�  are the number of non-defaults and defaults. For 1�  decreasing the critical 

values are increasing, but it does not imply that the value of the test statistic increases. This 

means that, given a test statistic value, the null hypothesis will be more difficult to reject if the 

default rates are lower. 

Example 2.2 

Gi ven t he Fahr mei r  et  al .  ( 1984)  dat aset  f or  t he scor es ( 2. 1. 2)  and ( 2. 1. 3)  and a 

conf i dence l evel  1 �� ,  f or  t he val i dat i on sampl e we obt ai n t he f ol l owi ng r esul t s:  

 �
����  1 ��  391" ��  �  

score1 0. 555 0. 995 0. 255 - 1. 253 

score2 0. 254 0. 95 0. 191 - 1. 801 

Table 2.2: Kolmogorov-Smirnov Test Statistic values 

The t wo scor es ar e si gni f i cant ,  si nce � ����  i s  l ar ger  t han t he cr i t i cal  val ue.  

Ther ef or e we can r ej ect  t he nul l  hypot hesi s i n f avour  of  t he al t er nat i ve and 

concl ude t hat  �	  domi nat es st ochast i cal l y over  �	  f or  bot h of  t hem and score1 has 

mor e di scr i mi nat or y power  t han score2.  

Figure 2.2: score1, � 0 555�� �    Figure 2.3: score2, � 0 254�� �  

I n or der  t o i l l ust r at e how t he densi t i es shoul d l ook l i ke,  we pi ct ur ed t he densi t y 

est i mat es of  def aul t s and non- def aul t s and t he t hr eshol d �  f or  score1 ( Fi gur e 
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2. 2)  and score2 ( Fi gur e 2. 3) ,  r espect i vel y.  We must  r emar k t hat  t hese pi ct ur es do 

not  cor r espond t o t he i nt egr al s of  t he est i mat ed di st r i but i on f unct i ons,  but  t hey 

ar e t he ker nel  densi t y est i mat es of  def aul t s and non- def aul t s.  

��"� �

	��
��������

Another commonly used measure for the performance of a score is the accuracy ratio ��, 

based on the Lorenz curve and its Gini coefficient. The Lorenz curve (Figure 2.4), also known 

as selection curve, plots the distribution of the score �  against the defaults distribution 

 �� � � , and thus we can compare different credit scores graphically. For the cumulated 

probabilities, the percentages of applicants are arranged from “bad” to “good” scores (highest 

to lowest). Variants of the Lorenz curve are the receiver operating characteristic (ROC) curve 

(see Hand & Henley, 1997) and the performance curve (see Gourieroux & Jasiak, 2001). A 

generalization of the accuracy ratio may be interpreted by the Somers’  � , which is also a 

conditional version of the Kendall’s � , both of them rank order statistics; for more 

information, see Basel Committee on Banking Supervision (2005) and Lienert (1973). 

Figure 2.4: Lorenz curve for credit scoring 

��"��� #����$�
	����

In order to operate with cumulative distribution functions we denote the negative score by 

R S�� . 

The Lorenz curve of the score S  is then given by the coordinates 
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� � � �1 2 1��� �� � �� �  �� � � �� � � � �� � �� �� �� � � � � �� � . 

As 1� � ���� � 	 �� � � , this is equivalent to 

� � � �1 2 11 1�� ��� �� ��� ��� � � �� � � � � 	 � 	 � �� � � � � �� �� . 

The Lorenz curve can be estimated by means of the empirical cumulative distribution 

functions. 

The optimal Lorenz curve corresponds to a score that perfectly separates defaults and non-

defaults. It reaches the vertical 100% at a horizontal percentage of 1�� ��� , the probability 

of default, and is given by 

� � � � � �� �� �1 1� � � � ���� � 	 � � 	 � �� � � � �� �
�
� , being 

� � ��
� ����
� � �� �

�
� ��

��� �
�� �

�� � � ���� �� ��� � � ����

 

A Lorenz curve identical to the diagonal corresponds to a score that orders the credit 

applicants totally randomly. Thus, Lorenz curves can also be used to compare different score 

distributions: better scores are closer to the optimal Lorenz curve and worse scores are closer 

to the diagonal. 

��"��� % ����
�����
�����

Now we need a quantitative measure for the performance of a score, which is based on the 

area between Lorenz curve and the diagonal. The Gini coefficient �  denotes twice this area: 

 � � � �� �	 � �� � �� � � 	 �� ��� 	 � � 	 � 	 � �	 �
�� ��

�� ��
� � � � � �
 
 . (2.3.1) 

This integral can be estimated by numeric integration of �1	  over the range of �	 . 

Proposition 2.3 

For the optimal Lorenz curve, we have that the optimal Gini coefficient is given by: 

� �� � � ������ �� ��� � � � � . 
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Proof: 

The optimal Gini coefficient is twice the area of the triangle between the optimal Lorenz 

curve and the diagonal. This is the same as to calculate the area of a parallelogram = base *  

height. In this case, the base is � ���� �  and the height � � �� � ���� ��� � � � . 

�  

��"�"� �

	��
��������

To compare different scores, we use their accuracy ratios, which are given by the relation of 

the Gini coefficient of each score to the Gini coefficient of the optimal Lorenz curve. The 

accuracy ratio is defined as 

� � �����

� �
��

� ��
� �

� �
, 

and therefore empirically given by the estimates of both Gini coefficients. The value of �� 

lies between 0 and 1 if the Lorenz curve is really concave, i.e. if there is a positive-monotone 

relationship between �  and �  (higher score values correspond to higher default probability). 

Negative values are possible if the relation is negative monotone; in that case we would 

change the sign of the score, in order to obtain a positive value of the accuracy ratio. 

Example 2.4 

I n or der  t o est i mat e t he accur acy r at i os f or  t he scor es ( 2. 1. 2)  and ( 2. 1. 3)  i n t he 

val i dat i on sampl e,  we f i r st  pi ct ur ed t hei r  Lor enz cur ves ( see Fi gur e 2. 5 and 2. 6) .  

Then we cal cul at ed t hei r  r espect i ve Gi ni  coef f i ci ent s,  and ��:  

 ��  � 0� ��� �  ��� 

score1 0. 463 0. 73 0. 635 

score2 0. 223 0. 73 0. 306 

Table 2.3: Gini coefficients and accuracy ratios 

We can concl ude f r om t hese r esul t s,  t hat  t he f i r st  scor e has mor e di scr i mi nat or y 

power  t han t he second one and t hat  t her e i s a posi t i ve monot one r el at i onshi p 

bet ween t he scor es and � .  
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Figure 2.5: score1      Figure 2.6: score2 

��"�&� '� (�
	����

A graphical alternative to the Lorenz curve is the receiver operating characteristic (ROC) 

curve. The curve is set by the coordinates: 

 � �0 11 1�� ��� ��� 	 � 	 �� � �� . (2.3.2) 

Contrary to the Lorenz curve, the ROC compares the score distribution of the non-defaults 

versus that of the defaults. The resulting graph resembles that of ����  as the number of 

defaults is typically small and therefore we have 0	 	� . 

The optimal ROC curve corresponds to a score that exactly separates defaults and non-

defaults and it is determined by the points (0, 0), (0, 1) and (1, 1). 

��"�)� �* (�+�����	�����
	���,�

In order to quantify the deviation between �	  and �	 , we use the so-called area under curve 

(��� ): 

 � � � �1 0 1 01 1 1�� �� �� ����� 	 � � 	 � 	 � �	 �
�� ��

�� ��
� � � � �
 
 , (2.3.3) 

taking values between 0, for the shortest deviation, and 1 for the largest deviation. It is 

important to note that: 

Proposition 2.5 

The ���  and the accuracy ratio are linearly related as follows: 
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 2 1�� ���� � . (2.3.4) 

Proof: 

Recall the definition of the Gini coefficient �  (2.3.1). Thus, 

� �1 1 0 1

1
0 1

2
�� �� �� � ��� � ���

�
	 � �	 � 	 � � �� 	 � �� 	 �

�� ��

�� ��

�
� � � � �
 


1 0 1 10 1� � �� �� � � �� ���� 	 � �	 � �� 	 � �	 �
�� ��

�� ��
� � � �
 


1 0 1
0 1 1 0

2 2 2

� �
� �� � � � � �

��
�� ��� �� �� ���

�
� � � � � � � � � � � � . 

We obtain 2 0 0� � � �� ��� �� ��� � � � � � , plugging this into 0# � ��� � ��� �  

completes the proof. 

�  

Therefore, using ���  and �� to rank a set of different score functions will lead to 

identical conclusions. With the help of relationship (2.3.4) we can demonstrate the following 

proposition. 

Proposition 2.6 

Let �	 , �	  be cumulative distribution functions having the same expectation � � � . Suppose 

that they are point-symmetric about � �� �� �	� �  for ���� � . Then we obtain: 

���� . 

Proof: 

The condition on symmetry is equivalent to: � � � � � �	� � �	 � 	 � 	� � �� � � � , �� � �  and 

���� � , being � � �#	�	 � � . 

Let us denote the random variable �� � �� �  and � � ��	 � � �� �� � � � �� � . It is easy to 

see that �� � �� � �� � � � � �� � � , � � � � � ��� �	 � 	 �� � �  and thus � � �� �#	�	 �  for ���� � . 

We will calculate ���  for the transformed variable �� . By definition (2.3.3): 

� � � � � � � � � �1 0 1 01 1��� 	 � �	 � 	 � �	 �
� �

�� ��
� � � �
 
 , being 
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� � � � � � � � �� � � � � � � � � � �
0

1 0 1 0 1 0
0

1	 � �	 � 	 � �	 � 	 � �	 �
� �

�� ��
� � � �
 
 
  

� � � � � � � � � � � � � � �
0 0

0 1 0 1 0
0

1�	 � 	 � �	 � 	 � �	 �
�

�� ��
� � � �
 
 
  

� � �0

1
0 0

2
	� � � , therefore  

� � � � � �1 0

1
1

2
��� 	 � �	 �

�

��
� � �
 . 

By the relationship (2.3.4), we obtain 2 1 0�� ���� � � . 

�  

Remark 2.7 

�����������
	�������
� � ���������
���������������� � �!����"�������	#��� $%��� 	�� �&� '�(���� ���)�*(�������� ����	

�� + �� , ���.-/����'��!'!� " � � $
01�!	�	
�*(#������� ����	 + � �2�3�!	��

�
� 	4��� 	��5�6�!���87 + �!�!�9�����:$9�����;�<�=���2�*(��!�#� � ����	 � � � �>����	?-@�����@� �A�B���010C���2�3D-@���#� �/��� ���

� + ���!���
��EGF#H

��"�-� . ��
�/�� 0 ��� . �������* ������

Some classical nonparametric tests to check whether two distributions are identical are the 

Wilcoxon rank sum test and its equivalent, the Mann-Whitney �  test. In its simplest form, 

the �  test is derived for continuous score distributions. Denote ���  all observed scores of 

non-defaults and 1 �  all observed scores of defaults. The �  test statistic is given by 

� �1 0$  �� � �� �  over all � � . 

For perfectly separated defaults and non-defaults, we obtain 0 1� � �� � . If �  and �  are not 

related at all, then the event 0 1 �� ��  occurs with probability �#	 , such that � �  

0 11 2# � �� �� � . Consequently, a rescaled version of the test statistics, 0 1#� �� � ��  is an 

estimate for 

� � � � � � �1 01 0 1 1�  � �  � �� ��� � � � � � 	 � � 	 � ���� � � � � � � �
 , 

and therefore using (2.3.4), 

 
�

0 1

1

2

��
� � �

� �� �� ��� � ��� ��� !
. (2.3.5) 



 17

The relation between ��  and ���  will remain valid if the score distributions are not 

continuous. However, it could happen that for any score values we observed both defaults and 

non-defaults, i.e. tied observations. In that case a corrected version of the �  statistic must be 

used (add 1 2#  if 0 1 �� �� ) to estimate 

 � � � �1
0 1 0 1

2
�  � �  � �  � �  �� � � � � � � � � �� � � � � � � . 

It is demonstrated (see Lehmann, 1975, p. 365) that, under the hypothesis 1 0�� ��	 � 	 �� , for 

large 0� , 1� , �  is approximately normally distributed. We consider the hypotheses: 

1 0

1 0

0 1

1 0 0 1 1

1 0 0 1 0 1 1

1

2

� "

� "

�� �� �� �� ��

�� �� �� �� ��

� �

� �

� �

	 � 	 � 	 � 	 � � � !

	 � 	 � 	 � 	 � � � � � !

�

�

�

�

� � �

� � � � �

Test Statistic Reject condition

 

being the critical value 

 
0 1

0 1
1 1 0 1 0 1

1
1

2 12� � � �� �

� �
! " � � � �� �� �

�
� � � � � � � � . (2.3.6) 

The critical values and the test statistic decrease for ��  decreasing. Hence, we cannot say that 

the null hypothesis will be more difficult to reject for lower default rates. 

Example 2.8 

Let  us t est  now t he hypot hesi s ( 1)  f or  t he val i dat i on sampl e,  wi t h �� = 146 and 

�� = 54.  For  a l evel  of  si gni f i cance � = 0. 005,  we get  t he cr i t i cal  val ue 

146 54 0 995� � �! = 4879. 562.  Bei ng � = 6446. 999 f or  score1 and � = 5148. 499 f or  score2,  

bot h l ar ger  t han t he cr i t i cal  val ue and hi ghl y si gni f i cant .  We can r ej ect  f or  t he 

t wo of  t hem t he nul l  hypot hesi s and concl ude t hat  1	  domi nat es st ochast i cal l y over  

0	 .  

��&� �� �	������	�
������

We consider now the fact that the discriminatory power of a score �  is closely related to the 

heterogeneity, or impurity �  of the distribution of �  conditioned to this score. Actually, a good 

discriminating score will separate the defaults and non-defaults in preferably heterogeneous 

classes. The impurity of a set should be largest, when all events are equally likely and 
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smallest when only one event happens. In order to formulate the criterion for reduction in 

impurity, we will first define an impurity function. The best general references here are 

Fahrmeir, Hamerle & Tutz (1996) and Breiman, Friedman, Olshen & Stone (1984). 

Definition 2.9 

A function �  defined on the simplex 

 � �1 0 1�% � � � �� ��
�    

� � � � �� � " �#�  by �& %� $ � , 

is called impurity function, if holds 

(i) � � � � � � � �� �1 0 0 0 1 0 0 0 1
�%

������ � � � � � � � � �
� � �

�

� �
�

� � � � � , 

(ii) � �� �  is a symmetric function of � , i.e. it remains invariant with regard to any 

permutation of 1� � �� �� . 

(iii) � �� �  is concave. 

Remark 2.10 

���������
	�� 
����� ���� ����������������� ��������� �� ��!�"�#��!��$�
�
	%� ������ �
$��	&� ��'(���)��� *+	,�������� �
-�.�0/1�
2� $34�)��� ��"�5���
"76 8:9�;=<
>
?A@CB

���(DE"�!��0�F�
� �4���G"E6 879�;=<�<
HI@J8�KL����� 	M	L���)��� ���!�����!
� �)�-������������ �
�B�"E�N��!��J*PO.�Q�����
R

(iii)’  � �1 1
�%

� � ���
� � �

� � �
�

� �� ��� �� � ���� ���� ��� ! !
� . 

DE�)���S��!������
�������� ��
�N����C*7�-���E� �M*
(ii)
"�E�����
��T"�/U��� *

(iii) 
	M��6 6 �(OV�

 (iii)’
B.W7�
��	��Q�
�X��!��F���
	M� 
����� ��Y�V�Z/U��FWT*

��!������$".����!
���Q�[B����V�
��������7�V	%�
6 6 �4O\���
��["�/U��� *&8^]-�_OV� 6 6E�����#6 "&�M���`��!�".�(��!�� �2���
�������� �

(iii) 

� ����������G�["
�M* 	M���

��!��a'&�)����	��E	�b4�)��':�
�G����� ��Yc&8T;Zc.8

Remark 2.11 

]��-�T"E��[d�'&�������`"76 �G����!���� ��'(���)��� *2	,�������� �
�"�� � � � �1 1� � �� � � � � �� �
BE�G� ���� 1

1
1

�

�   
� �

�

�
� �# 8

According to Definition 2.9, so as to Breiman et al. (1984) or Fahrmeir et al. (1996), some 

impurity functions are: 

1. Misclassification rate: � � 1 ���  
 

� � �� �  
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2. Gini index: � �
 �

 �

� � � �
	

� #  

3. Entropy: � � !��  

 

� � � �� �#  

In the following we will study the case 2� � , for �  has only two possible outcomes: 

default, with probability 1 1� ���� � �  and non-default, with probability 0� � 11 �� �  

0� ��� � . It suffices to write the impurity function in terms of only one of these 

probabilities, i.e. � � � � � �1 1 11 �� � � � � � �� � � . Figure 2.7 shows the shapes of this impurity 

functions for 2� � . 

Figure 2.7: Entropy, Gini index and misclassification rate for 2� � . 

We can observe how the impurity functions are concave, whereas entropy and Gini index are 

strictly concave. They reach their maximum at 1 0 11 1 2#� � �� � � � , their minimum, at 

1 1� �  and 1 0� � , and they are symmetric in � . They all are monotonically increasing for 

1 1 2#� � , and decreasing for 1 1 2#� " . 

The impurity of a subset � ��� � �� �  of the score �  for some � � � can be defined as 

 � � � � � �� � � �� �1 1 1 1�  �  � � � �� � � � � � �� �� � � . (2.4.1) 

� �� ��  is maximal, if � �0  �� � � � �1 1 2 #�� � �  and it is minimal, i.e. � � 0� �� � , if 

� �0 1 �� � �  or � �1 1 �� � � . 
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The goal of splitting up the observations into subsets as heterogeneous as possible can be 

fastened by maximizing the following distance: 

 � � � � � � � �� � �& � " � � � �� � ��� � � � � � �� � � � � � � � � �� � �� ��� � � � � � , (2.4.2) 

being � ������ � � �� �  and 1�� �� � �� ��� �� �� �� � � � . 

Proposition 2.12 

For every partition of �  at � , 

� � 0� " � ��� � � " , 

with equality if � � � � � �� � ���� � �� � . 

Proof: 

By the concavity of � , 

� � � � � � � � � �� � � � � �� � � �1 1� �  � � � �� � � �� � � � � � � � � � � � � �� �� � �  

� � � � � � � �� �1 1  � �� �� � � � � � � ��� �  

Now by the theorem of total probability, we have that: 

� � � � � � � � � � 11 1 1  � �� �� � � � � � � � � � �� � �  

Therefore, 

� � � � � � � � � �� � � �1� �  '�� �� �� � � � � � � � ��� �  and 

� � � � � � � � � �1 0� " � � � �� � ��� � � �� � � � �� � � �� � �� � � � � � � "  

With equality holding, if � � � � � �� � ���� � �� � . 

�  

The discriminatory power of the score �  is therefore given by the best partition, if we allow 

only one splitting point: 

 ��� � � ��
�

� � � � � �� � � . (2.4.3) 
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Proposition 2.13 

The maximal distance �  is bounded: 

� �� ����� � �� � �  

Proof: 

1. By (2.4.3) and Proposition 2.12, it follows immediately that �� " . If the split offers no 

decrease in impurity, then we have 0� � . 

2. In case of a perfect separation, then � � � � 0� �� �� �� � , and the optimal � ������ �� . 

�  

In order to compare different scores, we use the standardized maximal distance: 

 
���

�
�

�
� , (2.4.4) 

which ranges from 0 to 1. 

In the next section, we will set the standardized maximal distance for the misclassification 

rate ( ��� ), and note its inadequacy for credit rating. Therefore, we will introduce another 

class of impurity functions (section 2.4.2), where the misclassification rate is not included. 

Further, we will determine the criterion for reduction in impurity with the Gini index ( �� ) 

and entropy ( �� ) as impurity functions. Moreover, we show in section 2.4.5 that the test for 

homogeneity in 	 	�  contingency tables is related to �� . At the end, we do a detailed 

comparison of ��  and �� . 

��&��� 0 ��
�������
�����������

A relatively intuitive criterion is to choose that split which most reduces the misclassification 

rate. If, for a given � , we assign a posterior observation �� �� , such that maximizes 

� �� � � , then the misclassification rate is given by minimizing this probability, as follows: 

 � � � �
01 01

1 0 1
� �

� ��� � � ��� � � ��� � �� � �
� �

� �� � �� � � � � �
� �

� � � �  (2.4.5) 

The best split for this criterion is therefore given by substituting this formula in (2.4.3). 

Finally, we get the standardized �  in (2.4.4): 
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� � � �
� �0 1

0 1 0 1
1

����� � �� � � ����� � �� � �
���

��� �

� �� � � �

��
�

�� � � � � �� � � � �
�

� �

� �� �� �� �� � � �� �� �� !
 (2.4.6) 

In this section we defined the misclassification rate as an impurity function of �  given � . 

But we also find in the literature the misclassification rate as a measure of discriminatory 

power when referred to the distribution of the score �  given the default � . We will pay 

attention to that definition in section 2.5.1, and we will show that, under some assumptions, 

both criteria are linearly related. 

Still, in spite of its attractiveness, choosing the misclassification rate as splitting criterion has 

some serious defects—one of them is easy to see with the following example: 

Example 2.14 

I f  we have a scor e wi t h equal  pr i or s,  f or  exampl e 1� = 0� = 600,  t hen consi der  t wo 

possi bl e spl i t s ( see Fi gur e 2. 8) .  For  t he f i r st  spl i t ,  t her e ar e 400 obser vat i ons 

mi scl assi f i ed,  200 of  t hem ar e def aul t s and 200 non- def aul t s and we obt ai n 

� �1 �� �� � � = 1/ 6.  The second spl i t  mi scl assi f i es al so 400 obser vat i ons,  al l  of  t hem 

ar e non- def aul t s and we get  al so � �2 �� �� � � = 1/ 6.  Even t hough bot h spl i t s ar e 

equal l y r at ed,  we f i nd t he second spl i t  mor e appr opr i at e,  si nce one of  t he subset s 

( �� )  i s t ot al l y pur e and t her ef or e f or  f ur t her  par t i t i ons of  t he scor e r ange we 

onl y need t o consi der  t he compl ement ar y ( �� ) .  

Figure 2.8: Two different splits with equal priors 
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Another defect of the misclassification rate is the degeneracy, which happens when for all 

splits in �  there is no single or small number of best partitions. It occurs often in credit rating 

and we explain it in the next proposition. 

Proposition 2.15 

Let us suppose that  

1 1 2#� � , � �1 1 2 #�� � �  and � � � �1 1 2 #� �� � � � �� � � � . 

Then it holds 

� � 0� " �� � �� � � �� � � . 

Proof: 

By the definitions (2.4.2) and (2.4.5), and applying the theorem of total probability it is easy 

to see: 

� � 1 1 1 0� " � � �� � ��� �� � � � � �� � � �� � � �� � �� �� � � � . 

�  

In practice, we have that for a low probability of default, which is the normal case in credit 

scoring; the best split is normally given by misclassifying most of the defaults. It does not 

happen if we choose the entropy or the Gini index as impurity functions, as we can see in the 

examples of Section 2.4.6. 

��&��� ��������
���������� �	������	�
������

Our purpose in this section is to introduce another class of impurity functions that do not have 

the defects of the misclassification rate. We will introduce the condition of strictly concavity 

of �  due to two main reasons: 

- It is necessary to avoid degeneracy (see the proof of Proposition 2.18). 

- In a situation similar to Example 2.14 the impurity function should favour the second 

split. 
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Definition 2.16 

A class �  of impurity functions � �1� � , �� ��� � , with continuous second derivatives on 

�� ��� � , is defined as the class that satisfies 

(i) � � � �1 0 0� �� � �

(ii) � � � �1 11� � � �� � �

(iii) � �1 10 0 1** �� � �� � � , i.e. � �1� �  is strictly concave. 

The Gini index belongs to class � , since 

� �1 1 12 1� ��� � � �� � , � �1 4 0**�� � � � � , 

and also does the entropy: 

� � � �1 1 1 1 11 1!�� � �!���� � � � � �� � � � � , � �1 1 11 1 0** # � ��� � � �� � � � . 

Since � � � �1 1** **� �� � � ��  for 10 1 2#�� � , we have that the entropy increases faster than 

the Gini index as 1�  increases. For 11 2 1# �� �  we have � � � �1 1** **� �� � � �� , which means 

that the entropy decreases faster than the Gini index as 1�  increases (see Figure 2.7). 

Example 2.17 

I n Exampl e 2. 14 we obt ai ned f or  t he mi scl assi f i cat i on r at e:  

� � � �2 1� �� � � �� � � � � �� = 0.  

I f  we choose t he Gi ni  i ndex or  t he ent r opy as i mpur i t y f unct i ons,  we have:  

� �1

1 1 1 1 2

2 2 3 2 3
�� �� � � � � �

� � � � � �� � �� � �� � �� � �� � �� � �� � � !  !  !
 and � � � �2

1 5 2 1
1

2 6 5 6
�� �� � � � � �

� � � �� �� �� � �� �� �� �� � !  !
, 

but  t he di f f er ence i n t hi s case i s � � � �2 1� �� � � �� � � � � �� > 0,  whi ch means t hat  t he 

second spl i t  i s pr ef er r ed t o t he f i r st  one.  

Act ual l y,  
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� � � �

� � � �

2 1

5 2 1 1 1 2
0

6 5 2 3 2 3
5 2 1 1 1 2

1 2
6 5 2 3 2 3

� �� � � �� � � � � � � � �

� � �

� � � � � �� � �� � �� � � � � �� � �� � �� � �� � � !  !  !
� � � � � �� � �� � �% � � % �� � �� � �� � �� � � !  !  !

 

Because of  t he symmet r y of  t he i mpur i t y f unct i ons we get :  

� �
1 1 1 2 1

2
2 3 2 3 3
� � �
� � � � � �� � �� � �� � �� � �� � �� � �� � � !  !  !

. 

And because of  st r i ct l y concavi t y:  

� � � � � �
5 2 5 2 1 5 2 1 1

1 0 0 2
6 5 6 5 6 6 5 6 3
� � � � �
� � � � � � � �� � � �� � � �� � � � � � � � �� � � �� � � �� � � �� � � � !  !  !  !

. 

The problem of the misclassification rate is that � �1��� � � 1 1 11����� �� � �� �  decreases 

only linearly in 1� . Therefore we had to require that, as 1�  increases, � �1� �  decreases faster 

than linearly, which means that the impurity function should be strictly concave. Hence, if 

1 1** *� �� , we want � �1 **� �  be less than the point on the tangent line at 1 **�  (see Figure 2.9). 

Figure 2.9: A strictly concave impurity function � �1� �  

The following proposition states that strictly concave impurity functions never lead to 

degeneracy as the misclassification rate does. 

Proposition 2.18 

Let � �1� �  be a strictly concave function on 10 1�� � . Then for every partition of �  at � , 

� � 0� " � ��� � � " , 

with equality if, and only if, � � � � 11 1  ��� � � � �� � . 
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Proof: 

By the strict concavity of � , 

� � � � � � � �� � � �� �� � � � � �� � � �� � � � � �� � � �1 1  � �� �� � � � � � � �� ��

� � � � � � � �� � � �1 1  �� �� �� � � � � � � � ��� � �  

with equality holding if, and only if, � � � � 11 1  ��� � � � �� � . 

�  

��&�"� % ��������/�

In section 2.3.2 the Gini coefficient was formulated in terms of the distribution of the score �  

conditioned to � , but there is no obvious relation with the Gini index defined here. Indeed, 

there are many representations of the Gini coefficient as a measure of discriminatory power 

(or concentration), and also of the Gini index as a measure of impurity (or heterogeneity); 

Gini proposed some of them, but there are also some versions introduced by other authors 

(see Piesch, 1975). The Gini index as impurity function belonging to class �  of a score gives 

us information about the heterogeneity of � 
�  and it is given by 

 � �
2

01

1 2 0 1
�

� � �� � � � � �� �
 � �

� � � � � � � � � � � � �
	 �

� � � �# #  (2.4.7) 

By substituting in (2.4.3) and (2.4.4), we get the maximal distance function and � , as follows 

 
� �

����  ���  � ����  ���  �
� ���

� �� � � �
�

�

�� � � � � �� � � � �
�

� �

� &� ��� �� � � '� �� �� (
 (2.4.8) 

The Gini index is simple and has two interesting interpretations: 

(1) It is twice the variance of the default variable conditioned to � : � � � �� 	���� � 
�� . 

(2) If, given � , we choose a rule of classification that assigns ��  �  to a posterior 

observation selected at random with probability � �� � , then the probability that this 

observation is actually � ��  is � �� � � . Hence, the probability of misclassification 

under this rule is the Gini index: � �� �
 �

� � � � �
	
# . 
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��&�&� 1�������

Information entropy is normally regarded in the theory of communication as a summary 

measure of the “ information uncertainty”  that a probability distribution represents, but it can 

also be seen as a measure for the heterogeneity, or the impurity of that distribution. The 

conditional entropy of a score belongs to class �  and it is settled: 

 � �
01�

� � �!���� ��
�

� � � � � � �
�

� �# . (2.4.9) 

By substituting in (2.4.3), we get the maximal distance function and finally we get the 

standardized �  from (2.4.4): 

being � ��� �� � �� � �� � .  

(2.4.10) 

This criterion has been paid no attention, due to the misconception in the Basel on Banking 

Supervision (2005), where they argue that the entropy-based measures have a limited use for 

validation, since there are no applicable statistical tests for comparisons. However, we found 

in Tutz (2000), that the deviance of the test for homogeneity in 	 	�  contingency tables is 

linearly related to the estimate of the distance (2.4.2) with the entropy as impurity function. 

Therefore, a test can be constructed and we will see it in the following section. 

��&�)� 2����������� ������������/��
��������
����3����

Let us consider a partition of �  in ��  and �� , such that ��� � �� ) . Then we can build up 

the following 	 	�  contingency table for non-defaults and defaults: 

  �   

  0 1  

��  � �� �� �  � �� �� �  � ��� �  
S 

��  � �� �� �  � �� �� �  � ��� �  

  0�  1�  �  

� � � �
0 0 1 1

1

0 0 1 1 0 0 1 1�� ��!�� �� ��!�� �� �� ��!�� �� ��!�� ��
��� �

!��� � !����
� � � � � � � �

�

� � � � � � � � � �

�

�

�� � � � � �� � � � �

� � � �

� �

� &� �� � �� �� �� '� ��� �� �� (
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In order to test the hypothesis: 

 � �& ��  � ��  �� & ��  � ��  �� �� �� � � � � � � � � �� 	 , (2.4.11) 

we can apply the deviance criterion: 

 � � � � � � � �
� �

	
�" � � �

#

� �� ���$� � � ��$� ��$� ��$� 	� � � 	 , (2.4.12) 

being the respective deviances: 

� � ��
� �	 !�� !��

��
��$� � �

� �

� �� �� � �� �� ��� � � ���� �� �� �� � ��  !  ! !
, 

� � � �
� �
� �

� �
� �
� �

� �
� �	 !�� !��� �

� � �

� �

� � � �
��$� � � � �

� � � �

� �� � � ��� � �� � �� ��� � �� � �� �� � � �� �� �� �� � !  ! !
 and 

� � � � � �
� � � � � �

� �
� �

� �	 !�� !��
� �

� � �

� �

� � � �
��$� � � � �

� � � �

� �� � � ��� � �� � �� �� � � �� �� � �� � � �� �� � � �� �� � � �� �� � ��  !  ! !
. 

If we use the entropy (2.4.9) as impurity function, then it is easy to see the following 

relationship: 

� � � � � � � � � � �1 1

2 2
� " � " � � � ��� � �� � �� � � ��$� � � ��$� ��$� ��$�

� �
 � � � � . 

For � � � ���� � " � �� �
�

� � � ��  , it also holds: 

 � � � � �" � 	 	 � ��� � � �����$� � � �� � � �� � � , (2.4.13) 

which we adopt as our test statistic. We will reject ��  for a level of significance � , if 

� � 	
�"�" � ����$� � � �	 �� . 

��&�-� 1/�� �����

As we did for the accuracy ratio and the overlapping area, here we are comparing the results 

given by the diverse impurity functions for score1 and score2 at the validation sample 

obtained at random from the Fahrmeir et al. (1984) dataset. We also tested these results for 

the entropy. The misclassification rate was included in order to illustrate how sometimes it 

can lead to good results, if the proportion of defaults is not low. 
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Example 2.19 

For  score1,  we get :  

• Mi scl assi f i cat i on r at e:  ���� = 0. 240 and t he spl i t  poi nt  ��� = - 0. 053.  

• Gi ni  i ndex:  ��� = 0. 245 and �� = - 1. 130.  

• Ent r opy:  ��� = 0. 227 and �� = - 1. 287.  

We can obser ve t hat  � ,  whi ch i s t he val ue of  t he scor e t hat  maxi mi zes t he 

di st ance f unct i on,  i s cl ose f or  t he Gi ni  i ndex and t he ent r opy and cl ose t o t he 

one gi ven by � .  The val ues of  �  var y sl i ght l y,  and t hey ar e nei t her  t oo cl ose 

t o 0,  nor  t o 1,  whi ch means t he scor e i s not  ext r emel y bad or  good di scr i mi nat i ng.  

For  t hi s sampl e we have � = 200.  I f  we consi der  t he ent r opy as i mpur i t y f unct i on,  

t hen ��� = 0. 227,  ����� = 0. 583,  and subt i t ut i ng i n (2.4.13) we obt ai n � �" � ����$� � � = 

53. 084.  The cr i t i cal  val ue f or  a l evel  of  si gni f i cance � = 0. 005 i s gi ven by 

	
�"��++,	 = 7. 88.  Our  t est  st at i st i c i s hi ghl y si gni f i cant ,  si nce � �" � ����$� � � = 

53. 084 > 7. 88.  Ther ef or e,  we r ej ect  t he nul l  hypot hesi s i n (2.4.11),  i . e.  � &�  

��  � ��  ���� � � �� .  Fi gur e 2. 10 shows t he est i mat es f or  t he densi t y f unct i ons of  

non- def aul t s and def aul t s and t he spl i t  poi nt s.  

Figure 2.10: different split points for score1 
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Example 2.20 

For  score2, we obt ai n:  

• Mi scl assi f i cat i on r at e:  ���� = 0. 166 and ��� = - 0. 335.  

• Gi ni  i ndex:  ��� = 0. 117 and �� = - 0. 335.  

• Ent r opy:  ��� = 0. 087 and �� = - 0. 335.  

Fr om t hese r esul t s we can concl ude t hat  score1 has mor e di scr i mi nat or y power  t han 

score2.  The spl i t  poi nt s ar e equal  f or  ever y i mpur i t y f unct i on ( see Fi gur e 2. 11) .  

I f  we consi der  t he ent r opy as i mpur i t y f unct i on,  we have agai n ����� = 0. 583 and 

	
�"��++,	 = 7. 88 f or  a l evel  of  si gni f i cance � = 0. 005.  Then we obt ai n ��� = 0. 087,  and 

subt i t ut i ng i n (2.4.13),  we get  � �" � ����$� � � = 20. 475,  whi ch i s al so hi ghl y 

si gni f i cant ,  si nce 20. 475 > 7. 88.  Her e agai n we wi l l  r ej ect  t he nul l  hypot hesi s i n 

f avour  of  t he al t er nat i ve i n (2.4.11).  

Figure 2.11: the same split points for score2 

��&�4� (�� �����������������������% ��������/�

Having seen the defects of the misclassification rate, it remains only to compare the Gini 

index and the entropy as splitting criteria for the standardized maximal distance � . This 

comparison cannot be done generally, but only under some assumptions. With this purpose 

we will study in this section four cases. The first of these is linked to a proposition. Examples 
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and simulations follow the other three, since it is not possible to compare both measures 

theoretically, and we will explain the reasons. 

For ease of calculations, we will consider in the following for the entropy �� , solution of 

��� � � ��
�

� � � � � �� � �  and for the Gini index the optimal split point �� . 

Case 1 

We will study a case where the default variable �  and the score �  are independent. 

Proposition 2.21 

Assume we have a random variable �  and �  is a Bernoulli such that: 

� � � � 11 1�� � � �� �� � � � � , �� � � . 

Then, it holds: 0� �� �� � . 

Proof: 

We must calculate the following conditioned probabilities: 

� �
� �

� �
� � � �

� � 1

1 1
1

�
   

 

  

�� � � �� � � �
�� � �

� � � � � �
�

� � � �
� � � � �

� �
, for � � �� . 

Similarly we get: 

� � � � 10 1 1 1   �� � � �� � � �� � � � � � � � , 

� � � � 11 1   �� � � �� � � �� � � � � �  and 

� � � � � � 10 0 1 1 1     �� � � �� � � �� � � �� � � � � � � � � � � , for � � �� . 

1. Let us first prove 0�� � . 

The impurity functions are: 

� � � � � � � � � � � �1 1 1 11 1� � � !�� !��� �� � � � � � � � �� � � � � � � �  

Therefore, 
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� � � �� � � � � � � �� �
� � � � � �

1 1 1 1

1 1 1 1

1 1
1 0

1 1

!�� !��

!�� !��

� �

�

� � � � � �
�

� � � �

� � � �

� � � � � �
� � �

� � �
. 

2. And then for the Gini index 0�� � . 

Here we have: 

� � � � � � � �1 12 1� � �� �� � � � � � �� � � � � �  

and we get: 

� � � � � � � �
� �

1 1 1 1

1 1

2 1 2 1
1 0

2 1
� �

�

� � � � � �
�

� � � �

� �

� � � � �
� � �

�
. 

An alternative proof can be accomplished with the help of Proposition 2.18. 

�  

As it is obvious in this case, there is no difference between both measures of impurity. The 

score has no discriminatory power at all, and thus 0� �� �� � . 

Case 2 

We want to see here how the standardized maximal distance �  and the split points vary as 

we choose the Gini index or the entropy as splitting criteria for a given score with a 

probability of default that increases as the score increases. 

Proposition 2.22 

Let us suppose that the probability of default increases as the score takes higher values and we 

have a score � , which is discrete uniformly distributed, being: 

� � 1
�� � �

�
� � , � �1� �� �� � �  and 

� � � �1  � ��� � � % � �� � � � , with 

� �

� � � �
1

1
�

� �
�

��
%

� � � � �
�

�
�

� #
 a constant, for 1� �� �� � , and � ��� �  monotonically increasing, 

such that 
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� � � � � � � � � �
1 1 1

1 1
1 1 1 

� � �

� � � �
� � �

�� �� � � � � � �� � %� �
� �� � �

� � � � � � � �# # # . 

Further, assume the optimal split point ��  for the entropy and ��  for the Gini index, and call: 

� �

� �
1

1

1

1





�

�
�

�

�
�

�� � �

�

�� � �

�

�

� �
�

� �

#

#
, 

� �

� �
1

1

1

1





�

�
�

�

�
�

�� � �

�

�� � �

�

�

� �
�

� �

#

#

 . 

Then we get the following expressions for the standardized maximal distance: 

1. For the entropy 

� �
� �

� �

� � � � � �

� � � � � �

� � � �

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1
1

1
1 1

1 1 1 1

1 1

!�� !�� !��

!�� !��

!�� !��

!�� !��

�

� � � � � �
� � � �

� � � � � �
�

� �
� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �� � � �� � �� �� � � �� ���� �� � � � � �� � ��� � ��� �� �� �� � � �� � �� � !� � � !  ! ! !
� �

� � �

� � � �� �� �� � � � �� �� �� �� �� �� � !  !
�

� � �� �1

 

We need the restriction 10 1
1

��� � �
� �

� � �

�� � �
�

� &� ��� �� � � '� ��� �� (
, which is equivalent to: 

1

1

0

0
1� �

�
 � � ��

��

� �
��&��' ��

� �

�

�

��� � � ����� ��� � ��� ���

 

so that the logarithms exist. 

2. For the Gini index 

� �
2

1

1

1 1 2

1
1�

� �
� �

� � �
�

�

�

� ���� � � �� ����  !
� �

�


 


, for 10 1�� � . 

Proof: 

We need to calculate the conditioned probabilities, for � � �� : 
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� �
� �

� �
� � � �

� �
1 1 1

1
� 

   
 

  

�� � � � � � � ��
�� � �

� � � � � �

� � � � �
� � � �

� �

� � � � � �
� �1 1

1

1
1 1

1
1

 

 �
# #

  

� � �  
� �

�
�

�� � � � � �� �
�

�� �
 �  �  

� �

�

� � �
� � � �
# #

#  

and the probability of its complementary 

� � � � � �
1

1
0 1 1 1 1  

 

  �
�

�� � � �� � � �� �
 �

� � � � � � � � �# . 

Similarly, we obtain 

� � � �
1

1
1 1 

�

 �
�  

�� � � �� �
�  � �

� � � �
� #  and 

� � � �
1

1
0 1 1 

�

 �
�  

�� � � �� �
�  � �

� � � � �
� # . 

1. Then we have for the entropy: 

� �

� � � � � � � �
1 1 1 1

1 1 1 1
1 1 1 1 1 1

�

 !��   !�� 

�

� � � �

� � � �
� � � �

� �

� � � � � � � �
� � � �� � � �

� �

� � � � � �� � �� � �� � �� � � �� � �� � �� � �� � �� � � !  !  !
# # # #

� �

� �
� �

� �

� �
� �

� � � � � �

1 1

1 1

1 1

1 1 1

1 1
1 1 1 1

1 1
1 1

1 1

1 1 1
1 1 1 1 1

 

 !�� 
 

!��   !�� 

� �

� �� �
� �

� �� �

� �
� �

� �

� � �

� � �
� � �

� � � �

� � � �
� � � �� � � �

� �

� � � � � �
� � �

� �

� �

� �

� � �

� ��� �� �� �� �� � �� �� ��� �� �� !
� � � �� �� �� �� � � �� �� �� �� �� � !  !

# #
# #

# #

# # #

1 1 1 1 11 1!�� !�� !��
� � � � �

� � � � �
� � � � �
� � � � �

� � � � � �� � �� � �� � � � �� � �� � �� � �� � �� � � !  !  !
. 

And 

� �� �� �� �  
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� � � �

� � � �

1 1

1 1

1 1
1 1

1 1
1 1 1 1

 !�� 

 !�� 

� �

� �

� � � �

� �

� �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �

� � � �

� ��� �� � �� ��� � !
� � � �� �� �� �� � �� �� �� �� �� �� � !  !

# #

# #

� � � �

� � � �

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1 1 1

 !�� 

 !�� 

� �

� �
� �

� �

� �
� �

� � � � � �
� � � �

� � � � � �
� � � �

� �

� �

� �

� �

� �� � � ��� � �� � �� ��� � �� � �� ��� � �� �� � ��� � !  ! !
� � � �� � � �� �� � � �� �� �� �� �� � � � �� �� �� �� �� �� �� �� �� �� �� � !  ! !  !

# #

# #

� � � �

� � � �

1 1 1 1

1 1 1 1

1 1

1 1
1 1

!��

!��

� � � � � �
� � � �

� � � � � �
� � � �

� � � �

� � � �

� ���� � � �� ���� � !

� � � �� �� �� � � � �� �� �� �� �� �� � !  !

� � � � � � � �1 1 1 11 1 1 1 1 1!�� !��
� � � �

� � � �
� � � � � � � �

� � � �
� � � � � �� � �� � �� � � � � � � �� � �� � �� � �� � �� � �� � � � !  !  !

 

We must calculate 

� � � �� �� �

� � �
� � � �

� �

�
� � � �

� � � � � � � �

1 1 1 1 1

1 1 1 1

1 1

1 1 1 1 1

!�� !�� !��

!�� !��

� � � �
� � � � �

� � � �

� � � �
� � � �

� � � � �

� � � � �

� � � �

� � � � � �� � �� � �� � � � �� � �� � �� � �� � �� � � !  !  !

� � � �� ��� �� ���� � � � � � � �� ��� ��� ���� �� � !� � !  !

� � � �

� � � �

� �

1 1 1 1 1

1 1 1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1

!�� !�� !��

!�� !��

!�� !��

!��

� � � �
� � � � �

� � � �

� �
� � �

� � � �

� � �
� �

� � � � �

�
�

� �

� � � � �

� � � �

� �

� �

� � � � � �� � �� � �� � � � �� � �� � �� � �� � �� � � !  !  !

� � � �� �� �� � � �� �� �� �� �� �� � !  !

� � � �� �� �� � � � � �� �� �� �� �� �� � !  !

��� � ��
� 

� �1 11 1!��
�

� �
� �

� �
� � �� ��� � �� ��� �� �� � �!  !

 

� �
� �

� �

� � � � � �

1 1 1 1

1 1 1 1

1 1 1
1

1 1 1 1

!�� !�� !��

!�� !��

� � � � � �
� � � �

� � � � � �

� �
� �

� � � �

� � � �

� � � �

� � � �� � � �� � �� �� � � �� ���� �� � � � � � �� �� � � ��� �� � � �� � � �� � ! �� �� � � !  ! ! !

� � � �� �� �� � � � � �� �� �� �� �� �� � !  !
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By substituting it into (2.4.10) we get the above-mentioned expression of �� . 

2. For the Gini index we need to calculate 

� � � � � � � �1 0 1 0   � � � �

� � �
�� � � �� � � �� � � �� � �

� �

�
� � � � � � � � � �

� � � �

� � � �

2

1 1

2

1 1

1 1
1 1

1 1
1 1

 

 

� �

� �
� �

� �

� �
� � � �

�
�� � �� �

� � �

� �
�� � �� �

� � � � �

� �

� � � �

� �� � �� �� �� �� � � � ��� � ��� �� � ! �� !

� �� � ��� �� �� �� � � � ��� � ��� �� �� �  ! �� !

# #

# #

� � � � � �
2 2

1 1 1

1 1 1 1
1 1 1  

�� �

� � �

� � � �

�� � �� � �� �
� � � � �� � � �

� �� � � � �� � �� � �� � �� � � � � � �� �� � � �� �� � �� � �� !  ! �� !
# # #

� � � �1 2� �  

In order to simplify, we write 

� � � � � �
2 2

1 1 1

1 1
1 1 1  

�� �

� � �
� � � �

�
�� � �� � �� �

� � � � �� � � �

� � � �� �� �� �� � � � �� �� �� �� �� �� � !  !
# # #  

� � � � � �

� �

2 2

2

1 1
1 1

1
1

1 1
1 1

1
2 1

 



� �

� �

� �

�

�

�

� �� � � �� �
� � � �

� �� �
� �

� �

�

� �

�

� �� � � � ��� �� � ��� �� � � � � � �� ��� � �� ��� �� � �� � !  ! �� !

� �
�

# #

#
 

We have � � 11 ��  and 

� � � � � �
2 2

1 1

1 1 1
2 1 1 

� �

� �

� � �

�� � �� �
� � � �� � �

� �� � � � �� � �� � �� � �� � � � � �� �� � � �� �� � �� � �� !  ! �� !
# #

� �
� �

� � � �
2

2

1 1
1 1

1 1 1 1
1 2 1 

� �

� �

� �

� � �
�� � � �� �

� � � � � � � � �
� �

� �

� �� �� � �� � � �� �� �� ��� � � � � �� ��� �� ���� �� �� �� � � � !  !�� !
# #

� � � �
2

2
1 1

1 1

1 1
1 2 1 

� �

� �

� �

�� � � �� �
� � �

� �
� �

� �� � �� �� �� �� � � � � � ��� � ��� �� ��  ! �� !
# #  

Therefore, we obtain 
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� � � �
� �1 1

1 2
1

1��
� �

�
� �

�

� � � �

� �

2

2
1 1 1

1 1

1 1

1 1
1 2 1

1
1

 
� �

� �
� �

�� � � �� �
� � �

� � �

� �

� �

� �� � �� �� �� �� � � � � ��� � ��� �� ��  ! �� !
� �

�

# #

� � � �
2

1 1
1 1 1

1 1

1

1 1
1 1

1 2

1
1
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� �

� �

�� � �� �

�
� � �

� � �
� �

�

� �

� �� � � ��� � �� � �� � �� ��� �� � ��� �� � ��� �� � ��� �� � �� �� �� �� �� �� �� �� �� � �� � �� � �� � �� � ��� �� �� ��  !  !�� !
� �

�

# #

� �

� �

� �

� �

2

2
1 1

1 1 1

1 1

1

1 1
1

1 2
1 1

1
1

 

 

� �

� �

� �

� �

� �
� �

�� � �� �
�

� �
� � �

�� � �� �

� � �

�

� �

� �

� �� � � ��� � �� � �� � �� ��� �� � ��� �� � ��� �� � ��� �� � �� �� �� �� �� �� �� �� �� � �� � �� � �� �� � �� � ��� �� �� ��  !  !�� !
� �

�

# #

# #

2
2

1 1 1

1

1
1 2

1
1

�
� � ��

� � �
� � �

�

� ���� � � �� �� ��  !
� �

�


 


 

�  

Proposition 2.23 

We can write also 

1

1

1
1

1�

!
�

�

�

�
� �

�
, for 10 1�� � , 

being 
� �

2 1 2 1
� �

! � �
� � �

� ���� � � "�� ����  !

 
 . 

Proof: 

We want to prove here that 1! " : 

� �
2 2

2 2
2 2 2

1 2 1 2 1 0

2 1 2 2 0

� � � � �
! � � � �

� � � � �

� � � � � � � �
� � � � � � �

� � � � � � �

� � ���� � � " % � � � "�� ����  !

� � � �� � �� �� � � � � � � � � � � "� �� �� �� � !  !


 
 
 



 
 
 
 
 
 


 

�  
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In order to compare both standardized maximal distances, we calculate the first and second 

derivatives with respect to the default probability 1� . For ��  they are: 

1. 
� � 1 12

1 1

1
0 0 1

1
&��� !

�
� �

� �

�
� " � � �

�
,  

since 1! " , which means that ��  increases as 1�  increases. 

2. 
� �

� �

2

1 132
1 1

2 1
0 0 1

1
&�� � !

�
� �

� �

�
� " � � �

�
. 

Together with the fact 0 1��� � , we have that ��  as function of 1�  is convex. 

The first and second derivatives of ��  with respect to 1�  are given by: 

1. 
� � � �� �2

1 1 1 1 1

1

1 1!� !�

���

� �� � � � �
�

� � �
 

� �
� �1 1

1

1
1 1!� !� !�

� � � �
� � �

� � �

� �
�

� � �� � � ��� �� �� �� �� �� � � � � � �� � ��� �� � �� ��� �� � �  ! ! ! 
 

� � � �
� �1

1

1
1 1!� !�

� �
� ��

� �

�
�

� � ��� �� �� � � � �� �� � ��� � ! 

� � � �
� �

� �1 1
1

1
1

!� !� !�
� � � � � � �

� � �� �
� � � � �

� �
��� �� �� � � � �� � ��� �� � �� ������ �� � � � �� ��� ������ ��� �� � ����� �� �� � � �  !� ! � ! ! !!
 

2. 
� � � � � �� �

2

32
1 1 1 1 1

1

1 1!� !�

�� �

�� � � � �
�

� � � � � �

� �� � � �� �
� �� �� �� �

22 2
1 1 1 1 1

1 1 1

1 1 1

1 1

!� !��� � � � �

� � � � � �

� � � � �

� � �

� � � � � � � ���� �� � � � � � � �� 

� � � �� � � � � � � �� �1 1 1 1 1 12 1 1 1!� !� !� !�� � � � � �� � � � � � �

� �
� � � �1 11 1

1 1!� !�
� � � �

�
� � � �

� �� � � � �� � � �� � �� �� � � � � �� �� � �� �� � �� �� � � !  ! 

� �
� �

11
1

!� !�
� � � � �

�
� � �

� �� �� � � �� � ��� �� �� ����� � � �� �� �� �� � ��� ��� �� � �  ! � ! !!

� � � �
� �

� �1 1
1 1 1

1
1

1
!� !� !�

� � � � � � �
� � � � � �

� � � � �

� �
� � �

� � �� � � �� � � � � ��� �� �� �� � � � � �� ��� �� �� ��� �� � ���� � � !  ! ! !

� �� �� �
� � � �

2

1 1
1

1 1

2 1 1
1

!� !�
!�

� �
� � � � �

� � �

� � �
� �

� � � �� �� � �� �� �� � � � � �� � ��� �� �� � ! !
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� �
� � � �� � � � 1

1 1 1 1 1 1
1 1

1
1 1 1

1
!� !� !�

� �
� � � � �

� �

�
� � � � � �

� �

� � � �� � ��� � � � � � � � � � �� � �� � ����� �  !  

� � � �
� �

� �1 1
1 1 1

1
1

1
!� !� !�

� � � � � � �
� � � � � �

� � � � �

� �
� � �

��� � �� � � �� � � � ��� ��� �� � ��� �� � � � � �� ��� � ��� �� �� �� �� � ���� �� � � � !  ! ! ! !!
 

But from these derivatives we cannot guess if the function is increasing or decreasing, 

because there is no solution in 1�  for the equation 0�� � , neither for 

1

0���

��
� , nor 

2

2
1

0�� �

��
� . 

We would like to know, as we did for the Gini index, if the first or second derivatives are 

always positive or negative, but it is not possible here. For example, given 700� � , 

100� �  and 0 1�� � , then for two different probabilities of default: 

• 1 0 6�� � , the second derivative is positive 
2

2
1

0 446��� �

��
� , 

• and for 1 0 05�� � , it is negative 
2

2
1

0 077��� �

��
� � . 

In this case, depending on the value of 1� , ��  can be convex or concave. 

We would like to compare theoretically the standardized maximal distance for the entropy and 

the Gini index. However, this comparison has to be numerical, because, as there is no solution 

in 1�  for the equation 0�� � , there is also no solution for 0� �� �� � . Therefore, we 

illustrate how both *� �  can be compared graphically in the following example. 

Example 2.24 

We choose a sampl e of  � = 700 scor e val ues,  havi ng bot h ent r opy and Gi ni  i ndex t he 

same opt i mal  spl i t  poi nt  at  � = � = 100,  and t hus � = �
= 0. 3.  The st andar di zed 

maxi mal  di st ances ��  and ��  ar e depi ct ed i n Fi gur e 2. 12 ( i n t he x- axi s ar e 

r epr esent ed t he pr obabi l i t i es of  def aul t  f or  0 1�� � 0. 476= #� �� ) .  Her e,  i t  

woul d be bet t er  t o use t he ent r opy as spl i t t i ng cr i t er i on,  si nce f or  l ower  

pr obabi l i t i es of  def aul t ,  whi ch i s t he case i n t he cr edi t  r at i ng pr act i ce,  i t  

gi ves hi gher  val ues of  � .  
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Figure 2.12: ��  and ��  for 700� � , 100� � , 0 3�� �  

Simulation 2.25 

We al so si mul at ed a sampl e of  � = 500 r andom val ues of  a di scr et e uni f or ml y 

di st r i but ed scor e � �1 5�� �	 .  Then we consi der ed t he def aul t  var i abl es:  

1 � � � � � �! !
�� �   �� ,  

500
!

 

!
� (�

� ��� �� �� !
	 ,  f or  1 500� � � ! � � ,  wi t h � �1

500
!

 

!
�� � � ,  

and cal l :  
1

1 �! !
  

� �
� �

� #  “ Pr opor t i on of  def aul t s i n t he sampl e” ,  bei ng 

500
�! !

� ( �
� ��� �� �� !

	 ,  such t hat  � � � �1
500

! ! !
�� ��� � � .  

We woul d l i ke t hat  t he pr obabi l i t y of  def aul t  i ncr eases as t he scor e t akes hi gher  

val ues:  

� �� �1 # 
��!
 � ! �� � (� ' �� �	 ,  wi t h                         f or  1 500� � � � � ! � � ,  

such t hat  

� � � � � � � �1 1

1
1 1

5001



��

� �
! ! !

  � �

� � �

' !
�� �� � � �

� �� �

� � � � �
� �

# # . 

Then,  f or  ever y r eal i sat i on js ,  1� �� �� � ,  of  t he scor e � ,  we choose !
� �� �  at  

r andom f r om a Ber noul l i  di st r i but i on wi t h � � � �1 1 # 
��!
� � ! ��� � ' �� � � � .  

Fi nal l y,  we cal cul at ed �  f or  t he scor e �  and f or  ever y r andom sampl e 1 � �
! !

�� �� ,  

1 500� �! � � .  

1

500
1 1

1

#
�


��� �

! �

� �

!
'

� ��

�

� �#
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We pi ct ur e f i r st  i n Fi gur e 2. 13 t he di f f er ent  spl i t  poi nt s obt ai ned f r om usi ng t he 

ent r opy and t he Gi ni  I ndex as spl i t t i ng cr i t er i a.  I n t he x- axi s ar e r epr esent ed 

t he est i mat ed pr obabi l i t i es of  def aul t  � � �0 1 1!��� � � .  

Figure 2.13: Split points for the simulation in case 2 

I n t hi s pi ct ur e and i n t he f ol l owi ng t abl e we can obser ve t hat  most  of  t he opt i mal  

spl i t  poi nt s coi nci de ( 82. 4%) .  For  t he noncoi nci dent ,  t he ent r opy r ai ses hi gher  

spl i t  poi nt s f or  hi gher  PDs ( �� > �� ) .  When i t  comes t o l ower  pr obabi l i t i es of  

def aul t ,  we have t hat  t he spl i t  poi nt s obt ai ned usi ng Gi ni  i ndex ar e hi gher  t han 

t hose obt ai ned usi ng ent r opy ( �� > �� ) .  Thi s means t hat  t he ent r opy cr i t er i on i s a 

l i t t l e mor e conser vat i ve t han t he Gi ni  i ndex,  as we si mul at ed pr obabi l i t i es of  

def aul t  i ncr easi ng wi t h t he scor e val ues.  The spl i t s di f f er  mor e f r om each ot her  

as t he pr obabi l i t y of  def aul t  i ncr eases or  decr eases.  

PD �� = ��  �� > ��  �� > ��  

( 0, 0. 2]  62 23 11 

( 0. 2, 0. 4]  89 10 3 

( 0. 4, 0. 6]  96 3 0 

( 0. 6, 0. 8]  93 0 11 

( 0. 8, 1]  72 0 27 

Tot al  412 ( 82. 4%)  36 ( 7. 2%)  52 ( 10. 4%)  

Table 2.4: Split points for the simulation in case 2 
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I n Fi gur e 2. 14,  we r epr esent  t he di f f er ent  est i mat es of  � .  I t  decr eases f or  t he 

Gi ni  i ndex as t he pr obabi l i t y of  def aul t  decr eases.  For  t he ent r opy,  �  decr eases 

and i ncr eases agai n f or  l ow � � �1!�� � .  As r egar ds ver y l ow pr obabi l i t i es of  

def aul t ,  �  decr eases sl i ght l y mor e r api dl y f or  t he Gi ni  i ndex,  bei ng ver y cl ose 

t o 0.  However ,  �  i s mor e st abl e wi t h r espect  t o t he pr obabi l i t y of  def aul t  t han 

t he Gi ni  i ndex.  Hence,  we have no r el evant  evi dence of  a bet t er  cr i t er i on i n t hi s 

case.  

Figure 2.14: �  values for the simulation in case 2 

Case 3: 

Here we want to see how the standardized maximal distance �  and the split points vary as 

we choose the Gini index or the entropy as splitting criteria for a score that is normally 

distributed given default and non-default with different means, such that, as the difference 

between means increases, the overlapping area decreases and thus we can say that the score 

discriminates better. 

Proposition 2.26 

If we have a score with conditional distributions 

� �0 0 1 �� � )� 	  and 

� �1 1 �� � ) �� 	 , 0� " , 
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then the standardized maximal distance function can be written: 

1. For the entropy, we assume that ��  is the optimal split point and we obtain 
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2. For the Gini index we assume that ��  is the optimal split point and we obtain 
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, 

� �* �  being the distribution function of a normally distributed random variable with mean zero 

and variance one. 

Proof: 

For �� � �� , the probabilities are: 
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1 1 0 0
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And the conditioned probabilities: 



 44 
 

� � � � � �

� �
� �

� �
11 1

1



� �

�

� �

� � � � �� �
�� � �

� � � � � �

� �� � � * �
� � � �

� �
 

� � � � � �

� �
� � � �

� �
10 0 1

0



� �

�

� �

� � � � �� �
�� � �

� � � � � �

�� � � � *
� � � �

� �
 

� � � � � �
� �

� �� �
� �

1 11 1
1




��

�

� �

�� � � � ��
�� � �

� � � � � �

� ��* �� � �
� � � �

� �
 

� � � � � �
� �

� � � �� �
� �

11 10 0
0




��

�

� �

�� � � � ��
�� � �

� � � � � �

�� �*� � �
� � � �

� �
 

1. Then we have for the entropy the following impurity functions: 
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By substituting into (2.4.10) we obtain the above-mentioned expression of �� . 

2. And for the Gini index: 

� � � �� � � �
� �

1 1

2

1
2�

� �

�

�

� �
� �

� � �

� � �* � � *
� �

�
, 

� �
� �� �� � � �� �

� �
1 1

2

1 1 1
2�

� �

�

�

� �
� �

� � �

� � ��* � � �*
� �

�
 

By substituting in (2.4.8) we get the last expression of the standardized maximal distance 

function �� . 

�  

For both Gini index and entropy the first and second derivatives of �  with respect to 1�  and 

with respect to �  are very complicated and they are in terms of the normal cumulative 
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distribution function, which can only be computed numerically or otherwise approximated. 

Therefore, we can study and compare ��  and ��  only numerically. 

Example 2.27 

We can see ( Fi gur e 2. 15)  how t he gr aphi cs l ook l i ke f or  di f f er ent  pr obabi l i t i es of  

def aul t ,  havi ng t he same spl i t  poi nt  � �� �� = 1 and � = 3.  I n t hi s case ��  i s 

mor e st abl e wi t h r espect  t o t he pr obabi l i t y of  def aul t  t han �� ,  i . e.  ��  i s 

hi gher  f or  ext r eme val ues of  t he def aul t  pr obabi l i t y.  Si nce havi ng ver y l ow 

pr obabi l i t i es of  def aul t  i s t he nor mal  case i n cr edi t  scor i ng,  we can af f i r m t hat ,  

i n t hi s case,  ��  i s a bet t er  measur e of  t he di scr i mi nat or y power  t han �� .  

I n Fi gur e 2. 16 we can appr eci at e how �  l ooks l i ke f or  di f f er ent  means � ,  f or  a 

gi ven pr obabi l i t y of  def aul t  1� = 0. 1 and � �� �� = 3 i n t he f ol l owi ng pi ct ur e.  We 

have f or  bot h Gi ni  i ndex and ent r opy t hat  �  i ncr eases as �  i ncr eases,  i n a ver y 

si mi l ar  way.  

Figure 2.15: ��  and ��  for 1� � , 3� �  Figure 2.16: ��  and ��  for, 1 0 1�� � , 3� �  

Simulation 2.28 

We al so si mul at ed 300 sampl es of  � = 1000 r andom val ues of  a scor e wi t h � �1�� � = 

0. 05,  such t hat  

� �0 0 1� � ) �� 	  and 
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� �1 1!� � ) ��� 	 , 6 300! ! #� � , 1 300! � �� � . 

For  0� = 0,  t her e i s a t ot al  over l appi ng of  t he densi t i es of  def aul t  and non-

def aul t ,  and t he scor e i s not  di scr i mi nat i ng at  al l .  As !�  i ncr eases,  t he 

over l appi ng ar ea decr eases;  t her ef or e t he scor e has mor e di scr i mi nat or y power .  For  

300� = 6 t he scor e di scr i mi nat es al most  per f ect l y.  

Fi gur e 2. 17 pi ct ur es t he di f f er ent  spl i t  poi nt s obt ai ned f r om usi ng t he ent r opy 

and t he Gi ni  i ndex as spl i t t i ng cr i t er i a f or  a gi ven pr obabi l i t y of  def aul t  as t he 

means var y.  I n t he x- axi s t her e ar e r epr esent ed t he mean est i mat es:  0 6!�� �� ,  

1 300� �! � � .  For  bot h cr i t er i a we have t hat  t he spl i t  poi nt s ar e hi gher  as !�  

i ncr eases,  whi ch i s r easonabl e.  The r esul t s ar e l i st ed i n t he t abl e bel ow.  

Figure 2.17: Split points for simulation in case 3, for � �1 0 05�� �� �  

 

!�  �� = ��  �� > ��  �� > ��  

[ 0, 2)  43 56 1 

( 2, 4]  23 77 0 

( 4, 6]  78 22 0 

Tot al  144 ( 48%)  155 ( 51. 6%)  1 ( 0. 3%)  

Table 2.5: Split points for simulation in case 3, for � �1 0 05�� �� �  

The t abl e shows t hat  al most  hal f  of  t he spl i t  poi nt s coi nci de and f or  t he non-

coi nci dent ,  t hose obt ai ned usi ng t he Gi ni  i ndex ar e hi gher  t han i f  we use t he 
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ent r opy.  Thi s means t hat  t he ent r opy i s a l i t t l e mor e conser vat i ve t han t he Gi ni  

i ndex,  si nce we di d t he si mul at i ons f or  !� "0 and t hus t he di st r i but i on of  

1� � �  l ays on t he r i ght  of  ( or  over l aps)  t he di st r i but i on of  0� � � .  

Fi gur e 2. 18 pi ct ur es t he spl i t  poi nt s f or  � = 3 as t he pr obabi l i t y of  def aul t  

changes.  The spl i t  poi nt s coi nci de f or  al most  75% of  t he scor es and t hey ar e 

si mi l ar l y spr ead over  t he scor e r ange.  They ar e consequent l y hi gher  f or  l ower  

pr obabi l i t i es of  def aul t .  

Figure 2.18: Split points for the simulation in case 3, for 3� �  

Fi gur e 2. 19 shows t he di f f er ent  est i mat es of  � .  We appr eci at e al so her e,  t hat  t he 

di f f er ence bet ween appl yi ng t he Gi ni  i ndex or  t he ent r opy as i mpur i t y f unct i ons i s 

not  r el evant .  For  bot h cr i t er i a we have t hat  �  i ncr eases as !�  i ncr eases.  

Fi nal l y,  i n Fi gur e 2. 20 ar e depi ct ed t he est i mat es of  �  f or  � = 3.  The r esul t s 

obt ai ned f r om appl yi ng bot h measur es ar e si mi l ar ,  but  t he ent r opy gi ves sl i ght l y 

bet t er  r esul t s f or  ext r eme val ues of  t he pr obabi l i t y of  def aul t ,  si nce �  f or  t he 

ent r opy does not  var y as much as f or  t he Gi ni  i ndex as t he pr obabi l i t y of  def aul t  

var i es.  
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Figure 2.19: case 3, for � �1 0 05�� �� �   Figure 2.20: case 3, for 3� �  

Case 4: 

We consider now the distributions conditioned to default and non-default both having the 

same means but different standard deviations, such that, as the difference between standard 

deviations increases, the overlapping area decreases and therefore the score has more 

discriminatory power. 

Proposition 2.29 

Assume a score with conditional distributions: 

� �0 0 1 �� � )� 	  and 

� �1 0 �� � ) �� 	 , 0 1�� � , 

Then the standardized maximal distance function can be written: 

1. For the entropy 
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2. For the Gini index 
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Proof: 

In this case, we get the following probabilities for �� � �� : 
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1. Then we get the following impurity functions, for the entropy 
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2. And for the Gini index 
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By substituting these impurity functions in (2.4.10) and (2.4.8), respectively, we get the above 

defined ��  and �� . 

�  

The first and second derivatives of �  with respect to 1�  and with respect to �  for Gini index 

and entropy are again very complicated and in terms of the normal cumulative distribution 

function, which has no explict form. Hence, we can study and compare them only 

numerically. 

Example 2.30 

Look at  Fi gur e 2. 21 f or  t he same opt i mal  spl i t  poi nt  �� = �� = 0. 5 and � = 1/ 2.  We 

can see how t he gr aphi cs �  l ook l i ke f or  di f f er ent  pr obabi l i t i es of  def aul t .  Her e 

agai n,  ��  i s hi gher  t han ��  f or  ext r eme val ues of  t he pr obabi l i t y of  def aul t .  I n 

t hi s case we can say t hat ,  usi ng t he ent r opy as i mpur i t y f unct i on,  i s a bet t er  way 

t o measur e t he di scr i mi nat or y power  of  t he scor e.  

We can al so see ( Fi gur e 2. 22)  how,  f or  a gi ven pr obabi l i t y of  def aul t  1� = 0. 1 and 

�� = �� = 0. 5,  ��  and ��  l ook l i ke f or  di f f er ent  st andar d devi at i ons � .  Her e,  

t her e i s a cl ear  di f f er ence bet ween t he Gi ni  i ndex and t he ent r opy.  For  t he second 

one we get  hi gher  val ues of  �  as �  decr eases,  whi ch means t hat  ��  i ncr eases as 

t he over l appi ng ar ea decr eases mor e r api dl y t han ��  and t her ef or e usi ng t he 

ent r opy gi ves bet t er  r esul t s f or  measur i ng t he di scr i mi nat or y power .  
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Figure 2.21: 0 5�� � , 1 2#� �   Figure 2.22: 1 0 1�� �  and 0 5��� �  

Simulation 2.31 

Agai n,  we si mul at e 300 sampl es of  � = 1000 r andom val ues of  a scor e wi t h def aul t  

pr obabi l i t y � �1�� � = 0. 05,  but  now we consi der  bot h di st r i but i ons of  def aul t s 

and non- def aul t s havi ng t he same mean and di f f er ent  st andar d devi at i ons,  such 

t hat :  

� �0 0 1� � ) �� 	  and 

� �1 0 !� � ) ��� 	 , 300! ! #� � , 1 300! � �� � . 

As !�  i ncr eases,  t he over l appi ng ar ea i ncr eases;  t her ef or e t he scor e has l ess 

di scr i mi nat or y power .  For  300� = 1,  t her e i s a t ot al  over l appi ng of  t he densi t i es 

of  def aul t  and non- def aul t .  

I n Fi gur e 2. 23 t her e ar e r epr esent ed t he spl i t  poi nt s obt ai ned f r om usi ng t he 

ent r opy and t he Gi ni  I ndex.  I n t he x- axi s ar e t he est i mat ed st andar d devi at i ons:  

0 1!�� �� ,  1 300� �! � � .  The spl i t  poi nt s coi nci de f or  60% of  t he scor es.  As !�  

i ncr eases,  t he di scr i mi nat or y power  of  t he scor e decr eases and t he spl i t  poi nt s 

devi at e mor e f r om each ot her ,  and f r om t he mean � = 0.  
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Figure 2.23: Split points for the simulation in case 4, � �1 0 05�� �� �  

Fi gur e 2. 24 pi ct ur es t he spl i t  poi nt s f or  � = 0. 5 as t he def aul t  pr obabi l i t y 

var i es.  The spl i t  poi nt s coi nci de f or  72% of  t he scor es and t hey ar e si mi l ar l y 

di ssemi nat ed over  t he r ange of  t he scor e.  

Figure 2.24: Split points for the simulation in case 4, 0 5�� �  

Fi gur e 2. 25 pi ct ur es t he di f f er ent  est i mat es of  � .  For  bot h cr i t er i a we have t hat  

�  decr eases as !�  i ncr eases,  but  we obt ai n hi gher  val ues of  �  when we use t he 

ent r opy as spl i t t i ng cr i t er i on.  Ther ef or e,  we can concl ude her e t hat  usi ng t he 

ent r opy i n �  gi ves bet t er  r esul t s t han usi ng t he Gi ni  i ndex,  because i t  i s mor e 

sensi t i ve t o t he di scr i mi nat or y power  of  t he scor e.  
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Figure 2.25: �  values for the simulation in case 4, � �1 0 05�� �� �  

Fi gur e 2. 26 shows t he est i mat es of  �  f or  � = 0. 5.  The �  val ues f or  t he ent r opy 

ar e mor e st abl e wi t h r espect  t o t he pr obabi l i t y of  def aul t  t han f or  t he Gi ni  i ndex 

and t hus hi gher  f or  l ower  pr obabi l i t i es of  def aul t .  We can st at e agai n t hat  usi ng 

t he ent r opy as i mpur i t y f unct i on i n �  gi ves bet t er  r esul t s t han usi ng t he Gi ni  

i ndex.  

Figure 2.26: �  values for the simulation in case 4, 0 5�� �  

Conclusion 

In the simulations and examples of this section, we have that the entropy compared to the 

Gini index gives better results for lower probabilities of default, which is the case in credit 
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scoring; it is often more stable with respect to the probability of default; and it is more 

sensitive to the discriminatory power of the score. Most of the optimal split points are 

coincident for both criteria. For the noncoincident, the split points obtained with entropy are 

frequently more conservative. Because of these reasons, and together with the fact that we can 

apply the test for homogeneity (see section 2.4.5) to the partition yielded by �� , we 

recommend the use of the entropy as splitting criterion criterion in � . 

��)� � ������ ���	����

In this section we describe the disadvantages of the misclassification rate and the coefficient 

of correlation for measuring the discriminatory power of a score. Although these measures are 

sometimes used in practice, we do not find them appropriate for of credit rating, and we will 

explain the reasons. 

��)��� 0 ��
�������
�����������

If a score �  and a separation threshold � � �  are given, such that all score values � ��  are 

predicted as defaults, then the discriminatory power of the score can be also estimated by the 

misclassification rate. Here the following scheme: 

  ��   

  0 1  

0  01����   
�  

1 10����    

    1 

The misclassification rates are defined by 

�

�

10

01

1 0 1 1

0 1 0 2

�� � � � � � � �� ���
�

�� � � � � � � �� ���
�

� �� � � �� �

� �� � � �� �

�

�

� � � � � �

� � � � � �
 

such that, for a fixed sample size � , if 10����  increases then 01����  decreases, and vice versa. 

We can calculate them by 

� �
10 1

01 0

1 1

0 1 0

�� � � � ��� �

�� � � � �� � �

� �� � � 	 � ��

� �� � � 	 � ��

�

�

� � � � �

� � � � � �
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The aggregate misclassification rate 

� �10 01 1 01 1 0�� �� �� ��� � �� � �� � � 	 � �� 	 � ��� � �� � � � � � �  

presents a weighted version of the overlapping area and can be estimated by the use of �1��	 � , 

�
���	 � , 1#� � , 0 #� � . An optimal misclassification rate can be defined as 

 � ����
�

�� ��  (2.5.1) 

Also here it can again be distinguished between positive-monotone ( � 1� �  if � �� ) and 

negative-monotone ( � 1� �  if � �� ) for the definition. 

We already have seen in section 2.4.1, that the misclassification rate can be expressed as an 

impurity function of the default variable �  given a score � . Further, we spoke about its 

defects as splitting criterion. Also the aggregate misclassification rate defined in this section 

has some deficiencies and we will put some examples later. Now we show how, under some 

assumptions, both criteria ���  and �  are related. 

Proposition 2.32 

Assume � �� �#	�� � �  and ��+ , being the solution of 

Then we get that both criteria ���  and �  are linearly related: 

 � # � ����� ���� � � . (2.5.2) 

Proof: 

As we have assumed � �� �#	�� � � , then by the definition of impurity function for the 

misclassification rate (2.4.5), we get � ���� ��� � ���� � �� � ��� �� �� ��� � � � � � . 

The impurity functions for � ��� � �� �  and � ��� � �� �  are given by 

� � � � � �� � � � � � � � � �� �

� � � � � � � �� �
� �

� � � �� ��� ��

� ��� �  � �  ��� �� # � �� #

�
��� # � �� # ��� � ��

� � � � � �

� �

�

� � � � � �� � � � � �� � � �

� � � �� � � � � � �� � �
� �

� �

� � � � �

� � � � � �

� �

� � � �

��� �

� � �  � 

�
�

� � � � �

� � �� � � �� � �

� �

� � � � �
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and 

Then by the definition (2.4.2) we get: 

� � � �� � � � � �� �� ��� ��� �� ��� ��� � �� ��� �� �
�

�� � �� � � �� � � �� �� � � � � � � � �

� � � �� � � �
�� ��� �� ��� � � � �� ��� � ��

� �
�� � � �� � ��� � � �� � � � � � � � � � �  

And therefore, by substituting in (2.4.4) for the misclassification rate: 

we get the above mentioned linear relationship. 

�  

Remark 2.33 
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The aggregate misclassification rate is a sensible measure of the discriminatory power of a 

score, if the size of defaults is not too low, and we can see it in the following example. 

Example 2.34 

So,  i f  we t est  i t  by score2 f or  t he val i dat i on sampl e f r om t he Fahr mei r  et  al .  

( 1984)  dat aset ,  wher e t he pr opor t i on of  def aul t s i s 27%,  we get  t he est i mat e �� = 

0. 225 and t he t hr eshol d � = - 0. 335 ( see Fi gur e 2. 27) ,  whi ch i s equal  t o t he 

t hr eshol d gi ven by t he measur e �  f or  ever y i mpur i t y f unct i on.  

� � � � � �� � � � � � � � � �� �
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Figure 2.27: score2, � 0 225�� � , ����,� � �  

But this is generally not the case in credit scoring, where the proportion of defaults is clearly 

lower. Here, the optimal misclassification rate is normally achieved when all defaults are 

misclassified, which does not make this measure a reasonable criterion. 

Example 2.35 

We pi ct ur e bel ow t he est i mat ed densi t i es f or  a si mul at ed sampl e wi t h pr opor t i on of  

def aul t s 6%:  

Figure 2.28: 6% defaults, � 0 06�� � , 2 215�� �  
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The est i mat e of  t he mi scl assi f i cat i on r at e i s �� = 0. 06,  whi ch cor r esponds exact l y 

t o t he f r equency of  def aul t s i n t he dat aset ,  si nce t he t hr eshol d i s at  t he hi ghest  

val ue of  t he scor e,  namel y � = 2. 215,  and consequent l y al l  def aul t s ar e 

mi scl assi f i ed.  We must  r emar k al so her e t hat  t her e ar e r epr esent ed t he ker nel  

densi t y est i mat es of  def aul t s and non- def aul t s.  Thi s i s t he r eason why t he 

est i mat es of  t he densi t i es do not  l i e compl et el y on t he l ef t  of  t he t hr eshol d.  

��)��� (�����������
�����
�����

The coefficient of correlation is indeed a measure of association, but sometimes it is presented 

in the literature for sociologists (see for instance Bortz & Döring, 1995) as a measure of 

discriminatory power. The correlation between two random variables �  and � , denoting a 

score and a default variable respectively, with variances ������  and ������  existing and 

positive, is defined as: 

 �

����� �

����� �����
� �

� �

� �

 �

�
. (2.5.3) 

Remark 2.36 
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We will now introduce another expression for the coefficient of correlation. 

Proposition 2.37 

Let � , �  be two random variables, with � ��� (� �	 , such that �� ��� � . Denote 

� � ��� � 
� �� �  and � � ��� � 
� �� � , such that 1� " 0 0� "  (w.l.o.g.), and 0� , 1�  

denote the respective standard deviations of �  conditioned to � . The correlation coefficient 

is then given by 

 1 1 1 0

2 2 2
1 1 1 0 1 1 1 0 1 1

1

1 1 1
�

� �� �

� � � �� � � �
� �

� � � �



� � � � � � � � � �

� �
�

� � � � � � �
 (2.5.4) 

Proof: 

For the numerator, we have that: 

� � � � � �� � � � � �� ���� � �����  �  � � � � � � �� � � � �� � � � �� � � � � , 
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being � �� � � � � � � �  ��� � � � � � � � � �� � � � � � , � � ��� ��  and 

� �� � � � � �� � � � � �  �  � �� � �� �� � � � � � � � � �� � � � � �� � � � � � � � � � . 

By substituting, then 

� � � � � � � � � � � � ������ � � �� �� �� � �� �� � � � � � � � � � � � � � �� � � � � � � � . 

The denominator is given by multiplying ����� ������ �� , such that: 

� � � ���� �� �� � �� �  and 

� � � � � �� � � �� �			 	�����  � � � � � � � � � � � � �� � � � , where 

� �� � � � � �� �		 	 	 	 	
� � � � � � ���   � � � ��� �� � � � � � � � � � � � � � � �� � � � � � � , 

� �� �	 	 	 	 	 	
� � � � � � � � � � � � � �� �� �� � 	 �� �� � � � � � � � � � � � � � � �� � � � � � � �  

and therefore 

� � 	 	 	 	 	 	 	 	
� � � � � � � � � � � � � � � �

	 	 	
� � � � � � � �

��� �� � �� � �� � 	 �� �

�� � �� �� ��

� � � � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � �

� � � � � �
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Remark 2.38 
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A reasonable selectivity measure would assign its maximal value to a perfect separation 

between the distributions of the score conditioned to default and non-default, and its minimal 

value for a total overlapping of the distributions. However, these requirements are not 

fulfilled by the coefficient of correlation. 

In practice we will have scores taking more than two values; this implies that the conditional 

standard deviations will be different from 0. In this case the coefficient of correlation is not a 

good measure of the discriminatory power of a score, because it does not reach its maximum. 
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Example 2.39 

Suppose we have t wo per f ect l y separ at ed uni f or m di st r i but i ons � �� - ���� 
� �� �  

and � ��- ���� 
� �� , wi t h � �� �#	�� � �  ( see Fi gur e 2. 29) ,  and 0� �  1� 1 12#� . 

Then 3 2 1� #� �
 � � .  

Figure 2.29: Perfectly separated densities, 3 2 1� #� �
 � � . 

On t he ot her  hand,  i f  we have t wo di st r i but i ons wi t h equal  means,  f or  

exampl e � - ����#	�� 
� )�  and �- ����#	�� 
� )�  ( see Fi gur e 2. 30) ,  t hen 

we obt ai n 0�� �
 � ,  al t hough t her e i s  not  a t ot al  over l appi ng of  t he ar eas 

f or  def aul t s and non- def aul t s.  

Figure 2.30: 1 0 0� �� � , 0�� �
 �  
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Along Section 2, we analyzed different measures of discriminatory power in the context of 

credit rating. Here, we devote us to the comparison between the overlapping area criterion � , 

the accuracy ratio ��, and the standardized maximal distance �  with the entropy as 

impurity function. The other measures are discarded because of their inadequacy, or in the 

case of the Gini index, because the entropy gives better results. A further advantage of the 

entropy compared to the Gini index is that hypotheses can be tested (see section 2.4.7). 

These three measures cannot be compared in their absolute values. �  gives the maximum 

distance between the ROC curve and the diagonal, whereas the accuracy ratio is related to the 

average of the difference between ROC and diagonal. However, in spite of their differences, 

these measures lead many times to the same conclusions, as we saw in sections 2.2, 2.3 and 

2.4. There we calculated and tested � , �� and ��  for the sample scores (2.1.2) and (2.1.3). 

For all of them, score1 was preferred to score2, and we were able to reject in any case the null 

hypothesis for their respective tests. However, ��  would be more difficult to reject if we had 

lower default rates for the Kolmogorov-Smirnov test. Further, �  and ��  lifted close optimal 

thresholds for the first score. We could also see that �� depends on the probability of 

default. So, for various scores having the same Lorenz curve and Gini coefficient but different 

PDs, �� would raise different values. 

This section includes five cases for the purpose of illustrating the behaviour of � , �� and 

�� . Since an overall theoretical comparison is not possible, we will have to make some 

assumptions of the distribution of the score conditioned to the default variable, and specify 

the values of their parameters. In the first two cases, we will point out extreme circumstances 

where � , �� and ��  attain their maxima and minima. The third and fourth cases present 

situations where the use of the accuracy ratio should be avoided. On the other hand, the three 

measures perform properly in the last case. 

Case 1: 

The score lacks totally of discriminatory power if it is independent of the default variable. A 

suitable measure should therefore lift zero under these circumstances. 



 62 
 

Proposition 2.40 

For �  and �  independent random variables, it holds: 

��� �� �� � � . 

Proof: 

As for independence we have � � � ��	 � 	 �� , for ���� � , then is easy to see: 

1. By definition (2.2.5), � � � �� � � � � �� �0 1 0��� ������ ���
� �

� 	 � 	 � 	 � 	 � �� � � � � � . 

2. Applying (2.3.3) and (2.3.4), we get: 

� � � �
� �2

1 0

1
1 1 0

2 2

	
��� 	 � �	 �

�

��

� �� �� ��� � � � � ��� �� �� !

  and 	 � ��� ���� � � . 

3. We already saw in Proposition 2.21, that under the assumption of independence, ��� � . 

�  

Case 2: 

It is also required to study the case of a score that separates perfectly defaults from non-

defaults under monotonicity. In this case, an appropriate measure of discriminatory power 

should raise one. 

Proposition 2.41 

Given two random variables �  and � ��� (� �	  , and a threshold �� � � , such that 

� ��  � ��� � �� � �  and � ��  � ��� � �� � � , it holds: 

��� �� �� � � . 

Proof: 

Applying Bayes’  theorem and the Law of total probability, it follows that � �0 1�	 � �  and 

� �1 0�	 � � . 

1. By the definition (2.2.5), � � � �� � � � � �0 1 0 1 1��� � ����
�

� � 	 � 	 � 	 � 	 �� � � � � � . 
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2. The Lorenz curve given by a perfectly discriminating score is optimal and therefore the 

Gini coefficient is also optimal (see Proposition 2.3) and # ������ � �� � . 

3. We obtain the following impurity functions: � � � � 0� � � �� � � �� � � � . According to 

Proposition 2.13 we have � ������ � �� � , and by (2.4.4), # �� ���� � �� � . 

�  

Remark 2.42 
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Case 3: 

Now we will contemplate the case where the distributions of default and non-default are 

perfectly separated but there is not a monotone relationship between the score and the default 

variable. Under these circumstances, the measures � , �� and ��  are not optimal. Further, if 

we assume the conditions of Proposition 2.6, we get an even worse result for the accuracy 

ratio, which lifts zero. In this situation we will always prefer �  and �� , as we can see in the 

following example. 

Example 2.43 

I n Fi gur e 2. 31 ar e r epr esent ed t he condi t i onal  densi t i es 0�  and 1�  of  a scor e,  

havi ng t he same expect at i on � = 0.  They ar e even f unct i ons,  i . e.  symmet r i c wi t h 

r espect  t o t he or di nat e axi s.  The opt i mal  t hr eshol d ��  coi nci des f or  bot h ����  and 

��  ( or  	� ,  i f  we consi der  ���� ) .  For  a si mul at ed sampl e wi t h � = 1000 and �� = 

100,  we obt ai n ���� = 0. 5 and �� = 0. 197,  and t he spl i t  poi nt  s= - 0. 498 ( or  s= 

0. 498) .  I n t hi s case �  wi l l  be pr ef er r ed t o �� ,  si nce i t  i s mor e sensi t i ve t o 

t he di scr i mi nat or y power  of  t he scor e.  Gr aphi cal l y,  i s al so easy t o see t hat  ��= 

0,  si nce t he ar ea bet ween t he Lor enz cur ve ( Fi gur e 2. 32)  and t he di agonal  wi l l  sum 

up zer o.  
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Figure 2.31: Symmetric densities w.r.t. �� �  Figure 2.32: Lorenz curve, 10% defaults 

Case 4: 

We would like to see how these measures behave if the score conditioned to the default 

variable is normally distributed with different means and standard deviations for default and 

non-default. The expressions for � , �� and ��  are given in Appendix C, Proposition C.1. 

However, it is not possible to compare these expressions theoretically. 

Thus, we will have to set some values for the parameters of the distribution functions. First, 

we will study the case of both distributions having the same mean and different standard 

deviations, i.e. � �0 0 1 �� � )� 	  and � �21 0 �� � ) �� 	 , (� ��� � ). 

As �  increases, the overlapping area also increases, both distributions being totally 

overlapped at �� � . The score is less discriminating as the standard deviation increases. In 

the same way, an adequate measure of discriminatory power should be decreasing with 

respect to � . Let us see now how the measures behave: 

1. We have that ����  is strictly convex and decreasing in � ����� � , since: 

	

	�

	

!��
� � �

�

�����

�

�

�� �
�

� � �

�
� �

� � � � � �
� �

, 
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And by definition, ����� �  for �� � . ����  is hence an adequate discriminatory power 

measure. 

2. The accuracy ratio is disappointing in this case, since we always have ����  (see 

Proposition 2.6), without concerning the size of the overlapping area. 

3. As we already saw in case 4 of section 2.4.7, the first and second derivatives of ��  with 

respect to the probability of default ��  and �  are very complicated and in terms of the 

normal cumulative distribution function, which does not have an explicit form. There is 

also no explicit form for the optimal split point � . But we know from the simulations in 

case 4 of section 2.4.7, that ��  decreases as the standard deviation decreases (see Figure 

2.25), and it does not decrease apparently for lower probabilities of default (see Figure 

2.26). Further, we saw that the optimal split points deviate more from the mean as �  

increases (see Figure 2.23). These reasons depict ��  as a favourable measure of 

discriminatory power. 

To summarize, the accuracy ratio in this case is not sensitive to the discriminatory power of 

the score, contrary to ����  and �� . However, we cannot assert that ����  will always be better 

than ��  or vice versa. The comparison between them can only be accomplished numerically, 

and it is illustrated in the following example. 

Example 2.44 

Let  � �0 0 1 �� � )� 	  and � �21 0 �� � ) �� 	 ,  ( � ��� � ) .  For  a gi ven 

pr obabi l i t y of  def aul t  �� = 0. 05 see Fi gur e 1. 1.  Accor di ng t o t hi s pi ct ur e,  we can 

say t hat  f or  bot h measur es t he scor e i s l ess di scr i mi nat i ng f or  hi gher  st andar d 

devi at i ons.  ����  r ai ses hi gher  val ues and i s mor e sensi t i ve t o t he di scr i mi nat or y 

power  of  t he scor e t han �� .  I n t hi s case,  we woul d pr ef er  ���� . 
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Figure 2.33: ����  and ��  for � ���,� �  

Case 5: 

We want to see now how � , �� and ��  behave for equal standard deviations. We already 

saw in Section 2.2, that the point of intersection for equal variances is: � �� � #	� � �� � . 

Here again, it is not possible to do a theoretical comparison of the expressions given in 

Appendix C, Proposition C.2, with respect to � . Therefore, we will study the case of having 

�� � , i.e. � �0 0 1 �� � )� 	  and � �1 1 �� � ) �� 	 , with 0� " , such that, as �  

increases the overlapping area decreases and thus the discriminatory power of the score 

increases. 

1. We have that ����  is strictly increasing and concave for �� � , since: 
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And by definition, ����� �  for �� � . 

2. There are no explicit forms for the first and second derivatives of the accuracy ratio. But, 

if we calculate �� numerically, we can observe that it is increasing and concave in � . 
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3. We already studied ��  in case 3 of section 2.4.7. We can observe that, for a low 

probability of default, the optimal split points are increasing for increasing expectation 

(see Figure 2.17). The values of ��  are also increasing in �  (see Figure 2.19) and they do 

not vary much as ��  varies. 

In this case the three measures seem to be appropriate. The following example pictures a 

numerical comparison. 

Example 2.45 

I f  we have � �0 0 1 �� � )� 	 ,  � �1 1 �� � ) �� 	 ,  ( �� " )  and � ���,� � ,  we can 

see i n t he f ol l owi ng pi ct ur e t hat  ���� ,  �� and ��  i ncr ease as �  i ncr eases.  ��  

i s mor e conser vat i ve ( or  l ess sensi t i ve)  wi t h r espect  t o t he di scr i mi nat or y power  

t han t he ot her  measur es,  si nce i t  i ncr eases sl ower .  Ther ef or e,  our  or der  of  

pr ef er ence woul d be i n t hi s case ��,  ���� ,  and �� .  

Figure 2.34: ���� , �� and ��  for � ���,� �  
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"��� ������	
�����

Estimating default probabilities for individual obligors is the first step when assessing the 

credit exposure and potential losses faced by an investor or financial institution. The PDs can 

be fixed a priori, and then every loan must be adequately assigned to a rating class. They can 

be determined by default rates from former years or they will be calculated from individual 

probabilities of default, that are determined by statistical scoring systems, by systems that 

aggregate experts’  knowledge or by the combination of both. However, this estimation could 

be challenging due to limitations on data availability. 

Our aim here is to offer an overview of several techniques existing for estimating default 

probabilities. In section 3.2, we will introduce binary choice models, including the well-

known logit and probit, the calibration of the models and parameters and their significance. 

Further estimation methods and aspects of the calibration of PDs are integrated in the next 

sections—3.3 and 3.4. There, in Example 3.2, were generated for score1 (2.1.2) the rating 

classes that will be used later for the validation tests presented in section 4.2. The last section 

summarizes the different points of view regarding the estimation of the probability of default. 

"��� ������
���
��� ������

We are interested in knowing how credit worthiness depends on observable individual 

characteristics, like duration and amount of the credit, savings, purpose of the loan, etc. 

Binary choice models are regression models intended to estimate the functional relation 

between the binary variable �  (default indicator), and a vector of explanatory variables 

� �� ����� � �
�� � � �� � �

T

.  

Suppose that we know the true score, given by the latent variable 

 �� �� �� �T , (3.2.1) 

�  being the parameter vector that assigns a weight ��  to the � th explanatory variable and �  

an error term. We observe a default if the score ��  is positive: 
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� � ��

� � ��

 � �
�

 � �

� ���� �� ���
 

The regression function is given by the expectation of the response variable �  conditioned to 

the vector of independent variables �  (for a constant � �� � ): 

 � � � � � � � �� � � � � �  � ��� � �� � � � �� � � �� �� � � , � � � � ,�
T . (3.2.2) 

The function ,  is chosen as a cumulative distribution function. The normal and the logistic 

distribution functions, giving rise to the probit and logit models, respectively, are most 

commonly used. 

"����� 0 #1�+0 �/�� 	� �#����������1���� ����,�

The method used to estimate the vector of parameters �  is the maximum likelihood. In order 

to apply this method, we will suppose that the sample of �  observed independent realizations 

follows a known distribution. The probability of occurrence of a realization  �  is � �� �� � , 

for �� � �� � . The joint distribution can be calculated here as the product of the separate 

probabilities: 

 � � � � � � � �� � 	 	 �
�

� � � � � � � 
�

� � �  
 

�� *� * � * � � � �� � � � �
�

� � � � � �- �� � . (3.2.3) 

The likelihood function is denoted by � �� � � . �  is the matrix given by the rows  � T , of 

dimension � ��  and is called the regression, or design matrix. For ease of calculations, we 

determine the logarithm of the likelihood function: 

 � � � �
�

!��  !�� �
�

 
 

� �� � �
�

�.� . (3.2.4) 

This representation is called the log-likelihood function. Since in this case the response 

variable takes only two states, we can rewrite �  and !��� : 

 � �
� �

� �� �
� �

� � � �� � � �� ��
& � & � �

 � �
  

  

� * *

    
 *  *  

� � � � �� � � � �
�

� � �

� � , , � , � ,- - -�
T T T T (3.2.5) 

which is a member of the exponential family of distributions (see Dobson, 1990). And thus: 

 � � � � � � � �� �� �
�

!��  !�� � !���
�

    
 

� * � * �� � �
�

� , � � � ,.�
T T . (3.2.6) 
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The vector of parameter estimates ��  that maximizes the likelihood function also does for the 

log-likelihood function, since the logarithmic function is monotonic. Having an unrestricted 

parameter space, and the likelihood function belonging to the exponential family, we can 

obtain the maximum-likelihood estimator (MLE) of �  uniquely by solving the equations: 

 � �
� �!��

�
� �

�
�

/
0 � �

/
, (3.2.7) 

as can be seen in Cox & Hinkley (1974). 

For the special case in (3.2.6) the first derivative can be calculated: 

 
� �

� �
� �

� �
� �

� �
�

!�� �
�

�

�
   

  
     

� � � �� *
* �

� � � �� �

� ��

� � �� ��

� �, ,/ �� ��� � � �� ��/ , � , �� !
.

T T

T TT T
. 

In general (3.2.7) is a nonlinear system of equations. Hence, an iterative solution has to be 

computed. We can use the Newton-Raphson algorithm, which determines the optimal ��  with 

the following iteration steps: 

� � �� � �� �
���' �+� �+� �+�

� � � �
�

� � 0� , 

being � � � �	!�� #�� � � �� / / /�
T  the Hessian matrix. A variant of this method is the Fisher 

scoring algorithm, which replaces the Hessian by its expectation (see Tutz, 2000). 

Under relatively general conditions, the maximum-likelihood estimator has the following 

interesting properties (see Theil, 1979): 

- Consistency, i.e. ��  converges in probability to the real � . 

- It is asymptotically normally distributed, i.e. �
� �

� �� �� ���
#

)� � �
�

�	 . 

- The MLE is asymptotically efficient. 

The variance of the above mentioned normal distribution is the inverse of the Fisher 

information matrix, i.e. 

 � �� � � �
�

	
� !���

�
�

�
� �

�
� � &1 2� �/� �� �� �� '� �� �/ /� �� �� (

�
T

 (3.2.8) 
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In order to estimate the variance of the MLE, in (3.2.8) the parameter �  can be substituted by 

�� . However, this procedure is not allways feasible, since the expectation of the second 

derivative of the log-likelihood function is very difficult to calculate, except for the logit and 

probit models (see Greene, 1993). Therefore, other estimators were proposed. One of them is 

given by: 

 � �� � � �
�

	
� !��� �

�
� �

�

�
� &� �/� �� �� �� '� �/ /� �� �� (

�

�
� �

� �
T

 (3.2.9) 

For this estimator we do not have to determine the expectation, but still the second 

derivatives. Another estimator that requires the calculation of the first partial derivatives only 

is called OPG (outer product of gradients) or BHHH-Estimator (Berndt, Hall, Hall and 

Hausman): 

 � �� � � �� �
� ��

�

�

  
 

�

� ��

�

� &� �� �� �� '� �� �� (
.� � � ��� � � �

T T

, (3.2.10) 

being 

� �!�� � 
 

�� �

�

/
�

/
�

�
�

�
 

and � � �� 	� � � ��� � � �� � ��
T

. We recommend this last estimator, since it avoids difficult 

computations (see Gourieroux & Monfort, 1995). 

"����� #�����

The probability that an event occurs is for the logit model: 

 � �
� �

� � � �

��

� 
� 
��

�
� � � � �

�

�
�

�
� � � �3

�

T

T

T
, (3.2.11) 

which is strictly monotone increasing in ��T . So, we will ensure that the probability of 

default is a monotone function of the score � ��� T . The first derivative of the sample log-

likelihood function for the logit model is: 

� �� �
�

!�� �

   
 

�
* � ��

� �

/
� �3

/ . T  
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The � �! !�  matrix of second derivatives for the log-likelihood function: 

� � � �� �
	

�

!��
�

�

    
 

�
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� � �

/
� � 3 �3

/ / . T T T

T
 

"���"� 5��3���

The probability that an event occurs is for the probit model: 

 � � � � � �� 
�

� � � � � �� �
�

� �
��

� � � �*

T

T , (3.2.12) 

such that the default probability is modelled as a strictly monotone increasing function of the 

score. The first derivative of the sample log-likelihood function for the probit model is: 
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And the � �! !�  matrix of second derivatives: 

� �
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denoting 
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* �
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* �

T

T
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"���&� 5� ������ ������

In order to estimate the probability of default, we must first calculate the asymptotical 

variance of the MLE. For this purpose we can use the BHHH-estimator defined in (3.2.10), 

being for the logit model � �   
* ��� �3� T  and for the probit   �� . 

Having estimated the vector of coefficients of the regression model and its variance-

covariance matrix, we can estimate the probability of default and its variance. For both logit 

and probit models we have: 

 � � � � �� � �� � � � � �� �� � , � , �
T

T  (3.2.13) 
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The asymptotical variance of this forecast is given by: 

 � � � �
� �� �

� ��
#�*

� �
,#� �
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�
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�

� �

� � �
� �

T
T T

T

 (3.2.14) 

Together with 
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� � � �
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� ��
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� ��

T T T

T

T
, (3.2.15) 

�  denoting the density distribution function. Equality (3.2.14) can be expressed like: 

 � � � � � �� �
	 �

#�*,#� � � � �� � � �
�� � � �� �� �, � � � �� �� �� � !  !

�� � � �
T T

T  (3.2.16) 

"���)� !������
��
���������� �������������� �����6������ ���� ���������

The simplest method to test the significance of a parameter, i.e. � & ��� � � , is to use the 

asymptotical normal distribution of the MLE. For more involved restrictions, of the type 

� &� � �� � we can use the Wald test: 

� � � �� �� � � �
��

- � � �

��

� � � � �� � � � � � �� � � �
T

T , 

being 
� �#

�- 		 , with � �#�!� �  equal to the number of restrictions being tested. 

In order to assess the adequacy of the model .  for describing a set of data, we can compare 

the likelihood under the fitted model with the likelihood under the saturated model, which is 

the model with number of parameters equal to the total number of observations, � . The 

maximum likelihood achievable in a saturated model is attained at �   *, � , denoting 

� �  ��, � , T . The deviance of the model .  measures the discrepancy of the fit and it is 

defined as twice the difference between the maximum achievable log-likelihood of the 

saturated model and that attained by the fitted model, as follows: 

 

�� � �� � �� �
�� � � � �� �� �

�

" 	!�� " 	!�� "

	 !�� # � !��� #� �

.
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��$ * � * � *

* * * *
�

, � , � ,

� , � � � � ,.
 (3.2.17) 
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The deviance function is most directly useful not as an absolute measure of goodness-of-fit, 

but for the comparison between two nested models. Let �. .4  be a submodel with �� ��  

regression parameters and consider testing �.  within . . Then, we have the test given by 

 
� �

� �

	
#

. . � ���$ ��$ 	 �� 	 , (3.2.18) 

which is identical to the likelihood-ratio statistic for testing �.  against . . 

A similar model selection procedure for non-nested models can be based on Akaike’s 

information criterion (�/� ): 

 �� �	!�� " 	�/� � * �� � , � . (3.2.19) 

See Gourieroux (2000) or Greene (1993) for more information on this subject. 

"���-� #���������	��5��3���

It is not possible to compare directly both models, since they have different variance 

parameters, namely 1 for the normal and 	 #��  for the standard logistic distribution function. 

Thus, we must rescale any of the parameters in order to compare both distributions. Figure 3.1 

plots the standard logistic cumulative distribution function against the cdf of � �	�� #�) � . 

There is not a large difference between these cumulative distribution functions in the left 

graph, but we are interested in lower probabilities of default, which is the normal case in 

credit rating. Therefore we plot the right graph, and appreciate here that the logistic cdf 

vanishes to zero at a lower rate. This explains the fact that the logit model handles slightly 

better the case of extreme observations. 

Figure 3.1: Logit vs. rescaled probit, left: on the range [-5,5], right: on [-5,-1]. 
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Example 3.1 

I n Sect i on 2. 1 we al r eady i nt r oduced score1 ( 2. 1. 2)  and score2 ( 2. 1. 3) ,  f i t t ed by 

a l ogi t  model  f or  t he cal i br at i on sampl e.  Let  us denot e t hei r  r espect i ve model s by 

.  ( Tabl e 3. 1)  and �.  ( Tabl e 3. 2) ,  bei ng �. .4 .  The coef f i ci ent s wer e 

est i mat ed wi t h t he hel p of  t he Fi sher  Scor i ng al gor i t hm.  

Var i abl e Coef f i c i ent  St d.  Er r or  Z val ue p- val ue 

const ant   1. 389e+00 5. 804e- 01  2. 393 0. 016 * *  

account  - 5. 467e- 01 7. 628e- 02 - 7. 167 7. 69e- 13 * * * *  

dur at i on  3. 143e- 02 9. 521e- 03  3. 301 9. 64e- 04 * * * *  

pay - 5. 374e- 01 1. 010e- 01 - 5. 323 1. 02e- 07 * * * *  

amount   5. 024e- 05 4. 368e- 05  1. 150 0. 250 

savi ngs - 2. 135e- 01 6. 279e- 02 - 3. 401 6. 71e- 04 * * * *  

t i me - 1. 605e- 01 7. 658e- 02 - 2. 096 0. 036 * *  

mont h  2. 560e- 01 8. 926e- 02  2. 868 4. 126e- 03 * * *  

st at us - 2. 417e- 01 1. 246e- 01 - 1. 940 0. 052 *  

pr oper t i es  1. 142e- 01 9. 135e- 02  1. 250 0. 211 

age - 9. 964e- 03 8. 539e- 03 - 1. 167 0. 243 

pr ev_cr edi t s  3. 256e- 01 1. 748e- 01  1. 862 0. 062 *  

Si gni f .  codes:  ‘ * * * * ’  0. 001 ‘ * * * ’  0. 01 ‘ * * ’  0. 05 ‘ * ’  0. 1 ‘  ’  1 

Devi ance:  781. 69,  AI C:  805. 69 

Number  of  Fi sher  Scor i ng i t er at i ons:  5 

Table 3.1: logit model .  for score1 

Var i abl e Coef f i c i ent  St d.  Er r or  Z val ue p- val ue 

const ant   0. 826 0. 358  2. 304 0. 021 * *  

savi ngs - 0. 258 0. 056 - 4. 554 5. 25e- 06 * * * *  

t i me - 0. 177 0. 065 - 2. 693 7. 09e- 03 * * *  

st at us - 0. 208 0. 109 - 1. 900 0. 057 *  

Si gni f .  codes:  ‘ * * * * ’  0. 001 ‘ * * * ’  0. 01 ‘ * * ’  0. 05 ‘ * ’  0. 1 ‘  ’  1 

Devi ance:  948. 78,  AI C:  956. 78 

Number  of  Fi sher  Scor i ng i t er at i ons:  4 

Table 3.2: logit model �.  for score2 

I n or der  t o compar e t he t wo nest ed model s,  we cal cul at e t he l i kel i hood r at i o 

st at i st i c,  i . e.  
�. .��$ ��$� =948. 78–781. 69= 167. 09,  whi ch i s hi ghl y si gni f i cant ,  
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si nce 
�. .��$ ��$� = 167. 09 > 

	
.���++++	 = 31. 828.  Thi s means t hat  score1 f i t s bet t er  

t han score2.  

Now we use a pr obi t  i nst ead of  a l ogi t  model  t o f i t  *.  ( see Tabl e 3. 3)  and �*.  

( Tabl e 3. 4) ,  f or  t he same vect or  of  expl anat or y var i abl es � �� �  i n score1 and 

� ��� �  i n score2,  bei ng �* *. .4 :  

Var i abl e 
Coef f i c i ent  

( or i gi nal )      ( r escal ed)  
St d.  Er r or  Z val ue p- val ue 

const ant   7. 598e- 01      1. 378e+00 3. 374- 01  2. 252 0. 024 * *  

account  - 3. 232e- 01     - 5. 863e- 01 4. 353e- 02 - 7. 425 1. 13e- 13 * * * *  

dur at i on  1. 857e- 02      3. 369e- 02 5. 616e- 03  3. 308 9. 41e- 04 * * * *  

pay - 3. 159e- 01     - 5. 729e- 01 5. 768e- 02 - 5. 476 4. 35e- 08 * * * *  

amount   2. 795e- 05      5. 068e- 05 2. 585e- 05  1. 081 0. 279 

savi ngs - 1. 211e- 01     - 2. 214e- 01 3. 557e- 02 - 3. 414 6. 41e- 04 * * * *  

t i me - 9. 445e- 02     - 1. 713e- 01 4. 467e- 02 - 2. 115 0. 034 * *  

mont h  1. 509e- 01      2. 736e- 01 5. 194e- 02  2. 904 3. 68e- 03 * * *  

st at us - 1. 340e- 01     - 2. 430e- 01 7. 274e- 02 - 1. 842 0. 065 *  

pr oper t i es  7. 161e- 02     1. 298e- 01 5. 315e- 02  1. 347 0. 177 

age - 5. 556e- 03     - 1. 007e- 02 4. 984e- 03 - 1. 123 0. 261 

pr ev_cr edi t s  2. 009e- 01      3. 644e- 01 1. 011e- 02  1. 987 0. 046 * *  

Si gni f .  codes:  ‘ * * * * ’  0. 001 ‘ * * * ’  0. 01 ‘ * * ’  0. 05 ‘ * ’  0. 1 ‘  ’  1 

Devi ance:  781. 73,  AI C:  805. 73 

Number  of  Fi sher  Scor i ng i t er at i ons:  5 

Table 3.3: probit model *.  for score1 

Var i abl e 
Coef f i c i ent  

( or i gi nal )      ( r escal ed)  
St d.  Er r or  Z val ue p- val ue 

const ant   0. 486          0. 882 0. 217  2. 240 0. 02511 * *  

savi ngs - 0. 151         - 0. 275 0. 032 - 4. 677 2. 92e- 06 * * * *  

t i me - 1. 108         - 0. 197 0. 035 - 2. 780 6. 02e- 03 * * *  

st at us - 0. 124         - 0. 226 0. 059 - 2. 347 0. 059 *  

Si gni f .  codes:  ‘ * * * * ’  0. 001 ‘ * * * ’  0. 01 ‘ * * ’  0. 05 ‘ * ’  0. 1 ‘  ’  1 

Devi ance:  948. 75, . AI C:  956. 75 

Number  of  Fi sher  Scor i ng i t er at i ons:  4 

Table 3.4: probit model �*.  for score2 
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Agai n,  we cal cul at e t he st at i st i c:  
�* *. .��$ ��$� = 167. 02,  whi ch i s al so hi ghl y 

si gni f i cant ,  si nce 
�* *. .��$ ��$� > 

	
.���++++	 = 31. 828.  Al so her e we pr ef er  t he l ar ger  

model  *.  agai nst  �*. .  

The si gni f i cance of  t he r egr essi on par amet er s and devi ances ar e ver y si mi l ar  f or  

bot h l ogi t  and pr obi t  model s.  The devi ances and di f f er ence of  devi ances i ndi cat e 

t hat  t he l ogi t  model  f i t s sl i ght l y bet t er  t han pr obi t .  As we want  t o compar e t he 

est i mat ed coef f i ci ent s f r om t he pr obi t  t o t hose of  t he l ogi t  model ,  we mul t i pl i ed 

t he pr obi t  coef f i ci ent s i n Tabl e 3. 3 and Tabl e 3. 4 by # �� .  The r esul t i ng 

r escal ed coef f i ci ent s ar e ver y si mi l ar  t o t hose f or  t he l ogi t  model .  

"�"� 7	����������� ������� �������

As the credit industry and large loan portfolios grow, the industry is developing more accurate 

credit scoring models. Even a fraction of a percent in credit scoring accuracy is an 

achievement. This is giving rise to the investigation of estimation methods like neural 

networks, that also inlcude nonparametric and semiparametric statistical methods. 

"�"��� 8 �	�������� �����

As an alternative to linear discriminant analysis and regression models, neural networks have 

been analyzed more exhaustively in the last years since they represent the relationship 

between independent and dependent variables in a more flexible way. However, neural 

networks present some cons, as they are like a black box when it comes to interpret the 

resulting network. Moreover, calculating default probabilities with the help of neural 

networks is possible only to a limited extent and it requires considerable extra effort. Some 

empirical studies on this topic were accomplished by West (2000) or Barniv (1997). 

"�"��� 8 ������� ����
�������� ������ ����
�� �������

In the last section we studied the logit and probit models, which are special cases of the 

generalized linear model (GLM, see McCullagh & Nelder, 1983). For this class of nonlinear 

regression models, there is a variety of non- and semiparametric extensions. For example, in 

the nonparametric case we may estimate a single index model (SIM) 

� � � � �� � � ��� , T , 
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where � � �,5  denotes an unknown smooth link function. Thus, this model overcomes 

restrictive assumptions of the functional form of the regression function. However, its 

interpretation may be difficult. If the number of regressors is large, SIM yields inaccurate 

estimates. 

An example of semiparametric GLM is the generalized partial linear model (GPLM), which 

combines a linear and a nonparametric function. It is specified 

� � � �� �� 	� � � � � ��� , �T , 

� �,5  being a known parametric link function, � �� 5  an unknown smooth (possibly 

multidimensional) function and � �� 	�
�� � �� � �TT . This kind of model keeps the easy 

interpretability of the parametric models and retains some of the flexibility of the 

nonparametric models. 

Specific choices of the logit model can be found in Müller & Härdle (2002). For a thorough 

treatment of this topic we refer the reader to Härdle, Müller, Sperlich & Werwatz (2004). 

"�&� 7	����������
���

"�&��� '����������� ����������3���������������������3�������������������

Panel models are also called models for clustered longitudinal data in statistics. They deal 

with the type of credit data that results from repeated measurements on the same individuals 

(loans) at different time points. Standard references for econometric panel data analyses are 

Arellano (2003) and Hsiao (1990). 

An observation  �*  has thus a transversal dimension ( �� � �� � ) and a longitudinal 

dimension ( �� �� �� � ). In credit rating we have different time points i.e. �� �  � �� � , for 

every loan. In this case, we speak about “unbalanced panel” , with 
�

�

  
��.  observations 

altogether. 

The convenience of estimating methods that have on account the data structure explicitly is 

that they model the individual heterogeneity. By the study of an individual observation 

through the time, its individual characteristics can be differentiated from others. We also have 

to take into account that observations from the same individual are correlated. 
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In this section we will describe more carefully the fixed-effects-logit model and the random-

effects-probit model. The modelling of the random-effects-logit model is analogue to that of 

the probit approach. The variant of the fixed-effects approach for the probit model is more 

problematic in its estimation (see Greene, 1993). 

The general approach of the probit-model is: 

 

�

� � �

�

 �  �  �

 �

 �

* �

 � *
*

��&��' ��

� �� �

� ����� �����

T

 (3.4.1) 

Here we assume that the error terms  ��  are independent standard normally distributed. The 

index  , � ��� � �� �  describes the cross sectional dimension and � , � ��� �  � �� �  the 

temporal dimension. 

For the random-effects-model, the approach (3.4.1) is given by the following description of 

the error terms: 

  �  �  $ "� � � . (3.4.2) 

Both components are independent from each other and normally distributed with null 

expectation. The variance of  ��  (in which the variance of  �$  is standardized to one) and the 

correlation between  ��  and  ��  are: 

 � � 	 	 	� � $ " ",#� � � � �� � � �  (3.4.3) 
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 (3.4.4) 

The value of 
  represents the proportion of individual effects in the overall variance. The 

existence of individual effects can be studied by tests of significance of 
 . The likelihood 

function can be maximized after some transformations by means of numerical procedures. 

The fixed-effects-logit model models the probability of occurrence of the interesting events, 

as follows: 

 � �
� �
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� �
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�
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 (3.4.5) 
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The significance of individual effects can be tested with a Hausman-test. Under the 

hypothesis that there are no individual effects � �� &  �  � �� � , is the conventional logit 

model appropriate (with the parameter estimates �� ). If the null hypothesis is rejected, then 

the fixed-effects-logit approach (with �	�� ) is appropriate from a statistical point of view. The 

test statistic is given by: 

 � �� � �� � �� �� � � �� �
�

�	� 	� 	�,#� ,#�� � � � � �
�

� � �
T

 (3.4.6) 

This follows a 		  distribution with �  degrees of freedom, �  being the amount of explanatory 

variables. 

"�&��� (�������
���������������������������+(�'2,�

Classification and regression trees present an alternative to fitting classical regression models. 

CART is a rule for predicting the behaviour of the response of interest from the values of its 

predictor variables. Classification trees apply when the response is categorical—in our case a 

credit default indicator—and regression trees when the response is continuous. The tree is 

constructed by recursively partitioning the learning sample of data into increasingly 

homogeneous subsets. The resulting subsets are heterogeneous among each other. To decide 

about this, we can use the entropy or the Gini index (see section 2.4) as impurity functions for 

the splitting criterion. 

Assume we have a learning sample �� 6 � , containing the values of �  predictor variables 

�� � �� �� , and a default indicator � . The Classification tree is generated as follows: 

• First, we will choose that variable which discriminates the most between default and 

non-default. This variable and the split point obtained lift a partition of the initial 

learning sample �� ��  in the subsets 	� , �� , such that 	 �� �7 � 8 and 

	 � �� � �) � . 

• Then we choose that variable which, starting from the first or the second subset has 

most discriminatory power. Thus, only one of the two possible subsets, e.g. 	� , will 

be split again in )� , ,�  (being ) ,� �7 � 8 and ) , 	� � �) � ). 

• By successively splitting the subsets, we will obtain a tree 9 . Choosing the maximal 

distance function (2.4.3) at every step minimizes the impurity of 9 . Denote �9  the 

index set for the final nodes, the impurity of the tree is defined by: 
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 � � � � � �
�

� � � � �� �

��9

9 � # . (3.4.7) 

For a thorough description of the CART algorithm, we refer the reader to Breiman et al. 

(1984) and Fahrmeir et al. (1996). 

Classification trees can better model “non-monotonous”  effects and interactions between the 

explanatory variables. However, as we normally deal with many explanatory variables in the 

credit-scoring context, the final interpretation of the tree may be complicated for our 

preference. We can also use CART for generating classes of a score, as we will do in the next 

section. There we will see that in practice, the algorithm tends to create pure or almost pure 

subsets of very little size. 

"�&�"� % ��������������������
�������

In the third consultative paper of the Basel Committee on Banking Supervision (2003) it is 

suggested that banks should have a minimum of 7 rating grades for non-defaulted borrowers 

and 1 grade for the defaulted ones; and they should be reasonably distributed across these 

grades, with no excessive concentrations. 

Apart from this recommendation, there is in the literature neither consensus on the number of 

rating grades for the partition, nor a unique method to accomplish it. In some papers, i.e. 

Carey & Hrycay (2001), they use rating schemes of 5 and 10 rating classes; the 

“Oesterreichische Nationalbank”  uses a fine and a coarse scale, the coarse scale containing 6 

rating grades, with grade 6 denoting default; the rating agency Standard & Poor’s uses a 

scheme with 17 non-defaulted classes plus 1 class for defaults or its shortened version, with 7 

plus 1 class for defaulted loans. 

In Bemmann (2005) (about: Basel Committee [2000c, p. 23f]) it is summarized that from 30 

rating agencies investigated, 22 used letter combinations, 6 used numerical marks and 2 used 

probabilities of default for expressing their ratings. From the letter-ratings 16 are conform to 

the S&P notation. However, most of the banks (ca. 85%) use numerical rating class notations. 

About the generation of rating classes, it is being practised that the score is classified 

following some rule with respect to the default probability, e.g. doubled mean PDs per class; 

or it can be divided in intervals of a given size: 
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Example 3.2 

We di vi ded score1 ( 2. 1. 2)  f or  t he cal i br at i on sampl e i n 5 cl asses of  equal  si ze.  

For  ever y cl ass we cal cul at ed t he mean pr obabi l i t i es of  def aul t  ( PD)  asser t ed by 

t he l ogi t  model .  The col umn “ per cent ”  cont ai ns t he per cent ages i n t he val i dat i on 

set  of  ever y cl ass i nt er val .  We can obser ve her e t hat  t he def aul t  r at es f or  t he 

val i dat i on sampl e ar e ver y cl ose t o t he PDs f or  ever y cl ass,  but  f or  t he second:  

per cent  def aul t  r at e 
Rat i ng scor e r ange PD 

( val i dat i on set )  

1 - 4. 848 �  - 2. 192 0. 061 0. 295 0. 067 

2 - 2. 192 �  - 1. 507 0. 137 0. 16 0. 062 

3 - 1. 507 �  - 0. 791 0. 243 0. 19 0. 236 

4 - 0. 791 �   0. 087 0. 413 0. 18 0. 472 

5  0. 087 �   2. 322 0. 681 0. 175 0. 628 

Table 3.5: rating classes for score1 

We can also use CART (see 3.4.2) to generate classes of a score. In this case, instead of 

having �  variables we consider the score � , which we split successively. See the following 

example: 

Example 3.3 

We wi l l  i l l ust r at e her e t he appl i cat i on of  CART wi t h t wo scor es f or  a gi ven number  

of  cl asses ( =5) .  Al so her e,  we di vi ded t he scor e f or  t he cal i br at i on sampl e,  

comput i ng t he mean pr obabi l i t i es of  def aul t  ( PD)  asser t ed by t he model .  Then we 

cal cul at ed t he per cent ages of  ever y cl ass i nt er val  and t he def aul t  r at es f or  t he 

val i dat i on sampl e.  

per cent  def aul t  r at e 
Rat i ng scor e r ange PD 

( val i dat i on sampl e)  

1 - 4. 848 �  - 2. 769 0. 039 0. 225 0. 066 

2 - 2. 769 �  - 0. 399 0. 197 0. 52 0. 221 

3 - 0. 399 �   0. 437 0. 497 0. 14 0. 428 

4  0. 437 �   1. 831 0. 724 0. 1 0. 65 

5  1. 831 �   2. 215 0. 913 0. 015 1 

Table 3.6: rating classes for score1 generated with CART 
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I n Tabl e 3. 6 ar e r epr esent ed t he r esul t s f or  score1 ( 2. 1. 2) .  Si nce we ar e 

i nt er est ed i n knowi ng i f  t he cl asses ar e homogeneous,  we wi l l  cal cul at e t he 

i mpur i t y of  t he r esul t i ng t r ee,  usi ng ( 3. 4. 7)  wi t h t he ent r opy ( 2. 4. 9)  as i mpur i t y 

f unct i on.  I n t hi s case,  � �� � = 0. 473 i s cl ose t o t he i mpur i t y gi ven by t he 

par t i t i on i n Tabl e 3. 5,  � �� *� = 0. 454.  I f  compar ed t o t he scor e � �� � = 0. 583,  we 

can appr eci at e t he di mi nut i on i n i mpur i t y.  

I n t he f ol l owi ng Tabl e 3. 7 we pr esent  t he r esul t s f or  anot her  si mul at ed sampl e,  

wi t h 30% of  def aul t s.  Now we get  t hat  t he r esul t i ng t r ee obt ai ned wi t h CART and 

ent r opy as i mpur i t y f unct i on has � �� �  = 0. 511.  Thi s i s l ess t han t he over al l  

i mpur i t y of  t he scor e,  i . e.  � �� � = 0. 610,  and al so l ess t han t he i mpur i t y we woul d 

obt ai n i f  we made a si mpl e par t i t i on of  t he scor e i n i ncr easi ng or der  and 

i nt er val s of  equal  l engt h,  i . e.  � �� *� = 0. 568.  We r at ed t he cl asses accor di ng t o 

t he per cent age of  def aul t  r at es.  I n t hi s case,  i t  was bet t er  t o make t he 

cl assi f i cat i on wi t h CART,  si nce i t  cont empl at es t he f act  t hat  t he def aul t  r at es 

ar e not  i ncr easi ng f or  i ncr easi ng val ues of  t he scor e.  

per cent  def aul t  r at e 
Rat i ng scor e r ange 

( val i dat i on sampl e)  

3 - 7. 661 �  - 5. 359 0. 185 0. 075 

5 - 5. 358 �  - 3. 916 0. 515 0. 469 

2 - 3. 914 �  - 3. 851 0. 018 0. 055 

1 - 3. 851 �  - 3. 552 0. 091 0. 000 

4 - 3. 552 �  - 1. 093 0. 191 0. 225 

Table 3.7: rating classes generated with CART 

For  bot h scor es,  we get  t hat  t he i mpur i t y of  t he par t i t i on made wi t h CART i s cl ose 

t o t he i mpur i t y obt ai ned by a si mpl e par t i t i on of  t he scor e i n equal  l engt h 

i nt er val s or  even di mi ni shed,  whi ch speaks i n f avour  of  CART.  The pr obl em i s,  as 

we al r eady ment i oned i n sect i on 3. 4. 2,  t hat  CART t ends t o “ i sol at e”  l i t t l e pur e 

subset s of  def aul t s or  non- def aul t s,  as f or  exampl e,  cl ass 5 i n Tabl e 3. 6,  or  

cl asses 1,  2 and 3 i n Tabl e 3. 7.  
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The methods presented in the last sections can be applied for the purpose of quantifying credit 

risk. Now we will consider some aspects of the monotonicity and prediction of the default 

probability, and the parameter estimation in practice. 

Binary choice models (3.2.2) can be estimated using statistical software1, without a big effort 

if the number of defaults is sufficient. The observations of one year, i.e. a cross sectional 

dataset, will suffice. Moreover, the results produced by such models can be interpreted 

directly as predicted default probabilities. Among all the binary choice models, the logit 

model (3.2.11) is definitely the current standard, both in its practical application by regulators 

and in the academics literature. 

However, variables that are identical for all borrowers, e.g. macro variables, will not be taken 

into account by the binary choice models. The parameters of these variables cannot be 

estimated, until there are observations on hand for all credit users during many years. The 

data structure together with the methods of section 3.4.1 can be applied in order to detect 

differences between the individual debtors. The problem of regression models for binary 

dependent variables and panel data was that historical data is not always available. This will 

not be the case after Basel II, since data has to be collected for at least 5 years for credit risk. 

Panel data will therefore play a more important role in the future. 

Back to the binary choice models, we may say that their most important features are 

simplicity and the fact that the probability of default is modelled as a strictly monotone 

increasing function of the score. This does not hold in general for other estimation methods, 

as nonparametric and semiparametric methods, neural networks or CART. In case of 

monotonicity, we can efficiently apply the measures � , ��  and �  (described in sections, 

2.2, 2.3 and 2.4), in order to assess the discriminatory power of the score. 

 

                                                 
1 The methods described in section 3.2 were implemented with R 2.1.1 (www.r-project.org). 



85 

&� 9��������������3�
������������5� ���

&��� ������	
�����

The rating classes of a rating system are normally constructed on the basis of probabilities of 

default that refer to one-year time horizons. This assignment can be accomplished in different 

ways, as we saw in the last section. In practice, the estimated probabilities of default will 

differ from the default rates that are afterwards observed. A problem arises when these 

deviations do not occur at random, but systematically. The question here is how the PDs 

suggested by the rating system can be reviewed with the updated default rates. A collection of 

studies on the topic of validation can be found in Basel Committee on Banking Supervision 

(2005). 

For a rating system with �  rating classes, let � ���� �  denote the default probability 

asserted by the rating system, � ���� �  the (unknown) actual PD and � ���� ��  the 

observed default rate, i.e. the proportion of defaulted borrowers of a total of ��  borrowers in 

the rating class � . We can differentiate between one-sided and two-sided test formulations. 

The one-sided is characterised through the hypotheses: 

 � �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � �� � , (4.1.1) 

and it is conform to the perception of the Banking Supervision, which is concerned about the 

fact that the risk should not be underestimated. The two-sided test formulation is depicted by: 

 � �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � 	� � , (4.1.2) 

this can be identified with the perception of a risk controller, who is interested in as exact as 

possible estimation. 

Under the assumption of stochastically independent default events, these two test 

formulations concern standard problems that can be addressed by the binomial test or the chi-

square test, as we see in section 4.2. 

The main problem is that credit defaults are not stochastically independent. As an option, we 

will assume in section 4.3 the dependence structure of the IRBA (Internal Ratings-Based 

Approach). By this dependence structure, the default rate does not converge to the associated 

probability of default, but to a non-degenerate probability distribution on the interval [0, 1]. 
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In order to assess the quality of time-varying PD forecasts, we consider two approaches in 

section 4.4: normal test and traffic lights approach. 

&��� 2�����3����������������������
�����	� ������

The construction of tests under the assumption of independent default events is based on the 

well-known facts: 

1. The number of defaults in a rating class �  with ��  credits and default probability ��  

is binomially distributed: 

 � �� �� � �� ( � � �	 , (4.2.1) 

being � /� � �� � �� . 

2. For the default rate ���  and �� $ �  holds the strong law of large numbers, 

 � �# �
� �� �:::$� , (4.2.2) 

and the central limit theorem 
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3. For �  rating classes holds 
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, (4.2.4) 

where � �	 �	  denotes a chi-square distribution with �  degrees of freedom. 

&����� ���� ���������

If we want to test if the probability of default of a rating category is correct against the 

alternative hypothesis that it is underestimated, then we can use the one-sided binomial test: 

� �& � &� � � �� � � �� �� �  

for each rating category �� �� �� � . 
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The null hypothesis for a given level of significance �  is rejected if the observed number of 

defaults ���  is greater than a critical value �! , given by: 

 � �� ���  �
��

�

� �
 !

�
! !

 
� � �

�

� &� �� �� ��� �� � �� '� �� ��� � !� �� (
# , (4.2.5) 

��  being the total number of loans. For larger values of �� , the calculation of (4.2.5) is very 

costly. Here we can make use of (4.2.3), i.e. the binomial distribution converges to the normal 

distribution as the number of trials increases. Therefore, the critical value �! ��  can be 

approximated as follows: 

 � � � �� � � �� � � � �! � �� � � ��� * � � � , (4.2.6) 

� �1�* � being the inverse function of a standard normal distribution. Put in terms of the default 

rate if preferred, we reject the null hypothesis if the observed default probability ���  is greater 

than �� �� : 

 � �
� ��

�

�
� � �

�

�

�
�

�

� �
� ��

�

�
� * � � . (4.2.7) 

For the two-sided test: 

� �& � &� � � �� � � �� �� 	 , 

we have that the critical region for ���  and an asymptotical level of significance �  is given 

by: � �#	 � #	�� ��� �� ��
1 2)� �� �. 

In both test formulations, the null hypothesis will be more difficult to reject for a lower 

number of loans in the rating class � , since �� ��  increases as ��  decreases. 

Example 4.1 

For  score1 ( 2. 1. 2)  we appl y her e t he one- si ded bi nomi al  t est  t o t he r at i ng cl ass 3 

def i ned i n Tabl e 3. 5.  For  a l evel  of  si gni f i cance � = 0. 005 we have t he def aul t  

r at e i n t he val i dat i on sampl e ��� = 0. 236,  whi ch i s not  gr eat er  t han ��++,� �  0. 422.  

Ther ef or e,  we have not  enough st at i st i cal  evi dence t o r ej ect  t he nul l  hypot hesi s 

agai nst  t he al t er nat i ve ( t hat  t he pr obabi l i t y of  def aul t  asser t ed by t he model ,  i n 

t hi s case �� = 0. 243,  i s under est i mat ed) .  I n or der  t o compar e numer i cal l y t he 
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bi nomi al  t est  wi t h t he t est  def i ned i n sect i on 4. 3. 1,  whi ch t akes i nt o account  

def aul t  cor r el at i on,  we cal cul at ed t he p- val ues f or  t he r at i ng cl asses 3 and 4.  

The r esul t s ar e l i st ed i n Tabl e 4. 1 of  sect i on 4. 3. 3.  

&����� (�� �:	���������

Now we want to test if the probabilities of default are correct for every rating category 

simultaneously: 

� �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � 	� � . 

The chi-square test statistic is derived from the original and most known Pearson’s chi-square 

statistic (see D’Agostino & Stephens, 1986) and is given by: 
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� ��

�
�

�# , (4.2.8) 

which fulfils (4.2.4) under �� , when �� $ �  simultaneously for all �� �� �� � , if all 

default events are independent within categories and between categories. 

We will reject the null hypothesis for an asymptotical level of significance � , if ��  is greater 

than the (� �� )-quantile of a 		  distribution with �  degrees of freedom. For a lower 

number of loans in every rating class, the null hypothesis will be more difficult to reject. 

Example 4.2 

Now we t est  si mul t aneousl y f or  ever y r at i ng cl ass �� �,� � �  of  score1 i n Tabl e 

3. 5 i f  t he pr obabi l i t i es of  def aul t  asser t ed by our  l ogi t  model  coi nci de wi t h t he 

r eal  ones—i n t hi s case t he def aul t  r at es i n t he val i dat i on sampl e.  For  an 

asympt ot i cal  l evel  of  si gni f i cance � = 0. 005,  we get  t hat  our  st at i st i c ,� = 2. 510 

i s not  gr eat er  t han 
	
,���++,	 = 16. 75 and t hus we cannot  r ej ect  t he hypot heses t hat  

t he pr obabi l i t i es of  def aul t  pr edi ct ed by t he model  coi nci de wi t h t he r eal  

pr obabi l i t i es of  def aul t .  We can obser ve t he p- val ues i n Tabl e 4. 2 of  sect i on 

4. 3. 3 f or  a numer i cal  compar i son of  t hi s t est  wi t h t he t est  descr i bed i n sect i on 

4. 3. 2.  
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&�"� 2���������
��������������� �����������������

As we have seen in section 4.2, the construction of the binomial and the chi-square tests is 

very simple and intuitive. However, from empirical studies it is known that default events are 

slightly correlated. Typical values for default correlation are around 0.005 to 0.03. Although 

these numbers may seem small, applying both tests under the assumption of correlated 

defaults makes the mathematical framework more complex. 

For the modelling of the dependence structure of the Bernoulli distributed default variables 

� � � ��� � �� � � �� �� � � �� (�� � ( � �  � � �� � �	 � �  

for a given probability of default ��  we use continuous variables � (  (financial well-beings). 

They stand for changes in the asset value or in the ability to pay. 

For a given threshold �� , the default variable is defined 

 
� �

� �

� �
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 � (
�

�+��

�� ���� ����
 (4.3.1) 

The dependence structure of the financial well-beings is modelled 

 �� � � � ( 0
 
 �� � � , (4.3.2) 

where �
  denotes the asset correlation. � (  depends on a systematic factor 0  common to all 

debtors and a factor � �  that is specific to the debtor. Further assumptions are: 

� � � � � � � � � ���� � ��� � ��� � � �� � �� � � � ��( ) 0 ) ) ��$ 0 ��$� � � �� �	 	 	 , 

 and � �� &� �� � � ������ ( ( 
 
 
� �  for all �� � � �� � , �� � �� �� � , � �� �� � �� � . 

Assume all loans are in the same rating category having the same threshold � ��
� ��� �� * , 

thus having the same probability of default and assume also that the asset correlation is the 

same for all pairs of loans. Then we have the properties: 

� � � �� � �� � � �� � * , � � � ��� � �,#� � � �� �  and 

� �
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� �
, with  �	  in case that � �� , 
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� �	 � "��
* ��  denoting the bivariate standard normal distribution function with correlation ��
  

and ���  the default correlation. 

The joint and marginal distributions of the default rates �/� ,…, /�� , can be calculated as: 

 � � � � � �� � �  
�

/ /� � � �
� �

�

�
� !� !

� � � � 1 � 1
� �

�
� � � ! � � ! � � � 1

!

� �

�� �

� ��� �� � � � *� �� �� !;
�  (4.3.3) 
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� ��� �� � � *� �� �� !
  (4.3.4) 

for �� �� �! �� � , �� �� �� � . � �* � denotes the standard normal distribution function and 

� �
� ��
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�

� 1
� � � 0 1







�� �* � �� ��� � � � * �� �� �� !
. 

Due to the complexity of these formulas, it is difficult to develop exact tests for finite sample 

sizes. However, for sufficient many observations the tests’  construction can rely on the 

asymptotical distribution of adequate test statistics. This work goes back to Huschens (2004), 

where the tests of the following subsections were developed. 

&�"��� 2����������������3�3�������������	���

The variance of the default rate ���  is given by 

� � � ��� � �
�� � �

� � � �

� �

� � �
,#� � � �

� �
�

� �
� � ��  

and the asymptotical variance 

 � � � � � � � �� �� � 	
	!�� � � "

�
� � � � � � � �

�
,#� � � � � � �� 
� �

$�
� � � * * * �� . (4.3.5) 

The asymptotical distribution of a default rate ���  for �� $ �  is given at Vasicek (2002): 

 � �
� ��
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� ��
� �

�

� 0
� � 0







�� �* � �� �::$ � *� �� �� � !
� . (4.3.6) 

The respective cumulative distribution function of the random variable � ��� 0  for ��
 �  is 

the so-called Vasicek distribution: 
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� �� �� * �* �� ��� � � * �� �� � !
. (4.3.7) 

By means of a convenient transformation, we get an asymptotically normally distributed 

random variable from the asymptotical distribution of the default rate. For ��
 �  and 

�� $ �  holds 
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• A suitable test statistic for the hypotheses 

� �& � &� � � �� � � �� �� �  

and for a given ��
 �  is 
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� �� * �*
3 � . (4.3.9) 

Under the null hypothesis holds: � �� ��!�� � � �
�

�
�

� � � ��

$�
3 � * � � � . 

The critical region for �3  with the asymptotical level of significance �  is therefore 

given by: � �� �� � ���* � � . 

• For the two-sided test formulation 

� �& � &� � � �� � � �� �� 	  

we have the critical region for �3 : � �� � � �� �� �� #	 � #	 �� �� ��� * ) * � � . 

Example 4.3 

We want  t o appl y her e t he one- si ded t est  t o t he r at i ng cl ass 3 of  score1 (2.1.2) i n 

Tabl e 3. 5,  assumi ng t wo di f f er ent  def aul t  cor r el at i ons.  We have t he pr obabi l i t y of  

def aul t  asser t ed by t he model  �� = 0. 243 and t he def aul t  r at e ��� = 0. 236 f or  t he 

val i dat i on sampl e.  For  �
 = 0. 005,  t he t est  st at i st i c i s �3 = - 0. 293,  whi ch i s not  

gr eat er  t han t he quant i l e of  t he nor mal  di st r i but i on f unct i on 
��* ( 0. 995) = 2. 575.  

I f  we assume a hi gher  cor r el at i on,  i . e.  �
 = 0. 03,  t hen we obt ai n �3 = - 0. 067.  Fr om 
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t hese r esul t s we can concl ude t hat ,  i n bot h cases,  we have not  enough st at i st i cal  

evi dence t o r ej ect  t he nul l  hypot hesi s.  

&�"��� !�� 	������	������������� 	����������3�3���������������	���

We have that for 
�� �
��� �

� �
�

�
$ �

�

 holds  
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and together with the assumption 
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• The one-sided test for 

� �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � �� �  

can be designed with the following test statistic 

 
�� �
����#� �

� ��
3 � 3

�

. (4.3.10) 

The null hypothesis will be rejected in favour of the alternative �� , with an 

asymptotical level of significance � , if � �� ��#� ��3 � * � . 

• Analogously, the two-sided test 

� �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � 	� �  

can be based on the test statistic 

 	

�

� �

�

�� �

3 � 3# . (4.3.11) 

In this case, for an asymptotical level of significance � , ��  will be rejected if 3  is 

greater than the (� �� )-quantile of a 		  distribution with one degree of freedom. 
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Example 4.4 

Now we wi l l  use t he one- si ded si mul t aneous t est  f or  ever y r at i ng cl ass of  score1 

(2.1.2) i n Tabl e 3. 5.  Assume t he same cor r el at i ons as i n t he l ast  exampl e,  bei ng 

const ant  f or  ever y r at i ng cl ass.  Fi r st  consi der  �
 = 0. 005 f or  � = 1, …, 5.  The t est  

st at i st i c �#�3 = 2. 118 i s not  gr eat er  t han t he cr i t i cal  val ue 
��* ( 0. 995) = 2. 575.  

The p- val ue= 0. 017 i s gr eat er  t han t he l evel  of  si gni f i cance � = 0. 005.  For  �
 = 

0. 03 we get  �#�3 = 0. 869 < 2. 575 and a p- val ue= 0. 192 > 0. 005.  Thus,  i n bot h cases 

we have not  enough st at i st i cal  evi dence t o r ej ect  t he nul l  hypot hesi s.  However ,  i f  

we chose � = 0. 05,  t hen we woul d r ej ect  ��  f or  t he l owest  cor r el at i on ( �
 = 

0. 005) ,  si nce t he p- val ue= 0. 017 < 0. 05.  

&�"�"� ���	� ���
���
�� ���������������������

We can compare the tests under the one factor threshold model of Basel II with the binomial 

and chi-square tests defined in section 4.2 by observing their respective p-values. So, for a 

certain default correlation, we can see if there are differences between these tests in the 

decision whether to reject or not the null hypothesis. We will illustrate this section with the p-

values obtained by applying these tests for score1 (2.1.2) in Table 3.5, assuming two different 

default correlations, �
 = 0.005 and �
 = 0.03, being constant for every rating class. Logically, 

the p-values given by the binomial and the chi-square tests will remain constant for different 

default correlations, as these tests rely on the independence assumption. 

In the following table we applied the one-sided versions of the binomial test and the test for 

one probability of default for the rating classes 3 and 4: 

p- val ue 
�
  

bi nomi al ,  � = 3 �3 ,  � = 3 bi nomi al ,  � = 4 �3 ,  � = 4 

0. 005 0. 603 0. 615 0. 236 0. 017 

0. 03 0. 603 0. 526 0. 236 0. 192 

Table 4.1: p-values for the one-sided tests of sections 4.2.1 and 4.3.1 

For class � = 3, we arrive at the same conclusion for both tests and different default 

correlations, i.e. we lack of statistical evidence to reject �� . On the other hand, the p-values 

differ more from each other for the rating class 4, being clearly higher for the binomial test. 

The decision here will depend on the significance level we choose. For � "  0.05 and �
 = 
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0.005, we will reject ��  for the test defined in section 4.3.1, but not for the binomial test. If 

we assume a higher correlation �
 = 0.03, then for both tests we have not enough evidence to 

reject the null hypothesis. 

The p-values for the chi-square and the two-sided simultaneous test for multiple probabilities 

of default are depicted in the next table. The difference between them is obvious. Suppose we 

have a low default correlation �
 = 0.005, constant for every rating class � = 1,…,5. Then we 

can reject the null hypothesis for the test defined in section 4.3.2., but not for the chi-square 

test. In case �
 = 0.03, we have not enough statistical evidence to reject ��  for both tests. 

p- val ue 
�
  

chi - squar e 3  

0. 005 0. 774 4. 087e- 12 

0. 03 0. 774 0. 218 

Table 4.2: p-values for the tests of sections 4.2.2 and 4.3.2 

Thus, we can affirm that in this case, it is easier to reject the null hypothesis of exact forecasts 

for the tests based on the one factor threshold model of Basel II, especially for a low default 

correlation. 

&�&� 9 �������������5� ��������������� ���������

As in credit risk, defaults are collected generally only once per year, a comparison between 

the forecasts and the actual PDs can be made rarely. There exists an error that results from 

neglecting correlation in time and between assets for the validation methods of this section. 

For the empirical analysis of this error, we refer the reader to Blochwitz, Hohl, Tasche & 

Wehn (2004). They introduced a model that can be seen as extension of the Vasicek one 

factor threshold model of Basel II into the time dimension. In order to create close to reality 

time series of annual default rates for the simulation study, the following assumptions should 

be done: 

1. A fixed portfolio is observed in years �� �� �� �  

2. At any time �  the number of borrowers in the portfolio is a deterministic number �� , 

which is known a priori. 
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3. The variable ��  expresses the change in the general economic conditions from time 

�� �  to time � . The larger �� , the better are the economic conditions. 

4. � ��� ����� � ��� � � ) �� .	
T

, being � ������ )	  for all �� �� �� �  and 
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 (4.4.1) 

Denoting  � �
��� � ��  for some properly chosen < =���� � . 

5. The number of defaults ���  at time �  conditioned on ��  are independent, identically 

distributed random variables � �� ��  �� � � � �� � ( � � �	 , being 

 � �
� ��

�

� � �
� �

�

� �
� �







�� �* � �� ��� * �� �� �� !
 (4.4.2) 

and �
  represent the correlations of the changes of obligor’s asset values from time 

�� �  to time � . The annual percentage default rates ���  will therefore be calculated as 

� #� � �� � ��� . 

&�&��� 8 ��� ��������

The normal test is a multi-period test of correctness of a default probability forecast for a 

single rating category. The assumptions needed for the test are that default events in different 

years are independent and the variance of the default rates is constant over time. Cross-

sectional dependence is admissible. 

Let � 	/ / /� � � �� � ��  be independent random variables with means � 	� � � �� � ��  and common 

variance 	 �� � . Then by the central limit theorem we have: 
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�
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#
, (4.4.3) 

for �  tending towards � . The rate of convergence is generally quite high. Thus, the 

approximation of the standardized sum to the standard normal distribution seems reasonable 

even for small values of �  (e.g. � = 5). 
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Two different estimators of the assumed common variance are given by: 
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� #� �  and (4.4.4) 
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# #� � � , (4.4.5) 

where ��  denotes the forecasted probability of default for the year � . Under the hypothesis of 

exact forecasts, both estimates are unbiased. In case of mismatches, both are biased, but the 

second estimator (4.4.5) reduces considerably the bias. 

We will test the hypotheses 

� �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � �� �  

with the following test statistic: 
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�
3 �

#
�

. (4.4.6) 

��  is rejected for an asymptotical level of significance �  if � �� �) ��3 � * � . 

&�&��� 1/�������������
��������������
��

The traffic lights approach can be considered as an efficient tool for identifying dubious credit 

portfolios or rating grades. It is based on individual trigger levels for default probabilities, as 

such thresholds that should not be exceeded by an ex-post default rate for a given rating class 

and its respective ex-ante PD. This approach is rather a graphical visualization of the 

observed default rate in relation to the forecasted default probability than a statistical test. So, 

rating grades that have a reddish colour are assumed to underestimate the credit risk; rating 

grades with a rather green colour are supposed to be conservative enough and the rest 

(basically yellow) should be treated in-between. Tasche (2003) presents a method for 

calculating the critical values that avoids simulations but requires explicit specification of 

asset correlations. 

In addition, the extended traffic lights approach can be regarded as a multi-period backtesting 

tool for a single rating category under the assumptions of independent default events in a 



 97

rating class and in time. In contrast to the normal test, the traffic lights test does not assume 

constant or nearly constant variance of the default rates over time. For more information on 

the traffic lights approach, we refer the reader to Blochwitz, Hohl & Wehn (2005). 

By the central limit theorem, the distribution of the standardized default rate can be 

approximated to the standard normal distribution as long as � �� �  is not too small2: 
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Define the probabilities �� , *� , ��  and �� 3—which correspond to the colours green, yellow, 
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 (4.4.7) 

Since the annual numbers of default are assumed to be independent, the vector �  counting 

the appearances of colour � �� � �% � * � ��  in the sequence � � � �� � � �. � . �� ��  is approximately 

multinomially distributed with 
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� * � �
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# # # #
1 2� �� � , (4.4.8) 

for every quadruple of non-negative integers such that � * � �# # # # �� � � � . Each 

quadruple for any time series can be labelled uniquely by means of an order function: 

 � �� � �� � � * � � � � * * � � � �# # # # ' # ' # ' # ' #3 � 3 � � � � , (4.4.9) 

such that � * � �' ' ' '� � � . In the existing literature for simulation studies (see Blochwitz 

et al., 2005), we found that for � �  9, vectors of weights such as � �� � �� * � �' � � � ��
T

 or 

� ��������������' �
T

 were used and they turned out to be appropriate. 

                                                 
2 Dinges & Rost (1982) suggest the rule of thumb: � ��� � �� � �� > 9. 
3 In the simulation study by Blochwitz et al. (2004), they choose �� ,= 0.5, *� = 0.3, �� = 0.15 and �� = 0.05. 
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The test hypotheses can be formulated as follows: 

� �� � � �& � � � & �� �� � � �� � � � � � ' �&�� � �� � + � �� � . 

��  will be rejected against the alternative for an asymptotical level of significance � , if 

�� $ ��3 � , being �$ ��  the greatest number $  such that � ��� $ �3 � � . 

&�&�"� 8 ��� �������������
��������

We have seen that both the normal and the traffic lights tests are asymptotic, with respect to 

the length of the time series and the portfolio size, respectively. Consequently, even under 

complete independence in time and in the portfolio, the observed type I4 errors might be lower 

than the nominal error level of the test. If the type I error agrees with the nominal level of the 

test, the next question is for which test the type II5 error is lower, i.e. which test is more 

powerful. 

Some simulation studies, like Blochwitz et al. (2004), are intended to solve these questions. 

There we can realise that both methodologies are robust against the violation of the 

assumption of independence in time in their designs, being the normal test slightly more 

robust. On the other hand, the traffic lights test seems to be generally more powerful than the 

normal test, in particular for short time series. Therefore, simultaneous applications of the 

tests should be favoured. 

&�)� !	� � ����

Along this section, we did an overview of the statistical methods existing in the academic 

literature for assessing the estimation quality of the default probabilities. However, these 

methods display shortcomings in practice. 

When independence of default events is assumed, the binomial test (section 4.2.1) can be 

applied in order to test the accuracy of a one period default probability forecast, for only one 

rating category at a time. We can check several categories simultaneously by applying the chi-

square test (section 4.2.2). The problem of these tests is that they do not estimate correctly the 

true type I error, since in reality default events are correlated. 

                                                 
4 The probability of erroneously rejecting the null hypothesis. 
5 The probability of not rejecting the null hypothesis if specific alternatives are true. 
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In order to deal with the problem of correlation, we presented the tests of section 4.3. These 

tests are based on the one factor threshold model of Basel II, which is intended to model the 

dependence structure of the default variables. As these tests are asymptotic, as well as the rest 

of the tests of this section, it is also expected that the actual type I errors are lower than the 

nominal error level of the test. But there are no simulation studies that can show to which 

extent this would happen. 

Furthermore, it is also required to validate the PD estimates for time series. By availability of 

historical data, this can be attained by applying the normal test and the extended traffic lights 

approach, which are described in section 4.4. The traffic lights test has more power than the 

normal test, which is in contrast mildly more robust against the violation of the independence 

assumption. 

Therefore, it should be emphasized, that there is no method to fit all situations that might 

occur in the validation process. Depending on the specific circumstances, the combination of 

different techniques will be the most appropriate way to address the validation exercise. 
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As the purpose of this thesis is to study the statistical aspects of developing a credit rating 

system, we accomplished in the previous sections an elaborate overview of the different 

methodologies that are used in practice, analysing their pros and cons and, in some cases, 

proposing alternative measures. A layout of the process of credit rating is given by the scheme 

(already pictured in section 1. Introduction, Figure 1.1): 

So, the first step of the process will be the selection of rating criteria from our dataset. In 

Appendix B we summarize the recommendations of the Basel Committee on Banking 

Supervision (2001) and the literature existing on this topic. In addition, we may select among 

all the factors, the most relevant with respect to their capacity to distinguish between default 

and non-default, i.e. by assessing their discriminatory power. 

The different measures of discriminatory power that are applied in practice were described in 

section 2. The overlapping area criterion �  (section 2.2) and the accuracy ratio ��  (section 

2.3)—linked to the Kolmogorov-Smirnov and the Mann-Whitney �  tests, respectively—

Data 

Validation 

Calibration 

Selection of criteria 

Backtesting 
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seem to be in general appropriate discriminatory power measures. On the other hand, we 

could see also that there are other measures that do not suit for credit rating, e.g. the 

misclassification rate. 

Moreover, we found out that the entropy-based criterion for reduction in impurity ��  (2.4.10) 

is also valid for assessing the discriminatory power. This criterion has been paid no attention, 

because of the misconception in the Basel Committee on Banking Supervision (2005), where 

they argue that are no tests applicable for those entropy-based measures. However, in section 

2.4.5 we showed that it is related to the test for homogeneity in 	 	�  contingency tables and 

hypotheses can hence be tested. 

Thus, � , ��  and ��  turn out to be suitable discriminatory power measures for the purpose 

of credit scoring. In the comparison of section 2.6 we could see that there is not a measure 

that performs best for every situation. It is remarkable, that the accuracy ratio performs in 

general worse than the other measures if there is no monotonicity. 

After having selected the rating criteria, we proceed to the calibration of the model. We 

described the different methods on hand in section 3. The well-known logit model (3.2.11), 

and the probit model (3.2.12) belong to the binary choice models (section 3.2). If there are 

enough defaults in our dataset with the observations of one year, they are easy to estimate. By 

availability of historical data, we may apply panel models (see section 3.4.1). That way, one 

can consider time dependent macro variables that cannot be taken into account by binary 

choice models. 

The binary choice models are widespread in credit rating because they have an easy 

interpretation and the probability of default is modelled as a strictly monotone increasing 

function of the score. This does not apply in general for other estimation methods, like neural 

networks (section 3.3.1), nonparametric and semiparametric methods (section 3.3.2) or CART 

(section 3.4.2). 

In the case of logit or probit models, we can test if a model fits better than another by the 

difference of their deviances (3.2.18) or with Akaike’s information criterion (3.2.19). If the 

model is not significant, we may discard variables that are not relevant and/or select 

additional explanatory variables. To continue with the process of validation, we divide our 

score in rating classes (section 3.4.3) and calculate for every class the mean probability of 

default asserted by the model. 
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An overview of the different methods for the validation and backtesting of PDs was given in 

section 4. We must remark, that there is no method to fit all situations. So, under the 

assumption of independence of default events, the binomial test (section 4.2.1) and the chi-

square test (section 4.2.2) can be applied. But these tests underestimate the true type I error, 

since default events are in fact correlated. The tests of section 4.3 are based on the one factor 

threshold model of Basel II, which models the dependence structure of the default variables. 

In order to validate the default probabilities for time series by availability of historical data, 

we can apply the normal test (section 4.4.2) and the extended traffic lights approach (section 

4.4.2). The normal test is slightly more robust against the violation of the assumption of 

independence, and the traffic lights test is more powerful. 

If the forecasted probabilities of default are significantly different of the default rates in the 

validation sample, we may choose alternative rating criteria or review the data, and calibrate 

the model again. 

Once our model is validated, it can be backtested with real default rates. Obviously, the model 

can also turn outdated, so that the original forecasted PDs will not coincide with the real 

default rates. In that case, we should return to the dataset, complement it with new data and 

start from the beginning. 
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�    default variable ( �� �  for default, �� �  otherwise). 

�    score �� ����� ��� � � ��  � � . 

1� � � ��� � �� �
T  vector of explanatory variables. 

�    parameter vector, normally of weights. 

�� 
� �   score �  conditioned to the default variable �� � . 

�� 
� �   score �  conditioned to the default variable �� � . 

�� , ��    probability density functions of � 
� �� , ���� � . 

�	 , �	    cumulative distribution functions of � 
� �� , ���� � . 

�����   gives back the greatest integer smaller or equal to � � � . 

PD   probability of default 
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The Basel Committee on Banking Supervision (2001) issued a second round of consultative 

documents proposing changes to the capital requirements for banks. The core of the Internal 

Ratings Based (IRB) approach is to meaningfully differentiate borrowers based on risk. Banks 

should therefore take all relevant information into account in assigning ratings to a borrower. 

This information should be current. The methodologies and data used in assigning ratings 

should be clearly specified and documented. As a minimum, a bank should look at each of the 

following factors for each borrower: 

• Historical and projected capacity to generate cash to repay its debts and support other 

cash requirements, such as capital expenditures; 

• Capital structure and the likelihood that unforeseen circumstances could exhaust its 

capital cushion and result in insolvency; 

• Quality of earnings, that is, the degree to which its revenue and cash flow emanate 

from core business operations as opposed to unique and non-recurring sources; 

• Quality and timelines of information about the borrower, including the availability of 

audited financial statements, the applicable accounting standards and its conformity 

with the standards; 

• Degree of operating leverage and the resulting impact that demand variability would 

have on its profitability and cash flow; 

• Financial flexibility resulting from its access to the debt and equity markets to gain 

additional resources; 

• Depth, skill and prudence of management and its ability to effectively respond to 

changing conditions and deploy resources; 

• Position within the industry and the future prospects; and 

• Risk characteristics of the country it is operating in, and the impact on the borrower’s 

ability to repay, (including transfer risk) where the borrower is located in another 

country and may not be able to obtain foreign currency to service its debt obligations 
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In this summary, we collected some rating criteria to be found in the existing literature. For 

private companies, there will be required information about their volume of sales, legal form, 

financial state and profitability. For private consumers and mortgages, financial as well as 

personal information will be considered. 

��� 5�������
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The dataset was raised from The Centre for Financial Studies, CFS. It consists of 260 credit 

records of medium-size companies from 1992 to 1998. For the empirical analysis there were 

used the following variables: 

• Default: dummy variable, which takes the value 1 if there were problems with the 

fulfilment of the contract and 0 otherwise. 

• Default_3: a value of 0 indicates no problems; a value of 1 indicates some problems, 

but still no total failure of the credit, and a value of 2 stands for severe problems. 

• ln(Sales Volume): this variable represents the size of the company on the basis of the 
sales volume, which are transformed with the natural logarithm. 

• ln(Sales Volume)²: in order to consider possible non linear influences of the business 

size, squared logarithmic conversions were taken up for the estimations. 

• Equity Ratio: equity ratio, computed as the quotient made of own capital funds and 

total assets. 

• Cash flow: dynamic cash flow, expressed as the quotient from cash flow and net 

debts. 

• Assets Coverage Degree: the quotient from medium- and long-term liabilities and 

medium- and long-term assets. 

• Restr icted L iability: dummy variable, which takes the value 1, if the firm is only 

limited reliable, otherwise takes the value 0. 

• 1992, 1993,..., 1998: dummy variables, which indicate in which year was originated 

the observation, whereby the year 1992 is taken in estimation as reference. 
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• Manufactur ing: binary variable, which labels companies from the sector of the 

manufacturing industry. 

• Construction: binary variable for the construction industry.  

• Retail: binary variable for the retail market. 

• Other: binary variable for other firms, which mainly proceed form the sectors service, 

transport and logistics. 

����� � �������6�#�$����; �(�����+�<<�,�

The goal of TMRiskCalc  Germany is to provide a probability of default for private firms in 

Germany, with annual turnover of more than � 0.5 m. However, due to the very different 

nature of some firms, they eliminated from their analysis small companies, financial 

institutions, public institutions, real estate companies and affiliates. 

For the model, they considered companies as having defaulted, if they entered or undergone 

bankruptcy, debt compositions proceedings, debt moratorium or cheque or bill protest. And 

used nine factors, which fall within the following broad categories: leverage/gearing, 

profitability, debt coverage, growth, activity and productivity.  

Leverage/Gear ing Ratios 

• Equity ratio: (Equity – Intangible assets) / (Total assets – Intangible assets – Cash & 

Equivalents – Land & Buildings) 

• Net indebtedness = (Current liabilities – Cash & Equivalents) / Total assets 

• Liabilities structure = (Trade liabilities + Notes payable + Bank liabilities) / 

(Liabilities – Advances). 

Profitability 

• EBITD = (Net profit + Interest expenses + Income taxes + Depreciation) / Total assets 

• Profit on Sales = Ordinary profit / Sales 

Debt coverage 
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• Debt coverage = Cash Flow / (Liabilities – Advances) 

Growth 

• Sales Growth Sales(t) / Sales(t-1) 

Activity 

• Trade creditors ratio = ((Notes payable + Trade liabilities) *360) / Sales 

Productivity 

• Personnel expenses on sales = Personnel expenses / Sales 

���"� !��������; �5���=��+�<<),�

• EBIT interest Coverage = Earnings from continuing operations*  before interest and 

taxes / Gross interest incurred before subtracting (1) capitalized interest and (2) 

interest income 

• EBITDA interest coverage = Earnings from continuing operations*  before interest, 

taxes, depreciation and amortization / Gross interest incurred before subtracting (1) 

capitalized interest and (2) interest income 

• Funds from operations / total debt = Net income from continuing operations plus 

depreciation, amortization, deferred income taxes, and other non-cash items / Long-

term debt**  plus current maturities, commercial paper, and other short-term 

borrowings 

• Free operating cash flow / total debt = Funds from operations minus capital 

expenditures, minus (plus) the increase (decrease) in working capital (excluding 

changes in cash, marketable securities, and short term debt) / Long-term debt**  plus 

current maturities, commercial paper, and other short-term borrowings 

• Return on capital = EBIT / Average of beginning of year capital, including short-

term debt, current maturities, long-term debt** , non-current deferred taxes, and equity 
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• Operating income / sales = Sales minus cost of goods manufactured (before 

depreciation and amortization), selling, general and administrative, and research and 

development costs / Sales 

• Long-term debt / capital = Long-term debt**  / Long-term debt + shareholders’  

equity (including preferred stock) plus minority interest 

• Total debt / capital = Long-term debt**  plus current maturities, commercial paper, 

and other short-term borrowings / Long-term debt plus current maturities, commercial 

paper, and other short-term borrowings + shareholderś  equity (including preferred 

stock) plus minority interest 

*  Including interest income and equity earnings; excluding nonrecurring items. 

**  Including amount for operating lease debt equivalent. 
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When we speak about retail customers, according to the definition of Basel II it concerns 

exclusively private consumers, because Basel II allows the local modulators a certain margin 

in order to rank likewise small firms among the retail portfolio. The rating due to the personal 

data of the company’s owner is here more meaningful than consulting financial ratios. Typical 

data for a rating within the retail sector are: 

• Personal Data: age, sex, yearly income, civil status, number of renting members in 

the household, living years at the current/previous address, residential property, etc. 

• Occupation: kind of job, professional years, years in current/previous conditions of 

employment, number of employees (if executive/autonomous), etc. 

• Credit: kind of credit, size of the credit, running time, frequency of the repayments, 

presence/value of collaterals, etc. 

• Past behaviour : number and size of credits in the past, late/failed repayments with 

previous credits, etc. 
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The credit-reporting environment varies widely around the globe. The limits on the reporting 

of consumer payment histories are typically government-imposed (perhaps as a result of 

concerns about consumer privacy) or the result of the reluctance of incumbent lenders to share 

valuable customer information with potential competitors. 

Historically, credit reporting in most countries began with the sharing of so-called “negative”  

information (delinquencies, charge-offs, bankruptcies, etc.) on borrowers. Only gradually and 

recently has information about the successful handling of accounts (prior and current) been 

contributed to the data repository. They also demonstrate in their paper how the availability of 

such “positive”  data can substantially boost the effectiveness of scoring models and expand 

credit availability to consumers. 

• Outstanding Debt and Types of Credit 

o Total number of open, paid or closed trades 

o No open, paid or closed trades 

o Number of trades open with a balance greater or equal to zero 

o No trades open with a balance greater than or equal to zero 

o Number of trades opened in the last 6 months 

o No trades opened in the last 6 months 

o Number of trades opened in the last 12 months 

o No trades opened in the last 12 months 

o Proportion of open trades that is revolving 

o Proportion of open trades that is finance instalment 

o Proportion of open trades that is real state/property 

o Zero balance on open trades 
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o Average balance across all open trades 

o Average balance across open revolving trades 

o Proportion of debt that is revolving 

o Proportion of debt that is finance instalment 

o Proportion of debt that is real state/property 

o Bankcard balance/limit ratio on all open trades reported in last 6 months 

o Bankcard balance/limit ratio on all open trades reported in last 12 months 

• Length of credit history 

o Age, in months, oldest trade 

o Age, in months, of most recently open trade 

o Age, in months, of most recently open trade = 9999 

o Average age, in months, of all trades 

o Ratio of number of open trades reported, last 12 months to age of oldest trade 

• New Applications For  Credit (Inquir ies) 

o Total number of inquiries made for credit purposes 

o No inquiries made for credit purposes 

o Total number of bankcard inquiries made for credit purposes 

o No bankcard inquiries made for credit purposes 

o Months since most recent inquiry for credit purposes was made 

o Months since most recent bankcard inquiry for credit purposes was made 

o Total number of inquiries for credit purposes made, last 6 months 
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o Proportion of inquiries to open trades, last 6 months 

o Total number of inquiries for credit purposes made, last 12 months 

o Proportion of inquiries to open trades, last 12 months 

• Late Payments, Delinquencies and Bankruptcies 

o Proportion of all trades never delinquent/ derogatory 

o Proportion of all trades that have never been delinquent, last 12 months 

o Positive number of trades ever 60+ days delinquent or derogatory 

o Number of trades ever 60+ days delinquent or derogator 

o Proportion of trades ever 60+ days delinquent or derogatory 

o Positive number of trades ever derogatory, including collection, charge-off, etc. 

o Number of trades ever derogatory 

o Proportion of trades ever derogatory 

o Positive number of bankruptcy tradelines ever 

o Total number of bankruptcy tradelines ever (only available for all) 

o Proportion of trades ever bankruptcy tradelines 

o Months since most recent tradeline bankruptcy 

o Worst status ever (including current) on a trade 

o Worst ever status on trades reported, last 12 months 

o Worst present status on an open trade 

o Worst status ever (including current) on a bankcard trade 

o Worst ever status on bankcard trades reported, last 12 months 
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o Worst present status on an open bankcard trade 

o Months since most recent 30-180 day delinquency on any trade 

o Not ever delinquent or derogatory on any trade 

o Months since most recent 90+ delinquency or derogatory, any trade 

o Not ever 90+ days delinquency or derogatory item on any trade 
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This paper uses a large data set with Swedish consumer credit data that contains extensive 

financial and personal information on both rejected and approved applicants at a major 

Swedish lending institution between September 1994 and August 1995. 

The variables that have been selected for the estimation of the empirical model are: 

• AGE: age of applicant 

• MALE: dummy, takes value 1 if applicant is male. 

• DIVORCE: dummy, takes value 1 if applicant is divorced. 

• HOUSE: dummy, takes value 1 if applicant owns a (possible mortgaged) house. 

• BIGCITY: dummy, takes value 1 if applicant lives in one of the three greater  

metropolitan areas around Göteborg, Malmö and Stockholm. 

• NRQUEST: number of requests for information on the applicant that the credit 

agency received during the last 36 months 

• ENTREPR: dummy, takes value 1 if applicant has taxable income form a registered 

business. 

• INCOME: annual income from wages, relative to preceding year, as reported to 

Swedish tax authorities in 1993 or 1994 (depending on granting date) (in SEK 1000) 

• DIFINC: change in annual income from wages, relative to preceding year, as 

reported to Swedish tax authorities (in SEK 1000) 
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• CAPINC: dummy, tales value 1 if applicant has taxable income from capital. 

• BALINC: ratio of total collateral-free credit facilities actually utilized and 

INCOME, expressed as percentage. This variable is defined as: DUMMY{ income>0}  

*  (BALANCE/INCOME). 

• ZEROLIM: dummy, takes value 1 if applicant has no collateral-free loans 

outstanding. 

• LIMIT: total amount of collateral-free credit facilities already outstanding (in 

1000 SEK) 

• NRLOANS: number  of collateral-free loans already outstanding 

• LIMUTIL: percentage of LIMIT that is actually being utilized. 

• LOANSIZE: amount of credit granted (in 1000 SEK) 

• COAPPLIC: dummy, takes value 1 if applicant has a guarantor . 

���&� � �����6����?��; �% 	���@��+�AA-,�

The data come from a sample of clients that had been granted credit by a Spanish bank. The 

sample was taken in May 1989. Even though this paper is limited to the study of the 

probabilities of default for those clients who had already a credit, the authors think that the 

methodology could also be considered for other applications in this field, including the 

granting decision when data on refused clients are available. 

• Y: number of non-payments. 

• YDUM: 1 if the number of non-payments is equal to or greater  than four. 0 

otherwise. 

• DT6: 1 if total contract duration of return period is more than four years. 0 otherwise 

(reference group). 

• DUREEA: Number  of months form the beginning of the contract at the sampling 

date. 
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• AGE1: 1 if the age group is 18-24 years. 0 otherwise. 

• AGE2: 1 if the age group is 25-39 years. 0 otherwise.  

• AGE3: 1 if the age group is 40 years or  more. 0 otherwise. 

• DESTIN: 1 if the credit is used to purchase a good with collateral. 0 otherwise. 

• ETUI1: 1 if the client has not completed pr imary education. 0 otherwise. 

• ETUI2: 1 if the client has completed pr imary education. 0 otherwise. 

• ETUI3: 1 if the client has completed higher  education. 0 otherwise. 

• ETUI4: 1 if the client has a university degree. 0 otherwise. 

• RECSAL: 1 if the client receives the salary through the bank. 0 otherwise. 

• M1: 1 if marr ied, non-owner , salary under $3,000. 0 otherwise. 

• M2: 1 if marr ied, non-owner , salary higher  than (equal to) $3,000. 0 otherwise. 

• M3: 1 if marr ied, owner , salary under $3,000. 0 otherwise. 

• M4: 1 if marr ied, owner , salary higher  than (equal to) $3,000. 0 otherwise. 

• NM1: 1 if not marr ied, non-owner . 0 otherwise. 

• NM2: 1 if not marr ied, owner . 0 otherwise. 

• CENTRE: 1 if the credit is granted by a store. 0 otherwise. 

• RESID: 1 if resident in the city for at least four  years. 0 otherwise. 

• Z1: 1 if south Spain (Andalucía, Canarias, Castilla-La Mancha, Extremadura, Murcia). 

0 otherwise. 

• Z2: 1 if north (Aragon, Asturias, Cantabria, Castilla-León, Galicia, Navarra, País 

Vasco). 0 otherwise. 

• Z3: 1 if east (Baleares, Catalunya, Valencia). 0 otherwise. 
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• Z4: 1 if centre (Madrid). 0 otherwise. 
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Hand and Henley indicate in its paper as a data example a table, which represents the kind of 

characteristics of a credit rating for private customers 

• Time at the present address: 0-1, 1-2, 3-4, 5 + years 

• Home status: owner, tenant, other 

• Postcode: band A, B, C, D, E 

• Telephone: yes, no 

• Applicant’s annual income 

• Credit card: yes, no 

• Type of bank account: cheque and/or savings, none 

• Age: 18-25, 26-40, 41-55, 55 + years 

• Country Court judgments: number 

• Type of occupation: coded 

• Purpose of loan: coded 

• Marital status: married, divorced, single, widow, other 

• Time with bank: years 

• Time with employer : years 
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FICO scores were developed by Fair Isaac & Company, Inc. and it might be the most 

commonly used method to value mortgages. They only consider the information contained in 

a person’s credit file. This information can be grouped into five categories as outlined below: 

• Payment History 

o Account payment information on specific types of accounts (credit cards, retail 

accounts, instalment loans, finance company accounts, mortgage, etc.) 

o Presence of adverse public records (bankruptcy, judgements, suits, liens, wage 

attachments, etc.), collection items, and/or delinquency (past due items) 

o Severity of delinquency (how long past due) 

o Amount past due on delinquent accounts or collection items 

o Time since (recency of) past due items (delinquency), adverse public records (if any), 

or collection items (if any) 

o Number of past due items on file 

o Number of accounts paid as agreed 

• Amounts Owed 

o Amount owing on accounts 

o Amount owing on specific types of accounts 

o Amount owing on specific accounts 

o Lack of a specific type of balance, in some cases 

o Number of accounts with balances  

o Proportion of credit lines used (proportion of balances to total credit limits on certain 

types of revolving accounts) 
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o Proportion of instalment loan amounts still owing (proportion of balance to original 

loan amount on certain types of instalment loans) 

• Length of Credit History 

o Time since accounts opened 

o Time since accounts opened, by specific type of account 

o Time since account activity 

• New Credit 

o Number of recently opened accounts, and proportion of accounts that are recently 

opened, by type of account 

o Number of recent credit inquiries 

o Time since recent account opening(s), by type of account 

o Time since credit inquiry(s) 

o Re-establishment of positive credit history following past payment problems 

• Types of Credit Used 

o Number of (presence, prevalence, and recent information on) various types of 

accounts (credit cards, retail accounts, instalment loans, mortgage, consumer finance 

accounts, etc.) 

�"��� #�� �; �� ��!�����+�AAA,�

Based on a research of Singapore’s economy, lending and property markets, ad property laws, 

Standard & Poor’s has established its preliminary rating criteria for Singapore residential 

mortgage securitization. This criterion is adapted solely for private mass residential 

properties, rather than luxury residential properties. 

From research into parameters for mortgage underwriting and property characteristics, a 

benchmark pool as shown below was devised. The benchmark pool serves as a yardstick by 
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which the risk in any given mortgage pool may be measured. The benchmark pool is assumed 

to incur a specific maximum amount of credit losses appropriate for a rating category. 

• Pool size: minimum of 300 loans. 

• Loan size: maximum of S$600,000. 

• Loan-to-Value Ratio (LTV): maximum of 80%. 

• Debt Servicing-to-Income Ratio: total monthly debt repayment obligations may not 

exceed 30% of gross monthly income. 

• Loan type: level pay, fully amortizing, variable and fixed rates. 

• Loan term: maximum of 30 years. 

• Loan seasoning: minimum of six payments made. 

• Loan per formance: not delinquent at the time of transfer and clean delinquency 

record over the previous 12 months. 

• Loan purpose: purchase or refinance without equity release 

• Secur ity: first registered mortgage over property. 

• Land type and title: Freehold land or crown leaseholds. 

• Property type:  Condominiums and apartments. 

• Property age: less than 10 years old at the time of mortgage origination. 

• Occupancy status: owner-occupied. 

• Geographic location/concentration: properties located in reasonable proximity to 

mass transit and good schools are viewed more favourably. 

• Concentration limits by region (%) 

• Borrower employment: salaried employee or professional. 

• Borrower residency: Singapore citizens or permanent resident individuals. 
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• Property insurance: fully insured for at least the replacement value of the property 

against fire. 

• Property valuation: performed by a registered chartered surveyor. 

• Mortgage or iginators: prudent and experienced mortgage lending banks. 

• Mortgage assignment: mortgages assigned to special-purpose vehicle issuer by legal 

assignment. 

(� !�� ��	���	���������������

In this small section we will introduce some statements that are useful for the comparison of 

discriminatory power measures in section 2.6. 

Proposition C.1 

Let � �0 0 1 �� � )� 	  and � �21 �� � ) � �� 	 , such that 0� " . Then we obtain the 

following expressions (in order to simplify, we will denote � �1 #1 � � �� � ): 

1. The overlapping area criterion is given by: 

� � � �� �1������
�

� � 1� * �* , 

being the score value that maximizes ���� : 

� � � �	 	 	 	
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2. For the accuracy ratio: 
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6we have the inequality: 

� � � �� �12���
�

� 1 ��* �* � � 2 ����  

3. Given an optimal split point � , for the standardized maximal distance holds: 
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Proof: 

1. The expression of ����  follows from the definition (2.2.5). The optimal �  is obtained by 

solving: 

� �		
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2. We will calculate first the left side of the inequality and then the right side. Using the 

definition of ���  (2.3.3) and the relationship between ���  and ��  (2.3.4): 

I. We have � � � �1 01��� 	 � �	 �
�

��
� � 
 , being 

� � � � � � � �� � � � � � � �
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6 This integral can only be computed numerically or otherwise approximated. 
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II. Similarly, we obtain: � � � � � � � �� �1 0 1 0

1

2
���

�
	 � �	 � 	 � 	 �

�

��
" � �
  

� � � �� � � � � �� �1 0 0 1

1 1

2 2
��� ���

� �
��� 	 � 	 � 	 � 	 �� � � � � �  

� � � �� � � � � �� �0 1 0 1

1
2 1 2 1 2

2
��� ���

� �
�� ��� 	 � 	 � 	 � 	 �

� ���� � � � � � � ��� �� !
 

3. Is a generalization of the expression given in Proposition 2.26 for �� , if we have different 

standard deviations �  and � . 

�  

Proposition C.2 

Given � �20 0 �� � ) �� 	  and � �21 �� � ) � �� 	 , such that 0� " . Then we can state 

(for ease of notation, we write 2#1 � �� , 0 #1 � �� , � �1 #1 � � �� � ): 

1. For the overlapping area criterion: 

� �2 1���� 1� * �  

2. For the accuracy ratio we get: 

� �
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and the following inequalities 

� � � �� � � �� �2

12 2 1��� ��� �
�

�� � 1 1" * �* * �  and 

� � � � � �� �2
4 2 4 2 1��� ��� 1 1 1� * � * � * �  

3. For the standardized maximal distance, having an optimal split point � : 
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Proof: 

1. Note that for a normal distribution function, we have: 1�� � �1 1* � �* � . As for equal 

standard deviations, we have the optimal #	� �� , then by the definition (2.2.5) of ���� : 

� � � �� �0 1 0 12 2
������

�
� 	 � 	 � 	 	

� �� � � �� �� �� � � �� �� �� �� � !  !
 

2 0 2

2 2

# #� � � � �

� � � �

� � � � � � � �� � �� � � �� � � �� * �* � * �*� � � �� � � �� � � �� � � � !  !  !  !
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2. By the definition of ���  (2.3.3) and the relationship (2.3.4), we proceed as follows: 

I. For the left side, we have 
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Thus, � �� � � �2 2
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Moreover, from Proposition C.1, we got 

� � � �� �12���
�
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II. And for the right side, 
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Then we get  
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And we know from Proposition C.1, that � �� �2 2 2 1����� � 1� � * � . 

3. It derives from the expression of ��  given in Proposition C.1 for equal standard 

deviations � . 
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