STATISTICAL ASPECTS OF
SETTING UP A CREDIT RATING
SYSTEM

Beatriz Clavero Rasero

Beim Fachbereich Mathematik
der Technischen Universitit Kaiserslautern
zur Verleihung des akademischen Grades
Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)
genehmigte Dissertation

1. Gutachter: Prof. Dr. Ralf Korn
2. Gutachter: Priv. Doz. Dr. Marlene Miiller

Vollzug der Promotion: 19.09.2006






First of al, | would like to say that | feel very fortunate in having been
accompanied by such great people during my thesis. | would like to thank
Prof. Dr. Raf Korn for the interesting subject. He, together with Dr.
Marlene Miller and Dr. Gerald Kroisandt were aways guiding me with
useful advices and dedication. | am also very thankful to Stefan Lorenz and
the rest of my colleagues at the department of Financia Mathematics in
Fraunhofer ITWM for their support. Special thanks aso to Eva Barrena
and Jan Hauth for their precious help. And at last but not least, my family

and friends, who took care of me.






Contents

1
11

12

21
2.2

2.3

24

2.5

Introduction 1

BaCKGIrOUNG ...ttt 1

N o] o] (072 o SRR 1
Discriminatory power of credit ratings 5

INEFOTUCTION ... re e 5

OVENBPPING BIEA.....c.eeieeieiieieeie ettt ettt b e e ens 7
2.2.1  KOImMOQOroV-SMIirMOV TESE.........ciiruirieriieieeesie st 9

o ol =3V - 1 o T USRS 11
2.3 1 LOIBNZ CUINVE.....c.eiiiiiiiieete et s 11
2.3.2 GINi COEFfICTONE.....uiieiieiee e 12
2.3.3  ACCUIBCY T8I0 .c.veveeueeueeieste st ste sttt ss et b b e b e e e besaesbesneas 13
2.3 4 ROC CUIMNVE.......eiitieieeee sttt sttt r e nneennesneenns 14
2.35 AUC (Ar€aUNTEr CUINVE) ......oouiiiirieeiieieeieeie ettt saesnesneas 14
2.3.6  Wilcoxon-Mann-Withney U teSt.........ccccveieeiieiiieiie e 16

IMPUIILY TUNCHIONS......ciiiie et et esre e 17
241 MisClasSifiCatioN ML ..........cceiiriiirieeeee e 21
2.4.2 Another class of impurity FUNCHIONS..........cccooiiinirineneeeeee e 23
243 GINEINOEX . ..itiiiieeeeee ettt e et saesbenneas 26
244 ENIITOPY -ttt e ns 27
245 Test for homogenity in 2x2 contingency tables.........ccocevvviieveecceecee e, 27
24.6 EXAMPIES.. ..ot ere e 28
2.4.7 Comparison of entropy and Gini INAEX .........ccceeiieiieeiieiiee e 30

OFNEN MEBSUIES.......ceitiiieitieiieeeee ettt b et se et se e b e 54
251 MiSClasSITICATION M .......ccvereeiierieeiiriieieee e 54



2.6

31

3.2

3.3

34

3.5

4.1

4.2

4.3

2.5.2 Correlation COBfICIENT ........cccoiiriiireeieee e 58
Comparison of measures of disCriminatory POWEY ..........ccoeevvveeieeiieeesieesiieesieeenns 61
Estimation of default probabilities 68
INEFOTUCTION ... 68
Binary ChoiCE MOGEIS. ........coiiieee e 68
3.21 MLE (Maximum Likelihood ESImMator) ........ccccoeverinenieieieesesesie s 69
I o | | TSRS PTOTPPRPRORN 71
3.2.3  PrODIT ... e 72
324  PD ESHIMELION....cuiitiiiiieeeeeeiee et 72
3.2.5 Significance of the model and parameters, optimal weighting..................... 73
3.26 LOQit VEISUS ProDIt........coiiiiiesiirieisee e 74
Further estimation MEtNOAS.............cooeiiiireni e 77
3.3 1 NEUral NEIWOTKS .....coueiiiiiiierie st 77
3.3.2 Nonparametric and semiparametric methods............ccceeveeeieevievceesee e, 77
FUMNEE BSPECES. ...ttt esre e 78
3.4.1 Regression modelsfor binary dependent variables and panel data............... 78
3.4.2 Classification and regression trees (CART) ....ocvviverenerieeieeeese e 80
3.4.3 Generation Of rating ClaSSeS.........ccureririerieriere et 81
SUMIMING UP ettt sttt st a e b bt eae e e b e e e nbeneesbenneas 84
Validation and backtesting of PDs 85
INEFOTUCTION ... bbbt 85
Tests based on the independence assUMPLiON .........cccveceeieeccieesee e 86
4.2.1 BINOMIBI TES ..o 86
4.2.2  Chi-SQUAIETESE. ... .oieicieeeieieeee ettt se e 88
The one factor threshold model of Basel [1..........cccooeviiinininincceeeee 89



4.3.1 Testsfor one probability Of default..........ccccoviiiiiiinin e 90

4.3.2 Simultaneous tests for multiple probabilities of default .............ccccvveeeeeee. 92

4.3.3 A numerical comparison of thetestS.......ccccvviieeiii i 93

4.4 Validation of PDSfor Short time SEfM€S.......ccueveieiereresereeee e 94
441 NOMMEI TESE ... 95

4.4.2 Extended traffic lightS @pproach ..........oceoeeeiiienine s 96

4.4.3 Normal VS. traffic HGhLS .......ooeiiiieeeeee s 98

4.5 Bl 0101 7= RS 98

5 Guidelinesfor credit rating 100
Appendix 103
N N[0 = 1 o o OSSP PR 103
B Salecting rating Critelia.......ccueiiieiieciie ettt ere e 104
C  SOmMe USEfUl PrOPOSITIONS.......coueeieeieiesiesie sttt srenre s 119

References 124






1 Introduction

The new international capital standard for credit institutions (“Basel 11”) allows banks to use
internal rating systems in order to determine the risk weights that are relevant for the
calculation of capital charge. Therefore, it is necessary to develop a system that enfolds the
main practices and methods existing in the context of credit rating. The aim of thisthesisisto
give a suggestion of setting up a credit rating system, where the main techniques used in
practice are analyzed, presenting some alternatives and considering the problems that can
arise from a statistical point of view. Finally, we will set up some guidelines on how to
accomplish the challenge of credit scoring.

1.1 Background

The credit institutions offer their customers a variety of financial services and bring together
investors and credit receivers. As aresult, financial institutions face a multitude of risks such
as credit, market and operational risks. These risks have to be covered with sufficient quantity
of own capital.

The current regulations for credit risks are the result of a recommendation of the Committee
on Banking Supervision in Basdl, (“Basel 11”), which started with a discussion 1988 that has
been successfully concluded by the compromise formula of July 10, 2002. The amendment of
the Basle commission is supposed to substitute the current flat rate equity capital securities of
8% of the standard risk-weighted credit positions (“Basel 1) at the end of 2006, including
equity capital securities that depend on the credit risk.

The judgement of the quality of a credit with respect to the probability of default is called
credit rating. A method based on a multi-dimensional criterion seems to be natural, due to
the numerous effects that can influence this rating. However, owing to governmenta rules,
the tendency is that typically one-dimensional criteria will be required in the future as a
measure for the credit worthiness or for the quality of a credit.

1.2 Approach

The problem as described above can be resolved via transformation of a multi-dimensional
data set into a one-dimensional one while keeping some monotonicity properties and aso



keeping the loss of information (due to the loss of dimensionality) at a minimum level. The
following scheme will help us to understand better the process of credit rating:

-------------------- > Data i

!

— Selection of criteria D —

!

Calibration

!

Validation

!

boommmmmmmmooees Backtesting

Figure 1.1: Concept of a credit rating system

The steps that are required for a method to evaluate credits are very briefly described as
follows:

» Selection of rating criteria

e Conception of ratings: identification and choice of influence factors with respect to
their ability to distinguish between default and non-default.

» Estimation of scores. determination of the optimal weighting of the relevant influent

factors with the help of econometric models (logit, probit, and extensions).

e Allocation of the scoresin rating classes.



e Estimation of the default probabilities. binary choice models, panel models for the
estimation of data covering several years, neural networks, nonparametric and
semiparametric methods for the estimation of non-monotonous effects.

e Evauation and comparison of scores and ratings with respect to their discriminatory

power.
» Evaluation of arating system: validation and backtesting using historical data.
These steps are developed along this thesis, which is organized in the following sections:

Section 2 is devoted to the study of the discriminatory power of credit ratings. There, we will
study the different techniques that are used in practice, like the overlapping area, accuracy
ratio, Lorenz curve or Gini index. In addition, the criterion for reduction in impurity is
presented as another option to assess the discriminatory power of a score. We found out that
the entropy-based criterion is also avalid discriminatory power measure, since hypothesis can
be tested—contrary to the misconception in the Basel Committee on Banking Supervision
(2005), that there are no applicable tests for the entropy-based measures. Further, we will
review other measures, e.g. the misclassification rate, questioning their suitability for credit
rating. To complete, we do a comparison of the most appropriate measures, i.e. overlapping
area, accuracy ratio and the entropy-based criterion, evaluating their pros and cons in diverse
situations.

In Section 3 we offer an overview of the different methods for estimating the default
probability and some aspects related, like the generation of rating classes. The well-known
logit and probit models will be discussed in relation to other estimation methods, e.g.

nonparametric and semiparametric, neural networks, panel data models and CART.

Section 4 introduces some tests for the validation and backtesting of PDs. As there is no
single method that suits for alls situations in practice, a combination of the different
techniques should be favoured. The binomial test and the chi-sgquare test can be applied under
the assumption of independence of default events, although default events are in fact
correlated. The one factor threshold model of Basel |l and the derived tests observe this
correlation. In order to determine the adequacy of a forecasted default probability for time
series, we may use the normal test or the extended traffic lights approach.



This work concludes with a summary in Section 5, where we recommend a standard
procedure for credit scoring.

Finaly, in the Appendix it can be found a summary of the literature about rating criteria.



2 Discriminatory power of credit ratings

2.1 Introduction

Suppose we deal with the following classification problem: we consider random variables
X,,...,X, and Y €{0,1} asagroup indicator. A score S = S(X,,...,X ) € R, used to rate
applicants for aloan, is an aggregation of the variables X,,..., X into a single number. Each
individual variable can also be regarded as a score, although here we will only refer to the
relation between the random variables S and Y .

In the following we will agree that a reasonable score function should assign higher score
values to credit applicants who have higher probabilities of default. Formally, it means that
the distribution of defaults dominates stochastically over the non-defaults. A basic feature of a
credit score function is consequently the efficiency to separate the two groups of observations
according to Y =1 (default) and Y = 0 (non-default). A measure for the discriminatory
power can thus be used as a performance measure for a credit score.

A measure of discriminatory power is not required to quantify the goodness of fit of the
estimated probabilities of default (see section 3) to the real PDs. Suppose that we consider as
our score the probability of default estimated by the model. Then, for any (strictly) monotone
transformation of S, the discriminatory power would not change, although the output of such
atransformation has nothing to do with the original range of values.

We will describe here the measures that are being used in the credit rating practice. The
overlapping area criterion and its associated Kolmogorov-Smirnov test are introduced in
section 2.2. In section 2.3 we will depict the well-known accuracy ratio, which is related to
the Wilcoxon-Mann-Whitney U test. An aternative discriminatory power measure is given
by the standardized maximal distance (2.4.4) defined in section 2.4. Furthermore, we will see
in section 2.4.5, that the entropy-based criterion for reduction in impurity (2.4.10) is linked to
the test for homogeneity in 2 x 2 contingency tables.

On the other hand, there are also measures (section 2.5) that are not appropriate for assessing
the discriminatory power of a score, i.e. misclassification rate (2.5.2), athough they can be
found in the literature or used in practice.



At the end of this section, we will compare the most suitable measures, anaysing their
behaviour under specific circumstances. An important feature of these measures is that they
actually remain constant under (strictly) monotone transformation of the score.

As it is easier to see graphically how some measures separate the data, we will picture the
kernel density estimates of non-defaults (blue) and defaults (red) with a Gaussian smoothing
kernel for scorel (2.1.2), score2 (2.1.3) in the following example, and other simulated
examples.

Example2.1

VW built up two scores from a sanple of private |loans we got from Fahrneir &
Hamerl e (1984), having on account sone variables |ike personal characteristics,
credit characteristics and credit history. The sanple size is 1000; 300 of them
are defaults. For the calibration and validation of the nodel, we chose at random
two sanples with 80% and 20% of the data and default rates 0.3075 and 0. 27,
respectively. In practice, the proportion of defaults is normally lower. The

variables used are listed in the follow ng table:

Properties

Age

Vari abl e Specification 1 Speci fication 2
Bank account X
Duration of the credit X
Paynment previous credits X
Anmount of credit X
Savi ngs X X
Time current job X X
Mont hl y paynent % i ncome X
Marital status, sex X X
X
X
X

Previous credits

Table 2.1: Variables selected for each specification

The scores were determined by a |logit nodel (see section 3.2.2), such that, given

}
the vector of realizations of the explanatory variables, i.e. z=(Lx,..,7,,),

the estimated probability of default is given:



B L 1 _ exp(ﬁTrc)
PO =X =) = o )~ T exp(F2) (@11

(3 being the vector of regression paraneters. For every specification, the scores

S = ("X were cal cul at ed:

scorel = 1.389 * * — 0.574 * * * *account + 0.031* * * *duration — 0.537 * * * *pay
+5.024¢ — O5amount — 0.213 * * * *savings — 0.160 * *time — 0.256 * * * month (2.1.2)
—0.241*status + 0.114properties — 0.009 age + 0.325 * prev _ credits

score2 = 0.826 * * — 0.258 * * * *savings — 0.177 * * * time — 0.208 * status (2.1.3)

¥ xk xxk o kxxx denote significant coefficients at the 10% 5% 1% O0.1% | evel,

respectively.

2.2 Overlapping area

In this section we will show the construction of the overlapping area criterion—which goes
back to the work of Kraft, Kroisandt & Mduller (2004)—and its associated Kolmogorov-
Smirnov test. The distance between defaults and non-defaults scores can be simply assessed
by calculating the overlapping area of their respective densities. Let us denote by F,, F| the
cumulative distribution functionsof S |Y =0 and S |Y = 1. We will first observe the case
of two normal distributions having one point of intersection; the conditional densities f, and
f, areeasy to visualize and to compute:

Overlapping of Normal Densities

f0, f1
03 04

02

0,1

4 2 0 2 4

Figure 2.1: Overlapping area of two normal densities

The horizontal coordinate of this intersection is denoted by s € R, which is the separation
threshold such that all scorevalues S > s are predicted as default.



Let us assume a normal distribution means that both densities f, and f, are determined by
their expectations 1, p, and standard deviations o, o,. Without loss of generality we can
suppose from now on that 1, >, . Then the region of overlapping O for both densities can be
caculated as

O=F/(9)+1-F.(9). (2.2.1)
There is exactly one point of intersection if both standard deviations are identical (o, =0,)
for the normal case, which is given by

S:MU"}_M.
2

On the other hand, if they are different (o, = 0,), then there may be one or two points of
intersection (as in quadratic discriminate analysis) and the horizontal coordinates are given by
f,(s) = f.(s), i.e. assolutions of the quadratic equation

s*(0) — 0g) + 2s(mog — myoy) + oy — oy + 20705 (log(o) — o5 log(e,)) = 0.

If we do not make distributional assumption for S, then the definition of O can be easily

generalized to the nonparametric case
0 = [ min{fs).f,(s)}ds.
which allows any number of intersection points.

Assume only one optimal point of intersection. For a positive monotone relationship between
the score S and the default probability, the overlapping areais defined by

0,, = m}n{]ﬂ(s) +1—FE(s)}. (22.2)

pos

Alternatively, for a negative monotone influence of the scorevalues S on Y, we set

0,.,= msin{E](s) +1-FE(s)}. (2.2.3)

neg

For amonotone relationship it obviously holds

0,,, = min{0,,, Oneg} ,

mon



It is clear that for perfectly separated distributions the region of overlapping O is zero. If
both distributions are identical, then O=1. A measure of the discriminatory power is then

given by

mon

r=1-0,, = m?X|FU(5) - Fl(s)| (2.2.4)

The discriminatory power indicator 7' takes on values in the interval [0, 1], where T =1
stands for perfect separation and T =0 means no separation. The positive- and negative-
monotone versions of 7' are settled

T, =1-0,

pos

= max{F(s) ~ F()} (2.25)

0S

T,,=1-0,, = max{F(s) - F,(s)} (226)
In the monotone case, 7' can be estimated by nonparametric estimates of the cumulative
distribution functions F,, F,, i.e. the empirical distribution functions. Under the assumption
of normality, O (and hence T') can be computed by their empirical moments 1, , 1, , 7, ,
and &, . Under more general assumptions on the distributions, O and 7' can be calculated for
example by nonparametric estimates of the densities, like histograms or kernel density
estimators. For more information on this topic, see Hardle (1991) or Silverman (1986).

2.2.1 Kolmogorov-Smirnov test

We remark that the measure 7' is related to the Kolmogorov-Smirnov test statistics. If we
consider the hypotheses.

H, H, Test statistic Reject condition
1) E()=F(z) Fy1)>FE@) T = mgx{ﬁ()(s) - ﬁn@} Ty > A

Mg sl—a

(2 E@) =k FE)<BE) Tw=max{Fis)-Fo(s)}  Tus>A

n,ngl—a

(3 Fr)=Fya) Fo)=F) T =max

ﬁo(S) — ﬁl(s)‘ j\-' > Ayﬁ,no;lfa/Z

then we can use the test statistics in (1) and (2) to check for the stochastic dominance of F

over F, and vice versa. The critical values are given in Miller (1956), as follows:

. Ny N
— _ 0 '
mngl—a T Aq:l—(r with q= !

Ny + 1y
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where n, and n, are the number of non-defaults and defaults. For n, decreasing the critical
values are increasing, but it does not imply that the value of the test statistic increases. This
means that, given atest statistic value, the null hypothesis will be more difficult to reject if the
default rates are lower.

Example 2.2

Gven the Fahrrmeir et al. (1984) dataset for the scores (2.1.2) and (2.1.3) and a

confidence level 1—q«, for the validation sanple we obtain the follow ng results:

?ptls l_ « A39:1—@ S
scorel 0. 555 0. 995 0. 255 -1.253
score?2 0. 254 0.95 0.191 -1.801

Table 2.2: Kolmogorov-Smirnov Test Statistic values

The two scores are significant, since T,s is larger than the critical val ue.
Therefore we can reject the null hypothesis in favour of the alternative and
conclude that F, doninates stochastically over F; for both of themand scorel has

nmore discrimnatory power than score2.

Threshold s for T (grey dotted line) Threshold s for T (grey dotted line)

3 H
K= £S
[77} L2}
] o]
= =
2 8. g oo
g ° g2 7
= o =
[ o [
% © % S -
o b
§ © § o |
—_ — o
[] n []
= — 3
S © g o
g 2 £ ° 7
% © © N
k= (=g - o
Lo :
€ 8 - € o |
E S I I | I I 1 -? © I | I 1 I 1 I 1
0w (72}
& &
o -6 -4 -2 0 2 4 a -3.0 -25 -20 -15 -1.0 -05 00 05
Score range Score range
Figure 2.2: scorel, T = 0.555 Figure 2.3: score2, T = 0.254
In order to illustrate how the densities should ook |ike, we pictured the density

estimates of defaults and non-defaults and the threshold s for scorel (Figure
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2.2) and score2 (Figure 2.3), respectively. W must renark that these pictures do
not correspond to the integrals of the estimated distribution functions, but they

are the kernel density estimtes of defaults and non-defaults.

2.3 Accuracy ratio

Another commonly used measure for the performance of a score is the accuracy ratio AR,
based on the Lorenz curve and its Gini coefficient. The Lorenz curve (Figure 2.4), also known
as selection curve, plots the distribution of the score S against the defaults distribution
S|Y =1, and thus we can compare different credit scores graphically. For the cumulated
probabilities, the percentages of applicants are arranged from “bad” to “good” scores (highest
to lowest). Variants of the Lorenz curve are the receiver operating characteristic (ROC) curve
(see Hand & Henley, 1997) and the performance curve (see Gourieroux & Jasiak, 2001). A
generalization of the accuracy ratio may be interpreted by the Somers D, which is dso a
conditional version of the Kendal’s 7, both of them rank order statistics; for more
information, see Basel Committee on Banking Supervision (2005) and Lienert (1973).

1-F(s|Y=D)

100%_| optimal curve

Lorenz curve

Percentage
of Defaults

} »1-F(s)
100%

Percentage of Applicants
(ordered from bad to good)

Figure 2.4: Lorenz curve for credit scoring

2.3.1 Lorenz curve

In order to operate with cumulative distribution functions we denote the negative score by

R=-S.

The Lorenz curve of the score S isthen given by the coordinates
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{L(r),L,(r)} ={P(R<7),P(R<r|Y =1}, re(—00,00).
As P(R < r)=1— F\(s), thisiseguivalent to
‘C<3) = {Ll(s)sz(S)} = {1_ F<3>71_ Fl(‘g)}a s € (—OO, OO)

The Lorenz curve can be estimated by means of the empirical cumulative distribution
functions.

The optimal Lorenz curve corresponds to a score that perfectly separates defaults and non-
defaults. It reaches the vertical 100% at a horizontal percentage of P(Y = 1), the probability
of default, and is given by

L, = {1-F(),g(1-F ()}, s€(—o00,00),being
T
0<z<PY =1
gla) = { PV =
1 PY=1)<z<1

A Lorenz curve identica to the diagona corresponds to a score that orders the credit
applicants totally randomly. Thus, Lorenz curves can also be used to compare different score
distributions: better scores are closer to the optimal Lorenz curve and worse scores are closer
to the diagonal.

2.3.2 Gini coefficient

Now we need a quantitative measure for the performance of a score, which is based on the
area between Lorenz curve and the diagonal. The Gini coefficient G denotes twice this area:

G=2[ "{1- R}~ Fe)}-1=1-2[ " F(s)dF(s). (2:3.1)
+0o0 —00
Thisintegral can be estimated by numeric integration of ﬁl over therangeof 7' .

Proposition 2.3

For the optimal Lorenz curve, we have that the optimal Gini coefficient is given by:
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Pr oof:

The optimal Gini coefficient is twice the area of the triangle between the optimal Lorenz
curve and the diagonal. This is the same as to calculate the area of a parallelogram = base *
height. In this case, the baseis P(Y = 0) and theheight 1 = P(Y = 0) + P(Y =1).

2.3.3 Accuracy ratio

To compare different scores, we use their accuracy ratios, which are given by the relation of
the Gini coefficient of each score to the Gini coefficient of the optimal Lorenz curve. The
accuracy ratio is defined as

G G

AR=— =
G, 1-PY =1

» ;
and therefore empirically given by the estimates of both Gini coefficients. The value of AR
lies between 0 and 1 if the Lorenz curveisrealy concave, i.e. if there is a positive-monotone
relationship between S and Y (higher score values correspond to higher default probability).
Negative values are possible if the relation is negative monotone; in that case we would
change the sign of the score, in order to obtain a positive value of the accuracy ratio.

Example 2.4

In order to estimate the accuracy ratios for the scores (2.1.2) and (2.1.3) in the
val idation sanple, we first pictured their Lorenz curves (see Figure 2.5 and 2.6).

Then we cal cul ated their respective Gni coefficients, and AR:

G P(Y =0) AR
scorel 0. 463 0.73 0. 635
score2 0. 223 0.73 0. 306

Table 2.3: Gini coefficients and accuracy ratios

VW can conclude fromthese results, that the first score has nore discrimnatory
power than the second one and that there is a positive nonotone relationship

bet ween the scores and Y .
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Lorenz Curve Lorenz Curve
o o |
@ _| «© |
o o
o _| o ]
o o
<+ = _J
o o
o ™
j=} (=]
o | o _|
o o
I I 1 1 1 1 T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 Q.6 0.8 1.0
Figure 2.5: scorel Figure 2.6: score2

2.3.4 ROC curve

A graphica alternative to the Lorenz curve is the receiver operating characteristic (ROC)
curve. The curveis set by the coordinates:

R(s) = {L- Ey(s). 1~ F(s)}. (232)

Contrary to the Lorenz curve, the ROC compares the score distribution of the non-defaults
versus that of the defaults. The resulting graph resembles that of £(s) as the number of
defaultsistypically small and therefore we have F ~ F,.

The optimal ROC curve corresponds to a score that exactly separates defaults and non-
defaults and it is determined by the points (0, 0), (0, 1) and (1, 1).

2.3.5 AUC (area under curve)

In order to quantify the deviation between F, and F], we use the so-called area under curve
(AUC):

AvC = [ “-BE}a{t- R =1- [ BE)dR(s), (233)

taking values between O, for the shortest deviation, and 1 for the largest deviation. It is
important to note that:

Proposition 2.5

The AUC and the accuracy ratio are linearly related as follows:
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AR =2AUC —1. (2.3.4)
Pr oof:
Recall the definition of the Gini coefficient G (2.3.1). Thus,
1- G_f E(s)dF(s f E(s)d{P(Y = 0)F(s) + P(Y = )F(s)}
P(Y = 0) f E(s)dFy(s) +P(Y f F(s)dF,(s

:P(Y:0)-(1—AUC)+P(Y=1)%=Q—P(Y:O)-AUCJr%.

We obtain G =2-AUC-P(Y =0)— P(Y =0), plugging this into AR =G /P(Y =0)
completes the proof.

O

Therefore, using AUC and AR to rank a set of different score functions will lead to
identical conclusions. With the help of relationship (2.3.4) we can demonstrate the following
proposition.

Proposition 2.6

Let F,, F; be cumulative distribution functions having the same expectation 1 € R . Suppose
that they are point-symmetric about (p, F, (1)) for j = 0,1. Then we obtain:

AR=0.
Pr oof:

The condition on symmetry is equivalent to: F, (u+s)+ F, (u—s) = 2F, (1), Vs € R and
j=0,1,being F (u)=1/2.

Let us denote the random variable S = S — ; and Fj(s):P(S’gs\Y:j). It is easy to
seethat F(S)=E(S|Y =j)=0, F(s) =1~ F,(~s) adthus F, (0) = 1/2 for j = 0,1.

Wewill calculate A UC for the transformed variable S . By definition (2.3.3):

AUC =1~ [ F(s)dFy(s) =1~ [ F(s)dFy(s), béing
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[T Rk s)= [ (1= F(-)dF(s)+ [ E(s)dE(s)

= [(1E,(5)~ [ R(=s)dFy(s)+ [ F(s)dE ()

:F(J(O)—O:%,therefore
0 = 1
AUCzl—f_wFl(s)dFo(s)zz.

By the relationship (2.3.4), weobtain AR = 2AUC —1=0.

Remark 2.7

If for a score S we have the conditional density distribution functions f,, f, (or probability mass
functions, in case S s discrete), and they are even functions with respect to a common expectation

1, then AR =0.

2.3.6 Wilcoxon-Mann-Withney U test

Some classical nonparametric tests to check whether two distributions are identical are the
Wilcoxon rank sum test and its equivalent, the Mann-Whitney U test. In its simplest form,
the U test is derived for continuous score distributions. Denote s,, all observed scores of
non-defaults and s, all observed scores of defaults. The U test statistic is given by

U=#{s,>s,} overal i,j.

For perfectly separated defaults and non-defaults, we obtain U = n, - n,. If S and Y are not
related at al, then the event s, >s, occurs with probability 1/2, such that U =~
1/2-(ny-n,). Consequently, a rescaled version of the test statistics, U /(n,-n,) is an
estimate for

U=P{S|Y=0>(S|Y=0}= [{1-Fs)}d{l- Fs)} = AUC,

and therefore using (2.3.4),

AR +1

Mg - My (2.3.5)
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The relation between U and AUC will remain valid if the score distributions are not
continuous. However, it could happen that for any score values we observed both defaults and
non-defaults, i.e. tied observations. In that case a corrected version of the U statistic must be
used (add 1/ 2 if s, = s5,,) to estimate

P{(S|Y:O)>(S\Y:1)}+%P{(S|Y:O):(S|Y:1)}.

It is demonstrated (see Lehmann, 1975, p. 365) that, under the hypothesis F,(z) = Fy(x), for
large n,, n,, U isapproximately normally distributed. We consider the hypotheses:

H, H, Test Satistic Reject condition
(1) F;I.('x) = FO(x) FO(x) > F;I.('x) U U > k’r@_.no;lfa
(2) F;L(x) = Fb(x) FO(x) < E(x) U U < nO : nl - knl.no;lfa

being the critical value

Ny * N 1
kno.nl.lfa = 02 : + Uy, - \/E *Ng Ny - (no + n, + 1) . (236)

The critical values and the test statistic decrease for n, decreasing. Hence, we cannot say that
the null hypothesis will be more difficult to reject for lower default rates.

Example 2.8

Let us test now the hypothesis (1) for the validation sanple, with n,= 146 and
n,= 54. For a level of significance «= 0.005 we get the critical value
Kisos40005= 4879.562. Being U= 6446.999 for scorel and U= 5148.499 for score2,
both larger than the critical value and highly significant. W can reject for the
two of themthe null hypothesis and conclude that F, dom nates stochastically over

F,.
2.4 Impurity functions

We consider now the fact that the discriminatory power of ascore S is closely related to the
heterogeneity, or impurity, of the distribution of Y conditioned to this score. Actually, a good
discriminating score will separate the defaults and non-defaults in preferably heterogeneous
classes. The impurity of a set should be largest, when all events are equaly likely and
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smallest when only one event happens. In order to formulate the criterion for reduction in
impurity, we will first define an impurity function. The best genera references here are
Fahrmeir, Hamerle & Tutz (1996) and Breiman, Friedman, Olshen & Stone (1984).

Definition 2.9
Afunction ¢ defined on the simplex

S, ={m=(m...m,),m, 20> m =1 by ¢:S, = R,
is called impurity function, if holds

(i) argmin ¢ () {(lO,...O)t,(O,L...O)t,...,(0,0,...l)t},

TES,

(i) ¢(m) is a symmetric function of 7, i.e. it remains invariant with regard to any
permutation of ,..., 7, .

(iii) ¢ () isconcave.
Remark 2.10

Our definition is more restricting than the definition of impurity function given in Breiman et al. (1984),

or Fahrmeir et al. (1996). It differs in the third condition, as they write:

(i)’ ¢[[1,,l] = max ¢ ().
9 9 8

From the conditions on symmetry (i1) and concavity (i11) follows (i11)’, but from the definition given by
these authors, it does not follow concavity. We will see later that this condition (iii) is necessary for

the proof of Proposition 2. 12.

Remark 2.11

-1
We can express also the impurity function as ¢ () = ¢ (7r1, ey T gfl) , since T, =1— Zf:l .

According to Definition 2.9, so as to Breiman et al. (1984) or Fahrmeir et a. (1996), some
impurity functions are:

1. Misclassificationrate: ¢ () =1— max,
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2. Giniindex: ¢ (m = > mm,

i=]

3. Entropy: ¢ (m = —» 7, logm,

In the following we will study the case g =2, for Y has only two possible outcomes:
default, with probability m, = P(Y =1) and non-default, with probability =, =1—m =
P(Y =0). It suffices to write the impurity function in terms of only one of these
probabilities, i.e. ¢ ()= ¢(1— m,m )= ¢(m). Figure 2.7 shows the shapes of this impurity
functionsfor g = 2.

Impurity functions

1.0

0.8

0.6

0.4
|
)

Entropy (green line), Gini (blue dashed), MR (black dotted)

gl

Figure 2.7: Entropy, Gini index and misclassification ratefor g = 2.

We can observe how the impurity functions are concave, whereas entropy and Gini index are
strictly concave. They reach their maximum at =, = 7, =1—m =1/2, their minimum, at
m, =1 and m, = 0, and they are symmetric in = . They &l are monotonically increasing for
m, <1/2,and decreasingfor m, >1/2.

The impurity of asubset S, = {S < s} of thescore S for some s € R can be defined as
i(5.)=9¢(1-P(1]S,),P1]S,)=9¢(P(]5,). (24.1)

i(S,) is maximal, if P(0|S,)=P(1]5,)=1/2 and it is minima, i.e. i(S,)=0, if
P(0|S,))=1or P(1|5,)=1.
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The goa of splitting up the observations into subsets as heterogeneous as possible can be
fastened by maximizing the following distance:

d(S < s,8>s)=Ai(S;8,5,)=i(S)— P(S,)i(S,) — P(S)i(S,), (24.2)
being P(S,) = P(S <s) and P(S,)=1— P(S,) = P(S > s).
Proposition 2.12
For every partitionof S at s,

Ai($;8,,5.) >0,
with equality if i(S,) =i(S.)=1().
Pr oof:
By the concavity of ¢,
i(5,)P(S,)+1(5.)P(5.) = 6(P(1] 8.,)) P(S.) + 6 (P(1]5.))P(S.)
<o(P(1]8,)P(S,)+P(1]5.)P(S.))
Now by the theorem of total probability, we have that:
P(1]8,)P(S,)+ P(1|S.)P(S.)=P(]|S) =m,
Therefore,

i(S,)P(S,)+i(S.)P(S.) < ¢(P(1]8))=i(S) and

O

The discriminatory power of the score S is therefore given by the best partition, if we alow
only one splitting point:

d =maxd,(S <s.5>s). (2.4.3)
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Proposition 2.13

The maximal distance d is bounded:
0<d<d, =i(9)

Pr oof:

1. By (2.4.3) and Proposition 2.12, it follows immediately that ¢ > 0. If the split offers no

decrease in impurity, thenwe have d = 0.

2. In case of aperfect separation, then i(S,) = i(S,) = 0, and the optimal d,,, = i(5S).

S

In order to compare different scores, we use the standardized maximal distance:

D=—, (2.4.4)

opt
which ranges from O to 1.

In the next section, we will set the standardized maximal distance for the misclassification
rate (D, ), and note its inadequacy for credit rating. Therefore, we will introduce another
class of impurity functions (section 2.4.2), where the misclassification rate is not included.
Further, we will determine the criterion for reduction in impurity with the Gini index (D,)
and entropy (D,) as impurity functions. Moreover, we show in section 2.4.5 that the test for
homogeneity in 2x 2 contingency tables is related to D,. At the end, we do a detailed

comparison of D, and D, .

2.4.1 Miisclassification rate

A relatively intuitive criterion is to choose that split which most reduces the misclassification
rate. If, for a given S, we assign a posterior observation Y = j, such that maximizes

P(j|S), then the misclassification rate is given by minimizing this probability, as follows:

i(9)=1- I]Il:%i(P(j | S) = Ijri%)IllP(] | §) = min(P(0| S),P1]9)) (2.4.5)

The best split for this criterion is therefore given by substituting this formula in (2.4.3).
Finaly, we get the standardized D in (2.4.4):



22

P P(S,)min(P(0]8,), P(| 8,)) + P(S,)min(P(0] S.), P(L] .))

m .
s min (7?0, 7T1>

(2.4.6)

In this section we defined the misclassification rate as an impurity function of Y given S.
But we aso find in the literature the misclassification rate as a measure of discriminatory
power when referred to the distribution of the score S given the default Y. We will pay
attention to that definition in section 2.5.1, and we will show that, under some assumptions,

both criteria are linearly related.

Still, in spite of its attractiveness, choosing the misclassification rate as splitting criterion has

some serious defects—one of them is easy to see with the following example:

Example 2.14

If we have a score with equal priors, for exanple n,= n,= 600, then consider two
possible splits (see Figure 2.8). For the first split, there are 400 observations
msclassified, 200 of them are defaults and 200 non-defaults and we obtain
dl(Ss,gs): 1/6. The second split nisclassifies also 400 observations, all of them
are non-defaults and we get also dz(Ss,gs): 1/6. Even though both splits are
equally rated, we find the second split nore appropriate, since one of the subsets
(gs) is totally pure and therefore for further partitions of the score range we

only need to consider the conplenmentary (S,).

Split 2

Figure 2.8: Two different splits with equal priors
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Another defect of the misclassification rate is the degeneracy, which happens when for all
splitsin S thereis no single or small number of best partitions. It occurs often in credit rating
and we explain it in the next proposition.

Proposition 2.15

L et us suppose that

m <1/2,P(1]S,)<1/2and P(1]5.)<1/2 VS, ={S <s}.
Then it holds

Ai(S;S,,5,)=0 V8,.

Proof:

By the definitions (2.4.2) and (2.4.5), and applying the theorem of total probability it is easy
to see:

Ai(S$:8,,8,) = m — P(S,)P(1] S,) —P(8,)P(1] §,) = 0.

LR ]

O

In practice, we have that for a low probability of default, which is the normal case in credit
scoring; the best split is normally given by misclassifying most of the defaults. It does not
happen if we choose the entropy or the Gini index as impurity functions, as we can seein the
examples of Section 2.4.6.

2.4.2 Another class of impurity functions

Our purpose in this section is to introduce another class of impurity functions that do not have
the defects of the misclassification rate. We will introduce the condition of strictly concavity
of ¢ dueto two main reasons:

- Itisnecessary to avoid degeneracy (see the proof of Proposition 2.18).

- In asdituation similar to Example 2.14 the impurity function should favour the second
split.
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Definition 2.16

A class C' of impurity functions ¢ (), 0 < <1, with continuous second derivatives on
0 <7, <1, isdefined asthe class that satisfies

i) ¢(1)=¢(0)=0,
(i) ¢(m) = o(1-m),
(iii) ¢"(m,) <0, 0< 7, <1,i.e ¢(m) isstrictly concave,

The Gini index belongsto class €', since

6,(m) = 2m(1—m), ¢,"(m) = —4<0,

and also does the entropy:

o, (7?1) =—mlogm —(1—m) log(l— 711), o, ”(711) =-1/m1l-m)<0.

Since ¢,"(m) < ¢,"(m,) for 0<m <1/2, we have that the entropy increases faster than
the Gini index as , increases. For 1/2 < m <1 wehave ¢,"(m,) > ¢, "(m,), which means
that the entropy decreases faster than the Gini index as m, increases (see Figure 2.7).

Example 2.17

In Exanple 2.14 we obtained for the nisclassification rate:

If we choose the Gni index or the entropy as inpurity functions, we have:

46551 =of3) ) 2o mat5.)=of3)- (2o

but the difference in this case is dz(Ss,gs)—dl(Ss,gs)> 0, which neans that the

second split is preferred to the first one.

Actual ly,
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(5.5)~(5,5) = —go[g]+ 3o[3] + 33 >0
ol <ol peld s e

Because of the symmetry of the inpurity functions we get:
1. (1) 1 ,(2 1
2) 2¢[3] 2¢[3] ¢[3]

And because of strictly concavity:

5 (2 5, (2 1 52 1 1
D)==9¢|=|==0|=|+=0(0)<o|=-=+=-0|=0|=|=(2).
@ 6¢[5] 6¢[5]Jr 6¢( ) ¢[6 5Jr 6 ] ¢[3] 2)
The problem of the misclassification rate is that ¢, (m,) = min(m,1—m) = m, decreases
only linearly in 7, . Therefore we had to require that, as 7, increases, ¢ (m,) decreases faster
than linearly, which means that the impurity function should be strictly concave. Hence, if

m">m", wewant ¢(m,") belessthan the point on thetangent lineat =, " (see Figure 2.9).

T[’ rr
1 T

Figure 2.9: A strictly concave impurity function ¢ ()

The following proposition states that strictly concave impurity functions never lead to
degeneracy as the misclassification rate does.

Proposition 2.18
Let ¢ (m,) beastrictly concave function on 0 < m, <1. Then for every partitionof S at s,
Ai(S;Ss,gs) >0,

with equality if, and only if, P(1|S,) = P(1| 55) =m.
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Pr oof:
By the strict concavity of ¢,

i(S,)P(S,)+i(5.)P(5.) = ¢(P(1] 8.))P(5.)+¢(P(1]5.)) P(S.)
<o(P(|S,)P(S,)+P(1]5.)P(S.)) =i($)

with equality holdingiif, and only if, P(1| S,) = P (1] 5.) = m,.

2.4.3 Gini index

In section 2.3.2 the Gini coefficient was formulated in terms of the distribution of the score S
conditioned to Y, but there is no obvious relation with the Gini index defined here. Indeed,
there are many representations of the Gini coefficient as a measure of discriminatory power
(or concentration), and also of the Gini index as a measure of impurity (or heterogeneity);
Gini proposed some of them, but there are also some versions introduced by other authors
(see Piesch, 1975). The Gini index as impurity function belonging to class C' of a score gives
us information about the heterogeneity of Y | S and it isgiven by
i(8)=>"P@i|S)P(j|8)=1-3 P(j|S) =2P(0|S)P(|5) (2.4.7)

i=j j=01

By substituting in (2.4.3) and (2.4.4), we get the maximal distance function and D, asfollows

D 1 minl PEIPO[S)PA|S,) + P(S)PO]| 5P| S,)

s T

(2.4.8)

The Gini index is simple and has two interesting interpretations:
(1) Itistwice the variance of the default variable conditioned to S: i(S) = 2var(Y | S).

(2) If, given S, we choose a rule of classification that assigns ¥ =i to a posterior
observation selected at random with probability P(i | .S), then the probability that this
observation is actually Y = j is P(j | S). Hence, the probability of misclassification
under thisrule isthe Gini index: ZP(z’ | S)P(515S).

i=]
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2.4.4 Entropy

Information entropy is normally regarded in the theory of communication as a summary

measure of the “information uncertainty” that a probability distribution represents, but it can

also be seen as a measure for the heterogeneity, or the impurity of that distribution. The

conditional entropy of a score belongsto class C' and it is settled:
i(S)=~)_P(j|5)log(P(j|5)). (24.9)

=01
By substituting in (2.4.3), we get the maximal distance function and finally we get the
standardized D from (2.4.4):

D =1-
i P(S,)(P; (0)log P (0) + P (1og Py (1) + P(S.,) (Pgs (0)log P; (0) + P; (Dlog Py (1)>
’ To log(ﬂ'o) + m, log(m,) 7

being Py(j) = P(Y = j|§).
(2.4.10)

This criterion has been paid no attention, due to the misconception in the Basel on Banking
Supervision (2005), where they argue that the entropy-based measures have a limited use for
validation, since there are no applicable statistical tests for comparisons. However, we found
in Tutz (2000), that the deviance of the test for homogeneity in 2 x 2 contingency tables is
linearly related to the estimate of the distance (2.4.2) with the entropy as impurity function.
Therefore, atest can be constructed and we will seeit in the following section.

2.4.5 Test for homogenity in 2x2 contingency tables

Let us consider a partition of S in S, and S, such that S = S, U S.. Then we can build up
thefollowing 2 x 2 contingency table for non-defaults and defaults:

o
[EEN

@)
3
@)

Y

|
S

<)

—_
3

~—
S

3
o
=
3
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In order to test the hypothesis:

H,:P(1|8)=P1|S,), H,:P1|S)=PQ1]|S,), (2.4.11)
we can apply the deviance criterion:
(@)

Dev (S; Ss,gs) = Dev(S) — (Dev(S,) + Dev (Eé )) ~x, (24.12)

being the respective deviances:

Dev (S) = —2|n, log [%] + n, log [%]],

Dev(S,) =—2|n, (S,)log Z(f’;)) + n, (S,)log T;Eéb%;] and
— — n, (S — n, (S,

Dev(SS> =—2|n, (Ss)log n((gs; +n, (Ss)log n((§s>) ]

If we use the entropy (2.4.9) as impurity function, then it is easy to see the following
relationship:

Ai(S:8,,8.) = %Dev(S;Ss,gs) = %(Dev(S) — (Dev(8,) + Dev (8. ).

For c/l\ = max&(S;Ss,gs) , it aso holds:

J— —~

Dev(S:8,,5.) = 2nd, = 2n(D, -d,,,), (2.4.13)

which we adopt as our test statistic. We will reject H, for a level of significance «, if
Dev(S; SS,ES) > X

2.4.6 Examples

As we did for the accuracy ratio and the overlapping area, here we are comparing the results
given by the diverse impurity functions for scorel and score2 at the validation sample
obtained at random from the Fahrmeir et al. (1984) dataset. We also tested these results for
the entropy. The misclassification rate was included in order to illustrate how sometimes it

can lead to good results, if the proportion of defaultsis not low.



29

Example 2.19

For scorel, we get:

—

« Msclassification rate: D = 0.240 and the split point s = -0.053.

m

—~

e @Gni index: Dg = 0.245 and s, = -1.130.

—

« Entropy: D, = 0.227 and s,= -1.287.

VW can observe that s, which is the value of the score that naxinizes the
di stance function, is close for the Gni index and the entropy and close to the
one given by 1. The values of D vary slightly, and they are neither too close

to 0, nor to 1, which means the score is not extrenmely bad or good discrimnating.

For this sanple we have n= 200. If we consider the entropy as inpurity function,

then D,= 0.227, d,, = 0.583, and subtituting in (2.4.13) we obtain Dev(S;SS,§5>:
53.084. The critical value for a level of significance a= 0.005 is given by
Xiogss= 7.88. Qur test statistic is highly significant, since Dev(S;Ss,gs)z
53.084 > 7.88. Therefore, we reject the null hypothesis in (24.11), i.e. H,:
P(1|S)=P(1|S,). Figure 2.10 shows the estimates for the density functions of

non-defaul ts and defaults and the split points.

Best splits for Entropy (green line), Gini index (blue, dashed)
and Misclassification rate (black, dotted)

0.00 0.05 0.10 0.156 0.20 0.25 0.30
1

Densitiy non-defaults (blue) and defaults (red dashed)

-6 -4 -2 0 2 4

Score range

Figure 2.10: different split points for scorel
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Example 2.20

For score2, we obtain:

—

+ Msclassification rate: D = 0.166 and s, = -0.335.

—~

e @Gni index: Dg = 0.117 and s, = -0. 335.

—

e Entropy: D =0.087 and s,= -0.335.

Fromthese results we can conclude that scorel has nore discrinmnatory power than

score2. The split points are equal for every inpurity function (see Figure 2.11).

If we consider the entropy as inpurity function, we have again 670;: 0.583 and
Xi[).gg‘,,: 7.88 for a level of significance a= 0.005. Then we obtain l/):: 0.087, and
subtituting in (24.13), we get Dev(S;SS,ES)z 20.475, which is also highly
significant, since 20.475 > 7.88. Here again we will reject the null hypothesis in
favour of the alternative in (2.4.11).

Best splits for Entropy (green line), Gini index (blue, dashed)
and Misclassification rate (black, dotted)

£%)
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w
c
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Figure 2.11: the same split points for score2

2.4.7 Comparison of entropy and Gini index

Having seen the defects of the misclassification rate, it remains only to compare the Gini
index and the entropy as splitting criteria for the standardized maximal distance D. This
comparison cannot be done generally, but only under some assumptions. With this purpose
we will study in this section four cases. The first of these is linked to a proposition. Examples
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and simulations follow the other three, since it is not possible to compare both measures
theoretically, and we will explain the reasons.

For ease of calculations, we will consider in the following for the entropy s, solution of
d = maxd (S < s,5 > s) and for the Gini index the optimal split point s, .

Casel

We will study a case where the default variable Y and the score S are independent.
Proposition 2.21

Assume we have arandom variable S and Y isaBernoulli such that:
P(Y:l\S:s):P(Y:l):ﬂl, VseR.

Then,itholds: D, = D, = 0.

Proof:

We must calculate the following conditioned probabilities:

= <s. = < s
P(Y:1|S§8.):P(Y ZLS_SZ):P(Y 1)P(S_87’):7rl,f0ri:p,q.
)T TP <) P(S<s)

Similarly we get:
P(Y=0|5<s)=1-P(Y=1|5<s,)=1-m,
P(Y=1|8S>s)=P(Y =1|5>s,)=m and
P(Y=0]|S>s)=PY =0]|S>s5)=1-P(Y =1|8>s)=1—m,fori=p,q.
1. Let usfirst prove D, = 0.
The impurity functions are:
i(S < sp) = i<S > sp) =i(S) = mlog(m) + (1— m)log(1— )

Therefore,
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D —1- (P(S < Sp) + P(S > sp))(wllog(ﬂl) +(1—m)log(1— Wl)) o
‘ m log(m) + (1— m)log (1— m,)

2. And then for the Gini index Dg =0.
Here we have:

i(S<s,)=1(8>s,)=i(5)=2m(1-m)

and we get:
D, =1- P<S < 84)27T1(1—7T1)—|—P(S > sq)Zwl(l—Wl) o
2m, (1— )

An alternative proof can be accomplished with the help of Proposition 2.18.
O

As it is obvious in this case, there is no difference between both measures of impurity. The
score has no discriminatory power at al, and thus D, = D, = 0.

Case?2

We want to see here how the standardized maximal distance D and the split points vary as
we choose the Gini index or the entropy as splitting criteria for a given score with a
probability of default that increases as the score increases.

Proposition 2.22

L et us suppose that the probability of default increases as the score takes higher values and we
have a score S, which is discrete uniformly distributed, being:

P<S:Sj):%’ vy € {l,n} and

P<Y=1|S=sj):c-f(sj>,with
c= Py =1) aconstant, for j=1...,n,and f(s;) monotonicaly increasing,

P(S = Sj)]Zn;f<Sj>

such that
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n 13

PY=10)=>) P(Y=1|8=s)P(S=s)=) P(Y=1]s,)= :%Zcf()

j=1 =1
Further, assume the optimal split point s, for the entropy and s, for the Gini index, and call:

SP(Y =1|8 =5 SIP(Y =1]§=s))

- i—1
r = , x:]

Y P(Y=1|S=s) ip(yzuszsj)'

=1 Jj=1

Then we get the following expressions for the standardized maximal distance:

1. For the entropy

z(n—p)

T log[ 1-2)p

+ [p T
n

D =1-

e

log[l Tt "] log[l m (- z)— ]
(

p n—p
m log(m) + (1—m)log (1— )

(1_ﬁl)1og[1_ﬁl(1_x> ]—Hrllog[ m(L-2)"

m log(m,) + (1—m )log(1— )

n —

We need therestriction 0 < 7, < mln{ 1” , Which is equivalent to:
ZE n
0< a ‘
<m < if p<azn
Tn
0<m < nop otherwise
1—z)n
so that the logarithms exist.
2. For the Gini index
R —_ ["@2 +1- 25]
D =1— <n q) g ,for 0< m, <1.

1-m

Pr oof:

We need to calculate the conditioned probabilities, for ¢ = p,q:
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, , 1
_;P(Y:1|Sj)P<S:$])_ 11P<Y:1‘51)n—}iP<Y—1| )
- i/n - i/n i = — )

and the probability of its complementary

P(Y:O\Sgsz.):1—P(Y:1|Sgsi)zl—iip(yzl\sj).

7/ j:l
Similarly, we obtain

n

L ,ZP(Y=1|S].) and

n—z/ )
( —1|$].).

PY=1|8>s)=

P(Y=0[|S>s)=

] i+1

1. Then we have for the entropy:

i(555,)=
1 D 1 D 1 D D
:—ZP(1|sj)log[—ZP(l|sj> +|1-= P(1\sj)]1og[1——ZP(1\sj)]
y o= y = y = j=1
1 ilp(rusj) 1 1 :P(1‘51> 1
— =t =S7P(1]s,)log| == =) P(1
pl P<1|8>n; < S./) 0og pl P<1|8/)nj:l ( S/)
n n 43
1 1L
+log|1—=>"P(1]s;)| - =D P(1]s,)log
y ) y )

= ﬁ:1:7T1 log [2 :z:7r1] + log [1— ﬁzml] — 2:mrl log|1— ﬁ:mrl] :
p p

p b b
And

i(S > sp) =
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Y (1]s,)log _pj;lp(lls )]
+11 n_pj;lP(Hs )]log 1——]§1P<1\ s, )]
1

n—p

nm, — iP<l| s, )

J=

log[ nm, — ZP(1|5)]]
nmy — 3 P(1|5j>]]log

+l1- 1

n—op i n

ip mrl—zpjp(l\ sj)]]

=1

_ (nﬂl—wwqxﬂog[ (nwl—7qu”

n—p n—p

1—

+ [1— ! (nm, — mrlzz:)]log (nm, — mrlx)]
n—p

7T1<1—I)]+[1—

n—p

m (1— x)]log [1—

= 7T1<1—£L‘)10g[
n—p

ma_@]

n—p n—p n—p

We must calculate

n —

p.
nl(Sgsp)+ -

pi<S>5p):

= zm, log

Exﬁl] + £log [1— Exﬁl] — zm, log [1— ﬁxﬁl]
p n p p

+7r1(1—x)10g[

m(1— x)] +[” P —Wl(l—x)Jlog[l—

n

mﬂ—x”

n—p n—p

= zm, log

ﬁ:mrl] + glog [1— 2mrl] — am, log [1— 2:mrl]
p n p p

log "m0 0)| - g L, 1)

1—

+ log [1—
n—p

m (1— x)] - %log

m(1— x)]

n—p

—Wllog[l— — pﬂl(l—:c)] + xwllog[l— - _pwl(l—x)]

z(n—p)

= mxlog 1= 2)p

+ [£ — 7T11C]
n

log[l— Wlxﬁ] — log[l— m(1—x) t ]
p n—p

—|—(1—7rl)log[1—7rl(l—:c) ]+7rllog[7rl(1—x> ! ]

n—p n—p
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By substituting it into (2.4.10) we get the above-mentioned expression of D, .

2. For the Gini index we need to calculate

TP(Y =18 <5 )P(Y =0|§ <5+ ——P(Y =1| 8> 5)P(Y = 0[5 >s,) =

'Qll—‘

Sor(r =tis) - X[Srr =115 |

%[

n

+”;q niq,';lP(Y:”Sj)_”_q j;lf)(Y_lsj)]Z]
:%ip(yzlm) [ ZP(Y 1|s) b f;lP(Y—ls])]Z]

= 1)+(2

In order to simplify, we write

2 2
1 z 1 n n q
n—q ,,;1 ( |8])] n—Q[n; < |3f) ; < |8])]
2 2
n—q =1 n—q = i

_ 1 2n7rlzq:P<Y =1]s,)

We have (1) = m, and

%[% ;P(Yzl\sj) ];1]3( )]]
:_% i:P(Y:”Sj)] [%q;;qq +%niq(nﬂ—12_2ﬂ-l ZP(
nlq[q ZP<Y 1]s,) +n7r1227rlilP<Y137>]

Therefore, we obtain

[5)
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L, W)

I m(1—m)
1 1[ 2 5 q
T — = ZP(Y:1|3].) + nm, _2W12P<Y:1|3j)
1 n—q\q9\{ ;=1 =
7r1(1—7r1)
2
q q
. S P(Y =1]s)) D P(Y=1|s))
1- m | L + nm, — 2m, |
n—q S T
—1—
1-m
q 2 q
L D P(Y =1]s)) > P(Y =1]s))
1- —m, ’:l + nm, — 2mn ]zl
oA P(y =1|s)) P(y =1|s))
1 - -
B 1-m
1 n2 ~2 ~
1-——|—m2" +nm — 2mne
n—q
=1
1-m
O
Proposition 2.23
We can write also
Dg:l—l_ﬂlk,for0§7rl<1,
being k = —" [ﬁ~2+1—295 >1.
(n—q)lq
Proof:
We want to prove herethat £ > 1:
k=—1t |22 11-23>1 o Z#2-241-2"%>0
(n—q)lq q n
n n n 2 2
B2 op41-29 5 o L2 2954 1] = f—i] >0
q n q n n n
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In order to compare both standardized maximal distances, we calculate the first and second
derivatives with respect to the default probability . For D, they are:

dD -
9 k 1220 Vm :0<m <1,
dmy  (1-m)

since k > 1, which meansthat D, increases as , increases.

d’D 2(k—-1
Zg: ( 220 Vm :0<m <1
dﬂ'l (1—7r1>

Together with thefact 0 < D, <1,we have that D, as function of 7, isconvex.

The first and second derivatives of D, with respect to «, are given by:

1 D, _ 1
dmy n((ﬂl —1)In(l—m)—m1n 7T1)2
~[1n7r1 (n—p)ln 1—M —|—pln[1— mrlx]
n—p p
+In(1-m)|(p — nz)ln 1—M
n—p
—n|ln —mrl(l—x) z1n —(n—p)x nx — n[ — mrlx]
1 [ e 1 P + (nz —p)in|1 ;. ]]
5 d°D, _ 1
dm? (—(—1—1— m)n(=1+m)+m ln(7r1))3

. (np —p* +n’m (z —Dz)(-1+ mIn(1-m) -7 1n7r1>2

7T1(—p+n(1—|— m(—1+ x))(—p—f—mrlx))
+ 2<ln 1l-m)— ln(wl)> ((—1—1— m)ln(l—m)—m ln(wl)>
(=14 2)In 1+M]+ln[_w]

n—p n—p
(—n+p)z nm

+z|ln m —ln[l— . ]

Cm (14 )) (et p)e) ) g eme)
R e R e M

2(ln(1—m)—Inm ? nm (—1+

_( ( ( n> ))[(nnwlp+nﬂ1$)ln[1+lfl—1];'_)]
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1
+m[((—l+ m)In(1—m)—mnm)|(n—nm, —p - nwlx)ln[l_ m;lx]
i _M] oy Cits +1n[1_ nﬂlx]@—nmfv)]
n—p p(—1+2) »

But from these derivatives we cannot guess if the function is increasing or decreasing,
because thereisno solutionin 7, for the equation D, = 0, neither for
dD, d’D

=0,nor —5=0.
dm, dm,

We would like to know, as we did for the Gini index, if the first or second derivatives are
always positive or negative, but it is not possible here. For example, given n = 700,
p =100 and z = 0.1, then for two different probabilities of default:

2

+ m = 0.6, the second derivative is positive 2D2 = 0.446,
T

2

* andfor m, = 0.05, itisnegative C;Df" = —0.077.

2
e

In this case, depending on the value of 7, D, can be convex or concave.

We would like to compare theoretically the standardized maximal distance for the entropy and
the Gini index. However, this comparison has to be numerical, because, as there is no solution
in m, for the equation D, = 0, there is aso no solution for D, — D, = 0. Therefore, we
illustrate how both D's can be compared graphically in the following example.

Example 2.24

W choose a sanple of m= 700 score val ues, having both entropy and G ni index the
same optinmal split point at p= ¢= 100, and thus x= Z= 0.3. The standardi zed
maxi mal distances D, and D, are depicted in Figure 2.12 (in the x-axis are
represented the probabilities of default for 0 <m <0.476= p/an). Here, it
would be better to use the entropy as splitting criterion, since for |ower
probabilities of default, which is the case in the credit rating practice, it

gi ves higher values of D.
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D for Entropy (green line) and Gini index (blue, dashed line)

0.10
|
\

0.05
|
AY

0.00
1
X

0.0 0.1 0.2 0.3 0.4

sl

Figure2.12: D, and D, for n = 700, p =100, = 0.3
Simulation 2.25

W also simulated a sanple of n= 500 random values of a discrete uniformy

distributed score S ~ U(ZLS). Then we considered the default vari abl es:

k

YE,.L Y . y;kNBe[—], for i,k=1...,500, with P(V" =1] b

" 500 " 500’

1 !
and call: Y* :—E ) 1YZ.’” “Proportion of defaults in the sanple”, being
n =

k

Y* ~ Bi __k
500

n,%] such t hat P(Yk :1): E(yk)

VW would like that the probability of default increases as the score takes higher

val ues:
Y/‘” |sj NBe(wk’/l—FeXp(—sj)), with w, = 12 /<;/502 , for 4,5,k=12...,500,
such that " ],1l+exp(—57)
k1) _ - ko _1 . w, o k
P(Y7 _1)_;]3(}/{ _1|Sj>P<8'j)_n;1+exg<—sj)_500'

Then, for every realisation §;, j=1...,n, of the score S, we choose Yj"”|sj at
random from a Bernoulli distribution with P(ijzl\sj):wk/1+exp(—sj).
Finally, we calculated D for the score S and for every randomsanple Y ...V ",

k=1...,500.
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VW picture first in Figure 2.13 the different split points obtained fromusing the

entropy and the Gni Index as splitting criteria. In the x-axis are represented

the estimated probabilities of default O<]A3<Yk :1)<1.

Split points for Entropy (green, o) and Gini index (blue, +)

W~ D SR ¢ AR B

< o GEHEE S SHE @ B8 @ G B O

©  —| S GE-ED D D b R

Score range

0.0 0.2 0.4 0.6 0.8 1.0
Default probability

Figure 2.13: Split points for the simulation in case 2

In this picture and in the follow ng table we can observe that nost of the optinal
split points coincide (82.4%. For the noncoincident, the entropy raises higher

split points for higher PDs (s,>s ). Wen it comes to lower probabilities of
default, we have that the split points obtained using Gni index are higher than
those obtai ned using entropy (sq>sp). This neans that the entropy criterion is a
little nmore conservative than the Gni index, as we simulated probabilities of
default increasing with the score values. The splits differ more from each other

as the probability of default increases or decreases.

PD 5,=8, 5,>8, 5,25,
(0,0.2] 62 23 11
(0.2,0.4] 89 10 3
(0.4,0.6] 96 3 0
(0.6,0. 8] 93 0 11
(0.8, 1] 72 0 27
Tot al 412 (82.4% 36 (7.2% 52 (10.4%

Table 2.4: Split points for the simulation in case 2
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In Figure 2.14, we represent the different estimates of . It decreases for the
Ani index as the probability of default decreases. For the entropy, ) decreases
and increases again for |ow ]3(Yk :1). As regards very low probabilities of
default, D decreases slightly nore rapidly for the Gni index, being very close
to 0. However, D is nore stable with respect to the probability of default than

the Gni index. Hence, we have no rel evant evidence of a better criterion in this

case.

D values for Entropy (green, o) and Gini index (blue, +)

3

(=]

- ¥
g
o o

e

=2 -

8. _ .

e . T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Default probability
Figure 2.14: D vauesfor the simulation in case 2

Case 3:

Here we want to see how the standardized maximal distance D and the split points vary as
we choose the Gini index or the entropy as splitting criteria for a score that is normally
distributed given default and non-default with different means, such that, as the difference
between means increases, the overlapping area decreases and thus we can say that the score
discriminates better.

Proposition 2.26
If we have a score with conditional distributions
S|Y=0~N(01) and

S|1Y =1~ N(ul), u>0,
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then the standardized maximal distance function can be written:

1. For the entropy, we assume that s, isthe optimal split point and we obtain

1
O o (m) + (- m)log = m)
7T1®(8p - M)
| m® (s, — p)log <I>(sp—u)7fl+‘1’<5p)(1_”1)]

+(1- 7r1)<I><sp>log

(1—m)®(s,) ]

@(5 —/L>7T1—|—q)(5p> 1-m)

m(1-@(s, — 1)) ]

(1 <I><sp—u)>7rl+(l @(p))(l—ﬂl)

)|

(1— CI)(SP - ,u))wl + (1— @(sp))(l— )

+m (l— <I><sp — ,u))log

+(1-m)(1-®(s,))log

2. For the Gini index we assumethat s, isthe optimal split point and we obtain

aals ) oot |
7T1(1— q>(8q - M)) +(1- 7T1)(1_ (I)<5f1)>

L @(Sq—ﬂ>'®(sq>
P el i m)els)

+

® (-) being the distribution function of a normally distributed random variable with mean zero

and variance one.

Pr oof:
For j = p,q , the probabilities are:
P(S<s)=P(S<s |Y=1PY =1+P(S<s|Y=0)P(Y =0)
= (s, — p)m + P (s;)(1— )
P(S>s)=P(S>s |Y=1)P{Y =1)+P(S>s|Y=0)P(Y =0)
= (-

sj — u))wl + (1— @(sj»(l— )

And the conditioned probabilities:



P(S<s |Y=1P(Y =1 =d(s—p)

Py =1l5<s)= CED (s <s

P(S<s |Y=0)P(Y=0) (1-m)(s)

P<S§3y‘) - P(S§5j>

P(Y=0]|S<s)=

P(§>s|Y =1)P(Y =1) m(1-®(s, - p))
PV =15>s)= P(S>s,) - P(S>s))

P(S>s|Y=0)P(Y =0) (1—7T1)(1—‘1’(8j))
P(S>s) - P(S>s)

P(Y=0]S>s)=

1. Then we have for the entropy the following impurity functions:

By substituting into (2.4.10) we obtain the above-mentioned expression of D, .
2. And for the Gini index:

i(S -, ): Zwlq)(sq —,u)(l—7r1)<IJ<sq>’

By substituting in (2.4.8) we get the last expression of the standardized maximal distance

function D,.

OJ

For both Gini index and entropy the first and second derivatives of D with respect to 7, and
with respect to 1 are very complicated and they are in terms of the normal cumulative
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distribution function, which can only be computed numerically or otherwise approximated.
Therefore, we can study and compare D, and D, only numerically.

Example 2.27

V% can see (Figure 2.15) how the graphics look |like for different probabilities of
default, having the same split point s =s =1 and p= 3. In this case D is
nore stable with respect to the probability of default than Dg, i.e. D is
higher for extrene values of the default probability. Since having very |ow
probabilities of default is the nornal case in credit scoring, we can affirmthat,

inthis case, D, is a better neasure of the discrininatory power than Dg.

In Figure 2.16 we can appreciate how D looks like for different neans p, for a
given probability of default m= 0.1 and s, =s,= 3 in the followng picture. Ve
have for both Gni index and entropy that [ increases as p increases, in a very

simlar way.

D for Entropy (green line) and Gini index (blue, dashed line) D for Entropy (green line) and Gini index (blue, dashed line)

~
0.6 0.8 1.0
|

02 03 04 05 06 07
0.4

0.0 041

0.2
I
~

0.0
1
Y

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 5]

Ty 11

Figure 2.15: D, and D, fors=1, n=3 Figure2.16: D, and D, for, ;, =0.1, s =3
Simulation 2.28

W al so simulated 300 sanpl es of m= 1000 random val ues of a score with P(Y =1)=

0. 05, such that

S|Y =0~ N(01) and
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S|Y =1~ N(u1), = 6k/300, k=1...,300.

For p,= 0, there is a total overlapping of the densities of default and non-
default, and the score is not discrimnating at all. As g, increases, the
overl apping area decreases; therefore the score has nore discrimnatory power. For

Usgo= 6 the score discrimnates al nost perfectly.

Figure 2.17 pictures the different split points obtained from using the entropy
and the Gni index as splitting criteria for a given probability of default as the
means vary. In the x-axis there are represented the nean estinates: Ogﬂk <6,
k=1...,300. For both criteria we have that the split points are higher as p,

increases, which is reasonable. The results are listed in the table bel ow

Split points for Entropy (green, o) and Gini index (blue, +)

Score range

Figure 2.17: Split pointsfor simulationin case 3, for P (Y =1) = 0.05

Iu’k 811 = 811 811 > 811 811 > 811
[0,2) 43 56 1
(2, 4] 23 77 0
(4, 6] 78 22 0
Tot al 144 (48% 155 (51.6% 1 (0.3%

Table 2.5: Split points for simulation in case 3, for P(Y =1) = 0.05

The table shows that alnost half of the split points coincide and for the non-

coi ncident, those obtained using the Gni index are higher than if we use the
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entropy. This neans that the entropy is a little more conservative than the G ni
index, since we did the simulations for g, >0 and thus the distribution of

S|Y =11lays on the right of (or overlaps) the distribution of S|Y =0.

Figure 2.18 pictures the split points for p= 3 as the probability of default
changes. The split points coincide for alnost 75% of the scores and they are
simlarly spread over the score range. They are consequently higher for | ower

probabilities of default.

Split points for Entropy (green, o) and Gini index (blue, +)
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0.0 0.2 0.4 0.6 0.8 1.0
Default probability

Figure 2.18: Split points for the simulation in case 3, for ;= 3

Figure 2.19 shows the different estimates of ). V¢ appreciate also here, that the
di fference between applying the Gni index or the entropy as inpurity functions is

not relevant. For both criteria we have that D increases as p, increases.

Finally, in Figure 2.20 are depicted the estimates of D for pu= 3. The results
obt ai ned from applying both measures are sinilar, but the entropy gives slightly
better results for extreme values of the probability of default, since D for the
entropy does not vary as rmuch as for the @ni index as the probability of default

vari es.
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D values for Entropy (green, o) and Gini index (blue, +) D values for Entropy (green, o) and Gini index (blue, +)
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u Default probability
Figure 2.19: case 3, for P(Y =1) = 0.05 Figure 2.20: case 3, for ;=3

Case 4:

We consider now the distributions conditioned to default and non-default both having the
same means but different standard deviations, such that, as the difference between standard
deviations increases, the overlapping area decreases and therefore the score has more
discriminatory power.

Proposition 2.29

Assume a score with conditional distributions:

S1Y =0~ N(01) and

S|Y=1~N(00),0<0o<1,

Then the standardized maximal distance function can be written:

1. For the entropy



(1— 7T1)(I)<Sp)

P(Sgsp)

+(1—7r1)<19(3p)10g

m log(m) + (1— m)log (1— m,)

ot

™
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P(S>sp>

+(1— Wl)(l— <I>(sp))log[<1;1

m log(m) + (1—m)log(1— )

2. For the Gini index

I I I o
o = W@[i]+<1_w>¢< ) 1_<1>[‘Z] +(1—7r1)(1—¢(8q>) :
Pr oof:

In this case, we get the following probabilitiesfor j = p,q:

5

S<s,)= w1q>[0]+(1—7r1)q>(sj),

]]4—(1—7?1)(1—@(8])),

P

—

P(S>s,)= wl[l—qb[i

o

P(Y=1]S<s,)= lej&)) , p(Y:0|Sgsj):G];<gl—i<fg>f>,
m|1—P|-+ V1= P(s.
Py =1|8>s)= 1[P(S (<"3J), P(Y=0|S§>s)= (11—11((15 jj;)).

1. Then we get the following impurity functions, for the entropy

P (Sp) P (Sp)
al 4 o

1( S%)Z P(SSS,,) ©8 P(S§8p>
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2. And for the Gini index

m® (s, )(1- wl)qp(q

P(S < sq)z

sfi-als)a-m-o2)]

(l_ P<S < SQ))Z

i<S§5q>:2

By substituting these impurity functionsin (2.4.10) and (2.4.8), respectively, we get the above
defined D, and D, .

O

The first and second derivatives of D with respect to 7, and with respect to o for Gini index
and entropy are again very complicated and in terms of the normal cumulative distribution
function, which has no explict form. Hence, we can study and compare them only

numericaly.

Example 2.30

Look at Figure 2.21 for the same optinal split point s =5 =0.5and o= 1/2. V¢
can see how the graphics D look like for different probabilities of default. Here
again, D, is higher than D for extrene values of the probability of default. In
this case we can say that, using the entropy as inpurity function, is a better way

to nmeasure the discrinmnatory power of the score.

V¢ can also see (Figure 2.22) how, for a given probability of default m = 0.1 and
s,=s,= 0.5, D, and D, look like for different standard deviations o. Here,
there is a clear difference between the G ni index and the entropy. For the second
one we get higher values of D as o decreases, which neans that [, increases as
the overlapping area decreases nore rapidly than Dg and therefore using the

entropy gives better results for measuring the discrimnatory power.
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D for Entropy (green line) and Gini index (blue, dashed line) D for Entropy (green line) and Gini index (blue, dashed line)
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Figure2.21: s=05,0=1/2 Figure2.22: m = 0.1and s, = 0.5

Simulation 2.31

Again, we simulate 300 sanples of n= 1000 random values of a score with default
probability P(Y = 1)= 0.05, but now we consider both distributions of defaults
and non-defaults having the sane nean and different standard deviations, such

that:
S|Y=0~N(01) and
S1Y =1~ N(00,), o, =k/300, k=1...,300.

As o, increases, the overlapping area increases, therefore the score has |ess
discrimnatory power. For o4,= 1, there is a total overlapping of the densities

of default and non-defaul t.

In Figure 2.23 there are represented the split points obtained from using the
entropy and the Gni Index. In the x-axis are the estimted standard devi ati ons:
0< ov <1, k=1...,300. The split points coincide for 60% of the scores. As o,
i ncreases, the discrimnatory power of the score decreases and the split points

deviate nore fromeach other, and fromthe nean p= 0.
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Split points for Entropy (green, o) and Gini index (blue, +)

Score range

0.0 0.2 0.4 0.6 0.8 1.0

4]

Figure 2.23: Split points for the simulationin case 4, P(Y =1) = 0.05

Figure 2.24 pictures the split points for o= 0.5 as the default probability
varies. The split points coincide for 72% of the scores and they are sinilarly

di sseninated over the range of the score.

Split points for Entropy (green, o) and Gini index (blue, +)

Score range

0.0 0.2 0.4 0.6 0.8 1.0

Default probability
Figure 2.24: Split pointsfor the simulation in case 4, o = 0.5

Figure 2.25 pictures the different estimates of . For both criteria we have that
D decreases as o, increases, but we obtain higher values of [ when we use the
entropy as splitting criterion. Therefore, we can conclude here that using the
entropy in D gives better results than using the Gni index, because it is nore

sensitive to the discrimnatory power of the score.
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D values for Entropy (green, o) and Gini index (blue, +)

0.05
1

0.00
1

0.0 0.2 0.4 0.6 0.8 1.0

4]

Figure 2.25: D valuesfor thesimulationincase4, P(Y =1) = 0.05

Figure 2.26 shows the estimates of D for o= 0.5. The D values for the entropy
are nore stable with respect to the probability of default than for the G ni index
and thus higher for lower probabilities of default. W can state again that using

the entropy as inpurity function in I gives better results than using the @ ni

i ndex.

D values for Entropy (green, o) and Gini index (blue, +)
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Default probability
Figure 2.26: D valuesfor thesmulationincase4, o = 0.5

Conclusion

In the simulations and examples of this section, we have that the entropy compared to the
Gini index gives better results for lower probabilities of default, which is the case in credit



scoring; it is often more stable with respect to the probability of default; and it is more
sensitive to the discriminatory power of the score. Most of the optimal split points are
coincident for both criteria. For the noncoincident, the split points obtained with entropy are
frequently more conservative. Because of these reasons, and together with the fact that we can
apply the test for homogeneity (see section 2.4.5) to the partition yielded by D, , we
recommend the use of the entropy as splitting criterion criterionin D .

2.5 Other measures

In this section we describe the disadvantages of the misclassification rate and the coefficient
of correlation for measuring the discriminatory power of a score. Although these measures are
sometimes used in practice, we do not find them appropriate for of credit rating, and we will

explain the reasons.

2.5.1 Miisclassification rate

If ascore S and a separation threshold s € R are given, such that all score values S > s are
predicted as defaults, then the discriminatory power of the score can be aso estimated by the

misclassification rate. Here the following scheme:

Y
0 1
0 Qg (8)

(8)

The misclassification rates are defined by

() =P(S<s,Y=0)=PY =0Y =1 (L type)
0y (s)=P(S>sY =0=PY =1Y =0) (2. type)

such that, for afixed sample size n , if ayy(s) increasesthen a,(s) decreases, and vice versa
We can calculate them by

ay(s) = P(S <sY =1) = K(s)P(Y =1)
an(s) = P(S >sY =0)= {1_ Fo<5)}P<Y =0)
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The aggregate misclassification rate
a(s) = ogg(s) + ag(s) = F(s)PY =1 +{1— Fy(s)} PV = 0)

presents a weighted version of the overlapping area and can be estimated by the use of E(s) :

Fy(s), n,/n, ny/n.An optima misclassification rate can be defined as

o = mina(s) (25.1)

§

Also here it can again be distinguished between positive-monotone (Y =1 if S > s) and
negative-monotone (Y =1 if S < s) for the definition.

We dready have seen in section 2.4.1, that the misclassification rate can be expressed as an
impurity function of the default variable Y given a score S. Further, we spoke about its
defects as splitting criterion. Also the aggregate misclassification rate defined in this section
has some deficiencies and we will put some examples later. Now we show how, under some
assumptions, both criteria D, and o arerelated.

Proposition 2.32

Assume P(Y =1)<1/2 and 3s*, being the solution of

maxd, (S <s,5 > s)
st. P(Y=1]S>s)>P(Y =0]|5>s)

Then we get that both criteria D, and « arelinearly related:

D =1-a/PY =1). (25.2)
Pr oof:

As we have assumed P(Y =1) <1/2, then by the definition of impurity function for the
misclassification rate (2.4.5), we get i(S) = min (P(Y =1),1 - P(Y =1)) = P(Y =1).

The impurity functionsfor S, = {S < s} and S, = {S > s} aregiven by

i(S,)=min(P(1]S,),P(0]8,))=min(P(Y =18 <s)/P(S,),P(Y =0,8,)/P(S.))

= min(ay, 9/ P(S,),P(Y = 0,5 <s5)/P(S,)) = L min (a,, (), P (Y = 0,5 < s))
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and

i(S.) = min(P(1]5.),P(0]S.)) = min(P(Y =1,5.)/ P(5.),P(Y = 0,5 > )/ P(S.))

PE)

= min(P(Y =15 > 5)/P<§s),am (3)/P(§s)) = min(P(Y =1,5 > s),0, ()

Then by the definition (2.4.2) we get:
d = maxd, (S,,5.) = max(i(5) = P(S,)i(S.) - P(S.)i(S5.))

= P(Y = 1) + max {— min (o, (9, P(Y = 0,8 <s))—min(P(Y =1,5 > s),q, (3))}

=PY =01+ max{— (v (9 + (s))} =PY =1)-mina) = PY =1) -«

And therefore, by substituting in (2.4.4) for the misclassification rate:

d PY=1)-a

" PY=1) '

opt

we get the above mentioned linear relationship.

Remark 2.33

This proposition can be extended fo the case where the scores are ordered from * bad fo good', i.e.
higher probabilities of default correspond fo lower score values, and the misclassification rate is
defined such that all score values S < s are predicted as defaults. Then, under the restriction
P (Y =1|5< S) > P (Y =0]5< s) we get the same linear relationship (2.5.2). If otherwise,
we had P(Y =1)>1/2, then we would obtain similarly under other restrictions: D =

l1—a/P(Y = 0).

The aggregate misclassification rate is a sensible measure of the discriminatory power of a
score, if the size of defaultsis not too low, and we can seeit in the following example.

Example 2.34

So, if we test it by score2 for the validation sanple fromthe Fahrneir et al.
(1984) dataset, where the proportion of defaults is 27% we get the estinate &:
0.225 and the threshold s= -0.335 (see Figure 2.27), which is equal to the

threshol d given by the neasure D for every inpurity function.
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Threshold s for Misclassification rate (grey dotted line)
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Figure 2.27: score2, a = 0.225, s = —0.335

But thisis generally not the case in credit scoring, where the proportion of defaultsis clearly
lower. Here, the optimal misclassification rate is normaly achieved when all defaults are
misclassified, which does not make this measure a reasonable criterion.

Example 2.35

V¢ picture below the estinated densities for a similated sanple with proportion of

defaul ts 6%

Threshold s for Misclassification rate (grey dotted line)

0.4

0.3

01

0.0

Densitly non-defaults (blue) and defaults (red dashed)
0.2
\

Score range

Figure 2.28: 6% defaults, a@ = 0.06, s = 2.215
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The estimate of the nisclassification rate is &z 0. 06, which corresponds exactly
to the frequency of defaults in the dataset, since the threshold is at the highest
value of the score, namely s= 2215 and consequently all defaults are
msclassified. W must remark also here that there are represented the Kkernel
density estinmates of defaults and non-defaults. This is the reason why the

estinates of the densities do not lie conpletely on the left of the threshold.

2.5.2 Correlation coefficient

The coefficient of correlation isindeed a measure of association, but sometimesit is presented
in the literature for sociologists (see for instance Bortz & Doéring, 1995) as a measure of
discriminatory power. The correlation between two random variables S and Y, denoting a
score and a default variable respectively, with variances var(S) and var(Y) existing and
positive, is defined as.

peo = cov(S,Y)
- Jvar(S) - Jvar(Y) .

(2.5.3)

Remark 2.36
From the Chauchy-Schwarz inequality follows: —1 < p;,, <1.

We will now introduce another expression for the coefficient of correlation.

Proposition 2.37

Let S, Y be two random variables, with Y ~ Be(m,), such that 0 <, <1. Denote
E(S|Y=0)=p, and E(S|Y =1)= p,, such that p, >y, >0 (w.l.o.g.), and o,, o,
denote the respective standard deviations of S conditioned to Y . The correlation coefficient
isthen given by

(L= ) (1 — o)
Psy = (2.5.4)
’ \/7T1‘712 + (1_ 77'1)‘702 + 7T1<1_ 7T1) (,ul - No)z iR, 7T1<1_ 7T1)

Pr oof:
For the numerator, we have that:

cov(9,Y)=cov(Y,E(S|Y)=E(Y-E(S|Y))—E(Y)-E(E(5]Y)),
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being E(Y - E(S|Y))=1-E(S|Y =1)-m = pm, E(Y)=m and
E<E<S|Y)):E<S|Y21)'7T1+E<S|Y:O)'(1_7Tl):/‘17r1+No(1_ﬂ—1>-
By substituting, then

cov(S,Y) = pm — m (pm + Mo(l -m))=mm(l-m)— :“077—1(1 —m).

The denominator is given by multiplying /var(S) - \/var(Y) , such that:
var(Y)=m(1—m) and

var($) = E(S*)— E(S) = BE(E(S*|Y)) - E(E(S|Y)), where
E(E(S*|Y))= Evar(S|Y)+ B(S|Y)') = (0+ w*)m, + (0+ i’ )1 = m,),
E(E(S|Y)) = (mm + p(1 =) = >+ pt (1 — )+ 241, pym, (1 — )
and therefore

var (S) = 7T1012+ (1 - 7T1)002+ 7T1:u12+ (1 - 7‘—1)/%2_ 7‘—12”12_ (1 - 7T1)2 N[)Q_ 2m (1 - 7‘—1)”1 Ky
= 7T1012+ (1— 7T1)002+ (1 =) (py — Mo)Q-

Remark 2.38

Under the assumptions of Proposition 2.37, the coefficient of correlation reaches its maximal value,

psy =1, ifand only if o, = o, = 0, and it is minimal at py,, = O, for j1, = pi,.

A reasonable selectivity measure would assign its maximal value to a perfect separation
between the distributions of the score conditioned to default and non-default, and its minimal
value for a total overlapping of the distributions. However, these requirements are not
fulfilled by the coefficient of correlation.

In practice we will have scores taking more than two values; this implies that the conditional
standard deviations will be different from 0. In this case the coefficient of correlation is not a

good measure of the discriminatory power of a score, because it does not reach its maximum.
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Example 2.39

Suppose we have two perfectly separated uniform distributions S|Y:0~U(—1,0)
and S|Y:1~U(O,1),V\jth PY=1)=1/2 (see Figure 2.29), and 0, = 0,=1/12.
Then pS7Y:\/§/2<1.

Two Uniform density distributions
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Figure 2.29: Perfectly separated densities, py, = J3/2<1.

On the other hand, if we have two distributions with equal neans, for
example S|Y =0~ N(0,3/2) and S|Y =1~ N(0,1/2) (see Figure 2.30), then
we obtain pgy =0, although there is not a total overlapping of the areas

for defaults and non-defaul ts.
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Figure 2.30: 14, = py =0, pg,, =0
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2.6 Comparison of measures of discriminatory power

Along Section 2, we analyzed different measures of discriminatory power in the context of
credit rating. Here, we devote us to the comparison between the overlapping area criterion 7',
the accuracy ratio AR, and the standardized maxima distance D with the entropy as
impurity function. The other measures are discarded because of their inadequacy, or in the
case of the Gini index, because the entropy gives better results. A further advantage of the
entropy compared to the Gini index is that hypotheses can be tested (see section 2.4.7).

These three measures cannot be compared in their absolute values. T gives the maximum
distance between the ROC curve and the diagonal, whereas the accuracy ratio is related to the
average of the difference between ROC and diagonal. However, in spite of their differences,
these measures lead many times to the same conclusions, as we saw in sections 2.2, 2.3 and
2.4. There we calculated and tested 7', AR and D, for the sample scores (2.1.2) and (2.1.3).
For al of them, scorel was preferred to score2, and we were able to reject in any case the null
hypothesis for their respective tests. However, H, would be more difficult to reject if we had
lower default rates for the Kolmogorov-Smirnov test. Further, 7" and D, lifted close optimal
thresholds for the first score. We could also see that AR depends on the probability of
default. So, for various scores having the same Lorenz curve and Gini coefficient but different
PDs, AR would raise different values.

This section includes five cases for the purpose of illustrating the behaviour of 7', AR and
D.. Since an overal theoretical comparison is not possible, we will have to make some
assumptions of the distribution of the score conditioned to the default variable, and specify
the values of their parameters. In the first two cases, we will point out extreme circumstances
where T', AR and D, attain their maxima and minima. The third and fourth cases present
situations where the use of the accuracy ratio should be avoided. On the other hand, the three
measures perform properly in the last case.

Casel:

The score lacks totally of discriminatory power if it is independent of the default variable. A
suitable measure should therefore lift zero under these circumstances.
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Proposition 2.40
For S and Y independent random variables, it holds:
T=AR=D, =0.
Pr oof:
As for independence we have F, (s) = F'(s), for j = 0,1, then is easy to see:

1. By definition (2.2.5), T

pos

= max {FO (s) — Fl(s)} = mgmx{F(s) — F(s>} =T, =0.
2. Applying (2.3.3) and (2.3.4), we get:

F(o0)"

AUC =1~ [ F(s)dF,(s) =1- >

—O]:%andAR:2AUC’—1=0.

3. Weadready saw in Proposition 2.21, that under the assumption of independence, D, = 0.
0]

Case 2:

It is also required to study the case of a score that separates perfectly defaults from non-
defaults under monotonicity. In this case, an appropriate measure of discriminatory power
should raise one.

Proposition 2.41

Given two random varisbles S and Y ~ Be(m,) , and a threshold s* € R, such that
PY=0|S<s*)=land P(Y =1|S5>s*)=1,itholds:

T=AR=D, =1.
Pr oof:

Applying Bayes' theorem and the Law of total probability, it follows that F;(s*) =1 and
R(s%)=0.

pos

1. Bythedefinition (225), T =T, = max{F,(s)— F,(s)} = Fy (s *) - F, (s *) = 1.
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2. The Lorenz curve given by a perfectly discriminating score is optimal and therefore the
Gini coefficient is also optimal (see Proposition2.3)and AR =G /G, , = 1.

opt

3. We obtain the following impurity functions: i(S < s*)=i(S > s*)= 0. According to
Proposition 2.13wehave d = d,, = i(S),andby (24.4), D, =d/d,, =1.

opt

Remark 2.42

If the defaults were classified to the left of the threshold s*, ie. P(0|S <s*)=0 and

P(1|S<s*) =1, thenwewould have T =T, =AR=D, =1.

neg

Case3:

Now we will contemplate the case where the distributions of default and non-default are
perfectly separated but there is not a monotone relationship between the score and the default
variable. Under these circumstances, the measures 7', AR and D, are not optimal. Further, if
we assume the conditions of Proposition 2.6, we get an even worse result for the accuracy
ratio, which lifts zero. In this situation we will always prefer 7" and D,, as we can seein the

following example.

Example 2.43

In Figure 2.31 are represented the conditional densities f; and f of a score,
having the same expectation p= 0. They are even functions, i.e. synmetric with

respect to the ordinate axis. The optinal threshold s, coincides for both 7  and

pos

D, (or s,, if we consider T ). For a sinulated sanple with n»= 1000 and n,=

e neg
100, we obtain 7 = 0.5 and D,= 0.197, and the split point s= -0.498 (or s=
0.498). In this case T will be preferred to D, since it is nore sensitive to
the discrimnatory power of the score. Gaphically, is also easy to see that AR=
0, since the area between the Lorenz curve (Figure 2.32) and the diagonal wll sum

up zero.
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Two density distributions symmetric about the mean Lorenz Curve
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Figure 2.31: Symmetric densitiesw.r.t. =0 Figure 2.32: Lorenz curve, 10% defaults

Case 4:

We would like to see how these measures behave if the score conditioned to the default
variable is normally distributed with different means and standard deviations for default and
non-default. The expressions for 7', AR and D, are given in Appendix C, Proposition C.1.
However, it is not possible to compare these expressions theoreticaly.

Thus, we will have to set some values for the parameters of the distribution functions. First,
we will study the case of both distributions having the same mean and different standard
deviations,i.e S|Y =0~ N(01) and S|Y =1~ N(0,0%),(0 <o <1).

As o increases, the overlapping area aso increases, both distributions being totally
overlapped at o = 1. The score is less discriminating as the standard deviation increases. In
the same way, an adequate measure of discriminatory power should be decreasing with
respect to o . Let us see now how the measures behave:

1. Wehavethat T, isstrictly convex and decreasingin o € (0,1), since:

pos

0_2

T, o " Jlogo

=———<0 VO0<o<l,

do \/;\/—1—{—02
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1-20°
LT o 1+ (_(_1 +0? )2 + 40° (—1 +0° —log U)log O’)
P2 = >0 VO0<o<l1.

(d0)2 a 2\/;(—1 +0? )5/2 Jlogo

And by definition, T, =0 for o =1. T, , is hence an adequate discriminatory power
measure.

2. The accuracy ratio is disappointing in this case, since we aways have AR =0 (see
Proposition 2.6), without concerning the size of the overlapping area.

3. Aswe already saw in case 4 of section 2.4.7, the first and second derivatives of D, with
respect to the probability of default 7, and o are very complicated and in terms of the
normal cumulative distribution function, which does not have an explicit form. There is
also no explicit form for the optimal split point s . But we know from the simulations in
case 4 of section 2.4.7, that D, decreases as the standard deviation decreases (see Figure
2.25), and it does not decrease apparently for lower probabilities of default (see Figure
2.26). Further, we saw that the optimal split points deviate more from the mean as o
increases (see Figure 2.23). These reasons depict D, as a favourable measure of

discriminatory power.

To summarize, the accuracy ratio in this case is not sensitive to the discriminatory power of
the score, contrary to 7', and D, . However, we cannot assert that 7 will always be better

than D_ or vice versa. The comparison between them can only be accomplished numericaly,
and it isillustrated in the following example.

Example 2.44

Let S|Y:0~N(O,1) and S|Y:1~N(O,UZ), (0<o<1). For a given
probability of default 7 = 0.05 see Figure 1.1. According to this picture, we can
say that for both measures the score is less discrinmnating for higher standard
deviations. T raises higher values and is nore sensitive to the discrininatory

pover of the score than D . In this case, we would prefer T

pos *



66

Discriminatory power of the score
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Figure2.33: T, and D, for m = 0.05

Caseb:

We want to see now how 7', AR and D. behave for equal standard deviations. We already
saw in Section 2.2, that the point of intersection for equal variances is: s = (y, + 1,)/2.
Here again, it is not possible to do a theoretical comparison of the expressions given in
Appendix C, Proposition C.2, with respect to 1. Therefore, we will study the case of having
c=1,ie S|Y=0~N(01) and S|Y =1~ N(p1), with x>0, such that, as p
increases the overlapping area decreases and thus the discriminatory power of the score

increases.

1. Wehavethat T, , isstrictly increasing and concave for p > 0, since:

T _ <0 Vv
du \N2m -
d*T =
pos e *u
== <0 Vup>0
(du)  4/2r

And by definition, T

pos

=0 for u=1.

2. There are no explicit forms for the first and second derivatives of the accuracy ratio. But,

if we calculate AR numerically, we can observe that it isincreasing and concavein .
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3. We dready studied D, in case 3 of section 2.4.7. We can observe that, for a low
probability of default, the optimal split points are increasing for increasing expectation
(see Figure 2.17). Thevaluesof D, areasoincreasingin p (see Figure 2.19) and they do

not vary much as m, varies.

In this case the three measures seem to be appropriate. The following example pictures a

numerical comparison.

Example 2.45

If we have S|Y =0~ N(01), S|Y =1~ N(w1), (£>0) and m =0.05, we can
see in the following picture that 7, AR and D, increase as p increases. D,
is more conservative (or |less sensitive) with respect to the discrimnatory power
than the other nmeasures, since it increases slower. Therefore, our order of

and D..

0s !

preference would be in this case AR, T,

Discriminatory power of the score
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Figure2.34: T ., AR and D, for m; = 0.05



3 Estimation of default probabilities

3.1 Introduction

Estimating default probabilities for individual obligors is the first step when assessing the
credit exposure and potential losses faced by an investor or financial institution. The PDs can
be fixed a priori, and then every loan must be adequately assigned to arating class. They can
be determined by default rates from former years or they will be calculated from individual
probabilities of default, that are determined by statistical scoring systems, by systems that
aggregate experts' knowledge or by the combination of both. However, this estimation could
be challenging due to limitations on data availability.

Our am here is to offer an overview of severa techniques existing for estimating default
probabilities. In section 3.2, we will introduce binary choice models, including the well-
known logit and probit, the calibration of the models and parameters and their significance.
Further estimation methods and aspects of the calibration of PDs are integrated in the next
sections—3.3 and 3.4. There, in Example 3.2, were generated for scorel (2.1.2) the rating
classes that will be used later for the validation tests presented in section 4.2. The last section
summarizes the different points of view regarding the estimation of the probability of default.

3.2 Binary choice models

We are interested in knowing how credit worthiness depends on observable individual
characteristics, like duration and amount of the credit, savings, purpose of the loan, etc.
Binary choice models are regression models intended to estimate the functional relation
between the binary variable Y (default indicator), and a vector of explanatory variables
X =(X,.., X, ) €R".

03y
Suppose that we know the true score, given by the latent variable

Y*=F3"X +¢, (3.2.1)

3 being the parameter vector that assigns aweight 3, to the jth explanatory variable and
an error term. We observe adefault if the score Y * is positive:

68



69

v — 1 if Y*>0,
o ifyx<o.

The regression function is given by the expectation of the response variable Y conditioned to

the vector of independent variables X (for aconstant X, =1):

E(Y|X)=P(Y =1|X)=9(8,+ X3 +...+ X, ,8,,)=¥(87X). (322

The function ¥ is chosen as a cumulative distribution function. The normal and the logistic
distribution functions, giving rise to the probit and logit models, respectively, are most

commonly used.

3.2.1 MLE (Maximum Likelihood Estimator)

The method used to estimate the vector of parameters G is the maximum likelihood. In order
to apply this method, we will suppose that the sample of n observed independent realizations
follows a known distribution. The probability of occurrence of arealization z, is ¢ (z,, ),
for :+ =1,...,n. The joint distribution can be calculated here as the product of the separate
probabilities:

P, =y,Ys =ty Y, = 9,) = ¥(21,000r2,, 8) = fwzmﬁ) — L(8]X). (323)

The likelihood function is denoted by L (3 |X). X is the matrix given by the rows z,", of
dimension n x p and is called the regression, or design matrix. For ease of calculations, we
determine the logarithm of the likelihood function:

log L (| X) = i}log@b(%, 8). (3.2.4)

This representation is called the log-likelihood function. Since in this case the response

variable takes only two states, we can rewrite L and log L :

n

L(B1X)= T (1-w(6,)) IT w(67,)=T1(¥ (7)) (1—\11(&@))1’“ (3.25)

{izy; =0} {izy, =1} i=1

which is amember of the exponential family of distributions (see Dobson, 1990). And thus:

n

logL(B]X) =Y (yi log ¥ (3"z, ) + (1 - y,)log (1 — ¥ (ﬁ%))) . (3.2.6)

i=1
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The vector of parameter estimates /3 that maximizes the likelihood function also does for the
log-likelihood function, since the logarithmic function is monotonic. Having an unrestricted
parameter space, and the likelihood function belonging to the exponential family, we can
obtain the maximum-likelihood estimator (MLE) of 3 uniquely by solving the equations:

_ dlog L(B)

v(s) - ==

=0, (3.2.7)

as can be seen in Cox & Hinkley (1974).
For the specia case in (3.2.6) the first derivative can be calculated:

Y; dv (ﬁTxf)
U(FTz,) df'z,

dlogL(B) &

B pa

_(1_%)

1 dv(f)|
1—\If(ﬁT:L"i) dp'z, "

In general (3.2.7) is a nonlinear system of equations. Hence, an iterative solution has to be
computed. We can use the Newton-Raphson a gorithm, which determines the optimal 3 with
the following iteration steps:

~new ~old ~old ~old

-1
B =5"-m(") v("),
being H(3) = 8°log L()/0803" the Hessian matrix. A variant of this method is the Fisher

scoring agorithm, which replaces the Hessian by its expectation (see Tutz, 2000).

Under relatively general conditions, the maximum-likelihood estimator has the following
interesting properties (see Thell, 1979):

- Consistency, i.e. 3 convergesin probability to therea (.
- Itisasymptotically normally distributed, i.e. 3~ N (ﬁ, {1 (ﬁ)}_1> .
-  TheMLE isasymptotically efficient.

The variance of the above mentioned normal distribution is the inverse of the Fisher

information matrix, i.e.

o - |-o[ 2

5605 } (3.2.8)
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In order to estimate the variance of the MLE, in (3.2.8) the parameter G can be substituted by

3. However, this procedure is not always feasible, since the expectation of the second

derivative of the log-likelihood function is very difficult to calculate, except for the logit and

probit models (see Greene, 1993). Therefore, other estimators were proposed. One of them is

given by:

~ -1

-1 0? logL(ﬁ)

( )} — (3.2.9)
0603

For this estimator we do not have to determine the expectation, but still the second

derivatives. Another estimator that requires the calculation of the first partial derivatives only

is caled OPG (outer product of gradients) or BHHH-Estimator (Berndt, Hall, Hall and

Hausman):

{i(B)}l - {Z} ézé;}l = {aTa}_l , (3.2.10)
being
~ 0logy (I[ , B)
g = T

and G:(gl,gg,...,gn)T. We recommend this last estimator, since it avoids difficult
computations (see Gourieroux & Monfort, 1995).

3.2.2 Logit

The probability that an event occursisfor the logit model:

P(Y=1|X:x)=%=/\(ﬁ%), (3.2.11)

which is strictly monotone increasing in 8’z . So, we will ensure that the probability of
default is a monotone function of the score S = 3" X . The first derivative of the sample log-
likelihood function for the logit model is:

OlogL & y
g P




72

The (k x k) matrix of second derivatives for the log-likelihood function:

0% log L n . ) i
ngﬁ - —;A(ﬁ z) (1= A(F7z) 2.2,
3.2.3 Probit

The probability that an event occursisfor the probit model:
OBz
P(Y =1|X=2)= [ "¢(t)dt =0(8"z), (32.12)

such that the default probability is modelled as a strictly monotone increasing function of the
score. Thefirst derivative of the sample log-likelihood function for the probit model is:

OlogL _(b(ﬁsz) . ¢<5sz)x < (2yi_1>¢((2yi_1>ﬁT$i) .
o3 i%l—@(ﬁ%) i+¢;1<l>(ﬂT:ri) _Z (2, —1)87z) |

And the (k x k) matrix of second derivatives:

82 lOgL n
=Y\ (A +8"z )z2",
op0F X A+ B o

denoting

L (2n—1)o((2 ~1)5)
Z’ ®((2y, -1)8Tx,)

3.2.4 PD estimation

In order to estimate the probability of default, we must first calculate the asymptotical
variance of the MLE. For this purpose we can use the BHHH-estimator defined in (3.2.10),
being for the logit model g, = y, — A(3"x) and for the probit g, = .

Having estimated the vector of coefficients of the regression model and its variance-
covariance matrix, we can estimate the probability of default and its variance. For both logit
and probit models we have:

P(Y=1|z2)=0(8"z)=T

BTx) (3.2.13)
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The asymptotical variance of thisforecast is given by:

Var® (\IJ(BI)]: %@%) -{i(@)}_l- % (3.2.14)
Together with
ov BTx dv BTx)(? ATx) o
83 = d(BTx) 63 = @/J(ﬁ :U) T, (3.2.15)

v denoting the density distribution function. Equality (3.2.14) can be expressed like:
AT AT 2 ~7~\]"1
Var®™ [\11(5 x)] _ [1/)(5 x)] - {1(5)} z (3.2.16)
3.2.5 Significance of the model and parameters, optimal weighting

The simplest method to test the significance of a parameter, i.e. H, :3, =0, isto use the
asymptotical normal distribution of the MLE. For more involved restrictions, of the type
H, :Rp3 = q we can use the Wald test:

-1

W= (m3—a (R (i3]} ] (R,
being W ~ X, » With » = rank R equal to the number of restrictions being tested.

In order to assess the adequacy of the model M for describing a set of data, we can compare
the likelihood under the fitted model with the likelihood under the saturated model, which is
the model with number of parameters equal to the total number of observations, n. The
maximum likelihood achievable in a saturated model is attained at W, = y,, denoting
v, = \I/(ﬁTxi). The deviance of the model M measures the discrepancy of the fit and it is
defined as twice the difference between the maximum achievable log-likelihood of the
saturated model and that attained by the fitted model, as follows:

Dev,, (y;\ff) = 210gL(\T/;y) — 2logL(\f/;y)
n ~ R (3.2.17)
= 22 {yi log(yi/‘I’f)+(1—yi)10g(1—y1-/1—‘1/z‘)}-
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The deviance function is most directly useful not as an absolute measure of goodness-of-fit,
but for the comparison between two nested models. Let M/, C M beasubmode with p, < p
regression parameters and consider testing M, within A/ . Then, we have the test given by

(@)
Dev,, — Dev,, ~ X,Q,_po : (3.2.18)

whichisidentical to the likelihood-ratio statistic for testing M, against M .

A similar model selection procedure for non-nested models can be based on Akake's
information criterion (AIC'):

AIC = —zlogL(@;y) 1 2p. (3.2.19)

See Gourieroux (2000) or Greene (1993) for more information on this subject.

3.2.6 Logit versus Probit

It is not possible to compare directly both models, since they have different variance
parameters, namely 1 for the norma and #* /3 for the standard logistic distribution function.
Thus, we must rescale any of the parametersin order to compare both distributions. Figure 3.1
plots the standard logistic cumulative distribution function against the cdf of N (0, n/ 3).
There is not a large difference between these cumulative distribution functions in the left
graph, but we are interested in lower probabilities of default, which is the normal case in
credit rating. Therefore we plot the right graph, and appreciate here that the logistic cdf
vanishes to zero at a lower rate. This explains the fact that the logit model handles dlightly
better the case of extreme observations.

1.0

0.8

0.6
|

0.4

Logistic (green) / Normal (dashed orange) cdf
0.2
1

Logistic (green) / Normal (dashed orange) cdf

000 005 0.10 015 020 025 0.30
I

-4 -2 o] 2 4 -5 -4 -3 -2 -1

Figure 3.1: Logit vs. rescaled probit, left: on the range [-5,5], right: on [-5,-1].
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Example 3.1

In Section 2.1 we already introduced scorel (2.1.2) and score2 (2.1.3), fitted by
a logit nodel for the calibration sanple. Let us denote their respective nodel s by
M (Table 3.1) and M, (Table 3.2), being M, C M. The coefficients were

estimated with the hel p of the Fisher Scoring al gorithm

Vari abl e Coefficient Std. Error Z val ue p- val ue
const ant 1. 389e+00 5. 804e-01 2.393 0.016 **
account -5.467e-01 7.628e-02 -7.167 7.69e-13 ****
duration 3. 143e-02 9. 521e-03 3.301 9.64e-04 ****
pay -5.374e-01 1.010e-01 -5.323 1.02e-07 ***x*
amount 5. 024e- 05 4.368e- 05 1.150 0. 250
savi ngs -2.135e-01 6. 279e-02 -3.401 6. 71e-04 ****
tinme -1.605e-01 7.658e-02 -2.096 0.036 **
mont h 2.560e-01 8. 926e- 02 2.868 4.126e-03 ***
status -2.417e-01 1. 246e-01 -1.940 0.052 *
properties 1. 142e-01 9. 135e-02 1. 250 0.211
age -9.964e-03 8. 539%e- 03 -1. 167 0. 243
prev_credits 3. 256e-01 1.748e-01 1. 862 0.062 *

_gféﬁi¥f"éaﬁé;7_'****’ 0.001 “**** 0.01 “** 0.05 ‘* 0.1° ' 1

Devi ance: 781.69, AIC. 805.69

Nurmber of Fisher Scoring iterations: 5

Table 3.1: logit model M for scorel

Vari abl e Coefficient Std. Error Z val ue p- val ue
const ant 0. 826 0. 358 2.304 0.021 **
savi ngs -0.258 0. 056 -4.554 5.25e-06 ****
time -0.177 0. 065 -2.693 7.09e-03 ***
status -0. 208 0. 109 -1.900 0.057 *
Slgnlfcodes fxxx%’ 0,001 ‘***’ 0.01 ‘** 0.05 ‘* 0.1 ' 1

Devi ance: 948.78, AIC. 956.78

Nurmber of Fisher Scoring iterations: 4

Table 3.2: logit model A/, for score2

In order to conpare the two nested nodels, we calculate the likelihood ratio

statistic, i.e. Dev, — Dev, =948.78-781.69= 167.09, which is highly significant,
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since Dev,, — Dev, = 167.09 > X;O.gggg: 31.828. This neans that scorel fits better

than score2.

Now we use a probit instead of a logit nodel to fit M' (see Table 3.3) and M,
(Table 3.4), for the same vector of explanatory variables X € R” in scorel and

X €R” in score2, being M', C M":

Vari abl e (origi nglo)effi ci (e?tescal ed) Std. Error Z val ue p-val ue
const ant 7.598e-01 1. 378e+00 3.374-01 2.252 0.024 **
account -3.232e-01 -5.863e-01 4.353e-02 -7.425 1.13e-13 ****
duration 1.857e-02 3.369e-02 5. 616e-03 3.308 9.41e-04 ****
pay -3.159e-01 -5.729%e-01 5. 768e-02 -5.476 4. 35e-08 ****
amount 2.795e-05 5. 068e- 05 2.585e-05 1.081 0. 279
savi ngs -1.211e-01 -2.214e-01 3. 557e-02 -3.414 6.41e-04 ****
time -9. 445e- 02 -1.713e-01 4.467e-02 -2.115 0.034 **
nmont h 1.509e-01 2.736e-01 5. 194e-02 2.904 3.68e-03 ***
status - 1. 340e-01 -2.430e-01 7.274e-02 -1.842 0. 065 *
properties 7.161le-02 1.298e-01 5. 315e-02 1. 347 0.177
age -5.556e-03 -1.007e-02 4.984e-03 -1.123 0. 261
prev_credits 2.009e-01 3. 644e-01 1.011e-02 1.987 0.046 **

Slgnlfcodes ‘x*%&x0 0,001 ‘***’' 0.01 ‘** 0.05 ‘*' 0.1 ° ' 1

Devi ance: 781.73, AIC. 805.73

Nurmber of Fisher Scoring iterations: 5

Table 3.3: probit model M ' for scorel

Coefficient

Vari abl e (original) (rescal ed) Std. Error Z val ue p-val ue
const ant 0. 486 0. 882 0. 217 2.240 0. 02511 **
savi ngs -0.151 -0. 275 0. 032 -4.677 2.92e-06 ****
tinme -1.108 -0.197 0. 035 -2.780 6.02e-03 ***
st at us -0.124 -0. 226 0. 059 -2.347 0.059 *
Signif. codes: ‘****' (0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ° ' 1

Devi ance: 948.75,. Al C. 956.75

Number of Fisher Scoring iterations: 4

Table 3.4: probit model A", for score2
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Again, we calculate the statistic: Dev,, — Dev,,= 167.02, which is also highly
significant, since Dev,, — Dev,.> Xﬁpgwgz 31.828. Also here we prefer the larger

nodel M' against M.

The significance of the regression parameters and deviances are very simlar for
both logit and probit nodels. The deviances and difference of deviances indicate
that the logit nmodel fits slightly better than probit. As we want to conpare the
estinated coefficients fromthe probit to those of the logit nmodel, we multiplied
the probit coefficients in Table 3.3 and Table 3.4 by 7r/\ﬂ§. The resulting

rescal ed coefficients are very simlar to those for the logit nodel

3.3 Further estimation methods

Asthe credit industry and large loan portfolios grow, the industry is devel oping more accurate
credit scoring models. Even a fraction of a percent in credit scoring accuracy is an
achievement. This is giving rise to the investigation of estimation methods like neural
networks, that also inlcude nonparametric and semiparametric statistical methods.

3.3.1 Neural networks

As an dternative to linear discriminant analysis and regression models, neural networks have
been anayzed more exhaustively in the last years since they represent the relationship
between independent and dependent variables in a more flexible way. However, neurd
networks present some cons, as they are like a black box when it comes to interpret the
resulting network. Moreover, calculating default probabilities with the help of neural
networks is possible only to a limited extent and it requires considerable extra effort. Some
empirical studies on this topic were accomplished by West (2000) or Barniv (1997).

3.3.2 Nonparametric and semiparametric methods

In the last section we studied the logit and probit models, which are specia cases of the
generalized linear model (GLM, see McCullagh & Nelder, 1983). For this class of nonlinear
regression models, there is a variety of non- and semiparametric extensions. For example, in
the nonparametric case we may estimate a single index model (SIM)

E(Y|X)=9(87X),
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where ¥ (e) denotes an unknown smooth link function. Thus, this model overcomes
restrictive assumptions of the functional form of the regression function. However, its
interpretation may be difficult. If the number of regressors is large, SIM yields inaccurate
estimates.

An example of semiparametric GLM is the generalized partial linear model (GPLM), which
combines alinear and a nonparametric function. It is specified

E(Y | X)=¥(5"X, +m(X,)),

T (e) being a known parametric link function, m(e) an unknown smooth (possibly
multidimensional) function and X' = (Xl,XQ)T € R”. This kind of model keeps the easy
interpretability of the parametric models and retains some of the flexibility of the

nonparametric models.

Specific choices of the logit model can be found in Mller & Héardle (2002). For a thorough
treatment of this topic we refer the reader to Hardle, Miller, Sperlich & Werwatz (2004).

3.4 Further aspects
3.4.1 Regression models for binary dependent variables and panel data

Panel models are also called models for clustered longitudinal data in statistics. They deal
with the type of credit data that results from repeated measurements on the same individuals
(loans) at different time points. Standard references for econometric panel data analyses are
Arellano (2003) and Hsiao (1990).

An observation y, has thus a transversa dimension (i=1,...,n) and a longitudinal
dimension (¢t =1,...,7"). In credit rating we have different time pointsi.e. t =1,...,7;, for
every loan. In this case, we speak about “unbalanced panel”, with Y" T, observations
altogether.

The convenience of estimating methods that have on account the data structure explicitly is
that they model the individual heterogeneity. By the study of an individual observation
through the time, itsindividual characteristics can be differentiated from others. We aso have

to take into account that observations from the same individual are correlated.
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In this section we will describe more carefully the fixed-effects-logit model and the random-
effects-probit model. The modelling of the random-effects-logit model is analogue to that of
the probit approach. The variant of the fixed-effects approach for the probit model is more
problematic in its estimation (see Greene, 1993).

The general approach of the probit-mode is.

Y, "= ﬁszt + &y
1 ify,*>0 (34.1)

Yin = 0 otherwise

Here we assume that the error terms ¢, are independent standard normally distributed. The
index 4, (i=1,...,n) describes the cross sectional dimension and ¢, (t=1,...,T}) the

temporal dimension.
For the random-effects-model, the approach (3.4.1) is given by the following description of
the error terms:

€, =V, +u,. (34.2)
Both components are independent from each other and normally distributed with null

expectation. The variance of ¢, (in which the variance of v, is standardized to one) and the

correlation between ¢, and ¢,, are:

Var(e,)=0'+0 =140 (34.3)
o 2

Corr(e,,e.) = L = 344

07"7"( it 1,5) 1_’_0_“’2 p ( )

The value of p represents the proportion of individua effects in the overal variance. The
existence of individual effects can be studied by tests of significance of p. The likelihood
function can be maximized after some transformations by means of nhumerical procedures.

The fixed-effects-logit model models the probability of occurrence of the interesting events,

asfollows:

T
P<yit = 1) = eXp (ai + ﬁ Iu)

= . 345
1+ exp (az + ﬂT$¢t> ( )
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The significance of individual effects can be tested with a Hausman-test. Under the
hypothesis that there are no individual effects (HO o = W), is the conventional logit
model appropriate (with the parameter estimates (). If the null hypothesis is rejected, then
the fixed-effects-logit approach (with BFE) is appropriate from a statistical point of view. The
test statistic is given by:

(BFE - B)T (VCW (BFE) —Var (B))71 (BFE - B) (3.4.6)

Thisfollowsa x> distribution with p degrees of freedom, p being the amount of explanatory
variables.

3.4.2 Classification and regression trees (CART)

Classification and regression trees present an aternative to fitting classical regression models.
CART isarule for predicting the behaviour of the response of interest from the values of its
predictor variables. Classification trees apply when the response is categorical—in our case a
credit default indicator—and regression trees when the response is continuous. The tree is
constructed by recursively partitioning the learning sample of data into increasingly
homogeneous subsets. The resulting subsets are heterogeneous among each other. To decide
about this, we can use the entropy or the Gini index (see section 2.4) as impurity functions for
the splitting criterion.

Assume we have a learning sample A C R”, containing the values of p predictor variables
X,,...,X,,and adefault indicator Y . The Classification tree is generated as follows:

* First, we will choose that variable which discriminates the most between default and
non-default. This variable and the split point obtained lift a partition of the initia
learning sample A= A4, in the subsets A4,, A,, such that A, NA, =2 and
A UA =A.

* Then we choose that variable which, starting from the first or the second subset has
most discriminatory power. Thus, only one of the two possible subsets, e.g. 4,, will
besplitagainin A,, A, (being A, NA. =2 and A, UA, = A)).

* By successively splitting the subsets, we will obtain atree T. Choosing the maximal
distance function (2.4.3) at every step minimizes the impurity of T. Denote T the
index set for the final nodes, the impurity of the tree is defined by:
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i((T)=>i(4,)P(4,). (34.7)

For a thorough description of the CART algorithm, we refer the reader to Breiman et al.
(1984) and Fahrmeir et al. (1996).

Classification trees can better model “non-monotonous’ effects and interactions between the
explanatory variables. However, as we normally dea with many explanatory variables in the
credit-scoring context, the fina interpretation of the tree may be complicated for our
preference. We can also use CART for generating classes of a score, as we will do in the next
section. There we will see that in practice, the algorithm tends to create pure or amost pure

subsets of very little size.

3.4.3 Generation of rating classes

In the third consultative paper of the Basedl Committee on Banking Supervision (2003) it is
suggested that banks should have a minimum of 7 rating grades for non-defaulted borrowers
and 1 grade for the defaulted ones; and they should be reasonably distributed across these
grades, with no excessive concentrations.

Apart from this recommendation, there is in the literature neither consensus on the number of
rating grades for the partition, nor a uniqgue method to accomplish it. In some papers, i.e.
Carey & Hrycay (2001), they use rating schemes of 5 and 10 rating classes; the
“Oesterreichische Nationalbank” uses a fine and a coarse scale, the coarse scale containing 6
rating grades, with grade 6 denoting default; the rating agency Standard & Poor’s uses a
scheme with 17 non-defaulted classes plus 1 class for defaults or its shortened version, with 7

plus 1 class for defaulted loans.

In Bemmann (2005) (about: Basel Committee [2000c, p. 23f]) it is summarized that from 30
rating agencies investigated, 22 used letter combinations, 6 used numerical marks and 2 used
probabilities of default for expressing their ratings. From the letter-ratings 16 are conform to
the S& P notation. However, most of the banks (ca. 85%) use numerical rating class notations.

About the generation of rating classes, it is being practised that the score is classified
following some rule with respect to the default probability, e.g. doubled mean PDs per class;
or it can be divided in intervals of agiven size:
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Example 3.2

W divided scorel (2.1.2) for the calibration sanple in 5 classes of equal size.
For every class we calculated the nean probabilities of default (PD) asserted by
the logit nodel. The colum “percent” contains the percentages in the validation
set of every class interval. W can observe here that the default rates for the

val idation sanple are very close to the PDs for every class, but for the second:

Rat i ng score range PD perc(evnatu i dat | Odnefsaelil)t rate
1 -4.848 - -2.192 0. 061 0. 295 0. 067
2 -2.192 - -1.507 0. 137 0.16 0. 062
3 -1.507 - -0.791 0. 243 0.19 0. 236
4 -0.791 - 0.087 0.413 0.18 0.472
S) 0.087 - 2.322 0.681 0.175 0. 628

Table 3.5: rating classes for scorel

We can aso use CART (see 3.4.2) to generate classes of a score. In this case, instead of
having p variables we consider the score S, which we split successively. See the following

example:
Example 3.3
Ve will illustrate here the application of CART with two scores for a given nunber

of classes (=5). Also here, we divided the score for the calibration sanple,
conputing the nean probabilities of default (PD) asserted by the nodel. Then we
calcul ated the percentages of every class interval and the default rates for the

val i dati on sanpl e.

Rat i ng score range PD p(a(rvcaT?tdat i ond?:ai”:: te) rate
1 -4.848 - -2.769 0. 039 0. 225 0. 066
2 -2.769 - -0.399 0. 197 0.52 0.221
3 -0.399 - 0.437 0. 497 0.14 0. 428
4 0.437 - 1.831 0.724 0.1 0. 65
5 1.831 - 2.215 0.913 0. 015 1

Table 3.6: rating classes for scorel generated with CART
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In Table 3.6 are represented the results for scorel (2.1.2). Since we are
interested in knowing if the classes are honogeneous, we wll calculate the
inpurity of the resulting tree, using (3.4.7) with the entropy (2.4.9) as inpurity
function. In this case, i(]“)z 0.473 is close to the inpurity given by the
partition in Table 3.5, i(I”)z 0.454. |1f conpared to the score i(S)z 0.583, we

can appreciate the dinmnution in inpurity.

In the following Table 3.7 we present the results for another sinulated sanpl e,
with 30% of defaults. Now we get that the resulting tree obtained with CART and
entropy as inpurity function has i(]ﬁ = 0.511. This is less than the overall
inpurity of the score, i.e. i(S)z 0.610, and also less than the inpurity we woul d
obtain if we made a sinple partition of the score in increasing order and
intervals of equal length, i.e. i(]”): 0.568. V¢ rated the classes according to
the percentage of default rates. In this case, it was better to nake the
classification with CART, since it contenplates the fact that the default rates

are not increasing for increasing values of the score.

. per cent default rate
Rat i ng score range . )
(validation sanple)
3 -7.661 - -5.359 0. 185 0. 075
5 -5.358 - -3.916 0. 515 0. 469
2 -3.914 - -3.851 0.018 0. 055
1 -3.851 - -3.552 0.091 0. 000
4 -3.552 - -1.093 0.191 0. 225

Table 3.7: rating classes generated with CART

For both scores, we get that the inpurity of the partition made with CART is cl ose
to the inpurity obtained by a sinple partition of the score in equal Ilength
intervals or even di mnished, which speaks in favour of CART. The problemis, as
we already mentioned in section 3.4.2, that CART tends to “isolate” little pure
subsets of defaults or non-defaults, as for example, class 5 in Table 3.6, or

classes 1, 2 and 3 in Table 3.7.
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3.5 Summing up

The methods presented in the last sections can be applied for the purpose of quantifying credit
risk. Now we will consider some aspects of the monotonicity and prediction of the default
probability, and the parameter estimation in practice.

Binary choice models (3.2.2) can be estimated using statistical software', without a big effort
if the number of defaults is sufficient. The observations of one year, i.e. a cross sectional
dataset, will suffice. Moreover, the results produced by such models can be interpreted
directly as predicted default probabilities. Among all the binary choice models, the logit
model (3.2.11) is definitely the current standard, both in its practical application by regulators
and in the academics literature.

However, variables that are identical for all borrowers, e.g. macro variables, will not be taken
into account by the binary choice models. The parameters of these variables cannot be
estimated, until there are observations on hand for all credit users during many years. The
data structure together with the methods of section 3.4.1 can be applied in order to detect
differences between the individual debtors. The problem of regression models for binary
dependent variables and panel data was that historical data is not always available. This will
not be the case after Basdl |1, since data has to be collected for at least 5 years for credit risk.
Panel datawill therefore play a more important role in the future.

Back to the binary choice models, we may say that their most important features are
simplicity and the fact that the probability of default is modelled as a strictly monotone
increasing function of the score. This does not hold in general for other estimation methods,
as nonparametric and semiparametric methods, neural networks or CART. In case of
monotonicity, we can efficiently apply the measures 7', AR and D (described in sections,
2.2, 2.3 and 2.4), in order to assess the discriminatory power of the score.

! The methods described in section 3.2 were implemented with R 2.1.1 (www.r-project.org).



4 Validation and backtesting of PDs

4.1 Introduction

The rating classes of arating system are normally constructed on the basis of probabilities of
default that refer to one-year time horizons. This assignment can be accomplished in different
ways, as we saw in the last section. In practice, the estimated probabilities of default will
differ from the default rates that are afterwards observed. A problem arises when these
deviations do not occur at random, but systematically. The question here is how the PDs
suggested by the rating system can be reviewed with the updated default rates. A collection of
studies on the topic of validation can be found in Basel Committee on Banking Supervision
(2005).

For a rating system with R rating classes, let 0 <7, <1 denote the default probability
asserted by the rating system, 0 < p, <1 the (unknown) actual PD and 0 < p, <1 the
observed default rate, i.e. the proportion of defaulted borrowers of atotal of n, borrowersin
the rating class . We can differentiate between one-sided and two-sided test formulations.
The one-sided is characterised through the hypotheses:

H,:p,=m,...,pp =7, H :3re{l,..,R} withp, >m,, (4.11)
and it is conform to the perception of the Banking Supervision, which is concerned about the
fact that the risk should not be underestimated. The two-sided test formulation is depicted by:

H,:p, =7,....pp =7, H :3re{l,...,R} withp, =, (4.1.2)

this can be identified with the perception of arisk controller, who is interested in as exact as
possible estimation.

Under the assumption of stochasticaly independent default events, these two test
formulations concern standard problems that can be addressed by the binomial test or the chi-
square test, as we see in section 4.2.

The main problem is that credit defaults are not stochastically independent. As an option, we
will assume in section 4.3 the dependence structure of the IRBA (Internal Ratings-Based
Approach). By this dependence structure, the default rate does not converge to the associated
probability of default, but to a non-degenerate probability distribution on the interval [0, 1].

85
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In order to assess the quality of time-varying PD forecasts, we consider two approaches in

section 4.4: normal test and traffic lights approach.

4.2

Tests based on the independence assumption

The construction of tests under the assumption of independent default events is based on the

well-known facts:

4.2.1

The number of defaultsin arating class r with n_ credits and default probability p,
is binomially distributed:

n,, ~ Bin(n,,p,), (4.2.1)
being n,, =n,p,.

For the default rate p, and n, — oo holdsthe strong law of large numbers,

b, —"—p,, (4.2.2)
and the central limit theorem
Nt S —— (R} (4.2.3)
p.(1-p,)
For R rating classes holds
R ~ 2
S n, B=n) » (R), (4.2.4)
r=1 pr <]' - pr)

where x* (R) denotes a chi-square distribution with R degrees of freedom.

Binomial test

If we want to test if the probability of default of a rating category is correct against the

alternative hypothesis that it is underestimated, then we can use the one-sided binomial test:

H,:p =m, H :p >m,

for each rating category r =1,..., R.
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The null hypothesis for a given level of significance « is reected if the observed number of
defaults n,, isgreater than acritical value &', given by:

k= min{k | Z["Jﬁ (1-m)< a]», (4.2.5)

n, being the total number of loans. For larger values of n,, the calculation of (4.2.5) is very
costly. Here we can make use of (4.2.3), i.e. the binomial distribution converges to the normal
distribution as the number of trials increases. Therefore, the critical value k_, can be
approximated as follows:

*

kF'~@ ' (1—a)nm (1—m)+nm, (4.2.6)

® ' () being the inverse function of a standard normal distribution. Put in terms of the default
rate if preferred, we reject the null hypothesis if the observed default probability p, isgreater
than p, :

(4.2.7)

For the two-sided test:

H :p=m, H :p =m,

we have that the critical region for p, and an asymptotical level of significance a is given
by: [07 pa/Z) U (pka/gvl] '

In both test formulations, the null hypothesis will be more difficult to reject for a lower

number of loansin therating class r, since p, , increasesas n, decreases.

Example4.1

For scorel (2.1.2) we apply here the one-sided binonmal test to the rating class 3
defined in Table 3.5. For a level of significance a= 0.005 we have the default
rate in the validation sanple ]33: 0.236, which is not greater than pj., ~ 0.422.
Therefore, we have not enough statistical evidence to reject the null hypothesis
against the alternative (that the probability of default asserted by the model, in

this case m,= 0.243, is underestimated). In order to conpare nunerically the
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binomal test with the test defined in section 4.3.1, which takes into account
default correlation, we calculated the p-values for the rating classes 3 and 4.

The results are listed in Table 4.1 of section 4.3.3.

4.2.2 Chi-square test

Now we want to test if the probabilities of default are correct for every rating category

simultaneousdly:

Hy:p =m,c.,py =7, H :3re{l,... R} withp, =, .

The chi-sgquare test statistic is derived from the original and most known Pearson’s chi-square
statistic (see D’ Agostino & Stephens, 1986) and is given by:

pr 7')
Zn Tt (4.2.8)

which fulfils (4.2.4) under H
default events are independent within categories and between categories.

when n, — oo simultaneously for al r»=1,...,R, if al

(O

We will regject the null hypothesis for an asymptotical level of significance «, if ¢, isgreater
than the (1 — a)-quantile of a * distribution with R degrees of freedom. For a lower
number of loansin every rating class, the null hypothesis will be more difficult to reject.

Example 4.2

Now we test simultaneously for every rating class r=1,...,5 of scorel in Table
3.5 if the probabilities of default asserted by our logit nodel coincide with the
real ones—+n this case the default rates in the validation sanple. For an
asynptotical level of significance a= 0.005 we get that our statistic 7,= 2.510
is not greater than X25’0‘995= 16.75 and thus we cannot reject the hypotheses that
the probabilities of default predicted by the nodel coincide with the real
probabilities of default. W can observe the p-values in Table 4.2 of section
4.3.3 for a nunerical conparison of this test with the test described in section

4.3.2.
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4.3 The one factor threshold model of Basel Il

As we have seen in section 4.2, the construction of the binomia and the chi-square tests is
very simple and intuitive. However, from empirical studiesit is known that default events are
dlightly correlated. Typica values for default correlation are around 0.005 to 0.03. Although
these numbers may seem small, applying both tests under the assumption of correlated
defaults makes the mathematical framework more complex.

For the modelling of the dependence structure of the Bernoulli distributed default variables
Y, ~ Ber(p,)=Bin(L,p,), i=1..,n, r=1..,R

for a given probability of default p, we use continuous variables B,; (financial well-beings).
They stand for changes in the asset value or in the ability to pay.

For agiven threshold ~, , the default variable is defined

1 i B, <~,,

Y. = 4.3.1
" 0 else. ( )

The dependence structure of the financial well-beings is modelled
Brz' = \/EZ + \/1 - p7‘ 87‘1' ' (432)

where p, denotes the asset correlation. B,; depends on a systematic factor Z common to all
debtors and afactor ¢, that is specific to the debtor. Further assumptions are:

i)

B, ~N(0,1), Z ~ N(0,1), e, ~ N(0,1), Cov(Z,e,,) =0, Cov(e,,e,) =0,

and Corr(B”.,st) =\pp, =p, fordli=1....n,5j=1...,n,, r,s=1..,R.
Assume al loans are in the same rating category having the same threshold ~, = ® ' (p,),

thus having the same probability of default and assume also that the asset correlation is the
samefor all pairs of loans. Then we have the properties:

E(Y,)=p, =®(v,), Var(V,)=p, (1 - p,) and

) _ b, ((1)‘1 (p,.),CI)—l (ps>;pm) - »
\/pr(l—p,‘)ps(l_pS) 0

Corr (Y,. Y.

) T8

with 7 = j incasethat r = s,
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P, (-,-;p,,) denoting the bivariate standard normal distribution function with correlation p,,
and ¢,, the default correlation.

The joint and marginal distributions of the default rates p, ,..., p,, , can be calculated as:

N N o R 'n/,,. 2 n, —k,
P, = koo = k) = [T s pt =) o), @33
r=1 r
P(ng, =k)= [ Z p b (1=, ) da(2), (4.3.4)

fork =1,...,n,,r=1...,R. ®() denotesthe standard normal distribution function and

o' (p,)—+p, z]
J1—=0p, .

Due to the complexity of these formulas, it is difficult to develop exact tests for finite sample

sizes. However, for sufficient many observations the tests construction can rely on the
asymptotical distribution of adequate test statistics. This work goes back to Huschens (2004),
where the tests of the foll owing subsections were devel oped.

4.3.1 Tests for one probability of default

The variance of the default rate p, isgiven by

~ 1—1p. —1
Var(p,) = P.( - i) + n7n 6p,(1—p,)

r r

and the asymptotical variance

lim Var (p,) = 6.p,(1—p,) =2, (27 (p,). 27 (p,)ip,) — p.”- (4.3.5)

The asymptotical distribution of a default rate p, for n, — oo isgiven at Vasicek (2002):

® (p) P2
J1—=0p, '

The respective cumulative distribution function of the random variable p, (Z) for p, > 0 is
the so-called Vasicek distribution:

(4.3.6)

p—"—p,(Z)=0
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L-p® (z)-2"(p)|

N

By means of a convenient transformation, we get an asymptoticaly normally distributed

F(z)=P(p.(Z2)<z)=9 (4.3.7)

random variable from the asymptotical distribution of the default rate. For p, >0 and

n, — oo holds

A 1—p, @' (p,)—2 "' (p.)

- N(0,1), r=1..,R (4.3.8)
Jp

e A suitabletest statistic for the hypotheses

Hy:p=n, H:p >

r

and for agiven p, >0 is

_ 1_p7‘®_1<ﬁ7")_®_1 (7]-7‘)

T

Under the null hypothesis holds: lim P(A, <®™'(@)=a, 0<a<l.

n, —00

A (4.3.9)

The critical region for A with the asymptotical level of significance « is therefore
givenby: (@' (1—a),00).

* For thetwo-sided test formulation

H,:p=m, H:p =m

we have the critical regionfor A, : (—00,® ™' (a/2)) U (7' (1 - a/2),00).
Example 4.3

V¢ want to apply here the one-sided test to the rating class 3 of scorel (2.1.2) in
Table 3.5, assuning two different default correlations. W have the probability of
default asserted by the nodel m,= 0.243 and the default rate ;33: 0.236 for the
validation sanple. For p,= 0.005, the test statistic is A,;=-0.293, which is not
greater than the quantile of the normal distribution function ® '(0.995)= 2.575.

I'f we assume a higher correlation, i.e. p,= 0.03, then we obtain A,= -0.067. From
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these results we can conclude that, in both cases, we have not enough statistical

evidence to reject the null hypothesis.

4.3.2 Simultaneous tests for multiple probabilities of default

We have that for “rirllinR n, — oo holds

(ﬁl;"'vi)]?)#<p1 <Z>7"'7p]? (Z>)’W|th Z ~ N(Ovl)
and together with the assumption m]jilIl p, > 0, asoholds
(A Ag)—2—(Z,.... 7).
Thisimplies that
D 1 & 2 D 2
E%?f%Af‘—>N(O’1) and EZA,. ——x (1).

i=1

¢ Theone-sided test for

H,:p,=m,. . ,py, =7, H :dre {1,...,R} with p, > m,

can be designed with the following test statistic

maxr

A, = max A, . (4.3.10)

The null hypothesis will be rejected in favour of the aternative H,, with an
asymptotical level of significance o, if A, > ® ' (1—a).

maxr

« Anaogoudly, the two-sided test

Hy:p =m,....05 =7, H :3re{l,....R} withp, =7
can be based on the test statistic

R
A=S3TA2 (4.3.11)

In this case, for an asymptotical level of significance o, H, will be rejected if A is
greater than the (1 — o )-quantile of a * distribution with one degree of freedom.
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Example4.4

Now we will use the one-sided sinultaneous test for every rating class of scorel
(2.1.2) in Table 3.5. Assune the same correlations as in the |ast exanple, being
constant for every rating class. First consider p = 0.005 for r= 1,..5 The test
statistic A = 2118 is not greater than the critical value d'(0.995)= 2.575

The p-value= 0.017 is greater than the level of significance a= 0.005. For p, =
0.03 we get A, = 0.869 < 2.575 and a p-value= 0.192 > 0.005. Thus, in both cases
we have not enough statistical evidence to reject the null hypothesis. However, if
we chose a= 0.05 then we would reject H, for the lowest correlation (p,=

0.005), since the p-value= 0.017 < 0.05.

4.3.3 A numerical comparison of the tests

We can compare the tests under the one factor threshold model of Basel 11 with the binomial
and chi-square tests defined in section 4.2 by observing their respective p-values. So, for a
certain default correlation, we can see if there are differences between these tests in the
decision whether to reject or not the null hypothesis. We will illustrate this section with the p-
values obtained by applying these tests for scorel (2.1.2) in Table 3.5, assuming two different
default correlations, p, = 0.005 and p, = 0.03, being constant for every rating class. Logically,
the p-values given by the binomia and the chi-sgquare tests will remain constant for different

default correlations, as these tests rely on the independence assumption.

In the following table we applied the one-sided versions of the binomial test and the test for
one probability of default for the rating classes 3 and 4.

p-val ue
& binomal, =3 A, r=3 binomal, 7= 4 A, T=4
0. 005 0. 603 0. 615 0. 236 0.017
0.03 0. 603 0.526 0. 236 0.192

Table 4.1: p-values for the one-sided tests of sections4.2.1 and 4.3.1

For class r= 3, we arrive a the same conclusion for both tests and different default
correlations, i.e. we lack of statistical evidence to reject H,. On the other hand, the p-values
differ more from each other for the rating class 4, being clearly higher for the binomial test.
The decision here will depend on the significance level we choose. For « > 0.05 and p, =
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0.005, we will reject H, for the test defined in section 4.3.1, but not for the binomial test. If
we assume a higher correlation p, = 0.03, then for both tests we have not enough evidence to
reject the null hypothesis.

The p-values for the chi-square and the two-sided simultaneous test for multiple probabilities
of default are depicted in the next table. The difference between them is obvious. Suppose we
have alow default correlation p, = 0.005, constant for every rating class = 1,...,5. Then we
can regject the null hypothesis for the test defined in section 4.3.2., but not for the chi-square
test. In case p, = 0.03, we have not enough stetistical evidence to reject H, for both tests.

p-val ue
Py -
chi -square A
0. 005 0.774 4, 087e-12
0. 03 0.774 0.218

Table 4.2: p-vaues for the tests of sections4.2.2 and 4.3.2

Thus, we can affirm that in this case, it is easier to reject the null hypothesis of exact forecasts
for the tests based on the one factor threshold model of Basel 11, especially for alow default
correlation.

4.4 Validation of PDs for short time series

As in credit risk, defaults are collected generally only once per year, a comparison between
the forecasts and the actual PDs can be made rarely. There exists an error that results from
neglecting correlation in time and between assets for the validation methods of this section.
For the empirical analysis of this error, we refer the reader to Blochwitz, Hohl, Tasche &
Wehn (2004). They introduced a model that can be seen as extension of the Vasicek one
factor threshold model of Basel 1l into the time dimension. In order to create close to redlity
time series of annual default rates for the simulation study, the following assumptions should
be done:

1. Afixed portfolioisobservedinyearst =1,...,T

2. Atany time ¢ the number of borrowers in the portfolio is a deterministic number n,,
which isknown apriori.
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3. The variable C, expresses the change in the general economic conditions from time
t—1totimet. Thelarger C,, the better are the economic conditions.

4. C=(C,...,Cp) ~ N(uX),being C, ~ N(0,1) foral ¢ =1,...,T and

1 ny o iy
n, 1 ... Typ

L=\, . : (44.1)
Tpp eeeeen Tppy 1

Denoting r, = 9" for some properly chosen ¥ € [0,1].

5. The number of defaults »,, at time ¢ conditioned on C, are independent, identically
distributed random variables n,, | C, ~ Bi(n,,p, (C,)), being

pt (Cf):(b ptCt

(4.4.2)

' (p) -
1—p,

=

and p, represent the correlations of the changes of obligor’s asset values from time

t —1 totime ¢ . The annual percentage default rates p, will therefore be calculated as

A~

b, :nu/nt'

4.4.1 Normal test

The normal test is a multi-period test of correctness of a default probability forecast for a
single rating category. The assumptions needed for the test are that default events in different
years are independent and the variance of the default rates is constant over time. Cross-
sectional dependenceis admissible.

Let p,,D,,...,p, be independent random variables with means p,,p,,...,p, ad common
variance o” > 0. Then by the central limit theorem we have:

T

Z(ﬁf - pt)
=1 2, N(0,1), (4.4.3)

JTo

for T tending towards oo. The rate of convergence is generally quite high. Thus, the
approximation of the standardized sum to the standard normal distribution seems reasonable
even for small valuesof T (e.g. T'=5).
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Two different estimators of the assumed common variance are given by:

&fz—i—EX@—w@Zmd (4.4.4)

— , (4.4.5)

t=1

where 7, denotes the forecasted probability of default for the year ¢ . Under the hypothesis of
exact forecasts, both estimates are unbiased. In case of mismatches, both are biased, but the
second estimator (4.4.5) reduces considerably the bias.

We will test the hypotheses

o D =T pp =T, H 3t e{l,...,T} with p, >,

with the following test statistic:

T

;(ﬁf - Wt)
A, = T. (4.4.6)

H, isrejected for an asymptotical level of significance o if Ay, > @' (1—a).

4.4.2 Extended traffic lights approach

The traffic lights approach can be considered as an efficient tool for identifying dubious credit
portfolios or rating grades. It is based on individual trigger levels for default probabilities, as
such thresholds that should not be exceeded by an ex-post default rate for a given rating class
and its respective ex-ante PD. This approach is rather a graphical visudization of the
observed default rate in relation to the forecasted default probability than a statistical test. So,
rating grades that have a reddish colour are assumed to underestimate the credit risk; rating
grades with a rather green colour are supposed to be conservative enough and the rest
(basically yellow) should be treated in-between. Tasche (2003) presents a method for
calculating the critical values that avoids simulations but requires explicit specification of
asset correlations.

In addition, the extended traffic lights approach can be regarded as a multi-period backtesting
tool for a single rating category under the assumptions of independent default events in a
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rating class and in time. In contrast to the normal test, the traffic lights test does not assume
constant or nearly constant variance of the default rates over time. For more information on
the traffic lights approach, we refer the reader to Blochwitz, Hohl & Wehn (2005).

By the central limit theorem, the distribution of the standardized default rate can be
approximated to the standard normal distribution aslong as n,p, is not too small*:

Jmp (1= p) \/P(l—P)

Ty — 4Dy _ ﬁt — b D N (0 1)
b

n

Define the probabilities ¢,, q,, q, and g, ®_which correspond to the colours green, yellow,
orange and red—with ¢, > ¢, > ¢, > g, and g, + ¢, + ¢, + ¢, = 1, and the mapping

p <@ (q,)
v 27(g )<Pt— (4,)
o, o < ) <q,,,)
o'

T,

9

(4.4.7)

Since the annual numbers of default are assumed to be independent, the vector A counting
the appearances of colour ¢ € {g,y,0,7} inthe sequence M (p,),..., M (p,) is approximately
multinomially distributed with

T!

P[A a a ,a a)] ﬁ
ag.ay.ao.ar.

020y 00y 0, qgtzyqytzyqoahoa,.’ (448)
for every quadruple of non-negative integers such that a, +a, +a, +a, =T. Each
quadruple for any time series can be labelled uniquely by means of an order function:

A, =A, (a a,,a,,a > w,a, +w,a, +w,a, +w,a,, (4.4.9)

g2 Py Yoo Y

such that w, > w, > w, > w, . In the existing literature for simulation studies (see Blochwitz
et a., 2005), we found that for 7' < 9, vectors of weights such as w = (4,,4,-4,,0.) or
w' = (1000,100,10,1) were used and they turned out to be appropriate.

% Dinges & Rost (1982) suggest the rule of thumb: n,p, (1 — pt) >
% In the simulation study by Blochwitz et al. (2004), they choose q,~05,¢,=03,¢,=015 and ¢, = 0.05.
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The test hypotheses can be formulated as follows:

oD =T pp =7y, H 3t e{l,...,T} with p, > m,.

H, will be rejected against the alternative for an asymptotical level of significance «, if
A, <w,_,,being v_, thegreatest number v suchthat P (A, <v)<a.

4.4.3 Normal vs. traffic lights

We have seen that both the normal and the traffic lights tests are asymptotic, with respect to
the length of the time series and the portfolio size, respectively. Consequently, even under
complete independence in time and in the portfolio, the observed type I errors might be lower
than the nominal error level of the test. If the type | error agrees with the nominal level of the
test, the next question is for which test the type I1° error is lower, i.e. which test is more

powerful.

Some simulation studies, like Blochwitz et al. (2004), are intended to solve these questions.
There we can redlise that both methodologies are robust against the violation of the
assumption of independence in time in their designs, being the normal test slightly more
robust. On the other hand, the traffic lights test seems to be generally more powerful than the
normal test, in particular for short time series. Therefore, simultaneous applications of the
tests should be favoured.

4.5 Summary

Along this section, we did an overview of the statistical methods existing in the academic
literature for assessing the estimation quality of the default probabilities. However, these

methods display shortcomingsin practice.

When independence of default events is assumed, the binomial test (section 4.2.1) can be
applied in order to test the accuracy of a one period default probability forecast, for only one
rating category at atime. We can check several categories simultaneously by applying the chi-
square test (section 4.2.2). The problem of these testsis that they do not estimate correctly the
truetype | error, sincein reality default events are correl ated.

* The probability of erroneously rejecting the null hypothesis.
® The probability of not rejecting the null hypothesisif specific alternatives are true.
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In order to deal with the problem of correlation, we presented the tests of section 4.3. These
tests are based on the one factor threshold model of Basel 1l, which is intended to model the
dependence structure of the default variables. As these tests are asymptotic, as well as the rest
of the tests of this section, it is also expected that the actual type | errors are lower than the
nomina error level of the test. But there are no simulation studies that can show to which
extent this would happen.

Furthermore, it is aso required to validate the PD estimates for time series. By availability of
historical data, this can be attained by applying the normal test and the extended traffic lights
approach, which are described in section 4.4. The traffic lights test has more power than the
normal test, which isin contrast mildly more robust against the violation of the independence
assumption.

Therefore, it should be emphasized, that there is no method to fit all situations that might
occur in the validation process. Depending on the specific circumstances, the combination of
different techniques will be the most appropriate way to address the validation exercise.



5 Guidelines for credit rating

As the purpose of this thesis is to study the statistical aspects of developing a credit rating
system, we accomplished in the previous sections an elaborate overview of the different
methodologies that are used in practice, analysing their pros and cons and, in some cases,
proposing alternative measures. A layout of the process of credit rating is given by the scheme
(aready pictured in section 1. Introduction, Figure 1.1):

-------------------- > Data D Hittt

!

— > Selection of criteria DR

!

Calibration

!

Validation

!

L e Backtesting

So, the first step of the process will be the selection of rating criteria from our dataset. In
Appendix B we summarize the recommendations of the Basel Committee on Banking
Supervision (2001) and the literature existing on this topic. In addition, we may select among
all the factors, the most relevant with respect to their capacity to distinguish between default

and non-default, i.e. by assessing their discriminatory power.

The different measures of discriminatory power that are applied in practice were described in
section 2. The overlapping area criterion 7' (section 2.2) and the accuracy ratio AR (section
2.3)—linked to the Kolmogorov-Smirnov and the Mann-Whitney U tests, respectively—

100
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seem to be in genera appropriate discriminatory power measures. On the other hand, we
could see also that there are other measures that do not suit for credit rating, e.g. the

misclassification rate.

Moreover, we found out that the entropy-based criterion for reduction in impurity D, (2.4.10)
isalso valid for assessing the discriminatory power. This criterion has been paid no attention,
because of the misconception in the Basel Committee on Banking Supervision (2005), where
they argue that are no tests applicable for those entropy-based measures. However, in section
2.4.5 we showed that it is related to the test for homogeneity in 2 x 2 contingency tables and
hypotheses can hence be tested.

Thus, T, AR and D, turn out to be suitable discriminatory power measures for the purpose
of credit scoring. In the comparison of section 2.6 we could see that there is not a measure
that performs best for every situation. It is remarkable, that the accuracy ratio performs in

genera worse than the other measures if there is no monotonicity.

After having selected the rating criteria, we proceed to the calibration of the model. We
described the different methods on hand in section 3. The well-known logit model (3.2.11),
and the probit model (3.2.12) belong to the binary choice models (section 3.2). If there are
enough defaults in our dataset with the observations of one year, they are easy to estimate. By
availability of historical data, we may apply panel models (see section 3.4.1). That way, one
can consider time dependent macro variables that cannot be taken into account by binary

choice models.

The binary choice models are widespread in credit rating because they have an easy
interpretation and the probability of default is modelled as a strictly monotone increasing
function of the score. This does not apply in general for other estimation methods, like neural
networks (section 3.3.1), nonparametric and semiparametric methods (section 3.3.2) or CART
(section 3.4.2).

In the case of logit or probit models, we can test if a model fits better than another by the
difference of their deviances (3.2.18) or with Akaike's information criterion (3.2.19). If the
model is not significant, we may discard variables that are not relevant and/or select
additional explanatory variables. To continue with the process of validation, we divide our
score in rating classes (section 3.4.3) and calculate for every class the mean probability of
default asserted by the model.
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An overview of the different methods for the validation and backtesting of PDs was given in
section 4. We must remark, that there is no method to fit all situations. So, under the
assumption of independence of default events, the binomial test (section 4.2.1) and the chi-
square test (section 4.2.2) can be applied. But these tests underestimate the true type | error,
since default events are in fact correlated. The tests of section 4.3 are based on the one factor
threshold model of Basel |1, which models the dependence structure of the default variables.

In order to validate the default probabilities for time series by availability of historical data,
we can apply the normal test (section 4.4.2) and the extended traffic lights approach (section
4.4.2). The normal test is dlightly more robust against the violation of the assumption of
independence, and the traffic lights test is more powerful.

If the forecasted probabilities of default are significantly different of the default rates in the
validation sample, we may choose aternative rating criteria or review the data, and calibrate
the model again.

Once our mode! is validated, it can be backtested with real default rates. Obviously, the model
can aso turn outdated, so that the original forecasted PDs will not coincide with the real
default rates. In that case, we should return to the dataset, complement it with new data and
start from the beginning.



Appendix

A Notation

default variable (Y =1 for default, Y = 0 otherwise).
score S = S(X,,...,X,) €R.

vector of explanatory variables.

parameter vector, normally of weights.

score S conditioned to the default variable Y = 0.
score S conditioned to the default variable Y = 1.
probability density functionsof S |Y = j, j=0,1.
cumulative distribution functionsof S |Y = j, 7=0,1.
gives back the greatest integer smaller orequal to z € R .

probability of default
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B Selecting rating criteria

The Basel Committee on Banking Supervision (2001) issued a second round of consultative
documents proposing changes to the capital requirements for banks. The core of the Internal
Ratings Based (IRB) approach is to meaningfully differentiate borrowers based on risk. Banks
should therefore take all relevant information into account in assigning ratings to a borrower.
This information should be current. The methodologies and data used in assigning ratings
should be clearly specified and documented. As a minimum, a bank should look at each of the

following factors for each borrower:

» Historical and projected capacity to generate cash to repay its debts and support other
cash requirements, such as capital expenditures;

e Capital structure and the likelihood that unforeseen circumstances could exhaust its

capital cushion and result in insolvency;

e Quality of earnings, that is, the degree to which its revenue and cash flow emanate
from core business operations as opposed to unique and non-recurring SOuUrces;

* Quadlity and timelines of information about the borrower, including the availability of
audited financia statements, the applicable accounting standards and its conformity
with the standards;

» Degree of operating leverage and the resulting impact that demand variability would
have on its profitability and cash flow;

e Financia flexibility resulting from its access to the debt and equity markets to gain

additional resources;

* Depth, skill and prudence of management and its ability to effectively respond to

changing conditions and deploy resources;
» Position within the industry and the future prospects; and

» Risk characteristics of the country it is operating in, and the impact on the borrower’s
ability to repay, (including transfer risk) where the borrower is located in another
country and may not be able to obtain foreign currency to service its debt obligations

104
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In this summary, we collected some rating criteria to be found in the existing literature. For
private companies, there will be required information about their volume of sales, lega form,
financia state and profitability. For private consumers and mortgages, financial as well as

personal information will be considered.

B.1 Private companies
B.1.1 Kaiser & Szczesny (2001)

The dataset was raised from The Centre for Financial Studies, CFS. It consists of 260 credit
records of medium-size companies from 1992 to 1998. For the empirical anaysis there were

used the following variables:

e Default: dummy variable, which takes the value 1 if there were problems with the

fulfilment of the contract and O otherwise.

* Default_3: avalue of 0 indicates no problems; a value of 1 indicates some problems,
but still no total failure of the credit, and avalue of 2 stands for severe problems.

* In(Sales Volume): this variable represents the size of the company on the basis of the
sales volume, which are transformed with the natural logarithm.

e In(Sales Volume)? in order to consider possible non linear influences of the business

size, squared logarithmic conversions were taken up for the estimations.

» Equity Ratio: equity ratio, computed as the quotient made of own capital funds and
total assets.

e Cash flow: dynamic cash flow, expressed as the quotient from cash flow and net
debits.

e Assets Coverage Degree: the quotient from medium- and long-term liabilities and

medium- and long-term assets.

* Restricted Liability: dummy variable, which takes the value 1, if the firm is only
limited reliable, otherwise takes the value 0.

e 1992, 1993,..., 1998. dummy variables, which indicate in which year was originated
the observation, whereby the year 1992 is taken in estimation as reference.
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B.1.2

Manufacturing: binary variable, which labels companies from the sector of the
manufacturing industry.

Construction: binary variable for the construction industry.
Retail: binary variable for the retail market.

Other: binary variable for other firms, which mainly proceed form the sectors service,
transport and logistics.

Khandani, Lozano & Carty (2001)

The goal of RiskCac™ Germany is to provide a probability of default for private firms in

Germany, with annual turnover of more than € 0.5 m. However, due to the very different

nature of some firms, they eliminated from their analysis small companies, financial

institutions, public institutions, real estate companies and affiliates.

For the model, they considered companies as having defaulted, if they entered or undergone

bankruptcy, debt compositions proceedings, debt moratorium or cheque or bill protest. And

used nine factors, which fall within the following broad categories: leverage/gearing,

profitability, debt coverage, growth, activity and productivity.

L everage/Gearing Ratios

Equity ratio: (Equity — Intangible assets) / (Total assets — Intangible assets — Cash &
Equivalents— Land & Buildings)

Net indebtedness = (Current liabilities— Cash & Equivalents) / Total assets

Liabilities structure = (Trade liabilities + Notes payable + Bank liabilities) /
(Liabilities— Advances).

Pr ofitability

EBITD = (Net profit + Interest expenses + Income taxes + Depreciation) / Total assets

Profit on Sales = Ordinary profit / Sales

Debt coverage
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Debt coverage = Cash Flow / (Liabilities — Advances)

Growth

Sales Growth Sales(t) / Sales(t-1)

Activity

Tradecreditorsratio = ((Notes payable + Trade liabilities) *360) / Sales

Productivity

Personnel expenses on sales = Personnel expenses/ Sales

B.1.3 Standard & Poor’s (2005)

EBIT interest Coverage = Earnings from continuing operations* before interest and
taxes / Gross interest incurred before subtracting (1) capitalized interest and (2)
interest income

EBITDA interest coverage = Earnings from continuing operations* before interest,
taxes, depreciation and amortization / Gross interest incurred before subtracting (1)
capitalized interest and (2) interest income

Funds from operations / total debt = Net income from continuing operations plus
depreciation, amortization, deferred income taxes, and other non-cash items / Long-
term debt** plus current maturities, commercial paper, and other short-term
borrowings

Free operating cash flow / total debt = Funds from operations minus capital
expenditures, minus (plus) the increase (decrease) in working capital (excluding
changes in cash, marketable securities, and short term debt) / Long-term debt** plus
current maturities, commercial paper, and other short-term borrowings

Return on capital = EBIT / Average of beginning of year capital, including short-
term debt, current maturities, long-term debt**, non-current deferred taxes, and equity
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Operating income / sales = Sales minus cost of goods manufactured (before
depreciation and amortization), selling, genera and administrative, and research and

development costs/ Sales

Long-term debt / capital = Long-term debt** / Long-term debt + shareholders
equity (including preferred stock) plus minority interest

Total debt / capital = Long-term debt** plus current maturities, commercial paper,
and other short-term borrowings/ Long-term debt plus current maturities, commercial
paper, and other short-term borrowings + shareholders” equity (including preferred
stock) plus minority interest

* Including interest income and equity earnings; excluding nonrecurring items.

** Including amount for operating lease debt equivalent.

B.2 Private consumers

B.2.1 Giese (2002)

When we speak about retail customers, according to the definition of Basel |1 it concerns

exclusively private consumers, because Basdl |1 allows the local modulators a certain margin

in order to rank likewise small firms among the retail portfolio. The rating due to the persond

data of the company’s owner is here more meaningful than consulting financial ratios. Typica

datafor arating within the retail sector are:

Personal Data: age, sex, yearly income, civil status, number of renting members in
the household, living years at the current/previous address, residential property, etc.

Occupation: kind of job, professiona years, years in current/previous conditions of

employment, number of employees (if executive/autonomous), etc.

Credit: kind of credit, size of the credit, running time, frequency of the repayments,
presence/value of collaterals, etc.

Past behaviour: number and size of credits in the past, late/failed repayments with

previous credits, etc.
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B.2.2 Barron & Staten (2003)

The credit-reporting environment varies widely around the globe. The limits on the reporting
of consumer payment histories are typically government-imposed (perhaps as a result of
concerns about consumer privacy) or the result of the reluctance of incumbent lenders to share
valuable customer information with potential competitors.

Historically, credit reporting in most countries began with the sharing of so-called “ negative’
information (delinquencies, charge-offs, bankruptcies, etc.) on borrowers. Only gradualy and
recently has information about the successful handling of accounts (prior and current) been
contributed to the data repository. They also demonstrate in their paper how the availability of
such “positive” data can substantialy boost the effectiveness of scoring models and expand
credit availability to consumers.

« Qutstanding Debt and Types of Credit
0 Total number of open, paid or closed trades
o No open, paid or closed trades
o Number of trades open with abalance greater or equal to zero
o No trades open with a balance greater than or equal to zero
0 Number of trades opened in the last 6 months
o0 No trades opened in the last 6 months
0 Number of trades opened in the last 12 months
0 No trades opened in the last 12 months
o0 Proportion of open trades that is revolving
o0 Proportion of open trades that is finance instalment
o Proportion of open trades that isreal state/property

0 Zero balance on open trades
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0 Average balance across all open trades

0 Average balance across open revolving trades

0 Proportion of debt that isrevolving

0 Proportion of debt that is finance instalment

0 Proportion of debt that isreal state/property

0 Bankcard balance/limit ratio on all open trades reported in last 6 months

0 Bankcard balance/limit ratio on all open trades reported in last 12 months
e Length of credit history

0 Age, in months, oldest trade

0 Age, in months, of most recently open trade

0 Age, in months, of most recently open trade = 9999

0 Average age, in months, of al trades

o Ratio of number of open trades reported, last 12 months to age of oldest trade
* New Applications For Credit (Inquiries)

o Tota number of inquiries made for credit purposes

o Noinquiries made for credit purposes

0 Total number of bankcard inquiries made for credit purposes

o0 No bankcard inquiries made for credit purposes

0 Months since most recent inquiry for credit purposes was made

0 Months since most recent bankcard inquiry for credit purposes was made

o Tota number of inquiries for credit purposes made, last 6 months
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o Proportion of inquiriesto open trades, last 6 months
0 Total number of inquiries for credit purposes made, last 12 months
o Proportion of inquiries to open trades, last 12 months

L ate Payments, Delinquencies and Bankruptcies

o

Proportion of all trades never delinquent/ derogatory

o Proportion of al trades that have never been delinquent, last 12 months
0 Positive number of trades ever 60+ days delinquent or derogatory

o Number of trades ever 60+ days delinguent or derogator

o0 Proportion of trades ever 60+ days delinquent or derogatory

o0 Positive number of trades ever derogatory, including collection, charge-off, etc.
0 Number of trades ever derogatory

o0 Proportion of trades ever derogatory

0 Positive number of bankruptcy tradelines ever

0 Total number of bankruptcy tradelines ever (only available for all)

0 Proportion of trades ever bankruptcy tradelines

0 Months since most recent tradeline bankruptcy

0 Worst status ever (including current) on atrade

0 Worst ever status on trades reported, last 12 months

0 Worst present status on an open trade

o0 Worst status ever (including current) on a bankcard trade

0 Worst ever status on bankcard trades reported, last 12 months
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o

B.2.3

Worst present status on an open bankcard trade

Months since most recent 30-180 day delinquency on any trade
Not ever delinquent or derogatory on any trade

Months since most recent 90+ delinquency or derogatory, any trade

Not ever 90+ days delinquency or derogatory item on any trade

Jacobson & Roszbach (2003)

This paper uses a large data set with Swedish consumer credit data that contains extensive

financia and personal information on both rejected and approved applicants a a major
Swedish lending institution between September 1994 and August 1995.

The variables that have been selected for the estimation of the empirical model are:

AGE: age of applicant

MALE: dummy, takesvalue 1 if applicant is male.

DIVORCE: dummy, takes value 1 if applicant is divor ced.

HOUSE: dummy, takes value 1 if applicant owns a (possible mortgaged) house.

BIGCITY: dummy, takes value 1 if applicant lives in one of the three greater
metropolitan areas around Goteborg, Mamo and Stockholm.

NRQUEST: number of requests for information on the applicant that the credit
agency received during the last 36 months

ENTREPR: dummy, takes value 1 if applicant has taxable income form a registered
business.

INCOME: annual income from wages, relative to preceding year, as reported to
Swedish tax authoritiesin 1993 or 1994 (depending on granting date) (in SEK 1000)

DIFINC: change in annual income from wages, relative to preceding year, as
reported to Swedish tax authorities (in SEK 1000)
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CAPINC: dummy, tales value 1 if applicant has taxable income from capital.

BALINC: ratio of total collateral-free credit facilities actualy utilized and
INCOME, expressed as percentage. Thisvariable is defined as: DUMMY {income>0}
* (BALANCE/INCOME).

ZEROLIM: dummy, takes value 1 if applicant has no collateral-free loans
outstanding.

LIMIT: tota amount of collateral-free credit facilities already outstanding (in
1000 SEK)

NRLOANS: number of collateral-free loans already outstanding
LIMUTIL: percentage of LIMIT that is actually being utilized.
LOANSIZE: amount of credit granted (in 1000 SEK)

COAPPLIC: dummy, takes value 1 if applicant has aguarantor.

Dionne, Artis & Guillén (1996)

The data come from a sample of clients that had been granted credit by a Spanish bank. The

sample was taken in May 1989. Even though this paper is limited to the study of the
probabilities of default for those clients who had already a credit, the authors think that the
methodology could also be considered for other applications in this field, including the

granting decision when data on refused clients are available.

Y: number of non-payments.

YDUM: 1 if the number of non-payments is equal to or greater than four. O
otherwise.

DT6: 1if total contract duration of return period is more than four years. O otherwise
(reference group).

DUREEA: Number of months form the beginning of the contract at the sampling
date.
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« AGEL 1if theage group is 18-24 years. O otherwise.

e AGE2: 1if theage group is 25-39 years. O otherwise.

* AGES3: 1if theage group is40 yearsor more. O otherwise.

e DESTIN: 1if the credit is used to purchase a good with collateral. O otherwise.
e ETUIL: 1if theclient has not completed primary education. O otherwise.

e ETUI2: 1if the client has completed primary education. O otherwise.

e ETUI3: 1if the client has completed higher education. O otherwise.

e ETUI4: 1if theclient has auniversity degree. O otherwise.

 RECSAL: 1if theclient receives the salary through the bank. O otherwise.

e« M1 1if married, non-owner, saary under $3,000. O otherwise.

« M2: 1if married, non-owner, salary higher than (equal to) $3,000. O otherwise.
 M3: 1lif married, owner, salary under $3,000. O otherwise.

M4 1if married, owner, salary higher than (equal to) $3,000. O otherwise.

* NMZ1I1: 1if not married, non-owner. O otherwise.

* NM2: 1if not married, owner. O otherwise.

e« CENTRE: 1if the credit is granted by a store. O otherwise.

« RESID: 1if resident in the city for at least four years. O otherwise.

e Z1: 1if south Spain (Andaucia, Canarias, Castilla-La Mancha, Extremadura, Murcia).
0 otherwise.

e Z2: 1 if north (Aragon, Asturias, Cantabria, Castilla-Ledn, Galicia, Navarra, Pais
Vasco). 0 otherwise.

e Z3:1if east (Baleares, Catalunya, Vaencia). 0 otherwise.
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e Z4: 1if centre (Madrid). O otherwise.

B.2.5 Hand & Henley (1997)

Hand and Henley indicate in its paper as a data example a table, which represents the kind of
characteristics of acredit rating for private customers

* Timeat thepresent address: 0-1, 1-2, 3-4, 5 + years
* Home status: owner, tenant, other

* Postcode: band A, B, C,D, E

* Telephone: yes, no

e Applicant’sannual income

e Credit card: yes, no

» Typeof bank account: cheque and/or savings, none
* Age 18-25, 26-40, 41-55, 55 + years

e Country Court judgments. number

* Typeof occupation: coded

e Purpose of loan: coded

e Marital status: married, divorced, single, widow, other
e Timewith bank: years

e Timewith employer: years
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B.3 Mortgages
B.3.1 Fair Isaac & Company, Inc. (n.d.)

FICO scores were developed by Fair Isaac & Company, Inc. and it might be the most
commonly used method to value mortgages. They only consider the information contained in
aperson’s credit file. Thisinformation can be grouped into five categories as outlined below:

e Payment History

0 Account payment information on specific types of accounts (credit cards, retail
accounts, instalment loans, finance company accounts, mortgage, etc.)

0 Presence of adverse public records (bankruptcy, judgements, suits, liens, wage
attachments, etc.), collection items, and/or delinquency (past due items)

0 Severity of delinquency (how long past due)
0 Amount past due on delinquent accounts or collection items

o Time since (recency of) past due items (delinquency), adverse public records (if any),
or collection items (if any)

0 Number of past dueitemsonfile
0 Number of accounts paid as agreed
*  Amounts Owed
0 Amount owing on accounts
0 Amount owing on specific types of accounts
o0 Amount owing on specific accounts
o Lack of aspecific type of balance, in some cases
o Number of accounts with balances

o Proportion of credit lines used (proportion of balances to total credit limits on certain
types of revolving accounts)
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o Proportion of instalment loan amounts still owing (proportion of balance to original

loan amount on certain types of instalment loans)
* Length of Credit History
o Time since accounts opened
o0 Time since accounts opened, by specific type of account
o Time since account activity
* New Credit

0 Number of recently opened accounts, and proportion of accounts that are recently

opened, by type of account
0 Number of recent credit inquiries
o Time since recent account opening(s), by type of account
o Timesince credit inquiry(s)
0 Re-establishment of positive credit history following past payment problems
e Typesof Credit Used

o Number of (presence, prevaence, and recent information on) various types of
accounts (credit cards, retail accounts, instalment loans, mortgage, consumer finance

accounts, etc.)

B.3.2 Lam & Da Silva (1999)

Based on aresearch of Singapore’ s economy, lending and property markets, ad property laws,
Standard & Poor’'s has established its preliminary rating criteria for Singapore residential
mortgage securitization. This criterion is adapted solely for private mass residential

properties, rather than luxury residential properties.

From research into parameters for mortgage underwriting and property characteristics, a
benchmark pool as shown below was devised. The benchmark pool serves as a yardstick by
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which the risk in any given mortgage pool may be measured. The benchmark pool is assumed
to incur a specific maximum amount of credit losses appropriate for arating category.

¢ Pool size: minimum of 300 loans.
e Loan size: maximum of S$600,000.
* Loan-to-ValueRatio (L TV): maximum of 80%.

» Debt Servicing-to-lncome Ratio: total monthly debt repayment obligations may not

exceed 30% of gross monthly income.
» Loantype: level pay, fully amortizing, variable and fixed rates.
* Loan term: maximum of 30 years.
* Loan seasoning: minimum of six payments made.

* Loan performance: not delinquent at the time of transfer and clean delinquency
record over the previous 12 months.

* Loan purpose: purchase or refinance without equity release

» Security: first registered mortgage over property.

* Land typeand title: Freehold land or crown leaseholds.

*  Property type: Condominiums and apartments.

* Property age: lessthan 10 years old at the time of mortgage origination.
» Occupancy status: owner-occupied.

» Geographic location/concentration: properties located in reasonable proximity to
mass transit and good schools are viewed more favourably.

» Concentration limits by region (%)
* Borrower employment: salaried employee or professional.

» Borrower residency: Singapore citizens or permanent resident individuals.
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* Property insurance: fully insured for at least the replacement value of the property
against fire.

* Property valuation: performed by aregistered chartered surveyor.
* Mortgageoriginators: prudent and experienced mortgage lending banks.
* Mortgage assignment: mortgages assigned to special-purpose vehicle issuer by legal
assignment.
C Some useful propositions
In this small section we will introduce some statements that are useful for the comparison of
discriminatory power measures in section 2.6.
Proposition C.1

Let S|Y=0~N(01) and §|Y =1~ N(u,0%), such that 1 > 0. Then we obtain the
following expressions (in order to simplify, we will denote z, = (s — p)/o):

1. Theoverlapping area criterion is given by:

T. = max {CD (s)— Cb(zl)} ,

pos

being the score value that maximizes T'

pos *

- \/,u —20° log (o) + 20* log (o)

if 0<o <1 and
—1+0°

e e \/,u202 —20” log (0) + 20 log (0)

> Jf o> 1.
—1+40

2. For the accuracy ratio:

12
! ezds

AR=1-2["(z)

@
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®we have the inequality:

ZmSin{q)(s) - Cb(zl)} <AR< 2T,

0S

3. Given an optimal split point s, for the standardized maximal distance holds:

D =1- ! :

‘ m log(m,) + (1—m )log(1— )

@(%)77'1
(I)(Zl>ﬂllog[cb(zl)7fl + ®(s)(1— Wl)]

+ ®(s)(1— 7 )log

¢(s)(L—m) ]

P (2)m +P(s)(1— )

(-2 (a)m ]

(l— (ID(zl)) ™+ (1— CID(S)) 1-m)

- o(s) - n) H'

(1— (I)<21>> ™+ (1— o (s)) 1-m)

+(1—®(2))m log

+(1—@(s))(1—m)log

Pr oof:

1. Theexpression of T follows from the definition (2.2.5). The optimal s is obtained by

solving:
& 7(8*&)2
dTp05262_€ 20° _0
ds N2 270

2. We will calculate first the left side of the inequality and then the right side. Using the
definition of AUC (2.3.3) and the relationship between AUC and AR (2.3.4):

l. WehaveAU(J=1—fjoffl(s)dFo(s),being
f_oo F ($)dF,(s) = f_co (E ($)— Fy () dFy () + f_oc F,(s)dF, (s)

Fy00)  (Fy(—00)’
< max {Fl(s) — Fo(s)}.(Fo(oo) — Fy(—o0)) + ( o(;o)> - ( o 200)>

® Thisintegral can only be computed numerically or otherwise approximated.
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= max {Fo— F, <s>}+%
AUC =1~ [ R(s)dRy(5) 2 2 — max{F (5) ~ Fy ()}
AR = 2400 ~12 22— max (B ()~ B ()} | -1= 2nin{£, () - B ()
1. Similarly, we obtain: [~ F}(s)dF, (s) > min{F (s) - Fy (s)}+%
AUC <~ —min{F(s) ~ By ()} = 2+ max {F, (s) - F.(+)}
AR =2AUC -1< 2[%+ max { £, (s)—Fl(s)}] —1=2max{F(s)— F(s)}

3. Isagenerdization of the expression given in Proposition 2.26 for D, if we have different
standard deviations 1 and o .

Proposition C.2

Given §|Y =0~ N(0,0*) and S |Y =1~ N(u,0%), suchthat = > 0. Then we can state
(for ease of notation, wewrite z = /20, zy =s/0, = (s—u)/o):

1. For the overlapping area criterion:

= 2<I>(z)—1

pos

2. For the accuracy ratio we get:

o0 1 *ézoz
AR:l—szC@(zl)ﬂae 2 gs,

and the following inequalities
AR > max {Zmin{q)(s) - (I)<21>}, 29 (z)z —1} and
AR < min{4®(z) - 2, 40(2) - 20(2)° -1}

3. For the standardized maximal distance, having an optimal split point s :
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iy o <1i m)log(L—m,)
-@@Mb%ymﬂnga—m]
+ @ (2) (1—m)log cp(zl)il(io)dgl(;o;(ll)— m)]
+(1— ®(2,))m log i o (Zl»(;_jzl(z_l)();?%)) (- m)]
A=) A= m)log =5 <z<1>)_7rq) +<Z(1>)—<1<I’_<:>>) 4= ”1>]] |
Proof:

1. Note that for a norma distribution function, we have: ®(z) =1— ®(—z). As for equa
standard deviations, we have the optimal s = 1. /2, then by the definition (2.2.5) of T

1ﬁ=mw@u$—ﬂ@%dqg_ﬂg]

- @[“/2_0]—q>[“/2_“] = @[i] —q>[_—“] =P (z)— (1 B(2)).
o o 20 20
2. By thedefinition of AUC (2.3.3) and the relationship (2.3.4), we proceed as follows:

I. For theleft side, we have

—

T ()R = [ ()R (s)+ [ R(s)dR ()

IN

B[] b+ B0 [ (o

el -af3)

@[%][@[%]—o]ﬂ—@[%]: O(2)(®(—2)—1 +1=1-d(z)

Thus, AR = 24UC —1> 2(1-14 ®(2)'| - 1= 20 (2)° - 1.



123

Moreover, from Proposition C.1, we got

AR > ZmSin {CI)(S) — Cb(zl)} :

[1. And for theright side,

14

SRR+ [ R )is > B[4 ]f s
- o[22 Eeo)- B[4 - - (e f

(o}
Then we get
AUC <1—(1-®(2)) = 20(2) — &(—2)*, and

AR =24UC —1< 2(20(z) - ®(2)] - 1.

And we know from Proposition C.1, that AR < 2T

pos

=2(20(z)-1).

3. It derives from the expression of D,  given in Proposition C.1 for equal standard
deviations o .
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