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Abstract. We consider optimal design problems for semiconductor devices which are
simulated using the energy transport model. We develop a descent algorithm based on the
adjoint calculus and present numerical results for a ballistic diode. Further, we compare
the optimal doping profile with results computed on basis of the drift diffusion model.
Finally, we exploit the model hierarchy and test the space mapping approach, especially
the aggressive space mapping algorithm, for the design problem. This yields a significant
reduction of numerical costs and programming effort.
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1 Introduction

In the last four decades, the mathematical modeling and simulation of charge transport
in semiconductors has become a thriving research area in applied mathematics. Semicon-
ductor device modeling started in the early fifties when the Van Roosbroeck drift diffusion
equations were formulated, which became the most popular model for the simulation of
semiconductors [16, 12].

Due to the ongoing miniaturization of semiconductor devices, one comes closer to the limit
of validity of the drift-diffusion equations and, in order to improve the physical description
of the device, various others models have been derived. Meanwhile, there is a whole
hierarchy of semiconductor models available ranging from microscopic models, like the
Boltzmann–Poisson or the Wigner–Poisson model, to macroscopic models, like the energy
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transport, the hydrodynamic and the drift diffusion model (see [12] and the references
therein). Here, we focus on the energy transport system. This model, unlike the drift
diffusion one, that is based on the assumption of isothermal motion, takes into account
also the thermal effects related to the electron flow through the semiconductor crystal.

Naturally, the ever increasing computing power and the development of fast simulations
tools, has contributed to an increasing interest in the optimal design of semiconductor
devices, which can nowadays be based on mathematical optimization. A major objective in
the optimal design is to improve the current flow over some contacts by a slight modification
of the device doping profile, which enters as a source term in the mathematical model
for semiconductor devices and plays here the role of the design variable. The earliest
approaches in the engineering literature were based on black box optimization tools or
non-linear least-squares methods [13, 18]. They gave reasonable results, but the principal
disadvantage of such an approach is the large computational cost due to the large number
of the state equation solves.

Recently, the problem of optimal semiconductor doping profiling was embedded into the
framework of optimal control of systems governed by partial differential equations [9, 10,
4, 3]. Using the adjoint calculus it was possible to derive fast algorithms for the solution
of the overall design problem. First, only the drift diffusion system was used to model
the semiconductor device. Meanwhile, it has been also extended to the energy transport
model, which allows to handle variable carrier temperatures [6]. In this paper, we present
the first numerical results for optimal semiconductor design based on the energy transport
model. Further, we compare the new optimal designs with the ones obtained based on the
drift diffusion model.

Finally, we suggest to exploit this classical model hierarchy to speed up the convergence of
the optimization algorithms using the idea of space mapping, which was first introduced
by Bandler [1]. The main idea is to combine the advantage of simple (coarse, less accurate,
easy to evaluate) models, and more complex (fine, more accurate, expensive) models, to
accelerate the numerical computation of a fine model optimum. Here, the coarse model
will be given by the drift diffusion equations, while the energy transport model acts as
the fine model. The advantage of this approach is that it allows for the optimization of
the energy transport model without implementing the adjoint code for this fine model.
Especially, from the industrial point of view this is a major advantage since it allows to
combine easily adjoint optimization techniques with commercial device simulators.

The paper is organized as follows. In the remainder of this section, we present the energy
transport model. The design problem is formulated in Section 3, where we also state the
first–order optimality system. Numerical results for the optimization of a one–dimensional
n+–n–n+ ballistic diode are given in Section 4 and compared with the corresponding ones
obtained by the drift diffusion model. Finally, we present the space mapping approach
to optimal semiconductor design in Section 5, where encouraging numerical results are
presented. Concluding remarks are given in Section 6.
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1.1 The Energy Transport Model

The dimensionless, stationary energy transport model for charge carriers in a semiconduc-
tor enclosed in a bounded domain Ω ⊂ R

d, d = 1, 2, 3, is given, in the unipolar case, by
the following equations for the electron density n and the temperature T , coupled to the
Poisson equation for the electrostatic potential V [12]:

divJ1 = 0 (1.1a)

divJ2 = J1 · ∇V + W (µ, T ) (1.1b)

λ2∆V = n(µ, T ) − C(x) (1.1c)

where J1 is the carrier flux density, J2 the energy flux density, W the energy production,
µ the chemical potential, C(x) the doping concentration and λ the Debye length. The
energy relaxation term W (µ, T ) satisfies W (µ, T )(T − TL) ≤ 0, where TL is the lattice
temperature.

For sufficiently small deviation from the thermal equilibrium state, the general form of the
constitutive equations are given by

J1 = −L11

(

∇
(µ

T

)

−
∇V

T

)

− L12∇

(

−
1

T

)

, (1.2a)

J2 = −L21

(

∇
(µ

T

)

−
∇V

T

)

− L22∇

(

−
1

T

)

. (1.2b)

The coefficients Lij depend on µ and T . Moreover, the diffusion matrix L = (Lij) is
symmetric, as a consequence of the Onsanger reciprocity relations, and positive definite,
due to the second law of thermodynamics [12]. Assuming the parabolic band approximation
one has for the electron density n(µ, T ) = T 3/2eµ/T and the previous constitutive equations
can be written in terms of n, T and V as

J1 = −
(

∇n −
n

T
∇V

)

J2 = −
3

2
(∇(nT ) − n∇V )

and the energy relaxation term is simply

W (µ, T ) = −
3

2

n(µ, T )(T − TL)

τw
,

where τw = τ0µ0Ut/L
2 is the scaled energy relaxation time.

Remark 1.1. The energy transport model with the above relations is called the Chen
model [5]. The diffusion matrix in term of n and T reads

L = n

(

1 3
2
T

3
2
T 15

4
T 2

)

.
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In order to obtain symmetric equations let us introduce the entropy variables (cf. [12] and
the references therein):

u1 = µ/T and u2 = −1/T.

Hence, the constitutive equations can be written as

Ji = −Li1(u, T ) (∇u1 + u2∇V ) − Li2(u, T )∇u2, (1.3)

where u = (u1, u2).

On the other hand, let us observe that from the first equation of system (1.1), one gets

J1 · ∇V = div(J1V ) − V divJ1 = div(J1V ).

Then, the second equation of system (1.1) becomes

div(J2 − J1V ) = W (n, T ).

Now we define the dual entropy variables, or electro–chemical potentials, as

w1 = u1 + u2V and w2 = u2.

By elementary calculations, one gets the equivalence of equations (1.1), (1.3) with the
following system

divI1 = 0, (1.4a)

divI2 = Q(w, V ), (1.4b)

λ2∆V = N(w, V ) − C(x), (1.4c)

where

I1 = −

2
∑

k=1

D1k(w, V )∇wk, I2 = −

2
∑

k=1

D2k(w, V )∇wk. (1.4d)

Here, we have w = (w1, w2) and

D11 = L11, D12 = D21 = L12 − V L11, D22 = L22 − 2V L21 + V 2L11,

as well as

Q(w, V ) = W (µ, T ) and N(w, V ) = (−1/w2)
3/2exp(w1 − w2V ).

To get a well posed problem, system (1.4) has to be supplemented with appropriate bound-
ary conditions. We assume that the boundary ∂Ω of the domain Ω splits into two disjoint
parts ΓD and ΓN , where ΓD models the Ohmic contacts of the device and ΓN represents
the insulating parts of the boundary. Let ν denote the unit outward normal vector along
the boundary, we consider the following mixed boundary conditions

w1 = w1D, w2 = w2D, V = VD on ΓD, (1.5a)

Ii · ν = ∇V · ν = 0 i = 1, 2 on ΓN , (1.5b)

where w1D, w2D and VD are the H1(Ω)–extensions of fixed functions defined on ΓD.
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2 The Design Problem

Now we put our optimal semiconductor design problem into a mathematical framework.
The design objective is to adjust the current I1 at some given Ohmic contact ΓO ⊂ ΓD

via a small change of the reference doping profile C. At the contact ΓO we prescribe the
desired current Ig and allow deviations, in some suitable norm, of the doping profile from
C in order to achieve this current flow. In other words, we intend to minimize the cost
functional

F (w, V, C) =
1

2

∣

∣

∣

∣

∫

ΓO

I1(w, V ) · dν − Ig

∣

∣

∣

∣

2

+
γ

2

∫

Ω

|∇(C − C̄)|2 dx (2.1)

under the constraint that (w, V ) is a solution of the energy transport model (1.4) supple-
mented with (1.5). Note that the parameter γ > 0 allows to balance the effective cost.
Altogether, this yields a constrained optimization problem in the framework of the math-
ematical theory for the control of systems governed by partial differential equations [11].

In order to get a solution to this problem we introduce the state y
def
= (w1, w2, V ) and the

space of states
Y = yD + Y0,

where yD
def
= (wD, VD) denotes the boundary data introduced above, and Y0 =

[H1
0 (Ω ∪ ΓN)]

2
× (H1

0 (Ω ∪ ΓN) ∩ L∞(Ω)) is equipped with the norm ‖y‖X0

def
= ‖w‖[H1(Ω)]2 +

‖V ‖H1(Ω) + ‖V ‖L∞(Ω). An admissible set of controls is given by

C = {C ∈ H1(Ω) ∩ L∞(Ω) : C = C̄ on ΓD} ⊂ H1(Ω). (2.2)

We rewrite the state equations (2.2) shortly as e(y, C) = 0. Further, we introduce Z
def
=

[H1(Ω)]3. Then the nonlinear mapping e : Y × C → Z∗ defined via

e(y, C)
def
=





div
(
∑2

k=1 D1k(w, V )∇wk

)

div
(
∑2

k=1 D2k(w, V )∇wk

)

+ Q(w, V )
λ2∆V − N(w, V ) + C(x)



 , (2.3)

is wellposed.
In [6] the existence of a minimizer (y∗, C∗) ∈ Y × C to the minimization problem

min
Y ×C

F (y, C) s.t. e(y, C) = 0 (2.4)

is proved, i.e. we have

Theorem 2.1. The constrained minimization problem (2.4) admits at least one solution
(w∗, V ∗, C∗) ∈ Y × C.
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3 The First–order Optimality System

In this section we briefly discuss the first–order optimality system which yields the basis
for all optimization methods seeking at least a stationary point. Since we want to tackle
a constrained optimization problem, we write the first–oder optimality system using the
Lagrangian L : Y × C × Z → R associated to problem (2.4) defined by

L(y, C, ξ)
def
= F (y, C) + 〈e(y, C), ξ〉Z∗,Z ,

where ξ denotes the adjoint variable.

Remark 3.1. For the existence of a Lagrange multiplier associated to an optimal solu-
tion (y∗, C∗) of (2.4) it is sufficient that the operator e′(y∗, C∗) is surjective. Note the
equivalence

e′(y, C)[(v, C̃)] = g in Z∗ ⇔ ey(y, C)[v] = g − eC(y, C)[C̃] in Z∗.

For the energy transport model this does in general not hold, but one can ensure the
bounded invertibility of e′(y∗, C∗) near to the thermal equilibrium state [12]. This idea
was used in [6] to prove the unique existence of adjoint states. Hence, at least for small
current densities and small deviations of the temperature from the lattice temperature,
there exists a unique Lagrange multiplier ξ∗ such that together with an optimal solution
(y∗, C∗) it fulfills the first–order optimality system

L′(y∗, C∗, ξ∗) = 0. (3.1)

In fact one can rewrite this equations in a more concise form [10]:

e(y∗, C∗) = 0 in Z∗,

e∗y(y
∗, C∗)ξ∗ + Fy(y

∗, C∗) = 0 in Y ∗,

eC(y∗, C∗)ξ∗ + FC(y∗, C∗) = 0 in C∗.

I.e., a critical point of the Lagrangian has to satisfy the state system (1.4) with boundary
data given in (1.5), as well as the adjoint system

div (D11(x, y)∇ξw1) + div (D21(x, y)∇ξw2)

−
2
∑

k=1

(

∂D1k

∂w1

∇wk

)

· ∇ξw1 −
2
∑

k=1

(

∂D2k

∂w1

∇wk

)

· ∇ξw2 +
∂Q

∂w1

ξw2 =
∂N

∂w1

ξV , (3.2a)

div (D12(x, y)∇ξw1) + div (D22(x, y)∇ξw2)

−

2
∑

k=1

(

∂D1k

∂w2
∇wk

)

· ∇ξw1 −

2
∑

k=1

(

∂D2k

∂w2
∇wk

)

· ∇ξw2 +
∂Q

∂w2
ξw2 =

∂N

∂w2
ξV , (3.2b)

−λ2∆ξV +
∂N

∂V
ξV = −

2
∑

k=1

(

∂D1k

∂V
∇wk

)

· ∇ξw1 −

2
∑

k=1

(

∂D2k

∂V
∇wk

)

· ∇ξw2 +
∂Q

∂V
ξw2

(3.2c)

6



supplemented with appropriate boundary data. Further, we have the optimality condition

γ∆
(

C − C̄
)

= ξV in Ω, (3.3a)

C = C̄ on ΓD, ∇C · ν = ∇C̄ · ν on ΓN . (3.3b)

Remark 3.2. For our choice of the cost functional (2.1) we get the following boundary
conditions

∇ξw1 · ν = ∇ξw2 · ν = 0 on ΓN . (3.4a)

ξw2 = 0 on ΓD and ξw1 =

{

0 on ΓD\ΓO,
(

∫

ΓO

I1dν − Ig

)

on ΓO
(3.4b)

These might change for a different choice of F .

The first two equations of system (3.2) can be written in the simplified form

div

(

−

2
∑

k=1

Dki(w, V )∇ξwk

)

+

2
∑

k=1

bki · ∇ξwk − ci · ξ
w = −siξ

V , (3.5)

where i = 1, 2 and

bki =

2
∑

j=1

∂Dkj

∂wi
∇wj, ci =

(

0,
∂Q

∂wi

)

, si =
∂N

∂wi
, ξw = (ξw1, ξw2).

Remark 3.3. The matrix (Dki) is symmetric positive definite and there exists a δ =
δ(V ) > 0 such that

2
∑

i,k=1

Dkiξkξi ≥ δ(V )|ξ|2 for all ξ ∈ R
2.

Moreover, taking into account the L∞(Ω)–bound on V , there exists some δ0 > 0 such that
δ(V ) ≥ δ0 (see [12]).

If we define

h =

(

2
∑

k=1

(

∂D1k

∂V
∇wk

)

,
2
∑

k=1

(

∂D2k

∂V
∇wk

)

)

and g = (0,
∂Q

∂V
),

equation (3.2c) can be written as

−λ2∆ξV +
∂N

∂V
ξV = −h · ∇ξw + g · ξw, (3.6)

where ∇ξw = (∇ξw1,∇ξw2).
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4 Numerical Method and Results

An adequate and easy to implement numerical method for the solution of (2.4) is the
following gradient algorithm.

Algorithm 1.

1. Choose C0 ∈ C.

2. For k = 1, 2, . . . compute Ck = Ck−1 − αkF̂
′(Ck−1).

Here, F̂ (C)
def
= F (y(C), C) denotes the reduced cost functional, which can be introduced

near to the thermal equilibrium state, and F̂ ′(C) is the Riesz representative of its first
variation. The evaluation of

F̂ ′(C) = FC(y(C), C) + e∗Cξ

requires the solution of the nonlinear state system (1.4) for y, as well as a solution of the
linear adjoint system (3.2) for ξ, and finally a linear solve of a Poisson problem to get the
correct Riesz representative.

Remark 4.1. The choice of the step–length parameters αk is critical to ensure the con-
vergence of this descent algorithm. The overall numerical performance of this algorithm
relies on an appropriate choice of the step–size rule for αk, since these methods require
in general consecutive evaluations of the cost functional requiring additional solves of the
nonlinear state system [15].

4.1 Numerical Optimal Designs

Now we are showing some numerical results for the optimal design of an one–dimensional
n+–n–n+ ballistic silicon diode, which is a simple model for the channel of a MOS transistor
[16]. The semiconductor domain is given by the interval Ω = (0, L), with L > 0. In the
n+-regions a maximal doping concentration of Cm = 5 · 1017 cm−3 is prescribed. In the
n–channel the minimal doping density is 2 · 1015 cm−3. The length of the n+–regions is
0.1µm, whereas the length of the channel region equals 0.4µm. The numerical values of
the physical parameters are given in Table 1.

PLEASE provide the values of λ and τw

We solve the constrained optimization problem (2.4) using algorithm Algorithm 1. For the
parameter γ we chose 10−3 and use the constant step–size α = 10−2. The iteration stops
when the difference of two consecutive iterates is below some specified threshold.

The state system was discretized by a variant of the well–known exponentially fitted
Scharfetter–Gummel scheme [17, 12]. The computations were performed on a uniform
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Parameter Physical meaning Numerical value
q elementary charge 1.6 · 10−19As
εs permittivity constant 10−12AsV−1cm−1

µ0 (low field) mobility constant 1.4 · 103cm2V−1s−1

UT thermal voltage at T0 = 300K 0.026V
τ0 energy relaxation time 0.4 · 10−12s
L length of the device 0.6µm

Table 1: Physical Parameters

grid of 301 points to be sure to have no grid effects, but the same results can be obtained
with a coarser grid of 100 point. For the biasing voltage at the working point we chose
Ū = 0.5, 1, or 3V , respectively, and tried to gain an amplification of the current Ī by 50%,
i.e. we set Ig = Ī · 1.5.

In Figure 4.1 we present the optimal doping profile for the working point Ū = 0.5V as well
as the reference doping C̄. Note, that already a very slight change in doping profile, i.e. an
increase of background charges in the channel, yields the desired amplified current as can
be seen from the evolution of the observation. The overall performance of the algorithm
is very promising, since already 35 gradient steps are sufficient to reach the optimum.
Further, we depict in Figure 4.1 the densities, velocities and temperatures before and after
the optimization. They almost coincide due to the very small change in the doping density.
Nevertheless, we reach our objective as can be also seen from the given current–voltage
characteristics (IVC).

Analogous results for the biasing voltages Ū = 1 and 3V can be seen in Figure 4.2 and
Figure 4.3, respectively. It is noteworthy, that in all three cases the optimized doping
density yields a reduction of the electron temperature in the channel, which is responsible
for the increased current.

4.2 Comparisons with Optimal Designs based on Drift Diffusion

As the adjoint based optimal dopant profiling using the standard drift diffusion model is
meanwhile well understood [9, 4, 10, 3], naturally the interesting question arises, how the
optimized doping profiles derived from the two different models compare. The standard
drift diffusion model with constant mobilities and without generation–recombination rates
can be derived from the energy transport model (1.1) in the special case of a constant
electron temperature T ≡ TL. Then the reduced system reads

divJ1 = 0, J1 = − (∇n − n∇V ) ,

λ2∆V = n − C(x).

Again, we use an adjoint based descent algorithm to compute the optimal doping profile
(for details we refer to [10]). For the biasing voltage at the working point we choose
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here Ū = 1V and again we tried to gain an amplification of the current by 50%. The
corresponding results can be found in Figure 4.4, where we depict the optimal doping
profiles, the electron densities before and after the optimization, as well as the electron
velocities and the current–voltage characteristics. Note that the optimal doping profile for
the energy transport model is much more symmetric than the one for the drift diffusion
model. Comparing the electron velocities, we see a strong change for the drift diffusion
model while the one for the energy transport model is almost unchanged. We conclude
that in the optimization of the latter case the increased current is gained due to a lower
electron temperature, while in the drift diffusion case it is increased due to a higher electron
velocity. Note, that than the well–known velocity overshoot of the drift diffusion model
will be even more pronounced.

Naturally, the question arises if we can use the optimal design for the (simple) drift dif-
fusion model also in the energy transport model, and vice versa. Here, we can give a
positive answer as can be seen from Figure 4.5 and Figure 4.6. In both cases, we get a
current–voltage characteristics which is in the spirit of our optimization objective. This is
remarkable, since we are considering a drift diffusion model with constant mobility, which
is only a crude model for a ballistic diode. But this result is very encouraging also from
the application point of view, since it shows us that the design question considered is even
robust under changes of the model equations.

5 Space Mapping Optimization

As we have seen in the preceding sections, optimal design of semiconductor devices is
in general a difficult task, due to the high computational cost required for each forward
solve of the state system. Next we want to combine the two different models, energy
transport and drift diffusion, to speed up the convergence of the optimization routine. In
many applications semiconductor design companies rely on a given device simulator, where
the implementation of adjoints is not straight–forward. Hence, there is a strong need for
optimization routines which combine the reliabilty of the commercial software package with
the adjoint approach. The main idea is to combine the advantage of simple (coarse, less
accurate, easy to evaluate) models, for which one can implement the adjoints more easily,
and more complex (fine, more accurate, expensive) models, to accelerate the numerical
computation of a fine–model optimum.

This leads to the so–called space mapping approach which was introduced by Bandler [1]
in the field of microwave filter design. Although the space mapping technique has been
mainly applied in electromagnetics, the underlying principles are quite general and suitable
to be used also in other areas [7, 2].

Here, we apply the space mapping technique – to our knowledge – for the first time in
the field of optimal semiconductor design. We present some results obtained by using the
aggressive space mapping algorithm for the minimization problem (2.4). Especially, we use
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the drift diffusion equations as the coarse model and the energy transport model as the
fine one.

Let C̄ denote the reference doping profile and I∗ the target current. Further, let (n, V ) =
c(ζ) denote the solution of the (coarse) drift diffusion model, where ζ ∈ C denotes the
coarse model doping profile design variable and let

φ(ζ) = φ(Υ(c(ζ)), I∗, ζ, C̄) =
1

2

∣

∣

∣

∣

∫

Γ0

Υdν − I∗

∣

∣

∣

∣

2

+
γ

2

∫

Ω

|∇(ζ − C̄)|2dx

denote the coarse model cost functional. Moreover, let (w1, w2, V ) = f(C) denote the
solution of the (fine) energy transport model, where C ∈ C denotes the fine model doping
profile design variable and let

Φ(C) = Φ(J(f(C)), I∗, C, C̄) =
1

2

∣

∣

∣

∣

∫

Γ0

Jdν − I∗

∣

∣

∣

∣

2

+
γ

2

∫

Ω

|∇(C − C̄)|2dx

denote the fine model cost functional. Here, Υ and J denote the electron current densities
given by the drift diffusion and the energy transport model, respectively.

In the foolowing we want to approximate the solution of the fine model by an appropriate
solution of the coarse model for which we define the misalignment function

r(ζ, C) = |φ(ζ)− Φ(C)| .

For a given C ∈ C we look for ζ ∈ C such that r(ζ, C) is minimal, i.e. we define the space
mapping function

p : C → C

C 7→ p(C) = argminζ∈C r(ζ, C).

Remark 5.1. Clearly, p will not exist as a function, if the minimizer is not unique. For
optimal semiconductor design, this cannot be expected in general (for a detailed discussion
of this issue we refer to [10, 3]). But we can ensure the uniqueness at least locally, when
we restrict the set of admissible controls.

Since we want to evaluate p only a few times, we assume Φ(C∗) ≈ φ(ζ∗), such that

p(C∗) = argminζ∈C r(ζ, C∗) ≈ ζ∗.

Hence, we first determine ζ∗ and then solve for p(C∗) = ζ∗. But in general it holds
p(C∗) 6= ζ∗, such that we solve instead for

C∗ = argminC∈C ‖p(C) − ζ∗‖ .

This is done iteratively and the space mapping p is updated using a Broyden–rank–1 update
yielding the so–called ASM (aggressive space mapping) algorithm (for details we refer to
[7]):
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Algorithm 2.

1. Evaluate C0 = ζ∗ = argminζ∈C φ(Υ, I∗, ζ, C̄) and let B0 be the identity matrix.

2. while ‖p(Ck) − ζ∗‖L2/‖ζ∗‖L2 > tolerance

(a) Evaluate the electron density current J∗ by the fine model f(Ck)

(b) Determine ζk = p(Ck) = argminζ∈C φ(Υ, J∗, ζ, C̄)

(c) Solve Bkhk = −(p(Ck) − ζ∗) for hk

(d) Set Ck+1 = Ck + hk

(e) Update Bk+1 = Bk +
(p(Ck+1)−z∗)hT

k

hT

k
hk

(f) Set k → k + 1.

Remark 5.2. On each iteration level we need one evaluation of the fine model and one
solve of the optimal control problem for the coarse model. I.e. it is sufficient to implement
an adjoint code for the coarse model.

We tested the performance of the ASM algorithm for the same ballistic diode as in the
previous section. Especially, we tried to achieve an amplification of the current by 50 %
for different values of the applied voltage Ū = 0.26, 0.52, 1, 1.5V . Note that for increasing
biasing voltages the coarse and fine model yield different responses. The convergence
history for the four test cases can be found in Figure 5.1. The results underline clearly the
feasibility of this approach. Compared with the direct optimization approach presented in
Section 4 we reduced the evaluation of the fine energy transport model by a factor 2 to
4. To be fair in this comparison we also have to consider the number of inner iterations
used for the solution of the coarse optimization problem. These can be found Table 2
and we observe that the overall number of gradient steps is comparable; but note that the
computation of the coarse model gradient is much cheaper than the fine model gradient.

Voltage Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

0.26 3 3 3 3 3
0.52 3 3 3 3 3
1 3 3 4 4 4 4
1.5 4 3 3 3 2 2

Table 2: Inner iterations in the ASM algorithm

6 Conclusion and future works

Optimal semiconductor design is a growing research field for applied mathematicians which
poses several analytical and numerical challenges. This is due to the fact that one has

12



to choose the appropriate models for the specific semiconductor device and the correct
numerical schemes for their solution. So far, the optimal design was mainly based on the
drift diffusion model. Here, we presented for the first time numerical results for the energy
transport model, which takes into account temperature and mobility effects. Further, we
did a thorough comparison with results based on the drift diffusion model.

From the engineering point of view it is most interesting to exploit the available hierarchy
of semiconductor models to speed up the optimization and to lower the programming costs.
A possible approach is given by the so–called space mapping optimization, which we used
here – to our knowledge – for the first time in optimal semiconductor design. The presented
results are very promising for industrial applications.

Future work will focus on the numerical study of more sophisticated devices, especially
two dimensional and bipolar ones, and a more detailed analytical investigation of the
space mapping approach in the semiconductor design context.
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Figure 4.1: Optimized doping profile, evolution of the cost functional, electron mean veloc-
ity, electron density and temperature for a biasing voltage of 0.5 V, and the corresponding
IVCs
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Figure 4.2: Optimized doping profile, evolution of the cost functional, electron mean veloc-
ity, electron density and temperature for a biasing voltage of 1 V, and the corresponding
IVCs
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Figure 4.3: Optimized doping profile, evolution of the cost functional, electron mean veloc-
ity, electron density and temperature for a biasing voltage of 3 V, and the corresponding
IVCs
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Figure 4.4: Comparisons for the ET and the DD model for a biasing voltage of 1 V
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Figure 4.5: CV characteristics computed via DD model, with the ET-based optimal doping
profile and the DD-based optimal doping profile for a biasing voltage of 1 V and a gain of
50%
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Figure 4.6: CV characteristics computed via ET model, with the ET-based optimal doping
profile and the DD-based optimal doping profile for a biasing voltage of 1 V and a gain of
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Figure 5.1: Convergence history of the space mapping optimization for a applied voltage
of 0.26, 0.52, 1, 1.5 Volt and a gain in the current of 50 %
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