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Notation

Sets

K a field, mostly K is considered as K = C or K = R.
C Set of complex numbers
R Set of reals with optional restrictions:

R{6, 6=,>}k :=
{
x ∈ R

∣∣x 6 k or x 6= k or x > k, k ∈
R arbitrary but fixed

}

Z Set of integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
N Set of positive integers, i.e. Z>0 = {1, 2, 3, . . .}

ran(f) Range of a function f , i.e. ran(f) := {y | f(x) = y}
supp(f) Support of a function f defined as the closure (w.r.t. the

Euclidean norm | · |) of a set not mapped to zero, i.e.
supp(f) := {x | f(x) 6= 0}.

Spaces – see Section 3.1

Ck,Ck(R) both denote the space of k ∈ N-times continuously differ-
entiable functions

Ck,α is the space of functions whose derivative up to order k
is Hölder continuous with exponent α, α ∈ (0, 1). In par-
ticular, f ∈ Ck,α ⇐⇒ ‖f‖Ck,α :=

∑
i6k

∥∥f (i)
∥∥

C0,α < ∞
where ‖f‖C0,α := supx,y∈R

|f(x)−f(y)|
|x−y|α . A function is Hölder

continuous with exponent α iff it is bounded w.r.t. the
‖·‖C0,α-norm.

C0 is the set of continuous functions with lim|x|→∞ f(x) = 0.
Cc is the set of continuous functions with compact support.

Lp, `p set of p-Lebesgue measurable functions and set of discrete
signals with finite ‖·‖`p norm, p ∈ R>1.

U ⊕ V denotes a direct sum of two vector spaces U and V
Transforms

F , Fg, W The Fourier, windowed Fourier (with window function g ∈
L2(R)) and wavelet transform, respectively
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Intervals

[a, b] closed interval, i.e. [a, b] = {x ∈ R | a 6 x 6 b}
[a, b) right opened interval, i.e. [a, b) = {x ∈ R | a 6 x < b}
(a, b) opened interval, i.e. (a, b) = {x ∈ R | a < x < b}
(a, b] left opened interval, i.e. (a, b] = {x ∈ R | a < x 6 b}
|[k, l]| ‘discrete’ interval, i.e. |[k, l]| = {k, k+1, . . . , l−1, l | k, l ∈

Z}
Symbols

z complex conjugation of a complex number z ∈ C, i.e.
a + ib = a− ib for z =: a+ ib

<, = real and imaginary part of a complex number z ∈ C,
2<(z) = z + z, 2=(z) = z − z

χI characteristic function, χI(x) = 1 iff x ∈ I and χI(x) =
0 otherwise.

δj,k is the so-called Kronecker delta and equals one if and
only if j = k and otherwise zero.

id Identity operator or function; context dependent
∀, ∃ quantors: for all and there exists
AT transpose of a matrix A
f(a·) denotes a function f in the dummy ·, i.e. x 7→ f(ax)

with the constant a
f (k) stands for the k-th derivative of f w.r.t. its free variable,

i.e. f (k) : x 7→ dk

dxk f(x)

f̂ is an abbreviation for F(f).

〈f, g〉 scalar product of f and g; if not otherwise stated 〈·, ·〉 ≡
〈·, ·〉L2(R)

‖f‖ norm of a function f ; again, if not otherwise stated it
is considered to be the L2(R)-norm if the function f is
defined over a continuum - in contrast to a sequence,
f = (fj)j ∈ `2. Then the corresponding norm is as-
sumed to be the `2-norm.

f = O (g) Landau symbol : ∃C : limx→∞
f(x)
g(x)

6 C

iff is an abbreviation for ‘if and only if’
:⇐⇒ used to emphasise a definition

[IpA:"ælf@bet] is a so-called IPA notation for proper pronunciation of
speech sounds, see Chapter 2



Chapter 1

Introduction

Most of the time human being’s focus of attention is fixed on a particular
thing capturing nearly all brain’s conscious thoughts which chiefly ignores
stationary stimuli caused by the environment. That focus is only attracted
by sudden changes, so-called transients.

It may be the most important strategy pursued by the brain in concen-
trating on transients in order to extract crucial information from the vast
amount of data bombarding human being’s senses.

Music and speech have properties which highly vary in time. It is not
only the amplitude which stresses important information by weighing it but
also the variation of frequencies carrying the most content perceived by the
ears.

It is therefore reasonable to restrict the attention to transforms which give
rise to measurements of such spectral variations in time imitating the same
processes which have has crystallised after millions of years of evolution.

The task at hand is first governed by a tricky and rather complicated
field: linguistics. How shall one represent a speech or a small utterance in a
readable way, i.e. readable for human beings or for a machine processing a
sequence of these symbols and coefficients representing the meaning or addi-
tionally its ‘intention’ such as angriness, feeling of uncertainty or calmness?

Thus, what started as an effort to translate between languages evolved
into an entire discipline devoted to understanding how to represent and
process individual natural languages using computers.

For human beings, the well established IPA notation, see Chapter 2, can
be considered as a more or less readable sequence of symbols with predeter-
mined pronunciation with almost no freedom for variants.

That alphabet is of finite size (less than 200 symbols) and assumed to
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‘span’ all possible words of every human language. Conversely, every possible
speech sound, i.e. a sound pertinent to an utterance, can be written as a
unique sequence of such symbols.

For mathematicians these properties are very well known and, generally
speaking, are considered as sufficient and necessary for a set to form a basis
of a particular space.

Therefore, it is a straightforward longing to find a function, which maps
physical properties of speech sounds to phones , a realisation1 of a correspond-
ing IPA symbol.

This ansatz should then lead to a characterisation of any speech sound
by means of a few physical properties associated to a phone.

As the goal of this thesis is to recognise only a small number of very
different words, see Section 6.2, it may suffice to consider the course in time
of high energetic spectral components, i.e. a path in the phase plane of high
energies, in order to describe voiced segments. This approach is additionally
motivated by the so-called formants, typical for voiced speech as presented
in Chapter 2.

Henceforth, the author’s aim will be to extract a sequence of n×2 matrices
(first column: (mean) frequency, second column: pertinent energy), n ∈ N,
associated to an adapted partition of an arbitrary utterance which could then
be used for further classification tasks.

Heisenberg’s Uncertainty principle plays an important role in con-
structing and discussing any transform of a signal aiming a separation of
information coming from both, time and frequency domain.

It is a well known fact that any signal (of compact support or of sufficient
decay) can be characterised in these domains. Combining them into a phase
plane reveals then a remarkably easy way of reading the properties of the
considered signal.

Werner Heisenberg2 was the first who also noted that higher accuracy in
one space leads to a decrease of accuracy in the other and that the product
of both ‘uncertainties’ is bounded from below by a constant - forever, see
Section 3.6.

This means in particular that the information extracted from the phase
plane is somehow contained in small boxes of widths corresponding to the
uncertainties in frequency and time of fixed area but not necessarily of a

1For instance, reading aloud the IPA symbol [a] is a realisation of [a]. See also Chap-
ter 2.

2His contributions to quantum physics were honored with the Nobel prize (in 1932)
and a German postage stamp from the year 2001, cf. Figure 1.1, his 100th birthday
anniversary, depicts his famous formula.
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Fig. 1.1: German postage stamp
with Heisenberg’s uncertainty prin-
ciple: product of impulse and space
(time) uncertainty is proportional
to Planck’s constant h

fixed aspect ratio, see Section 3.6.
A fixed time - frequency analysis is a
transform which always yields a fixed
phase plane tiling regardless of the sig-
nal, in contrast to an adapted time
- frequency analysis which is natu-
rally of more potential in extracting
relevant features of a signal since the
phase-plane tiling is now dependent on
the analysed signal.
Wavelets are adapted to local prop-
erties of functions to a larger extent
than the Fourier basis. Their ‘Heisen-
berg boxes’, or more precisely, the
aspect ratio changes with each level.
This adaptation is done automatically
in view of the existence of a ‘second
degree of freedom’: the localisation
in time - the time width decreases
as the frequency uncertainty increases.
The advantage of this ‘multiresolu-
tion analysis’ is that local properties
of data can be seen immediately and
thereby influence further analysis.

Unfortunately, the time resolution is much preferred over frequency resolu-
tion which is not justified by any physiological study on human hearing.
In contrast, a windowed Fourier transform is of much better frequency resolu-
tion and provides full control over the aspect ratio. However, the partitioning
is always subjective and the aspect ratio of the ‘Heisenberg boxes’ is constant
for each transform!
Wavelet packets and local trigonometric functions with an associated basis
selection algorithm, cf. Chapter 5, resolve these problems for the wavelet and
the windowed Fourier transform, resp., and provide an elegant and mathe-
matically consistent realisation of this intuitive idea.
A special basis selection algorithm of only O (N) multiplications (and addi-
tions), if N is the number of samples of the analysed discrete signal, min-
imising a cost functional, finds a ‘best adapted’ partition (in time, if local
trigonometric functions are used) such that a subsequent extraction of al-
ready mentioned n× 2 matrices is then easily obtained.
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Synopsis A detailed summary on basic and long (longer than twenty years)
known facts is given in the next two chapters. Fundamentals of phonetics re-
capitulating a few properties of speech are considered in the first whereas the
second chapter furnishes a foundation of some functional analysis principles
used in the subsequent theory.

After a rigorous mathematical introduction to Gabor and wavelet frames
in Chapter 4, their incapability for speech processing is discussed in Sec-
tion 4.4.2.

Chapter 5 presents then a more sophisticated ansatz, since that approach
permits more degrees of freedom, dealing with local trigonometric functions,
folding operators and effective implementations with low computational com-
plexity.

A mathematical model of the classification problem is formulated in
Chapter 6 which gives a compelling need to study first a proper feature
extraction. The ensuing algorithm which extracts a n × 2 matrix, n ∈ N,
consisting of frequencies and energies associated to an adapted partitioning
of a recorded utterance, sampled at 8 kHz, may be considered as such a
feature extractor.

Reasoning arguments which motivates the usefulness of these features,
dependence of cost functionals and typical phase plane plots concludes the
chapter.

An outlook with possible improvements is given at the end of the thesis.



Chapter 2

Short Introduction to

Phonetics

The goal of this thesis is of course a classification of distinct words spoken by
human beings by means of mathematical transforms allowing an machine-
readable algorithm which can then be processed by computers.

At the beginning, characteristics of speech are of major interest and will
be studied shortly in the sequel. For further studies the reader may check
[Hes05, ST95] and the references therein.

Phonetics is the study of sounds, especially voice sounds. It concerns
the actual properties of speech sounds, called phones and their production,
audition and perception.

Sound is a longitudinal wave. It is a time and space varying function of
pressure resulting from an (averaged) oscillation of air particles (molecules
and bigger pieces like dust) parallel to the direction of its propagation.

Each wave can be equivalently described by its superposition of frequen-
cies which also may vary in time and space.

An everyday experience is that such a continuum, a speech, is segmented
by the ear (and brain’s capabilities) into small units which, for instance, can
be written down as a sequence of letters or may be processed in other ways.

In the 1920’s, some people longed for a similar but more accurate descrip-
tion of sound units used in speech. The advent of phonetics:

The goal here is to include pronunciation into the writing process such
that, e.g., non-native speakers may imitate words of a foreign language prop-
erly.

This ansatz may be very prolific for tasks like classification and seems to
be a natural starting point for further proceedings.



8 Short Introduction to Phonetics

Following the general usage, classes of phonetic sounds, phones , will
be indicated by a symbol enclosed in square brackets, e.g. [u@] as in the
pronunciation of ‘actual’, [ai] as in ‘lie’, [2] as in ‘but’ or [æ] as in ‘cat’;
by contrast a phoneme which will be denoted by a symbol enclosed within
virgules (slashes), which is a minimal distinctive unit of a language, i.e. ‘the
smallest meaningful psychological unit of sound’.

There are over a hundred different phones recognised as distinctive by
the International Phonetic Association (IPA) and transcribed in their Inter-
national Phonetic Alphabet [IPA63]. These symbols will also be used in this
thesis.

Example 2.0.1. (i) Consider the phones [t] and [f]. These are in German
also phonemes, /t/,/f/ since the sounds [tiS] and [fiS] corresponds to
different words, i.e. have different meaning (table and fish, resp.).

The same argumentation can be led for the minimal pair [s@t] and [p@t],
which appear to differ only in their initial consonants [s] and [p]. Since
these words are recognised as distinct by an Englishmen, i.e. they are
meaningfully different in that language, /p/ and /s/ must be phonemes.

(ii) On the other hand, the different phones of ‘l’ in the words /wUl/ (wool)
and /laif/ (life) - in the first case it is a dark L and in the second a
light L - are meaningless in English, which is already expressed by the
corresponding phoneme notation, /l/.

This is not the case in Turkish. Dark ‘L’ and light ‘L’ are phonemes
since they lead to meaningful differences, in particular, there are such
minimal pairs, words which only differs in one phone and have different
interpretation.

In Korean, for instance, the phones [r] and [l], which are of course two
different sounds, i.e. have distinct physical entities as frequency for
example, belong to the same phoneme!

(iii) Such a differentiation may be of some importance in classification tasks,
too.

The German word Notruf! which stands synonymously for emergency,
call the doctor/police! is of course different from a word which is per-
ceived as [mo:tru:f]. However, since ‘Motruf’ does not make any sense,
or generally speaking, if that word would not be part of a small dic-
tionary, say consisting of five words, the classical phonemes /m/ and
/n/could be identified with each other.

This could lead to a more robust (w.r.t noise) recognition and classifi-
cation.



2.1 Properties of (human) Speech 9

Fig. 2.1: Anatomic view of speech organs, cf. [Hes05].

(iv) That is also why the amount of phonemes varies from language to
language. In English , the number of phonemes estimates typically
range from 40 to 45 whereas Pirahã has only 10 and !Xóõ approximately
141, cf. http://en.wikipedia.org/phoneme.

‘Phoneme’ is an abstract mental construct. Thus, any physical property
in the signal - like frequency - is referred to a phone.

In contrast, phoneme is the term to use if a sound is interpreted in the
native speaker’s mind. However, enough about phonemes for the time being.

2.1 Properties of (human) Speech

The intention of this section is to give a very short introduction as well as a
foundation for different technical words typical in the phonetic community.
For further reading, please check also other literature, e.g. [Hes05] which was
naturally abridged here.

The subsequent section will also explain why the author believes that
speech signals should be analysed in that way as it is done in Chapter 6. It
is natural to study first the creation of speech-like signals in order to decide
subsequently which characteristics of speech are necessary for the different
classification tasks of concern.

In principle, any production of speech can be decomposed in two steps:
excitation and signal shaping.

2.1.1 Sources of sound

Human beings are capable of quite different sounds. In speech however,
there are primarily only three basic forms of excitation: Voiced, Voiceless
and Transient excitation, namely.
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Voiced excitation is a quasi-periodic, non-sinusoidal vocal cord vibration
variable in its amplitude and frequency.

Pulmonary air flow passing the vocal cords in the larynx is periodically
interrupted by the vibration of much the same cords.

The space between the vocal cords, called glottis is of much smaller cross-
section compared to the cross-section below and above the larynx (cp. Fig-
ure 2.1). In fact, that spot is considered to be the narrowest of the entire
speech organs (from lungs to radiation from the mouth) subdividing the tube
into the subglottal (lungs, bronchi, trachea to larynx) and supraglottal sys-
tem (pharynx, oral and nasal cavity) such that according to aerodynamics the
velocity of flowing air stream is highest at that spot compared to anywhere
else in the tube.

Assume that the vocal cords are flexed, hence, the glottis is closed (see Fig-
ure 2.2, (top), state (1-3)). If the difference in air pressure in the subglottal
system and the atmospheric air pressure outside the speaker’s body, for short:
subglottal pressure, is sufficiently high in order to open the glottis, a stream
of air coming from the lungs begins to flow at a relatively high speed, fast
accelerating, through this small hole (cf. Figure 2.2, states (4-6)).

As soon as this begins, Bernoulli’s force, – named after Daniel B. – acting
on the vocal cords perpendicular to the air flow, grows gradually and embod-
ies itself as an underinflation which necessitates the cords to move backwards
to the starting position. In this short period of time the air stream gets
faster and faster as the glottis became smaller which involves an increase of
Bernoulli’s force at a higher rate which again accelerates the closing of the
glottis and so on. The whole closing process is therefore of a relatively short
duration.

The air stream ceases abruptly to flow since the superposition of both,
resetting force of the vocal cords and Bernoulli’s force exceeds the opposed
force resulting from subglottal overpressure, Figure 2.2, state (7).

Due to elasticity of the tissue, the cords keep moving. First, state (8),
towards the centre, and then, like a bouncing ball, away, state (9), such that
the glottis re-opens and due to little overpressure another air stream begins
to flow.

Another cycle emerges (cf. also [vdB58]). The abrupt glotteral closing
is also responsible for the presence of frequencies in the range of kHz. The
averaged duration of one cycle is termed as fundamental period T0 and the
corresponding fundamental frequency F0, or equivalently pitch, is then the
reciprocal of T0, i.e. F0 = T−1

0 .
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Fig. 2.2: One-cycle movement of Vocal cords. Corresponding arrows are, blue:
air flow; black: acting force; white: direction of movement. Chronological order of
occurrence: top, left to right, bottom, left to right.

Voiceless excitation occurs when the air stream (on ex-/inhalation - from
or to the lungs) flows through an open glottis passing a constriction in the
oral cavity or pharynx (see Figures 2.1 and 2.6) such that due to higher
friction in this area turbulences appear with characteristic high frequency
noise, coloured typically for the different places of origin.

Analogously to voiced excitation it is a stationary process and lasts as
long as air streams. Both kind of excitations may occur in parallel (for
instance, voiced fricatives like [Z] are produced by such an mixed excitation).

Transient excitation is naturally a non-stationary process. It is charac-
terised by an occlusion phase, a pause where every acoustic signal is inter-
rupted for a certain amount of time (20 - 100 ms). The sudden release of the
congested air lasting only for 20 - 100 ms is perceived as a plosion noise. In
European languages each plosion sound is an explosion sound (in contrast to
some non-European languages with click -sounds resulting from implosions).

Again, voiced and transient excitation may coincide but there is always
an occlusion phase which at most permits a slight vocal cord vibration, a
so-called voice bar . Each subsequent sound is combined with the plosion.

This discussion yields already a first characterisation of sounds, cf. Fig-
ure 2.3. Quasi-periodic parts originating from voiced excitation, noise-like
form of signal coming from turbulent flows typically for voiceless excitation
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and a certain signature in time (voice(-less) excitation, occlusion phase, re-
lease burst, voice(-less) excitation) indicating a transient excitation can be
easily recognised in such plots as in Figure 2.3.

Subplot (b), Figure 2.3, shows a quasi-periodic signal. Here, the funda-
mental frequency F0 is nearly 110 Hz mainly resulting from glotteral vibra-
tions. An average of 125 cycles per second is typical for an adult male, and
approximately twice as fast (250 Hz) for an adult female, giving rise to the
sensation of pitch.

2.1.2 Signal shaping

Of course there is much more about producing comprehensible speech than
just these three kinds of excitation.

The position of the tongue and lips, respectively, which continuously vary
in time, primarily contribute to sounds like [l],[p],[a] or [o].

Articulation stands for the process of all possible speech organ’s positions,
movements and their close succession in time. Everything in the vocal tract
above the glottis - without the nasal cavity - is a speech organ (tongue, lips,
teeth, palate,...).

A single position or movement of at least one speech organ is termed
an articulatory gesture (cf. also Figure 2.6 for some illustrated articulatory
gestures). Any speech sound generating a phone is uniquely determined by
the corresponding excitation and one or more articulatory gestures. This is
the so-called shaping of sound.

A first basic subdivision of speech sounds is made via two categories:
vowels and consonants. The first class is characterised by

• purely voiced excitation and

• absence of any occlusion and substantial constriction in the vocal tract
(above glottis) and

• radiation of sound mainly from the mouth.

In contrast, consonants

• are not purely voiced or

• there is a substantial constriction or occlusion in the vocal tract.

For the sake of simplicity, the geometry of the vocal tract is considered to
form a tube of a constant cross-section, a length ` of approximately ` = 17
cm, for men, as claimed in [Hes05], opened at one (mouth) and closed (glottis)
at the other end.
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(a) enunciation of the German word ["fEnst@r]
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(b) voiced excitation; [E]
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(c) voiceless, transient and voiced excitation: [s],[t],[@]

Fig. 2.3: (a) Waveform of a 8kHz sampled signal of 1.02 seconds duration. This
means in particular that every 150µs the continuous function (here: pressure
depending on time) is digitised with a constant bit rate such that in total, a
sequence of 213 discrete values is acquired. (b) This is a small part of the plot (a)
corresponding to the phone [E]. The fundamental period T0 can be computed as
4T0 = 1935−1645

8000 ≈ 36ms which is equivalent to a frequency of approximately
110 Hz. Subfigure (c) shows another extract from Plot (a). Dotted vertical lines
illustrate the three different types of excitation. From left to first dotted boundary:
voiceless excitation ([s]); occlusion phase is outlined by the timespan between first
and second dotted line; followed by an explosion ([t] - between second and third
dotted line) and concluding with a voiced excitation, [@], between third dotted line
and right boundary.
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Furthermore, assume that the sound which is an acoustic signal, or more
precisely a longitudinal wave, propagate with a constant velocity c = 340 m/s
(meters per second). In fact, acoustic signals propagates as spherical waves.
In that simplified case where the acoustic tube has impenetrable sides, i.e.
infinite (acoustic) impedance1, Z, defined as Z = p/ν – where p stands for
pressure, force per unit area, and ν denotes the acoustic particle velocity – it
suffices to restrict the direction of propagation to one dimension. Such waves
are so-called plane waves .

Two boundary conditions for p and ν can be formed. At the open end, p =
0, and at the other, ν = 0. This implies in particular that most frequencies
will be attenuated. That frequencies of a signal which ‘survive’ are called
resonance frequencies in physics. In this special setting it can be deduced
that these are fk = (2k−1)c

4`
= (2k − 1)500 Hz, for k ∈ N, see Figure 2.4 for

k = 1, 2, 3.

These overtones can be observed as peaks in a power spectrum, i.e. a
representation of a signal rendered in frequency.

Such simplistic assumptions, especially that of a constant cross-section
are in generally not fulfilled. Nevertheless, for the so-called schwa-sound, [@],
(read loud: ‘schwa’, then it is the sole voiced sound at the end), where the
vocal tract behaves approximately as such a tube of constant cross-section,
the first resonant frequency is near 500 Hz (cf. Figure 2.5, (b)).

The special about the human voice production is that it can ‘colour’ the
radiated sound which is a result of modifying the geometry of the acoustic
tube.

A simple reduction of the cross-section at some place yields by reflection
and superposition different frequencies compared with fk.

2.2 Formants

Formants are that frequency regions which contribute to a recognition of a
voiced phone and will be denoted2 by capital Fk, k = 1, 2, . . .. They can be
seen as relatively high energy parts of the signal – since otherwise it would be
hard to perceive them as typical for that special vowel and so (by definition)
they could not be a formant.

1Basically, a wave propagates unhindered and freely if the impedance is homogeneous,
i.e. constant in space (and time). Whenever Z changes both, velocity and path (direction
of propagation) changes. A change of impedance has then a reflection at that very spot
as a consequence.

2The numbering is organised in an energy decreasing way, i.e. F1 is the most prominent
formant perceived by the ears, F2 is the next crucial feature needed for association with
a particular voiced utterance, etc.
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Fig. 2.4: Pressure p as a function of a space variable with boundary conditions
p(`) = 0 and p(0) maximal ( ⇐⇒ ν(0) = 0). λ is the pertinent wavelength, i.e.
λ = c

f . From top to bottom are the first three possible overtones with associated
frequencies fk=1,2,3, (after [Hes05]).

In order to simplify further considerations this term will be extended to
all high energy parts above some threshold.

In practice, Fk varies in time – since the properties of the vocal tract
may be changed by the position and movement of the speech organs – and
in general vary widely from person to person (due to different geometry).

Furthermore, Fk cannot be considered as a multiple of another formant
as it was the case for the overtones, fk.

Voiced excitation is a relatively long-lasting phenomenon in speech. The
spectral or frequency characteristics of a formant evolve as phones unfold
and succeed one another. Formants which are relatively unchanging over
time are found in the monophthong vowels3, and the nasals4.

More time-varying formants are found in the diphthong vowels5 and the
approximants6, but in all cases the rate of change is relatively slow.

The inherent patterns in the first few formants, k 6 n, where n might be
n = 3, 4, 5, are speaker independent and thus may be exploited for classifica-
tion, at least for voiced parts and in particular for vowels.

The monophthong vowels have strong stable formants. In addition, these
vowels can usually be easily distinguished by the frequency values of the first

3[i:] as in ‘beet’, [I] as in ‘bit’, [@] as in ‘bat’ [2] as in ‘above’, [A] as in ‘father’, [u] as
in ‘boot’, [U] as in ‘book’, ...

4[m] as in ‘me’, [n] as in ‘knee’, [N] as in ‘sing’ or ‘sung’
5[ei] as in ‘bay’, [aI] as in ‘bey’, [iU] as in ‘few’,...
6as in Figure 2.6, (a).
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two or three formants.

For these reasons the monophthong vowels are often used to illustrate the
concept of formants, cf. the so-called formant chart , Figure 2.5, where only
F1 and F2 are plotted against each other, but it is important to remember
that all voiced phones have formants, even if they are not as easy to recognise
and classify as the monophthong vowel formants.

It is said (see e.g. [Hes05] and the references therein) that all higher
formants, k > n are speaker dependent features and rather contribute to a
speaker identification.

The class of consonants consists of a huge mixture of voice-voiceless,
voiceless-transient and pure voiceless, transient excitations in combination
with a huge repertoire of articulatory gestures. Figure 2.6 illustrates some of
them.

This class does not consist of purely voiced excited signals and it is there-
fore not as easy as for vowels to find features which are simply to describe
and compute. Information about present frequencies alone does not suffice
anymore!

Major tools for speech analysis used by people concerned with that field
of study (phonology, phonetics,...) are spectrograms (also called sonograms)
where the amplitude |Fgf | (in most cases coded by some color) of a windowed
Fourier transformed signal f is plotted in the time-frequency plane. g denotes
a window function and is mainly responsible for the time-frequency resolution
and in particular which resolution is preferred over the other (see also Sections
3.6 and 4.1).

Despite its lack of adaptivity, see Section 4.4.2, the slow time develop-
ment of formants can already be seen in such time frequency partitions, see
Figure 2.7.

In general, the phonologist only distinguish between two kinds of spec-
trograms. The one uses a window spread of 3 - 8 ms (inverse of 333.33 - 125
Hz) and resolves therefore the individual cycle of the glottis vibration which
is noticeable as a vertical structure in the plot, Figure 2.7, (a-b), Figure 2.8,
(a) and left most subplots of Figures 2.10 and 2.11. Due to Heisenberg’s
uncertainty principle the frequency resolution is low.

Conversely, frequency resolution is preferred over time in case of bigger
windows, typical in the range of 20 - 50 ms. In Figure 2.7, (c), the small
‘burst’ (resulting from the plosive7 [t]) at the 0.3th second is not resolved
which run counter to the resolution in frequency where even overtones are
now visible.

7English has six bursts or explosive sounds produced by complete closure of the vocal
tract followed by a rapid release of the closure - [p], [t], [k], [b], [d], [g].
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(a) General American English pronunciation - spoken by male, female and children; 76
speakers in total

(b) German vowels - (left): long, (right) short vowels. Male and female speaker; 16
speakers in total

Fig. 2.5: Formant charts, [Hes05]. F1 vs. F2, (after [Hes05]). Note also in (b)
the so-called schwa-sound, [@], at (F1, F2) = (0.5, 1.7) kHz, which is considered
to be neutral, since the speech organs are in such a position where the simplistic
assumptions of an acoustic tube are fulfilled (constant cross-section especially).
Here, the theoretical derived frequency F1 = 500 Hz justifies in some sense the
prior model.
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[w] (we)

[r] (read)

[j] (you)

[l] (left)

(a) liquids & glides

[f] (for) [T] (thin)

[Z] (azure) [z] (zoo)

[h] (he) [v] (vote)

[s] (see) [S] (she)

(b) fricatives

Fig. 2.6: Some articulatory gestures for liquids and fricatives (after [Hes05]).
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The phase plots of the phrase [at:ha] also show the noise-like spectrum
approximately between the 0.4th and 0.6th second. It is typical for fricatives
(like [h] in ‘hope’) caused by turbulent flow of air in constricted areas.

Another example demonstrating the influence of the window support is
shown in Figures 2.8 and 2.9. Here, the long vowels (each of approx. 1 s
duration) [u:],[o:],[a:],[e:] and [i:] were pronounced by a male speaker and
sampled at 16 kHz. One of the observations is that each vowel has distinctive
formants. At least two of the formants per each vowel is noticeable as rela-
tively high energetic stripes coloured from red over yellow to light blue, cf.
Figure 2.8, (b). Moreover, the plot in Figure 2.8, (a), shows in addition to a
frequency pattern a temporal one which can be deduced from the fact that
the window support of g used by the windowed Fourier transform Fg is of
such a small size that it even resolves the glotteral vibrations. The strongest
temporal pattern is clearly that which corresponds to the first formant of [i:],
red - yellow - red vertical stripes in the time interval ranging approximately
from 3.7th to 5th second, Figure 2.8, (a). That precise formant has an esti-
mated frequency of 300 Hz, seen from Figure 2.9, (c), and matches therefore
the ‘window-frequency’ almost, 1

3.1
ms−1 ≈ 322 Hz. The small discrepancy

causes then a temporal aliasing, which is the observed temporal pattern!
Another conclusion which can be drawn from Figures 2.8 and 2.9 is that

despite the long-lasting nature of the formants which hardly ever occurs in
reality it is not nearly obvious which window support is optimal for formant
extraction. Here, ‘extraction’ do not yet mean any algorithmic determina-
tion but a mere visual distinction made by the human eyes and brain. For
instance, the second formant of the phones [e:] and [i:] is hard to detect and
in the author’s opinion is best perceived in Figure 2.8, (b) at F2 ≈ 1800 Hz
for [e:] and F2 ≈ 3 kHz for [i:].

A concluding example, Figures 2.10 and 2.11, shows 8 kHz sampled re-
alisations of the vowels [u], [o], [a], [e] and [i]. Here, 128 colours were used
(Matlab’s built-in functions ‘colormap’ and ‘jet ’) and again the lowest 60%
of all coefficients were thresholded and colored by the same ‘colour’: white,
cf. Figure 2.11, (c).

As one can see, it is not intuitive how to choose the window size in order
to obtain a good formant representation. A particular window size for one
vowel might be optimal and for another quite the opposite.

Section 4.4.2 comes back to that difficulty and compares not only the
influence of the window support of the windowed Fourier transform, see Fig-
ures 4.13, 4.14 and 4.16, but also the former with the discrete and continuous
wavelet transform, cf. Figures 4.15 and 4.17.
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(c) 900 Samples per window

Fig. 2.7: Spectrogram of the phrase [at:ha] sampled with 44.1 kHz. The sub-
plots (from top to bottom) correspond to different time spreads of the windowed
function: 3, 5.6 and 20.4 ms. Note also the overtones in (c) visible as horizontal
lines (dark red - red) whereas in (b) the formant structure is more evident. In
(a) the window is too short in order to resolve frequencies. Such kind of plot was
generated by Matlab’s built-in function specgram. The color code is showed in the
colour bar at the bottom of Subplot (b). For better illustration 60% of the lowest
coefficients were thresholded (and are not resolved - white background !)



2.2 Formants 21

0.5 1  1.5

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

(a) 50 Samples per window – 3.1 ms

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

(b) 100 Samples per window – 6.3 ms

Fig. 2.8: see Figure 2.9
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Fig. 2.9: Spectrogram of the phrase [u:o:a:e:i:]. 5% of the lowest coefficients were
thresholded (and are not resolved - white background !).
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Fig. 2.10: In the second plot (from left) of (a), F1 and F2 can be restricted to
the intervals (F1, F2) ∈ (250, 450)× (530, 700) which corresponds with Figure 2.5.
Note that the last plot in (a) is not really of much use for formant extraction
although the frequency resolution is much better than for the prior plots. The
overtones do not allow to draw conclusions on which ‘stripes’ are pertinent to Fk.
For the Subplot (c) the forth (from left) plot seems to be optimal for determining
F1 ∈ (500, 600) Hz and F2 ∈ (1200, 1300) Hz. For more explanations see also
Figure 2.11.
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Fig. 2.11: from left to right: window sizes (in samples) are: 48, 96, 128, 256
corresponding to a window size of 6, 12, 16, 32 ms; the uncertainty in frequency
can be estimated as the inverse, i.e. bigger than 166, 83, 62, 32 Hz; Subfigure (c)
shows the corresponding colour bar. The frequency axis extends from 0 to 4 kHz.



Chapter 3

Fundamentals

For the sake of completeness the following section will repeat the most basic
definitions and theorems concerning the theory of Hilbert spaces. Elementary
proofs which can be checked in appropriate literature dealing with functional
analysis, e.g. [Wer95, Heu86], will be partly omitted.

3.1 Hilbert Spaces

Definition 3.1.1. Let (X, d) be a metric space.

(i) An arbitrary sequence (xn)n ⊂ X is called a Cauchy sequence :⇐⇒
∀ε > 0 ∃N ∈ N ∀n,m > N : d(xn, xm) < ε.

(ii) (X, d) is called complete iff each Cauchy seq. (xn)n is convergent in X,
i.e. ∃ ξ ∈ X : d(xn, ξ) → 0, as n→ ∞.

(iii) A normed and complete vector space (X, ‖ ·‖) is called a Banach space.

(iv) If additionally this norm ‖ · ‖ : X2 → [0,∞) is generated by a positive
semi-definite hermitian form 〈·, ·〉 : X2 → K, i.e. ‖x‖ :=

√
〈x, x〉 then

(X, 〈·, ·〉) is called a Hilbert space.

(v) The corresponding mapping 〈·, ·〉 is called scalar or inner product .

Example 3.1.2. (i) The space of k-times, k ∈ N, continuously differ-
entiable functions, i.e.

(
Ck(Rn), ‖ · ‖Ck

)
and the space of Lebesgue

k-integrable functions,
(
Lk(Rn), ‖ · ‖Lk

)
are Banach spaces, where the
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corresponding norms are:

‖f‖Ck :=
∑

i6k

‖f i‖C0 <∞, f 0 := f, ‖f‖C0 := sup
x∈Rn

|f(x)| <∞,

and ‖f‖Lk =

(∫

Rn

|f(x)|k dµ(x)

)1/k

<∞, respectively.

(ii) (L2(Rn), 〈·, ·〉) is a Hilbert space, where the inner product is defined as
〈f, g〉 :=

∫
Rn f(x)g(x) dµ(x).

Remark 3.1.3. (i) Every integral is understood here and from now on
always as a so-called Lebesgue integral:
Let (M,M, µ) be a measurable space, i.e. M an arbitrary set with a σ-
algebra M and a Lebesgue measure µ : M → [0,∞]. Furthermore, let
(Y, d) be a metric space. Define the vector space of all step-functions
as

T(M,Y) :=

{
f : M → Y

∣∣∣ ∃ (ak)k⊂Y, k=1,...n,

∃ (Mk)k∈M :M=
�̇

k6nMk

: f =
∑

k6n

akχMk

}
.

Then, defining the elementary integral for step functions f ∈ T(M,Y)
as ∫

M

f dµ :=
∑

k6n

akµ(Mk),

it is possible to construct a semi-norm for 1 6 p <∞ as

‖f‖semi,p : T(M,Y) → R, ‖f‖semi,p :=
(∫

M

|f |p dµ
)1/p

,

since |f |p ∈ T(M,Y) holds for each f ∈ T(M,Y).

The completion – in the ‖ · ‖semi,p-sense – of T(M,Y) is a complete
vector space containing so-called Lebesgue p-integrable functions:

L p(M,Y) :=

{
f : M → Y

∣∣∣ ∃ (fn)n⊂T(M,Y)Cauchy sequence w.r.t. ‖·‖semi,p,

∃N⊂M withµ(N)=0: f≡limn fn onM\N

}
.

By identifying functions only on sets of non-zero measure the semi-
norm property of ‖ · ‖semi,p extends to a norm ‖ · ‖p, i.e.:

Lp(M,Y) := L
p(M,Y)/N p =

{
f : M → Y

∣∣f measurable, ‖f‖p <∞
}

where N
p :=

{
f ∈ L

p(M,Y)
∣∣∣‖f‖semi,p = 0

}
and

‖f‖p:= ‖f‖Lp:= ‖f + N
p‖p:=

(
lim
n→∞

∫

M

|fn|p dµ
)1/p

, (fn)n ⊂ T(M,Y).
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By these constructions (Lp(M,Y), ‖ · ‖p) becomes a normed and com-
plete vector space.

(ii) Analogously, the tuple (`p, | · |p) , 1 6 p <∞ with

`p :=

{
x := (xn)n ⊂ K

∣∣∣ |x|p :=
(∑

n∈Z

|xn|p
)1/p

<∞
}
,

|x|2 :=
√

〈x, x〉, 〈x, y〉 :=
∑

n∈Z

xnyn

is a Banach and for p = 2 a Hilbert space.

(iii) Note that L1 * L2 and L1 + L2 which will be of some importance in
defining the Fourier transform, for instance.

This is easily seen in the one-dimensional case for the functions:

f(x) :=

{
1/
√
x, x ∈ (0, 1]

0, else
g(x) :=

{
1/x, x > 1
0, else

.

Hence, f ∈ L1(R) \ L2(R) and g ∈ L2(R) \ L1(R).

Theorem 3.1.4. Let X 6= {0} and Y be normed spaces.

(i) A linear operator T : X → Y is continuous ⇐⇒ ∃C > 0 ∀x ∈ X :
‖Tx‖Y 6 C‖x‖X.

(ii) The space of all linear and bounded operators

L(X,Y) :=
{
T : X → Y | T linear and continuous

}

=
{
T : X → Y | T linear and ‖T‖ <∞

}
,

with the operator norm defined as

‖T‖ := inf
{
C > 0

∣∣ ‖Tx‖Y 6 C‖x‖X

}

= sup

{‖Tx‖Y

‖x‖X

∣∣∣x ∈ X, x 6= 0

}
= sup

‖x‖X61

‖Tx‖Y,

is a normed vector space and in case of Y being complete, it is even a
Banach space.

(iii) ∀T ∈ L(X,Y) :





T is injective and T−1 ∈ L(ran(T ),X)

⇐⇒
∃ c > 0 : c‖x‖X 6 ‖Tx‖Y ∀x ∈ X
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(iv) A linear and bounded operator T ∈ L(X,Y) is called an isomorphism
:⇐⇒ T is bijective and T−1 ∈ L(Y,X). If X and Y are in particular
complete, i.e. Banach spaces, then the inverse T−1 is automatically
continuous due to the inverse mapping theorem, i.e. T−1 ∈ L(Y,X).

(v) A linear operator T : X → Y is called an isometry :⇐⇒ ‖Tx‖Y =
‖x‖X ∀x ∈ X.

(vi) A surjective isometric operator T : X → Y is called isometric isomor-
phism.

Note that an isometric operator T , cf. point (v), implies T ∈ L(X,Y) and
T−1 ∈ L(ran(T ),X); and therefore, by additionally requiring surjectivity as
in point (vi) the operator becomes an isomorphism.

According to mathematical custom it is usual to reformulate complicated
problems into a number of convenient and simple well understood objects
which are easier to deal with. Analysing a signal x ∈ L2(R) it is often useful
to look at its not necessarily unique superposition (e.g. Eqs. (3.2b) or (3.8))
of such easy to handle atoms (i.e. the corresponding scalar products) where
each of them partly describe the behaviour of x.

Basic properties like uniqueness, redundancy and numerical stability of
such series will be described in the next three foregoing sections. Studies in
frame theory may also be extended in [Chr06]

3.2 Bases

For the rest of this chapter consider (H, 〈·, ·〉) as a separable Hilbert space
and I as a countable index set if it is not explicitly stated otherwise.

Definition 3.2.1. (i) A series (
∑

i∈I xj)j is said to be unconditionally
converging to x ∈ H :⇐⇒ for each numbering (in)n of I : x =

∑
n>1 xin ,

i.e. reordering of summands does neither affect the convergence of the
series nor the limit x.

(ii) Two families (yn)n, (xn)n ⊂ H are termed biorthogonal to each other
:⇐⇒ 〈yj, xk〉 = 0 ∀ j 6= k.

(iii) A sequence (xn)n ⊂ H is an orthogonal system (abbr.: ogs) if it is
biorthogonal to itself, i.e. 〈xj , xk〉 = 0 ∀ j 6= k.

(iv) Iff an orthogonal system is additionally normalised, i.e. ‖xj‖H = 1,
then (xn)n is called an orthonormal system (abbr.: ons).
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(v) A sequence (xj)j ⊂ H is said to be complete :⇐⇒ ∀x ∈ H ∃ (ci)i ⊂ K :
x =

∑
i∈I cixi.

(vi) A complete ons is called an orthonormal basis (abbr.: onb).

Lemma 3.2.2 (Bessel inequality). For each orthonormal system (xi)i∈I ⊂
H, x ∈ H and J ⊂ I:

∥∥∥x−
∑

j∈J
〈x, xj〉xj

∥∥∥
2

= ‖x‖2 −
∑

j∈J
| 〈x, xj〉 |2, (3.1a)

‖x‖2
>
∑

i∈I
| 〈x, xi〉 |2. (3.1b)

Theorem 3.2.3. Let (xj)j ⊂ H be an ons, then

(i) ∃ (in)n ⊂ I with H 3 x =
∑

n>n cinxin =⇒ H 3 x =
∑

i∈I cixi i.e.
unconditionally

(ii) ∃x ∈ H with
∑

i∈I cixi = x, ci ∈ K =⇒ (ci)i∈I is uniquely determined
and given by ci = 〈x, xi〉.

(iii) ∃ (ci)i∈I ⊂ K with
∑

i∈I |ci|2 < ∞ =⇒ ∑
i∈I cixi ∈ H, i.e. uncondi-

tionally

Proof. All assertions follow by virtue of Bessel’s equation (3.1a), linearity
and continuity of the inner product.

Corollary 3.2.4. If (xi)i∈I ⊂ H is an onb, then each of the following equiv-
alent properties hold:

∀x ∈ H ∃ (ci)i ⊂ K : x =
∑

i∈I
cixi (3.2a)

∀x ∈ H : x =
∑

i∈I
〈x, xi〉xi (3.2b)

∀x ∈ H : ‖x‖2
H =

∑

i∈I
| 〈x, xi〉 |2 (3.2c)

∀x ∈ H : 〈x, y〉 =
∑

i∈I
〈x, xi〉 〈y, xi〉 (3.2d)

Remark 3.2.5. Note that the equivalence of Eqs. ((3.2a) – (3.2d)) is already
fulfilled by an arbitrary ons (xi)i ⊂ H. If this system is even complete, i.e.
is an onb then each of these claims is true.

In other words, if (xi)i is an ons and span{xi|i ∈ I}‖·‖H = H, then espe-
cially Eq. (3.2a) is true and thereupon Eqs. (3.2b) and (3.2c).
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In this context, Eqs. (3.2c) and (3.2d) are called Parseval identities . In
general, the Parseval identity can be understood as the invariance of inner
products of two pre-Hilbert spaces Hi=1,2 under an isometric operator, i.e.
there exists a mapping T : H1 → H2 : ‖Tx‖H2 = ‖x‖H1 ⇔ 〈Tx, Ty〉H2

=
〈x, y〉H1

∀x, y ∈ H1.

Proof. (3.2a) ⇒ (3.2b) ⇒ (3.2c) is a direct implication of Theorem 3.2.3 and
Eq. (3.2c) ⇒ (3.2a) is again a consequence of Bessel’s equality (3.1a).

It remains to show the equivalence of both Parseval identities, i.e.

Eq. (3.2c) ⇔ Eq. (3.2d) which itself is equivalent to

‖Tx‖`2(I) = ‖x‖H ⇔ 〈Tx, Ty〉`2(I) = 〈x, y〉H
for some T : H → `2(I), x 7→ (〈x, xi〉)i∈I .

‘⇐’: Set x = y.
‘⇒’: Assume ‖Tx‖`2(I) = ‖x‖H, then ∀α ∈ K:

‖x‖2
H+2<(α 〈x, y〉H) + |α|2‖y‖2

H
= ‖x‖2

H + |α|2‖y‖2
H + α 〈y, x〉H + α 〈x, y〉H = ‖x+ αy‖2

H
= ‖T (x+ αy)‖2

`2 = 〈Tx+ αTy, Tx+ αTy〉`2
= ‖x‖2

H + 2<(α 〈Tx, Ty〉`2) + |α|2‖y‖2
H

The equality of both inner products arises from the fact that for α = 1 :
<(〈x, y〉H) = <(〈Tx, Ty〉`2) and for α =

√
−1 : =(〈x, y〉H) = =(〈Tx, Ty〉`2).

Example 3.2.6. (i) A well known orthonormal basis in L2([a, b]) is given
by the trigonometric system

xj(t) :=
e2πijt/`√

`
, ` := b− a, i :=

√
−1, j ∈ Z

Check ...

...orthonormality: ∀ j 6= k : j − k =: z ∈ Z\{0} and

〈xj , xk〉 = 1
`

∫ b
a
e2πit(j−k)/` dt

j 6=k
= γ

2

(
e

2πi
`
zb − e

2πi
`
za
)

= γ
2

(
e2πize2πiz

a
` − e2πiz

a
`

)

= 0, γ := πiz,

‖xj‖H = 1
`

∫ b
a
e0 dt = 1.

The third equality is due to b
`

= 1 + a
`
.
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... completeness: This is a straight implication of the Weierstraß ap-

proximation theorem known from analysis1 and the fact that C0
c(Rn,R)

‖·‖Lp

=
Lp(Rn,R), where the prior Banach space contains all compactly sup-
ported continuous functions.

(ii) A second example which serves as an onb for L2(R) was firstly described
by Haar at the begining of the last century:

h(t) :=





1 t ∈ [0, 1/2)
−1 t ∈ [1/2, 1)

0 else
, hj,k(t) := 2j/2h(2jt− k)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

Fig. 3.1: h0,0 = h is plotted as
a dashed, h3,3 as a dashed-dotted
and h3,6 as a dotted line

The orthonormality follows again directly by calculation and the sub-
stitution τ := 2jt− k:

‖hj,k‖2 =

∫

R

2j |h(2jt− k)|2 dt
τ :=2jt−k

=

∫

R

|h(τ)|2 dτ = 1

〈hj,k, hj,n〉 =

∫

R

2jh(2jt− k)h(2jt− n) dt =

∫

R

h(τ)h(τ + k − n) dτ = 0,

since ∀n 6= k :

=[0,1]︷ ︸︸ ︷
supp(h)∩

=[n−k,n−k+1]︷ ︸︸ ︷
supp(h(· + k − n)) contains at most one point

(for n = k + 1) such that in total the intersection is of measure zero;
on the other hand, ∀n, k ∈ Z and w.l.o.g. j > m:

〈hj,k, hm,n〉 =

∫

R

2(j+m)/2h(2jt− k)h(2mt− n) dt

= 2(m−j)/2
∫

R

h(τ)h(φ(τ)) dτ = 2(m−j)/2
∫

R

h(τ)c dτ = 0

1See [Heu02, pp. 112] for Weierstraßapproximation theorem for trigonometric polyno-
mials.
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with φ : [0, 1) → [k−n2j−m

2j−m , k−n2j−m+1
2j−m ) =: I, τ 7→ τ+k−n2j−m

2j−m and some
c ∈ R, since the image of φ, ran(φ) = I, is completely included in one
of the disjoint intervals , i.e. I ⊂ (−∞, 0) ∪ [0, 1/2) ∪ [1/2, 1) ∪ (1,∞),
and is constant on it, cf. Figure 3.1.

Completeness of (hj,k)j,k∈Z is easily deduced from a wavelet approach,
Section 4.2. Here, Corollary 4.3.10 implies completeness where the
second and third item of that corollary are trivially fulfilled.

Summarising the properties of orthonormal systems (and bases, respec-
tively) up to now it is clear (cf. Theorem 3.2.3, second item) that the values
〈x, xi〉 determine uniquely an element x ∈ H and vice versa, considering an
onb, each element x ∈ H is uniquely determined by its so-called Fourier
coefficients 〈x, xi〉.

Nevertheless, it is also well known that some of these ‘decomposition
properties’– similar to Eq. (3.2b) – can be achieved by larger sets (xi)i∈I
which are neither orthonormal (as it is the case for Riesz bases) nor linearly
independent (which is the general case for frames).

So, as a first generalisation of an onb a brief discussion about Riesz bases is
given in the sequel. The presented theorems, Theorems 3.3.2, 3.3.3 and 3.3.4,
will also be of much importance for Section 5.2.

3.3 Riesz Bases

Definition 3.3.1. (i) A sequence (xn)n∈I ⊂ H is called a Riesz basis in
H :⇐⇒ (xn)n is complete in H , ∃A,B : 0 < A 6 B <∞ and for each
finite J ⊂ I :

A
∑

n∈J
|an|2 6

∥∥∥
∑

n∈J
anxn

∥∥∥
2

H
6 B

∑

n∈J
|an|2, ∀an ∈ K

The constants A and B are called Riesz bounds .

A Riesz basis can be seen as an image of an orthonormal basis in H under
an isomorphism. This is shown in the next theorem.

Theorem 3.3.2. The following assertions are equivalent:

(i) (xn)n∈I is a Riesz basis with bounds A and B

(ii) For each orthonormal basis (en)n ⊂ H there exists an isomorphism
T ∈ L(H) with A−1 > ‖T−1‖2, ‖T‖2 6 B and Ten = xn, n ∈ I

So, a Riesz basis is indeed a basis since for all x ∈ H∃! y ∈ H : x = Ty.
For any onb (ei)i in H there exists coefficients (ci)i such that y =

∑
i ciei

which implies by continuity of T : x = Ty =
∑

i ciTei =
∑

i cixi.
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Proof. (i⇒ii) It will be showed:

• ∀ y ∈ H∃! a(y) ∈ `2(I) : y =
∑

i∈I ai(y)xi,

• Ty :=
∑

i 〈y, en〉xi is bounded with

• the bounded inverse given by T−1y =
∑

i ai(y)ei.

Since (xi)i is complete for each element y of H there exists a sequence
(yn)n∈N ⊂ span{xi|i ∈ I}, yn :=

∑
k∈Jn

ak,nxk with ‖y − yn‖H
n→∞−−−→ 0 where

Jn ⊂ I is an increasing index subset with n indices, i.e. |Jn| = n.

Define an :=
{
an,k | an,k := 0 for k /∈ Jn

}
⊂ `2(I). Then the ‘Cauchy

sequence property’ of (yn)n implies by the low Riesz bound that (an)n is a
Cauchy sequence in `2(I), i.e. (w.l.o.g. m 6 n)

∑

k∈Jn

|am,k − an,k|2 6 A−1

∥∥∥∥∥
∑

k∈Jn

am,kxk − an,kxk

∥∥∥∥∥

2

= A−1 ‖ym − yn‖2 .

Completeness of `2(I) ensures then that (an)n converges in `2, say to a(y) ∈
`2(I), ‖an − a(y)‖`2

n→∞−−−→ 0.

Furthermore, it holds y =
∑

k∈I ak(y)xk since

∥∥∥∥∥y −
∑

k∈I
ak(y)xk

∥∥∥∥∥
H

6 ‖y − yn‖H +

∥∥∥∥∥∥∥∥∥
yn −

∑

k∈I
ak(y)kk

︸ ︷︷ ︸
=:z

∥∥∥∥∥∥∥∥∥
H

.

Due to the upper Riesz bound z is indeed in H since for any (ck)k ∈ `2

the sequence (zn)n with zn :=
∑

k∈Jn
ckxx is a Cauchy sequence in H which

also converges in H (otherwise H would be not complete).

Hence, the second sum in the triangle inequality can be estimated to

‖yn − z‖2
H 6 B

∑

k∈J
|an,k − ak(y)|2

which converges for n→ ∞ to zero.

Uniqueness of a(y) follows from the lower Riesz bound. Suppose there
exists (bk)k ∈ `2(I) such that y =

∑
k∈I bkxk. Then, for w.l.o.g n 6 m it
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holds

∑

k∈Jm

|ak(y) − bk|2 6 A−1

∥∥∥∥∥
∑

k∈Jm

ak(y)xk − bkxk

∥∥∥∥∥

2

H

6 A−1

∥∥∥∥∥
∑

k∈Jm

ak(y)xk −
∑

k∈Jn

bkxk

∥∥∥∥∥

2

H

6 A−1
∑

k∈Jm\Jn

‖ak(y)xk‖2
H

n→∞−−−−−→
⇒m→∞

0.

By definition of T , Ty =
∑

i 〈y, en〉xi, it follows Ten = xn and ‖Ty‖2
6

B
∑ | 〈y, en〉 |2 = B ‖y‖.
The operator Sy :=

∑
i ai(y)ei is well defined and is by lower Riesz

inequality bounded, ‖Sy‖2∑
i |ai(y)|2 6 A−1 ‖y‖2. Furthermore, TSy =∑

i ai(y)Tei = y ⇒ TS = id and analogously ST = id.
(ii⇒i) Since T−1y ∈ H it follows that T−1y =

∑
i 〈T−1y, en〉 en and equiv-

alently y = TT−1y =
∑

i 〈T−1, en〉 Ten =
∑

i ai(y)xn. From this relation,
with ai(y) := 〈T−1y, en〉, the completeness of the system (xi)i is an immedi-
ate consequence. Orthonormality of (en)n concludes the proof, i.e.

A
∑

i∈Jn

|ai|2 = A
∥∥∥
∑

i∈Jn

aiei

∥∥∥
2

= A
∥∥∥T−1

∑

i∈Jn

aixi

∥∥∥
2

6

∥∥∥
∑

i∈Jn

aixi

∥∥∥
2

=
∥∥∥T
∑

i∈Jn

aiei

∥∥∥
2

6 B
∥∥∥
∑

i∈Jn

aiei

∥∥∥
2

= B
∑

i∈Jn

|ai|2

From the theorem above existence of a biorthogonal Riesz basis, a so-
called dual basis can be deduced:

Theorem 3.3.3. Let (xn)n ⊂ H be a Riesz basis with bounds A and B.
Consider a fixed onb (en)n in H and an accompanying T as above. Then the
following properties hold:

Biorthogonality: ∃! (x̃n)n : 〈xn, x̃m〉 = δn,m

Riesz basis: ∀ an ∈ K :
1

B

∑

n∈J
|an|2 6

∥∥∥
∑

n∈J
anx̃n

∥∥∥
2

H
6

1

A

∑

n∈J
|an|2

Decom-/Superposition: ∀y ∈ H :
∑

n∈I
〈y, x̃n〉xn = y =

∑

n∈I
〈y, xn〉 x̃n.

Adjoint of T−1 : x̃n = (T−1)∗en
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In the end, an orthonormal basis is nothing else than a Riesz basis with
surplus stipulations:

Theorem 3.3.4. Let (xn)n be a sequence in a separable Hilbert space H .
Then, (i) ⇐⇒ (ii) ⇐⇒ (iii), with

(i) (xn)n is an onb in H

(ii) (xn)n is a Riesz basis in H with A = B = 1

(iii) For each onb (en)n in H there exists an isomorphism T with Ten = xn
which is in addition unitary.

Proof. (i⇒ii)
Orthonormality implies ‖∑i∈J aixi‖2 =

∑
i,j∈J |ai||aj|| 〈xi, xj〉 | =

∑
i∈J |ai|2

for arbitrary finite J ⊂ I, i.e.A = B = 1. (xn)n is necessarily complete since
(xn)n is a basis.

(ii⇒iii)
By Theorem 3.3.2 there exists an isomorphism T with Ten = xn and

‖T‖2
H 6 1, ‖T−1‖2

H 6 1. Hence,

‖y‖H =
∥∥T−1Ty

∥∥
H 6 ‖Ty‖H 6 ‖y‖H ⇒ ‖Ty‖ = ‖y‖

and analogously ‖T ∗y‖ = ‖y‖ such that by the Cauchy-Schwarz inequality

⇒ ‖y‖2 = 〈Ty, Ty〉 = 〈T ∗Ty, y〉
C.S.
6 ‖T ∗Ty‖ ‖y‖ = ‖Ty‖ ‖y‖ = ‖y‖2

which holds by the same calculation for ‖y‖2 = 〈T ∗y, T ∗y〉 6 ‖y‖2.

⇒ T ∗Ty = µ1y and TT ∗y = µ2y, for some µ1,2 ∈ C.

By ‖y‖2 = 〈T ∗Ty, y〉 = µ1 〈y, y〉 = µ2 〈y, y〉 it follows that µ1 = µ2 = 1 which
implies immediately T ∗T = TT ∗ = id.

(iii⇒i)
T is an isomorphism and by Theorem 3.3.2 (xn)n is a Riesz basis, hence

complete. The orthonormality follows by 〈xn, xm〉 = 〈Ten, T em〉 = 〈T ∗Ten, em〉 =
〈en, em〉 = δn,m.

As for an orthonormal basis, a frame allows each element in the underlying
Hilbert space to be written as an unconditionally convergent infinite linear
combination of the frame elements; however, in contrast to the situation for
a basis, the coefficients might not be unique.
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Often it is impossible to construct an orthonormal basis having extra
prescribed properties. It was observed early that some of the limitations can
be removed by considering Riesz bases rather than orthonormal bases.

A frame is some kind of over-complete basis. The over-completeness of
frames has already proved useful in the context of noise compression, and its
use is currently investigated in several areas of signal processing.

3.4 Frames - Redundancy – Flexibility in the Repre-

sentation

Definition 3.4.1. (i) An arbitrary system (xi)i∈I ⊂ H is called a frame
in H :⇐⇒ ∃A > 0, B <∞ ∀x ∈ H :

A‖x‖2
6
∑

i∈I
| 〈x, xi〉 |2 6 B‖x‖2 (3.3)

A and B are the so-called frame bounds.

(ii) If A = B then (xi)i∈I is called a tight frame.

(iii) Normalised frames are tight frames with A = 1.

Let (xi)i∈I be a frame in H then defining a kind of decomposition operator
T : H → `2(I), x 7→ (〈x, xi〉)i∈I it is clear that

A1/2
6 ‖T‖ 6 B1/2 (3.4)

and due to Theorem 3.1.4 it follows that T is linear, bounded and injective
and in particular possesses a continuous inverse on ran(T ). Definition 3.4.1
allows therefore a stable decomposition into (〈x, xi〉)i and a stable recon-
struction of the original x ∈ H from the values 〈x, xi〉 , i ∈ I.

In order to understand this approach it is crucial to emphasise some
differences and similarities between basis systems and frames.

Theorem 3.4.2. Let dim(H) = ñ < ∞. Then (xi)i6n is a frame in H,
n > ñ, ⇐⇒ span{(xi)i} = H, i.e. (xi)i is a generating system of H .

Proof. Since dim(H) < ∞, the space V :=span{xi| i = 1, . . . , n} is closed in
H ⇒ ∃W ⊂ H : H = V ⊕W . ∀x ∈ W : 〈x, xi〉 = 0 ∀ i 6 n ⇒ A‖x‖2 6∑ | 〈x, xi〉 |2 = 0 ⇒ x = 0 ⇒W = 0 and hence V = H.

Vice versa, let (xi)i be a generating system of H .
t : H → Kn, x 7→ 〈x, xi〉i is a linear mapping and therefore continuous

(as H is of finite dimension) ⇒ ∃B <∞ :
∑ | 〈x, xi〉 |2 6 B‖x‖2 ∀x ∈ H.

t is injective since tx = 0 ⇒ 〈x, xi〉 = 0 ∀, i 6 n ⇒ x ∈ (span{xi})⊥. As
(xi)i is supposed to span all of H it follows that x = 0 ⇒ t is inj. ⇒ t−1 is
cont. ⇒ ∃A > 0 with A‖x‖2 6

∑ | 〈x, xi〉 |2 ∀x ∈ H
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In particular, the elements of arbitrary frames are in general linearly
dependent as it is clear from the next example:

Example 3.4.3. Consider the system of n-th complex roots xj=0,...,n−1 :=
e2πij/n, xnj = 1 where each element can be visualised as an arrow from the
origin to the boundary of the unit circle in the complex plane C=̃R2 - cf.
Figure 3.2.

Fig. 3.2: Dashed line corre-
sponds to the unit circle in C
where xj=0,...,6 are plotted as solid
lines

Due to 1 − e4πij/n 6= 0 ∀n > 3 it follows that

∑

j

<
(
e4πij/n

)
= <

(
∑

j

e4πij/n

)
= <1 − e4πin/n

1 − e4πi/n
= 0,

which holds analogously for the imaginary part, and by

n−1∑

j=0

| 〈x, xj〉 |2 =
n

2

=‖x‖2

︷ ︸︸ ︷
(a2 + b2) +

a2 + b2

2

=0︷ ︸︸ ︷∑

j

cos(4πj/n)+ab

=0︷ ︸︸ ︷∑

j

sin(4πj/n),

where x ∈ C, a := <(x), b := =(x), it concludes in

n−1∑

j=0

| 〈x, xj〉 |2 =
n

2
‖x‖2.

Although dim(R2) = 2 the system (xj)j6n constitutes a tight frame for each
n > 3.

Strictly speaking, only two members of the frame (xj)j6n, n > 3 would
be necessary to recover x from 〈x, xi〉i=1,2. The ‘surplus information’ coming
from the outstanding frame vectors is sometimes useful for numerical stabil-
ity. Given a particular frame it is possible to choose between these frame
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vectors in order to obtain in some sense (i.e. w.r.t. some topology) the best
generating system.

In this context it is usual to interpret the constant n
2

– and in general
B/A – as a measure of redundancy.

Is it a mere suspicion which arises from this example that in case of a
tight frame the frame bound says something about how far or close the frame
itself fails to be a basis? The next theorem clarifies this context:

Theorem 3.4.4. An arbitrary onb of a separable Hilbert space H is always
a normalised frame in H and vice versa.

Proof. ‘⇒’: The Parseval equality, Eq. (3.2c), guarantees that ∀x ∈ H :
‖x‖2 =

∑
i | 〈x, xi〉 |2 which says that (xi)i is in fact a normalised frame.

‘⇐’: It suffices to show the orthonormality: let (xi)i∈I be a norm. frame.
Then ∀xi :

1 = ‖xj‖2 =
∑

i

| 〈xj , xi〉 |2 = ‖xj‖4

︸ ︷︷ ︸
=1

+
∑

j 6=i
| 〈xj , xi〉 |2 ⇒ 〈xj , xi〉 = δi,j

By the Riesz representation theorem there exists the adjoint operator of
T , T ∗ : `2(I) → H which can be interpreted as a synthesising operator and
is represented via the frame (xi)i∈I as 〈T ∗c, x〉H = 〈c, Tx〉`2 =

∑
j cj〈x, xj〉 =∑

j cj 〈xj , x〉, i.e.

T ∗c =
∑

i∈I
cixi, c ∈ `2(I),

where the series converges in norm - see [Dau92, p. 101, note 4]. Due to
the same theorem the adjoint operator is bounded by A1/2 6 ‖T ∗‖ = ‖T‖ 6

B1/2. Hence, it is possible to define a hermitian operator by T ∗T with some
remarkable qualities:

Definition 3.4.5. The so-called frame operator F : H → H is defined as
F := T ∗T with T prescribed by Eq. (3.4). The system x̃i := F−1xi is called
the dual frame.

Theorem 3.4.6. For each arbitrary frame (xi)i∈I

(i) the frame operator F satisfies

A 〈x, x〉 6 〈Fx, x〉 6 B 〈x, x〉 (3.5)
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(ii) F is an isomorphism and it holds

B−1
6 ‖F−1‖ 6 A−1 (3.6)

(iii) the family x̃i = F−1xi constitutes a frame with

B−1‖x‖2
6
∑

i

| 〈x, x̃i〉 |2 6 A−1‖x‖2

(iv) T̃ : H → `2(I), T̃ x := (〈x, x̃i〉)i∈I satisfies

T̃ = TF−1 T̃ ∗T̃ = F−1 T̃ ∗T = T ∗T̃ = id

(v) T̃ T ∗ is the orthogonal projection operator from `2(I) onto ran(T ) =

ran(T̃ ) and satisfies T̃T ∗ = T T̃ ∗

Proof. This proof is borrowed from Ingrid Daubechies, [Dau92, pp.59].

ad i) Applying the definition of T one has
∑

j | 〈x, xj〉 |2 = ‖Tx‖2 = 〈T ∗Tx, x〉
and by the frame condition

A‖x‖2
6
∑

i

| 〈x, xi〉 |2 = 〈Fx, x〉 6 B‖x‖2.

ad ii) By (i) the linear, injective and continuous operator F is in particular
bounded from below by A > 0. Hence

ran(F ) is closed in H : Take a Cauchy sequence (yn)n ⊂ ran(F ) ⇒
∃ (xn)n ⊂ H with Fxn = yn s.t.

‖xn − xm‖2
6 A−1 〈F (xn − xm), xn − xm〉
6 A−1

∥∥∥F (xn − xm)
∥∥∥‖xn − xm‖

⇒ ∃ ξ ∈ H : ξ = limn xn. Since F is continuous it follows
from ran(F ) 3 Fξ = limn Fxn = limn yn that (yn)n converges
in ran(F ).

F is surjective: It suffice to show: ran(F )⊥ = {0}. Let y ∈ ran(F )⊥,
i.e. ∀x ∈ H : 〈y, Fx〉 = 0 which holds in particular for x = y. So,
0 = 〈y, Fy〉 > A‖y‖2 ⇒ y = 0.
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Summing up, ran(F ) = H, i.e. F is surjective and by Theorem 3.4.4
injective with a continuous inverse, hence F is an isomorphism. Fur-
thermore, from Eq. (3.5) it follows

A‖F−1y‖2 = A
〈
F−1y, F−1y

〉
6
〈
FF−1y, F−1

〉
=
〈
y, F−1

〉
6 ‖y‖‖F−1y‖,

i.e. ‖F−1y‖ 6 A−1‖y‖ and in a similar way

B−1‖y‖ 6 ‖F−1y‖.

ad iii) Since F and F−1 are selfadjoint operators it follows by

〈x, x̃i〉 =
〈
x, F−1xi

〉
=
〈
F−1x, xi

〉
that

‖T̃ x‖2 =
∑

i

| 〈x, x̃i〉 |2 =
∑

i

|
〈
F−1x, xi

〉
|2 = ‖TF−1x‖2

=
〈
TF−1x, TF−1x

〉
=
〈
T (T ∗T )−1x, TT−1(T ∗)−1x

〉

=
〈
F−1x, x

〉
. (3.7)

Hence, by B−1‖x‖2 6
∑

i | 〈F−1x, x〉 |2 6 A−1‖x‖2 it is clear that (x̃i)i
constitutes a frame.

ad iv) Additionally, first and last equality of Equation (3.7) implies T̃ ∗T̃ =
F−1. Moreover,

(T̃ xi)i = 〈x, x̃i〉 =
〈
F−1x, xi

〉
= (TF−1x)i ⇐⇒ T̃ = TF−1

T̃ ∗T = (TF−1)∗T = F−1T ∗T = id

and T ∗T̃ = T ∗TF−1 = id

ad v) ‘ran(T ) = ran(T̃ )’: T = TF−1F = T̃F ⇒ ran(T ) ⊂ ran(T̃ )

T̃ = TF−1 ⇒ ran(T ) ⊃ ran(T̃ )

projection let y ∈ ran(T ) ⇒ ∃x ∈ H : Tx = y, T̃ T ∗y = T̃ T ∗Tx =
TF−1Fx = Tx = y

let y ∈ ran(T )⊥ ⇒ 0 = 〈y, Tx〉 = 〈T ∗y, x〉 ∀x ∈ H ⇒ T̃T ∗y = 0

Corollary 3.4.7. Each frame (xi)i has a dual frame (x̃i)i s.t. ∀x ∈ H :

∑

i

〈x, xi〉 x̃i = x =
∑

i

〈x, x̃i〉xi. (3.8)
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Moreover, ∀x ∈ H ∃ c ∈ `2(I) with x =
∑

i cixi such that

‖c‖`2 >
∑

i

| 〈x, x̃i〉 |2

with equality attained only for ci = 〈x, x̃i〉 ∀ i ∈ I. If x =
∑

i 〈x, xi〉 yi, then

∑

i

| 〈yi, y〉 |2 >
∑

i

| 〈x̃i, y〉 |2 ∀ y ∈ H

and ‘ = ’ ⇐⇒ yi = x̃i.

Proof. Equation (3.8) is a straight forward relation of T̃ ∗T = id = T ∗T̃ where
existence of the dual follows indirectly from Riesz representation theorem (c.f.
the prelude of Definition 3.4.5).

It remains to show that the reconstruction and superposition of x by
means of frames and the appropriate duals is the most economical one:

Let x =
∑

cixi = T ∗c for some c ∈ `2(Z) = ran(T ) ⊕ ran(T )⊥,

i.e. ∃ a ∈ ran(T ), ∃ b ∈ ran(T )⊥
(
⇒0=〈T ·,b〉=〈·,T ∗b〉⇒T ∗b=0

)
such that c = a + b.

Since ran(T ) = ran(T̃ ) ⇒ ∃ y ∈ H : c = T̃ y+b⇒ x = T ∗c = T ∗T̃ y+T ∗b = y.

Hence, c = T̃ x+ b and ‖c‖2 = ‖T̃ x‖2 + ‖b‖2 =
∑

i

| 〈x, x̃i〉 |2

⇐⇒ ‖b‖ = 0 ⇐⇒ cj = 〈x, x̃j〉 ∀ j ∈ I.

The last inequality is derivable with similar considerations.

Formula (3.8) is the main reason for considering frames, but it also im-
mediately reveals one of the fundamental problems with frames. In fact, in
order for (3.8) to be practically useful, one has to invert the frame operator
F , which is difficult when H is infinite-dimensional. One way to avoid this
difficulty is to consider tight frames, i.e., frames (xi)i for which

∀x ∈ H : A‖x‖2 =
∑

i∈I
| 〈x, xi〉 |2 for some A > 0.

Then, 〈Fx, x〉 = A‖x‖2, such that F = idA would imply

x =
1

A

∑

i∈I
〈x, xi〉xi for each x ∈ H.
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3.5 Fourier transform

A heuristic approach to a fruitful operator F will suit as an introduction:
Due to Example 3.2.6, xk(t) = (2τ)−1/2eiπ

k
τ
t is an onb of L2(I) ⊂ L1(I), I :=

[−τ, τ ] and therefore by Theorem 3.2.3 each square-integrable function with
support in I can be expressed as a superposition of xk with unique coefficients
ck, i.e.

∀ f ∈ L2(I) : f =
∑

k∈Z

ckxk, ck = 〈f, xk〉 .

Hence,

f(t) =
∑

k

∫

I

f(s)xk(s) ds xk(t)

=
1

2π

∑

k

∫

I

f(s)e−iωks ds eiωkt ∆ωk

with ωk := πk
τ
, ∆ωk := ωk − ωk−1 = π/τ which have a striking resemblance

to a Riemann’s sum such that in the limit, τ → ∞,

f(t) =
1

2π

∫

R

∫

R

f(s)e−iωs ds eiωt dω

is expected.
This sketchy point of view clarifies why in the sequel the Fourier transform

is defined first for functions living on L1(R) and later as an extension to L2(R).

Definition 3.5.1. The Fourier transform F is defined as

F : L1(R) → L1(R)

f 7→ 1√
2π

∫

R

f(t)e−iωt dt =: f̂(ω)

It is clear that F is a linear operator and applying Lebesgue’s dominated
convergence theorem it is even a bounded operator which maps each f ∈
L1(R) to a continuous function f̂ (cf. Eq. (3.9a)). The next theorem will be
stated without proof (see [Erd03, pp. 212]) and serves as a motivation for
the definition thereafter.

Theorem 3.5.2. Let f, g ∈ L1(R). Then

f̂ ∈ C0(R) with sup
ξ∈R

|f̂(ξ)| 6 (2π)−1/2‖f‖L1 (3.9a)

with f̂ ∈ L1(R) : f(t) =(2π)−1/2

∫

R

f̂(ω)eiωt dω a.e. (3.9b)

f̂ = ĝ ⇒f = g a.e. (3.9c)
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Equation (3.9a) implicitly says that lim|ω|→∞ f̂(ω) = 0 which is also
known as the Riemann-Lebesgue-lemma. The major tool in showing these
relations is Lebesgue’s dominated convergence theorem.

The two last claims justify Definition 3.5.3, i.e. Eq. (3.9c) guarantees
that the mapping F−1 is indeed well defined and the prior equation explains
why relation (3.9b) can be understood (at least in L1-sense) as the inverse of
F .

Definition 3.5.3. The inverse Fourier transform is defined by

F−1 : L1(R) → L1(R), f 7→ (2π)−1/2

∫

R

f(ω)eiω· dω

The next theorem summarises some useful properties of F which will be
expedient in later considerations. Here, the notation tkf ∈ L1(R) means that
the mapping t 7→ tkf(t) belongs to L1(R).

Theorem 3.5.4 ([Erd03, pp. 218]). Let n > 0 and f ∈ L1(R). Then

tnf ∈ L1(R) ⇒ f̂ ∈ Cn(R) and

f̂ (n) ∈ C0(R),
(3.10a)

with
(

d
dω

)n
F(f)(ω) = F

(
(−it)nf

)
(ω); (3.10b)

f ∈ C(R), ωnf̂ ∈ L1(R) ⇒ f ∈ Cn(R) and
f (n) ∈ C0(R);

(3.10c)

∃ γ ∈ R : |f(t)| 6 γ|t|−n−1−ε ⇒ f̂ ∈ Cn(R) (3.10d)

f ∈ L1(R) ∩ Cn(R),
∀ k = 0, . . . , n− 1 : f (k) ∈ C0(R),

f (n) ∈ L1(R)



⇒ ωnf̂ ∈ C0(R) and

|f̂(ω)| 6 γ|ω|−n (3.10e)

with F
((

d
dt

)n
f
)
(ω) = (iω)nF(f)(ω) (3.10f)

f ∈ C(R), f̂ ∈ L1(R) ∩ Cn(R),

∀ k = 0, . . . , n− 1 : f̂ (k) ∈ C0(R),

f̂ (n) ∈ L1(R)



⇒ tnf ∈ C0(R) (3.10g)

Proof. Eqs. (3.10a) and (3.10b) can be shown by induction:

for n = 1 : assume tf ∈ L1. To show f̂ ∈ C1 and f̂ ′ ∈ C0;

∣∣∣∣∣
f̂(ω + h) − f̂(ω)

h

∣∣∣∣∣ =
1√
2π

∣∣∣∣
∫
f(t)e−iωt

e−iht − 1

h
dt

∣∣∣∣ 6
1√
2π

∫
|tf(t)| dt <∞
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where inequality is due to

∣∣∣∣
e−iht − 1

h

∣∣∣∣ =
1

|i|

∣∣∣∣
∫ t

0

e−ihs ds

∣∣∣∣ 6 |t|max
h,s

|e−ihs| = |t|.

Hence, by Lebesgue dominated convergence theorem it follows

lim
h→0

f̂(ω + h) − f̂(ω)

h
=

∫
f(t)e−iωt

(
lim
h→0

e−iht − 1

h︸ ︷︷ ︸
= (e−iht)′|

h=0
=−it

)
dt = F(−itf)(ω).

This implies in particular that f̂ is differentiable and by Eq. (3.9a) it proves
the assertion for n = 1.

For the induction step, n 7→ n + 1, suppose that tn+1f ∈ L1(R). Then

|tnf(t)| 6

{
|f(t)| |t| 6 1

|tn+1f(t)| |t| > 1
⇒ with g := tnf it follows g ∈ C1 ∧ ĝ′ ∈ C0.

Linearity of F implies in particular

f̂(ω) =
(
(−it)nf

)
(̂ω) = (−i)n( tnf︸︷︷︸

= g

)̂ (ω) ∈ C1 ⇒ f̂ ∈ Cn+1

and analogously f̂ (n+1) ∈ C0 with f̂ (n+1) =
(
f̂n
)
(̂ω) = (−i)n(−it)ĝ(ω) =

(−it)n+1f̂(ω).
Equation (3.10e) is derivable from n-fold integration by parts, s.t. ∀ω 6= 0 :

∫ K

−K
f(t)e−iωt dt = −

n−1∑

k=0

(iω)−(k+1)e−iωt f (k)(t)
∣∣K
−K︸ ︷︷ ︸

|K|→∞−−−−→
f(k)∈C0

0

+(iω)n
∫ K

−K
f (n)e−iωt dt.

Hence, ∀ω 6= 0 : (iω)nf̂ = F
(
f (n)

)
(ω) and due to f̂ ∈ C0 this holds for all

ω ∈ R with ωnf̂ ∈ C0. This automatically implies that ωnf̂ is bounded such
that |f̂(ω)| 6 γ|ω|−n, for some γ.

Equations (3.10c) and (3.10g) are true since Eq. (3.9b) implies

ˆ̂
f(ν) = F(f)(ν) =

1√
2π

∫
f̂(ω)ei(−ν)ω dω = f(−ν) almost everywhere

(3.11)
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which by substitution g := f̂ completes the proof.
Last but not least, Eq. (3.10d) is equivalent to |tnf(t)| 6 γ|t|−1−ε which

implies ∫
|tnf(t)| dt 6

∫

|t|61

|f(t)| dt+ γ

∫

|t|>1

1

|t|1+ε dt <∞.

Since this thesis turns its attention to signals which are living in L2(R)
the Fourier transform, used as a tool describing their properties, has to be
extended to the space of interest properly. Doing so, it will be of much help

exploiting the fact that L1(R) ∩ L2(R)
‖·‖L2(R) = L2(R).

Lemma 3.5.5. (i) ∀ f ∈ L1(R) ∩ L2(R) : f̂ ∈ L2(R) with ‖f̂‖L2 = ‖f‖L2

(ii) ∀ f ∈ L2(R) : F
(
fχ[−n,n]

)
is a Cauchy sequence in L2(R)

Proof. The first claim can be easily shown under an additional assumption:
f̂ ∈ L1. Then

‖f‖2 = 〈f, f〉 =

∫
f(t)

1

2π

∫
f̂(ω)e−iωt dω dt

(by Fubini) =

∫
f̂(ω)

1

2π

∫
f(t)e−iωt dt dω

=
〈
f̂ , f̂

〉
= ‖f̂‖2.

A full proof can be checked in Rudin [Rud87, Thm. 9.13(b)].
Point (ii) follows from the first, since for each f ∈ L2(R) ⇒fn := fχ[−n,n] ∈

L2([−n, n]) ⊂ L1([−n, n]) and by (i) f̂n ∈ L2(R) it follows

w.l.o.g. ∀m > n : ‖F(fn) −F(fm)‖2 = ‖F(fn − fm)‖2 (i)
= ‖fn − fm‖2

=

∫

|t|∈[n,m]

|f(t)|2 dt
n→∞−−−→ 0

Since L2(R) is a Hilbert space, i.e. in particular complete, point (ii) of
the lemma above dictates the nature of this extension to L2(R) as in the
succeeding definition.

Definition 3.5.6. The Fourier transform F(f) = f̂ ∈ L2(R) of f ∈ L2(R)
is defined as

f̂(ω) := lim
n→∞

(2π)−1/2

∫ n

−n
f(t)e−iωt dt.

F is called the Fourier transform in L2(R)
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Theorem 3.5.7 (Parseval). ∀ f, g ∈ L2(R) :

‖f̂‖ =‖f‖ and〈
f̂ , ĝ
〉

= 〈f, g〉 .

Proof. The first assertion is clear due to the lemma above, point (i), conti-
nuity of the norm and the fact that fχ[−n,n] =: fn is a Cauchy seq. in L2(R)

with ‖fn − f‖ → 0 as like as ‖f̂n − f̂‖ → 0 according to Definition 3.5.6.
Equality of the last Parseval equation is analogously proven as in the proof
of Corollary 3.2.4.

As a consequence, it holds that the inverse Fourier transform of f̂χ[−n,n]

converges almost everywhere to f as n goes to infinity which gives rise to the
definition of an inverse Fourier transform of a L2(R) function.

Theorem 3.5.8.

∀ f ∈ L2(R) :

∥∥∥∥f − (2π)−1/2

∫ n

−n
f̂(ω)eiω· dω

∥∥∥∥
L2(R)

n→∞−−−→ 0

and the inverse Fourier transform in L2(R) is defined as

F−1 : L2(R) → L2(R),

f 7→ f∨ := lim
n→∞

(2π)−1/2

∫ n

−n
f(ω)eiω· dω. (3.12)

Moreover, ∀ a ∈ R \ {0}, b, µ ∈ R the following properties are true

Translation: F(f(· − b)) = e−ib·F(f)

Dilation: F(f(a·)) = |a|−1F(f)(a−1·)
Modulation: F(eiµ·f) = F(f)(· − µ)

According to Eq. (3.12) each f ∈ L2(R) satisfies f̂∨(t) = f̂(−t) (in L2-
sense) which is easily seen by a substitution. This guarantees the surjectivity
of the Fourier transform F : L2(R) → L2(R) and due to Parseval’s equations,
Theorem 3.5.7, which say that F is in addition an isometry it is clear that

Theorem 3.5.9 (Plancherel). The Fourier transform

F : L2(R) → L2(R)

is an isometric isomorphism with the inverse given as in Equation (3.12).
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3.6 Heisenberg’s Uncertainty Principle

Definition 3.6.1. (i) Let
√
xf ∈ L2(R). The expectation (3.13a) and

variance (3.13b) f are defined as

E(f) :=‖f‖−2

∫
x|f(x)|2 dx (3.13a)

Var(f) :=‖f‖−2

∫
(x− E(f))2|f(x)|2 dx

=E(f 2) − E(f)2. (3.13b)

(ii) In particular, t0 := E(f), ω0 := E(F(f)) are the so-called locations
in time and frequency , respectively, with the corresponding standard
deviation of time- and frequency concentration, respectively, at t0, resp.

ω0 given as ∆t :=
√

Var(f), ∆ω :=

√
Var(f̂).

(iii) f is called band-limited :⇐⇒ supp(f̂) $ R and

time-limited :⇐⇒ supp(f) $ R

(iv) f is said to be localised in time domain:⇐⇒ ∃ t0, ∆t <∞ and localised
in frequency domain:⇐⇒ ∃ωo,∆ω <∞.

If f is localised in time and frequency domain then f is called localised .

Theorem 3.6.2 (Uncertainty principle). Each localised 0 6= f ∈ L2(R) sat-
isfies

∆t∆ω >
1

2
(3.14)

where the bound is attained if and only if ∃ a ∈ C\{0}, ν, b ∈ R, c ∈ R>0 :
f(t) = aeiνte−c(t−b)

2
. In this case, f is called a modulated Gaussian.

Proof. W.l.o.g. assume t0 = ω0 = 0 (otherwise consider instead of f the
mapping t 7→ e−iω0tf(t+ t0)).

By extra restrictions2 on f , e.g. f ∈ C1(R), f (1)∈L1(R) with
√
tf

|t|→∞−−−→0,

2A general proof without extra assumptions on f which can be reduced to this case
can be looked up in Dym&McKean, (pp. 119-120) [DM72]
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it follows

(∆t)2(∆ω)2 =

(
E(f 2) −

= 0︷ ︸︸ ︷
E(f)2

)(
E(f̂ 2) −

= 0︷ ︸︸ ︷
E(f̂)2

)
= E(f 2)E(f̂ 2)

iωf̂=�f ′
= ‖f‖−2‖f̂‖−2

∫
|tf(t)|2 dt

∫
|f̂ ′(ω)|2 dω

︸ ︷︷ ︸
= ‖F(f ′)‖= ‖f ′‖2

Cauchy
Schwarz

> ‖f‖−4| 〈tf, f ′〉 |2 > ‖f‖−4|< 〈tf, f ′〉 |2

=
1

4‖f‖4

∣∣∣∣
∫
tf(t)f ′(t) + tf(t)f ′(t)︸ ︷︷ ︸

= t(f(t)f(t))′

dt

∣∣∣∣
2

integration
by parts

=
1

4‖f‖4

∣∣∣(t|f(t)|2)
∣∣
|t|→∞ − ‖f‖2

∣∣∣
2

=
1

4
.

Now it is still need to show that ∆t∆ω = 1/2 iff f is a modulated Gaussian.
‘⇒’: By a longer calculation mostly based on substitution it is clear that

F(aeiνte−c(t−b)
2
)(ω) = aeibω

√
2c
e−

(ω−ν)2

4c with t0 = b, ∆t = 1
2
√
c

and ω0 = ν, ∆ω =√
c from which directly follows that ∆t∆ω = 1/2.
‘⇐’:
Let ∆t∆ω = 1/2 then in particular first inequality implies

∫
|tf(t)|2 dt

∫
|f ′(t)|2 dt = | 〈tf, f ′〉 |2,

i.e. ∃ γ ∈ C : f ′ = γtf . Let γ = −2c for some c ∈ C then ∃ a ∈ C\{0} :
f(t) = ae−ct

2
, where a 6= 0 follows from f 6= 0.

Moreover, second inequality implies

| 〈tf, f ′〉 | = |< 〈tf, f ′〉 | ⇒ 〈tf, f ′〉 ∈ R

and by 〈tf, f ′〉 = −2
∫
tae−ct

2
tcae−ct2 dt = −2c‖tf‖2 it follows that c ∈ R.

The supplement claim f ∈ L2(R) is only possible if c > 0 (f 6= 0 ⇒ c 6= 0).
Resubstitution (see comment at the beginning of this proof) yields

f(t) = Aeiω0te−c(t−t0)2 , 0 6= A ∈ C, t0, ω0 ∈ R, c > 0

In words, Heisenberg’s uncertainty principle says that it is impossible to
determine the frequency of a signal at an arbitrary fixed time (and vice versa,
at which time an arbitrary but fixed frequency was attained by f).
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Fig. 3.3: Two Heisenberg boxes in the phase space with their accessory Gaussian

g(t) = ae−c(t−b)
2

and ĝ, resp., with parameters (a, b, c) = (4, 2, 2) for the dashed
version and plotted in solid with (a, b, c) = (3, 5, 20).

Higher accuracy in one space leads to a ‘smear of information’, i.e. lower
accuracy in the other space. The ‘best’ achievable compromise, i.e. equal
treatment of information coming from frequency and time domain is gained
by the only class of functions made up from the so-called modulated Gaus-
sians.

Motivated by this theorem, it is common in signal analysis to ‘compare’
localised signals with each other in the so-called phase space or time-frequency
space where each signal is represented by a Heisenberg box B = {(t, ω)|t ∈
[t0 − ∆t, t0 + ∆t], ω ∈ [ω0 − ∆ω, ω0 + ∆ω]}.

From stochastics the Chebyshev inequality is known as P (|X−µ| > γ) 6

σ2/γ2 where γ is some threshold, P a probability measure, X a random
variable, µ and σ the corresponding expectation and standard deviation,
respectively.

Transfered to this case, the Heisenberg box B of a function f can be
interpreted as an area with high energy concentration of f , i.e. a rather high
portion of ‖f‖ is localised around (t0, ω0).

On the other hand, it can be proved ([Erd03, p. 235]) that there exists
no function such that any box B in phase space is able to cover it.3.

3A well-known consequence of the sampling theorem, see Theorem 4.4.1, is that a signal
cannot be both band-limited and time-limited. To see why, assume that such a signal
exists, and sample it faster than the Nyquist frequency. These finitely many time-domain
coefficients should define the entire signal. Equivalently, the entire spectrum of the band-
limited signal should be expressible in terms of the finitely many time-domain coefficients
obtained from sampling the signal. Mathematically this is equivalent to requiring that a
(trigonometric) polynomial can have infinitely many zeros since the band-limited signal
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Fig. 3.4: Two modulated Gaussian – on the left side, f(t) = 7ei20te−5(t−2)2 and

on the right side of figure g(t) = 10ei20te−30(t−5)2 – (solid lines) with three different
intervals each [b− k∆ω, b+ k∆ω], k = 1, 3, 5, intimidated by dotted lines

Theorem 3.6.3. @ f ∈ L2(R), f 6= 0 : f is band- and time-limited,

Concluding, one can say that the properties of f will in general neither
show up in detail nor all at once.

must be zero on an interval beyond a critical frequency which has infinitely many points.
However, it is well-known that polynomials do not have more zeros than their orders
due to the fundamental theorem of algebra. This contradiction shows that our original
assumption that a time-limited and band-limited signal exists is incorrect.



Chapter 4

Fixed Time – Frequency

Analysis

4.1 Gabor Frames – Windowed Fourier Transform

It is part of our everyday experience that with the sense of hearing it is not
only possible to locate sounds or distinguish between high and low frequencies
(of it) but also to know when exactly a particular tonality occured - at least
this is what our brain makes us believe.

Similar to a language every musician is able to read a musical notation,
cf. Figure 4.1, which of course specifies frequency and duration and hence the
exact (time) occurrence of each note. Reading and singing, resp. playing the
corresponding note in the prescribed way on an instrument can be considered
as an encoding process of some decoded information. Conversely, some of
these musicians have the ability to write down pieces of music in such kind of
notation so that the encoded result and the original sample would effectively
posses the same content of information.

The same is true in case of reading and writing words. Truly, some infor-

Fig. 4.1: Scores – a notation with both, time and frequency information (and a
little more: duration, loudness, stress,...). Excerpt from Words and Music by J.
Morali, H. Belolo and V. Willis. Arranged by M. Sweeney. Y.M.C.A. The Village
People.
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(a) c-d-e-f-a (b) a-f-e-d-c

Fig. 4.2: Two sequences of semi breves. Obviously, in both cases the Fourier
transform would consist of 5 frequencies, 261, 293, 329, 349 and 392 Hz, respec-
tively. Nevertheless, the signal in (a) is different from that in (b)!

mation of a conversation for instance will get lost - e.g. the voice, intonation,
dialect, etc. of a speaker. However, the ‘main’ content of this talk is still
accessible via the written letters, words and sentences.

Evidently the sole knowledge about present frequencies in a signal f ∈
L2(R), i.e. without any additional time resolution of the underlying spectrum
will not suffice to carry out a kind of classification. Figure 4.2 illustrates this
problem.

In mathematics the Fourier transform is a well known tool for study-
ing problems from a different point of view, namely the frequency domain.
Sometimes these get simpler and can be solved.

Unfortunately, by means of this transformation it is impossible to draw
conclusions on the question when a frequency occurred. It only gives an
answer at which amplitude some frequency is part of the signal f .

The absence of any time-dependence of f̂(ω) can be artificially fixed by
introducing a reference function g which windows the signal as fg(· − t) at
time t such that a subsequent Fourier transformation with additional para-
meter t would end up in a localised spectrum if g itself is localised.

Lemma 4.1.1. Let g ∈ L2(R) with ‖g‖ = 1. Then the modulated by ω and
translated by t copy of g, defined as gω,t := (2π)−1/2g(· − t)eiω· ∈ L2(R) and
〈f, gω,t〉 is well defined.

Proof. The first claim follows by substitution whereas well-definition of 〈f, gω,t〉
is ensured by the Cauchy-Schwarz inequality.

Definition 4.1.2. Let g ∈ L2(R), ‖g‖2
L = 1. Fgf(ω, t) := 〈f, gω,t〉 is called

the windowed Fourier transform of f where g is the corresponding window .

Corollary 4.1.3. (i) Fgf(ω, t) = e−itω(2π)−1/2
∫
f̂(ν)eitν ĝ(ν − ω) dν

(ii) If g is localised with t0, ω0,∆t,∆ω then g(· − t)e−iω· is localised around
t+ t0 with ∆t and ĝ(· − ω)e−it· is localised around ω + ω0 with ∆ω.
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Proof. The Parseval equation (Theorem 3.5.7) and the properties of F (The-
orem 3.5.8) imply the first assertion. The last statement is proven by simple
a substitution.

Item 1 says that g localises f in time domain and ĝ localises f̂ in frequency
domain. Taking Item 2 into account this lends itself to consider |Fgf(ω, t)|
as the energy of a local frequency ω at time t of f .

The physicist Gabor was the first who proposed such a decomposition
[Gab46]. He also suggested to choose the window g as a Gaussian, such that
by Heisenberg’s uncertainty principle the spread of uncertainty in frequency
and time would be as small as possible (Theorem 3.6.2). Unfortunately, such
a decomposition is not as flexible as it seems to be:

An obvious discretisation of gω,t can be encompassed by a linear ansatz:
t = nt0, ω = mω0, i.e. gm,n := g(· − nt0)e

imω0· for n,m ∈ Z and parameters
t0, ω0 ∈ R>0.

Ingrid Daubechies proved ([Dau92, pp. 81, p.112] that the system (gm,n)m,n
constitues a frame if and only if ω0t0 6 2π and in addition, if ω0t0 > 2π then
the so-called Gabor system even fails to be complete.

Though frames possesses nice properties, uniqueness and numerically sta-
ble representation of f ∈ L2(R) require qualities which only can be estab-
lished by a Riesz basis. Hence, it is advisable to restrict the ‘sampling density’
(cf. Theorem 4.4.1) to the case ω0t0 = 2π.

On the other hand, in most applications it is also of great importance
to achieve localisation in time and frequency space. The point is that if
(gmn)mn constitutes a Riesz basis then such a venture is impossible. Balian
and independently Low have found the following result.

Theorem 4.1.4 (Balian - Low). If (gmn)mn constitutes a Riesz basis then

∫
x2|g(x)|2 dx

∫
ω2|ĝ(ω)|2 dω = ∞.

A proof can be checked at [Dau92, pp. 109].
This first approach of introducing a window g which can be translated

in time in order to correlate f with eiω· locally (in contrast to the usual
Fourier transform where this is done globally) has yet a disadvantage. It
just so happens that the time-spread ∆tg of g is sometimes too large and
sometimes too small compared to local properties of f at some point of
interest. Figure 4.3 illustrates this problem.

In theearly 80s of the last century J. Morlet was faced with the task of
analysing seismic waves. Unhappy with the results provided by the windowed
Fourier transformation he proposed to correlate the signal f ∈ L2(R) with
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Fig. 4.3: The upper two subfigures represent two signals with corresponding
spread ∆tf whereas the lower subfigures stands for the Gaussians. Case one [left
two pictures with ∆tf � ∆tg ]: No time localisation; the window has no effect on
the Fourier transformation. Case two [right two pictures with ∆tf � ∆tg ]: No
frequency localisation; here the windowed Fourier transformation would be ‘blind’
for such low frequencies. Confer in this context also Figure 4.16

a dilated copy of a ‘small wave’, i.e. a function ψ ∈ L2(R) which has to be
localised in time domain. So, – instead of adjusting manually the width of an
auxiliary function g and correlate f with (co-/)sines – by dilating a ‘wavelet’
ψ, its ‘frequency’ and time-width changes simultaneously (cf. Figure 4.4).

This also corresponds to the intuitive understanding: the higher the fre-
quency the smaller the cycle! (cf. Figure 4.5).

4.2 Wavelets

Definition 4.2.1. Let ψ ∈ L2(R), with ‖ψ‖ = 1 and define the dilated by a
and translated by b version of it as ψa,b := a−1/2ψ( ·−b

a
).

(i) ψ is called admissible:⇐⇒

Cψ := 2π

∫ |ψ̂(ω)|2
|ω| dω <∞ (4.1)

(ii) If ψ is admissible and f ∈ L2(R) then define ∀ (a, b) ∈ R\{0} × R
Wf(a, b) := 〈f, ψa,b〉. Wf(a, b) is called a continuous wavelet transform
of f .
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Fig. 4.4: Change of Heisenberg boxes. A scaling process versus modulation and
translation.

Fig. 4.5: Again, the upper two subfigures stand for two signals with time spreads
∆tf . Plotted underneath each signal is a dilated ‘wavelet’ whose time spread
automatically adopts to the frequency it can resolve (number of oscillations per
time). On the left side ψa,b is stretched, a > 1 and conversely, on the right side
compressed a < 1.
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Remark 4.2.2. Assume that ψ is localised with t0, ω0,∆t,∆ω, then (by The-
orem 3.5.8) ψa,b is localised with at0 + b, ω0/a, |a|∆t,∆ω/|a|. This property
necessarily transfers to Wf(a, b) s.t. the wavelet coefficients can be un-
derstood as a measure of frequency ω ∈ [ω0

2
− 1

2
∆ω
|a| ,

ω0

2
+ 1

2
∆ω
|a| ] at the time

t ∈ [at0 + b− |a|∆t
2
, at0 + b+ |a|∆t

2
].

This is basically derived from the Parseval eq. 〈f, ψa,b〉 =
〈
f̂ , ψ̂a,b

〉
and

restricts automatically the size of each Heisenberg box B of f to the Heisen-
berg box of ψa,b. A very illustrative picture of this fact is showed in [Dau92,
p. 89].

The term ‘wavelet’ is founded on the fact that a necessary condition for
ψ being admissible is ψ̂(0) = 0. ψ must oscillate with an appropriate decay
in its amplitude. This and an easy to handle sufficient condition on ψ to be
admissible will be the essence of the undermentioned lemma.

Lemma 4.2.3. Let ψ ∈ L2(R), tψ ∈ L1(R). Then

ψ is admissible ⇐⇒ ψ̂(0) = 0

Proof. ‘⇒’: tψ ∈ L1(R) ⇒ ψ ∈ L1(R) ⇒ ψ̂ ∈ C0(R). Assume that ψ̂(0) 6= 0.
Then ∃ δ > 0 such that∀ ε > 0 : |ψ̂(ω)| > δ ∀ |ω| 6 ε. This implies that

∫ |ψ̂(ω)|2
|ω| dω >

∫ ε

−ε

|ψ̂(ω)|2
|ω| dω > δ2

∫ ε

−ε

1

|ω| dω = 2δ2

∫ ε

0

ω−1 dω = ∞

which contradicts the admissibility.
‘⇐’: tψ ∈ L1(R) ⇒ ψ̂ ∈ C1(R). Hence, using mean value theorem and

the fact that ψ̂′ takes a maximum on a compact it follows ∀ |ω| 6 1

|ψ̂(ω)| = |ψ̂(ω) − ψ̂(0)| 6 max
ν61

|ψ̂′(ν)||ω|.

Therefore,
∫

|ψ̂(ω)|2/|ω| dω =

∫

|ω|61

|ψ̂(ω)|2/|ω| dω +

∫

|ω|>1

|ψ̂(ω)|2/|ω| dω

6 max
ν61

ψ̂(ν)
︸ ︷︷ ︸

< ∞

+

∫

|ω|>1

|ψ̂(ω)|2/|ω| dω

︸ ︷︷ ︸
6 ‖ψ̂‖L2= ‖ψ‖L2<∞

<∞

Due to this lemma it is now easy to give some examples for wavelets:
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Example 4.2.4. (i) The Haar system ψ =





1 t ∈ [0, 1/2)

−1 t ∈ [1/2, 1)

0 else

is a wavelet

since
∫
ψ(t) dt =

∫ 1/2

0
dt−

∫ 1

1/2
dt = 0.

(ii) The Morlet wavelet:

The ansatz ψ(t) = A(e−(ω−ω0)t−B)e−t
2/2 yields ψ̂(ω) = A(e−(ω−ω0)2/2−

Be−ω
2/2 such that ψ is admissible only for B = e−ω

2
0/2 so that ψ̂(0) = 0.

The next few assertions of the following theorem will illustrate some sim-
ilarities and differences of W compared to F and Fgf . It will also stress the
definition of admissibility, Eq. (4.1).

Theorem 4.2.5. Let f ∈ L2(R), (a, b) ∈ R \ {0} × R and ψ ∈ L2(R) be
admissible and let

L2(R2) := L2
(
R2, a−2C−1

ψ da db
)

:=
{
h : R2 → R

∣∣∣ ‖h‖2
L2(R2) :=

∫∫
|h(a, b)|2a−2C−1

ψ da db <∞
}
.

Then

∀ (a, b) ∈ R\{0} × R : |Wf(a, b)| 6 ‖f‖ (4.2a)

∀ a 6= 0, Wa : b 7→ Wf(a, b) : Wa ∈ C0(R) (4.2b)

for almost all a 6= 0 : Wa ∈ L2(R) (4.2c)

W : L2(R) → L2(R2) (4.2d)

∀ f, g ∈ L2(R) :

{ ‖Wf‖L2(R2) = ‖f‖L2(R)

〈Wf,Wg〉L2(R2) = 〈f, g〉L2(R)
(4.2e)

h ∈ ran(W) ⇐⇒ h =
∫∫

K(·, ·, a, b)h(a, b) a−2C−1
ψ da db, (4.2f)

where K(a, b; c, d) := 〈ψa,b, ψc,d〉 is the corresponding reproducing kernel.

Proof. Assertion (4.2a) follows by the Cauchy-Schwarz inequality where ‖ψa,b‖ =
1 is used.

Next, f, ψ ∈ L2(R) ⇒ f̂ ψ̂ ∈ L2(R) and again by the Cauchy-Schwarz

ineq. it follows that f̂ ψ̂(a·) ∈ L1. Furthermore,

〈f, ψa,b〉 =
〈
f̂ , ψ̂a,b

〉
=

∫
f̂(ω)

1√
a
ψ
( · − b

a

)
(̂ω) dω=

√
a

∫
f̂(ω)ψ̂(aω)eibω dω,
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such that by

〈f, ψa,b〉 =
√

2πa
(
f̂ ψ̂(a·)

)∨
(b) =

√
2πa

(
f̂ ψ̂(a·)

)∧
(−b) (4.3)

Equation (4.2b) follows by Riemann-Lebesgue lemma (cf. Theorem 3.5.2).

For Eq. (4.2c) it suffices to show (compare (4.3)) that f̂ ψ̂(a·) ∈ L2(R) for
almost all a 6= 0 but this is guaranteed by the admissibility of ψ. It holds:

∞ > ‖f‖Cψ
2π

Fubini
=

∫
|f̂(ω)|2

∫ |ψ̂(aω)|2
|a| da dω

Fubini
=

∫∫
|f̂(ω)ψ(aω)|2 dω

da

|a|

which shows Eq. (4.2c).

Such an easy calculation implies also

‖Wf‖L2(R2)

Eq.(4.3)
=

∫
2πa

∫ ∣∣∣
(
f̂ ψ̂(a·)

)∨
(b)
∣∣∣
2

db
da

Cψa2

and since Wa ∈ L2(R) a.e. Parseval eq. for F is applicable, i.e.

∥∥∥∥
(
f̂ ψ̂(a·)

)∨∥∥∥∥
Eq.(4.3)

=

∥∥∥∥
(
f̂ ψ̂(a·)

)∧
(−·)

∥∥∥∥
Parseval

=
∥∥∥f̂ ψ̂(a·)

∥∥∥ such that

‖Wf‖L2(R2) =

∫
2πa

∫
|f̂(ω)ψ̂(aω)|2 dω

da

Cψa2

Fubini
=

∫
|f̂(ω)|2

( 2π

Cψ

∫ |ψ̂(ν)|2
|ν| dν

)
dω

Parseval
= ‖f‖ .

〈f, g〉 = 〈Wf,Wg〉 is proven analogously as in the proof of Corollary 3.2.4.

Hence, Eq. (4.2e) holds and implies Eq. (4.2d).

ad Eq. (4.2f);

‘⇒’:

h(a, b) = Wf(a, b) = 〈f, ψa,b〉 = 〈Wf︸︷︷︸
=h

,Wψa,b〉

=

∫ ∫
h(c, d)Wψa,b(c, d)︸ ︷︷ ︸

= 〈ψa,b,ψc,d〉

dc dd

Cψa2
.
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It remains to show that h ∈ L2(R2) fulfilling the consistency relation (4.2f)
is in the image of W . For this consider W∗ : L2(R2) → L2(R). To show:
f := W∗h with h = Wf , i.e. WW∗ = id.

h(a, b) =

∫∫
〈ψa,b, ψc,d〉h(c, d)

dc dd

Cψa2
= 〈h,Wψa,b〉 = 〈W∗h, ψa,b〉 = 〈f, ψa,b〉

= Wf(a, b).

Remark 4.2.6. Due to the theorem above it is clear that W is a bounded
(cf. Eq. (4.2a)) and isometric (cf. Eq. (4.2e)) operator onto L2(R2) (cf.
Eq. (4.2d)) which is not surjective. This is a direct consequence of Eq. (4.2a):
e.g. define h(a, b) := |a|γg(b), γ ∈ (0, 1/2), g ∈ L2(R). Then it follows that
lima→∞ h(a, b) = ∞ but h ∈ L2(R2). Hence @ f ∈ L2(R) : h = Wf .

On the other hand, W is invertible on its image W−1 : ran(W) → L2(R)
and is itself an isometry.

Furthermore, each f, g ∈ L2(R) satisfies

〈f, g〉 = 〈Wf,Wg〉 = C−1
ψ

∫ ∫
Wf(a, b) 〈ψa,b, g〉 a−2 da db

= C−1
ψ

∫ ∫
〈Wf(a, b)ψa,b, g〉 a−2 da db,

which at least in the weak sense can be interpreted as the inverse of the
wavelet transform, i.e.

f = W−1h := C−1
ψ

∫ ∫
h(a, b)ψa,b a

−2 da db, for h = Wf.

Calderón found and subsequently Grossmann and Morlet rediscovered the
partition of unity (Eq. (4.4)) by means of wavelets:

Theorem 4.2.7. For each arbitrary f ∈ L2(R) and a wavelet ψ ∈ L1(R) the
advance relation holds.

∥∥∥∥f − C−1
ψ

∫

|a|>ε

∫

R

Wf(a, b)ψa,b a
−2 db da

∥∥∥∥
L2(R)

ε→0−−→ 0 (4.4)

If f ∈ L1(R) ∩ C0(R) with f̂ ∈ L1(R), then relation (4.4) holds in the C0-
topology, i.e. in particular pointwise!

Proof. This is beyond the scope of this thesis and can be checked for instance
in [Erd03, pp. 305] and the references therein.
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Remark 4.2.8. Imposing on ψ more restrictive conditions than done in
Eq. (4.1), e.g.

(Cψ
4π

=
)∫ 0

−∞

|ψ̂(ω)|2
|ω| dω

!
=

∫ ∞

0

|ψ̂(ω)|2
|ω| dω <∞, (4.5)

lead to slightly modified Parseval and Caldéron equations, Eqs. (4.2e) and (4.4),
respectively, such that the scaling coefficient a can be restricted to positive
values – cf. [Erd03, pp.308] for further readings on this topic. Eq. (4.5) is

automatically fulfilled if ψ is a real-valued function (⇒ ψ̂(−ω) = ψ̂(ω)) for
instance.

4.3 Discretisation

The wavelet transform is until now only of theoretical interest. It allows yet
to study functions by means of integrals which in most cases have to be cal-
culated by some quadrature formula. This is rather awkward and ineffective
and in practice the longing arise for fast and numerically stable computations
of such decomposition. Hence, it is obvious to consider a discrete lattice on
which this transform could be calculated by finite summations. The follow-

ing subsections will show that even frames
(
Wf(j, k)

)
j,k∈Z

in `2(R2) can be

constructed.

4.3.1 Discrete Wavelets

The atoms ψa,b stands for dilated and translated copies of a ‘mother wavelet’
ψ. It was already noticed that if ψ is localised then ψa,b is localised with
|a|-times the spread of ψ in time domain and 1

|a|-multiple of the spread of ψ
in frequency domain.

Remembering that one property of frames is the ability to cluster the
phase space (ω, t) with Heisenberg boxes corresponding to its frame vectors,
one intuitive way of discretising the dilation and translation parameters is as
follows: let ν 6= 0, τ > 0. Define for j, k ∈ Z : aj := ν−j , bj,k := ν−jkτ

ψj,k := ψaj ,bj,k
. (4.6a)

where ν 6= 0 can be further restricted to ν > 1, τ > 0 such that

ψj,k = νj/2ψ
( · − ν−jkτ

ν−j

)
= νj/2ψ(·νj − kτ) (4.6b)

where the restriction of ν to positive values is allowed by Remark 4.2.8 and
ν > 1 can be considered as a substitution of the scale index j ∈ Z.
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The definition of bj,k especially the multiplication with ν−j ensures that
at each scale j the translation kτ is refined and stays qualitatively as same
as at scale j − 1.

It is not only a cosmetic reason but also guarantees that ψj,k have a non-
zero overlap (more precisely their Heisenberg boxes) in the phase space, since
otherwise (ψj,k) would fail to span L2(R).

Ingrid Daubechies (1990) – and subsequently Chui and Shi (1991) with
different techniques – were able to prove necessary and sufficient conditions
for (ψj,k) constituting a frame in L2(R) . The next claims, Theorems 4.3.1
and 4.3.3, are borrowed from [Dau92, pp.63 and p.69] where the technical
proofs are omitted.

Theorem 4.3.1. (Daubechies – necessity for frames) Let ψ ∈ L2(R) and
assume that (ψj,k)j,k∈Z – defined as in Eq. (4.6a) – constitutes a frame in
L2(R) with frame bounds 0 < A 6 B <∞. Then

A 6
2π

τ ln ν

∫

R

|ψ̂(ω)|2
|ω| dω 6 B. (4.7)

Remark 4.3.2. If ν is restricted to positive values as it is done in Eq. (4.6b)
then the estimate Eq. (4.7) splits up into a positive and negative frequency
domain, i.e.

A 6
2π

τ ln ν

∫

R>0

|ψ̂(ω)|2
|ω| dω 6 B and A 6

2π

τ ln ν

∫

R60

|ψ̂(ω)|2
|ω| dω 6 B.

(4.8)

Note also the similarities between the admissibility condition (cf. Defini-
tion 4.2.1 and Eq. (4.5)) and these a priori restrictions (Eqs. (4.7), (4.8)) on
ψ which imply that these preconditions do not have a severe impact if ψ is
already assumed to be a wavelet!

Theorem 4.3.3. (Daubechies – sufficiency for frames) Let ψ be admissible
and decay in frequency domain like

|ψ̂(ω)| 6

{
C|ω|ε |ω| 6 1

C|ω|−(1+ε) |ω| > 1
for some ε, C > 0. (4.9a)

If ∃ ν > 1, ∃ β > α > 0 such that ∀ |ω| ∈ [1, ν] :

α 6
∑

j∈Z

|ψ̂(νjω)|2 6 β (4.9b)

=⇒ ∃ τν > 0 : (ψj,k)j,k∈Z constitutes a frame in L2(R) , ∀ τ < τν .
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Corollary 4.3.4 ([Erd03, pp. 326]). If ψ is admissible and ψ ∈ L1(R) with
ψ̂(ω) 6= 0 ∀ |ω| ∈ (0, h), for some h > 0 fulfilling the decaying properties as
stated by Eq. (4.9a), then ∃ τν > 0 : (ψj,k)j,k∈Z constitutes a frame in L2(R),
∀ τ < τν .

Proof. Let ν > 1 and |ω| ∈ (1, ν). Then

∑

j

|ψ̂(νjω)|2 6 C2|ω|2
∑

j∈Z6−1

ν2jε + C2|ω|−2(1−ε)
∑

j∈Z>0

ν−2j(1+ε)

6 C2

(
1

1 − ν−2ε
+

1

1 − ν−2(1+ε)

)
.

Moreover, due to the continuity of ψ̂ (since ψ ∈ L1), it follows that |ψ̂(ω)| > 0
on (−h, 0)∪(0, h) such that ∃ δ > 0 and k < 1: |ψ̂(ω)| > δ on (−νk+1,−νk)∪
(νk, νk+1) ⊂ (−h, 0) ∪ (0, h) ⇒

∑

j

|ψ̂(νjω)|2 > |ψ̂(νkω)|2 > δ2.

Hence, Eq. (4.9b) of upper theorem is fulfilled.

This easy to check properties together with the approach to orthonor-
mal wavelets, presented in the sequel, led in the past to a lot of compelling
wavelets, see Section 4.4.1.

4.3.2 Multiresolution Analysis – MRA

Suppose that there exists φ ∈ L2(R) such that

ψ =
∑

k

dkφ(· − k) and φ =
∑

k

ckφ(2 · −k) (4.10)

hold for ck, dk where in each case only finitely many coefficients are non-
zeros and φ is considered to be normalised. Define φk,l := 2k/2φ(2k · −l), i.e.
ν = 2, τ = 1 and analogously ψk,l. Then

〈f, ψk,l〉 =
∑

j

dj 〈f, φk,l+j〉 (4.11a)

〈f, φk,l〉 =
√

2
∑

j

cj 〈f, φk−1,2l+j〉 , (4.11b)

such that reconstruction and superposition is carried out in a recursive way
by means of finite convolutions (since it was assumed that c = (ck)k and
d = (dk)k have a compact support).
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Relation (4.11) furnishes a fast algorithm first described by Mallat which
enabled an implementation of this wavelet analysis of same low complexity
as for the so-called Fast Fourier transform.

The existence of such function φ and in particular the relation (4.10) is
a necessity of the so-called multiresolution analysis - MRA - concept which
was introduced in the late 80s by Stephane Mallat and Yves Meyer.

Definition 4.3.5 (MRA). A multiresolution analysis of L2(R) is a chain
of closed subspaces {Vj}j∈Z satisfying following properties

Containment: Vj ⊂ Vj+1 ⊂ L2(R) ∀j ∈ Z (4.12a)

Increase:
⋃

j∈Z

Vj
‖·‖L2(R)

= L2(R) (4.12b)

Decrease:
⋂

j∈Z

Vj = {0} (4.12c)

Dilation: f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1 (4.12d)

Generator: ∃φ ∈ V0 : (φ(· − k))k∈Z is an onb in V0 (4.12e)

As a direct consequence of requirement (4.12a) it follows that V0 ⊂ V1

and, due to Eqs. (4.12e) and (4.12d), (φ1,n)nZ is an onb in V1. Therefore
there exists c ∈ `2 : φ =

∑
k ckφ1,k =

√
2
∑

k φ(2 · −k).
Since V0 is a closed subspace of V1 there exists a W0 6= ∅, W0 ⊂ V1 such

that V1 = V0 ⊕W0.
Hence, for any ψ ∈W0 it can be analogously deduced that ∃ d ∈ `2 : ψ =∑
k dkφ1,k =

√
2
∑

k dkφ(2 · −k).
Theorem 4.3.6 ([Erd03, pp. 384]). (i) There exist coefficients c := (ck)k

and d := (dk)k with c, d ∈ `2(R) such that

scaling equation φ =
∑

k

ckφ1,k =
√

2
∑

k

φ(2 · −k) (4.13a)

consistency equation
∑

k

ckck+2n = δ0,n ∀n ∈ Z (4.13b)

wavelet equation ψ =
∑

k

dkφ1,k =
√

2
∑

k

dkφ(2 · −k) (4.13c)

(ii) ψ generates an onb (ψk,l)k,l∈Z in L2(R) ⇐⇒

ψ ∈W0 ⇐ 〈φ(· − n), ψ〉 = 0 ∀n ∈ Z, i.e. ψ⊥V0 (4.14a)

〈ψ(· − n), ψ〉 = δ0,n ∀n ∈ Z (4.14b)

(ψ(· − n))n is complete in W0 (4.14c)
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(iii) Eqs. (4.14) ⇐⇒ ∀n :

∑

k

ckdk+2n = 0 (4.15a)

∑

k

dkdk+2n = δ0,n (4.15b)

∑

k

|c2k+n|2 +
∑

k

|d2k+n|2 = 1 (4.15c)

The considerations above hint at further proceedings, e.g. setting n = 0
in Eq. (4.15c) and in the consistency Equation (4.13b) it follows

∑

k

|c2k|2 +
∑

k

|d2k|2 = 1 =
∑

k

|ck|2

and by subtraction (r.h.s. minus l.h.s.) ⇒
∑

k even

|dk|2 =
∑

k odd

|ck|2,

which was first proven by Meyer and Mallat.

Corollary 4.3.7 (Mallat & Meyer [Erd03, pp. 390]). The system (ψj,k)j,k∈Z

generated by ψ :=
√

2
∑

k dkφ(2 ·−k) with dk := (−1)kc1−k is an orthonormal
wavelet basis in L2(R) if φ is a scaling function with scaling coefficients (ck)k.

The following theorem shows that under additional assumptions even
finite summations of type Eqs. (4.11) can result in exact reconstructions. This
is very convenient especially in implementing algorithms on the computer.

Theorem 4.3.8 ([Erd03, pp. 395]). Let φ be a scaling function with supp(φ) =
[a, b]. Then a, b ∈ Z and for each k ∈ Z it holds

(i) 0 = ck = dk ∀ k < a ∧ k > b, cl 6= 0 6= dl, l = a, b

(ii) ∃ψ wavelet with supp(φ) = supp(ψ).

Obviously there are (at least) three ways to tackle the problem of con-
structing an MRA which itself was mainly introduced due to difficulties in
giving appropriate orthonormal wavelets.

A reasonable starting point could be the design of closed subspaces Vj ⊂
L2(R) which form a ladder as claimed in Eq. (4.12a).

Unfortunately, a proof of the existence of a scaling function φ ∈ V0 is not
as handy as the easily verified properties (4.12b)-(4.12d). And in general,
if the converse - the non-existence of φ is shown, it is not evident how to
modify Vj in order to obtain an MRA. It turns out that the remaining two
approaches are of more profitability:
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In the 1988s Ingrid Daubechies managed to construct compactly sup-
ported, regular wavelets (see Section 4.4.1) imposing some conditions on the
scaling coefficients. This and Mallat’s recursive algorithm (as intimated by
Eqs. (4.11)) was a breakthrough in the wavelet community since then it was
possible to transform and reconstruct signals with the same complexity as
payed for the Fast Fourier transform – as the theorem above suggests only
finitely many coefficients are different from zero.

In the sequel a third approach will be presented: multiresolution analysis
generated by a scaling function.

Theorem 4.3.9. Let φ ∈ L2(R)

(i) Relations (4.12d)-(4.12e) hold ⇐⇒ (φ(· − k))k is an onb in V0, where

Vj :=

{
f ∈ L2(R)

∣∣∣∃ c ∈ `2(R) : f =
∑

k

ckφj,k

}
(4.16)

(ii) Relations (4.12d)-(4.12e) imply Eq. (4.12c)

(iii) Assume that Eqs. (4.12d)-(4.12e) hold. If ∀ ε > 0 ∃ δ > 0 such that for
almost all ω ∈ Bε(0) : |f̂(ω)| > δ ⇒ Equation (4.12b) holds

(iv) Eqs. (4.12d)-(4.12e) hold and φ satisfies the scaling equation (4.13a) iff
(Vj)j complies with Relation (4.12a).

Proof. These are trivial but lengthy implications of Definition 4.3.5. Check
for example [Erd03, pp.401].

Corollary 4.3.10. Let φ ∈ L2(R) meet

(i) (φ(· − k))k∈Z constitutes an ons in L2(R)

(ii) φ satisfies the scaling relation, Eq. (4.13a)

(iii) ∀ ε > 0 ∃ δ > 0 such that for a.a. ω ∈ Bε(0) : |f̂(ω)| > δ.

Then (Vj)j defines an MRA such that φ is the accompanying scaling function.

Proof. This follows directly from upper theorem.

In practice attendant preconditions of upper corollary are still inconve-
nient such that sufficient or equivalent stipulations which are easier to check
have to be acquired.

Above all, by means of Fourier transform it is possible to give exceptional
constructive and intuitive conditions on φ̂:
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Theorem 4.3.11. Let φ ∈ L2(R). Then

(i) φ(· − k) is an ons in L2(R) ⇐⇒ G(ω) :=
∑

k |φ̂(ω+ 2kπ)|2 =
1

2π
a.e.

and G ∈ L2
2π.

(ii) φ satisfies the scaling relation ⇐⇒

∃mφ ∈ L2
2π(R) : φ̂(ω) = mφ(

ω

2
)φ̂(

ω

2
) a.e. with (4.17a)

mφ(ω) =
√

2
∑

k

cke
−ikω in L2(R) -sense (4.17b)

respectively, ck =
1√
2π

∫ π

π

mφ(ω)eikω dω, k ∈ Z (4.17c)

ck scaling coefficients of φ.

Proof. First claim follows by sequentially applying Beppo – Levi’s and Le-
besgue’s dominated convergence theorem: Let (φ(· − n)n) be an ons. Then
∀n ∈ Z:

〈φ(· − n), φ〉 =
〈
φ̂(· − n), φ̂

〉
=

∫
|φ̂(ω)|2e−inω dω

=
∑

k∈Z

∫ (k+1)2π

k2π

|φ̂(ω)|2e−inω dω =
∑

k∈Z

∫ 2π

0

|φ̂(ω + 2kπ)|2e−inω dω.

For n = 0 define gK(ω) :=
∑

|k|6K |φ̂(ω + 2kπ)|2. gK is non-negative,
monotonically increasing and above calculations imply that

sup
K∈R

∫ 2π

0

gK(ω) dω 6 1.

Now, by Beppo – Levi it follows that

lim
K→∞

∫ 2π

0

∑

|k|6K
|φ̂(ω + 2kπ)|2 dω =

∫ 2π

0

lim
K→∞

∑

|k|6K
|φ̂(ω + 2kπ)|2 dω

i.e. G ∈ L2
2π and ‖gK −G‖L2

2π

K→∞−−−→ 0.

Let n ∈ Z and define fK,n(ω) := gK(ω)e−inω, Fn(ω) := G(ω)e−inω. Then

∀K,n : |fK,n| 6 G ∈ L1(R) a.e. with fK,n
K→∞−−−→

a.e.
Fn such that by Lebesgue

δ0,n = 〈φ(· − n), φ〉 =

∫ 2π

0

Fn(ω) dω = 2πĜ(n) ⇐⇒ G(ω) =
1

2π
a.e..
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ad ii) Let I ⊂ R.

∀n :
(∑

|k|6n
ckφ(· − k)

︸ ︷︷ ︸
=: fn

)∧
(ω) =

∑

|k|6n
ck

(
φ(· − k)

)∧
(ω) =

(∑

|k|6n
cke

−ikω

︸ ︷︷ ︸
=: gn

)
φ̂(ω).

Due to continuity of F it follows
∥∥∥F(fn) − F

(∑

k∈Z

ckφ(· − k)
)∥∥∥

L2(I)

n→∞−−−→ 0,

which also means convergence in L1(I)-sense, since L2(I) ⊂ L1(I). gn con-
verges in the sense of L2([m,m + 2π]), m ∈ R, and so, by Cauchy-Schwarz,
gnφ̂

n→∞−−−→ ∑
k cke

−ik·φ̂ converges in L1([m,m + 2π])-sense. According to
Plancherel’s theorem, Theorem 3.5.9, it follows

f =
∑

k

ckφ(· − k) ⇐⇒ f̂ =
(∑

k

cke
−ik·
)
φ̂ (4.18)

and in particular, applying Theorem 3.5.8,

φ(2−1·) =
√

2
∑

k

ckφ(· − k) ⇐⇒ 2φ̂(2·) =
√

2
(∑

k

cke
−ik·
)
φ̂.

Corollary 4.3.12. (Meyer, Mallat) Let (Vj)j be an MRA with a correspond-
ing scaling function φ and mφ. Then ψ defined by

ψ̂ = −e−i ·2mφ

( ·
2

+ π
)
φ̂ (4.19)

constitutes an orthonormal wavelet corresponding to the MRA (Vj)j.

Proof. This is a direct consequence of Corollary 4.3.7 and Eq. (4.3).

Remark 4.3.13. (i) The demand of orthonormality of (φ(· −n))n can be
dropped. More precisely, it can be relaxed by claiming that (φ(·−n))n∈Z

should constitute a Riesz basis for V0 which is an equivalent request to
0 < α 6

∑
k |φ̂(ω − 2kπ)|2 6 β < ∞ a.e. (see [Dau92, pp. 139] for a

detailed discussion).

(ii) Imposing additionally φ ∈ L1(R)(∩L2(R)) Items 1, 2 and 3 of Corol-
lary 4.3.10 gets necessary for φ being a scaling function of an MRA
([Erd03, p. 407]).
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(iii) Each MRA ‘generates’ an orthonormal wavelet basis (ψj,k)j,k∈Z in L2(R).
The converse is not true. One famous counterexample was given shortly
after introducing the concept of an MRA by J. L. Journé ([Mal89, p. 69-
87]).

On the other hand, it can be proved that each orthonormal wavelet ba-
sis with compact support (cf. [LR92, p. 17-19]) or with some significant
decay (cf. [Aus95, p. 181-236]) can be associated with an MRA.

The essence of this subsection is that by imposing very weak requirements
it is possible to construct an orthonormal wavelet basis in L2(R) such that

• the dual ψ̃j,k is naturally given (ψ̃j,k = ψj,k) and so reconstruction is
ergo less computational expensive, f =

∑
j,k∈Z

〈f, ψj,k〉ψj,k,
• and can further be reduced by algorithms which exploits the recursivity

mentioned at the outset, Eq. (4.11).

For numerical implementation there remains one aspect to consider, name-
ly the asymptotical behaviour of the wavelet transform (〈f, ψj,k〉)j,k since only
finitely many of the very same coefficients can be computed.

Strictly speaking, the goal is to achieve a good accuracy, i.e.

sup
x

∣∣∣∣∣
∑

(j,k)∈Z2

〈f, ψj,k〉ψj,k(x) −
∑

(j,k)∈Fε

〈f, ψj,k〉ψj,k(x)
∣∣∣∣∣ < ε, (4.20)

ε > 0 small, with as small as possible index set Fε ⊂ Z2 – here |Fε| denotes
the amount of indices contained in Fε.

In other words, the attention lies in finding such wavelets which obey
some asymptotics like

| 〈f, ψa,b〉 | = O (. . .) . (4.21)

Moreover, in many applications the wavelet transform is carried out be-
cause the major interest lies in the extraction of the evolutionary process of
frequencies. In particular, it is believed by the author that this is the key for
solving problems such as speech recognition (see also Chapter 2)

Hence, in addition to the claim (4.21) it is only fair to demand that ψ
has to be localised, i.e. ψ and ψ̂ have to fulfill some decaying properties.

Fortunately, by Theorem 3.5.4 regularity of ψ is equivalent to a rapid
decay of ψ̂. This is a lucky link by the simple reason that regularity of an
orthonormal wavelet ψ also implies relation (4.21).

In total, orthonormal wavelets ψ have to be regular and decay rapidly in
time domain. All the said can be summarised in the following two theorems
whose proofs are omitted.
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Theorem 4.3.14. ([Dau92, pp. 153]) Let f, g ∈ L2(R) such that they
generate an orthonormal set, i.e. 〈fj,k, gl,m〉 = δj,lδk,m ∀ j, k, l,m ∈ Z for
fj,k and gl,m defined as in Eq. (4.10). If f fulfills the decay properties,
|f(x)| = O (1 + |x|−m−1−ε) for some ε > 0 and g ∈ Cm(R), g(l), l 6 m
are bounded, then g has m vanishing moments, i.e.

∫
xlg(x) dx = 0, ∀ l = 0, . . . , m. (4.22)

Theorem 4.3.15. (Holschneider, Tchamitchian [Dau92, pp. 48]) Let ψ be
a wavelet with m vanishing moments (cf. Eq.(4.22)) and α ∈ (0, 1) and
f ∈ Cm(R), ∀n 6 m : f (n) ∈ L2(R) is bounded. Then

global

f (n) ∈ C0,α(R) ⇐⇒ | 〈f, ψa,b〉 | = O
(
|a|α+ 1

2
+m
)

uniformly in b

local

f (n) is Hölder continuous in some ξ ∈ R with exponent α, i.e.

|f (n)(ξ + h)| = O (|h|α) ⇒ |
〈
f (n), ψa,b+ξ

〉
| = O

(√
|a|(|a|α + |b|α)

)

and conversely

∃ γ > 0 : |
〈
f (n), ψa,b

〉
| = O

(
|a|γ+ 1

2

)
uniformly in b and

|
〈
f (n), ψa,b+ξ

〉
| = O

(
√

|a|
(
|a|α +

|b|α∣∣log |b|
∣∣
))

⇒ |f (n)(ξ + h)| = O (|h|α)

Remark 4.3.16. The renowned property of the wavelet transform behaving
like a mathematical zoom stems basically from the theorem above. Note
also that this is an intrinsic property of the wavelet transform and does not
confine oneself to the orthonormal case. By way of illustration the wavelet
transform of the function t 7→ 1 − |t| is showed in Figure 4.6.

In general, convergence similar to Eq. (4.20) is also satisfied for wavelet
frames, i.e.
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Fig. 4.6: Zooming property of the Wavelet transform. The function t 7→ 1 − |t|,
with t ∈ [−1, 1] is discretised (here it is uniformly sampled, tk = −1 + k∆, k =
0, . . . , 512, ∆ = 2

512 , such that the kink (or corner) of the original function is at
the sample t256,257); the subsequent (continuous) wavelet transformation of that
sequence is shown in the plot. The so-called Meyer wavelet and Matlab’s built-in
function cwt was used here to compute the coefficients, cl,m := 〈(tk)k, (ψl,m)m〉`2,
with levels: l = 1, 2, 3, . . . , 10, as intimated by the ordinate, check also Re-
mark 4.2.2. The grey tone is proportional to |cl,m|, m = 1, . . . , 512. The frequency
range decreases as the level increases. Such a plot shows exactly the kink since it
narrows at level 1 and samples t256,257.

Theorem 4.3.17 ([Dau92, pp. 88]). Let (ψj,k)j,k defined as in Eq. (4.6b)
constitute a frame with frame bounds A, B with following decay

|ψ(x)| = O
(
(1 + x2)−α

2
)
, |ψ̂(ω)| = O

(
|ω|β(1 + ω2)−

β+γ
2

)

and α, γ > 1, β > 0. Then, ∀ ε > 0 ∃Fε(Ω0,Ω1, T ) ⊂ Z2 s.t. ∀ f ∈ L2(R) :

∥∥∥∥f −
∑

(j,k)∈Fε(Ω0,Ω1,T )

〈f, ψj,k〉 ψ̃j,k
∥∥∥∥

L2(R)

6

√
B

A

((∫

Ω1<|ω|<Ω0

|f̂(ω)|2 dω

︸ ︷︷ ︸
=: ‖f̂‖L2(Ω0,Ω1)

)1/2

+
(∫

|x|>T
|f(x)|2 dx

︸ ︷︷ ︸
=: ‖f‖L2(T )

)1/2

+ ε ‖f‖
)

(4.23)

with Fε(Ω0,Ω1, T ) := {(m,n)
∣∣m0 < m < m1, |nτ | 6 ν−mT+t} and m0, m1, t

as defined in the proof [Dau92, p. 92 and 93, resp.].
As a special case, if ‖f‖L2(T ) 6 δ‖f‖2 and ‖f‖L2(Ω0,Ω1) 6 δ‖f‖2, i.e. if

f itself is ‘essentially’ localised in phase space on two rectangles [−T, T ] ×
[−Ω1,−Ω0] ∪ [−T, T ] × [Ω0,Ω1] then ‖f −∑(j,k)∈Fδ

〈f, ψj,k〉ψj,k‖L2 = O (δ).

As already mentioned, the lengthy proof can be checked in [Dau92, pp. 88].
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4.4 Speech processing by Common Techniques

Due to the character of this chapter which is intended only as an introduction,
respectively summary of a vast area and rapidly developing theory concerning
wavelets, only two families of orthonormal wavelets will suit as an example:
Daubechies and Meyer (– Lemarié-Rieusset) wavelets.

The former due to their outstanding properties and the latter because of
its similar construction compared to local trigonometric packets which will
be presented in the next chapter.

In the light of ‘real’ examples, Section 4.4.2 will summarise some of the
drawbacks of Fg and W.

4.4.1 Daubechies – Meyer

As already seen, the Haar wavelet is an orthonormal wavelet with compact
support. In particular,

φ = χ[0,1) ⇒ φ(2t− k) = χ[ k
2
, k+1

2
)(t)

such that the scale equation reduces to

φ(t) = χ[ k
2
, k+1

2
)(t) + χ[ k

2
, k+1

2
)(t) =

√
2
( 1√

2
φ(2t) +

1√
2
φ(2t− 1)

)

hence, c0,1 = 2−1/2, ck 6=0,1 = 0 and analogously, d0 = −d1 = 2−1/2, dk 6=0,1 = 0.
Unfortunately, this wavelet basis is of no practical importance since it is

only piecewise continuous and would automatically introduce artifacts (i.e.
supplement information not present in the original signal).

Daubechies made an ansatz based on the function mφ = 2−1/2
∑

k cke
−ik·

(cf. Corollary 4.3.12) where(ck)k is supposed to have only finitely many non-
zeros such that mφ is a (continuous complex) trigonometric polynomial.

Furthermore, the scaling function φ has to be of compact support. This
involves several advantages:

• according to Theorem 4.3.8, ψ is also of compact support

• φ, ψ ∈ L1(R) and hence φ̂, ψ̂ ∈ C(R) which implies that Eq. (4.17a)
holds in particular pointwise everywhere

• by iteration of Eq. (4.17a), i.e. φ̂(ω) = mφ(ω/2)φ̂(ω/2) it goes as

φ̂(ω) =
∏n

j=1mφ(2
−jω)φ̂(2−nω). Due to continuity of φ, respectively
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φ̂(0) = c/(
√

2π) for some c ∈ C with |c| = 1 (cf. Corollary 4.3.10) this
product converges for n→ ∞ to

φ̂(ω) =
c√
2π

∏

j>1

mφ(2
−jω),

where the phase of c is irrelevant and will be set to zero, i.e. c = 1.

Since the main goal is to construct a (regular) orthonormal wavelet basis
(with compact support) corresponding to a multiresolution analysis it is suf-
ficient (and necessary, cf. Corollary 4.3.10 and Remark 4.3.13, second item)
to check the following properties

M(ω) :=
1√
2π

∏

j>1

mφ(2
−jω) converges (4.24a)

M ∈ L2(R)(which would imply F−1(M) = φ ∈ L2(R)) (4.24b)

(φ(· − k))k constitutes an ons (4.24c)

∀ ε > 0 : |φ̂(ω)| > 0 for almost all ω ∈ Bε(0). (4.24d)

Convergence, even uniform convergence of M(ω) on every compact set and
continuity turns out to be a necessity of

mφ(0) = 1. (A)

Imposing |mφ(ω)|2 + |mφ(ω + π)|2 = 1, ∀ω (B)

it follows that M ∈ L2(R) and on top of it F−1(M) has compact support
and φ̂(0) = 1/

√
2π which by continuity of φ̂ implies then Eq. (4.24d).

Both conditions (A), (B) are necessary for a multiresolution analysis.
This is a consequence of the following:

1

2π
=
∑

k∈Z

|φ̂(ω + 2kπ)|2 =

( ∑

k even

+
∑

k odd

)
|φ̂(ω + 2kπ)|2

=
∑

k∈Z

|φ̂(ω + 4kπ)|2 +
∑

k∈Z

|φ̂(ω + 4kπ + 2π)|2

by Theorem 4.3.11, (ii) =
∑

k∈Z

∣∣∣∣mφ

(ω
2

+ 2kπ
)

︸ ︷︷ ︸
=mφ(ω

2
)

∣∣∣∣
2∣∣∣φ̂
(ω

2
+ 2kπ

)∣∣∣
2

+
∑

k∈Z

∣∣∣∣mφ

(ω
2

+ (2k + 1)π
)

︸ ︷︷ ︸
=mφ(ω

2
+π)

∣∣∣∣
2 ∣∣∣φ̂
(ω

2
+ (2k + 1)π

)∣∣∣
2

Theorem 4.3.11, (i), (ii) =
∣∣∣mφ

(ω
2

)∣∣∣
2 1

2π
+
∣∣∣mφ

(ω
2

+ π
)∣∣∣

2 1

2π
⇒ (B)
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and for φ ∈ L1 ∩ L2, i.e. in particular φ̂(0) 6= 0 it follows from Eq. (4.17a)

mφ(0) =
φ̂(0)

φ̂(0)
= 1 ⇒ (A).

The remaining property, (φ(· − k))k ons in L2, is almost guaranteed by (A)
and (B) (in fact, orthogonality can be deduced) such that orthonormality
can be concluded from

mφ(ω) 6= 0 ∀ω ∈ [−π
3
,
π

3
], (C)

for instance.
All omitted proofs can be checked at [Erd03, pp.488]
In this framework, the Haar wavelet crystallises as the most simple or-

thonormal wavelet for which the ansatz mφ(ω) = a + be−iω is made.

mφ(0)
!
= 0 ⇒ mφ(π) = 0 ⇒ a+ b = 1 ∧ a− b = 0

⇒ mφ(ω) =
1

2
(1 + eiω) = cos

(ω
2

)
e−i

ω
2

⇒ mφ(ω) 6= 0 ∀ω ∈ [−π
3
,
π

3
] and

|mφ(ω)|2 + |mφ(ω + π)|2 = cos2
(ω

2

)
+ sin2

(ω
2

)
= 1

such that mφ do generate a scaling function φ ∈ L1 ∩L2 corresponding to an
MRA,

φ̂(ω) =
1√
2π

∏

j>1

e−iω2−j−1

cos(ω2−j−1)

uniform conv =
1√
2π

∏

j>1

e−iω2−j−1
∏

j>1

cos(ω2−j−1)

=
1√
2π
e−iω
�

j>1 2−j−1
∏

j>1

cos(ω2−j−1)

L. Euler =
1√
2π
e−iω

sin
(
ω
2

)

ω
2

⇒ φ = χ[0,1)

Imposing regularity (smoothness) on the functions φ, ψ at hand it is possible
to show that this is an equivalent demand for vanishing moments (cf. The-
orem 4.3.14, or [Dau92, pp. 153]) which itself is an equivalent claim for mφ
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having a zero at π of sufficiently high order (check [Dau92, pp. 155]) such
that the factorisation

mφ = (1 + e−i·)n`φ, n > 1

promises to come to fruition. Here `φ stands for a trigonometric polynomial
of this kind

`φ =
∑

k6m

cke
−ik·, m > 1.

Ingrid Daubechies was able to give a constructive method how to achieve
orthonormal wavelets nψ ∈ Cβn of compact support, supp(nψ) = [−n+ 1, n]
with n vanishing moments, where regularity is understood in an asymptotical
way, i.e. nφ, nψ ∈ Cβn :⇐⇒ βn

γn

n→∞−−−→ 1, for γ := 1 − ln 3
ln 4

.
In particular,

• supp(nφ) = [0, 2n− 1] with 2n non-vanishing scaling coefficients

• ∀n > 1 : nφnψ have no anti-/symmetry and no analytical represen-
tation by means of elementary function (see also Figure 4.7). Latter
curiosity prompted Yves Meyer to grant them the status of new special
functions.

All omitted proofs concerning Daubechies wavelets can be checked in [Dau92,
Chapter 6].

Meyer wavelets Again, let the Haar scaling function be a starting point
to a new family. φHaar = χ[0,1) is one of the most elementary ansatz for a
scaling function in time domain. Consider therefore a translated version of
this characteristic function in the frequency domain

L2 3 φ̂ :=
1√
2π
χ[ν,µ)

For −ν = µ = π this ansatz fulfills the prerequisitions of Corollary 4.3.10
such that

φ(t) = F−1(φ̂)(t) =
1

2π

∫ π

−π
eitω dω =

sin(πt)

πt
for t 6= 0

and φ(0) := 1. Eq. (4.17a) motivates the definition (∀ |ω| < π : φ̂(ω/2) 6=
0 ⇒ mφ(ω/2) = φ̂(ω)/φ̂(ω/2))

mφ := χ[−π
2
,π
2
), for |ω| < π
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Fig. 4.7: Left column contains alternating scale function and scale coefficients.
Same order for right column picturing the corresponding wavelets. In particular,
Daubechies’s least symmetric wavelets nψ (and scaling functions nφ) with n = 2, 4
and 8 are plotted.
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such that mφ ∈ L2
2π and φ is indeed a scaling function (|φ̂(ω)| > 0 and∑

k |φ̂(ω + 2kπ)|2 = |φ̂(ω)|2 + |φ̂(ω + 2π)|2 = (2π)−1) corresponding to an
MRA with scaling coefficients

ck =
1√
2π

∫ π

−π
mφ(ω)eikω dω =

1√
2π

∫ π
2

−π
2

eikω dω

=
1√
2

2

kπ
sin
(kπ

2

)
=





(−1)
k−1
2 k odd

√
2

kπ
0 6= k even

1√
2

k = 0

and due to Corollary 4.3.12

ψ̂(ω) := e−i
ω
2mφ

(ω
2

+ π
)
φ̂
(ω

2

)
=
e−i

ω
2√

2π
χ[−2π,−π)∩[π,2π)(ω)

⇒ ψ =
sin(2π(t− 1

2
)) − sin(π(t− 1

2
))

π(t− 1
2
)

.

Sampling Theorem φ is called Shannon scaling function and ψ Shan-
non wavelet which is named after Claude E. Shannon. He was the first
who proved the so called sampling theorem. Whittaker was first stating the
following

Theorem 4.4.1. (Sampling Theorem) Let f ∈ C ∩ L2, supp(f̂) ⊂ [−π, π].
Then

f(t) =
∑

kinZ

f(k)
sin(π(t− k))

π(t− k)
almost everywhere. (4.25)

Lemma 4.4.2. Let (Vj)j be an MRA with φ as the corresponding scaling
function. Then

f ∈ V0 ⇐⇒ ∃mf ∈ L2
2π : f̂(ω) = mf (ω)φ̂(ω).

Proof of Lemma 4.4.2. Since φ is a scaling function corresponding to an
MRA (Vj)j, it follows that (φ(· − k))k is in particular an orthonormal basis
in V0. Hence,

f ∈ V0 ⇐⇒ ∃ (ck)k ∈ `2 : f =
∑

k

ckφ(· − k)

Eq. (4.18)⇐⇒ f̂ =

(
∑

k

cke
−ik·

)
φ̂.
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Proof of the Sampling theorem. The proof is different from Shannon’s and
uses the framework of an MRA:

Lemma 4.4.2 holds especially for the Shannon scaling function φ where

V0 =
{
f
∣∣∣ ∃ (ck)k ∈ `2 :

∑

k

ckφ(· − k)
}

=
{
f
∣∣∣ f̂ =

1√
2π
χ[−π

2
,π
2
)χ[−π,π) =

1√
2π
χ[−π,π)

}

=
{
f
∣∣∣ supp(f̂) ⊂ [−π, π]

}
.

But this complies with the preconditions of the sampling theorem and allows
therefore

f =
∑

k

〈f, φ(· − k)〉φ(· − k) =
∑

k

〈f, φ(· − k)〉 sin(π(· − k))

π(· − k)

and

〈f, φ(· − k)〉 =
〈
f̂ , φ̂(· − k)

〉
=
〈
f̂ , e−ik·φ̂

〉
=

1√
2π

∫ π

−π
f̂(ω)e+ikω dω

=
ˆ̂
f(−k) = f(k), if

ˆ̂
f ∈ C(R) (cf. Eq (3.11)).

Remark 4.4.3. A common generalisation of the Theorem 4.4.1 goes as:

Let f ∈ C ∩ L2 and suppf̂ ⊂ [−Ω,Ω], a ∈
(
0, π

Ω

]

=⇒ f =
∑

k

f(ka)
sin
(
π(a−1 · −k)

)

π(a−1 · −k).

One possibility to prove this is

g := f(·a) ∈ C ∩ L2 and ĝ(ω) = |a|−1f̂(a−1ω) ⇒ supp(ĝ) ∈ [−π, π]

=⇒ f(t) = g(a−1t) =
∑

k

g(k)
sin(π(a−1t− k))

π(a−1t− k)
.

In this context, a−1 is called sampling density . The higher a−1 the more
often f is sampled1

1Sampling is the process of converting a continuous signal into a discrete signal.
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A 

B 

−Ω− Ω− −Ω Ω 

Fig. 4.8: Aliasing. Red dashed line corresponds to the sum A + f̂ + B := f̂(ω +

2Ω−) + f̂(ω) + f̂(ω − 2Ω−).

The lowest bound, a−1 ∈ [Ω
π
,∞), is called Nyquist density , i.e. a−1 =

|supp(f̂)|
2π

. The sampling theorem says that above Nyquist’s density f can be
exactly reconstructed from its samples f(ka).

If f is sampled below its Nyquist density, i.e. a−1 < Ω
π
, then it is not

possible to reconstruct the original signal from its samples. For instance, let
a = π

Ω− > π
Ω
, Ω− := Ω(1 − ε) for some ε > 0. For convenience, let ε ∈ (0, 2

3
).

Then, cf. [Dau92, pp. 19], exploiting 2-periodicity of en(ω) := eπinω, i.e.
en(ω + 2) = en(ω) it follows

√
2πf(ka) =

∫ Ω

−Ω

f̂(ω)en
(
ω

Ω−

)
dω

=

∫ Ω−

−Ω−

(
f̂(ω + 2Ω−) + f̂(ω) + f̂(ω − 2Ω−)

)
en
(
ω

Ω−

)
dω.

Last equation shows that the undersampled signal f(ka) is an alias of a
Fourier transform and ‘folded over’ f̂ with narrower band width, cf. Fig-
ure 4.8

Very low and high frequency parts are folded back (onto the interval
(−Ω−,Ω−)) such that instead of f̂ a superposition A + f̂ + B is obtained.

The Shannon wavelet is so to say diametrically opposed to the Haar
wavelet. Excellent localising properties in frequency domain of the former is
faced with no localisation at all of the latter and vice versa in time domain.

In both cases the reason of slow decay (ψ̂Haar, ψShannon) is due to the dis-
continuities of the characteristic function. Hence, the first idea is to smooth
φShannon around ±π.



4.4 Speech processing by Common Techniques 79

Meyer and Lemarié-Rieusset proposed therefore

φ̂ν(ω) :=
1√
2π





1 |ω| 6
2
3
π

cos
(
π
2
ν
(

3
2π
|ω| − 1

))
2
3
π < |ω| < 4

3
π

0 |ω| >
4
3
π

(4.26a)

with supp(ν) ⊂ [0, 1] and ν(x) + ν(1 − x) = 1 ∀x. (4.26b)

Since φ̂ν is of compact support this family of functions is Lebesgue square
integrable and for the 2π-periodic function

Gν(ω) :=
∑

k∈Z

|φ̂ν(ω + 2kπ)|2

it holds for instance on the interval ω ∈ [−2
3
π, 4

3
π) : Gν(ω) = |φ̂ν(ω)|2 +

|φ̂ν(ω − 2π)|2. For |ω| < 2
3
π it follows by definition Gν ≡ 1

2π
and exploiting

the symmetry of ν on the remaining intervall ω ∈ [2
3
π, 4

3
π) it holds

2πGν(ω) = cos2
(π

2
ν
( 3

2π
ω − 1

))
+ cos2

(π
2
ν
( 3

2π
(ω − 2π) − 1

)
︸ ︷︷ ︸
ν
(
2− 3

2π
ω
)
=1−ν

(
3
2π
ω−1
)

)

= cos2
(π

2
ν
( 3

2π
ω − 1

))
+ cos2

(π
2
− π

2
ν
( 3

2π
ω − 1

))

︸ ︷︷ ︸
=sin2

(
3
2π
ω−1
)

= 1

such that in total Gν ≡ 1
2π

on R almost everywhere. So it only lacks to

check an a.e. property: φ̂ν(ω) =
√

2πφ̂(ω)φ̂(ω
2
) from which the existence

mφν (ω) =
√

2πφ̂ν(2ω), |ω| < π could be deduced.

But this follows from φ̂ν(
ω
2
) = 1

2π
for |ω| 6

4
3
π and supp(φ̂ν) = [−4

3
π, 4

3
π]

such that φ̂ν(ω)√
2πφ̂ν(ω)

= φ̂(ω
2
) is easily veriefied. Hence, φ ∈ L2 is a scaling

function and ψ̂ν := e−
i
2
·mφν (

1
2
· +π)φ̂ν the accompanying wavelet.

For ν = χ[ 1
2
,∞), ψ̂ reduces to the Shannon wavelet and for ν ∈ Cn(R)

(cf. Figure 4.9) it holds

• ψ ∈ C∞(R),

• |ψ(k)(t)| = O
(
|t|−k

)
, ∀ k > 0,

• ψ is symmetric around 1
2

with

• n− 1 vanishing moments, which are defined as in Eq. (4.22).

A proof can be found at [Erd03, pp.534] and the references therein.
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−5 0 5

Fig. 4.9: Meyer scaling function (up) and wavelet (down) for the choice ν(x) =
x4(35 − 84x + 80x2 − 20x3) as in [Dau92, p. 119].

4.4.2 Spectrograms

In theory, the wavelet transform has a lot of ‘nice’ properties whilst the
windowed Fourier transform simply lacks.

Nevertheless, it is the application which decide about usefulness of one
or the other. In image analysis, for compression or denoising of signals, just
to mention only a few areas of application, the wavelet transform might be
very handy. But in case of speech processing this highly acclaimed tool fails
to do a good job.

DWT for Voiced - Voiceless Distinction

A really simple way to distinguish voiced from unvoiced signals is showed
in Figure 4.10. Here, coefficients of the fourth and third level of a discrete
wavelet transformed signal (using Matlab’s built-in function wavedec and
Daubechies 3ψ wavelet) were used as indicators for frequencies ranging from
1 to 0.5 kHz (third level) and 500 to 250 Hz (forth level) which are known
to be characteristic for voiced speech, see Chapter 2.

If the absolute value of a coefficient is above a threshold then it is marked
(in Figure 4.10 with a red star). For simplicity, the threshold is set to twice
of the mean of all absolute valued coefficients.

The most left and right marked coefficient corresponds to the boundaries
of a voiced segment (red dotted line in each waveform).

This method is of low computational complexity since in principle, only
a discrete wavelet transform up to level 4 have to be computed.

The same algorithm is used for the word ["fEnst@r] (window) where two
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voiced segments should be achieved. Figure 4.11 illustrates such a partition
where level four and five were used to compute the boundaries.

The sole reason considering two levels instead of one is that it is more
robust. This can be seen in Figure 4.11,(b) for the second vowel [e] where
the marked coefficients at level four do not correspond to the right boundary.

Such a proceeding works for all words contained in the catalogue (cf.
Section 6.2).

Nevertheless, that partition may be too coarse since frequency intervals
smaller than one octave cannot be distinguished one from the other.

Fg for Formant Extraction

Another simplistic example shows the benefits of a windowed Fourier trans-
form. The author has recorded twenty realisations per each vowel [u], [o],
[a], [e] and [i] spoken by himself and sampled at 8 kHz (duration approx.
0.63 seconds).

These utterances are windowed Fourier transform with a Matlab’s default
window called Hanning. Those algorithms are built-in functions in Matlab,
executable by the command specgram.

Similar procedure as above marks the coefficients of each windowed Fourier
transform signal which are above a pre-defined threshold.

In each ‘windowed power spectrum’ the strongest peak should correspond
to F1. F2 must have a higher frequency and if there exists a third peak,
corresponding to F3, then its frequency should again be higher than that of
F2.

This yields a sequence of coefficients (actually a 3 × n matrix; each row
pertinent to n coefficients of F1, F2, F3, resp.) which is averaged and
is assumed to correspond approximately to the curve of each formant (cf.
Figure 4.12).

Figure 4.13 shows the so computed F1, F2 and F3. Although the algo-
rithm (averaging the coefficient sequence) is not very sophisticated it leads
already to a distinction of vowels which may also derive from the fact that
marked coefficients of all vowels are subdued to the averaging process (equal
treatment).

This remarkable property is also due to a really good frequency resolution
of that particular windowed Fourier transform.

Slight variations of the window size results in a different distinction be-
tween the vowels. Which window size to use is a priory not clear, cf. Fig-
ure 4.14.
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Fig. 4.10: The German word ["hilf@] (help) is decomposed in voiced and unvoiced
(or voiceless) parts using a discrete wavelet transform with Daubechies 3ψ wavelet
up to level 7 which is shown under each waveform. The colourbar used to plot the
absolute value of the wavelet coefficients was colormap(1-gray(8))
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Fig. 4.11: Decomposition into voiced/ voiceless parts of the German word
["fEnst@r] using fourth and fifth level.
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Fig. 4.12: From top to bottom in pairs: [a], [o], [u]; smallest 50% of coefficients
were plotted as white, compare the colorbar at the bottom, since they are of no
importance (to formant extraction); Note also that the coefficients were submitted
to a gamma transform, x 7→ xγ , with γ = 0.1 in order to emphasise the different
energy levels.
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Fig. 4.13: [u], [o], [a], [e], each 20 times repeated by the author; sampling fre-
quency: 8 kHz. The window size for the windowed Fourier transform was 74
samples long – or equivalently, 9.2 ms. In particular, Matlab’s built-in function
specgram was used, specgram(vowel,200,8e3,74,73), in order to compute the
spectrogram from which the formants F1 - F3 were extracted.
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Fig. 4.14: Influence of window size; (a) 100 samples long window (≡ 12.5 ms);
(b) 40 samples long window (≡ 5 ms).
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Fig. 4.15: Parameter space similar to Figures 4.13 and 4.14. The three axes
show the level of each ‘formant’ in contrast to those figures where frequency was
measured in the unit ‘Hertz’. Matlab’s built-in function cwt was used in connection
with Daubechies’ 3ψ wavelet; scales ranged from 1 to 40 in integer steps.

CWT

As already mentioned, the discrete wavelet transform (dwt) has a rather poor
frequency resolution if compared to a (windowed) Fourier transform.

But also the redundant continuous wavelet transform (cwt) does not show
a comparable frequency resolution as the (windowed) Fourier transform.

This is visualised in Figure 4.15 where analogously to the two previ-
ous described algorithms coefficients of the wavelet transform signal above a
threshold are marked and used for ‘formant’ extraction.

It is evident from that plot that the vocals cluster together but with a
much bigger intersection of different classes as in the case of the windowed
Fourier transform.

This is mainly because of the worse frequency resolution of the wavelet
transform.
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Drawbacks of Fg and W
Finally, consider an artificial signal: a sinusoid signal f sampled at a fre-
quency of 8 kHz and composed of frequencies 500, 550, 2700 and 3600 Hz,
resp. where the two last ones are only of short duration and occur several
times, Figure 4.16, (a) and Figure 4.17, (b). That signal is transformed by
means of F , Fg and W which coefficients are plotted in the phase planes,
Figure 4.16, (b-f) and Figure 4.17.

Comparing both transforms with each other it turns out that, if the width
of g is optimal adapted to f , Fg has a better trade-off between localisation
in time and frequency domain.

As a matter of course, the wavelet transform has a much better time
resolution of these high-frequency bursts and does not need to adapt any
window since this is already ‘built-in’ in the transformation process. But
these in some sense convenient properties are not always needed. They are
especially of almost no help in trying to achieve both, good frequency reso-
lution and time localisation.

Summarised, the drawbacks of each transform are

windowed Fourier transform

A priori knowledge about signal’s frequency is necessary in order to
achieve an expressive time-frequency partition.

It is almost impossible to handle different transients with equal care, i.e.
Fg resolves either sharp bursts of high frequency at a cost of localisation
in frequency domain or vice versa.

The discretised windowed Fourier transform (fj,k)j,k constitutes a frame
if and only if ωt = 2π but then Balian-Low theorem says that in this
case only a bad time-frequency is possible. Hence, either numerical
stability or good time-frequency partition is achievable. Not both!

Wavelet transform

Actually, this kind of transform is desirable if and only if ‘discontinu-
ities’ are of more importance compared to their frequency resolution.
More precise, localisation in time is much preferred to localisation in
frequency.

In addition, the discretised wavelet transform is naturally of lower fre-
quency resolution compared to a windowed Fourier transform, for in-
stance. In case of dyadic discretisation, decomposition in frequency
results in octave bands which is in some cases not adequate enough.
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Fig. 4.16: In (a) generated signal f (sampling frequency: 8kHz) is (windowed)
Fourier transform (b-f) with different window spreads. Localisation in time of high
frequent bursts increases from (b - no localisation at all) to (f) whereas resolution
of frequency is getting worse simultaneously (f - low frequent parts, 500 and 550,
resp., are undistinguishable). Subplots (b-f) are generated with Matlab’s specgram

built-in function, i.e. in particular with the Hamming window. These are the so-
called spectrograms. The phase of each coefficient is not rendered here; the colour
is proportional to log |Fg(f)| where red corresponds to a maximum and dark blue
minimum of all computed coefficients.
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(c) Meyer wavelet transform signal

Fig. 4.17: A continuous wavelet transform of the same signal as in Figure 4.16, (a).
Here, Meyer’s wavelet is used to compute the wavelet coefficients at scales 1-24.
Each discontinuity in f resulting from burst of high frequencies can be seen as
small spots of colour at levels 1 to 3. The resolution in frequency is at no level
usable – a rather wide colour ribbon at levels 7 - 18 results from the low frequencies
500 and 550 Hz. The width of that ribbon suggest on the other hand a frequency
ranging from 1

log(7) ≈ 514 Hz to 1
log(18) ≈ 360 Hz, i.e. almost 170

2 Hz uncertainty
and even more for the levels 2 and 3 which would correspond to frequencies from
approximately 1443 to 910 Hz. A wavelet transform signal at lower levels, say
at 1, 1.1, 1.2, . . . , 2, would yield a higher time resolution and a worse frequency
certainty.



Chapter 5

Adaptive Time – Frequency

Analysis

As described in Section 4.4.2, fixed time-frequency tilings of the phase plane
resulting from the wavelet or windowed Fourier transforms, for instance,
do not provide an adequate analysis of signals with time varying spectral
components as for speech recordings.

Almost a decade after the advent of wavelets it was observed by sev-
eral people (Ronald R. Coifman, Yves Meyer, Mladen V. Wickerhauser et
al.) that both transforms could be generalised to wavelet packets and local
trigonometric functions with same mathematical properties, i.e. constitut-
ing under mild conditions frames, orthonormal and (bi)orthogonal bases of
L2(R) and higher dimensions, but with an additional degree of freedom.

In both cases a fast computable basis tree is obtained from which it is
then possible to pick the ‘most suitable’ basis by minimising for instance a
cost functional.

5.1 Wavelet Packets

An obvious generalisation of the MRA ansatz is to use more than only two
subspaces Vj and Wj, j ∈ Z, of L2(R) yielding a more refined frequency axis
tiling.

For a detailed discussion on that specific transform check some of these
articles [CW92, Wic91, Wic93a, Wic93b, Wic94, Bar98] and the references
therein.

Since this thesis deals with signals which properties change over time, it
is preferable to isolate different time intervals with nearly constant frequency
parts. This is accomplished by the local trigonometric transform which seg-
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ments the time axis in contrast to the wavelet packet transform.
The first part of the following section is mostly based on Kai Bittner’s

excellent summary (cf. [Bit00]) of biorthogonal properties.

5.2 Local Trigonometric Packets

Consider for the rest of this thesis, if not otherwise stated, the following
general

Assumption 5.2.1. Let (aj)j∈Z ⊂ R be a strict monotonical increasing
sequence, i.e. ∀ j ∈ Z : aj < aj+1. Choose a sequence (εj)j∈Z ⊂ R>0 with
εj + εj+1 6 aj+1 − aj and define a±j := aj ± εj .

By virtue of this settings it follows

R =
⋃

i

[aj, aj+1) and ∀ j ∈ Z : [a−j , a
+
j ) ∩ (a−j+1, a

+
j+1] = ∅. (5.1)

In addition, let (tj,k)k∈N0 ⊂ L2([aj , aj+1]) denote a set of functions, j ∈ Z
which satisfy for each j ∈ Z, all x ∈ (−εj , εj) and a fixed σj ∈ {−1,+1} the
following three conditions

(tj,k)k∈N0 is an onb in L2([aj , aj+1]), and (5.2a)

tj,k(aj + x) = σjtj,k(aj − x), (5.2b)

tj−1,k(aj + x) = −σjtj−1,k(aj − x). (5.2c)

Finally, consider a sequence of ‘windows’ (wj)j∈Z fulfilling

support : supp(wj) ⊂ [a−j , a
+
j+1] (5.3a)

bounded : wj : R → [0, 1] (5.3b)

identity : wj |[a+j ,a−j+1] ≡ 1 (5.3c)

symmetry : wj(aj + x) = wj−1(aj − x), ∀ |x| 6 εj (5.3d)

reconstruction : w2
j (aj + x) + w2

j−1(aj + x) = 1, ∀ |x| 6 εj (5.3e)

Equation (5.3a) with (5.1) imply that only the immediate neighbouring
windows wj have a non-empty overlap, see Figure 5.1.

Moreover, parity conditions, Equations 5.2b and 5.2c, imposed on the
functions tjk have several consequences: tj,k should have an oscillating nature,
since the parity in aj must be different from aj+1. If tj,k is even (odd) in aj,
i.e. tj,k(aj + x) = tj,k(aj − x), |x| 6 εj , then tj,k is odd (even) in aj+1.

Another trivial consequence is that the product of two such functions is
always odd in each aj and that (tj,k)j,k is an onb in L2(R).
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a1 a2 a3 a4 a5 a6

Fig. 5.1: Windows wj with corresponding parameters aj and εj summarised in
two vectors: a = (−4,−2, 0, 2, 5, 10), ε = (0.41, 0.21, 1, 0.51, 2, 2)

In practice, it is convenient to know tj,k precisely. Next lemma gives for
each possible parity condition a set of trigonometric functions at hand which
satisfy conditions as described by Eqs. (5.2). Figure 5.2 illustrates both,
(anti-)symmetry (in aj) and the effect of windowing, wjtj,k.

Lemma 5.2.2. For any admissible choice of σj there exists a set of trigono-
metric functions (tj,k)k∈N0, j ∈ Z, which satisfies Eqs. (5.2). In particular,
these conditions are fulfilled by

tj,k(x) =





γj cos
(
(k + 1

2
)π
(x−aj

hj

))
, σj = σj+1 = 1

γj sin
(
(k + 1

2
)π
(x−aj

hj

))
, σj = σj+1 = −1

γ̃j cos
(
kπ
(x−aj

hj

))
, σj = −σj+1 = 1

γj sin
(
(k + 1)π

(x−aj

hj

))
, σj = −σj+1 = −1

(5.4)

with

γj :=

√
2

hj
, γ̃j =

√
2 − δ0,k
hj

, hj := aj+1 − aj

Proof. Parity conditions, Eqs. (5.2b) and (5.2c) follow by easy computations
such as orthonormality does. Hence, it remains to show that (tj,k)k is com-
plete in every L2([aj , aj+1]). For this, consider w.l.o.g. an arbitrary function
f ∈ L2([0, 1]).

The standard trick is to extend f (in a special way) to a function g ∈
L2([−2, 2]) which itself is then expressed in a Fourier series (cf. Example 3.2.6).
Such a special way would be for instance to extend f to the interval [0, 2]
even (σ1 = +1) with respect to x = 1, i.e.

f1(x) :=

{
f(x), x ∈ [0, 1]

σ1f(2 − x), x ∈ (1, 2]
⇒f1(1 + x) = σ1f(1 − x) ∀x ∈ (0, 1)
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(a) unweighted – trigonometric functions tj,k

(b) weighted – local trigonometric functions wjtj,k

aj+1aj

Fig. 5.2: Trigonometric functions tj,k as proposed in Lemma 5.2.2 wighted by a
window wj, wj as in Lemma 5.2.4. Parities in points aj and aj+1 are as followed:
solid line: even-odd (σj = σj+1 = 1), dashed line: even-even (σj = σj+1 = −1),
dotted line: odd-even (σj = −σj+1 = 1), dashed-dotted line: odd-odd (σj =
−σj+1 = −1). ‘Frequency’-parameter k was chosen as k = 4 (with aj = −4, aj+1 =
8, εj = 1, εj+1 = 6). Thin solid line corresponds to wj .
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whereas the resulting function, f1, will be extended to the interval [−2, 0]
odd (σ0 = −1) with respect to x = 0, i.e.

f0(x) :=

{
f1(x), x ∈ [0, 2]

σ0f1(−x), x ∈ [−2, 0)
⇒f0(x) = σ0f0(−x) ∀x ∈ (−2, 2)

To catch all possible cases (as illustrated in Figure 5.3) consider therefore
for arbitrary σ0, σ1 ∈ {−1,+1}

g(x) := f0(x) =





f(x), x ∈ [0, 1]

σ1f(2 − x), x ∈ (1, 2]

σ0f(−x), x ∈ [−1, 0)

σ0σ1f(2 + x), x ∈ [−2,−1).

As already mentioned, g can be expressed in a Fourier series, such that for
y ∈ [0, 1] it holds

(f(y) =)g(y) =
∑

k∈Z

〈g, ek〉 ek(y), for ek(x) :=
eπixk/2

2
.

Exploiting symmetry in g it follows for an arbitrary scalar product 〈g, ek〉

〈g, ek〉 =

∫ 2

−2

g(x)ek(x) dx

=

∫ 1

0

f(x)ek(x) dx+

∫ 0

−1

σ0f(−x)ek(x) dx

+

∫ 2

1

σ1f(2 − x)ek(x) dx+

∫ −1

−2

σ0σ1f(2 + x)ek(x) dx

=

∫ 1

0

f(x)Ek(x) dx, with

Ek(x) := ek(x) + σ0ek(−x) − σ1ek(2 − x) + σ0σ1ek(x− 2). (5.5)

Equation (5.5) reduces to the assertion, Eq. (5.4), with γj = 1.

A really successful approach in theory and practice is made via a fold-
ing operator (see Eq. (5.7)) first mentioned by M.V. Wickerhauser ([Wic91,
pp. 22], [Wic93a]). It turns out that useful properties of harmonic analysis
can be linked (as in Eqs. (5.15)) to a new set of functions (ψj,k := wjtj,k).
Theorem 5.2.7 summerises this fruitful ansatz.
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(a) All possible extensions of f(x) = x2

from [0, 1] to [−2, 2].
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(b) Ek(x) as defined in Eq. (5.5). for k = 1

Fig. 5.3: Parity conditions, σ := (σ0, σ1), at points x = 0, 1 from top (left, right)
to bottom (left, right) plot as σ = (1, 1), σ = (−1, 1), σ = (1,−1), σ = (−1,−1).

On the other hand, such a folding and unfolding procedure motivates also
the structure of fast algorithms. A decomposition like

f =
∑

j,k

〈f, ψj,k〉 ψ̃j,k

where most computational power is devoted to the calculation of scalar prod-
ucts will depreciate in numerical complexity if Relation (5.15b) is used.

Twf is then just a preprocess of a O (n log n), f ∈ Rn, fast Fourier-
like transform. More precisely, using trigonometric functions as given in
Lemma 5.2.2 such integration (of discrete signals, i.e. (fi)i ∈ `2(R)) can be
accomplished by one of the four discrete cosine transforms, DCT-I,II,III and
IV - (see [RY90]).

The DCT of type IV uses for instances functions given as in Lemma 5.2.2
for the even-even case, i.e. σj = σj+1 = 1.

Definition 5.2.3. Let a ∈ R and ε > 0 be arbitrary given. A function
r ∈ Cm(R), m > 0, is termed a cut-off function :⇐⇒

∀x ∈ R : r2(a + x) + r2(a− x) = 1 with r(x) =

{
0, x 6 a− ε

1, x > x+ ε
. (5.6)

For such a cut-off function define a folding operator U as

U := U(r, a) : L2(R) → L2(R)

Uf(a + x) :=

{
r(a+ x)f(a+ x) + r(a− x)f(a− x), x > 0

r(a+ x)f(a+ x) − r(a− x)f(a− x), x 6 0.
(5.7)
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Lemma 5.2.4. ([AWW91]) For definetness, a particular window sequence
(wj) is given by

wj(x) := sεj(x− aj)cεj+1
(x− aj+1) with

sε(x) := sinϑε(x), cεj(x) := ϑε(x), ϑε(x) :=

∫ x

−∞
fε(y) dy,

supp(fε) ⊂ [−ε, ε], fε(x) = fε(−x) and

∫
fε(x) dx =

π

2
.

Proof. The window wj is of course bounded and satisfy especially Eq. (5.3b).
Since fε is even it follows ϑ(x)+ϑ(−x) = π/2 which implies cε(x) = cos

(
π
2
−

ϑε(−x)
)

= sinϑε(−x) = sε(−x). Hence,

1 = c2ε (x) + s2
ε (x) = c2ε(x) + c2ε(−x) = s2

ε (x) + s2
ε (−x) (5.8a)

and due to compact support of fε it is clear (by (5.8b)) that supp(cεj+1
) ⊂

(−∞, εj+1], supp(sεj) ⊂ [−εj ,∞),

ϑε(x) =

{
π
2
, x > ε

0, x < −ε

⇒ cε(x) =

{
0, x > ε

1, x < −ε
and sε(x) =

{
1, x > ε

0, x < −ε.
(5.8b)

Note also that Relations (5.8) complies also with the conditions (5.6), i.e. sε
and cε can especially be used as a cut-off function. Furthermore, Eq. (5.8b)

imply that supp(wj) = supp
(
sεj(· − aj)cεj+1

(· − aj+1)
)

⊂ (−∞, a+
j+1] ∩

[a−j ,∞) = [a−j , a
+
j+1]. Properties (5.3c), (5.3d) and (5.3e) are an immedi-

ate consequence of (5.8b), respectively(5.8a).

A convenient choice for fε is for instance

fε(x) :=
π

4
cos
(πx

2ε

)
. (5.9)

Then, ϑε(x) = π
4

(
sin
(
πx
2ε

)
− sin

(−πε
2ε

))
= π

4

(
1 + sin

(
πx
2ε

))
. Such a window is

also used in Figures 5.1 and 5.2.

Lemma 5.2.5. The folding operator is a unitary isomorphism, i.e.

U∗Uf(x) = UU∗f(x) = f(x), ∀x 6= a (5.10)
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where the the so-called unfolding operator U∗:= U∗(r, a) is given by

U∗f(a+ x) :=

{
r(a+ x)f(a+ x) − r(a− x)f(a− x), x > 0

r(a+ x)f(a+ x) + r(a− x)f(a− x), x 6 0
. (5.11)

In particular, both operators, U and U∗ act on the interval (−ε, ε), i.e.
Uf(x) = U∗f(x) = f(x), ∀x /∈ (−ε, ε).

Proof. For x > ε ⇒ r(a + x) = 1 and r(a − x) = 0 and vice versa, for
x < ε⇒ r(a+ x) = 0 and r(a− x) = 1 holds. Hence, ∀x /∈ (−ε, ε) :

Uf(a + x) =

{
1f(a+ x) + 0f(a− x), x > ε

1f(a+ x) − 0f(a− x), x < −ε = f(a+ x).

Now let x ∈ (0, ε). It follows that

Uf(a + x) = r(a+ x)f(a + x) + r(a− x)f(a− x) and for y := −x < 0

Uf(a− x) = Uf(a + y) = r(a− y)f(a+ y) − r(a+ y)f(a− y)

= r(a+ x)f(a− x) − r(a− x)f(a+ x)

⇒ U∗Uf(a + x) = r(a+ x)
(
r(a+ x)f(a + x) + r(a− x)f(a− x)

)

− r(a− x)
(
r(a+ x)f(a− x) − r(a− x)f(a+ x)

)

=
(
r2(a+ x) + r2(a− x)

)
f(a+ x) = f(a+ x).

Analogous calculations hold also for x ∈ (−ε, 0) such that in total U∗Uf(x) =
f(x) and by similar argumentations UU∗f(x) = f(x), ∀x 6= a is satisfied.

Corollary 5.2.6. Define a sequence of cut-off functions by

rj(x) =





0, x 6 a−j
wj(x), x ∈ (a−j , a

+
j )

1, x > a+
j

(5.12)

and let Uj := U(rj , aj) be given as in Eq. (5.7). Then the following holds

wjtj,k =





U∗
j U

∗
j+1

(
χ[aj ,aj+1]tj,k

)
, σj = σj+1 = 1

U∗
j Uj+1

(
χ[aj ,aj+1]tj,k

)
, σj = −σj+1 = 1

UjU
∗
j+1

(
χ[aj ,aj+1]tj,k

)
, σj = −σj+1 = −1

UjUj+1

(
χ[aj ,aj+1]tj,k

)
, σj = σj+1 = −1.

(5.13)
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The so called total folding operator Tw : L2(R) → L2(R) given by

Tw :=
∏

j∈Z

σj=1

Uj
∏

j∈Z

σj=−1

U∗
j , (5.14a)

Twf(x) =





Ujf(x), σj = 1, x ∈ (a−j , a
+
j ), j ∈ Z

U∗
j f(x), σj = −1, x ∈ (a−j , a

+
j ), j ∈ Z

f(x), x ∈ [a+
j , a

−
j+1], j ∈ Z

is a unitary isomorphism with the adjoint, called total unfolding operator,
T ∗
w =: Uw which is given as

Uw =
∏

j∈Z

σj=1

U∗
j

∏

j∈Z

σj=−1

Uj. (5.14b)

Moreover, this total folding and unfolding operators satisfy

wjtj,k = Uw
(
χ[aj ,aj+1]tj,k

)
(5.15a)

〈f, wjtj,k〉 =

∫ aj+1

aj

Twf(x)tj,k(x) dx. (5.15b)

Proof. First of all, rj is indeed a cut-off function, since Eq. (5.3e) implies
that r2

j (aj + x) + r2
j (aj − x) = 1 on the interval x ∈ (−εj , εj). By virtue of

Eq. (5.12) this reconstruction formula holds for all real numbers.

Moreover, due to prior lemma each folding operator Uj is a unitary iso-
morphism and permits the relation Ujf(x) = U∗

j f(x) = f(x) ∀x /∈ (a−j , a
+
j ).

This implies in particular that U
(∗)
k , U

(∗)
l commute ∀ k, l ∈ Z. For k = l this

is again a straightforward implication of Lemma 5.2.5 and for k 6= l it follows
from (a−j , a

+
j ) ∩ (a−j+1, a

+
j+1) = ∅.

Since all folding and unfolding operators commute, Eq. (5.14b) is evident
and due to unitary isomorphism of each Uj it follows TwUw = UwTw = id.

Obviously, Eq. (5.13) implies Eq. (5.15a). This is mostly because of the
fact that U∗

kf(x) = Ujf(x) = f(x) for all x /∈ (a−j , a
+
j ) and k, j ∈ Z.

Furthermore, relation (5.13) can be developed just from symmetry consid-
erations imposed on wj - Eq. (5.3d) - and on the trigonometric functions tj,k
- cf. Eqs. (5.2b) and (5.2c). This is illustrated for the first case, U∗

j U
∗
j+1(gj,k)

with gj,k := χ[aj ,aj+1]tj,k as followed:
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(a) x0 = 0.5, ε = 1
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(b) x0 = −0.5, ε = 0.3

Fig. 5.4: Solid line: folding operator applied to a function ex−x
2

– dotted line – at
x0. Here, the cut-off function was chosen as sin(ϑ(x)), ϑ(x) = π

4

(
1 + sin(π x−x0

2ε )
)
.



5.2 Local Trigonometric Packets 101

U∗
j U

∗
j+1(gj,k(x)) =





U∗
j (gj,k(x)), x ∈ (a−j , a

+
j )

U∗
j+1(gj,k(x)), x ∈ (a−j+1, a

+
j+1)

gj,k(x), else

=





wj(aj + x)gj,k(aj + x)

∓wj(aj − x)gj,k(aj − x), ‘−’: x ∈ (0, εj), ‘+’: x ∈ (−εj , 0)

wj+1(aj+1 + x)gj,k(aj+1 + x)

∓wj+1(aj+1 − x)gj,k(aj+1 − x), ‘−’: x ∈ (0, εj+1), ‘+’: x ∈ (−εj+1, 0)

tj,k(x), x ∈ [aj , aj+1] \
(
(a−j , a

+
j ) ∪ (a−j+1, a

+
j+1)

)

0, else

=





wj(aj + x)tj,k(aj + x) − 0, x ∈ (0, εj)

0 + wj(aj − x)tj,k(aj − x), x ∈ (−εj , 0)

0 − wj+1(aj+1 − x)tj,k(aj+1 − x), x ∈ (0, εj+1)

wj+1(aj+1 + x)tj,k(aj+1 + x) + 0, x ∈ (−εj+1, 0)

tj,k(x), x ∈ [a+
j , a

−
j+1]

0, else

=





wj(x)tj,k(x), x ∈ (a−j , a
+
j )

wj(x)tj,k(x), x ∈ (a−j+1, a
+
j+1)

tj,k(x), x ∈ [a+
j , a

−
j+1]

0, else

= wj(x)tj,k(x).

First equality uses the fact that these two operators commute, or more pre-
cisely, since they ‘operate’ on disjoint intervals, it is allowed to apply each
of them on gj,k separately. Second rewriting follows just by definition of
gj,k and U∗

j , U
∗
j+1 resp. Again, third equality exploits the property of the

characteristic function.
Now, Eq. (5.2c) can be rewritten in tj,k(aj+1 + x) = −σj+1tj,k(aj+1 − x)

such that
−wj+1(aj+1 − x)tj,k(aj+1 − x) = (−1)(−σj+1)wj(aj+1 + x)tj,k(aj+1 + x).

Here, σj+1 must be equal to 1 and
wj(aj−x)tj,k(aj−x) = wj(aj−x)σjtj,k(aj+x) furnishes σj = 1. The sym-

metry of wj allows also wj+1(aj+1+x)tj,k(aj+1+x) = wj(aj+1−x)tj,k(aj+1+x)
which finally clarifies the forth equality.

Analogously, this ‘unfolding’ can be done for other cases, too.
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Theorem 5.2.7 (Coifman & Meyer – [CW91], Jawerth & Sweldens – [SJ95]).
Let (wj)j and (tj,k)j,k satisfy conditions (5.3) and (5.2). Then (ψj,k)j,k,
ψj,k := wjtj,k, is an orthonormal basis in L2(R) , i.e. 〈ψj,k, ψl,m〉 = δj,lδk,m.

If condition (5.3e) is lifted and (wj)j satisfies instead a weaker requier-
ment

A 6 w2
j (aj + x) + w2

j−1(aj + x) 6 B, ∀ |x| 6 εj (5.16)

then (ψj,k)(j,k)∈Z×N0 constitutes a Riesz basis in L2(R) with Riesz bounds
A, B.

Proof. First assertion is a direct result of upper corrolar.
The system (χ[aj , aj+1]tj,k)k∈N0 is an orthonormal basis in L2([aj , aj+1]),

∀ j ∈ Z such that (χ[aj, aj+1]tj,k)j∈Z,k∈N0 is an onb in L2(R). Hence, the
theory about Riesz bases, Theorem 3.3.4 , imply that Uw(χ[aj , aj+1]tj,k) is
also an onb if Uw is a unitary isomorphism.

A similar argumentation proves the second claim: Define first the total
folding and unfolding operator as

Twf(x) :=





rj(x)f(x) + σjrj(2aj − x)f(2aj − x), x ∈ (aj , a
+
j )

rj(2aj − x)f(x) − σjf(2aj − x), x ∈ (a−j , aj)

f(x), x ∈ [a+
j , a

−
j+1]

(5.17)

Uwf(x) :=





rj(x)f(x) − σjrj(2aj − x)f(2aj − x), x ∈ (aj, a
+
j )

rj(2aj − x)f(x) + σjf(2aj − x), x ∈ (a−j , aj)

f(x), x ∈ [a+
j , a

−
j+1]

(5.18)

for a cut-off function rj given as in Eq. (5.12). Same calculations as in the
proofs of Lemma 5.2.5 and Corollary 5.2.6 yield

T ∗
w = Uw,

Twf = Uwf = f on [a+
j , a

−
j+1] and

TwUwf(x) = UwTwf(x) =
(
r2
j (x) + r2

j (2aj − x)
)
f(x)

=
(
w2
j (x) + w2

j−1(2aj − x)
)
f(x) ∀x ∈ (a−j , a

+
j ).

Due to last relation the argumentation concludes in

‖Uwf‖L2(R) = 〈TwUwf, f〉

=
∑

j∈Z

∫ aj+1

aj

(
w2
j (x) + w2

j−1(2aj − x)
)
|f(x)|2 dx+

∫ a−j+1

a+j

|f(x)|2 dx (5.19)
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which by condition (5.16) implies A‖f‖L2 6 ‖Uwf‖L2 6 B‖f‖L2. So, Uw is a
(topological) isomorphism with ‖Uw‖ 6 B, and ‖U−1

w ‖ 6 A−1 (analogously
proven as in Theorem 3.4.6, cf. Eq. (3.5)) satisfying Eq. (5.15a) – the previous
proof of this relation condition (5.2a) was not used – such that Theorem 3.3.2
completes the proof.

Corollary 5.2.8. Suppose that wj satisfy Eqs. (5.3a) – (5.3d), and (5.16).
Then, (ψj,k)j,k constitutes an orthogonal Riesz basis.

Proof. Due to Eq. (5.3a), supp(ψj,k) ∩ supp(ψi,h) = ∅ for |j − i| > 1, h, k ar-
bitrary, such that these functions are orthogonal. Ensuing calculation proves
orthogonality for neighbouring windows wj and wj−1.

Since supp(wj) ∩ supp(wj−1) = (a−j , a
+
j ) it follows:

〈ψj,k, ψj−1,h〉 =

∫ a+j

a−j

wj(x)wj−1(x)tj,k(x)tj−1,h(x) dx

Eq.(5.3d) =

∫ εj

−εj
wj(aj + x)wj(aj − x)tj,k(aj + x)tj−1,h(aj + x) dx

=

∫ εj

0

wj(aj + x)wj(aj − x)tj,k(aj + x)tj−1,h(aj + x) dx

−
∫ εj

0

wj(aj − x)wj(aj + x)tj,k(aj − x)tj−1,h(aj − x) dx

Eq.(5.2b)

σjσj=1
=

∫ εj

0

(
wj(aj + x)wj(aj − x) − wj(aj − x)wj(aj + x)

)

× tj,k(aj + x)tj−1,h(aj + x) dx

= 0.

Remark 5.2.9. The very stringent condition (5.2a) on the windows wj can
be relaxed by Eq. (5.16) which still generates a Riesz basis. Conversely, nor-

malisation of wj on the overlapping intervals – satisfying Eq. (5.16), i.e.
wj(x)

Wj(x)

on (a−j , a
+
j ) and

wj(x)

Wj+1(x)
on (a−j+1, a

+
j+1) for Wj(x) :=

√
w2
j−1(x) + w2

j (x), gives

in return orthonormality (this can be already observed in Eq. (5.19)) such
that (ψj,k)j,k is again an onb in L2(R) . So, switching between biorthogonal
and orthonormal bases is very easy.

5.2.1 Discretisation

In this subsection discrete analogues of wj and tj,k will be presented which
generate an orthonormal basis in `2(Z).



104 Adaptive Time – Frequency Analysis

Remember, that the trigonometric functions tj,k(· + 1
2
), defined as in

Eq. (5.4) are precisely the basis functions for the various discrete cosine/sine
transforms (see [RY90]). In particular, DCT-IV transform uses tj,k(· + 1

2
)

with σj = σj+1 = 1, DCT-II is used for even-even, DST-IV for odd-even and
DST-II is used for odd-odd parity, respectively.

As already mentioned, the inner products can then be computed in two
conventional stages: First, fold the signal at boundaries (aj)j (which can be
visualised as folding of the overlapping parts of the bell wj, i.e. (a−j , aj) →
(aj, a

+
j )) such that in the second stage a non-overlapped, since folded signal

is processed by standard fast DCT-IV algorithm (or one of its modifications).
In order to preserve orthogonality properties of wjtj,k(· + 1

2
) on adjacent

(overlapping) intervals it is necessary to translate the window functions wj
in the same manner (cf. [Wic91, p. 23]).

Symmetry properties of the window functions wj (w.r.t. the boundaries
aj, aj+1) are then sustained (cf. Figure 5.5, (a), where no symmetry is pre-
served).

Definition 5.2.10. Let (ai)i ⊂ Z and (εi)i ⊂ N>0 fulfill the general assump-
tions, Assumption 5.2.1. tj,k shall be given as in Formula (5.4) and wj satisfy
the conditions as in Eqs. (5.3). Define for convenience the notation

|[a, b]| := |[a, b]|n :=
{
aj ∈ Z

∣∣aj+1 = aj + 1, a := a0, b := an, j = 0, . . . , n
}

i.e.

|[a, b]| = {a, a+ 1, a+ 2, . . . , b− 1, b} ⊂ Z,

Wj(n) := wj
(
n+ 1

2

)
,

Tj,k(n) := tj,k
(
n + 1

2

)
, for n ∈ N.

By straightforward calculations it follows from earlier considerations,

Corollary 5.2.11. (i) supp(Wj) ⊂ |[a−j , a+
j − 1]|, where a−j , a

+
j ∈ Z come

up to Assumption 5.2.1.

(ii) Symmetry as in (5.3d) holds on |[a−j , a+
j −1]|hj

if this interval is of even
size, i.e. hj = 2z for some z ∈ Z. More precisely

∀n ∈ |[a−j , a+
j − 1]| : Wj(n) = Wj−1(2aj − n− 1)

(iii) Since all windows are translated by the same amount, reconstruction
formula (5.3e) is not altered, i.e.

∀n ∈ |[a−j , a+
j − 1]| : W 2

j (n) +W 2
j−1(n) = 1.

Furthermore, if (xj,k)k∈|[0,hj−1]| is a onb in `2(|[aj, aj+1−1]|), where hj =
a+
j − a−j ∈ N>0, then (Ψj,k)j∈Z,k∈|[0,hj−1]| is a onb in `2(Z).
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(a) unshifted windows
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(b) shifted windows

(c) wjtj,k (d) wjtj,k(· + 1
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2
)tj,k (f) wj(· + 1
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Fig. 5.5: (a-b): window function with a = (−4, 8, 15, 24), (dashed, vertical lines),
and ε = (3, 3, 3, 5) indicated by vertical dotted lines. In (b) it holds w2(5) = w1(10),
w2(8) = w1(7), for instance. (c-f): Windowed tj,k as in Eq. (5.4) with k = 1 and
parities as in Figure 5.2.
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Here, Ψj,k := WjXj,k and Xj,k is a periodisation of xj,k analogously as
in the proof of Lemma 5.2.2, i.e. for σj , σj+1 ∈ {−1,+1}

Xj,k(n) :=





xj,k(n), n ∈ |[aj , a+
j − 1]|

σjxj,k(2aj − n− 1), n ∈ |[aj − hj , aj − 1]|
σj+1xj,k(2aj+1 − n− 1), n ∈ |[aj+1, aj+1 + hj − 1]|

Proof. Let k ∈ |[0, 2εj ]|. Then by definition of Wj and Relation (5.3d) it holds

Wj(a
−
j + k) = wj(aj − εj + 1

2
+ k) = wj−1(2aj − aj + εj − 1

2
− k)

= wj−1(aj + εj − 1 + 1
2
− k) = Wj−1(a

+
j − 1 + k)

⇐⇒
n ∈ |[a−j , a+

j − 1]| : Wj(n) = Wj−1(2ai − n− 1).

First and third points are trivial.

It remains to prove last claim which follows from easy but lengthy cal-
culations (cf. [Kur97, pp. 35]). More precise, Ψj,k and Ψi,l are obviously
orthogonal to each other if |j − i| > 1 since then their support is empty.
Hence, it suffice to show:

‘interior orthonormality’:

∀ k, l ∈ |[0, hj − 1]| :
∑

z∈Z

Ψj,k(z)Ψj,l(z) = δk,l

‘exterior orthogonality (for neighbours)’:

∀ k, l ∈ |[0, hj − 1]| :
∑

z∈Z

Ψj,k(z)Ψj−1,l(z) = 0.

5.2.2 Adaptivity and Localisation

Each local trigonometric function (ψj,k)j,k (as defined in Theorem 5.2.7) is
well localised in both time and frequency domain. Obviously, ψj,k has com-
pact support, supp(ψj,k) ⊂ [a−j , a

+
j ] and thus ψj,k has ‘position uncertainty’

at most equal to hj + (εj+1 − εj) = a+
j − a−j .
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(a) merging of two bells (b) merging of three bells

Fig. 5.6: Two or more children (dotted) summed up to one parent window
(dashed-dotted)

Exploiting the relations sin(x) = eix−e−ix

2i
and cos(x) = eix+e−ix

2
For-

mula (5.4) can be rewritten as

tj,k(x) =
e
i π
2hj

(x−aj)νk
+ (−1)ρ0e

−i π
2hj

(x−aj)νk

2iρ0
,

where ρ0, ρ1 ∈ {0, 1} are related to σj , σj+1 ∈ {−1,+1} in the following way

σj = (−1)ρ0 , σj+1 = (−1)ρ1 and νk := 2k + 1 + ρ0 − ρ1.

Using this connection it follows for the Fourier transform ψ̂j,k(ω):

F
(
wjtj,k

)
=

1

2iρ0

(
F
(
wje

i π
2hj

(·−aj)νk
)
(ω) + (−1)ρ0F

(
wje

−i π
2hj

(·−aj)νk
)
(ω)
)

=
1

2iρ0

(
ŵj
(
ω − π

2hj
(· − aj)νk

)
+ (−1)ρ0ŵj

(
ω +

π

2hj
(· − aj)νk

))

which can be interpreted as two ‘bumps’ around ± π
2hj
νk(· − aj). The un-

certainty in the frequency space equals that of ŵj and hence depends on
the smoothness and steepness of wj – cf. [Wic91, p. 24]. In fact, Rieman-
Lebesgue lemma, Theorem 3.5.2, ensures already a ‘weak’ localisation since
lim|ω|→∞ ŵj(ω) = 0.

Imposing additional conditions on the window function results in more
accurate predictions on the localisation.

The matter of convergence of the coefficients (〈ψj,k, f〉)k is naturally
linked to this topic. Theorem 3.5.4 hints to that if f and wj are smooth
enough, i.e. f, wj ∈ Cn(R) then 〈f, ψj,k〉 = O (k−n) (see for instance [SJ95,
Zyg59]).

Adaptivity The fact that w2
j (aj + x) + w2

j−1(aj + x) = 1 ∀ |x| 6 εj which
is equivalent to w2

j (x) + w2
j−1(x) = 1 ∀x ∈ (a−j , a

+
j ) implies that w̃j−1 :=
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√
w2
j−1 + w2

j is a window function with supp(w̃j−1) ⊂ [a−j−1, a
+
j+1]. Such a

process of ‘fusion’ is illustrated in Figure 5.6.
This yields a local trigonometric function ψ̃j−1,k = w̃j−1t̃j−1,k, where t̃j−1,k

is re-normalised and re-dilated appropriately by h̃ := hj + hj−1 (cf. Eq (5.4)
and Figure 5.7). Due to Theorem 5.2.7 and Corollary 5.2.8, L2(R) can be
decomposed into orthonormal subspaces spanned by the orthonormal set
(wjtj,k)k∈Z, i.e. for every admissible partition a := (aj)j ⊂ R (with R =
∪̇j∈Z(aj , aj+1)), provided that Assumption 5.2.1 is assured it holds

L2
(
(aj, aj+1)

)
= span

{
wjtj,k

∣∣k ∈ Z
}

(5.20)

L2
(
(aj−1, aj+1)

)
= span

{
wj−1tj−1,k

∣∣k ∈ Z
}
⊕ span

{
wjtj,k

∣∣k ∈ Z
}

L2(R) =
⊕

j∈Z

span
{
ψj,k = wjtj,k

∣∣∣k ∈ Z
}
.

This means in particular, that the set

D :=

{
⊕

j∈Z

span{ψj,k|k ∈ Z}
∣∣∣∣ a admissible

}
(5.21)

furnishes an over-complete ‘dictionary’ – or library – of orthonormal bases
with the potential of switching between different bases by refinement or mer-
gence of contiguous intervals (aj−1, aj) ∪ (aj , aj+1) ! (aj−1, aj+1) which are
associated to a basis, cf. Eq. (5.20).

There is a partial ordering1 of such partitions which can be made into
a tree, visualised in Figure 5.8, and searched for a ‘best basis’ w.r.t a cost
function. In that context the depth of the tree is the total number of levels
whilst a level is the number associated to a basis in that tree counting from
the root which has level zero. The tree in Figure 5.8 has then depth 3 for
instance.

The idea behind such a procedure may be explained by an analogy: In-
terpretation of a multilingual speech may be accomplished best by an ap-
propriate mix of many dictionaries. Obviously, a German-English dictionary
alone is incapable to translate a talk between a Chinese and an Englishman.
On the other hand, a Chinese-English dictionary is insufficient for giving an
impression of this conversation to a German. Correlating the speech with

1A basis B1 is greater than a basis B2 if the cover associated to B1 is a refinement
of the cover associated to B2. Such partial order has a minimal element, the basis B0

associated to the coarsest cover, and a maximal element corresponding to the most refined
cover.
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(a) adjacent local trigonometric functions

(b) merging bells and summing up the cosines

(c) ‘redilated’ LCP - local cosine packet

Fig. 5.7: Plots (a-c) describe the ‘fusion’ process. First, Figure (a), merge ad-

jacent bells
√
w2
j−1 + w2

j =: w̃j−1, (solid thin line in Fig. (b)), then, Figure (c),

translate (to aj−1) and dilate a trigonometric function t̃j,k (by h̃ = hj + hj−1 =
aj+1 − aj−1) such that t̃j,k have the same oscillation index k as tj−1,k windowed
by w̃j−1.
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Fig. 5.8: Iterative de-/composition from children to parent and grand-parent
windows. Here a dyadic splitting of windows is presented.

both dictionaries, i.e. picking just the information needed, will result in a
more comprehensible talk between all three participants, Chinese, German
and Englishman.

Such profit of many similar (since concerning same objects (as language
for instance)) but different dictionaries can also be elucidated as an attempt
of orchestrating a signal, e.g. assigning (musical) instruments to a piece of
music.

Here, the dictionary would be an orchestra synthesising the signal, trying
to mimic it.

Analogously, the instruments of the local trigonometric transform

L2((aj, aj+1)) 3 fj 7→ (〈fj, ψj,k〉)k ∈ `2(R), j ∈ Z
fj := Twfχ[aj ,aj+1] = Ujf cf. Eqs. (5.14a), (5.15b)

are time-localised sines or cosines, respectively, of different frequencies.
A crucial degree of freedom in this transform is the sequence (aj)j.
Analogously to the windowed Fourier transform it may happen that the

window size does not match the frequency behaviour of a particular signal,
e.g. when the signal has short bursts (fast change of frequencies) but the
size of wj captures to many of them, or vice versa. All the same, the result
would yield a poor time-frequency resolution. Compare in this context the
examples elucidated in Figures 4.16 and 4.17 in contrast to Figure 6.3.

Fortunately, the local trigonometric transform permits a kind of nesting,
Eq. (5.21), such that the size of arbitrary many windows may be adapted
locally (refinement or coalescence) without changing the rest of them. So,
switching between one basis, associated to a sequence a ⊂ R satisfying weak
assumptions, Assumption 5.2.1, to another basis, associated to a′ ⊂ R allow
the transform to adapt ‘on the fly’, or more precisely without any prior
knowledge about the properties of the considered signal.
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A measure of how well such a partition is suited may be established by
a cost functional leading to a basis with optimal properties (with respect to
that functional).

This is accomplished by comparing the cost of the expansions associated
to the two small intervals to that expansion associated to the union of these
adjacent windows. Picking that intervals for which the cost is smaller results
in an expansion of minimal cost.

In practise, a dyadic partition is preferred, i.e. al,j := 2−lj with l ∈
|[0, L]|, j ∈ |[0, 2l]| which leads to a partition of the interval [0, 1] at different
levels l. With each al := (al,j)j a local trigonometric basis can be associated
with the properties as called for the next definition.

Definition 5.2.12. Let I be the unit interval, I := [0, 1) and Il,j a dyadic
subinterval of I, i.e. Il,j := [2−lj, 2−l(j+1)) for l ∈ |[0, L]|, j ∈ |[0, 2l−1]|, L ∈
N.

A dictionary D of orthonormal bases is a binary tree if it satisfies

(i) Subsets of basis vectors cn be identified with subintervals Il,j of I.

(ii) Each basis in the dictionary D corresponds to a disjoint cover of I by
intervals Il,j.

(iii) If Dl,j ⊂ B ∈ D can be identified with Il,j, then Dl,j = Dl+1,2j ⊕
Dl+1,2j+1.

Any binary tree is termed an admissible tree iff each node has either zero or
exactly two children.

Hence, any admissible tree is associated to an orthonormal basis of local
trigonometric functions (which is mostly based on the first part of Theo-
rem 5.2.7).

5.3 Best Basis - Divide et Impera

As mentioned in the foregoing section the best-basis algorithm, developed
by Coifman and Wickerhauser, cf. [CW92], enables an automatic switching
between different bases assigned to a suitable partition in time domain (for
local trigonometric packets) or in frequency domain (for wavelet packets)2.

In order to diminish the complexity both authors suggested to use func-
tionals which are additive.

2For more details, especially on the graph basis theorem which ensures that the leaves of
any admissible binary tree, cf. Definition 5.2.12, of a wavelet packet or a local trigonometric
tree form a basis, check [Wic94, p. 244].
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Definition 5.3.1. A functional M : `2 → R>0 is said to be additive:⇐⇒

M
(
(xi)i

)
=
∑

i

m(|xi|) for some concave function m : R → R,

M((0)i) = 0

Consider a discretised signal (fi)i∈|[1,n]| with n ∈ N samples at positions
(ai)i∈|[1,n]| and let Eq. (5.21) be rewritten in the form

D =
⋃

λ∈Λ

Bλ, Bλ := (bλ,i)i∈|[1,n]|=:Iλ,n
,

where Bλ denotes the λ-th orthonormal basis of `2(|[a1, an]|) with Λ ∈ N finite.
The approximation error, ελ with M ∈ |[1, n]|,

ελ(M) :=
∑

m/∈Iλ,M

| 〈(fi)i, bλ,m〉 |2 = ‖(fi)i‖2
`2 −

∑

m∈Iλ,M

| 〈(fi)i, bλ,m〉 |2 (5.22)

can then be used as a comparison measure between different bases, i.e. Bα is
a better basis for (fi)i than Bβ if each truncated series in the former basis is
of lower approximation error than the later, i.e. ∀M > 1 : εα(M) 6 εβ(M),
which reduces by Eq. (5.22) to

∀M > 1 :
∑

m∈Iα,M

| 〈(fi)i, bα,m〉 |2 >
∑

m∈Iβ,M

| 〈(fi)i, bβ,m〉 |2.

The Hardy-Littlewood-Polya theorem3 which is a classical result in the the-
ory of majorisation, consult [MO79], gives then a convenient description of
an improved basis representation. A basis Bα is a better basis than Bβ ap-
proximating (fi)i iff any concave function φ : R → R admits the relation

∑

i6n

φ
(
xα,i
)

6
∑

i6n

φ
(
xβ,i
)
, xκ,i :=

| 〈(fj)j, bκ,i〉 |2
‖(fj)j‖2

`2

and bκ ∈ Bκ. (5.23)

Above consideration, especially Eq. (5.23) do not exploit the special tree
structure of the dictionary D. Therefore, minimality of a particular concave
function φ w.r.t. to a basis Bα is not sufficient to guarantee that Bα is indeed
a better basis than any other.

Fortunately, when dealing with binary trees, as defined in Definition 5.2.12,
it suffices completely to minimise only one cost function in order to obtain a
‘best basis’. Note that M(Bx) as defined in the following definition basically
reduces to the sum Eq. (5.23), see also [Mal98, pp. 397].

3Any two positive sequences (xi)i6n, (yi)i6n sorted in decreasing order, xi > xi+1, with
equal `1 norm admits ∀m 6 n

∑
i6m xi >

∑
i6m yi iff for any concave function φ : R → R

it holds
∑

i6n φ(xi) 6
∑

i6n φ(yi). A proof can be checked at [Mal98, pp. 398]
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Definition 5.3.2 (Best Basis, [CW92]). Let D be a finite dictionary of `2,
i.e. a set of finitely many orthonormal bases in `2.

A vector x ∈ `2 has an information cost restricted to a basis B ∈ D w.r.t.
M , denoted by M(Bx) and defined as

M(Bx) := M
((

〈x, bk〉
)
k

)
for bk ∈ B.

A ∈ D is termed best basis for x :⇐⇒ M(Ax) 6 M(Bx) ∀B ∈ D

The information cost of M(x ⊕ y) can then be reduced locally, i.e. by
reducing M(x) and M(y) individually.

Suppose for instance that the bases A, B ∈ D partially coincide, i.e. have
at least one common basis element. A vector x ∈ `2 is then representable
in A as Ax = (A ∩ B)x × A′x and analogously, Bx = (A ∩ B)x × B′x with
A′ = A\B, B′ = B \A. Then M(Ax) <M(Bx) ⇐⇒ M(A′x) <M(B′x),
i.e. it suffice to reduce the information cost on a smaller subset.

Example 5.3.3. Thresholding Let (xi)i be any finite sequence. Then
a simple additive function is given by M((xi)i) :=

∑
i δε(xi) where

δε(xi) := 0 if xi 6 ε and one otherwise. Additivity follows from
M
(
(δk,iη1)k+(δk,jη2)k

)
= δε(η1)+δε(η2) =

∑
k δε(δk,iη1)+

∑
k δε(δk,jη2) =

M
(
(δk,iη1)k

)
+M

(
(δk,jη2)k

)
for any i, j and η1,2. Here δj,k is the Kro-

necker delta.

Concentration in ‖·‖`p , p ∈ (0, 2) M(x) := ‖x‖p`p is clearly additive:∑
i |xi|p =

∑
i6=j |xi|p+|xj |p, for all j. Concavity, φ(x) = xp/2, is ensued

from the necessary restriction of p.

Choice, Uncertainty, Information For any sequence x ∈ `2 the value

pi := |xi|2
‖x‖2

`2
can be understood as a probability measure. How uncertain

the outcome of a state i is or how much information is hidden in the
vector x can then be described by the so-called Shannon-Weaver en-
tropy H(x) := −∑i pi log pi with the agreement p log p := 0 in case of
p = 0. Some classical properties of H are:

minimal H(x) = 0 ⇐⇒ xi = 0 ∀ i 6= i0 ∧ x0 = 1. This means that iff
all probabilities (but one) are zero then the outcome i0 is for sure
and H must vanish.

maximal H is maximal if all pi have same probability, pi = 1
n
, and

equals log(n) if p ∈ Rn. This makes sense since then a certain
outcome is most uncertain.
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monotonicity Any change towards equalisation of pi increases H , i.e.
p′ := Ap, p ∈ Rn with a positive (averaging) weight matrix A =
(ai,j)i,j6n, ai,j > 0 and

∑
i ai,j =

∑
j ai,j = 1 ⇒ H(p) 6 H(p′). A

more detailed discussion about H can be find in [Sha48].

Another classical fact is the relation H(x) = ‖x‖−2 h(x) + log(‖x‖2)
where h(x) := −∑i |xi|2 log |xi|2 is an additive function and therefore
is the choice for the best basis algorithm. Minimising h leads indirect
to a minimisation of H .

Logarithm of energy M(x) :=
∑

i log |xi|2 is obviously an additive func-
tion with same convention, log 0 := 0, as for the Shannon-Weaver en-
tropy which is motivated by ignoring any unchanging components in
the process.

The number of all possible bases (|DL|) associated to a binary tree (of
depth L) is equal to the number of different admissible binary trees and can
be estimated by induction (on the depth) as |DL| > 22L

.

For L = 0 there exists only one basis which is associated to the root, i.e.
|D0| = 1.

Two binary trees of depth at most L with |DL| different admissible trees
can be combined to a binary tree of depth L+1 plus a new root, i.e. |DL+1| =
|DL|2 + 1 which implies |DL| > 22L

.

A discrete signal of size n can be associated to a binary tree of depth at
most L = log2 n and thus has at least 2n/2 different bases representations.

A minimum information cost basis is then computed from the most refined
partitions upwards (depth-first). Due to finite resolution level the following
algorithm terminates. And if the information cost functional is additive
comparisons only between two adjacent generations of the binary tree are
necessary to obtain a basis representation with smaller cost which is why the
complexity of such a procedure is proportional to the number of nodes in
this tree. In contrast, finding a minimum cost by a brute force comparison
of all possible packets would require more than O

(
n2n/2

)
operations, a ‘non-

polynomial hard’ problem which is computationally prohibitive.

Algorithm 5.3.4 (Best Basis, [CW92]). Let x ∈ Rn, n = 2m for some
m ∈ N, be a vector. Given a binary tree D, an additive cost functional
M and an expansion of x in each possible basis B ∈ D with coefficients(
Bl,jx

)
l∈|[0,L]|,j∈|[0,2l−1]|, Bx := (〈x,B(k)〉`2)k, the best basis Algorithm (5.24)

terminates after O (n) operations. The output, a basis A ∈ D, is the best
basis of x - cf. Definition 5.3.2.
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(a) Compute M(Bx) for each B ∈ D
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(b) Initialisation.
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(c) Compare adjacent children with parent
nodes

L = 4 

3 

2 

1 

0 (50 )

20 (25 )

(12) 10 (12) (13) 

(8) (6) 6 (7) 7 (5) (8) (6) 

3 4 2 1 6 2 3 3 5 5 2 1 1 3 3 1 
* * * * * * * * * * * * * * * * 

7 3 6 3 4 4 

10 10 8 

18 

48 

* * 

* 

(d) Retain topmost and marked nodes

Fig. 5.9: Best basis search. Numbers in rectangles elucidate the information
cost inside each node. (b): Depth-first algorithm means that all nodes at the
deepest node (here L = 4) are initially marked, i.e. assigned with an asterisk
which stands for AL,j = BL,j, j = 0, . . . , 15. Their total information cost will be
tried to reduce. (c): If the children have lower cost than parent node, then assign
the total information cost of the children to the parent node – displayed now in
brackets. Otherwise mark the parent node with an asterisk (– join of children
nodes). This prevents the computer from examining any node more than twice,
once as a child and once as a parent. (d): After all nodes have been examined,
take that marked nodes which are at the topmost level (crossed rectangles). These
constitute a basis with minimal information cost.

Initialisation Start at the most refined subsets (depth-first) and set AL,j :=
BL,j, j ∈ |[0, 2L − 1]|.

Iteration: l = l − 1. For j ∈ |[0, 2l − 1]| set

Al,j :=

{
Bl,j, M

(
Bl,j

)
6 M

(
Al+1,2jx ∪ Al+1,2j+1x

)

Al+1,2j ⊕ Al+1,2j+1, otherwise

(5.24)

An example is shown in Figures 5.9 and 5.10.

Proof. A proof can be checked in [Wic91, CW92, Wic93b].
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Fig. 5.10: Same dictionary D and same expanded signal but L = 3. From this
example it is obvious that best basis obtained here is different from previous, for
L = 4.



Chapter 6

Implementation – Results

Given a data set or a catalogue of words (or commands) spoken by different
people, the task is to extract speaker independent but characteristic features
of these words which allow an algorithm to map (injectively) user’s audible
expressions to pre-defined actions.

For instance, if a statement like ‘Open the fridge’ is known by the system,
i.e. there exists a collection of features accessible by that algorithm, then,
any recorded speech containing that phrase should be recognised as ‘Open
the fridge’ and nothing else. Of course, if the system fails to recognise a
pattern then the output should also be an a priory prescribed error report
or act.

In order to guarantee a fast respondent system, the number of operations
needed by any algorithm used by that system should be kept as small as
possible.

This implies in particular that the number of features have to be kept
small. Any performance enhancement depends highly on the selection of
these features.

The still vague process of classifying signals into known categories, termed
as classification, will be put in a concrete mathematical model.

6.1 Mathematical Description Of The Problem

Consider a data set of sampled signals, i.e. a set of vectors, (xi)i6n ⊂ X,
where X represents a so-called signal space.

Due to discrete data xi which will be processed by special algorithms
optimised for inputs of dyadic length the signal space X is set to

X := R2ν

for some ν ∈ N. (6.1a)
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Let c ∈ N be the number of different classes and denote by Y the response
space. Then, each elements of Y can be identified with an integer such that
Y can be defined as

Y :=
{
y
∣∣∣ y ∈ {1, . . . , c}

}
. (6.1b)

The goal is then to find a feature extractor

f : X → F ⊂ Rµ, µ� 2ν (6.1c)

such that relevant information is extracted (mapped to the feature space F).
The accuracy of the classification process, a mapping

g : F → Y (6.1d)

can be measured by a classical performance measure

pf (T ) :=

∑
(xi,yi)∈T δ

(
yi − g ◦ f(xi)

)

|T | , (6.1e)

with the symbol δ(0) := 0 and equal to 1 everywhere else and |T | standing
for the amount of elements contained in T .

The feature extractor f should be adapted to the learning set L, i.e.
pf(L) = 0 where

L := {(xi, yi) | i = 1, . . . , n} ⊂ X × Y (6.1f)

with pairs of measured signals xi and predetermined targets yi ∈ Y, prior f
is tested on a training set T ⊂ X × Y with T ∩ L = ∅.

Then, h is a better feature extractor than f iff ph(T ) < pf(T ) for any
training set T .

6.2 General Setting

As it was presented in Chapter 2 and especially in Section 4.4.2, it suffices
to (uniformly) sample speech with a sampling frequency of 8 kHz since then
the maximum detectable frequency is still at approximately 4 kHz.

The data set recorded in a rather quiet computer room (several computer
fans and sometimes distant very quiet talk between students were recorded
too) contains ten different classes of words, c = 10 in Eq. (6.1b): [an], ["auf],
["aus], ["fEnst@r], [he:rt], ["hilf@], [liçt], ["no:tru:f], [ty:r], ["tsu:]; (translated as:
on, open, off, window, (kitchen) cooker, help, light, emergency, door, close)
spoken by four females and nine males; each word was repeated once.

That makes in total n = 260 words; each class consisting of 26 words of
approximately one second duration, or exactly 2ν , ν = 13, samples.

The whole recordering was accomplished by a ‘Realtek AC97 Audio’
sound card and Matlab’s Data Acquisition Toolbox.
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The basic idea for feature extraction was first tackled by means of wave-
lets. The author believed that a subdivision of a signal into voiced and
unvoiced parts would at least further simplify the proceedings. Such a par-
tition is presented in Section 4.4.2 and due to Mallat’s fast tree algorithm
(cf. Chapter 4, Eqs. (4.11) and the discussion thereafter) is also of cheap
computational complexity.

Voiced parts should then be analysed with a windowed Fourier transform
in order to achieve a formant representation (cf. Chapter 2) whereas voice-
less parts could be characterised by higher level wavelet coefficients. This
seemed to be an adequate starting point since formants necessitate a higher
frequency resolution – not achievable by wavelets – and are not as time vary-
ing entities as bursts resulting from consonants (again, cf. Chapter 2) which
seemed to be suitable described by wavelet coefficients (zooming property -
cf. Theorem 4.3.15).

The so computed sequence (in time) of formants, timestamps of voiced/
voiceless parts and bursts could then lead to features of sufficiently robustness
since the catalogue consists of rather distinct words.

Several problems were encountered as soon as the author was faced with a
satisfactory parametrisation of formant’s scattering from a windowed Fourier
transform signal of voiced speech (cf. Section 4.4.2).

Of course, a suitable metric have had to be defined on the phase space
prior to parametrisation (it is necessary to know which high energy parts
belong to the one formant and which constitute another).

Additional inconvenience was resulting from the fact that subdivision into
voiced/ voiceless parts was not as accurate as it should be. This is mostly
due to the octave-band tiling of the wavelet transform since then only first
few levels ‘encode’ the relevant frequency information for formants.

For instance, a discrete wavelet decomposition (of a 8 kHz sampled signal)
up to level L = 4 would yield a frequency tiling (c4, d4, d3, d2, d1) with
pertinent frequency ranges as follows: 0−250 Hz, 250−500 Hz, 0.5−1 kHz,
1−2 kHz, 2−4 kHz; each voiced piece of a signal has frequencies in the range
250 − 500 Hz. In that case, any further decomposition would not gain more
accuracy. Therefore, uncertainty in time for voiced/ voiceless boundaries is
rather high.

At that stage a paper dealing with wavelet and local trigonometric packets
(cf. [CW92]) supervened further investigations into the problems described
above.

This new ansatz, a generalisation of wavelets, seems to be very promising.
In contrast to the case of wavelet packets, where the frequency axis is

subject to a dyadic division, local trigonometric packet transform establishes
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a library such that each subspace contains frequencies at fixed locations, as
illustrated in Figures 6.1 and 6.2.

Once again, in order to emphasise the superiority of the adaptive phase
tiling over the fixed time-frequency partition (as typified by the transforms Fg

and W) the sinusoidal signal from Section 4.4.2, showed in Figure 4.16, (a),
is analysed again by means of the ‘new’ transforms WPT and CPT, which
result is visualised in Figure 6.3.

For the time being, the local trigonometric transform (from now on ab-
breviated as LCT, local cosine transform) is preferred over the WPT (wavelet
packet transform) since the goal is to obtain an ‘optimal’ time partition of
the signal with associated frequencies.

The author considers such a phase tiling (like in Figure 6.2, (b)) as more
readable compared to the other way around achieved by a WPT.

It has a striking resemblance to a spectrogram. The only difference is
that the windows applied to the signal in order to localise information may
not be fixed!

Colouration is similar to that of spectrograms, i.e. the higher the value
of a coefficient the darker the grey tone.

The majority of the algorithms which plot such phase tilings and com-
pute cosine (wavelet) packets as well as the ‘best basis’ are implemented in
Matlab’s toolbox WaveLab, vers. 802, a freeware obtainable via World-Wide-
Web: http://www-stat.stanford.edu/˜wavelab, see also [BD]. Moreover,
a grey scale transform was applied to the coefficients in order to achieve
more shaded areas in the phase planes. In particular, the gamma transform,
x 7→ xγ , with the exponent γ = 0.3 was used to plot all the following phase
plane plots and especially Figure 6.2, (a) and (c).

6.3 Influence of Cost Functional

Despite the fact that the best basis is unique (for a precise cost functional)
it is by no means independent of the choice of a particular concave function
φ – see Section 5.3. This allows to compare cost functionals between each
other.

On the basis of the previously described data set of words several cost
functionals such as those introduced in Example 5.3.3 plus a few more were
tested. Results are summarised below and in Figures 6.4, 6.5, 6.6 and 6.7,
where phase plane tiling is only plotted for one word,["fEnst@r], Figure 6.4
(a), spoken by a female. For comparison, the same procedure was applied
to the same word,["fEnst@r], but now spoken by a male; check Figure 6.8–
Figure 6.11.
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Fig. 6.1: Heisenberg boxes; In Subplot (a), left side, a possible basis tree is plotted
(up to level 5); Right Subplot (a), subdivision of frequency axis, and Subplot (b),
subdivision of time axis, shows the pertinent tilings. Note that the tiling of the
phase plane corresponding to a WPT is a rotated copy of a tiling corresponding
to a LCT, iff same basis tree is chosen.
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Fig. 6.2: Wavelet Packets (WP), (a), vs. Cosine Packets (CP), (c), for the phrase
[notru:f] pronounced by a female speaker. Waveform is shown in Subfigure (d).
The Level goes up to D = 12 and the cost function was chosen as ‖ · ‖`p , p = 0.01.
Both, time and frequency axes are normalised such that they range from zero to
one.
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(b) CP

Fig. 6.3: Wavelet and cosine packet transform of the same signal as presented in
Figures 4.16 and 4.17. Decomposition level is D = 8 whereas cost function in (a)
is entropy and in (b) the `p norm with p = 0.1.
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‘Entropy’: That particular cost functional measures the ‘flatness’ of the
signal’s energy distribution and minimisation of former leads to a co-
ordinate system in which the presentation is optimal in the sense of
compression. This cost functional achieve a concentration in the phase
plane to only few coefficients of considerable high value. Setting the
remaining coefficients to zero yields then a smoothing of the data and
compress the signal on the side.

Such an ansatz may not necessarily lead to high classification rates. Al-
though only a small fraction of signal’s energy is ‘lost’ by a thresholding
process– which is important for dimension reduction, cf. Eq. (6.1c) –
the extracted features may be useless.

In speech, see Chapter 2, it is known that formants and especially their
path in the phase plane may reveal the nature of a special phone. In
particular, it is possible to distinguish between (voiced) phones only by
looking at their formants.

In order to obtain a kind of parametrisation of a particular path it is
crucial to find a well balanced trade-off between the resolutions in the
two spaces (time & frequency, respectively).

In general, the entropy cost functional achieves a too good frequency
resolution at the expense of accuracy in time such that any attempt of
classification (by considering the formant’s path) fails due to a worse
parametrisation. Compare for instance the phase plots in Figure 6.5
(a), with Figure 6.6, (a) or (b), from which is obvious that the latter
has a superior partition ability (for parametrisation purpose) over the
former.

‘`p’:
∑

i |xi|p, 0 < p < 2; Several experiments with different words and ex-
ponents show that only high energetic with high frequency parts are
decomposed into finer time intervals. Noise-like parts with high fre-
quencies and less energy are merged as much as possible. Voiced seg-
ments with almost constant spectra are not further subdivided.

The higher p < 2 was chosen the more the partition in time resembled
that one obtained via the entropy cost, cf. Figures 6.6 and 6.10. For
small 0 < p 6

1
10

it behaved similar to the log-cost,
∑

i log(|xi|).
In Figures 6.12, 6.13, 6.14, 6.15 and 6.16 the similarity and difference
between the two cost functionals ‘entropy’ and `p, p = 0.1, p = 1.6, is
showed for ten different words spoken by a male. These plots empha-
sise once again that the ‘entropy’ cost is not always a ‘good’ criterion
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in order to obtain a phase plane tiling from which one could extract
features – such as a kind of path of formants.

‘Risk’:
∑

i min(x2
i , p

2); For p near 0.1 there is a kind of zoom-in for low-
energetic and high-frequent intervals. Voiced like parts are rather kept
large, see Figure 6.7 and Figure 6.11 For p being near the coefficients’
maximum the best basis algorithm tiles the time frequency plane sim-
ilar as with the

∑
-cost,

∑
i xi. In that case the tiling has too much

emphasis on the time partition which is also not necessarily effective,
cf. Figures 6.5 and 6.9, (c).

‘N(p)’:
∣∣∣{x
∣∣ |x| > p}

∣∣∣, 0 < p 6 2; As p increases the tiling-nature change

abruptly from very fine time partition to very coarse time resolution
and back, see Figure 6.4 and Figure 6.8. It is clear that this is only
based on the threshold p but still it is not obvious to the author how
to predict that kind of behaviour.

These ‘findings’ are typical for all the other words in the data set, i.e. very
analogous conclusions are drawn from studies on words and speakers not
presented here.

Motivated by these results, the `p cost functional with parameter 0.1 6

p 6 0.2 is considered to be more or less suitable to partition the phase plane
such that short bursts (interval of relatively high variance in frequency of
short duration with non-negligible energy) are well localised in time whereas
voiced parts have a good frequency resolution.

6.4 Extraction of Features

The so obtained ‘best basis’ representation is used to extract n, n ∈ N, centre
of frequencies and the pertinent energies of each time interval such that each
utterance of 213 samples is mapped to a sequence of approximately sixty n×2
matrices.

The number of matrices depends on the maximal tree depth and on the
particular cost functional. Since the signal is represented in the local cosine
packet basis the extraction of these 2n features, centre of frequencies plus
energies, is easily obtained.

6.4.1 Formants & Cosine Packets

Remember the notation of Section 5.2 and the results obtained there, Theo-
rem 5.2.7 and Corollary 5.2.11. Without loss of generality the author restricts
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(a) speech signal: ["fEnst@r], female speaker
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(b) p = 0.1
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(c) p = 0.2
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(d) p = 0.4
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(e) p = 0.6
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(f) p = 0.8
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(g) p = 1.4

Fig. 6.4: ‘N(p)’ cost functional; ["fEnst@r], female speaker
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(b) ‘Log’
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(c) ‘Sum’

Fig. 6.5: cost functionals without extra parameter; ["fEnst@r], female speaker
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(a) p = 0.1
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(b) p = 0.2
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(c) p = 0.4
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(d) p = 0.6
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(e) p = 0.8
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(f) p = 1.4
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(g) p = 1.6
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(h) p = 1.9

Fig. 6.6: ‘`p’ cost functional; ["fEnst@r], female speaker



6.4 Features 129

Phase plane:  

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) p = 0.1
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(b) p = 0.2

Phase plane:  

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) p = 0.4
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(d) p = 0.6
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(e) p = 0.8
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(f) p = 1.4
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(g) p = 1.6
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(h) p = 1.9

Fig. 6.7: ‘Risk’ cost functional; ["fEnst@r], female speaker
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(a) speech signal: ["fEnst@r], male speaker
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(b) p = 0.1
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(c) p = 0.2
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(d) p = 0.4

Phase plane:  

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) p = 0.6
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(f) p = 0.8
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(g) p = 1.4

Fig. 6.8: ‘N(p)’ cost functional; ["fEnst@r], male speaker
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(b) ‘Log’
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(c) ‘Sum’

Fig. 6.9: cost functionals without extra parameter; ["fEnst@r], male speaker
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(b) p = 0.2
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(c) p = 0.4
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(d) p = 0.6
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(e) p = 0.8
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(f) p = 1.4
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(g) p = 1.6
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(h) p = 1.9

Fig. 6.10: ‘`p’ cost functional; ["fEnst@r], male speaker
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(c) p = 0.4
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(d) p = 0.6
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(e) p = 0.8
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(f) p = 1.4
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(g) p = 1.6
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(h) p = 1.9

Fig. 6.11: ‘Risk’ cost functional; ["fEnst@r], male speaker
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Tj,k to the so-called DCT-IV basis, i.e.

Tj,k(n) := tj,k(n+ 1
2
) :=

√
2

hj
cos
((
k +

1

2

)
π
(n− aj

hj

))
where hj = aj+1 − aj

and (aj)j6J is an admissible dyadic partition of the time interval [0, T ] at a
fixed level l, i.e. aj := aj,l := jT2−l, such that [0, T ) = ∪06j<J [aj,l, aj+1,l).
Here, n ∈ |[1, 213]| and J is proportional to the level l of the tree, J = 2l 6 2d

if d, 0 < l 6 d < 13, denotes the maximal tree depth.
Moreover, let the window fuction be given as in Lemma 5.2.4 with fε as

in Eq. (5.9) with ε = 1, and νS = 8 kHz, denoting the sampling frequeny, i.e.

Wj(n) := wj(n + 1
2
) =





sinϑ
(
n+ 1

2
−Aj

r

)
, n ∈ |[Aj − δ, Aj + δ]|

1, n ∈ |[Aj + δ + 1, Aj+1 − δ − 1]|
sinϑ

(
Aj+1 − n+ 1

2

r

)
, n ∈ |[Aj+1 − δ, Aj+1 + δ]|

0, else

where ϑ(x) :=
π

4

(
1 + sin

(π
2
x
))
, Aj :=

aj
νS

=
jT2−l

νS
, δ :=

Aj+1 − Aj
2

.

Due to Eqs. (5.15) (a) and (b), decomposition of a signal f ∈ `2(|[1, 213]|) is
then obtained by first folding the signal at the points Aj , 0 6 j < J , with
cut-off function given by ϑ, f 7→ fj := Ujf , for Uj as in Corollary 5.2.6, and
then compute for each folded part, fj, the discrete cosine transform (DCT-
IV), as e.g. in [Mal98, pp. 347], cosj,k := 〈fj, Tj,k〉 for k ∈ |[0, sj − 1]| if sj
denotes the number of integers (samples) in the interval |[Aj , Aj+1 − 1]|.

A best basis algorithm prunes the so obtained tree (of spectral coefficients
cosj,k) and achieves an adapted basis (or analogously in the case of local
trigonometric packets: adapted time partition) w.r.t. a cost functional with
J̃ 6 2d terminal nodes. For convenience, let the adapted time partition be
symbolised by the sequence (aj)j6J̃ , cf. Figure 6.17, (a).

Actually, since all the DCT-IV coefficients are computed beforehand, the
best basis procedure shows which of them contain the most suitable spectral
information (of course w.r.t. a cost functional).

Each of the scalar product coefficients, cosj,k, can be associated to a

frequency, νk = ωk

2π
=

k+ 1
2

2hj
where ωk is the angular frequency of Tj,k, ωk :=

π
hj

(k + 1
2
).

Due to the sampling theorem, the top frequency, i.e. the maximal dis-
tinguishable frequency is half of the sampling rate in each interval and since
the sampling is uniform, each interval has approximately the same number of
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* 

(a) ‘basis tree’ of the utterance [no:tru:f]

*

(b) adapted time partition

Fig. 6.17: The Best basis (w.r.t. ‘N(p)’, p = 0.1) is obtained from the lowest

nodes, so-called terminal nodes of the tree in Subfigure (a). Here J̃ = 21 –
in contrast to the number of maximal nodes at level d = 7, J = 27 = 128.
Lower subplot shows the waveform of the utterance [no:tru:f] and the adapted time
partition, (aj)j621, visualised by red dashed vertical lines. The feature matrix M7

is illustrated by a star in both, (a) and (b).

samples which imply an almost constant sampling frequency of 8kHz; hence
νk 6 4kHz.

The maximal tree depth was set to d = 7 which yielded a time subinterval
of minimal 213−d = 64 samples or 64

8000
= 8 ms.

Intuitive features are the i-th strongest spectral components, cki
, in each

cosine packet (cosj,k)k∈|[0,sj−1]|,

cki
:=
{

max
06k<sj

|cosj,k|
∣∣∣ |ki − ki−1| > τ > 0

}
, i > 2,

with ck1 := max
06k<sj

|cosj,k|.

So, the proceeding is as follows: compute the strongest spectral component,
ck1 and suppress in a neighbourhood of k1 all the other peaks in the spectrum,
for instance by setting cosj,k = 0 for |k−k1| < τ . Look then at the strongest
survivor, ck1, of such a thresholding and set again in a neighbourhood of that
one, |k − k1| < τ , the spectral coefficients to zero. Iterate as long as there
are non-zero coefficients, cosj,k 6= 0, for k < sj , or until i = I for some I ∈ N.

A more sophisticated approach is to use the extra information contained
in the coefficients cosj,k for |k−ki| < τ which, for instance, can be exploited to
compute the energy Ei in each neighbourhood and the corresponding centred
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frequency µi,

Ei :=
∑

|k−ki|<τ
cos2

j,k µi := E−1
i

∑

|k−ki|<τ
k · cos2

j,k. (6.2)

The author restricted the number of extracted frequencies and energies
to I = 10. The neighbourhood, |[k − τ, k + τ ]|, is set adaptively such that
for a fixed j ∈ N, α ∈ R and for each κ ∈ |[k, k + τ0]|, τ = ατ0, it holds

|cosj,κ| > |cki
−mean(cosj,k)|

100
.

It was observed that artificial enlargement of the neighbourhood, accom-
plished by τ = ατ0, yields a better matching of µi with the actual peaks of
the spectrum. Compare Figure 6.18 where the proceedings of such an algo-
rithm are visualised. Here the enlargement constant, α, is set to α = 20. The
plotted DCT-IV transform of a signal, here [no:tru:f], is typical for all voiced
utterances. The three biggest peaks correspond to frequencies 108, 215 and
318 Hz. The first two peaks may be just a consequence of the glotteral exci-
tation. For instance, the fundamental frequency approximately ranges for a
male speaker from 100 to 150 Hz and for a female from 140−250 Hz. There-
fore, it is possible to separate voiced from voiceless excitation using relatively
easy criteria; any voiceless excitation cannot have high energetic frequencies
below a particular frequency threshold νV . Setting νV = 250 Hz it follows
then that ck1 must be below νV if the corresponding speech segment is voiced
and unvoiced if ck1 > νV . Using the rule of three the former considerations

(since 4 kHz ≈ sj+
1
2

2hj
⇒ 250 Hz ≈ sj

16
) simplify to an easy to check condition:

k1 <
sj

16
iff the speech segment is voiced.

Since the local trigonometric packets constitute an orthonormal basis,
which implies in particular the conservation of energy, i.e. for any admissible
sequence (bj)j 6 J and especially for (aj)j6J̃ it holds

‖f‖2 =
∑

j6J,k<sj

|cosj,k|2.

In that context, it may be of some interest to note that with only these
ten extracted energies pertinent to the ten centred frequencies almost three
quarter of the norm ‖f‖ is captured, cf. Figure 6.19 and the continued
argumentations.

A representative result of the formant extraction algorithm applied to the
DCT-IV transform visualised in Figure 6.18, is the matrix M7,

M7 :=
(

1251.3 451.6 362.3 52.8 525.6 417.8 11.0 318.0 214.6 107.8

0.0150 0.0727 0.0825 0.0878 0.2651 0.3325 2.7202 3.4167 4.4534 9.7558

)T

,
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Fig. 6.18: Extraction of features from a DCT-IV transform of a signal: centre
of frequency and pertinent squared energy; from top to bottom: first, second,
third and tenth strongest ‘survivor’, cki=1,2,3,10

; In particular, visualised are the
coefficients, cosj,k, of the di-phone [no] extracted from the male-spoken [no:tru:f],
where k goes from zero to 1024 as outlined by the x-axis (abscissa) and j is set to
j = 3.
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which is associated to the time interval [a12, a13) = [128, 256) ms correspond-
ing to the discrete analogous set |[1025, 2048]| samples, cf. Figure 6.17.

The first column stores the ten most energetic frequencies (in Hertz)
whereas the second column contains the associated energies in an increasing
order. Henceforth, the elements of a feature matrix Mj , j ∈ N, are called
feature coefficients and each frequency of Mj is termed a formant .

Summing up these energies it holds then that
�

i610 E12,i
�

k61024 |cosj,k|2 ≈ 21.20
21.42

≈ 98.9%.

For that precise utterance it can be calculated, by using matrices (Mj)j

of all adapted intervals [aj , aj + 1), say j 6 J̃ , that

√�
j6J̃,k<10 Ej,k

‖f‖ ≈ 5.54
7.35

≈
75.3%.

It is also clear that this fraction depends on the special neighbourhood
parameter, τ , the number of formants, I, corresponding to the number of
rows of Mj , and possibly other constants in the algorithm. However, it is
independent of J̃ (due to conservation of energy)!

Such a compression of information seems not only to be effective in the
sense that 213 samples are mapped to only a few, say N ∈ N, feature coeffi-
cients but it also promises to be important for further classification tasks.

The number of adapted subintervals [aj , aj+1) ranges in general from J̃ =
50 to J̃ = 70 (for `p cost with p ≈ 0.1) which yields N ∈ |[2I · 50, 2I · 70]|;
hence a high compression which is of factor, (8192

N
), ranging from eight to

five, can be easily achieved!

This ansatz, which is very similar to that described in [WW93], allows
in particular to linearly interpolate the spectrogram of a signal by (locally
constant) frequencies µi over the interval [ai, ai+1), cf. next section and
Figures 6.21 and 6.22.

6.4.2 Formant Representation

In contrast to reckon all the matrices (Mj)j6J̃ it may be useful to consider
the most energy contributing features (Mj)j6K�J̃ which would gain efficiency
in the representation of speech, i.e. yield much higher compression rates by

only a slight loss of the energy fraction
�

j6K�J̃,k610 Ej,k

‖f‖2 , cf. Figure 6.19. Here,

approximately the top ten energy contributing features suffices to represent
an utterance with almost the same energy fraction.

In summary, it is possible to extract ≈ 200 (= 2KI)features which still
may contribute to a suitable classification of rather distinct words, similar to
the case of the data set used by the author.

That this small number of features is sufficient for classification tasks is
yet only motivated by the fact that voiced segments can be fully characterised
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(a) [no:tru:f]; thirteen speakers
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(b) ["hilf@]; thirteen speakers

Fig. 6.19: Fraction of energy,

√�
j6K6J̃,k610 Ej,k

‖f‖ , is plotted against K for the ut-

terances [no:tru:f] and ["hilf@] spoken by thirteen different people. Note that a
lot of feature matrices Mj do not have a high energy assistance; in most cases it
suffices to restrict K to K = 10.
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(a) stationary formant path
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(c) abrupt changing

Fig. 6.20: Schematic paths of formants in the phase plane (with normalised
frequency and time axes) typical for monophthongs, (a), for diphthongs, (b), and
for consonants, (c); the vertical bar results from a relatively short burst where no
special frequency band is favoured.

by the first few (three and more) formants which in fact are the most energetic
parts of an utterance, cf. Section 4.4.2 and especially Figure 4.13.

A major problem extracting formants by means of the windowed Fourier
transform is the disadvantage of a fixed window support and the a priory
unknown properties of the analysed signal, e.g. for speech utterances pro-
duced by females it is more suitable to use smaller window sizes compared to
those which should be applied to speech utterances spoken by males due to
different pitch. Such problems are completely removed by an adaptive phase
plane tiling!

Another supporting argument relies on the study of the path (evolution
in time) of each formant. Early observations by phonologists shows that
several consonants and diphthongs1 have distinctive patterns in the phase
plane which may contribute to a recognition of those. Figure 6.20 shows
schematically possible paths in the phase plane typically for vowels, (a),
diphthongs, (b) and consonants, (c), which may be characterised by the
anterior and posterior path and position of each formant. Such diagrams
are obtainable via local trigonometric packets and a subsequent basis search
algorithm2.

The features, described by Eq. (6.2), reflects the most important infor-

1Diphthongs are vowels which manifest a clear change in quality from start to end as
in the words [baIt] (bite), [bOI] (boy), [steIk] (steak) or [baUns] (bounce).

2The ‘best basis’ algorithm which minimises a cost functional is by no means the
only one and for speech classification tasks of yet questionable success. Another search
algorithms are presented in [Mal98, pp. 409, 465] which may be more suitable for noise
corrupted signals and for data sets (of words) with only a small number of classes. There,
the basic idea is to extract the most coherent segments of a signal w.r.t a dictionary.

Moreover, local discriminant bases, which maximise the class separability, cf. [SC94],
may also be a candidate for speech recognition.
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mation in the sense that the extracted energy associated to those formants,
cf. Figure 6.19, is ‘almost’ unaltered compared to the energy of the signal
itself.

Figure 6.21 elucidates the low-dimensionality of the extracted features
which also permits the usage of artificial neural nets (ANN) as classifiers. It
also shows that most energy comes from voiced segments and Figure 6.22
stresses the speaker independence of the features which is clearly seen in the
subplots (a,c,e) for the utterance [liçt] spoken by three different people.

Note also the typical transitions of the formants for the phone [i] in the
word [liçt].

More sophisticated statistical (or other) entities, similar to those defined
in Eq. (6.2) may have an important contribution to classifying voiced seg-
ments.
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(f) K = 10, E ≈ 18.80

Fig. 6.21: K feature matrices Mj of the female spoken word [no:tru:f] with most
energy allocating intervals are used here to plot the formants, matrix elements of
the first column, as linear approximations of the actual formant paths; a best basis
search with `p, p = 0.1 cost functional chose prior J̃ = 61 basis elements. Energy

of the word is ‖f‖ ≈ 20.19 and E :=
√∑

j6K,k610Ej,k denotes the extracted

energy pertinent to the KI formants showed in each subbplot, (a-f).
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(d) female speaker; e ≈ 97.09%
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(f) male speaker; e ≈ 94.58%

Fig. 6.22: Same procedure as in Figure 6.21; K = 20, I = 10; left column shows
the utterance [liçt] whereas right column visualise ["hilf@] and the corresponding lo-
cally constant formants plotted in the phase plane. The associated energy fraction

e :=

√�
j6K,k610 Ej,k

‖f‖ is given below each subplot (a-f).



Chapter 7

Conclusions & Outlook

The presented work emphasises the limits of the windowed Fourier transform
as also the wavelet ansatz. Section 4.4.2 shows that each has major disadvan-
tages if the aim is a measurement of the time varying spectrum. The former
has a good frequency resolution which is necessary for speech recognition
tasks but does not permit an adapted care of transients, i.e. the phase plane
tiling is fixed, since the window support is arbitrary but fixed.

Moreover, from the Balian-Low theorem it is clear that numerical stability
excludes a good time – frequency resolution and vice versa. The windowed
Fourier transform is not optimal without a priory knowledge about the ex-
pected frequency path in the sense that different window sizes may lead to a
better formant resolution.

A more sophisticated mathematical tool provides the wavelet transform
constituting a frame, bi(orthogonal) or even orthonormal basis.

Via a scaling approach it is possible to achieve a multiresolution with
even a lower computational complexity compared to the windowed Fourier
transform.

Unfortunately, this ansatz sacrifices frequency resolution for time resolu-
tion. The wavelet transform is a good tool for regularity analysis of signals,
for compression and for a lot of other tasks.

However, it fails to resolve frequency intervals which are of interest in
speech processing. This is summarised in the aforementioned section: The
author gives a simplistic algorithm which detect voiced segments. It exploits
the octave band tiling of the wavelet transform and the fact that voiced
speech has distinct frequencies not presented in voiceless speech. A sub-
sequent windowed Fourier transform of each voiced part may yield a good
formant representation which depends on the window size.

In contrast, the spectral components are separated by the local trigono-
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metric transform that has sufficient frequency resolution and which also has
enough time resolution to provide time varying measurements.

A so-called best basis algorithm adapts the phase plane tiling which is then
optimal (w.r.t. a metric resulting here from a cost functional) for each utter-
ance. It achieves a good frequency resolution for voiced segments and zooms
in like the wavelet transform where the frequency is of high variation typical
for consonants. This transform also constitutes frames, bi(orthogonal) or or-
thonormal bases. The so obtained adapted decomposition is used for feature
extraction.

Section 6.4 discusses why the centred frequencies with pertinent energies
may yield a good foundation for speech recognition.

A straightforward development of the ansatz described in the last chapter
could be the usage of a neural net which would considerably profit by the
enormous data shrinkage; a sampled utterance of 213 coefficients is reduced
to approximately 64 n× 2 matrices, e.g. for n = 10 a ‘squeeze’ of more than
600%!

Alternative constructions of bases from out a binary tree may also be of
interest. For instance, a basis which maximises a class separability instead
of correlating the signal, a so-called local discriminant basis, cf. [SC94], may
achieve better classification results.

Shift-invariance of the wavelet packet and local trigonometric transform
may impair the so extracted features. There exist different solutions confined
to that problem, [Coh98]. Since they are, without exception, of a higher
computational complexity they were not considered yet.

As a matter of course, other features may be extracted which are more
robust to noise and more speaker independent. Analogously to that prob-
lem, a more suitable cost functional in the best basis algorithm could also
contribute to a higher classification rate.

In that context another partition ansatz is presented by Eva Wesfreid
and Mladen Victor Wickerhauser in [WW99]. They compute the time points
where an associated instantaneous frequency change function has its local
maxima. Those points are then used to segment the signal into intervals of
nearly piecewise constant spectra, as presented in [Fan94]. The so achieved
partition is not dyadic and may split the signal in a more accurate sequence
of phones than obtained via a best basis search algorithm. At the moment
it is not known to the author if the higher computational complexity of
O (N2) , N number of samples, reduce any misclassification rates.

Nevertheless, the local trigonometric transform seems to be a very promis-
ing tool with at least two crucial degrees of freedom: partition (ai)i of the
real line and the special geometry of the window sequence (wj)j can be kept
very lax and allow therefore to be adapted to a particular problem at hand.
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