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Abstract

For the last decade, optimization of beam orientations in intensity-modulated
radiation therapy (IMRT) has been shown to be successful in improving the
treatment plan. Unfortunately, the quality of a set of beam orientations
depends heavily on its corresponding beam intensity profiles. Usually, a
stochastic selector is used for optimizing beam orientation, and then a sin-
gle objective inverse treatment planning algorithm is used for the optimiza-
tion of beam intensity profiles. The overall time needed to solve the inverse
planning for every random selection of beam orientations becomes excessive.
Recently, considerable improvement has been made in optimizing beam in-
tensity profiles by using multiple objective inverse treatment planning. Such
an approach results in a variety of beam intensity profiles for every selection
of beam orientations, making the dependence between beam orientations and
its intensity profiles less important. This thesis takes advantage of this prop-
erty to accelerate the optimization process through an approximation of the
intensity profiles that are used for multiple selections of beam orientations,
saving a considerable amount of calculation time. A dynamic algorithm (DA)
and evolutionary algorithm (EA), for beam orientations in IMRT planning
will be presented. The DA mimics, automatically, the methods of beam’s
eye view and observer’s view which are recognized in conventional conformal
radiation therapy. The EA is based on a dose-volume histogram evaluation
function introduced as an attempt to minimize the deviation between the
mathematical and clinical optima. To illustrate the efficiency of the algo-
rithms they have been applied to different clinical examples. In comparison
to the standard equally spaced beams plans, improvements are reported for
both algorithms in all the clinical examples even when, for some cases, fewer
beams are used. A smaller number of beams is always desirable without com-
promising the quality of the treatment plan. It results in a shorter treatment
delivery time, which reduces potential errors in terms of patient movements
and decreases discomfort.
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Chapter 1

Introduction

Almost immediately after the discovery of X-rays, the biological effects of
emitting radiation to human cells were recognized, therefore, being addressed
and studied. The result was fortunate. It was found that, although high doses
of radiation can kill both cancerous and normal cells, the cancerous cells are
more sensitive to radiation than the normal cells. This is due to the fact that
the repair mechanism of cancerous cells is less efficient than that of normal
ones. Thus normal cells are more likely to fully recover from the effects of
radiation [NCI97]. This natural fact, together with a good radiation treat-
ment plan, has proved radiation therapy to be a successful tool in cancer
treatments. Consequently, radiation therapy becomes one of the most-used
treatment tools during the fight against cancer. Approximately, fifty percent
of the people who are diagnosed with life threatening forms of cancer are
treated with radiation, either exclusively or in combination with surgery and
chemotherapy.

The majority of radiation therapy treatments are performed using high
energetic photon beams generated by a linear accelerator and delivered to
the patient from different directions (see figure 1.1). The aperture of each
individual beam is created so that it adheres to the shape of the tumor. This
can be done by using an automatic device called a multi-leave collimator
(MLC) in which a number of parallel leaves are projected into the primary
beam to create the required tumorodical shape [VRA]. For depiction see
figure (1.2).

In conventional conformal radiation therapy, the adjustment of the MLC
aperture can not be altered while the linear accelerator is turned on. Thus
the resulting radiation will have uniform intensity throughout the beam aper-
ture. In many cases, especially for irregularly shaped non-convex targets, this
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Figure 1.1: The gantry can move around the couch on which the patient lies and the
couch itself may be moved to alter the directions

limits the possibilities of achieving dose distribution with a good degree of
accuracy to the prescribed dose.

Recently, the above limitation is somewhat overcome by the invention of
intensity-modulated radiation therapy (IMRT), where the MLC is equipped
with what is called dynamic mode. Here the leaves can be moved, while the
beam is turned on, to block (unblock) portions of the treatment field where
less (more) intensity would be more accurate to the prescribed dose. Such a
dynamic mode is capable of producing inhomogeneous beams, allowing the
planner to realize complex shaped dose distributions. Thus IMRT is able
to better conforme to high dose distributions and hence it results in more
precise therapies [Web01].

Despite the use of IMRT technology, one third of the patients that are
treated by radiotherapy die from receiving either too little radiation to cure
the tumor or too much radiation to surrounding healthy tissue, or organs
at risk (OAR), which leads to complications in the region and sometimes
to death (see [HK02]). As a matter of fact, the goals of delivering a high
dose of radiation to the tumor and, at the same time, a small dose to the
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Figure 1.2: A Multileaf Colimator (MLC) system. (picture from [RADKO03])

surrounding OARs are of a contradictory nature and hence not achievable
simultaneously, especially in the case where some OARs are adjacent to the
tumor. In such a case part of the adjacent OAR will receive a dose at least
equal to the minimum target dose. Therefore the alternative realistic treat-
ment objective can only be to find and deliver a curative dose to the tumor
which spares as much as possible of the surrounding OARs. Realizing such
a curative dose with the ideal clinical sparing of OARs for each individual
patient, challenges the radiation therapy planners in their daily practice.

The IMRT treatment planning problem is solved when the optimal set of
its parameters is found. Although many of these parameters, like the dose
bounds, radiation modality, energies, fractionation, etc. do not lend them-
selves to mathematical approaches -they can simply be considered as given
parameters in mathematical contexts- the problem of IMRT remains a large
scale optimization problem of a highly complex nature. Solving it in rea-
sonable time is still beyond the capacities of today’s computer equipment.
Therefore, in practice, the variables system of the IMRT problem is split
into two classes: the beam orientations given by the number of beams with
their positions (gantry and table angles), and the intensity distribution of
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the beamlets, called also intensity maps.

During the last few decades the problem was often approached using a
two stage algorithm in which a stochastic optimization technique is employed
for the beam orientations, while an iterative inverse planning optimization
scheme is used for the intensity maps calculations. Here the optimization
process evaluates the plan by using a one-dimensional objective function and
returns the plan with the best value. Such an approach has two major draw-
backs: first any proper stochastic technique requires the optimization process
which calculates the intensity maps to be performed many thousand times,
each time for a different selection of beam orientations. The total time needed
for this becomes excessive especially in the 3D situation. Secondly, using a
one-dimensional objective function to measure the quality of the treatment
plan, which is essentially of conflicting goals, is not proper. The resulting
plan is often unsatisfactory with respect to clinical considerations.

Recently researchers in the field have admitted that the IMRT prob-
lem is a multi-criteria optimization problem and started formulating it using
a multi-objective function. In contrast to the formal approach, where the
treatment plan is represented by one single value, here it is represented by
a vector containing several objectives (criteria), each corresponding to a cer-
tain organ. For each selection of beam orientations, optimality is no longer
characterized by a unique solution of the intensity maps but rather by a set
of efficient solutions. A solution is efficient, also called Pareto optimal, if any
improvement in one criterion will worsen at least one of the other criteria.
Such an approach allows the planner to search through a variety of Pareto
optimal solutions and eventually decide upon the most desirable treatment
plan for the corresponding beam orientations. Although this has led to a
considerable success with respect to the configuration of the intensity maps,
the problem of beam orientations in IMRT remains unsolved, and the choice
of beam directions in IMRT is still a trial-and-error procedure based on in-
tuition an empirical knowledge.

This thesis is focused on the problem of beam orientations in IMRT plan-
ning. It is organized in the following manner. Chapter 2, which is a comple-
mentary chapter, discusses in general the current state of the art in inverse
planning radiation therapy. Chapter 3 introduces the problem of beam orien-
tations and shows that that problem is non-convex when it is formulated as
a continuous optimization problem and NP-hard if it is modeled as a combi-
natorial optimization problem. Chapter 4 utilizes the methods of beam’s eye
view and observer’s view, which are recognized for beam orientation in con-
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ventional conformal radiation therapy, in form of a fully automatic algorithm
for beam orientations in IMRT. To illustrate the efficiency of the algorithm
it has been applied to an artificial example where optimality is trivial, and to
different clinical cases. In comparison to the standard equally spaced beam
plans, improvements are reported in all examples, even with fewer number
of beams. Chapter 5 introduces a dose volume histogram evaluation scheme
for measuring the quality of a given IMRT plan and presents an acceler-
ated evolutionary algorithm for optimizing beam configurations in IMRT.
As the same as in chapter 4, similar results are reported when comparing
the plan obtained by the evolutionary algorithm with the standard equally
spaced beam plans. In Chapter 6 the results of comparing the evolutionary
algorithm with the dynamic one are reported for different clinical cases. A
summary and conclusion of what has been done in this thesis is found in
chapter 7, and an outlook of what could be done is discussed in chapter 8.



Chapter 2

The multicriteria environment
in intensity modulated
radiation therapy planning

As we have seen in the introductory chapter, usually the optimization process
in IMRT planning aims at finding mainly the intensity maps and, sometimes,
beam orientations. In contrast to the main goal of this thesis, beam orienta-
tions are assumed to be given throughout this complementary chapter which
is meant to present some modeling issues and give an over view on intensity
maps optimization.

Moreover, as the title implies, this chapter is also meant to discover the
invironmental framework of the problem of IMRT when it is modeled as
a multicriteria optimization problem. The goal of such an approach is to
generate a database containing a sufficient number of representatives of the
Pareto optimal solutions that are of clinical interest. These solutions are
then browsed using a specially designed navigation tool, allowing for an easy
access over the database. The planner can then easily search through the
database interactively until eventually he/she decides upon the most desir-
able treatment plan.

2.1 From IMRT to multicriteria optimization

The goal of the planners in IMRT is to find optimal compromises between
a sufficiently high dose in tumor tissue that guarantee a high tumor control
and dangerous overdose of critical structures in order to avoid high normal
tissue complication problems. To achieve this goal it is required, in many

10
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cases, to balance overdoses between the different critical structures where
each of them has its own biological properties when it is being exposed to
radiation. This demonstrates that the problem of IMRT planning has the
same nature as the multicriteria optimization problem, which is, in general,
formulated as follows (see e.g. [GSH99)):

min F' = (f1, fo, .., fmn),

2.1
st. r €S, (2.1)

where § is a nonempty subset contained in R”, n € N, and ' : § — R™,
where also m € N. Moreover it is assumed that the set R™ is partially ordered
by the binary relation <, and the minimality is given by the definition stated
below.

Definition 1. Let L be an arbitrary nonempty subset of R™.
x € L is called a minimal element of L, if there is noy € L with y # x and
yY< T,

Since F' is a vector valued function, one speaks of a so called multi-
objective optimization problem. The set S is called the constraints set (plan-
ning domain), f1, fa, ..., fm are called the indicator functions and F' the ob-
jective function, which is, in our case, a way of evaluating the treatment plan.

2.1.1 Treatment plan evaluations

Usually the treatment plan is determind by its intensity vector x - or some-
times by its corresponding dose distribution d(x) = Ax for a given dose
matrix A - and represented by so called dose volume histogram (DVH) which
depicts the percentage of the volume of a considered clinical structure that
receives at least a certain dose over the relevant dose interval. For illustra-
tion see figure (2.1) in which a depiction of a DVH is represented by the solid
curve. Usually the dose distribution of each clinical structure is represented
by an individual DVH where the quality of a plan is finally judged by the
shape of these histograms.

Consequently, treatment plan evaluation is, indeed, nothing more than
finding a proper evaluation function that is able to quantify the quality of
the corresponding DVHs efficiently.

Typical evaluation functions

In mathematical sense the problem of IMRT treatment planning is generally
considered as a constraint optimization problem with either a single or multi
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Figure 2.1: Exemplary DVH curve and the coresponding EUD with ¢ about 1 and and
q close to oo

criteria objective function. However in both cases, the role of the objective
function is to measure the quality or the goodness of a given treatment plan
subject to some physical and clinical considerations. The objective function
is an evaluation function f, that maps the dose distribution d(x) with respect
to a certain clinical structure to a real value f(d(x)). For simplification, the
critical structures in the body are discretized into small volume parts v; called
vozxels. Standard evaluation functions include those that measure deviations
from a desired dose value DP in the target 7"

F(d(x)) = max| D — d(v;)(x)], (2.2)

Vj erT

or

Fd(x) = wr Y (D? = d(v;)(x))*, (2.3)
where wr is the target importance factor ( see e.g. [SFOM99] and [PBX00]).

Similarly there are functions which penalize voxel doses exceeding an
upper bound U in an organ at risk R:

1

7a@)) = (1R S max (o)) U, 00°)", g€ lloo).  (24)

Vj €R

where | R| denotes the number of voxels in R and ¢ is an organ dependent pa-
rameter. Another choice are functions which take account of the whole shape
of a dose distribution by means of an equivalent uniform dose (EUD), cf. e.g.
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[Bra84]. Using for example A. Niemierko’s EUD [Nie97], the deviation for
the organ at risk R from U is measured by

f@e) = 7 (IR Y d)x)")"s aelloo),  (25)

The EUD measure for an organ or a clinical structure is derived by finding
the homogeneous dose corresponding to the tumor control probability (TCP)
or normal tissue complication probability (NTCP) for OAR in an inhomoge-
neous dose distribution. Figure 2.1 illustrates two possible EUD evaluations
of a DVH. The dotted and the dashed lines are EUD measures with ¢ about
1 and ¢ close to oo, respectively. Thus, the dotted line is equivalent to the
original histogram under the EUD-measure using ¢ = 1. Organs that work
parallel (e.g. lungs, kidneys) are often evaluated using values for ¢ that are
close to 1, whereas serial organs such as the spinal chord are evaluated with
relatively high values for ¢.

TCP and NTCP are statistical functions that measure the probability of
destroying clonogenic cells of the tumor and the probability of damaging risk
organs, respectively, dependent on dosages. Lower dose bound (prescribed
dose DP ) for the target and upper dose bounds (U) for organs that guaranty
a high probability of tumor control and a low probability of damaging risks
can be derived using these function based on statistics gained from experi-
ences with thousands of treated patients (see, e.g.[ELB191]).

The basic property of the mentioned evaluation functions is convexity and
a resulting optimization model can be guaranteed to be solved to optimal-
ity. The physician may nevertheless, for the sake of more efficiency, evaluate
the plan on the basis of non-convex criteria like dose volume histogram con-
straints. Such evaluation functions will be discussed separately in chapter 6,
where a DVH based evaluation function is introduced and used to solve the
problem of beam orientaitons.

2.1.2 Pareto solutions and the planning domain

Recall the the multiciteria optimization problem in its general form

min F' = (f1, fo, .-+, fK),

2.1
st. r€S8. (2.1)

Pareto optimal solution is defined as follows (|[GSH99]):
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Definition 2. z € § is called an efficient solution or a Pareto optimal
solution of the problem (2.1), if F(x) is a minimal element of the image set
F(S).

In another words, an element z € § is a Pareto optimal solution of the prob-
lem (2.1) if there is no y € S such that fi(z) > fi(y) forall k =1,... K,
where strict inequality holds for at least one index k. Thus, the efficient so-
lution property indicates that any improvement that could happen to some
of the objectives f; will worsen some of the others. The method used here
is based on gathering preference information after the calculation of some
Pareto solutions. In fact it is neither possible nor meaningful to calculate all
efficient solutions. It is not possible because the Pareto-front is a coherent
and therefore an infinite subset of the set of feasible solutions. It is also
not meaningful because there are many Pareto solutions that are clinically
irrelevant.

For instance, in the example given in Figure (2.2) one would not go from
point A with dose levels of 11 Gy in the spinal cord and 13 Gy in the parotid
gland to the upper left efficient solution with dose levels of 9 Gy (spinal cord)
and 33 Gy (parotid gland). In other words, the 2 Gy dose reduction in the
spinal cord at this low dose level is not worth the price of a 20 Gy dose
increase in the parotid gland, which may cause xerostomia. We therefore try

35 ®— Pareto optimal
+ dominated

30 RIS

25

20

EUD Parotid Gland (Gy)

oreraletetetetete
S NS e
| i PSSR
J not feasible pESEEHEIRT s S ¥
: R
SIS
J LELESSIIIF SIS EESIS SIS IS III SIS SIS SISO

0 5 10 15 20 25 30 35
EUD Spinal Cord (Gy)

Figure 2.2: Exploration of the Pareto front for a head and neck case by brute force
methods. Every square dot represents one treatment plan. A total of 16x16=256 plans
was generated. The round dots represent the Pareto front for this case, i.e., the set of
efficient treatment plans.



CHAPTER 2. THE MULTICRITERIA ENVIRONMENT IN IMRT 15

to focus on parts of the Pareto boundary that contain clinically meaningful
plans. Since it is easier to classify clinical irrelevance than relevance, we try
to exclude as many irrelevant plans as possible and call the remaining set of
possible plans the planning domain X,.

To exclude plans that exceed the clinically acceptable values in the indi-
cator functions, hard constraints are added. Let F be the vector on indicator
functions and (x) be the vector of beamlet intensities, the so called intensity
map. Then these box constraints

F(x) <u

for upper bound u should be set rather generously in order to allow a flexible
range of solution outcomes from which experts may select an appropriate
candidate. Of course, the more flexible this range is selected to be, the more
calculations will be necessary. If chosen too strict, they may, however, lead to
infeasibility. This serves as a first indication to the decision-maker that the
initial appraisement of the situation was utopian. If after a relaxation of the
box constraints there are still no feasible solutions, the oncologist may realize
that more irradiation directions, i.e. more degree of freedom are needed
to find a clinically acceptable solution and alter the geometry accordingly.
In such cases optimizing beam orientations may play a considerable role
in finding feasible solutions, even with less generous upper bound or fewer
number of beams as it is demonstrated in the comming chapters.

2.1.3 Solution strategies
Once a planning domain is fixed, the problem to solve is given by

F(x) — min subject to (2.6)
x € X,

where
X, ={x>0|F(x) <u}

is the set of feasible intensity maps.

Usually multicriteria problems are solved by formulating possibly multi-
ple scalarized versions of the problem. There are several standard methods
along with their variations which can be used to solve the multicriteria prob-
lem and which exhibit different characteristics.
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One possibility is to solve the lezicographic problem. It treats the objective
functions one by one in a fixed order according to the preference of the
decision-maker.

Fay(x),..., Figp(x) — lexmin subject to (2.7)
x € A,

The theoretical justification to use the solution of problem (2.7) requires the
decision maker to be able to arrange the objective functions according to
their absolute importance. This implies that an indicator function F{,,) that
was ranked more important than some other criterion Fi,), i.e. m < n, is
infinitely more important to the decision maker [Mie99]. As this assump-
tion cannot be made in clinical practice, this approach is not relevant to the
IMRT optimization problem.

An applicable approach which has been widely used in commercial plan-
ning systems for the last few decades is the weighted sum approach. 1t lets
the decision-maker choose positive weights w,, for a structure k£ € KC in the
weighted scalarization problem

Fu(x) = Zkak(X) — min subject to (2.8)
kel
X € A,

For convex multicriteria problems every set of positive weights yields a Pareto
optimal plan and every Pareto optimal plan is an optimum of (2.8) for an
appropriate set of non-negative weights ( for more details see [Mie99]).

In this approach, if a large weight factor wy, for a structure k£ € K is used
more emphasis is placed on the dose delivered to this structure. Although
this ensure a kind of comparability between the different objective functions,
it however does not give the decision-maker any hint that can help him in
finding suitable set of weight factors. In deed, these weights are usually deter-
mined by a trail and error procedure which is a mothod we label the " Human
Iteration Loop” depicted in figure (2.3). This strategy has several pitfalls.
First, it is impossible to ask the decision-maker for optimization parameters
that leads to an ideal solution in the first iterate. An iterative adjustment of
the parameters converges to a solution that hardly incorporates any wishes
that are not explicitly modelled.

Weights in a scalarization approach, for example, are nothing but an
attempt to translate the decision-maker’s ideal into arbitrary weights. This
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Figure 2.3: Human iteration loop described as method of successive improvements

artificial nature results from having to quantify global trade-off rates between
different objectives that are often of very different nature. The fact that no
information on efficiency can be conveyed allows only maximum time or a
maximum number of repetitions as stopping rules for this process. These
arguments render the Human Iteration Loop a futile effort. A truly multicri-
teria decision-making framework which is able to depict more information,
allowing for flexible modeling becomes urgent.

Recently, to overcome the drawbacks mentioned above, optimizing the in-
tensity maps for multicriteria IMRT is performed using different approaches
in which the Pareto boundary is approximated and stored in a form of
database that guarantees an easy access to the planner. Since the intensity
maps calculations is beyond the scope of this dissertation, only a summary of
one of these approaches will be mentioned in order to give the reader sort of
complete understanding of the problem of beam orientations in multicriteria
IMRT. For more details on this topic see e.g. [KMS*06].

The approach to be mentioned is the compromise programming or the
weighted metric approach ([Mie99], [Yu73], [Zel73]). Here, a reference point,
outside the feasible region, is chosen and the distance to it is minimized
in a suitable metric. The ideal point - the point given by the minima of
the individual indicator functions - or some utopia point - a point that is
smaller than the ideal point in each component - can be used as a reference
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point. The different components of F(x) are scaled to get different solutions.
Alternatively, the metric can be varied, or both. The solutions obtained are
guaranteed to be Pareto optimal if the metric is chosen appropriately and
the scaling parameters are positive. A popular choice is the Tchebycheff
problem.

rl?alé({aka(x)} — min subject to (2.9)
S
F(x) < u
x € A,

Note that scaling here is not the same as choosing weights for a problem like
the weighted scalarization (2.8) above. The scaling coeflicients o contain
information about the willingness to deteriorate relative to the specified ref-
erence point. Hence, deviations from the treatment goals can be much better
controlled by the reference point methods than by (2.8), since the solutions
obtained by varying weights provide no information about the trade-offs of
the objectives, see [DDI7].

An initial set of representatives of the Pareto set Xp,,, where
Xpar == {x € X, | x is Pareto optimal},

is obtained by solving problem (2.9): extreme compromises. The extreme
compromises balance so-called active indicator functions only and Pareto
optimality is enforced.

Let ) # M C K be the indices of the active indicators. Let N := M, u(®
be the bounds of the planning domain and ¢ = 0. Then the solution of the
following procedure is called extreme compromise for the active indicators

M.

1. Solve:
max{F;(x)} — min subject to (2.10)
JEN;
F(x) < ul
x € A,

2. Let y® be the optimal objective value of the above optimization prob-
lem and O; C N; be the subset of indicators that cannot be further
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improved. Then let

ug-”l) = y@ for j € NV,
Nigw = N\ O; and
1 = 1+1

3. If N; # 0, goto 1.

4. Repeat the above procedure with Ny, := K\ M, ul*) = u® and
1:=1+4+ 1.

The approach is a kind of mixture between weighted metric and lexicographic
optimization. The solution for M = K is also a solution of the Tchebycheff
problem (2.9). It can easily be shown, that the extreme compromises are
Pareto optimal. With this setting, we will find therapy plans that give an
equibalanced solution for active indicator functions Fj, € M, while the re-
maining non-active functions with indices k € N satisfy the relaxed condition
of staying in Ap,,. The extreme compromises are typically not of high clinical
relevance, but they can serve, in our case as an approximation of the Pareto
boundary, since they mark a relatively large region within Ap,, in which
the interesting solutions are contained. What is left, in order to convey the
set F(Xp,,) to the planner, is filling the gaps in between the approximated
Pareto boundary by a good discrete approximation of Pareto solutions. The
number of points needed to cover the Pareto boundary, which is in general a
| K | —1 dimensional manifold, with a grid of maximum distance p is at least

o ((/p ),

Such a number of points is neither tractable nor actually needed for the
considered problem. In order to overcome the need for a fine grid optimized
interpolation could be used to yield a continuous approximation of the Pareto
boundary. More about the interpolated points and their optimization meth-
ods used to approximate that Pareto boundary in IMRT planning are to be
found in [KMST06].

The computation of the extreme compromises and the intermediate points
are technical and done without human interaction, so that the calculation and
generating the database could for example be performed over night allowing
for interactive database navigation the next working day:.



CHAPTER 2. THE MULTICRITERIA ENVIRONMENT IN IMRT 20

2.2 Database navigation

When the plan database computation is finished, a vital part of the planning
is not yet accomplished. The planner still has to search through the database
to decide on the most desirable plan. Since inspecting a plan usually involves
sifting through all its slices a manual inspection of all plans contained in the
database is infeasible. In particular, when considering additionally convex
combination of plans and thus an infinite number of plans, manual inspec-
tion is not an option. The mechanisms used by the navigation tool allows
for human interaction that is a distinct improvement compared to something
like the human iteration loop described in section (2.1.3).

Figure (2.4) shows the user interface screen, for the navigation tool, which
is divided into two parts. The left hand side visualizes the database as a whole
and embeds the current solution into the database. The right hand side dis-
plays the current plan’s dose volume histogram and the dose distribution on
transversal, frontal and sagittal slices.

The star on the left hand side is composed of axes for the different in-
dicator functions. The indicator functions associated to the organs at risk
are combined into the radar plot, where as the indicators associated with the
tumor volumes are shown as separate axes. The interval on the axes corre-
sponds to the range of values contained in the database for the respective
indicator functions. The white polygon marks the indicator function values
for the currently selected plan.

The shaded area represents the planning horizon. It is subdivided into
the active and the inactive planning horizon. The former is bounded on
each axis by the maximum and minimum values implied by the currently set
restrictions and the latter is the currently excluded rang contained in the
database. Note that the line connecting the minimum values of the active
planning horizon is the current ideal point estimate and the line connecting
the maximum values is the current estimate for the Nadir point.

The line representing the currently selected plan has a handle bar called
selector at each intersection with an axis and triangles for the tumor related
axes. Both can be grabbed with the mouse and moved to ease the selection
process performed by the planner. The right hand side of the screen displays
the plans that are found while the selector is moved. The axes also con-
tain restrictors represented by brackets that can also be grabbed with the
mouse and moved to change the upper bounds for the corresponding indica-
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Figure 2.4: The navigation screen. The star on the left hand side with the active and
inactive planning horizon and the current solution. On the right the dose visualization
and the dose volume histogram.

tor. When the planner moves a restrictor, the active and inactive planning
horizon are updated simultaneously.

The visualization is updated several - usually around seven - times a
second when a selector or restrictor is moved, so the user gets immediate
feedback about the consequences of his or her decisions. Instead of waiting
for the consequences of a parameter adjustment the planner immediately
sees the outcome of each differnet movement. This process offers a level of
interactivity which provides the planner with an easy selection mechanism
during the search for a good treatment plan.



Chapter 3

The problem of beam
orientations in focus

In chapter 2 we have seen that the problem of IMRT is usually treated us-
ing two approaches. The traditional one was based on optimizing a single
objective function which evaluates the treatment plan and assigns a num-
ber to it. Mainly due to the contradictory goals of treatment planning, this
single number was not able to determine the quality of the plan properly.
Consequently, the result of such an approach is often suboptimal with re-
spect to clinical consideration. The most recent approach, which is more
accurate to the structure of the problem, models it as a multi-criteria op-
timization problem with conflicting objectives. However, both approaches
calculate beam intensity profiles under the assumption of a fixed preselected
set of beam orientations. In fact, optimization of beam orientations may
play a significant role during the search for the best possible compromise in
IMRT [PLB*01]. However, prefixing the set of beam orientations seems to
be prevalent in proposed methods. This is due to the fact that the problem
of beam orientations is of high mathematical complexity, when modeled as a
continuouse optimization problem, or high difficulty level when approached
by the use of combinatorial optimization, as demonstrated below.

3.1 Complexity of beam orientations

3.1.1 Beam orientation is not convex

Unfortunately, the influence of a set of beam orientations on the final dose
distribution can not be determined unless an optimal solution of the intensity
maps is found. Moreover, any proper coupling between beam orientations

22
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and intensity maps to formulate the complete problem will indeed turn the
objective function in both of the above mentioned approaches into a noncon-
vex function, preventing the optimization process from the usage of gradient
methods which might very likely, in such a case, be trapped in a local mini-
mum ([BS93]). To examine this closely, let us consider the following example
illustrated in figure (3.1).

] ©Organs at risk

B Target

Figure 3.1: Optimization of beam orientation is highly nonconvex.

The depicted example consists of a rectangular shaped target placed at
the center of a circular phantom in addition to four other smaller rectangular
structures, constituting organs at risk, placed at the corners of the target.
For simplicity reasons, we assume that the optimization process is carried
out for this special example under the following conditions:

e The set of beam orientations consists of only one single beam, so we
are seeking the best beam instead of a combination of beams.

e The beam head consists of only one single pixel.
e The beam width is fixed as it is shown in figure (3.1).

e The beam head may be arranged at any angle on the circular phantom.
In other words we assume that the beam space set is given as follows:

B = {by: 0° < < 360°,6 € R}.
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Obviously the beam direction labeled by by is an optimal solution whereas
any optimization approach that is based on some gradient descent method
might result in the beam direction labeled by by which is indeed a local min-
imum in this case. Notice that any search algorithm would have to make a
big jump to leave this local optimum.

Contemplating the complexity of the problem of beam orientation of such
a simple example gives us an idea about the degree of complexity of the orig-
inal problem, which usually deals with combinations of beam directions that
consist of multiple intensity modulated pixels rather than one single beam
with one pixel. For a numerical example see section ( An artificial coplanar
case study).

Consequently, the problem of beam orientations is rendered to empirical
and heuristic search methods. Almost all of these approaches consider a
discretized beam space. This is justified from practial and technical points
of view. Empirically, it was shown in practice that the radiation beams which
are generated by close beam heads have similar results with only marginal
slight differences ([EJ03]). Technically, the treatment units are often designed
in such a way they can only perform one degree changes of the beam head
position ([EJO3]). Of course, such a discretization would make a considerable
advantage for any search mechanism since it replaces the continuouse feasible
region by a finite set of feasible solutions. The problem of beam orientations
can be, in general, formulated as follows:

Definition 3. For a given finite beam space B = {by, by, ..., b,} wheren € N,
and a given collection of subsets B C 2% with a vector function, C' : B — R™,
where m € N, The generic beam orientations (GBO) problem is:

min{C(B) : B € B}. (GBO)

The objective function C' is actually meant to define a propper quantative
quality measurement to evaluate the treatment plan which is produced by
the set of beam orientations B € 8. In general, it is a multi-criteria objec-
tive similar to the one that appears in the multicriteria optimization problem
(2.1).

At the first sight when looking at the GBO problem, combinatorial opti-
mization would be the first thing that comes to mind to solve it (Appendix A
contains a formal definition of the multicriteria combinatorial optimization
problem). This gives a rise to the question, how difficult is solving the GBO
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problem?

The rest of this chapter is devoted to answer this question in terms of its
computational complexity. First, a simplified introduction to complexity the-
ory is introduced, and then it is shown that the problem of beam orientations
belongs to the class of N'P—hard problems.

3.2 Hardness of beam orientations

3.2.1 An introduction to complexity theory

Since complexity theory is beyond the scope of this thesis, we will make this
introductory section as concise as possible by introducing a general termi-
nology that avoids the rigor found in computer science texts, which would
require many definitions and concepts such as Turing machine, language, and
so forth.

General terminology

Generally speaking, computational complexity theory, when applied to a
given class C of “reasonable problems”! | attempts to classify each given el-
ement P € C according to its degree of difficulty. Mainly the classification
is based on distinguishing between two subclasses: £ C C contains “easy”
problems and D C C contains “difficult” problems.

To develop such a terminology of classification in a mathematical sense
we introduce the following definition:

Definition 4. Let R be a transitive binary relation defined on a class (set)
C. Moreover let £ and D be defined as follows:

E={PeC:(P,Q)eRVQeC}.
D={PeC:(Q,P) e RVQ €}

The relation R is said to be a reduction relationship on the class C if both
of the subsets £ and D are simultaneously not empty.

For the definition of the binary relation and its related properties see Ap-
pendix A.

In general the class C could be any given set. We have just found it appropriate to
call it this way.
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Appropriately enough, a problem P € C is said to be an easy problem if
P € &, and it is called difficult if P € D. Moreover, if (P,Q) € R then we
say that P reduces to, or is not more difficult than, Q.

Let R be a reduction relationship defined on a given class (set) C. This
immediately leads to the following propositions:

Proposition 1. Suppose that P, Q € C it follows:
(i) If Q € € and (P,Q) € R, then P € .
(ii) If P € D and (P,Q) € R, then Q € D.

Proof. (i): For all C' € C we have (Q,C) € R since Q € £ by hypothesis.
Moreover since (P, Q) € R and R is transitive, it follows that (P,C) € R for
all C' € C and hence P € &.

(ii): Analogous to (i).

Proposition 2. The following statements are equivalent:

(i) END # 0.
(ii) € =C.
(iii) C = D.

(i) R={(P,Q): (P,Q) €CxC}.
(v) R defines an equivalence relation on C.

Proof. (i) = (ii): Since END # (), then 3P € C such that P € £ and P € D.
This leads to (C,P) € R for all C € C. As P € &, from proposition (1-(i))
it follows that C' € & for all C' € C. Hence C C £. Furthermore £ C C by
definition. Thus C = £.

(ii) = (iii): Consider any C' € C. As (ii) holds, V@ € C we have @) € £.
Hence V@ € C we have (Q,C) € R. Thus C € D and hence C C D = (iii)
holds.

(ili) = (iv): For any P,Q € C, as D = C, it follows that P, € D. This
implies that (P, Q) € R for any pair (P,Q) € C x C.
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(iv) = (v): Trivial.

(v) = (i): From the definition of R we have & # () and D # () as well.
Thus 3P, Q € C such that P € £ and @ € D. This leads to (P, Q) € R. But
R is symmetric by hypothesis. This yields (@, P) € R. From proposition
(1-(ii)) it follows that P € D as well. Hence P € €N D # ().

]

From a practical point of view, the principal result of this mathemati-
cal setting is the notion of an N'P-complete problem. Intuitively, an NP-
complete problem is a computational problem that is as difficult as any rea-
sonable problem. From the terminology presented above one would conceive
that the class of N'P-complete problems will most probably, have similar
characteristics as the class D. Then what are the classes C and £ from a
practical point of view? In order to introduce these concepts subject to a
precise formulation, we need some additional definitions.

Decision problems and classes NP, P and NPC

For a given combinatorial optimization problem
max{ f(z) = cx : x € S},
the associated decision problem is:
Given a constant k € Z, does there exist = € S such thatf(z) > k7

The range of such a problem is given by the set {Yes, No}. If the answer
of an instance X of a decision problem P is Yes, then there must be an
& € S for which f(#) > k. Such an # is called certificate whereas X is called
Yes-input for the decision problem P. If all instances, or none of them, of a
given problem P are Yes-input, then P is called trivial.

Definition 5. Given an instance X = {c, k, and a representation of S}, of
a decision problem, the length of the binary representation of X s called the
length of the input X and denoted |X|.

Definition 6. Given a decision problem P and an algorithm A for solving it,
let T4(X) be the number of elementary calculation steps required to execute
the algorithm A for the given input (distance) X. Then Tx(n) = sup{Ta(X) :
| X | = n} defines the computational time of the algorithm A. An algorithm
A is polynomial, for the problem P If T4(n) is bounded from above by a
polynomial ie. Tx(n) = O(nP) for some positive integer p.
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Now it is time to define the class NP (of reasonable problems C).

Definition 7. NP is the class of decision problems with the property that:
for any instance for which the answer is Yes, there is a certificate that can
be proved in polynomial time.

Definition 8. P is the class of decision problems in NP for which there
exists a polynomial time algorithm.

Definition 9. Given P,Q € NP, P is called polynomially reducible to
Q ( P xQ ) if there is a polynomial algorithm A that transforms any given
instance X of P to an instance A(X) of Q such that A(X) is a Yes-input
for Q, iof and only if X is a Yes-impute for P.

Definition 10. The class of N'P—complete(NPC ) is the subset of problems
P € N'P such that any problem Q € NP is polynomially reducible to P.

Definition 11. An optimization problem is called N'P—hard if the corre-
sponding decision problem is N'P—complete.

Cook [Coo71] showed that the class of N'PC problems is not empty by
showing the existence of an N'PC problem. This results in the following
corollaries:

Corollary 1. Let T be the subset of problems T € NP that are trivial.
The polynomial reduction ( ) defines a reduction relationship on the class

NP —-T.
Proof. : Trivial. O
Corollary 2. Suppose that P,Q € NP it follows:

(1) If Q € P and P < Q, then P € P.

(11) If P e NPC and P < Q, then Q € N'PC.
Proof. 1t follows directly from corollary (1) and proposition (1). O
Corollary 3. If PNNPC # 0, then P = NP.
Proof. 1t follows from corollary (1) and proposition (2). O

The list of problems that are belonging to class NPC is now enormous.
Corollary (2) often plays the role of enlarging it. This is usually done by
reducing a well-known NPC problem to the problem in focus. In a moment,
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we will experience such a reduction scheme that results in adding the deci-
sion problem of beam orientations into the above mentioned list. In order

to do this the 0-1 KNAPSACK?problem, which is known as an N'PC prob-
lem, is reduced to a special case of the decision problem of beam orientations.

Definitions (from 5 to 11) were taken from [Wol98], but they can also be
found in most books that address computational complexity. For a general
book that covers this topic see [Pap94].

3.2.2 Example construction and reduction

Consider a circular target volume located at the center of a larger phantom
circle on which the beams are spread evenly ( standard equally spaced beam
separation). Assume the irradiated volume contains only one organ at risk
R, with arbitrary shape, adjacent to the target volume see figure (3.2).

B Target
[J Organ at risk

Figure 3.2: Beam orientations as a binary optimization problem.

The beam space is given by the set B = {b1, bs, ..., b, } where every beam
b; is assigned a given intensity, resulting in a certain target dose ¢; and organ
at risk dose ;. These doses are represented by the following weight (intensity)
functions:
fi : B — Z, where f(b;) = t;,

fr: B — Z, where f.(b;) = ;.

2See lemma 1 for the definition of 0-1 KNAPSACK problem.
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Defining = € {0,1}" by

1, ifb, €B
xXr; =
0, otherwise

for all i = 1,...,n, every subset B € B C 2% can be then identified by a
binary vector x.

Finally, defining C' : 8 — Z? by

where Cy(B) = =Y " | tyz; = —tx and C.(B) = Y., rx; = rz, the simpli-
fied beam orientations (SBO) problem of this example then reads

min(—tx, rx), (SBO)

zeX
where X = {x € {0,1}" : x corresponds to some B € B}.
The related decision problem (DSBO) is then defined as:
Is there # € X such that —tx < ky and ra < ks, (DSBO)

for the given constraints ky, ko € Z.
Lemma 1. The (DSBO) problem is N'P—complete.

Proof. We show that 0-1 KNAPSACK oc DSBO. First we state the definition
of the 0-1 KNAPSACK problem.

Definition. Given V, P € Z and v = (vq,...,v,), ¢ = (c1,...,¢,) € L™,
the 0-1 KNAPSACK problem reads

Is there = € {0, 1}"such that cz > P and vx < V7
Reduction. Let k1 := —P, t:=c, ko :=V and r := v. It follows
cx > P tx > —k << —te < ky,

vr <V <= rx < ko,

The consequence of lemma 1 is made formal in the next theorem:

Theorem 1. The problem of beam orientation is N'P—hard.
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3.3 Conclusion

It was shown above that the problem of beam orientations is neither convex,
when formulated as a continuouse optimization problem, nor polynomially
solvable, when modeled as a combinatorial optimization problem. Thus, it
has been rendered to the usage of heuristic methods such as artificial neural
networks ( [HABY99], [RWO99] and [RWO98] ), simulated annealing (see e.g.
[PLB*01], [ROW99], [SMW97], [BS93] or [PBX00]), and genetic algorithms
([Ezz96] and [HBM98]) in addition to exhaustive search method ([AHSB99]).
Most of these studies, equip the traditional approach with some stochastic
optimization algorithm where the optimization of the intensity maps is usu-
ally performed for every individual random selection of beam orientations.
This requires performing the optimization process which calculates the inten-
sity maps many thousand times, each time for a different selection of beam
orientations (see figure 3.3).

Fix initial set of beam orientations,
optimize intensity maps

'

Perform a random selection to obtian <
a trial set of beam orientations

'

Intensity maps optimization
and dose calculation

'

Accept/reject the trial
of beam orientations

'

Test the stopping criteria

iYes

“Optimized” solution

No

Figure 3.3: Flow chart of a usual optimization approach for beam orientations in IMRT.
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The time needed for this purpose, especially in the 3D situation, is not
acceptable in practice. Note that here is no place for the human iteration
loop which is usually required for intensity maps optimization. Discarding
the human iteration loop might result in solutions that are clinically irrele-
vant (see chapter 2).

Moreover, it is not proper to apply the stochastic methods in the multi-
criteria case where intensity map optimization results in a set of Pareto so-
lutions for each set of beam orientations. The planner then needs to search
through the set of Pareto optimal manually to decide upon the most desir-
able solution. This manual search which is required for every set of beam
orientations is inconvenient for computerized beam orientations. Hence, in
real life, beam orientations in IMRT is still a time consuming trial-and-error
search scheme based on intuition and empirical knowledge.

Nevertheless, to facilitate an automated treatment delivery, usually (see
e.g. [BSP97], [Bor95], [Bra9s] or [GLB94|), an isocentric model is used for
the choice of beam’s setup geometry, i.e., the central rays of the irradiation
beams meet in one single point, the isocenter of irradiation (see figure 3.4).

Figure 3.4: Intensity maps for different beam directions intersecting at the tumor

Furthermore in most cases coplanar beams are used (see also figure 3.4).
The treatment can then be delivered completely by just rotating the gantry
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around the patient without the need to rotate or translate the treatment
couch between different beams. Practically, this leads to shorter overall
treatment times which are desirable both for stressing the patient as lit-
tle as possible and for minimizing the treatment costs.

Typically, in the standard IMRT plans, the set of beam orientations is

composed of an odd number of equispaced coplanar beams [Bor99]. Using
such beam configurations gave a rise to the question of how many equian-
gular coplanar intensity modulated beams (IMBS) are required to obtain an
optimum IMRT treatment plan [SMW197]. Webb [Web01] has adopted a
realistic conclusion concerning this issue. He said:
“No-one has ever made the ultimate inverse-planning investigation to deter-
mine the truly optimum solution because this is, I maintain, impossible job.
The reason is that all the variables in an optimization problem are coupled—
beam energy, orientation, bixelation, beamwieghts, beashapes etc. A truly
optimal plan would be that which resulted from allowing a completely free
variation in all these parameters, some thing never done in practice. Hence,
what usually happens is that workers fix some parameters and search for the
best values of others left free. A consequence is that there is an incomplete
message delivered about how many beams are needed. It depends on what
else you choose to fix and what problem is under consideration” [Web01].

Consequently, in order to optimize the intensity maps within a practical
time, the optimization process of the intensity maps is usually performed af-
ter fixing all the other parameters including beam orientations (seen chapter
2). Contrary to this approach, in this thesis, the optimization of beam orien-
tations will be carried out under the assumption of pre-fixed intensity maps
and a fixed number of beams as well. In either approach, however, the choice
of the values for the fixed parameters is critical and has to be clever enough
in order to produce clinically relevant solutions (plans) that are somewhat
comparable or at least not too far from the truly optimal plans. The thesis
will present two different algorithms that approximates the intensity maps
for the purpose of optimizing the set of beam orientations in IMRT. The first
one approximates beam intensity profiles iteratively instead of doing it for
every selection of beam orientations. In the second one the beam intensity
profiles for all the beams are firstly approximated and kept fixed throughout
the hole running time of the algorithm. In both techniques the intensity
maps are calculated, at most, few times, saving a considerable amount of
calculation time. A general flow chart of the optimization process of such
approaches is shown in figure (3.5).
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Initial intensity maps,
special optimization approach

l

beam orientations optimization,
by some algorithm

'

Optimized set of beam orientations

l

Intensity maps optimization,
multicriteria approach

'

Approximation of the Pareto front

Figure 3.5: Flow chart of the proposed optimization approach for beam orientations in
IMRT.

Unlike the flow charts of the usual beam orientations approaches (see
e.g. figure 3.3), here the optimization of the intensity maps is independent
from the optimization of beam orientations, saving considerable amount of
calculations, allowing for reasonable time performance. A property makes
the presented approaches distinguishable from the other usual ones.

Finally, an important point that deserves being mentioned here is that
there is no unique solution of the IMRT planning problem. This is due to the
fact that any solution of the problem depends on the applied mathematical
model as well as the applied constraints. Each research group has its own
model which emphasizes some features of the optimization while considering
only simplified assumptions about others. For example, some groups focus on
dose optimization whereas others go for optimizing the biological outcome.
After all, it is difficult or even improper to compare different approaches
between various groups. However, in beam orientations optimization, it is
common to compare the plan resulting from the optimized beam orientations
with the standard IMRT plans which are usually composed of a set of an odd
number of coplanar equispaced beams (See e.g. [PLB*01], [PX1a], [PX1b],
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[PX02], [GWR04] and [WZD™"04]). Similarly, to illustrate the efficiency of
the algorithms that will be presented in this thesis, the resulting plans are
are compared with the standard IMRT plans. Furthermore the results of
both algorithms are compared with each another.



Chapter 4

A dynamic algorithm for
systematic selection of beam
orientations in IMRT

This chapter is devoted for presenting a dynamic algorithm (DA) for sys-
tematic selection of beam orientations in IMRT treatment. The algorithm
approximates beam intensity profiles iteratively instead of doing it for every
selection of beam orientation, saving a considerable amount of calculation
time. Every iteration goes from an N-beam plan to a plan with N +1 beams.
Beam selection is based on a score function that minimizes the deviation from
the prescribed dose, in addition to a reject-accept criterion. Altough the al-
gorithm does not solve the problem completely, its deviation score function
provides the planner with an efficient beam placement guideline which is an
alternative to the trial-and-error procedure.

4.1 A mathematical model

The idea behind our model comes from the most recognized technique for
beam orientation in conventional conformal radiation therapy. The main
features of this technique are summarized by the following two stages:

e Beam’s eye view (BEV): This stage is meant to identify the appro-
priate beam directions that are potentially promissing for producing
a good treatment plan, if they are enclosed in the beam orientation
set. Beam directions are labeled good or bad depending only on their
geometrical aspects. The planner views the surface model from the
position of the radiation source to find out which organs are hit by

36
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the beam being examined. The main criterion is to enclose the tar-
get volume completely by the beam and avoiding enclosing organs at
risk simultaneously. If it is not possible to find such a beam then the
planner goes for minimizing the partial volume of the organ at risk
which is covered by the beam. Often modifying the beam portal would
be helpful in order to minimize the dose directed towards an organ at
risk. Adjusting the beam portal to the form of the target volume could
be done using the BEV method. The best beam in the view of the
planner is chosen to be the first in the beam orientation set. For the
last decade, many modifications where applied to the BEV method,
most of them share the binary fashion quality measure to evaluate a
given beam direction depending on whether the beam hits organ at risk

([CSP*92], [CRRM99], [GAR*83] and [MCV*92]).

e Observer’s view (OV): Further appropriate beam directions are
found interactively with the Observer’s view, where the information
of the patient model is provided to the planner using the same scheme
as in the BEV method but from an arbitrary point of view enabling
him to figure out the volumes of the patient model where the irradia-
tion beams overlap ([SMO01]).

Our model, which is fully automated will adapt the same strategy of the BEV
and OV methods. First it looks for the best possible irradiation beam for
the IMRT planning and then it goes for further appropriate beam directions.

4.1.1 Automated beam’s eye view

Unlike the BEV method where the evaluation of a beam direction is carried
out by a human, the evaluation in the automated beam’s eye view (ABEV)
technique is totally computerized. It is based on a score function that mini-
mizes the deviation from the prescribed dose in the target region taking into
account the intensity modulation which resulted from solving a specially
designed optimizing problem for approximating beamlet intensity profiles.
Mathematically speaking, the aim of the ABEV tool is to solve the following
problem:

Problem 1. For a given beam space, B = {by,...,b,} where n € N, sort the
elements of the set B according to their decreasing performace in producing a
good IMRT treatment plan, assuming that the IMRT treatment will be carried
out using only one single beam direction.
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In order to have a sorted set of the beam space B each beam direction is
evaluated and ranked using the following two steps procedure:

e Optimization of beam intensity profiles: In this step a weighted
least square objective function is used for optimizing the delivery of
radiation therapy, although a variety of objectives are available and
could also be used for the same purpose ([SFOM99]). In the case of
the least square fitting the optimizer seeks to minimize the weighted
squared differences between the prescribed and the actual doses. Thus
for every beam direction b € B the intensity of each individual beam-
let from the considered beam b is approximated using the following
optimization problem:

i wr 2 WR 2
min —_— (Dp — .’L’dz) + Z N—Rk Z (l‘dl)

Nr i€T kek =~ ' ieRy, (4.1)

subject to x>0,

where wp and wg, are the importance factors assigned to the target
and organs at risk respectively, DP is the target prescribed dose, V is
the volume occupied by the beamlet, and Ny is the number of pixels
belonging to the volume V.

e Beam evaluation: After having approximated the intensity profiles of
all the beams, the dose distribution of each individual beam direction
b € B is calculated and its deviation score S, is evaluated using the
following quadratic function

Sy =Y (D" Dy)’, (4.2)

i€T

where D; = . x;d;; is the total calculated dose value absorbed by
voxel ¢ and delivered by the beam direction b.

Now the beam space B is easily sorted in a decreasing order according to
the beams performance by ordering the beams in an increasing order with
respect to their deviation score values.

4.1.2 Automated observer’s view

As we have seen above, the goal of the OV method is to find a good beam to
be added to the already chosen set of beam orientations. Thus the problem
of the automated observer’s view (AOV) can mathematically be formulated
as follows:
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Problem 2. For a given beam space, B = {by,...,b,} where n € N and a
given set B C B, find the beam b* € B, where B® = B — B, such that the
orientation set BU{b*} will be able to produce the best IMRT treatment plan
amongC] those plans that are produced by the orientation sets B U {b} for all
be B".

In order to solve this problem we utilize the methods used in the ABEV
tool to let it adhere to the goals of the problem. The utilized methods are
summarized:

e Optimization of beam intensity profiles: Obviously, from the con-
struction of the considered problem, selecting a new beam to be merged
into the set B depends heavily on the beams that belong to the set B.
More precisely, it is based on how the dose distribution generated by
the beam being examined fits into the dose distribution that is pro-
duced by the set B. The best fitted beam is the one that reduces the
gap between the dose produced by the set B and the prescribed dose
to its minimum. Of course this is subject to the beam intensity profile.
The utilized version of the optimization problem (4.1) was especially
designed to adhere to the treatment goals taking into account the dose
distribution that is contributed by the set B. Thus every beamlet from
each individual beam direction b € BP is approximated by solving the

problem
. wr d 2 WR d 2
mmFT g [DP — (Df + zd;)|” + g N . E (D} + xd;) (4.3)

ieT kekc Bk i€ERy,

where D¢ corresponds to the dose delivered to voxel i by the beams
that belong to the set B. If the resulting intensity x of the considered
beamlet is negative, it is set to zero.

e Merged beam evaluation: After having approximated the intensity
profiles of all the beams b € B | the dose distribution of each orien-
tation set B U {b} for all b € BP is calculated and its deviation score
Spuqpy is evaluated using a similar evaluation function to the one that
has been used to evaluate the ABEV,

Spuy = Y _(D? — Dy)?, (4.4)
€T
where D; is the total calculated dose value absorbed by voxel ¢ and
delivered by the beams belonging to the set B U {b}.

Now the beams belonging to the set B are easily sorted in a decreasing order
according to their performance when they are merged with the orientation
set B.
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4.1.3 Insight

As one can see, the deviation score function in equation (4.2)

Sy =Y (D" - Dy)’,

i€T

does not take into account the dose delivered to organs at risk. Actually, it is
nothing more than the sum of the squared deviation between the prescribed
and delivered dose taken only over the target volume. Thus, the higher the
delivered dose that does not exceed the prescribed dose the better is the
deviation value, even in the case where an organ at risk is highly overdosed.
This seems contradictory to the goals of the treatmet plan. Indeed, such a
case will never occur since the optimization problem of the intensity profiles
in equation (4.1) takes care of reducing the dose delivered to the target, if
the corresponding beamlet hits an organ at risk, especially when a relatively
large weight is assigned to this organ. To obtain a better understanding of
how the optimization of beam intensity is cooperating with the deviation
score function to model the beam orientation process, let us consider the
special case illustrated in figure (4.1), where the target is given by the rect-

B Target

] Organs atrisk

b9III

[[] Mormal tissue

by

—

Figure 4.1: A simple artificial example demonstating the processing progress of the
ABEV and AOV methods.

angular shape located nearly in the middle of the circle, all other rectangular
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shape structures replaced around the target represent an organ at risk and
the remaining area inside the circle is normal tissue. We assume that the
beams may be arranged at any integer angle on the depicted circle. Thus the
beam space is given by the set B = {by, b1, ..., b359}. Moreover, we consider
in this special case that the beam width is equal to the width of two voxels
and the irradiation will be carried out using only two beams.

In the above example, one can easily conceive that the optimal two-beam
orientation geometry will be given by the set B = {bg, byo}. Note that beam
ba7o 1s not as good as bgy since the later one is closer to the target. This
empirical judgment is well described by the ABEV and AOV methods pre-
sented above. To see this recall the beamlet intensity optimization problem
(4.1) which can be rewritten as follows:

?gal(%Zd%Z%Zd?)w?—

- Ry |

€T kek k ieRy (4.5)
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The optimal solution z* then can be found by taking the derivative and
equalize it with 0. Thus,

Tt = %_; Z’L‘ET Dpdl (4 6)
= — T .
N_7T~ €T dzz + Zkelc N—Rz Zz‘eRk dZ?

As it can be seen from the denominator of equation (4.6), the second term,
which corresponds to the organs at risk, imposes a limit on the beamlet in-
tensity. Thus, considering our example depicted in figure (4.1), it becomes
obvious that the beamlets belonging to the beam bgy and beam by7y will be
assigned the highest intensity values among all the beamlets. The deviation
score of a beam depends only on the dose delivered to the tumor. The higher
the beamlet intensity values, the higher the delivered dose to the target and
hence the deviation score becomes less. Thus beams bgy and byyg will be
assigned the minimum deviation score values and ranked at the top of the
sorted list. Moreover, the beamlet that has to travel a longer distance to
reach the tumor will then have a smaller numerator in the fraction of equa-
tion (4.6). Consequently it will be assigned a lower beamlet intensity which
yields a lower dose distribution on the target and hence a greater deviation
value. Thus the ABEV method will definitely prefer beam by over beam bazg.
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After determining the first beam B = {bgo} it is now the time for starting
the AOV process where the optimal solution of the beamlet optimization
problem (4.3) is given by the following equation:

. ¥ ZierD” = D) = Yrer it Lier, Dids (4.7)
— = , .
N2 ier &+ ek N—Zi >ier, 4

if the numerator is positive, and x* = 0 otherwise. In this equation, the
already delivered dose D¢ plays a considerable role in reducing the intensity
of the beamlet being optimized, especially if the voxels that lie across the
beamlet entrance zone were already relatively highly irradiated by the pre-
viously chosen beams belonging to the set B. Consequently the considered
beamlet will not contribute with a considerable “target dose” and hence will
not considerably reduce the value of the deviation score of the beam to which
it belongs. Actually this is how the final beam orientation set B avoids hav-
ing closed beams. For the same reason beams that are potential candidates
for producing high dosages on some organ at risk are very likely avoidable
as well. For instance if we come back to our example in figure (4.1), all the
beamlets that belong to beam by7g will be assigned low intensities because
of the already delivered doses emitted by the beamlets belonging to beam
bgo. Consequently the deviation score Spup,,, Will remain close to Sp which
in turn causes by7g to sink and prevent it from being ranked at the top of the
ordered list. Insted Spup, Will win the minimum deviation value since the
terms concerning organs at risk in equation (4.7) will be at their minimum
for beam by allowing for maximum beamlet intensities and hence a maximum
dose contribution over the target.

Thus the ABEV and AOV methods will suggest B = {bgo, by} as a two-
beam irradiation geometry for the example depicted in figure (4.1). This
result is as the same result as our empirical knowledge has suggested. The
AOV method plays the role of pointing out the beams that best complete the
dose already delivered to the target with the least compromises concerning

organs at risk. This is done with the guidance of the optimization problem
(4.3) or equation (4.7).

We should emphasize here that although the construction of the optimiza-
tion problems (4.1) and (4.3) was gained empirically through the intuitive
consideration to capture the main features of the treatment goals, the ob-
tained intensity profiles are intended to be used only during the search for an
optimal set of beam orientation. Indeed they might be very different from
the final optimal intensity profiles for IMRT treatment which are calculated
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using a totally different technique as we have seen in chapter 2 .

Now it is time to present the systematic algorithm which results a promis-
ing beam orientation set for producing a good treatment plan.

4.2 A dynamic algorithm

For a given beam space, B = {by,...,b,} where n € N, and an integer number
q, we are seeking a set of beam orientation B C B, with | B| = ¢, which is able
to produce intensity profiles with dose distribution as close as possible to the
desired prescribed dose. For technical reasons we assume that the orientation
set B is an ordered set. The algorithm is based on two major stages repeated
recursively until the desired number of beams is achieved. The first stage is
performed at the beginning of each iteration where the intensity for each
beamlet is approximated. Then comes the role of the second stage in which
the complement of the orientation set B is exhaustively searched in order
to find the best beam to be moved into the set B. To do this, the dose
distribution for the set B coupled with each individual beam b € Bt is
calculated and its deviation score Spygy is evaluated using equation (4.4).
We will see how these two stages are cooperating with each another through
the algorithm presented below.
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4.2.1 Algorithm

Stage 0: Input

Beam space B and the required number of beams q.

Stage 1: Intensity profiles

a) Set B — B and B — B.
Set B « {).

b) WHILE (B #0)
IF ( B#0) THEN
Let b := the first beam in the ordered set B,
ELSE
Let b:= an element of the set B,
END IF

|BI+|BI+1 ;
2

j=|B ’

FOR (Each beamlet belonging to b)
DO
‘ N Dier(C-DP =D di=F ke :%Z Yicr, Didi I
v % Sier B4 kex :%2 Yicr, 4 ( )
IF (y>0) THEN
Intensity x =y
ELSE
Intensity x = 0
END IF
END DO
END FOR
IF (b e B) THEN
Delete beam b from B
Add beam b to the orientation set B
END IF
Delete beam b from B
END WHILE

Stage 2: Sorting and stopping criterion
a) Set B® — B — B.

44
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b) FOR ( Each beam b € B®)
DO
Set Bb — BU {b}
Calculate the dose distribution of the set B.
Compute the deviation score S(By) of the set By, where

S(Bb) = Zz‘eT(Dp - Di)Q-
END DO
END FOR

¢) Let B:={B,:be Bt}.

d) Sort the element of the set B in a non-decreasing order according to
their deviation values S(By), where b € B,

e) Let Accepted := 0.

f) WHILE ( Accepted = 0 )
DO
Let By := the first element in the ordered set B.
Let B* := the ordered set of B;.
Recompute the intensity profiles of the beams belonging to the set B*.
Cualculate the Dose distribution of B* and then S(B*).
IF ( S(B*) > S(By) ) THEN
Delete By form B .
ELSE
Accepted = Accepted +1.
END IF
END DO
END WHILE

g) Set B «+— B*.
Stopping criterion

a) IF ( |B| = ¢ ) THEN
Output the orientation set B.
ELSE
GO TO stage 1.
END IF

b) END ALGORITHM.
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4.2.2 Iterative analysis

During the first iteration, which is a direct application of the ABEV method
as we will see soon, the orientation set B is kept empty the way it is defined
in stage 0, and hence D¢ = 0. Moreover, since B = (), and hence B=10as
well, we have from (I) in stage 1

Z|B|+\B\+1 . ZO+O+1 .

=B L g=ond
B+B+1._ 0+0+1 . — &
z' P 2m1 7

where O is defined as the portion of the prescribed dose D to be considered
while optimizing the intensity profiles of the currently processed beam. The
role of this value C' will be explained with more details a bit later. Yet since
D¢ =0 and C = 1, equation (II) in stage 1 during the first iteration solves
merely the optimization problem (4.1)

min ]I:}/'—i ( —:Ed +Zkazxd

€T ke ZERk
subject to x >0,

for every individual beamlet in each beam b € B = B. After that comes
stage two where the dose distribution for every beam b € B¢ =B — () is cal-
culated and its deviation score S(b) is evaluated. Beams are then sorted in
non-decreasing order according to their deviation scores. Actually the order
found in this first iteration is important for reordering purposes concerning
further iterations. Indeed it is the criterion according to which the sets B, B
and B* are reordered whenever they appear non empty during the algorithm.
Choosing the beam with the minimum deviation score to be added to our
orientation set B will terminate this iteration. In a sense, this iteration is
somewhat similar to the BEVD and pBEV techniques ([PX1a] and [PX1b]),
but with different optimization goals, and hence different objective and score
functions.

Every further iteration is meant to move the beam which contributes with
the maximum target “missing dose” from the set BC into the set B. To see
how this is done let us have a closer look at the iterative stages. Each new
iteration starts with stage 1 in which the intensity profile for every beam
b € B is modified. The modification procedure is built in a constructive
manner described below. From step a in stage 1, the sets B and B are copied
to the sets B and B respectively. The set B is then freed to become empty,
but only until the intensity profile of the first ordered beam in the set B is



CHAPTER 4. A DYNAMIC ALGORITHM 47

recomputed. When step b from stage 1 starts, it processes first the beams
belonging to the set B taking into account these two points:

e The optimization problem (4.3),

min gZ[DI’—(Df—l—xal +Z R’“ZDd—i—xd

>0 NT -
i€T ke k ieRy,

considers the beamlet being processed as the last to be used to irradiate
the tissue. This often results in a relatively high intensity, especially
if there are still more beams to be added, which is the case when the
orientation set B is still not yet completed. Consequently, a low in-
tensity will be assigned to the beamlets which intersect the current
one and belong to the beams that will be processed later. For an effi-
cient intensity profiles the algorithm considers a “beam share system”
of the prescribed target dose. This is established by multiplying the
prescribed dose DP in the above optimization problem by the value C
which is given by equation (I) as follows:
Bl+|B|+1 .
ZL ||J1;3‘\+|1Jr
ZIBI+\BI+1 SIBIHBIHL

For instance, assume that B = {b} and the algorithm is about to start
its second iteration. In this case B is first copied to B and then it is
freed. Thus B = {b} and B = 0. And since the condition B # 0 is
satisfied in step (1b), beam b will be the first to enter the optimization
process with delivered dose D¢ = 0 and a portion of the prescribed
dose given by

0-+1+1
O 2jmind 2
T 0L
Zji_1+ j 3

Thus, equation (II) solves the problem

min wr 2 WR,
S ELREES g St
€T k‘GIC ZERk
subject to x >0,

leaving the remaining portion of the prescribed dose for the contribu-
tion of the upcoming beam. After modifying the intensity of beam b, it
is deleted from B and added back to its origin the set B. Now, because
B=19 every beam from the set B will enter the optimization process
with C' = 1 and D¢ equal to the dose account for the first beam b € B
where B is no longer empty during the current iteration.
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e At the beginning of this study, the set B was assumed to be an ordered
set. Actually, besides the share system presented above, it can easily
be seen that the solutions in equation (II) depend heavily on the dose
delivered by the beams belonging to the set B. Moreover, computing
the intensity profile of a beam b € B requires knowing the intensity
profiles of all its successor beams belonging to the set B. Thus dif-
ferent orders of these successors will result in different solutions. To
overcome this situation, the set B was assumed to be an ordered set
sorted according to the order found during the first iteration.

Second, after having reprocessed the last beam in B, stage 1 starts process-
ing the beams belonging to B® one by one but this time without giving any
importance to their order. Here all the beams belonging to the set Bb are
treated equally with respect to C, which is equal to one, and D¢ which ac-
counts for the beams belonging to the orientation set B.

Now it is time to start the second phase of the current iteration where
the dose distribution for every set B, = B U {b}, b € BC, is computed and
the value of its deviation score S(By) is calculated. Finally, and unlike in
iteration one, where the beam with the minimum deviation value is directly
moved into the set B, the selection criteria is slightly more complicated.
Here the best beam b*, which corresponds to the beam with the minimum
deviation score S(By+), is not moved into B immediately. Instead, it is tested
by a reject-accept procedure that accomplishes the following three steps:

1. Assuming B = {by, bs, ..., b} where k < ¢, the set By then is precisely
written as follow:

By = BU{b'} = {b1,bs, ..., b, b"}.

Since B is an ordered set we know that S(by) < S(by) < ... < S(b).
But the inequality S(by) < S(b*) does not necessarily hold. This gives
rise to the definition of the following set:

B[(;* == {blaan o '7bl—1a b*7bla o '7bk—17b/€}7

where S(by) < S(by) < ... < S(b-1) < SOb*) < Sby) < ... <
S(br—1) < S(br). Thus By. is nothing more than the set By« after
having it reordered.

2. Since the calculation of the intensity profiles cosideres an ordered set,
if the order of the sets Bjf. and By~ are different, the intensity profiles
for those beams belonging to the ordered set Bj. are recalculated with
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respect to the order of Bj.. Now the dose distribution of the set Bj. is
computed and its deviation score S(By.) is evaluated.

3. The decision whether b* is accepted or rejected depends on how the
deviation value S(Bg.) differs from S(By). If S(Bg) < S(By+), then
b* is accepted. Otherwise it is rejected to give the chance for the next
best to enter the reject-accept procedure.

The first beam that passes the reject-accept procedure is added to the
orientation set B, and the algorithm starts a new iteration. It terminates
when the recommended number of beams is achieved. Figure (4.2) contains
a flow chart of the presented DA.

Initial B¢ — B
and B« 0

'

Approximate intensity maps of each
b € B and then each b € BC

¢

For each b € BC calculate deviation
score Spy(p} and rank it accordingly

'

Find b € BY, with minimum SBU{b} s

that passes the accept-reject procedure]

'

Add b to B and delete b from BC

'

Test the stopping criteria

‘Yes

“Optimized” solution

Figure 4.2: Flow chart of the dynamic algorithm.

One point that deserves mentioning here is that this algorithm could eas-
ily be constructed in such a way that it performs the reject-accept procedure
several times until a couple of beams are accepted. The beam with the best
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score, among the accepted ones, is then moved into the set B. These accepted
beams could form a guideline for the planner just in case some alternative
solutions are required.

Now after obtaining a set of beam configuration, the final optimal inten-
sity profiles for IMRT treatment are computed using a multi-criteria opti-
mization solver developed at ITWM ( See chapter 2).

To illustrate the efficiency of the algorithm, it has been applied to one
artificial example, where optimality is trivial, and three clinical cases: a
prostate carcinoma, a tumor in the head and neck region and a paraspinal
case. In all of the real clinical cases, the judgment of the algorithm’s efficiency
was based on the comparison between 2 types of optimization: (1) beam
intensity profiles were optimized for coplanar equidistant beams; (2) beam
intensity profiles were optimized for the coplanar orientation set which was
found by the presented algorithm. To evaluate the quality of the treatment
plan, a depiction of the dose distribution and dose-volume histogram (DVH)
was used for the target and each of organs at risk.

4.3 Examples

4.3.1 An artificial coplanar case study

The construction of this simple example was motivated to highlight the ad-
herance of the algorithm to the human intuitive and logical sense. It consists
of a cross shaped target surrounded by four squared critical structures located
at the angles formed by the cross in a circular phantom. An illustration of
the example is depicted in figure (4.3).

In a coplanar case, every beam direction could be represented by its gantry
angle which is assumed to be an integer in this example. Thus, the beam
space set B is written as follows:

B={b:0<1i<360,i€c N}
Importance factors and all other parameters are given in table (4.1).

The result of applying the dynamic algorithm on the prescribed sample
example is shown in figure (4.4) which contains four curves representing the
deviation score for beam directions through four consecutive iterations. As
one can see, the curve representing iteration one shows global minima at
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Figure 4.3: A simple artificial example.

Organ / Structur w Upper bound Lower bound
Target 1.0 50
Organ at risk 1 0.6 20
Organ at risk 2 0.5 25
Organ at risk 3 0.5 25
Organ at risk 4 0.5 25
Unclassified tissue 0.2 50

Table 4.1: Importance factors and ideal doses chosen for the target and organs at risk.

gantry angles 90° and 180°. This makes intuitive sense since theses beams
are the most exposed beams to the target with minimum dose delivered to
organ at risk R, which has the lowest upper bound and highest importance
factor among all organs at risk. Thus, the first iteration results in the beam
orientation set B = {90°}. The second curve resulted from iteration two
shows a gap at 90° and a global minimum at gantry angle 180°. Discarding
90° is very logical since it has been already chosen and chosing gantry angle
180° is intuitivily obvious. The remaining curves coresponding to iterations
three and four show global minimum at 270° and 0° respectivily. Thus the
algorithm results in the following set of beam orientations:

B = {90°,180°, 270°, 0°}.

One point that deserves mentioning here is that increasing the importance
factor for the unclassified tissue avoids having opposite directions in the final
resulted beam configration.
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Deviation Score

5 —lteration 1
B —lteration 2
3; —lteration 3
i — lteration 4

1} 90 180 270 360

Gantry angle

Figure 4.4: Deviation scores for gantry angles resulted from applying the DA on the
sample example.

4.3.2 Prostate carcinoma

In this study, the irradiated volume contained a two tumor parts (boost and
target) grown in the prostate area and surrounded by four organs at risk;
bladder, rectum, right femur and left femur. The couch angle was set to
0°, whereas the gantry angle was allowed to vary from 0° to 360° in 5° of
increments. Five equiangular spaced beams plan were used in comparison
with the five coplanar beams plan optimized using the algorithm presented
above. The dose distributions and the dose volume histograms of both plans
are shown in Fig (4.5) and Fig. (4.6) respectively.

In comparison with the plan obtained using equiangular beams, signifi-
cant improvements in the dose distribution regarding all clinical structures
were reported. On the one hand, as one can see from Fig (4.6), the use of the
optimized beams yielded a slightly better dose uniformity in the target. On
the second hand the values of the multicriteria objective function were all
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Hip right

Rectum

Figure 4.5: The dose distribution of two multicriteria IMRT prostate tumor treatments

corresponding to (a) five equiangular spaced beams and (b) five optimized beams obtained
by the DA.

@ B

Figure 4.6: Dose volume histograms of two multicriteria IMRT prostate cancer treat-

ments corresponding to (a) five equiangular spaced beams and (b) five beams optimized
by the DA.
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reduced by 5%, 4%, 6% and 7% for the bladder, rectum, left femur and right
femur, respectively. Moreover, the shape of the dose distribution resulting
from the optimized beams is better fitted to the shape of the tumor than the
one obtained by the equiangular beams as demonstrated in Fig (4.5).

4.3.3 Head and neck tumor

The irradiated volume in this case contained again two tumor parts, spread-
ing this time in the head and neck region among three organs at risk; spinal
cord, brain stem, and parotid gland. Unlike the prostate case where the
comparison was performed on two sets of beam orientations with the same
number of beams; in this case a seven coplanar equiangular beams plan was
compared with the plan obtained by using only six coplanar beams opti-
mized using the DA. The dose distributions of these two plans and their dose
volume histograms are shown in Fig. (4.7) and Fig. (4.8) respectively.

Figure 4.7: The dose distribution of two multicriteria IMRT treatments, for head and
neck tumor, corresponding to (a) seven equiangular spaced beams and (b) six beams
obtained by the DA.

As can be seen from Fig (4.8), the use of the optimized beams resulted in
a reduction of the maximum dose to the spinal cord and brain stem against
margin maximum dose increment delivered to the parotid gland. One can
also see from Fig. (4.7) that some unnecessary hot spots in the irradiated
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(@)

Figure 4.8: Dose volume histograms of two multicriteria IMRT treatments, for head and
neck tumor, corresponding to (a) seven coplanar equiangular spaced beams and (b) six
beams obtained by the DA.

volume were eliminated, allowing for better tumor dose shaping than the
one produced using the equiangular spaced beams. Consistent results were
reported by the numerical realization where the values of the multicriteria
objective function were improved by 4% and 5% for the spinal cord and the
brain stem, respectively, against worsening the parotid gland by 9%.

Although optimizing the set of beam orientations in this case has not
considerably improved the treatment plan, having a similar treatment plan
by using a fewer number of beams is a matter of considerable importance
with respect to clinical and practical aspects. It is always desirable to reduce
the number of irradiating beams to its minimum without compromising the
quality of the treatment. In fact, using a large number of beams may have
the undesirable consequence of spreading low doses to a large volume of the
normal tissue which in turn tends to increase the risk of second cancers (see
e.g [Hal06] or [HWO03]). It may also increase treatment delivary time which
may increase patient discomfort in addition to the possibility of increasing
potential error in terms of patient movement.

4.3.4 Paraspinal case

In this example, the irradiated volume contained one target spreading around
the spinal cord among three organs at risk; esophagus, left lung and right
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lung. Similar to the head and neck example, in this case a seven coplanar
equiangular beams plan was compared with the plan obtained by using six
coplanar beams optimized using the DA. The dose distributions of these two
plans and their dose volume histograms are plotted in Fig. (4.9) and Fig.
(4.10) respectively.

o~ Right lung

Figure 4.9: The dose distribution of two multicriteria IMRT treatments for paraspinal

tumor, corresponding to (a) seven equiangular spaced beams and (b) six optimized beams
obtained by the DA.

As can be seen from these figures, significant improvments were reported
in two rogans at risk; esophagus and left lung where it is hard to note any
differences regarding the DVHs coresponding to right lung, the spinal cord
or the target. Improvemnts regarding the numerical reilization were reported
as follows: 12% for the esophagus and 33% for the left lung where as all the
others values were almost equal.
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STarget

Figure 4.10: Dose volume histograms of two multicriteria IMRT treatments for
paraspinal tumor, corresponding to (a) seven coplanar equiangular spaced beams and
(b) six beams obtained by the DA.



Chapter 5

DV H-Evaluation scheme and
an evolutionary algorithm for

beam orientations in IMRT

5.1 Introduction and motivation

As we have seen from the preceeding chapters, the process of designing a
satisfactory treatment plan for IMRT is difficult. A considerable part of this
difficulty is due to the unintuitive prerequisite of defining appropriate crite-
ria for plan evaluation. For better understanding it is helpful to distinguish
between plan(s) judgment, and plan optimization. Plan(s) judgment implies
some dose distribution evaluation scheme in which the planer quantifies the
clinical quality of some given plan(s). This is usually utilized, in addition
to the isodose displays, by the use of the DVH concept which summarizes
different important aspects of the dose distribution that are difficult to be
conceived by only considering the isodose displays. Actually the DVH is
nothing more than condensing the information present in the dose distribu-
tion by neglecting the geometrical information. However, the DVH concept
has been recognized as a quantitative measurement tool for dose distribution
evaluation, see e.g. [Cha88|, and consequently plan judgment. If we restrict
ourselves to mathematical terms, where the problem of IMRT is, in general,
considered as a constraint optimization problem, plan optimization means
the identification of the plan for which the objective function attains its op-
timal value.

Yet for a successful IMRT treatment plan it is required to formulate a
proper objective function such that its optimal value is achievable in practi-

o8
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cal calculation time and additionally corresponds to a plan that is assessable
to be of a high clinical quality. Unfortunately, the reality is different. Many
times it happens that the optimal solution of the plan optimization does not
even correspond to an acceptable treatment plan. This often occurs because
plan optimization is not always able to capture the criteria that are used by
the clinicians when they evaluate and judge plans.

To parallelize plan optimization with plan judgment criteria there is a
need to incorporate the DVH concept properly into the optimization process
such that plan optimization results in optimal solutions of high clinical qual-

ity.

This chapter is devoted to present a mathematical model for optimization
of beam orientations in IMRT that is totally based on a DVH evaluation
scheme.

5.2 A Mathematical model

5.2.1 The DVH concept as a function

The DVH depicts for each volume of interest (VOI) the volume percentage
v that receives a certain dose d as a function of the dose, cf. figure (5.1).

DVV DVH VDV
v v v /’\
......... > .
d d d

Figure 5.1: Represents the DVV (discrete), DVH (continouse) and the VDV (discrete)
depicted from left to right respectively.

In order to plot the DVH of some VOI first a nonnegative real vector, we
call DVV, is calculated. The dose volume vector (DVV) represents the dis-
crete form of the DVH. For some VOI let M = {0,1,2,...,m} be a finite set
with m representing the smallest integral that is greater than or equal to the
maximum dose the VOI has received. Thus the DVV is an n-dimensional
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vector, where n = m + 1, with the i component is equal to the volume
percentage that receives the dose ¢+ — 1. Obviously the first component is
equal to 100 which then decreases as the component’s index increases until
it becomes 0 for the n'* component. Although the dose variable d € M is an
integral here, the corresponding volume vy could obtain any real value from
the interval [0, 100] with the property vg > vgy1.

Now the DVH is easily obtained by just connecting the points of the d-
axis and the points representing the DVV, see figure (5.1).

Another entity, we will also use to evaluate the treatment plan is the
volume dose vector (VDV) which represents the discrete form of the (inverse
of the) DVH. In other words it is a 101-dimensional vector with i component
—where? = 0,1, ...,100 stand for an integral volume persentage of the VOI —
gives the maximum dose d as a function of the volume persentage i receiving
at most the dose d. One can easily obtain the VDV from the DVH, see also
figure (5.1).

5.2.2 DVH evaluation scheme

Generally, the reaction of the tumor or organ at risk (OAR) is a function of
the volume or percentage of the volume subject to each level of dose it re-
ceives. In fact, physicians quantify clinical structures or organs at risk in two
groups according to the way they react when they are exposed to radiation.
In some organs, destroying one individual functional unit would be enough
to disable the whole organ. Such organs, known as chain organs, can handle
relatively high dose of radiation. But strictly speaking, even one single hot
spot in such an organ has to be avoided. Conversely, organs belonging to
the other group, known as parallel organs, show distinct volume effect. The
tolerance dose for such organs depends on the fraction of the irradiated vol-
ume. The tolerance dose is considerabley high if a small fraction is irradiated
compared with the tolerance dose for larger irradiated fractions. For more

about chain and parallel organs see [GN8§], [WTMZ87], or [Wol84].

A successful DVH evaluation has somehow to take into account the as-
pects mentioned above. We propose the following DVH evaluation scheme:
m 100
fIDVH)=a) dvg+(1-a)>_vd, (5.1)
d=1 v=1
where 0 < o < 1 is a tissue-specific parameter, depending on the biological
properties of the individual specified tissue. Indeed, biological studies beyond
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the scope of this thesis have to be done in order to determine an accurate «
for the different clinical structures. However we believe that an accurate o for
the target is 0 or close to it and for organs at risk, especially for those that are
classified as chain organs, would be 1 or close to it. Note that for « close to 0
more emphasis will be placed on the volume and minimizing (maximizing) the
function f(DV H) will be reflected by minimizing (maximizing) the volume
irradiated. On the other hand, if a close to 1 more emphasis will be placed on
the maximum dose and hence minimizing the function f(DV H) will naturally
minimize the maximum dose received by the organ at risk. An accurate «
balances the optimization process between the dose and volume according to
the biological properties of the corresponding clinical structure.

5.2.3 Treatment plan evaluation

To parallelize plan optimization with plan judgment a given treatment plan,
represented by its dose volume histograms (DVHy for the target and DVHpg, ,
where k = 1,..., K, corresponding to the different OARs), can be evaluated
by the following objective function:

K
F =Wy f(DVHr) =Y W, f(DVHg,), (5.2)
k=1

where f is the DVH evaluation function defined in equation (5.1) and Wy, W,
for k =1,..., K are nonnegative weights (importance factors) corresponding
to the target and different OARs respectively.

5.2.4 Intensity maps approximation

In this section the DVH evaluation scheme is utilized for optimizing (approxi-
mating) the intensity maps. For one unit of intensity each individual beamlet
results in several mini-DVHs (mDVHs), corresponding to the different VOIs.
Note that in such a case the maximum received dose D usually is not more
than 1 unite of intensity since it is only a portion of the intensity, see figure

(5.2).

Another value which is of our interest is the maximum portion V' of the
VOI that receives a dose greater than 0, see also figure (5.2).
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Figure 5.2: Represents, on the left hand side, a mini-DVH for one single beamlet with
one unit of intensity. The right hand side depicts an approximation of the DVH obtained
by linear interpolation.

Mini-DVH approximation

To utilize the mDVH in our mathematical context, we approximate it by a
linearly interpolated function h(z) between the two points (D, 0) and (0, V)
as shown in figure (5.2). Thus the mDVH is represented by the approximation
function

v
y=h(z) = 5Tt V, where z € [0, D]. (5.3)

Obviously the function h is bijective! and its inverse is given by

-D
r=h"(y) = Y + D, where y € [0,V]. (5.4)

Applying the DVH evaluation scheme (5.1), using its continuous formu-
lation, to the mDVH presented by h(x) results in

FmDVH) = a /0 eh(z)dz + (1 — o) /O vy (5.5)

By substituting i(x) and A~ (y) from equations (5.3) and (5.4) respectively
and performing some elementary calculations we obtain

1 1
f(mDVH) = EOA/D2 + 6(1 —a)V?D, (5.6)
or simply
f(mDVH)=aVD*+(1-a)V?D. (5.7)

So far it was assumed that the mDVH is produced by a beamlet having
one unit of intensity. One can easily verify that for a beamlet with intensity

LA bijective mapping between two sets is one-to-one and onto.
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x —from now and on x is a variable representing the intensity of a beamlet
and no longer the x axis in figure (5.2)— the evaluation function, denoted
fz(mDV H) in this case, obtains finally the form

f:(mDV H) = aV(Dx)* + (1 — a)V?*(Dx). (5.8)

Beamlet intensity optimization

As it was shown in chapter 1, the aperture of a radiation beam is created in
such a way that it resembles the shape of the tumor. Thus each individual
beamlet will certainly hit the tumor and hence produce some tumorodical
mini dose volume histogram (mDVHr). Additionally, it might also hit an
OAR, producing other mDVHpg concerning the corresponding organ. Setting
in equation (5.8) « to 0 for the target and to 1 for organs at risk, as it was
suggested in section (5.2.2), results in the evaluation function

for the target and
fe(mDV Hg) = Vg Dja? (5.10)

for an organ at risk.

Furthermore, delivering a high dose, equal to the prescribed dose, to the
target volume is usually done by using a set of beams in which each beam
contributes to the irradiated volume by some portion of the prescribed dose.
This indeed puts an upper bound U on the intensity variable z.

On the one hand the objective of delivering a high dose to the tumor
proposes maximizing the following target objective

fo(mDV Hy) = Vi Dru, (5.11)

where z € [0, U].

On the other hand, for sparing an OAR from unnecessary overdosage we
minimize the objective

fo(mDV Hg) = VgD%a?, (5.12)

where z > 0.
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Consequently, the intensity optimization problem can be defined as fol-
lows:

min F(z ZkaVRkD z? wTVﬁDTx,

— (5.13)
z € [0,U],
where wg,,k = 1,..., K, and wr are nonnegative weights (importance fac-

tors) corresponding to the different OARs and the target respectively.

If we define Z by the equation

wTVﬁDT

T = e .
2 Zk:l WR, VRk DRk

then the optimization problem (5.13) has the solution:

r, ifzx<U;
g={0 BE= (5.14)
U, otherwise.

5.2.5 Optimization of beam orientations

As is was mentioned in chapter 3, the optimization of beam orientions is
carried out under the assumption of fixed intensity maps. These intensity
maps are approximated by solving the optimization problem (5.13) for every
beamlet in each individual beam. Thus every combination of beams will
produce a certain plan with its corresponding DVHs for the different VOIs.
Hence for a given beam space B = {b1,...,b,}, where n € N, analogously to
equation (5.2), our objective function F : 2® — R reads:

F(B) = Wr f(DVHy) — ZWRk f(DVHpg,), (5.15)

Additionally, for the methods presented here, it is assumed that the num-
ber of beams belonging to the set of beam orientations, denoted ¢, is given
in prior. Thus the problem of beam orientation becomes as follows:

Problem 3. For a given beam space B = {by,...,b,}, where n € N, find the
orientation set B* € B = {B € 2% : |B| = ¢ € N and q < n} for which

F(B*) = maz{F(B): B € B}.
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While problem (3) constrains the feasible solutions to a fixed number of
beams, the solutions’ hyperspace remains huge and the choice of an exhaus-
tive search maintains impractical. For instance, an exhaustive search of the
best 6-beam configuration in a pool of 72 different beams would require in-
tercomparison of (762) = 156, 238,908 IMRT plans. The rest of this chapter
is devoted to present an evolutionary algorithm suitable for approximating
the optimal solution of the problem in consideration.

5.3 An evolutionary Algorithm

5.3.1 Introduction

FEvolutionary algorithms (EA) are a family of computational models inspired
by evolution. They mimic aspects of natural selection and differential repro-
duction. While a thorough review of the EAs and their strategies are beyond
the scope of this thesis, the fundamental principles are summarized. In our
context, when the DVHs of ¢ different beams are merged together to compose
a potential plan, such a plan is considered as an individual. A collection of
such individuals produces a population. Every individual in the population
is ranked according to its fitness which is a kind of scoring technique based
mainly on the objective function.

EAs, in addition to the solution space which is the space of the actual
solutions, use another space called the search space and contains coded so-
lutions, or genotypes, of the actual solutions called phenotypes. Thus each
individual consists of a genotype belonging to the search space and a cor-
responding phenotype belonging to the solution space. Genotypes must be
mapped onto their phenotypes before the fitness of each solution is evaluated.

The basic idea of EAs is that individuals in the population are recombined
to produce new individuals using reproduction operators that mimic those
that occur in nature, such as mutation, recombination and selection. While
the reproduction operators conduct the genotypes randomly and blindly, the
selection of the phenotypes guided by their fitnesses determines which geno-
types will be promoted for reproduction. Hence, evolutionary search is un-
questionably pushed towards areas in the search space that contain better
solutions, making EAs a powerful model for solving large combinatorial op-
timization problems.

The rest of this chapter will be devoted to implement an evolutionary al-
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gorithm suitable for the problem of beam orientation presented above (prob-
lem 3).

The terminology presented here can be found in most books that address
the topic of EAs or genetic algorithms (See e.g. [Ben99] or [Mic98]).

5.3.2 Implementation of evolutionary algorithm

The purpose of the EA is to select a set of beams, each with the corresponding
intensity maps, which together constitute a plan. Each plan produces a
particular DVHs which can then be evaluated and hence a fitness value is
assigned accordingly. The important features that recognize an EA include
the representation scheme which encode the plan as a string, the selection
procedure, and the reproduction operators.

Representation

A typical representation for combinatorial problems, where one has to de-
termine which of a number of items he wishes to choose, is the fixed-length
vector of bits {0,1} [MF00]. The number of items or parameters at hand
determines the length of the vector and 1 indicates that the indexed item is
chosen whereas 0 indicates that it is discarded.

However, in our EA an individual plan is represented by a set contain-
ing the beam indices that identify which beams are in the plan. Although
this representation is nonstandard, one can easily see that it is bijective to
the fixed-length vectors representation. For instance, from a given set of 20
beams where 5 different beams are to be chosen, the fixed-length represen-
tation given by the binary string

(0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0)
is equivalent to the following set representation:
{2,6,10, 14,18}
and vice versa.

Thus the choice of either representation offers no unique advantage over
the other one (see [FG97]) except that the set representation appears to be
more intuitive to the structure of our problem and hence more recommended

[MF00].
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Initial population

When the initial population is created, the number of beams for each individ-
ual is initialized according to the required number of beams ¢, see problem 3.
The beam indices are then selected uniformly at random from those beams
available in the space B = {b,...,b,}.

Finally, one more solution, called potential solution (PS), is added to the
initial population. This PS is found by the following procedure:

Stage 0: Initialization

a) [Intensity maps]

FOR (Each beam b € B)
FOR (Each beamlet belonging to b)
Solve the optimization problem
min F({L’) = Zle kaVRlez%kl'Q — wTVﬁDTx,

x € [0,U].
END FOR
END FOR

b) B — (.
Bt B.

Stage 1: Find the PS

WHILE ( |B| # q)
Solve the optimization problem
maxycp F(BU{b}) = Wr f(DVHy) — S0 Wg, f(DVHg,).

B «— BU{b}.
Bb — BC\ {b}.
END WHILE
RETURN B
END

As one can see, the idea of this procedure is taken from the dynamic
algorithm presented in section (4.2). The benefit of including the PS to
the initial population becomes clear in section (5.4) which contains some
analytical results of the EA implementation.
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Parents selection

After a generation is created, each genotype (set of beams B) is mapped to
the corresponding phenotype (corresponding plan Pg) which is then evalu-
ated using the function

K
F(Pg) =Wr f(DVHr) — Z Wk, f(DV Hg,)
k=1

as introduced in section (5.2.3). The generation is then ranked from 1 to N,
where 1 refers to the fittest solution and N to the one with the worst fitness.

The selection procedure for this EA is rather simple. To induce a selective
pressure towards the evolution of fitter solutions some of the parents are
chosen by utilizing the elitist selection in which only the fittest solutions
are being selected for parenthood. Furthermore, in order to have a kind of
diversity between the individuals several solutions are chosen uniformly at
random from the remaining solutions.

From a parent to a family

Yet each selected parent is ready for generating its own family while going
through the following reproduction operators:

e Cloning: In order to avoid losing good genetic material (e.g. good
beam indices), the first child in the family is a duplication or cloning
of its parent. This guarantees that the next generation will contain
solutions that are at least as good as the parents.

e Recombination: In EAs, recombination refers usually to a sexual re-
production operator, that shuffles together genetic material from se-
lected parents (two or more) to produce new genotypes of offspring.
Hence first of all a partner for the operated parent is found. This is
simply done by selecting a partner from the elite parents uniformly at
random. Furthermore, when passing the genes, which are the beam
indices in our case, to the children, these genes that appear in both of
the genotypes of the parents are copied to the genotypes of the gener-
ated children. These genotypes are then completed randomly from the
shuffled remaining genes. For illustation, see the example shown below:

parent A = { 7, 12, 20, 25, 35, 41, 60 }
parent B = { 1, 19, 15, 20, 27, 35, 50 }
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similar genes = { 20, 35 }

remaining genes = { 27, 12, 1, 60, 50, 41, 15, 7, 19, 25 }
child X = { 20, 35, 27, 12, 1, 60, 50 }

child Y = { 20, 35, 41, 15, 7, 19, 25 }

Note that it is difficult to identify the goodness of a single beam in-
dex. In fact, the quality of a beam index is relative to the remaining
beam indices that appear in the considered genotype. Hence, it would
not be clever to divide a component consisting of two (or more) beam
indices that are good with respect to each another into parts where
each is passed to a different child. Such good components are easily
recognized since they usually appear in different elites. This is how
they are recognized in the recombination operator and hence passed
immediately to the children.

e Mutation: Mutation is a random change in one or more genes of a
selected genotype.
In the representation used here, mutation has special importance since
it is the only way that brings new genetic material into the population.
Mutating the genotype of the selected parnet is accomplished by the
following procedure:

1- Select a couple of genes for mutation uniformly at random.
2- For each selected gene b, mutate subject to the function
b« [b+ N(0,0)] mod n,
where N(0, o) is a Gaussian random variable with mean zero and
standard deviation o and n is the number of available beams.
3- Add the resulted genotype to the parent’s family.
Moreover, since the beams are located on a sphere, it very likely to hap-
pen the case that replacing a certain beam direction by its symmetric

position, with respect to the center of the sphere, results in a better
plan. Hence the following mutation is also used in the implementation

of the EA:
1- Select a gene b for mutation uniformly at random.
2- Mutate b symmetrically.
3- Add the resulting genotype to the parent’s family.
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Hence the above reproduction operators cloning, recombination and mutation
make out of each selected parent a family with several children, each of which
is a potential candidate for being promoted to the next generation.

Parent replacement

After a family is generated, each of its genotypes is mapped to the corre-
sponding phenotype for evaluation purposes and then the parent is replaced
by the elitist child in the family. All other family members are discarded
after the replacement.

Twin replacement

The mechanism of the above reproduction operators allows twins to appear
in the same generation, a phenomenon that happens more likely in the ad-
vanced generations. To maintain genetic diversity along the progress of the
algorithm, in every generation all the twins except one are replaced by to-
tally new individuals generated spontaneously at random. This allows for
inserting new solutions into the population and in the same time keeps the
number of its individuals unchanged.

5.4 Results

To illustrate the efficiency of the presented approach and the performance of
the implementation of the EA they are applied to the data of three clinical
cases: a prostate carcinoma, a paraspinal case and a tumor in the head and
neck region. These three examples are the same clinical examples that have
been introduced and used in chapter 4. For complete descriptions of these
examples, see section 4.3.

5.4.1 Parameters values

The performance of an EA depends on the choice of its parameters, such as
population size, the number of the selected parents, stopping criteria, etc.
The parameter values used for the above examples were chosen empirically,
according to the size of the data structure of the problem such as the total
number of available beams and the required number of beams, as follows:

1- Population size = 20.

2- The number of elitist solutions selected for parenthood = 6.
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3- The number of random solutions selected for parenthood = 3.
4- In the Gaussian random variable N(0,0): o = 5.

5- Number of generations = 100.

5.4.2 Numerical results of the EA

The robustness of the optimization process of the EA was judged by the
consistency of the results. In order to measure the consistency, ten runs of
the EA were performed and the mean and the standard deviation of the re-
sults were reported. To examine the effect of inserting the PS into the initial
population, the EA was tested again, but this time without including the PS
into the initial population.

Figures (5.3), (5.4) and (5.5) plot the maximum score of each generation
of the EA for the three clinical cases mentioned above. The maximum scores
represent the average in generation over ten runs.
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Figure 5.3: Results of the average scores over ten runs for the prostate example.

As it can be seen from these figurers, the best scores are consistently
achieved earlier when the PS was inserted into the initial population.
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Figure 5.4: Results of the average scores over ten runs for the paraspinal case.
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Figure 5.5: Results of the average scores over ten runs for the head and neck example.
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Figure 5.6: Results of the mean best score for each generation over ten runs with the
variation represented by the standard deviation error bars. This data is for the head and
neck example with initial population contains the potential solution.
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Figure 5.7: Results of the mean best score for each generation over ten runs with the
variation represented by the standard deviation error bars. This data is for the head and
neck example with initial population contains no potential solution.
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Figure 5.5 is of particular interest. Although the curves report somewhat
similar values between generation ten and generation twenty, the solid line
representing the results of the runs with the potential solution included shows
a faster convergence towards optimality. This indicates that the potential so-
lution contains combination of beams that is at least close to combinations
of a high quality. Hence the pressure of the optimization process towards
areas of good solutions increases.

Furthermore, figures (5.6) and (5.7) show the results of computing the
variance in the scores for the two cases with and without potential solution
inserted into the initial population respectively. For the purpose of brevity,
only the results of the head and neck example were depicted. These two
figures demonstrate that inserting the potential solution into the initial pop-
ulation helps reducing the variance in earlier generations, allowing for a faster
convergence.

5.4.3 Beam orientations results

Similarly to chapter 4, the judgment of the efficiency of the presented model
was based on the comparison between two types of optimization: (1) beam
intensity profiles were optimized for coplanar equiangular beams; (2) beam
intensity profiles were optimized for the coplanar orientation set obtained by
the EA. To evaluate the quality of the treatment plan, a depiction of the
dose distribution and DVHs were used for the target and each of the organs
at risk.

Prostate carcinoma

A five coplanar equiangular beams plan were used in comparison with the
five coplanar beams plan optimized by using the EA presented above. The
dose distributions and the dose volume histograms of these two plans are
shown in figures (5.8) and (5.9).

It can be seen from figure (5.9) that the plan obtained by the optimized
beam orientations has notably improved the bladder, rectum and right femur.
These improvements were also reproted by the numerical realization of the
values of the objective function which were reduced by 2%, 4%, 7% and 3% for
the bladder, rectum, left femur and right femur respectively. Moreover, the
shape of the dose distribution obtained using the optimized beams is fitted
better to the shape of the tumor than the one obtained by the equiangular
spaced beams. This can be easily seen in figure (5.8).
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Figure 5.8: The dose distribution of two multicriteria IMRT prostate tumor treatments
corresponding to (a) five equiangular spaced beams and (b) five optimized beams obtained
by the methods and evolutionary algorithm presented above.

(a)

Figure 5.9: Dose volume histograms of two multicriteria IMRT prostate cancer treat-
ments corresponding to (a) five equiangular spaced beams and (b) five optimized beams.
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Paraspinal case

In this case, a seven coplanar equally spaced beams plan was compared with
the plan obtained by using six coplanar beams optimized using the EA. The
dose distributions of these two plans and their dose volume histograms are
plotted in Figures (5.10) and (5.11) respectively.

- Right lung

Left lung

Figure 5.10: The dose distribution of two multicriteria IMRT treatments for paraspinal
tumor, corresponding to (a) seven equiangular spaced beams and (b) six optimized beams
obtained by the evolutionary algorithm.

From these figures, a significant improvement with respect to the esoph-
agus can be easily seen. Improvements regarding the values of the objective
function were also reported. The values of the objective function were re-
duced by 16% and 4% with respect to the esophagus and right lung respec-
tively, where as all the others values were almost equal.
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Figure 5.11: Dose volume histograms of two multicriteria IMRT treatments for
paraspinal tumor, corresponding to (a) seven coplanar equiangular spaced beams and
(b) six optimized beams.

Head and neck tumor

Similarly to the paraspinal case, the comparison in this example was also
between a seven coplanar equally spaced beams plan and the plan obtained
by using only six, rather than seven, coplanar beams optimized by the EA.
The dose distributions of these two plans and their dose volume histograms
are shown in Figures (5.12) and (5.13) respectively.

As can be seen from figure (5.13), the use of the optimized beams resulted
in significant improvement with respect to the brain stem against only mar-
gin deuteration concerning the parotid gland and target dose uniformity.
Furthermore, figure (5.12) shows that some unnecessary hot spots in the ir-
radiated volume were eliminated, allowing for better dose shaping over the
target. The numerical realization of the objective function reported in this
case was improved by 33% for the brain stem against worsening the parotid

gland by 20%.
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Figure 5.12: The dose distribution of two multicriteria IMRT treatments, for head and
neck tumor, corresponding to (a) seven equiangular spaced beams and (b) six optimized
beams obtained by the presented EA.

Figure 5.13: Dose volume histograms of two multicriteria IMRT treatments, for head
and neck tumor, corresponding to (a) seven coplanar equiangular spaced beams and (b)
six optimized beams obtained by the presented EA.



Chapter 6

Comparison between the
dynamic and evolutionary
algorithms

In this thesis, two algorithms with totally different approaches have been
developed to solve the problem of beam orientations in IMRT. As usual, to
examine the efficiency of these algorithms, the resulting plan of each of them
was then compared with the plan resulting from using equidistant beam
orientations. The goal of this chapter is to test both algorithms against
each another and investigate the possibility of any correlation. This is done
with the three clinical cases that have been used along this thesis. For each
clinical example, the results of the both algorithms are depicted and discussed
qualitatively.

6.1 Results

6.1.1 Prostate carcinoma

In this case the DA and EA have resulted the following sets of beam orien-
tations (angles):

Bpa = {50°,115°,180°, 250°, 270°}

Bpa = {15°,60°,110°, 245°,310°}.

The dose distributions and the dose volume histograms of these two plans
are shown in figures (6.1) and (6.2) respectively.
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Hip right

Rectum

Figure 6.1: The dose distribution of two multicriteria IMRT prostate tumor treatments
corresponding to (a) five optimized beams obtained by the DA and (b) five optimized
beams obtained by the EA.

Figure 6.2: Dose volume histograms of two multicriteria IMRT prostate cancer treat-
ments corresponding to (a) five optimized beams obtained by the DA and (b) five optimized
beams obtained by the EA.
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While figure (6.1) demonstrates that the target dose coverage is well es-
tablished in the two plans, figure (6.2) shows that the plan obtained by the
DA results in minor improvements, regarding the bladder, rectum, and right
femur over the corresponding ones that are obtained by the plan resulting
from the EA. These little improvements were also repotred by the numerical
realization of the values of the objective function which were reduced by 4%,
1%, and 3% for the bladder, rectum, and right femur respectively.

6.1.2 Paraspinal case

In this case the beam orientations set resulted by the DA is given as follows:
Bpa = {110°,145°,180°,225°,250°, 350°},
where as the optimal set of beam orientation obtained by the EA reads
Bpa = {70°,95°,140°,175°,225°, 265°}.

The dose distributions and dose volume histograms of the plans obtained by
these two sets of beam orientations are plotted in Figures (6.3) and (6.4)
respectively.

Figure (6.3) shows that the dose distribution of the plan resulting from
the orientation set Bga is only a bit better concentrated in the target than
the dose distribution of the plan obtained by the beam orientations Bgx.
Moreover, plan (b) in figure (6.4) demonstrates that the totally spared volume
of the right lung has increased. In addition to this, an improvement in DVH
of the esophagus was reported against a noticeable worsening regarding the
DVH of the left lung. Numerically, the values of the objective function of plan
(b) compared with plan (a) were reduced by 4% with respect to the esophagus
and 3% regarding the right lung. On the other hand, the value regarding the
left lung was worsened by 50%. Note that these percentage changes in the
values of the objective function are not explicit for plan evaluation. In this
case for instance, it is difficult to decide which plan, (a) or (b), is more
preferable. After all, the decision here is completely planner-dependent.
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P Right lung

Figure 6.3: The dose distribution of two multicriteria IMRT treatments for paraspinal
tumor, corresponding to (a) six optimized beams obtained by the DA and (b) six optimized
beams obtained by the EA.

Right Jung

Figure 6.4: Dose volume histograms of two multicriteria IMRT treatments for paraspinal
tumor, corresponding to (a) six optimized beams obtained by the DA and (b) six optimized
beams obtained by the EA.
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6.1.3 Head and neck tumor

In this case the beam orientations set resulted by the DA reads
Bpa = {100°,175°,200°,235°,310°, 345°},

whereas the optimal set of beam orientations obtained by the EA is given as

follows:
1180°=200°

~~
Bpa=1{ 20° ,100° 135°,175° 230°,295°}.

Figures (6.5) and (6.6) depict the dose distributions and dose volume his-
tograms of the plans resulted from the above two sets of beam orientations.

Parotid

Figure 6.5: The dose distribution of two multicriteria IMRT treatments, for head and
neck tumor, corresponding to (a) six optimized beams obtained by the DA and (b) six
optimized beams obtained by the EA.

While figure (6.6) shows improvement, reported for plan (b) over plan
(a), regarding the brain stem, it on the other hand shows some worsening
regarding the parotid gland and target dose uniformity. From figure (6.5), it
is difficult to note any major differences between the two plans. The numeri-
cal realizations reported were improvement by 29% with respect to the value
corresponding to the brain stem against worsening the values corresponding
to the spinal cord and parotid gland by 4% and 10%, respectively.
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(0

Figure 6.6: Dose volume histograms of two multicriteria IMRT treatments, for head and
neck tumor, corresponding to (a) six optimized beams obtained by the DA and (b) six
optimized beams obtained by the EA.

6.2 Discusion

This chapter was devoted to compare the performances of the dynamic and
evolutionary algorithms presented in chapters 4 and 5 of this thesis. Al-
though, the two algorithms are essentially different in that each of them uses
its own completely different methods, the results of applying the algorithms
to the different clinical examples were widely comparable. This is mainly due
to the degree of similarity which was observed in the outputs of these two
algorithms. Surprisingly enough, for each of the three clinical cases, the EA
has resulted in a set of beam orientations in which at least three beams were
similar or close to some corresponding beams that can be found among the
beams resulted by the DA. For instance in the head and neck case, the beam
angles {100°,175°} have appeared in both of the orientation sets Bpa and
Bga. Also the beam angle 235° € Bp 4 lies just next to the beam angle 230°
which belongs to the set Bg4. In addition to this, the angle 200° belonging
to Bpa is exactly the opposite direction of the beam angle 20° which belongs
to the orientation set Br4 obtained by the EA.

Moreover, the result of achieving highly correlated plans with different
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beam configurations indicate that in general there exists a variety of good
beam configurations. This supports what has been mentioned by Meedt
[MANO3] and Hou [HWCGO03]. They both have indicated that beam orien-
tations optimization in IMRT leads to a large number of equivalent beam
orientations.



Chapter 7

Summary

This thesis was focused on the optimization problem of beam orientations
in IMRT planning. It was shown that this problem is neither convex, when
formulated as a continuous optimization problem, nor polynomially solvable,
when modeled as a combinatorial optimization problem. Hence the problem
was rendered to the usage of heuristic methods. Usually, a stochastic se-
lector is used for optimizing beam orientations, and then a single objective
inverse treatment planning algorithm is used for the optimization of beam
intensity profiles. Unfortunately, the quality of a set of beam orientations
depends heavily on its corresponding beam intensity profiles. The overall
time needed to solve the inverse planning for every random selection of beam
orientations becomes excessive. Hence, the choice of beam orientations in
IMRT treatment planning is still a trial-and-error procedure based on intu-
ition and empirical knowledge, although the optimum beam configuration
may sometimes be counterintuitive [SMW*97].

Recently, considerable improvement has been made in optimizing beam
intensity profiles by using multiple objective inverse treatment planning.
Such an approach results in a variety of beam intensity profiles for every
selection of beam orientations, making the dependence between beam orien-
tations and its intensity profiles less important. The thesis took advantage
of this property to accelerate the optimization process through an approx-
imation of the intensity profiles that can be used for multiple selections of
beam orientations, saving a considerable amount of calculation time. Two
algorithms, DA and EA, for beam orientations in IMRT planning were put
forward. The DA is an automatic imitation of the beam’s eye view and ob-
server’s view methods which are well-recognized techniques in conventional
conformal radiation therapy. Every iteration goes from an N-beam plan to
a plan with N 4 1 beams. Beam selection criteria are based on a score func-
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tion that minimizes the deviation from the prescribed dose, in addition to
a reject-accept criterion. The EA was based on a DVH evaluation function
which was introduced as a mechanism to minimize the deviation between the
mathematical and clinical optima which might be in general very different,
depending on the chosen mathematical model.

After applying the algorithms to different clinical examples, the resulting
plans were compared with the corresponding plans obtained by the standard
equally spaced beam orientations. It was shown that both algorithms are
able to produce superior beam orientations to the equally spaced beams in
clinically efficient time, even when, for some cases, a smaller number of beams
were used.

It may be argued that there is no evidence that the algorithms converge
to a global optimum, especially in the case of the DA when a large number of
beams is required. In practice this is not necessarily so, because it was found
that the results of applying the algorithms to the different clinical examples
were widely comparable, indicating that there exists a variety of good beam
configurations. And since IMRT can compensate for modest imperfections
in beam directions, it is not clear whether achieving the global optimum
in beam orientations optimization is clinically important. Moreover, it has
been argued that the smaller the number of beams, the more necessary it
is to optimize beam orientations (see e.g [WZD'04]). In general, when a
relatively large number of beams is used, the final IMRT plan may be less
sensitive to the selection of beam orientations [SMW97]. However, using a
large number of beams may have the undesirable consequence of spreading
low doses to a large volume of the normal tissue which in turn tends to
increase the risk of second cancers (see e.g [Hal06] or [HWO03]). It may also
increase treatment delivery time which may increase patient discomfort in
addition to the possibility of increasing potential error in terms of patient
movement. Indeed, it is always desirable to reduce the number of beams to
its minimum without compromising the quality of the treatment plan.



Chapter 8

Further research

8.1 Improving the DA

As an attempt to improve the DA, a current study based on merging the
presented DA with a multicriteria solver is in progress. It is believed that this
study, which aims at optimizing beam orientations in IMRT, may produce
plans of high quality. In fact, a good approximation of the intensity profiles
is crucial for optimizing the orientation set accurately. For this reason, the
multicriteria solver is intended to be used once at the end of every iteration
where the decision on the most desirable intensity profiles is left for the
planner. It is expect that this human guidance will help the algorithm to
minimize the deviation from the optimal clinical solution efficiently.

8.2 A two phases algorithm

As was concluded in chapter 6, the resulting beam orientations sets of the
two algorithms presented in this thesis were almost similar in at least three
beam directions per solution. It was observed that these three beams were
often easily detected by the first three iterations performed by the DA, even
without the need for the reject-accept criterion. Obtaining them again by
the EA motivates trying the following two phases algorithm:

Phase 1: Apply the DA to find a three beams orientations set.

Phase 2: Fix the beams found in phase 1 and apply the EA to find
the remaining beams.

It is expected from such an algorithm to accelerate the EA considerably
without compromising the quality of the final beam orientations.
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8.3 Biological parameters

In chapter 5, the milestone of the EA was the DVH-evaluation scheme which
was introduced to evaluate the clinical impact of the irradiated dose on a
certain organ or clinical structure. As it was pointed out, a propper math-
ematical model has to take into account the biological properties of the in-
dividual specified tissue when it is exposed to radiation. Hence, the tissue-
specified parameter o was incorporated into the model. To more fully exploit
the potential of the presented model, biological investigations are needed to
determine the accurate values of the parameter « for the different clinical
structures.



Appendix A

Complementary definitions

A.1 Multicriteria combinatorial optimization
problems

Let B be a finite set B := {b1,bs,...,b,} and let several weight functions
w; : B — Z be given, yielding several objective functions f;,7 =1,...,m. A
combinatorial optimization problem is given by a feasible set

B c 2B

defined as a subset of the power set of B and an objective function f(B) =
(f1(B),..., fm(B)) defined for B € B to be minimized (see e.g. [Ehr00]). It

can therefor be written in the common notaion

min f(B).

BeB

A.2 Binary relation and some properties

Given a set C, a binary relation on C is defined as a subset of C x C. IF
(P,Q) € R where P,@Q € C, we say “P is related to () under R”.

A relation R defined on a set C is said to be reflexive if for all P € C,
(P,P) € R holds. Tt is symmetric if for all P,Q € C, and (P,Q) € R it
follows (@, P) € R as well. It is transitive if for all O, P,Q € C, (O,P) € R
and (P,Q) € R implies (O, Q) € R.

Finally a relation is said to be an equivalence relation if it is reflexive,
symmetric and transitive.

90



Appendix B

Abbreviations

ABEV
AOV
BEV
DA
DSBO
DVH
DVV
EA
EUD
GBO
IMRT
MLC
NP
NPC
NP-complete
NP-hard
NTCP
D
OAR
0\
TCP
SBO
VDV
VOI

Automated beam’s eye view.
Automated observer’s view.

Beam’s eye view.

Dynamic algorithm.

Related decision problem of SBO.
Dose volume histogram.

Dose volume vector.

Evolutionary algorithm.

Equivalent uniform dose.

Generic beam orientations.
Intensity-modulated radiation therapy.
Multi-leave collimator.

See definition 7 in page 28.
NP-complete.

See definition 10 in page 28.

See definition 11 in page 28.

Normal tissue complication probability.
Class of decision problems that can be solved in polynomial time.
Organ at risk.

Observer’s view.

Tumor control probability.

Simplified beam orientations problem.
Volume dose vector.

Volume of interest.
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