
Formalisation of the UML Pro�le for
SDL - A Case Study

Rüdiger Grammes

October 27, 2006

Abstract. With the UML 2.0 standard, the Uni�ed Modeling Language
took a big step towards SDL, incorporating many features of the language.
SDL is a mature and complete language with formal semantics. The Z.109
standard de�nes a UML Pro�le for SDL, mapping UML constructs to cor-
responding counterparts in SDL, giving them a precise semantics. In this
report, we present a case study for the formalisation of the Z.109 standard.
The formal de�nition makes the mapping precise and can be used to derive
tool support.

Contents
1 Introduction 2

2 UML Pro�les 2
2.1 UML Pro�le De�nition . 3

3 The UML Pro�le for SDL 4

4 Mapping Abstract Syntax Representations 5

5 Formalisation of the UML Pro�le for SDL 6

6 Survey of an SDL-style Formalisation Approach 7
6.1 Formalising the Constraints. 7
6.2 Mapping the Metamodel to an Abstract Grammar. 8
6.3 Transformations on the UML Abstract Grammar. 10
6.4 Formalisation of UML to SDL Mapping. 11

7 Conclusions 16

1

1 Introduction
Since the Uni�ed Modeling Language [11, 12] was introduced, the development of
SDL [5, 7] has been in�uenced by UML, and vice versa. The mutual in�uence became
especially apparent with the most recent language standards, SDL-2000 [7] and UML
2.0 [12]. With SDL-2000, the �rst version of the Z.109 standard [6] was introduced,
which described the combined use of SDL and UML 1.3 [11] by providing a mapping
from UML to SDL, using UML pro�les.

With the UML 2.0 standard, the Uni�ed Modeling Language took a big step towards
SDL, incorporating many features of the language. For example, structured classes
model architecture in a fashion similar to SDL. UML 2.0 also comes with a mature
UML pro�le mechanism, de�ning it as a speci�c meta-modelling technique. Pro�les
have become a part of the UML meta-model, de�ned in the Pro�le package, giving
UML pro�les a formal abstract syntax. The new version of the Z.109 standard [10]
takes these changes into account and de�nes a UML Pro�le for SDL based on the UML
2.0 and SDL-2000 standards.

SDL is a more mature and complete language than UML, with few semantic variation
points and a formal semantics. The UML Pro�le for SDL utilises this by taking SDL
as the semantic basis for UML. On the other hand, using UML as front end language
utilises its advantages in the early phases of software development, and its integration
of di�erent modelling techniques.

The aim of this report is to survey an approach to formalise the UML Pro�le for
SDL. This approach is based on the formalisation of the static semantics of SDL [8],
and the formal mapping of meta-models to abstract grammars de�ned in [3]. The
report is structured as follows: We describe UML pro�les in Section 2, and the UML
Pro�le for SDL in Section 3. In Section 4 we give a short overview over the mapping
de�ned in [3]. Section 5 describes the concept of the formalisation, and Section 6
contains our survey of the formalisation. In Section 7, we draw conclusions from our
work.

2 UML Pro�les
The Uni�ed Modeling Language aims at being a universal language for modelling
software systems in the early phases of software development, particularly the require-
ments and design phases. To achieve this goal, UML provides only a complete formal
abstract syntax de�nition of the language, while the semantics de�nition is imprecise
and only partially de�ned. Semantic variation points in the language de�nition iden-
tify parts of the semantics that are explicitly left open for interpretation, or where
alternative interpretations are provided. For example, the event pool of a classi�er
instance is a collection of events that occurred at this instance. Events in the event
pool can trigger classi�er behaviour. The order in which the events are processed is
intentionally left open. This enables a tool provider to implement a strategy that
�ts the target domain of the tool within the framework given by UML, for example
�rst-in-�rst-out or priority based strategies.

2

Semantic variation points make UML a �exible modelling language that can be
adapted for a large variety of target domains. Tool providers resolve semantic variation
points when implementing a subset of UML, providing a domain-speci�c solution.
However, these solutions are tool-speci�c, not standardised and often proprietary. This
is a disadvantage for the interoperability of UML tools.

UML provides the UML pro�le mechanism to extend and adapt existing meta-
models. Using UML pro�les, it is possible to give precise semantics to parts of the
language, and to tailor it for di�erent platforms and domains. UML pro�les are tool-
independent and can be de�ned as separate standards, augmenting the UML language
de�nition. Standardised UML pro�les include pro�les for CORBA, quality of service
and real-time, testing, and many more.

UML pro�les are not a �rst-class extension mechanism, that is, it is not possible
to modify existing semantics of UML. Pro�les can add constraints to a meta-model,
provide semantics that does not con�ict with the semantics of the meta-model, and
add di�erent notation for already existing symbols. This ensures that the model with
applied stereotypes is still a valid UML model, which can be processed by a UML
tool with su�cient compliance to the UML standard. For extensions that modify
the semantics of UML, the meta-model itself must be modi�ed. However, this is not
recommended.

2.1 UML Pro�le De�nition
UML 2.0 de�nes the UML pro�le mechanism as a part of the UML meta-model, giving
it a formal abstract syntax. Pro�les and stereotypes are integrated as specialisations of
packages and classes, respectively. The notation to be used for de�ning UML pro�les
is generally left unspeci�ed. The Z.119 standard [9] gives a guideline for de�ning UML
pro�les for ITU languages in a similar fashion to the UML superstructure document,
describing semantics and constraints of a stereotype using informal language and OCL
[14].

Figure 1: Pro�le package with stereotype

A pro�le is a specialised package that is applied to other packages (including pro�les)

3

via a pro�le application. A pro�le uses the same notation as a package, with the
keyword �pro�le� attached to the name of the package.

The pro�le consists of a set of owned stereotypes. A stereotype is a kind of meta-class
that is linked to a meta-class of the referenced meta-model. Like classes, stereotypes
can have properties, called tag de�nitions. Applying a stereotype to a meta-class adds
the constraints, semantics and notations of the stereotype to the meta-class. Figure
1 shows the graphical notation of a pro�le SDL, which contains a stereotype Agent
that extends the meta-class Class from package StructuredClasses. Stereotype Agent
de�nes a tag de�nition isConcurrent of type Boolean. Semantics and constraints can be
added to Agent as long as they don't con�ict with existing semantics and constraints.

Figure 2: Stereotyped class

Figure 2 shows a UML model with stereotype Agent applied, using the standard
notation for stereotyped UML classes. If the stereotype Agent de�nes a notation, for
example the graphical syntax of process agents in SDL, it can be used instead. Tag
value isConcurrent, de�ned in the stereotype, is set to false.

3 The UML Pro�le for SDL
The UML Pro�le for SDL gives a precise meaning to a subset of UML by mapping
UML meta-model elements to elements of the SDL abstract syntax. Several meta-
model classes are stereotyped, de�ning constraints and semantics to tailor the language
to SDL. The semantics is de�ned as a mapping of the stereotyped meta-model classes
to the abstract syntax of SDL. The meta-model and abstract syntax elements related
by this mapping bear a strong resemblance to the common abstract syntax derived
in [3]: for example, packages are mapped to Package-de�nitions, active classes to
Agent-de�nitions and Signals to Signal-de�nitions. Mapping syntax elements provides
a greater �exibility than the common syntax and semantics approach. For example,
while UML guards do not have a direct representation in SDL, they can be mapped
to a decision symbol at the start of the outgoing transition.

For each stereotype included in the pro�le, several aspects are de�ned:

• Attributes (tag de�nitions): Additional attributes de�ned by the stereotype
that can be set in the model. Attributes give additional information that can
otherwise not be expressed in the meta-model, and that is important for the
mapping of model-elements to the abstract syntax. For example, the stereotype

4

�ActiveClass�, which extends classes, de�nes the attribute isConcurrent of type
Boolean. A class with stereotype �ActiveClass� is mapped to an Agent-type-
de�nition in the abstract syntax, and attribute isConcurrent de�nes the Agent-
kind of the Agent-type-de�nition - Block if true and Process if false.

• Constraints: Constraints de�ne additional checks and conditions that the meta-
model must satisfy. The meta-model is constrained to a subset for which a
mapping to SDL is provided.

• Semantics: Gives a precise semantics to meta-model elements by describing
a mapping to the abstract syntax of SDL. Meta-model elements are mapped
directly to the AS1 of SDL, bypassing transformations in SDL from AS0 to AS1.
The following describes a mapping of transitions with a ChangeEvent as trigger.

If the trigger event of a �Transition� Transition is a ChangeEvent, the
transition is mapped to a Continuous-signal. The changeExpression
maps to the Continuous-expression of the Continuous-signal. The ef-
fect property maps to the Graph-node list of the Transition of the
Continuous-signal. The priority maps to the Priority-name.

• Notation: Describes the notation to be used for the stereotyped model ele-
ment. Z.109 almost exclusively uses UML standard syntax. For some elements,
additional textual syntax is introduced.

4 Mapping Abstract Syntax Representations
Mapping UML speci�cations to SDL, a mapping between the di�erent abstract syntax
representations of the languages is needed. In [3], we have provided such a mapping,
from UML meta-models to SDL abstract grammars, and vice versa. For the UML Pro-
�le for SDL, only the mapping from meta-models to abstract grammars is of interest.

meta-model element abstract grammar element
meta-model class production rule
abstract meta-model class synonym
enumeration synonym
attribute right hand side of production rule
association right hand side of production rule
specialisation right hand side of synonym

Table 1: Mapping of meta-model elements

Table 1 gives an overview over the mapping from meta-models to abstract grammars.
In order to perform the mapping, the meta-model must �rst be �attened, recursively
copying attributes and associations to subclasses of a class. Meta-model classes are
mapped to production rules of the abstract grammar. Attributes and associations of

5

the meta-model class are mapped to the right hand side of the corresponding produc-
tion rule. An abstract meta-model class is mapped as a synonym for its subclasses.

5 Formalisation of the UML Pro�le for SDL
The UML Pro�le for SDL is de�ned in an informal fashion, similar to the UML lan-
guage de�nition. The SDL language de�nition, on the other hand, includes a complete
formalisation of static and dynamic aspects of the language. In order to carry over
the mathematical precision of SDL to the subset of UML covered by the pro�le, it
was proposed to create a formal de�nition of Z.109. A formal de�nition of Z.109 has
several advantages. For example, constraints formulated using the Object Constraint
Language (OCL) can be automatically checked by many UML tools. From an oper-
ational formal de�nition of the mapping to the SDL abstract grammar, tool support
can be automatically generated, as it is done in the case of the formal semantics of
SDL [15].

UML MM SDL MM

UML AG SDL AG

OCL
1

2

3

4

M

mm

M’

(m ◦ M)

M’ ◦ m

T

T

Figure 3: Mapping from UML meta-model to SDL abstract syntax

Figure 3 provides an overview over the steps taken in the pro�le de�nition. The
intent is to provide a mapping from model elements of UML, described by a meta-
model (UML MM), to abstract syntax elements of SDL, described by an abstract
grammar AS1 (SDL AG). This mapping consists of two orthogonal steps: a mapping
from UML to SDL (M), and a mapping between abstract syntax representations (m),
from meta-models to abstract grammars (as described in Section 4). In addition to
the mapping, constraints are de�ned on the meta-model, for example using OCL, and
transformations (T) are performed on the UML side, since the mapping targets the
already reduced abstract grammar AS1.

In [16], the semantics of the UML Pro�le for Communicating Systems is de�ned by a
mapping of the UML meta-model to the abstract grammar AS1 of SDL. The mapping
is de�ned by pre- and post-conditions on the meta-model and the abstract grammar,

6

using OCL [14]. The correctness of a concrete mapping can be veri�ed using these
constraints.

A way to perform the mapping is to map the UML meta-model to a UML abstract
grammar �rst (m), then to map the UML abstract grammar to SDL (M'). The map-
ping between the abstract syntax representations can be derived from the mapping
described in Section 4. The mapping M' is a mapping between two di�erent abstract
grammars. Such a mapping can be found in the formalisation of the static semantics
of SDL (Z100 Annex F Part 2 [8]), where the abstract grammar AS0 is mapped to
the abstract grammar AS1. Generally, the mapping M' is more complicated than the
mapping in Z100.F2, since the mapping is performed between two di�erent languages.
We survey this approach in Sections 6.1 to 6.4, corresponding to the numbers given in
Figure 3.

The mapping of the UML Pro�le for SDL covers a subset of SDL. Core features of
SDL that are not covered include timers, exceptions, enabling conditions, entry- and
exit-procedures. This subset de�nes an SDL Pro�le, for which a tailor-made formal
semantics can be extracted [1, 4].

6 Survey of an SDL-style Formalisation Approach
In this section, we introduce a partial formalisation of the Z.109 standard, with the
focus on transitions. The approach is to apply the techniques used for the formalisation
of the static semantics of SDL as much as possible. This gives us the advantage of using
an approach that has been applied successfully before, and for which tool support is
available [15], allowing us to concentrate on the formalisation itself.

6.1 Formalising the Constraints.
The stereotypes in the UML Pro�le for SDL introduce additional constraints on the
meta-model classes they extend. For the formalisation of these constraints, the Object
Constraint Language (OCL) [14], which is used thoughout the UML superstructure
speci�cation, is a self-evident choice. The OCL is tailor-made for specifying constraints
for MOF-compatible [13] meta-models. It provides a logic that allows navigation over
properties and association ends of classi�ers. Following are the constraints speci�ed for
the �Transition� stereotype formulated in OCL. Unless speci�ed otherwise, all OCL
expressions are formulated in the context of meta-class Transition.

• The Transition shall have kind == external or local. The UML concepts of
internal transitions are not allowed.
self .kind = #external or self.kind = #local

• The port of the Trigger1 shall be empty.
self . trigger−>forAll(t | t .port−>isEmpty())

1The UML meta-model actually de�nes a set of triggers for a transition.

7

• In the Transition set de�ned by the outgoing properties of a State, the signal
property of each event property that is a SignalEvent of each trigger shall be
distinct.
context State

self .outgoing−>forAll(t1,t2: Transition | t1.trigger−>select(event.
oclIsKindOf(SignalEvent)).event.signal−>intersection(t2.trigger−>
select(event.oclIsKindOf(SignalEvent)).event.signal)−>isEmpty())

• The event property of the trigger property shall be a MessageEvent or Change-
Event.
self . trigger−>forAll(t | t .event.oclIsKindOf(MessageEvent) or t.event.

oclIsKindOf(ChangeEvent))

• The e�ect property shall reference an Activity.
self . e�ect−>notEmpty() implies self.e�ect.oclIsKindOf(Activity)

While the informally speci�ed constraints of the �Transition� stereotype are intuitive
and easy to understand, three issues were discovered when specifying the constraints
in OCL, two of them concerning multiplicities.

• A transition in UML can have an arbitrary number of triggers, while the stereo-
type constraints only assume a single trigger at most. The OCL constraints were
formulated in a way that allows an arbitrary number of triggers, however, there
should be an additional constraint that a transition should have at most one
trigger.

• The informally speci�ed constraints leave it unclear if the e�ect property is al-
lowed to be empty. This has been clari�ed in the formalisation.

• The third constraint is formulated more naturally in the context of �State�,
since it deals with sets of transitions of states. Therefore, the constraint should
be part of the stereotype �State�.

6.2 Mapping the Metamodel to an Abstract Grammar.
In order to apply the approach from the formalisation of the static semantics of SDL,
which provides a mapping between two abstract grammars, we �rst have to provide
a mapping from the meta-model of the UML pro�le to a UML abstract grammar
(mapping m in Figure 3). We apply the mapping de�ned in Section 4 to extract a
UML abstract grammar, and use OCL expressions to de�ne how model elements are
mapped to an abstract syntax tree.

8

Extracting the UML Abstract Grammar. The UML Pro�le for SDL constrains the
meta-model de�ned in the UML superstructure speci�cation to classes and associations
that can be expressed in SDL. In some cases, elements are not constrained but no
mapping to SDL is de�ned, since no semantics is associated with them. These elements
can be omitted in the extracted abstract grammar, keeping it concise. In the mapping
of meta-model class Transition to the non-terminal Transition, name and visibility of
the Transition are omitted.
Transition(TransitionKind, [Trigger], [Constraint], [Activity], Vertex−

Identifier, Vertex−Identifier, Integer)
The mapping m creates an abstract syntax node of the non-terminal corresponding

to the mapped meta-class. Role names of the associations are used to navigate in
the meta-model, and to set the elements on the right-hand side of the syntax node.
The auxiliary function toId maps meta-classes to identi�ers as required by the non-
terminal.
context Transition::m
mk−Transition(kind, trigger−>any(), guard, e�ect, source.toId, target.toId,

priority) --tag definition priority--

toId : MetaClass → Identifier
The mapping from meta-models to abstract grammars naturally maps general asso-

ciations to identi�ers and aggregation or composition to subtrees in an abstract syntax
tree (see [3]). In few cases, due to the di�erent structure of the abstract syntax of SDL
and UML, it is of advantage to map general associations in the same way as composi-
tions. For example, in UML, states and transitions are related by general associations,
while in SDL the transition is a part of the state. Because a UML transition has a
unique source state, it can be mapped as a subtree of a state instead of an identi�er,
in the SDL fashion.
State(String, Trigger−set, Transition−set, ConnectionPointReference

−set, Pseudostate−set, StateMachine−Identifier)
Pseudostate(String, PseudostateKind, Transition−set) --Transition-

Identifier replaced by Transition--

context State::m
mk−State(name, deferrableTrigger, outgoing, connection, connectionPoint,

submachine)
context Pseudostate::m
mk−Pseudostate(name, kind, outgoing)
Events do not have a counterpart in the abstract syntax of SDL. Therefore, as with

transitions, we place events directly inside a trigger instead of an event-identi�er. The
abstract meta-class MessageEvent is merged with the abstract meta-class Event, since
it doesn't introduce new attributes and associations.

9

Trigger(Event) --Event-Identifier replaced by Event--

context Trigger::m
mk−Trigger(event)

Event = SignalEvent | CallEvent | ChangeEvent | AnyReceiveEvent

SignalEvent(Signal−Identifier)
CallEvent(Operation−Identifier)
ChangeEvent(ValueSpecification)
AnyReceiveEvent()

context SignalEvent::m
mk−SignalEvent(signal.toId)

context CallEvent::m
mk−CallEvent(operation.toId)

context ChangeEvent::m
mk−ChangeEvent(changeExpression)

6.3 Transformations on the UML Abstract Grammar.
To keep the language semantics concise, SDL distinguishes between core constructs
of the language, for which the semantics are given directly, and additional constructs,
which are expressed through the core constructs. In the abstract grammar AS1 of
SDL, which is the target of the UML Pro�le for SDL, these additional constructs are
already eliminated. UML constructs that correspond to additional SDL constructs are
therefore transformed before the mapping to SDL is performed.

The transformations can be de�ned on the UML meta-model, using meta-model
transformations, or on the UML abstract grammar. In order to apply the techniques
from Z100 Annex F, here transformations are de�ned on the abstract grammar, using
rewrite rules on abstract syntax trees.

If the trigger event of a �Transition� Transition is an AnyReceiveEvent, the transition
is expanded according to the Model in SDL 11.3 for transforming <asterisk input
list> before applying the mapping that follows in this section.

The function collectTriggers computes the set of triggers for a state from the com-
plete valid set of triggers of the enclosing class, minus transitions and deferred signals
de�ned for the state, and minus remote procedures and remote variables. If at least
one trigger exists in the set of triggers returned by collectTriggers, the set of transitions
is expanded with a copy of the transition triggered by AnyReceiveEvent, but triggered
by a trigger from collectTriggers. If the set of triggers is empty, the transition triggered
by AnyReceiveEvent is removed.

{ pre, tany=Transition(kind,Trigger(AnyReceiveEvent()),grd,e�,src,trg,prio), rest}

10

=1=>
if ∃trig ∈ collectTriggers(tany.parent) then

{pre, tany, Transition(kind,collectTriggers(tany.parent).take(),grd,e�,src,trg,prio),
rest}

else
{pre, rest}

endif

collectTriggers(s: State): Trigger-set=def

let ag: Class = enclosingAgent(s) in
validTriggers(ag) \ (remoteProcedures(ag) ∪ remoteVariables(ag) ∪

inputTriggers(s) ∪ deferredTriggers(s))
endlet

6.4 Formalisation of UML to SDL Mapping.
In order to de�ne the mapping from UML to SDL, we introduce a function Mapping
from nodes of the abstract syntax tree of UML to nodes of the abstract syntax tree of
SDL.
Mapping: DefinitionUML → DefinitionAS1
idToNode: Identifier → DefinitionUML

In the same way as in Z100 Annex F Part 2, the mapping function is a concatenation
of cases. A case consists of a pattern on the left hand side, and a resulting syntax tree
on the right hand side. The pattern can contain nodes of the UML abstract grammar,
as well as variables, wildcards ('*'), and a provided-clause to constrain the matches.
Additionally, we introduce the notation var ! to express that var does not match undef.
It is a shortcut for specifying var 6= undef in the provided-clause.

The function idToNode provides the same functionality as the function idToNodeAS1
in the formal semantics of SDL. It maps an identi�er to the node in the abstract syntax
tree that corresponds to the de�nition the identi�er refers to. The operators s- and
s2- have the same semantics as in Z100 Annex F Part 2, selecting a subnode of a
speci�ed kind from a node. For example, s.s-Transition-set selects the set of outgoing
transitions from State s.

Case Study: Mapping UML Transitions to SDL. We provide a formalisation for
the semantics of the stereotyped class �Transition� Transition by de�ning the mapping
function to SDL AS1. Depending on the properties of the transition, it is mapped to
a Spontaneous-transition, Input-node, Continuous-signal or Connect-node.

If the trigger event of a �Transition� Transition is a SignalEvent and the name
of the Signal is �none� or �NONE� (case sensitive therefore excludes �None�), the
Transition is mapped to a Spontaneous-transition-node. The e�ect property maps
to the Graph-node list of the Transition of the Spontaneous-transition-node.

11

Transitions triggered by the signal �none� or �NONE� are Spontaneous-transitions
with unde�ned On-exception and Provided-expression. Here, we de�ne the case where
the guard of the transition is unde�ned. Transitions with guard have a more compli-
cated mapping and are de�ned below.

Mapping(
Transition(*,Trigger(SignalEvent(signal)),undef,e�ect,*,target,*)
provided signal.idToNode.s-String ∈ {�NONE�, �none�}

⇒ Spontaneous-transition(undef,undef,Transition(Mapping(e�ect),
Mappingtrg(target.idToNode)))

)

If the trigger event of a �Transition� Transition is a SignalEvent and the name
of the Signal is neither �none� nor �NONE� (so it does not map to Spontaneous-
transition-node), the Transition is mapped to an Input-node. The quali�edName of
the Signal maps to the Signal-identi�er of the Input-node and for each 〈attr-name〉
in the 〈assignment-speci�cation〉 (see the Notation given in UML SS 13.3.24) the
quali�edName of the attribute (with this name) of the context object owning the
triggered behavior is mapped to the corresponding (by order) Variable-identi�er of
the Input-node. The e�ect property maps to the Graph-node list of the Transition
of the Input-node.

Transitions triggered by all other kind of signals are Input-nodes without Priority,
Provided-expression and On-exception. To get the Signal-identi�er of the Signal, the
second subnode of kind string is selected with s2-String (s-String selects the signal
name).

Mapping(
Transition(*,Trigger(SignalEvent(signal)),undef,e�ect,*,target,*)
provided signal.idToNode.s-String 6∈ {�NONE�, �none�}

⇒ Input-node(undef,signal.idToNode.s2-String,Mapping(assignment-spec),
undef, undef, Transition(Mapping(e�ect), Mappingtrg(target.idToNode)))

)

If the trigger event of a �Transition� Transition is a ChangeEvent, the transition is
mapped to a Continuous-signal. The changeExpression maps to the Continuous-
expression of the Continuous-signal. The e�ect property maps to the Graph-node
list of the Transition of the Continuous-signal. The priority maps to the Priority-
name.

Transitions that are triggered by a ChangeEvent are mapped to Continuous-signals.
The changeExpression is a boolean expression that is mapped to a corresponding SDL
expression.

Mapping(
Transition(*,Trigger(ChangeEvent(changeExpression)),*,e�ect,*,target,priority)

12

⇒ Continuous-signal(undef,Mapping(changeExpression),Mapping(priority),
Transition(Mapping(e�ect), Mapping trg(target.idToNode)))

)

If the �Transition� Transition has an empty trigger property and a non-empty guard
property, the Transition is mapped to a Continuous-signal. The guard maps to the
Continuous-expression of the Continuous-signal. The e�ect property maps to the
Graph-node list of the Transition of the Continuous-signal. The priority maps to
the Priority-name.

Transitions without trigger but with guard are mapped to Continuous-signals. In
this case, the guard de�nes the condition of the Continuous-signal.

Mapping(
Transition(*,undef,guard!,e�ect,*,target,priority)
⇒ Continuous-signal(undef,Mapping(guard),Mapping(priority),Transition(

Mapping(e�ect), Mapping trg(target)))
)

If the �Transition� Transition has an empty trigger property and an empty guard
property, the Transition is mapped to a Connect-node. The e�ect property maps
to the Graph-node list of the Transition of the Connect-node. If the source of the
Transition is a ConnectionPointReference, this maps to the State-exit-point-name. If
the source is a State the State-exit-point-name should be empty.

Transitions without trigger and guard are mapped to Connect-nodes. The exact
mapping depends on the source of the transition. The informal description is imprecise
with regard to how a ConnectionPointReference is mapped to a State-exit-point-name.
In the formalisation, this is de�ned precisely as the name of the exit Pseudostate
associated with the ConnectionPointReference.

Mapping(
Transition(*,undef,undef,e�ect,source,target,*)
provided source.idtoNode ∈ ConnectionPointReference

⇒ Connect-node(source.idToNode.s2-Pseudostate.idToNode.s-String,undef,
Transition(Mapping(e�ect), Mapping trg(target)))

| Transition(*,undef,undef,e�ect,source,target,*)
provided source.idtoNode ∈ State

⇒ Connect-node(undef,undef,Transition(Mapping(e�ect),
Mapping trg(target.idToNode)))

)

13

If a �Transition� Transition has a non-empty trigger property and non-empty guard
property, the guard is mapped to the Transition as follows. A Decision-node is
inserted �rst in the Transition with a Decision-answer with a Boolean Range-
condition that is the Constant-expression true and another Decision-answer for
false. The speci�cation property of the guard property of the Transition maps to
Decision-question of the Decision-node. The false Decision-answer has a Transition
that is a Dash-nextstate without HISTORY. The e�ect property of the Transition
maps to the Graph-node list of the Transition of the true Decision-answer.

Guards in UML and enabling conditions in SDL represent the same concept, but
have incompatible semantics (see [2]). Mapping guards to SDL is therefore not straight-
forward, except in the case of continuous signals (see above). To express UML-style
guards in SDL, the transition is modi�ed, inserting a decision node with the guard as
condition as the �rst action of the transition.

Mapping(
Transition(*,Trigger(SignalEvent(signal)),guard!,e�ect,*,target,*)
provided signal.idToNode.s-String ∈ {�NONE�, �none�}

⇒ Spontaneous-transition(undef,undef,Transition(< >,
Decision-node(Mapping(guard),undef,
{ Decision-answer(Range-condition(Constant-expression(false)),

Transition(< >,Terminator(Dash-nextstate(undef)))),
Decision-answer(Range-condition(Constant-expression(true)),

Transition(Mapping(e�ect),Mapping trg(target.idToNode))) },
undef)))

)

Mapping(
Transition(*,Trigger(SignalEvent(signal)),guard!,e�ect,*,target,*)
provided signal.idToNode.s-String 6∈ {�NONE�, �none�}

⇒ Input-node(undef,signal.idToNode.s2-String,Mapping(assignment-spec),
undef, undef, Transition(< >,Decision-node(Mapping(guard),undef,
{ Decision-answer(Range-condition(Constant-expression(false)),

Transition(< >,Terminator(Dash-nextstate(undef)))),
Decision-answer(Range-condition(Constant-expression(true)),

Transition(Mapping(e�ect),Mapping trg(target.idToNode))) },
undef)))

)

14

A target property that is a State maps to a Terminator of the Transition (mapped
from the e�ect) where this Terminator is a Nextstate-node without Nextstate-
parameters, and where the quali�edName of the State maps to the State-name
of the Nextstate-node.
A target property that is a ConnectionPointReference maps to a Terminator of the
Transition (mapped from the e�ect) where this Terminator is aNextstate-node with
Nextstate-parameters, and where the quali�edName of the state property of the
ConnectionPointReference maps to the State-name of the Nextstate-node, and the
quali�edName of the entry property Pseudostate of the ConnectionPointReference
maps to State-entry-point-name.

Mapping of states is ambiguous. A state can either be mapped as a state owned
by a statemachine, or as the target of a transition. The former is a state in SDL,
the latter a terminator. To di�er between these mappings, we introduce a mapping
function Mappingtrg to map states as targets of transitions.

Mapping trg(
State(name,*,*,*,*,*)
⇒ Terminator(Named-nextstate(name,undef))
| cpr=ConnectionPointReference(PseudoState(name,*,*),*)
⇒ Terminator(Named-nextstate(quali�edName(state(cpr)),

Nextstate-parameters(< >,name)))
)

A target property that is a Pseudostate maps to the last item of the Transition (a
Terminator or Decision-node) as de�ned in section 8.6..

Transition targets that are pseudostates are mapped to corresponding terminators in
SDL in a straightforward manner. Pseudostates of kind choice are mapped to decision
nodes. The mapping to decision nodes is more complicated, because the UML Pro�le
for SDL encodes the decision question in the guard expressions of the outgoing tran-
sitions, as the �rst operand of a two operand guard. The decision question is selected
from the guard of a random transition by Constraint.s-Expression.s-Expression. The
second operand, selected by Constraint.s-Expression.s2-Expression, de�nes the range
condition of a transition originating from the choice pseudostate.

Mapping trg(
PseudoState(*,deepHistory,*)
⇒ Terminator(Dash-nextstate(History))
| Pseudostate(name,junction,*)
⇒ Terminator(Join-node(name))
| Pseudostate(*,choice,outgoing)
⇒ Decision-node(

Mapping(outgoing.take.s-Constraint.s-Expression.s-Expression),
undef,

15

{Decision-answer(
Mapping(t.s-Constraint.s-Expression.s2-Expression),
Transition(Mapping(t.s-Activity),
Mapping trg(t.s2-Vertex-Identi�er.idToNode)

) | t ∈ outgoing},
undef)

| Pseudostate(name,exitPoint,*)
⇒ Terminator(Named-return-node(name))
| Pseudostate(*,terminate,*)
⇒ Terminator(Stop-node())

)

7 Conclusions
In this report, we have presented an approach for the formalisation of the UML Pro-
�le for SDL. This approach applies techniques from the formalisation of the static
semantics of SDL, for which tool support is available. As a survey, we applied the
formalisation approach to the transition stereotype from the pro�le, which di�ers syn-
tactically and semantically from SDL transitions. Successfully applying our approach
to transitions indicates its feasibility for less complicated cases.

The formal de�nition of the transformations, mappings and meta-model constraints
helps detecting errors, omissions and ambiguities in the informal speci�cation of the
Z.109 standard. This became especially apparent with the meta-model constraints,
where an error and an ambiguity were detected in the �ve informal constraints of the
transition stereotype. The formalisations of the mappings and transformations lead to
a number of suggested improvements concerning ambiguities in the informal semantics.

References
[1] Grammes, Rüdiger: Formal Operations for SDL Language Pro�les. In:

Gotzhein, Reinhard (Hrsg.) ; Reed, Rick (Hrsg.): SAM 2006: Language Pro-
�les - 5th International Workshop on System Analysis and Modelling (SAM 2006),
Kaiserslautern, Germany Bd. 4320, Springer, 2006 (LNCS), S. 51�65

[2] Grammes, Rüdiger ; Gotzhein, Reinhard: Towards the Harmonisation of UML
and SDL - Syntactic and Semantic Alignment - / Department of Computer Sci-
ence, University of Kaiserslautern. 2003 (327/03). � Forschungsbericht

[3] Grammes, Rüdiger ; Gotzhein, Reinhard: Towards the Harmonisation of UML
and SDL. In: Frutos-Escrig, David de (Hrsg.) ; Núñez, Manuel (Hrsg.): For-
mal Techniques for Networked and Distributed Systems - FORTE 2004, Madrid,
Spain Bd. 3235, Springer, Januar 2004 (LNCS), S. 61�78

[4] Grammes, Rüdiger ; Gotzhein, Reinhard: SDL Pro�les - De�nition and Formal

16

Extraction / Department of Computer Science, University of Kaiserslautern. 2006
(350/06). � Forschungsbericht

[5] ITU: Recommendation Z.100 (03/93): Speci�cation and Description Language
(SDL). Geneva, 1993

[6] ITU: Recommendation Z.109: SDL combined with UML. Geneva, 2000

[7] ITU: Recommendation Z.100 (08/02): Speci�cation and Description Language
(SDL). Geneva, 2002

[8] ITU Study Group 10: Draft Z.100 Annex F2 (11/00). 2000

[9] ITU Study Group 17: Recommendation Z.119: Guidelines for UML pro�le
design. Geneva, 2005

[10] ITU Study Group 17: Recommendation Z.109: The UML Pro�le for SDL.
Geneva, 2006

[11] Object Management Group: Uni�ed Modeling Language Speci�cation, Ver-
sion 1.3. 2000. � www.uml.org

[12] Object Management Group: Uni�ed Modeling Language: Superstructure,
Version 2.0. 2005. � www.uml.org

[13] Object Management Group: Meta Object Facility (MOF) Core Speci�cation,
Version 2.0. 2006. � www.omg.org

[14] Object Management Group: Object Constraint Language (OCL), Version
2.0. 2006. � www.omg.org

[15] Prinz, Andreas ; Löwis, Martin von: Generating a Compiler for SDL from the
Formal Language De�nition. In: Reed, Rick (Hrsg.) ; Reed, Jeanne (Hrsg.):
SDL 2003: System Design Bd. 2708, Springer, 2003 (LNCS), S. 150�165

[16] Werner, Constantin ; Kraatz, Sebastian ; Hogrefe, Dieter: A UML Pro-
�le for Communicating Systems. In: Gotzhein, Reinhard (Hrsg.) ; Reed, Rick
(Hrsg.): SAM 2006: Language Pro�les - 5th International Workshop on Sys-
tem Analysis and Modelling (SAM 2006), Kaiserslautern, Germany Bd. 4320,
Springer, 2006 (LNCS), S. 1�18

17

