
Adding Position Structures to Katja

Internal Report No. 353/06

Patrick Michel

June 16, 2005

Contents

1 Introduction 4

2 The Concept of Positions 4
2.1 Motivation . 4
2.2 Necessary Additions . 5
2.3 The Concept . 7

3 Katja Specification Extensions 8
3.1 Changes . 8
3.2 Position Sorts Defined by a Specification 9
3.3 Possibilities and Restrictions 10

4 Java Realization 11
4.1 Type Hierarchy Changes . 11
4.2 Position Interface . 12

4.2.1 Iterators and Visitors 12
4.2.2 The Substitute Operation 14

4.3 Advanced Usage . 15

5 Implementation Details 17
5.1 Java 5 . 17

5.1.1 Generics . 17
5.1.2 Covariant Return Types 18
5.1.3 Enhanced For Loop . 20
5.1.4 Static Imports . 20
5.1.5 Varargs . 21
5.1.6 Autoboxing/Unboxing 21

5.2 Type Information . 22
5.3 Time and Space Complexity 22

6 Future Work 24
6.1 Higher-Order Positions . 24
6.2 Attribution . 26
6.3 Pattern Matching . 27

2

List of Figures

1 Common Situations on Term Operations 6
2 Upper Context . 6
3 Position Structures . 7
4 Position Sort Sets . 10
5 UML Diagram of the Position Type Hierarchy 11
6 Position Operations . 13
7 Substitution of Positions . 14
8 Higher-order Position Structure 16
9 Implementation Ideas for Higher-Order Positions 26

3

1 Introduction

This document introduces the extension of Katja to support position struc-
tures and explains the subtleties of their application as well as the design
decisions made and problems solved with respect to their implementation.

The Katja system was first introduced by Jan Schäfer in the context of
his project work [4] and is based on the MAX system [3] developed by Arnd
Poetzsch-Heffter. The reader unfamiliar with the Katja system is adviced to
read those documents to get an introduction to the system.

The following sections are structured as follows: Section 2 will explain
the concept of positions and visualize the idea behind them. The necessary
extensions to the Katja specification language to support positions are dis-
cussed in Section 3. The Java implementation the user works with will be
described in Section 4, which explains the type hierarchy, user interface and
application subtleties. Section 5 will go into much more detail and discuss
design decisions which arose while implementing and migrating Katja to Java
5. Last but not least Section 6 describes future work on Katja.

Usage of Terms The Katja system is based on several ideas and concepts
which can be viewed on from different angles. Each has advantages and
disadvantages and is more or less adequate in different situations. However,
we will only use one of the alternatives, as long as the others are not needed
to better visualize the notion or concept of the term.

The main concept explained in this document is the concept of positions.
In rare cases we will refer to positions as occurrences or nodes, which are
both terms used in the past to describe the exact same idea.

The terms type and sort are difficult to seperate when talking about the
Java implementation of Katja, since the objects referenced by these terms are
strongly correlated. However, we understand sorts to be the main result of a
Katja specification, opposed to types being the result of a class or interface
definition in Java.

2 The Concept of Positions

2.1 Motivation

Katja’s main usage is the representation of data by order-sorted recursive
data structures. The main advantage of Katja in this context is the simplicity
and conciseness of its specification language, which allows fast and convenient

4

development. The specification file gives an account of the sorts needed and
their relation, which is used by Katja to generate a Java package.

This package does not only define the complex types and relations spec-
ified, but adds a rich interface with many methods used frequently when
working with terms. Term types are generated immutable, which is a great
advantage compared to most hand-written implementations done in a rush.
Immutability is one of the most appreciated features on term handling and
processing, since it enforces reasonable designs and ensures safety of inter-
faces between modules.

There are many applications which already profit from using generated
Java types instead of hand-written ones, like language analyzing tools. It is
common procedure to write concise descriptions of lexical and grammatical
properties of languages to generate parsers. Katja is the natural extension
of this, as parsers can use the generated Java types of specifications to build
up the abstract syntax tree. The acutal work can then be done using a
convenient interface to the syntax tree from within Java instead of embedding
code into the parser.

However, we are able to present much more features to the developer than
are present in the Katja system so far. These are essential features, which are
cumbersome to implement by hand, but make working with terms so much
easier. Expressing relations between term data, substituting parts of terms
by others and converting whole syntax trees are only few example operations
which should be easy to express by the user and work well together with the
present concepts like immutability.

All this has been successfully implemented in Katja and will be presented
in this document.

2.2 Necessary Additions

There are several situations which arise again and again when working with
terms:

i) Descending in the term structure visiting subterms, but remembering
from where one came to continue with other subterms later.

ii) Calculating values using subterm data, but needing information from
the upper context (that is other parts of the superterm).

So it is often important to keep knowledge of the superterm when descending.
This results in great efforts to organize all the data which is needed for the
current task and makes it increasingly difficult to keep track of the essential
parts of work.

5

G

A B

Calculating A and B requires
to remember G

B

A C

Calculating a value for A requires
knowledge of B and C

Figure 1: Common Situations on Term Operations

Even in simple situations where it is sufficient to store a reference to the
parent node when descending, one has to utilize a stack or use recursion,
which is either inconvient or inefficient, respectively.

It is very important to realize what upper context really means. Every-
thing which is only reachable from the current node by walking at least one
time upwards in the term structure is the upper context.

A

G

The "upper" context of A are all nodes of G which
are not in A, even siblings of A and their children

Figure 2: Upper Context

Therefore it is desirable to introduce the concept of term positions. These
are terms, together with their position in a superterm. This concept is oc-
casionaly referred to as nodes, since the notion of a node of a tree fits more
perfectly to positions as to terms, since the latter don’t know anything about
there upper context nodes. As mentioned in the introduction, it is also valid
to refer to a position as the occurrence of a term in another.

6

2.3 The Concept

When we are talking about a position we want to know three things about
it:

• The subterm whose occurrence is described.

• The superterm which is the context of the position.

• The relation of the term to the superterm, given mainly as a path from
the root of the superterm to the subterm.

With all this information present we are now able to reach every node of
the superterm from any position in it. All positions of one superterm are
considered a position structure, which can be thought of as the tree of the
superterm with bidirectional edges, so walking upwards in the tree is possible.

The position structure can be considered an additional tree
with extend navigation properties above the term tree

Figure 3: Position Structures

The most obvious operation, which is now possible using positions instead
of terms, is the parent operation, which retrieves the direct predecessor in
the tree structure. Of course there are many more possible operations like
left and right sibling or root, which are not marked in Figure 3.

To get back to a term, when dealing with one of it’s positions, the term

operation has to be used. Obtaining a position from a term is more difficult
in general, since it is necessary to specifiy the three parameters mentioned
above. To overcome this inconvenience and support easy usage and read-
ability we only allow to create root positions, i.e. positions of terms in the
context of themselves.

This allows to use a single parameter constructor which only takes one
term, since the superterm is the term itself and the path is trivially the emtpy

7

path. This operation is called pos and can only be invoked on special term
sorts, which will be discussed later.

All other positions of the position structure created by a call of pos can be
retrieved by navigating through the structure using the operations explained
in Section 4.

3 Katja Specification Extensions

3.1 Changes

There are several changes concerning the Katja syntax and semantics, which
are already made and documented in Jean-Marie Gaillourdets work on the
Isabelle formalizations for Katja [1].

To support positions in Katja specifications it would not be necessary
to change anything, since all information needed is present. The term sort
hierarchy resulting from a specification can be transformed to a position sort
hierarchy without too much trouble.

However, such a decision would have a great impact on the Java real-
ization. The type of a position is required to reflect the corresponding term
type, as well as the type of the root term of the structure. Without the latter
one could not express situations in enough detail to ensure execution safety
of operations.

Consider, for example, a method which calculates for a given identifier
position the defining position of the identifier in a Java program. Such a
method would take an identifier position and return a definition position.
Given a position in a correct Java program, the method would work as re-
quired, but when given a position in the context of just a statement block,
for instance, the method may not be able to retrieve the definition.

So it would be necessary to generate position types in enough detail to al-
low such differentations. The number of types necessary can only be bounded
by O(n2), where n is the numer of sorts specified. This is far too much to
generate and since only a small subset of all these types will be needed in
practice we decided to extend the specification language.

The number of actual contexts used in position structures is very limited.
Most developers start off with only one and eventually add a few more. Good
examples for position structure contexts are for instance

• The Program sort used in the analysis of programming languages.

• The Specification sort used in more general specification languages.

• The ProofTree sort containing a proof for parts of a program.

8

• The Expression sort for highly recursive mathematical expressions
used in various languages.

Typical positions in these contexts could be:

• An IfThenElse in a Program.

• A HoareTriple or Formula in a ProofTree.

• A Binary operation in an Expression.

To specify which sorts can be the context of a position structure, we introduce
a new keyword called root to the specification language:

root <term sort> <suffix>

It is followed by a sort name together with a postfix and expresses that the
pos operation can be invoked on this sort and returns a position of the sort
“<term sort><suffix>”, which is the name of the position sort corresponding
to the term.

3.2 Position Sorts Defined by a Specification

The term specified in a root definition therefore becomes the root sort of
position structures in which the user can navigate. The sorts to be created
for this structures are all sorts necessary for the definition of the context sort.
The names of these sorts are constructed using the term names together with
the specified postfix.

The sets of position sorts generated for the following example specification
with two roots are shown in Figure 4:

root Program AtProg
root Unary AtUnary

Program * Assignment
Assignment (Identifier left, Expr right)
Expr = Binary (String operator, Expr left, Expr right)

| Unary (String operator, Expr exp)
| Identifier (String name)
| Value (Integer val)

In most specifications no position structure will contain a sort for each
term sort, since not all sorts are reachable from a given root. This is especially
true for helper sorts like lists which do not occur in the original input but
are needed in processing.

9

String
<imported>

Integer
<imported>

Binary ValueIdentifier Unary

Expr

2

AssignmentProgram *

KatjaLeafPos

AtProg suffix

AtUnary suffix

Figure 4: Position Sort Sets

With this in mind the return types of many operations can be defined
much stronger. As terms have many parents in general, they often can have
only one parent in a certain position structure. This allows us to strongly
type the parent operation of types of this structure, so going upwards in the
tree can often be done as easy as going downwards using selectors.

3.3 Possibilities and Restrictions

By introducing positions to Katja, many new types are added to a specifica-
tion, which can be used in Java. But there are many cases in which one wants
to consider positions as normal terms, to benefit from those Katja features:

• Storing positions in lists while processing a position structure or term.

• Defining tuples containing processing information, as well as (an) as-
sociated position(s).

• Using positions in a second specification as base sorts.

It is therefore possible to use position sorts, like imported sorts, in tuples
and lists. This can be done in any specification where the sort was defined
or imported.

However, there are limitations to this feature. It is not allowed to create
a position structure in which a position sort (of another structure) appears,
i.e. relative to a root sort which already needs position sorts in its definition.

10

This would result in the creation of higher-order positions, which describe
the occurrence of a position (seen as subterm) in a superterm. This is not
supported at the present state of the project, but will be considered in the
future. We will discuss the usage of such a feature in Section 6.1.

The second problem is the variants, in which positions must not occur.
Allowing this would make positions real KatjaTerms, which is also not in-
tended at the present state. However, this concept is interesting and would
open up many new possibilities. This will also be discussed in Section 6.1.

4 Java Realization

4.1 Type Hierarchy Changes

The term position implementation conforms to the same design desicions
made for the original system. The hand-written type hierarchy needed for
positition types exists in parallel to the term types and extends the generic
KatjaElement class.

KatjaTermPos

KatjaLeafPos KatjaNodePos

KatjaTuplePos

KatjaNodePosImpl

KatjaListPosImplKatjaTuplePosImpl

KatjaTermPosImpl

KatjaListPos

Figure 5: UML Diagram of the Position Type Hierarchy

The KatjaTermPos is the most generic type of the position hierarchy,
implementing the KatjaElement interface. We then separate those types

11

capable of having children from those who cannot, which are therefore called
leaves.

KatjaLeafPos is a generic Java class which wraps all kind of not Katja
generated sorts, like built-in or imported sorts. We do not generate position
types for such sorts, but use this type constructor to get them.

The main difference to a KatjaNodePos is found in the return type of
the term method, which yields the corresponding term of the position. For
leaves this can only be Object, but for nodes this can be set to KatjaTerm,
which is obviously a wide difference in the usable interface.

Note that this difference is most important for the parent operation
which in any case yields a KatjaNodePos, so one can be sure the correspond-
ing term of a parent position has the full KatjaTerm interface available.

The rest of the hierarchy is self-explaining when compared to the Katja-

Term hierarchy and is also splitted into types and implementations.

4.2 Position Interface

Positions have a rich interface, which offers most of the operations available
on terms plus a great addition of advanced ones, for which positions where
designed in the first place.

Figure 6 shows most operations available, though this cannot be a com-
plete list since there are many more useful and commonly needed operations
on positions, which will eventually be implemented in the future. Note that
there are only few list operations available for list positions, namely first

and last, since positions are immutable, too. The operations available on
term lists just create new terms, without altering the ones they are invoked
on. This is not transferable to positions since one would leave the current
position structure in altering the associated term of a position.

Actually list positions can be considered as tuples, as they have a fixed
size and fixed types in each component.

4.2.1 Iterators and Visitors

Visiting subterms or children of Katja elements is a task which occurs again
and again when working with Katja. On positions this can be easily done
using the post- and preorder methods, since positions have enough structural
information present to calculate the next position without external help.

On terms this is an inherent problem which only allows visiting all sub-
terms of a given superterm. In Katja this can now be done using the iterate
operation, which yields an iterator that visits all subterms (down to the

12

name description

child(i) / get(i) retrieves a child of this position, specified by
the parameter, similar to subterm / get on terms

numChildren()
/ size()

the number of children this position has, always
0 for leaves, similar to numSubterms / size on terms

eq(e) /
equals(o)

checks for semantic equality to given KatjaElement
or Object, respectively, same as for terms

<selector>() retrieves the child specified by this selector, similar
to the selectors on terms

term() returns the associated term for this position

parent(), rsib(),
lsib(), root()

returns the direct predecessor, right or left sibling or
the root position of this structure, new to positions

preOrder() returns the next position of the structure when walking
through in preorder, returns null when finished

postOrder(),
postOrderStart()

returns the next position of the structure when walking
through in postorder, to start off with the correct node

one has to invoke postOrderStart on the root node

is(s), sort() the operation "is" checks if the position is subtype of
a given type, "sort" returns the type of the position

position() returns which child this position is, relative to parent

path(), follow(l)
returns the path from root to this node as Integer list,
follow takes a path and returns the node reached by

invoking child for each number and parent if -1

termEquals(o) checks if the term associated with given position
equals the term of this position

substitute(t)
returns the position of the given term in the new

position structure created by replacing the associated
term of this position with the given one

Figure 6: Position Operations

13

leaves) of the term it is invoked on. This iterator can be used in enhanced
for loops as is described in Section 5.1.3.

A solution which works on both terms and positions is the application of
the visitor pattern, for which Jan Schäfer added support in Katja by gener-
ating visitor classes.

Last but not least all lists and list positions implement the Iterable

interface, which allows to use them in enhanced for loops, to iterate over all
items of these lists.

4.2.2 The Substitute Operation

The Katja interface is held purely functional. When working on Katja terms
and positions, it is impossible to actually change them, but copies will be
made and returned by operations. As this works perfectly with terms, it is
not that easy for positions.

Changing only one leaf in the corresponding term of a position does also
alter the whole context of the position. For terms the user could simply get
subterms of already constructed ones and put them together to new ones
using constructors.

To combine both concepts of easy navigation using positions and easy
construction of new terms, Katja offers the substitute operation, which allows
altering the context without giving up immutability. It constructs a new term
by replacing the term of the position in the superterm with the given term
and returns his position in the new context.

R

x y

S

y

pos A

pos B

substitute

Substituting with y on position A, replaces the associated subterm x in R
by y and returns the new position B of y in the new context S

Figure 7: Substitution of Positions

There are several applications for such an operation:

• Transformations of abstract syntax trees in more general or enriched
ones.

14

• Top-down construction of terms, which is most teddious without using
substitute.

• Normalizing parts of abstract syntax trees using the same syntax.

Taking the example specification of Section 3.2, we could replace all po-
sitions of 0− x by the unary expression −x using this Java program:

public void replaceBinaryMinus(ProgramAtProg prog) {
for(KatjaTermAtProg current = prog.postOrderStart();

current != null; current = current.postOrder()) {

if(!current.is(BinaryAtProg.sort) continue;
BinaryAtProg binary = (BinaryAtProg) current;

if(!binary.left().is(ValueAtProg.sort) ||
!binary.operator().term().equals("-")) continue;

ValueAtProg value = (ValueAtProg) binary.left();

if(value.term().val() != 0) continue;

current = current.substitute(Unary("-", binary.right()));
}

}

Note that most lines of such a method handle the recognition of a certain
pattern (binary minus, with 0 operand in this case) and can be avoided in
future revisions of Katja, by using pattern matching facilities. See Section
6.3 for more details.

4.3 Advanced Usage

To overcome certain limitations of positions at this point, some strategies
where successfully applied in applications. Most notable is a workaround for
higher-order positions, which are positions of other positions. Note that we
do not require these base positions to be term positions, i.e. they can already
be of higher level.

Consider an application which has to store proofs of program properties,
like the Jive system [2]. These proofs are trees where nodes represent proofs
for parts of the program, containing Hoare triples, consisting of two formulas
and a program part. The latter is most naturally modeled as position in the
abstract syntax tree of the input program.

When creating a position structure on a proof tree, we therefore would
get positions of program parts which are themselves positions on program

15

terms. These program term positions are also subterms of the proof tree and
therefore associated with positions in it.

If such a program fragment would, for instance, be an Assignment, it’s po-
sition could be of the sort AssignmentAtProgram. The higher-order position
needed would then be suffixed again, for example AssignmentAtProgramIn-

ProofTree.
The reader should realize that there will also be positions created for

all the subterm positions of an Assignment, so the proof position structure
completely descends into the program fragment. The part of the program po-
sition structure starting from the Assignment node downwards will therefore
be completely mirrored in the proof position structure.

These higher-order position sorts are extremely useful when working with
a proof. For a given Hoare triple position, the user can browse the program
fragment the triple is associated with, without loosing neither the program
context nor the proofs one. So you can, for instance, find out about the local
parameters of a method in which the assignment is situated, as well as the
role this Hoare triple plays in the greater context. All from having a single
reference to the Assignment in the context of a Program and the ProofTree.

A B C

Program
Term

Program
Position Structure

Proof Tree Term
Proof Tree

Position Structure

A is a term in Program, B the position of A in Program,
but also a term of Proof Tree, C the position of B in Proof Tree

Figure 8: Higher-order Position Structure

Figure 8 shows which part of this functionality can be mimiced with
the current Katja system. It is possible to link positions from the program
position structure (B) to the proof tree and use positions of this tree (C). The
important limitation on this point however is that these program positions
are leaves for the proof tree. It is therefore not yet possible to navigate

16

into subterms of the linked program fragment by using the proof position
structure, but one has to use the transition to the program position structure
to do so (see the parent of B as example).

This is done by the term operation, since the progam positions are con-
sidered terms of the proof. You thereby loose the proof context, which has
to be saved by the user. However, this procedure allows to store the program
fragments context while using proof positions, so one does not need to keep
track of the whole program.

5 Implementation Details

5.1 Java 5

The introduction of Java 5 had a great impact on Katja, for both the realiza-
tion of Katja and the generation of Java packages. Especially the latter opens
up much more possibilities for the user as far as functionality and usability
are concerned.

In the following we will go through the various new features introduced
to the Java programming language and discuss their impact on Katja, both
for term and position generation.

Note that the metadata annotation and the typesafe enum features are
left out, since they did not have any notable impact on the core of Katja for
now.

5.1.1 Generics

Generics allow the Java programmer to implement some kind of class scheme,
that is a general class, which can be instantiated to work with all kinds of
base types. Most common examples for the use of generics are container
classes, like lists or maps, which have the same functionality no matter what
is stores in them.

Generics are therefore also called type constructors, since they are no real
types, but are used to create new types, by applying them to base types.
They describe a whole family of types without writing them all down, which
opens up possibilities for the creation of term types by Katja, as well as for
dealing with infinite many types.

The first question one has to answer is: “Why do we keep generating
types for Katja sorts at all?” The question is valid, since one could just
write term type schemes, like KatjaList<T> or KatjaTuple<T1, . . . , Tn>,
which are than applied to other types.

However this is not a real option as there are several downsides:

17

• There are no variable argument type constructors to handle tuples of
arbitrary size, while keeping strongly typed component types.

• There is no possibility to introduce selectors to tuples, which are es-
sential to the use of Katja sorts in Java.

• There is no possibility to generate type specific code into the types,
like upcoming attribution information (see Section 6.2).

• Constructed types are purely static types, only used by the compiler,
and do not differ at runtime, what limits possibilities on working with
terms and positions.

Besides these ideas, there are several applications of generics in Katja. The
KatjaLeafPos constructor, for example, is used to create position types of
imported sorts, for which no position types are generated. It therefore takes
an arbitrary type, only limited to Object, and gives an subtype of Katja-

TermPos.
Another application arises when thinking of higher-order positions, which

are described in Section 6.1.

5.1.2 Covariant Return Types

Most important for Katja was the introduction of covariant return type sup-
port to Java. When implementing a subtype of a given class, this feature
allows to use a subtype of the orginial return type of a method, when over-
riding it.

This is of great importance to the Katja type hierarchy. Without Java
5, the KatjaTerm type did not have a subterm method, what made working
with terms most tedious, as one had to cast a term down to it’s actual type
to utilize such methods.

This situation was a result of the design descision to always get the best
possible typing information from a given method. Once declared, the subterm
method would always have the same return type, which has to be Object, in
all subtypes. This was not acceptable, since lists for instance always return
a reference of their item type. So methods were defined as deep as possible
in the type hierarchy, to be able to use the most specific return type, what
results in the method not being available when referencing an object with a
supertype.

With Java 5 we are now able to introduce methods in the most general
type possible and use the most specific return type at all levels of the type
hierarchy. Take the term method on KatjaTermPos as an example, which

18

returns Object in the original definition, as there can be positions above
all kind of types. Of course this method should already be introduced in
that type, since it enables us to get the term of any given position without
knowing it’s exact type.

KatjaLeafPos can refine the return type to it’s generic parameter L, since
the type KatjaLeafPos<L> is known to always be situated above a term of
type L. KatjaNodePos, however, specializes the return type to KatjaTerm,
since all KatjaNodes are designed to be positions of KatjaTerms. Katja-

TuplePos always returns a KatjaTuple, whereas KatjaListPos always re-
turns a general KatjaList<?>.

There are also limitations to the use of this new feature. As generic
types created with the same type constructor but different parameters are
uncomparable, methods which return generic types can not be specialized in
some situations.

In multiple inheritance situations one cannot resolve typing conflicts aris-
ing from uncomparable return types using a new covariant one. This situa-
tion is best explained with the term method again, when looking at a variant
hierarchy:

root D Pos

A = C | X
B = C | Y
C = Z
D (A, B, C)
...

// results in the Java classes (simplified):

interface APos {
A term() {}

}

interface BPos {
B term() {}

}

interface CPos extends APos, BPos {
C term() {}

}

So the type CPos would inherit the term operation with uncomparable return
types A and B, but would specialize both by using C, which in principal
resolves the conflict, but is not allowed in Java. However, this situation
would be perfectly valid in the Katja context.

19

So we are unable to correctly type the term operation on variants at the
moment and it is necessary to cast down the object of a variant reference to
it’s real type to get more information on it’s term type than Object.

5.1.3 Enhanced For Loop

Enhanced for loops allow to walk through any Iterable object using a new
for syntax. Therefore Katja supports putting any list term or list position
into an enhanced for loop to get all items. Using the example specification
from Section 3.2 and a given Program prog, an application looks like this:

for(Assignment a : prog) {
...
for(KatjaTerm term : a.iterate()) {

...
}
...

}

One can also use the result of the iterate method in enhanced for loops,
which iterates through all subterms (not only direct subterms) of a term.
This is also shown in the program fragment above.

5.1.4 Static Imports

Static imports allow to use static members of a namespace without prefixing
them with the namespace everytime. This feature allows the Katja user
to build up terms in a Java program in a very natural and concise way.
Katja offers the TermFactory which essentially wraps all term constructors,
so constructors can be used without the need to write new:

static import TermFactory.*;
...
Program prog = Program(

Assignment(
Identifier("a"),
Value(5)

),
Assignment(

Identifier("b"),
Binary("+", Identifier("a"), Value(7))

)
);

20

However, this feature does not only allow convenient term construction but
enables easy and transparent use of factories, which is important when it
comes to internal realization and performance of Katja.

Without public constructors we are able to do maximum term sharing,
by using the same object again and again for syntactically equal terms. This
does not only save memory, but allows to compare terms using their reference
instead of using hashes or recursive comparison of subterms.

5.1.5 Varargs

Varargs allow the specification of methods of variable parameter count. The
last parameter of a method can therefore be declared to be of variable length,
which results in this parameter being of the array type of the original pa-
rameter type, with respect to the implementation.

This allows, for instance, to implement the println method known from
the C programming language:

public int println(String text, Object... parameter) {
...
String next = parameter[i].toString();
...

}

Katja uses this feature to allow list constructors to take an arbitrary number
of items, which again greatly improves readablitiy of larger terms.

5.1.6 Autoboxing/Unboxing

Autoboxing implicitely converts a primitive type (like int) to it’s wrapper
class (like Integer), in cases where the context needs the latter, but the
former is given. Unboxing describes the inverse behavior.

Katja used to have primitive built-in types, which specifications could
use as base sorts. As it was also possible to import any Java type to a
specification, users were unsure which to use. By introducing the boxing
features to Katja, the Java types got much more convenient, since one does
not have to use a constructor to get a literal of these types and no selector
to get their value.

Using the example specification of Section 3.2 we can show the difference
on the Value type:

// without autoboxing/unboxing
Value a = Value(new Integer(5));
int b = a.val().intValue();

21

// using the builtin type KatjaInt
Value a = Value(new KatjaInt(5));
int b = a.val().intValue();

// using Integer with autoboxing/unboxing
value a = Value(5);
int b = a.val();

5.2 Type Information

Great efforts are made to always express the best type information one can
get when it comes to parameters and return types. However there are Java
limitations as well as theroetical problems which prevent expressing the best
possible information.

There are far too many places of interest to discuss them all in this context
and some are already mentioned in previous sections, so we will only look at
some additional ones of greater interest.

For some time, Katja only generated precise return types for operations,
when they were appropriate in all situations which could be present in a
specification. So it is, for example, in general not possible to type subterm,
parent, rsib or lsib any better then with Object, KatjaNodePos and
KatjaTermPos respectively.

However, this is not true for all sorts in any specification. For the example
specification in Section 3.2, the rsib as well as the lsib methods invoked
on an AssignmentAtProg always return an AssignmentAtProg.

Such situation specific type information will be available to the user in
future revisions of Katja.

5.3 Time and Space Complexity

The authors of Katja recommend using positions whenever possible, since
they are much more powerful and open up many possibilities. Though mi-
gration to positions when starting off with terms is not that hard, one almost
always ends up in situations where position operations are extremely useful.

To justify this advice we have to look at the downside of creating addi-
tional objects at runtime and using complex operations on positions. Many
operations use a path directly from or to the root position and their complex-
ity is therefore bounded by the height of the structure, which can be asumed
to be logarithmic in many applications. However, we will denote the number
of nodes in a structure with n and the height of a structre with m.

22

First of all we consider the position structure of one given term. From
the theoretical point of view it consists of as many positions as the term has
nodes, since any part of the term has a position within the superterm. This
results in positions taking about the same dimensions of space as the original
term (O(n)).

But this is not completely true for Katja, since one does not necessarily
need all positions from one structure. Therefore Katja is as lazy as possi-
ble, when it comes to the creation of position objects. Since one can only
create objects in roots of term trees by using the pos method, we leave the
downwards references of the position tree uninitialized.

This is quite a natural approach, since the downwards navigation infor-
mation is already present in the term structure and only needs to be copied
to the position structure for optimization reasons (see Figure 3 for an illus-
tration). So position objects are created on demand and will never be created
for parts which are not needed by the application.

All basic navigation operations on positions are therefore of constant time
and space complexity (O(1)), which is the creation of one object at the first
invocation only.

This is especially important for term transformations using positions. If
one explores a term using position operations and creates a new term with
some parts replaced by processed or normalized data, one cannot continue
exploration using the same position structure, since it does not match the
new context. This is no Katja limitation but a theoretical one.

One has to create a new position structure for the term instead and can
be sure that only those positions that were really needed for the previous
term got created and that they will be freed together with the superterm, as
soon as one does not reference it anymore.

In this context, the pre-, postOrder and substitute operations are of
special interest to us. Substitute handles the complex operation of creating
a new position structure above a modified term and additionally returns the
same positions with respect to the upper context, compared to the one we
invoked the operation on.

This is done in an on demand way too, i.e. only the positions on the path
from the new root to the replaced term are created from the new position
structure. This leaves us with linear time and space complexity (O(m)),
with respect to the height of the structure, depending in detail on the style
of application. The current state of the Katja project follows this approach.

However, this will most probably be reworked in a future revision to be
even more efficient. The general idea is the same as for lazy evaluation of
positions on terms described above, where the downward references were
present in form of the term trees, so it wasn’t necessary to initialize those in

23

advance.
Exactly the same can be done with the upward references in the new

created position structure, since the upper context of it is the same as for
the position structure substitute was invoked on. One can therefore create
those nodes on the path to the root the moment they are needed by looking
to the old position structure.

This makes substitute a constant time and space operation with respect
to positions. As the manipulated underlying term of the structure can be
created on demand as well, the complexity transfers flawlessly to the time
and space considerations of the term part. This enables extensive use of
positions to transform existing terms.

The reader should note, that this optimization does not guarantee con-
stant complexity for all position operations in general. The invocation of
root, for example, is constant in general, but will force Katja to create all
positions from the point of a substitution to the root, which we just discussed
to be lazy evaluated above. So it is recommended to use basic navigation op-
erations when rapidly changing position structures, but any operation when
working with a fixed one.

The pre- and postOrder methods nicely play together with substitute,
since one can always invoke those operations on the position of the actual
position structure, without breaking correct order. So it is, for instance,
possible to normalize an abstract syntax tree by walking through it in post
order and substitute terms on the fly with new ones.

Those higher level navigation operations need constant to logarithmic
time and therefore logarithmic space on new position structures in the worst
case. So the time and space complexity of a total conversion of an abstract
syntax tree is directly bounded by the number of nodes in the original term
tree times the complexity of the traversal order and therefore O(nm). This
complexity even holds for the current implementation, since substitute is
linear in m too.

6 Future Work

6.1 Higher-Order Positions

In the previous sections we came across some unusual, but interesting ideas,
which we will investigate now in more detail.

In Section 4.3 we talked about higher-order positions, which arise nat-
urally in common applications. Though it is not a simple thing to use for
unexperienced users, higher-order positions are a concise way to deal with

24

and describe complex data.
To introduce them to Katja several questions have to be answered:

• What is their semantical model?

• Which changes have to be made to specifications?

• Are all levels of higher-order position sorts free to use (within specifi-
cations and/or in Java source code), or do they have to be specified?

• Is there a need to refer to sorts of a precise level or is it enough for
specifications to deal with normal and higher sorts?

• How can they be used from within Java?

Most questions can not be answered for themselves, but they point to bigger
design decisions.

A first approach was already mentioned in Section 4.3. The idea is to
consider positions as terms and therefore let them implement their own term
type interface.

This allows recursive type constructors to be used to create arbitrary
high position levels. The first order positions use the terms as basetypes, all
others use positions types created in this way. This idea carries to Java 5
flawlessly. It would be possible to create one position constructor for each
type, that takes the base and context as parameters.

This idea solves most implementation problems and questions as well as
the theoretical problem to supply infinite many types for arbitrary position
levels. However, several problems remain.

What does equality mean on positions? It is now possible to pass po-
sitions to methods, where terms are specified as parameters, since they are
now terms too. The equality implementation should take care for such im-
plementations and check for term equality. All operations inherited from
KatjaTerm should work on positions as if they were invoked on their base
term.

This conflicts with the idea that positions of different levels should be
separable, as they have different degrees of additional information. So this
idea allows to use positions as terms, which is perfectly valid in higher-order
applications as seen in the example Section 4.3, but has inherent theoretical
problems in the treatment of positions.

Another idea is to keep positions being subtypes of KatjaTerm but not
subtype of the term type. Instead an interface is defined, combining both
the term and the position type, which implements KatjaTerm and is used as
parameter in the position type constructor (see Figure 9).

25

KatjaTuple KatjaTuplePos

MyTuple

MyTupleAtRoot
<B extends MyTuple>

KatjaTuple KatjaTuplePos

MyTuple

MyTupleAtRoot
<B extends MyTuple>MyTupleTerm

a) b)

Figure 9: Implementation Ideas for Higher-Order Positions

This allows to create unlimited order positions and makes positions be
terms, but does not have the downside of passing positions to methods which
expect terms. As a matter of fact none of the position or term types are
comparable, as long as one does not use wildcards within a type constructor,
so it is possible to express the exact type needed in a method.

At a first glance this approach solves most problems and has many ad-
vantages, with respect to several views on the system, like implementation,
usability and theoretical background. However, it will be necessary to eval-
uate the approach in more detail in the future, before it can be added to
Katja.

6.2 Attribution

Katja was designed to be an attribution system, as is reflected in its name,
which stands for “Kaiserslautern Attribution System in Java”. At present
state it does not provide special facilities to store or compute values of terms.

However, positions did a great step towards term attribution. Positions
give syntactically equal terms an identity by differentiating them with respect
to their occurrence. All these identities can be assigned values by the use of
positions.

A design pattern was successfully applied within Katja itself, to compute
and store attributes for an abstract syntax tree. The computation is done by
static methods, which are collected in one class per root used as namespace.

If the calculation is time consuming or demands many calls of other at-
tributes, the result is stored in tables, which are also declared static in the
same class. The immutability of the parameters and the functional behaviour
of the attributes themselves justify this procedure.

So there are three additional parts in the context of attribution, which
can be supported by future extensions of Katja:

26

1. The calculation of attributes.

2. The storage of complex attributes to increase performance.

3. A convenient interface to integrate attributes into Java.

For the first part, the user has to write Java code for now, but Section 6.3
describes another approach which will be implemented in the future.

The storage, mentioned second, can be acomplished either by generating
tables for attributes named in the specification or generating class attributes
to decentralize the data to the places they are associated with. This point
will be transparent to the user and has to be evaluated in more detail, with
respect to time and space complexity.

The third part, however, contributes to the usability of attributes for
the user and therefore gets the main focus and demands consideration of all
possible design decisions. It is, for example, possible to generate methods into
position types, that correspond to attributes. The idea allows convenient use
of attributes but does not consider, for instance, the addition of attributes
by specifications which import the one where the position types were created
in the first place.

So it will be necessary to find reasonable ways of implementation and
usage, which are compliant with design decsions made for specification fea-
tures.

6.3 Pattern Matching

A major part of the work with abstract syntax trees is the recognition of
structural patterns within terms.

The flexibilty and expressiveness gained by variants, which is needed in
adequate specifications, results in the creation of arbitrary terms at runtime,
which differ in two dimensions:

• Structurally by the use of variant sorts in tuples or lists.

• By value in leaves.

As the example code in Section 4.2.2 shows, the recognition of patterns within
Java is as cumbersome as simple and should be expressed in a more concise
manner. The definition of attributes will also rely mainly on pattern recog-
nition, so it is valid to introduce some kind of pattern matching facility to
Katja.

A first approach is the definition of a small functional language, which
can be used to define attributes and functions within the specification file.

27

Katja will then translate these to Java methods, which can be accessed from
the position interface.

Such a language would allow pattern matching similar to the one imple-
mented in the MAX system [3]. As Katja is already an appplication of itself,
some parts can be generated by bootstrapping. With the introduction of a
small functional language, we will be able to generate the Katja system from
a concise specification file to at least 95%.

However, it will also be of interest to introduce pattern matching to the
Java interface generated by Katja. This can, for instance, be done by allowing
the user to construct pattern objects, which represent structural as well as
concrete parts of a pattern, in the same way “normal” terms a constructed.
By comparing the pattern object with a term or position in question, all
open bindings in the pattern object will be set to the matched parts.

For the example code in Section 4.2.2, it would therefore be sufficient to
define the pattern once and compare it to all positions of a program. The
new code fragment might look like this:

public void replaceBinaryMinus(ProgramAtProg prog) {
ExpressionPattern right = AnyExpr();
BinaryPattern pattern = Binary("-", Value(0), right);

for(KatjaTermAtProg current = prog.postOrderStart();
current != null; current = current.postOrder()) {

If(pattern.matches(current))
current = current.substitute(Unary("-", right.term()));

}
}

The AnyExpr constructor is here supposed to deliver a match object, which
is equal to all possible Expressions and keeps a reference to the matching
Expression when compared. The user therefore creates bindings to parts of
the pattern which can be used after a successfull match.

The combination of the Java patterns and a functional language for spec-
ification files will be sufficient to express most applications completely in a
reasonable, abstract and convenient way.

28

References

[1] Jean-Marie Gaillourdet. Generation of term position algebras for Is-
abelle/HOL from order-sorted specifications using a modular generation
framework. Internal Report, mail to: jmg@informatik.uni-kl.de, March
2005.

[2] Jörg Meyer and Arnd Poetzsch-Heffter. An architecture for interactive
program provers. In S. Graf and M. Schwartzbach, editors, TACAS00,
Tools and Algorithms for the Construction and Analysis of Systems, vol-
ume 1785 of Lecture Notes in Computer Science, pages 63–77. Springer-
Verlag, 2000.

[3] Arnd Poetzsch-Heffter. Prototyping realistic programming languages
based on formal specifications. Acta Informatica, 34:737–772, 1997.

[4] Jan Schäfer. Katja: Generating order-sorted data types in Java. Internal
Report, mail to: j schaef@informatik.uni-kl.de, January 2004.

29

