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Abstract. Selection of new projects is one of the major decision making ac-

tivities in any company. Given a set of potential projects to invest, a subset

which matches the company’s strategy and internal resources best has to be

selected. In this paper, we propose a multicriteria model for portfolio selec-

tion of projects, where we take into consideration that each of the potential

projects has several - usually conflicting - values. We propose a method for

computing a small set of efficient (Pareto-optimal) project portfolios which

serves as a representation of all efficient portfolios. This method is realized

in the software tool ProSel (project selection) which additionally assists the

decision maker in choosing the final project portfolio. Our approach was

tested in a case study for KEIPER, an international company which devel-

ops and manufactures vehicle seating systems.
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1 Introduction

Global companies usually have to select from a large set of new projects

according to various evaluation criteria. This problem is widely known as

project portfolio selection (PPS). Financial objectives like costs, profit, re-

turn on investment, etc. are part of this evaluation. Another group of criteria

includes among others market shares, customer satisfaction, or developing

strategic partnerships. Current trends like the international expansion of

business activities, increasing number and variations of products, global

competition, cost consciousness etc. have made the project prioritization

and resource allocation more difficult and more crucial than ever.

Related problems appear in the literature among others under the terms

”R&D project selection”, ”Project portfolio selection”, ”Project prioriti-

zation”, or ”Portfolio management for new products”. The review in [3]

summarizes the recent approaches for managing the portfolio of new prod-

ucts in 7 categories namely financial or economic models, scoring models

and checklists, probabilistic financial models, behavioral approaches, math-

ematical optimization procedures, decision support systems, and mapping

approaches. Despite theoretical advances in PPS, new approaches are only

slowly deployed in practice (cf. [3], [12]) According to [12] many organiza-

tions utilize a variant of the following five steps for project prioritization

and resource allocation.

1. Listing of potential projects.

2. Calculation of the benefit of each of the potential projects.

3. Ranking of the potential projects from the most beneficial to the least

beneficial.

4. Estimation of costs to the potential project.

5. Choosing the most beneficial projects top-down until the total cost

exceeds the budget.

The major drawback in this approach is that a ranking of the potential

projects is in general not possible, since various conflicting objectives need

to be considered. We therefore propose a multicriteria model and split the

”benefit” into two apparently natural components: financial (e.g. sales, as-

sets, etc.) and non-financial benefits, also called political benefits in this
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article (e.g. development of new markets or job creation). Political and

financial benefits are typically non-commensurable and in conflict, but nev-

ertheless they are to be maximized in the sense of Pareto optimality subject

to budget restrictions. We thus are interested in project portfolios, for which

no other portfolio has a better evaluation with respect to both political and

financial objectives. The specific model we are using for tackling portfolio

selection is the bicriteria binary multidimensional knapsack problem. We

refer to [7] and [4] or [11] for in-depth treatments on the knapsack and the

general multicriteria optimization problem, respectively.

Multicriteria optimization is used in many applications as the solution

approach (see, e.g., [6], [8], or [15]). The primary goal in multicriteria opti-

mization is to seek efficient (Pareto-optimal) solutions and/or nondominated

points. Since it is usually not advisable (or even possible) to compute all

of them we restrict ourselves to find a representative set of these solutions

which serves as a preselection of alternatives for the decision maker. For a

detailed discussion of various methods for computing representations we re-

fer to [13]. Among the representing points, the decision maker then chooses

a finally preferred solution.

In order to measure the quality of the representation we apply the box

algorithm [5]. We implement this algorithm as the core of our decision sup-

port system (DSS) ProSel for project selection. ProSel combines the tasks

of collecting and processing data, computing a high quality representation,

and presenting alternatives with appropriate tools.

Our bicriteria approach and the DSS ProSel were originally designed for

the acquisition prioritization in KEIPER. Acquisition prioritization is the

term used in KEIPER to describe the activities of selecting a portfolio of

new projects. KEIPER is a financially and legally independent company

of the internationally active Keiper Recaro Group which includes also RE-

CARO and RECARO Aircraft Seating. Business activities of KEIPER are

concentrated on the development and manufacturing of metal components

and structures for automobile seats as well as the development of complete

seats. Following the globalization of the automobile industry KEIPER works

with well-known system suppliers and automobile manufacturers all over the

world. Currently the company operates at 23 (13 production facilities) lo-

cations in 11 countries.

The rest of this paper is organized as follows. In Section 2 the acquisition
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prioritization process in KEIPER is briefly explained using company specific

terminology. Moreover the mathematical formulation is introduced. Section

3 includes the solution methodology with the used notation and a summary

of the box algorithm. Section 4 contains information about the implementa-

tion and the numerical experiments. Conclusions and contribution of ProSel

to the company are discussed in Section 5.

2 Acquisition prioritization: Problem description

and mathematical modeling

Acquisition prioritization consists in selecting a best mix from a list of new

projects in accordance with the company’s strategy and internal resources.

New projects are evaluated with respect to costs and benefits. The total cost

of a project portfolio is subject to some budget. The benefit of new projects

is measured and evaluated by several different criteria. From the set of new

projects, a subset has to be found which complies with the budget constraints

and which is most beneficial for the company. A detailed information of

acquisition prioritization in KEIPER can be found in [9] and [14].

The time period between the acquisition of a new project and the deliv-

ery of the last product to the customer is referred to as the project running

time. Each new project has a specific running time. Projects are associated

with one or more KEIPER products (a complete seat structure or a seat

component) and generate acquisition, investment, and development costs in

various completion stages of their running times. Acquisition costs com-

prise among others the costs of submitting an order or building a concept.

Tooling costs and costs resulting from the procurement of test equipment

and raw materials are subsumed under the category investment costs. De-

velopment costs include costs arising from activities like construction, pro-

totyping, testing, and developing. Production costs occur during the series

production and involved in the model in the process of evaluating the finan-

cial value of a project. Acquisition costs, investment costs, and development

costs are subject to acquisition budget, investment budget, and development

budget, respectively. Any selected portfolio of projects has to comply with

the budget constraints that the overall costs must not exceed the available

budgets.

In this paper we emphasize the importance of the second issue that

should be addressed in the process of acquisition prioritization - the ful-
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fillment of the targets which are derived from the company’s strategical

goals. This issue is realized as follows. For each criterion the decision maker

assigns integer values to the new projects. This value reflects the relative

importance of the project compared to others under this particular criterion.

Then, we group the evaluation criteria under financial and political criteria.

Financial criteria are the indicators of the rentability of a project which

can be expressed in monetary terms. Political criteria like market share,

customer satisfaction, etc. are usually more difficult to measure. Obviously,

the process of generating financial and political performance measures is

company specific and due to confidentiality reasons we cannot disclose the

specific approach used in our KEIPER case study.

In order to generate an appropriate operations research model we denote

with P = {1, . . . , n} the set of new projects and with T the planning horizon.

The Planning horizon T is the total number of the time periods that the

decision maker takes into consideration when evaluating the new projects.

The binary decision variables xi ∈ {0, 1}, i = 1, . . . , n, are used to model

if project i is chosen (xi = 1) or not (xi = 0). Then the acquisition pri-

oritization problem can be formulated as the following discrete bicriteria

optimization problem.

max
∑

i∈P

fixi (2.1)

max
∑

i∈P

pixi (2.2)

s.t.
∑

i∈P

ACitxi ≤ ABt ∀t = 1, . . . , T (2.3)

∑

i∈P

ICitxi ≤ IBt ∀t = 1, . . . , T (2.4)

∑

i∈P

DCitxi ≤ DBt ∀t = 1, . . . , T (2.5)

xi = xj ∀i, j ∈ Dl ∀l = 1, . . . , k (2.6)

xi ∈ {0, 1} ∀i = 1, . . . , n (2.7)

Here, ACit, ICit, and DCit denote the acquisition, investment, and de-

velopment costs of project i in period t. The corresponding budgets are

denoted by ABt, IBt, and DBt, respectively. Constraints 2.3, 2.4, and 2.5

thus express the budget limitations. Several new projects may belong to a
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particular subset Dl ⊆ {1, . . . , n} where l = 1, . . . , k. In this case either all

or none of the projects in this subset are chosen. Constraints 2.6 realize

these dependencies. Two linear objective functions corresponding to the fi-

nancial and political benefits, respectively, are to be optimized. Each of the

two objective functions is a weighted sum aggregation of the criteria used by

the company to evaluate the financial and political benefit of new projects.

That means fi =
∑

j∈If
λjfij and pi =

∑

j∈Ip
λjpij , where If and Ip denote

the index sets of financial and political criteria, respectively, and fij and

pij denote the values assigned by the company to project i for financial and

political criteria j, respectively.

3 Solution methodology

The operations research formulation of acquisition prioritization is a special

case of the more general discrete bicriteria optimization problem

max f(x) =

(

f1(x)

f2(x)

)

s.t. x ∈ X

(DBOP )

where X is the discrete feasible set and f : X → Z
2 is a vector-valued

objective function. We denote by Y := f(X) the set of attainable outcomes.

The meaning of maximizing the vector-valued objective function needs

to be specified since there is no canonical ordering defined in Z
2. We use

the optimality concept based on the componentwise order, also known as

Pareto optimality, with the following notation. Let y1, y2 ∈ Z
2. Then

y1 ≥ y2 :⇔ y1
i ≥ y2

i ∀i = 1, 2 and y1 6= y2

y1 > y2 :⇔ y1
i > y2

i ∀i = 1, 2

A decision vector x1 ∈ X is (weakly) efficient if there does not exist

another decision vector x2 such that f(x2) ≥ f(x1) (f(x2) > f(x1)). An

objective vector y = f(x) ∈ Z
2 is (weakly) nondominated if x is (weakly)

efficient. The efficient set XE and the weakly efficient set XwE are defined

as

XE := {x1 ∈ X : there exists no x2 ∈ X : f(x2) ≥ f(x1)}

XwE := {x1 ∈ X : there exists no x2 ∈ X : f(x2) > f(x1)}.

6



The images YN := f(XE) and YwN := f(XwE) of these sets are the non-

dominated set and the weakly nondominated set, respectively. Let yI
q :=

max{fq(x) : x ∈ X} and let yN
q := min{fq(x) : x ∈ XE} for q = 1, 2. The

ideal point is yI := (yI
1 , y

I
2)

T and the nadir point is yN := (yN
1 , yN

2 )T .

In our model for project portfolio selection each efficient solution corre-

sponds to an optimal project portfolio in the Pareto sense. This means given

an efficient project portfolio, there does not exist any other portfolio which

has a better evaluation with respect to political and financial objectives.

More precisely, when comparing two efficient portfolios of new projects, the

Pareto optimality concept implies that the project portfolio being better

with respect to the financial criterion must be worse in the political crite-

rion. This tradeoff characterizes the nondominated set.

The decision maker is not interested in any dominated project portfo-

lio, since there exists another portfolio which is better with respect to both

groups of criteria. On the other hand, the computation of all nondomi-

nated points is, in general, unrealistic for several reasons. The number of

nondominated points is usually very large. Hence its computation is not

at all possible, or - even if it is available - it is not helpful for the decision

maker due to an abundance of information which cannot be put to use in a

reasonable way.

We therefore apply in our approach the box method introduced in [5].

This method avoids information overkill and can be controlled in such a

way that it computes the complete set of nondominated points (if this set

is small) or selects a representative system of the nondominated set with

certain quality guarantees. This representation is understood as a quality-

proved substitute of the complete nondominated set. Loosely speaking these

quality features guarantee that

• each alternative project portfolio is optimal and cannot be improved

in both criteria,

• portfolios yielding similar financial and political results are not gener-

ated since they do not correspond to reasonable alternatives, and

• no reasonably different alternative project portfolio is missed in the

representation.
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Figure 1: Stages of the box algorithm

In order to apply the box algorithm the following two mathematical

programs are solved:

lex maxx∈X

(

f1(x)

f2(x)

)

and lex maxx∈X

(

f2(x)

f1(x)

)

In the first program we determine the point with maximal f2-value

among all points which are optimal with respect to f1. In the second pro-

gram the roles of f1 and f2 are changed. These two lexicographic optimal

solutions determine the ideal and the nadir point and a rectangle - the

starting box, denoted by R(y1, y2) with y1, y2 ∈ Z
2 (see Figure 1(a)). The

starting box obviously contains the complete nondominated set.

During the algorithm, rectangular parts of this starting box are itera-

tively discarded since they do not contain any nondominated point. These

rectangles are defined by points which are found by solving the following

lexicographic variant Pε of the well-known ε-constraint method (see [2] and

[5])
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lex max

(

f2(x)

f1(x)

)

s.t. f1(x) ≥ ε

x ∈ X

(Pε)

with adequate values for ε. Optimal solutions of Pε are efficient. In each

stage of the algorithm, a collection of rectangles or boxes containing the

nondominated set is maintained. The upper left corner point of each of the

rectangles is a representing point and the collection of these points builds

the representing system. The box algorithm terminates if a given accuracy

∆ > 0 is achieved. We measure this accuracy by the area of the largest of

the remaining boxes, i.e., if a(R(y1, y2)) := (y2
1 − y1

1) · (y
1
2 − y2

2) ≤ ∆ for all

rectangles R(y1, y2). Alternatively, the algorithm might stop after a given

number of representing points has been found.

In the following, the refinement of a rectangle is described in more detail.

Consider a box with area a(R(y1, y2)) > ∆. Following the general idea of the

box algorithm outlined above the representation has to be locally updated

in R(y1, y2). Consider Pε with ε :=
⌈

y1

1
+y2

1

2

⌉

. Let x∗ ∈ X be optimal for Pε

and let z∗ := f(x∗) := (f1(x
∗), f2(x

∗)). Using the point z∗ and ε, we divide

R(y1, y2) into five rectangles as visualized in Figure 1(b).

The following results can be established:

• The point z∗ is nondominated.

• R2, R3, and R4 can be eliminated, since (R2 ∪ R3) ∩ YN ⊆ {z∗}, and

R4 ∩ YN ⊆ {z∗}.

• R1 and R5 contain all nondominated points in R(y1, y2), i.e., YN ∩

R(y1, y2) ⊆ R1 ∪ R5 (see Figure 1(c)).

• The update has locally improved the representation by a factor of 2,

i.e., a(R1) + a(R5) ≤
1

2
a(R(y1, y2)).

In each iteration of the algorithm, the box having the largest area is

refined as described. Thus, the representation is updated where it is needed

most. The algorithm is depicted in Figure 1. The rectangles shown in Figure

1(d) are used to measure and control the quality of the representation. For a

more detailed exposition of the box algorithm and related theoretical results,

we refer to [5].
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4 ProSel: A software tool for project selection

For the implementation in our case study at KEIPER we developed an

integrated decision support system called ProSel which allows

• collection and preparation of internal and external data,

• realization of the box algorithm, and

• presentation of optimal project portfolios and decision support.

The logical structure of ProSel is explained in more detail in the following

and illustrated in Figure 2.

Figure 2: ProSel process flow in the case study KEIPER

The input data for ProSel - external and internal information as well

as the parameters specified by the decision maker - are stored in various

spreadsheets.

Visual Basic programs facilitate the entry of data and automate the tasks

of combining information, performing initial computations, and generating

the input file for the box algorithm.
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The core of ProSel is the realization of the box algorithm. It is imple-

mented as a C++ program. The main algorithm is written in C++ while all

occurring subproblems are solved using ILOG CPLEX [1]. An all-purpose

solver like CPLEX is preferred to a specialized solution algorithm for rea-

sons of robustness and flexibility. The C++ program reads the data of the

operations research model from the input file. After calculating the lexi-

cographic maxima, the program evaluates the area of the initial box. The

update procedure is executed by solving Pε problems until the stopping cri-

terion is fulfilled and the representation with the correct quality is found.

Objective function values and solutions are written in an output file.

Using the output file, the objective function values of the representing

points are scaled and stored in a database featured with different search

and viewing options. Each representing point is associated with an efficient

project portfolio and thus corresponds to an acquisition alternative. Differ-

ent alternatives can be compared with each other with respect to financial

and political values in a tradeoff chart. In Figure 3 an example of a repre-

sentation is illustrated in such a tradeoff chart. For a closer investigation

several tools as shown in Figure 4 provide comprehensive information about

specific alternatives for the decision maker. The operations of transferring

data, searching the representing set, selecting different alternatives, and cre-

ating charts are realized by Visual Basic programs. Spreadsheets are used

for data storage.

ProSel has been tested with KEIPER data and performed well. For ob-

vious confidentiality reasons we cannot report on these results, but describe

instead in the following on test data. These data were designed based on

our practical experience to provide worst-case benchmarks with respect to

computation times resulting from real-world. We considered the average

number of representing points and the average CPU times as measures of

performance. We used the model formulation given in Section 2 with the as-

sumption that there exists only independent projects. It should be pointed

out that inclusion of dependent projects reduces the number of variables

and facilitates the problem. Consequently, the bicriteria binary multidi-

mensional knapsack problem we have tested can be viewed as a worst-case

scenario with respect to dependency. Besides dropping dependency con-

straints, we employed additional means to generate more complex test data
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Figure 3: Tradeoff chart

Figure 4: Presentation of an alternative
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than the expected real-world data. The generated cost matrix is dense since

it has all positive entries. In reality, this matrix contains many zeros since,

for instance, acquisition costs do only occur at the beginning of the projects

and not in later phases such as production. The visual basic function rnd()

which generates uniformly distributed random numbers in the range [0, 100]

is used for generating objective function and constraint coefficients. We de-

termined the right hand sides of the constraints by calculating the sum of the

constraint coefficients for each constraint and then multiplying these values

by a constant. This constant is chosen as 0.5 since the resulting instances

can be expected to be particularly difficult to solve (cf. [10]). The accuracy

∆ is chosen as 0.1% of the area of the initial rectangle. Computations with

the C++ program were executed on a work station equipped with a Dual

Intel Xeon 3.20GHz running under Linux Kernel 2.6.5 SMP.

The purpose of our numerical study is to evaluate the performance of

our program under conditions which are worse than those expected from

real data. Furthermore, we report the size of the representation under vary-

ing data. According to historical experience in KEIPER, the number of

variables averages 50, the planning horizon does not exceed 16 years, the

basic time period is chosen to be one year, and the number of constraints

is consequently around 48. In the following, we either vary the number of

variables or the number of constraints while keeping the other value fixed.

For each setup, we generated 100 instances. The numbers we report are

averages which explains non-integral numbers of representing points.

We started our analysis by setting the number of constraints to 48 and

varying the number of variables between 25 and 75 with steps of 5. The

average number of representing points and the average CPU times are given

in Table 1 and plotted in Figures 5 and 6.

The average number of representing points roughly doubles as the num-

ber of variables triples from 25 to 75. Increasing the number of new projects

leads to a modest increase in the number of alternative project portfolios.

In contrast, the CPU times increase rapidly which is due to the numerical

difficulty of the underlying knapsack problem. Note, however, that a CPU

time of less than 10 minutes for a large problem is still acceptable since the

problem does not have to be solved online. Nevertheless, having an accept-

able average CPU time is significant since the ProSel might later allow to

simulate and analyze various scenarios.
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Variables Constraints Average Average number of
CPU time representing points

25 48 6.8 17.4

30 48 10.2 18.8

35 48 20.5 22.6

40 48 27.1 23.4

45 48 45.4 28.2

50 48 60.4 28.3

55 48 131.4 31.9

60 48 190.8 30.6

65 48 313.6 34.3

70 48 297.8 33.3

75 48 547.9 35.7

Table 1: Varying the number of variables while keeping the number of con-
straints fixed.

In the second part of our testing, we fix the number of variables to 50

and vary the number of constraints from 24, 48, 96 to 192. Recall that on

a yearly planning basis we get 48 constraints for a planning horizon of 16

years since we have 3 different constraints per year. Changing the number of

constraints to 24, 96, and 192 allows the simulation of a biennial, a biannual,

and a quarterly planning basis, respectively. The results can be viewed in

Table 2 and Figures 7 and 8.

Variables Constraints Average number of Average
representing points CPU time

50 24 28.6 30.6

50 48 28.9 77.2

50 96 29.2 164.5

50 192 29.5 > 511.4

Table 2: Varying the number of constraints while keeping the number of
variables fixed.

Interestingly, increasing the number of constraints has only a very small

effect on the average number of representing points. However, the average

CPU time increases tremendously with the number of constraints. In a

few instances with 192 constraints the CPU time exceeded an hour. These

instances were not considered in the average CPU time calculation of the
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setup with 192 constraints.

5 Conclusion

Portfolio management of new projects is a strategically important process

in any large company since the decisions will effect all subsequent activi-

ties like procurement, development, and production. ProSel supports this

process with a systematical and flexible approach. The data preparation

process which ends with the creation of the input file is standardized and

automated. On the other hand flexibility is preserved since it is possible to

change parameters like weights of the criteria in order to simulate different

scenarios. The solution method finds a limited amount of Pareto-optimal

project portfolios in a representative system assuring the quality aspects

explained in [5]. The decision maker can search in the resulting data base of

representative solutions on-line to identify his ultimate acquisition decision.

ProSel has been tested in the KEIPER case study - nevertheless, the

general approach is applicable to any project portfolio selection problem in

which the evaluation criteria can be aggregated into two conflicting objec-

tives - and in randomly generated benchmark problems. It has proven its

usefulness in simulating, comparing and analyzing different scenarios with

visualization and graphics. In this way decision makers can strengthen their

decision arguments with quantitative data.
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