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Chapter 1

Introduction and outline.

Non–Newtonian fluids abound in many aspects of life. They appear in nature, where
most of body fluids like blood and mucus are non-Newtonian ones. Also, many food
products like, for example, mayonnaise, ketchup, egg white, honey, cream cheese,
molten chocolate belong to such class of fluids. Paints, that must be easily spread
under the action of stress, but should not flow spontantenously once applied to the
surface, as well as printer inks, lipstick are further examples. Another huge area of
appearance of non–Newtonian fluids is plastic industry. The examples are molten
plastics and other man–made materials formed to produce everyday wealth like tex-
tiles, plastic bags, plastic toys, through the processes like extrusion, moulding, spin-
ning, for example. Often non–Newtonian materials are created by addition of various
polymers. The detergent industry adds polymers to shampoos, gels, liquid cleaning
to improve their rheological properties. Non–Newtonian fluids are also used in motor
industry. Multi–grade oils have polymer additives that change the viscosity proper-
ties under extremes of pressure and temperature. Precise and low cost prediction of
properties of viscoelastic fluids, mentioned above, can help to reduce the overall pro-
duction cost of goods made of those fluids. One of the means to achieve this goal is
to use simulation tools that involves mathematical (numerical) methods. Therefore,
in this thesis we focus on numerical simulations of viscoelastic fluids. As a possible
area of applicability of the work presented here one can think, for example, of the
plastic molding.

Mathematically, the set of the equations describing incompressible fluids is ex-
pressed by continuity and momentum equations as

∇ · v = 0, D(ρv)
Dt

= −∇p +∇ · τ ,

where and D
Dt

denotes the material derivative, ∇· and ∇ denote divergence and gra-
dient, respectively. v stands for velocity, ρ for density, p denotes pressure and τ

denotes stress tensor. Clearly, if thermal flows are modeled, the equation of conser-
vation of the energy has to be added to the above system. However, in this thesis we
consider incompressible and isothermal viscoelastic fluids. To close the above system
of equations, the stress tensor has to be completed by a constitutive equation.
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Introduction and outline.

1.1 Constitutive equations for Non–Newtonian flu-

ids.

Viscoelastic fluids are examples of a class of fluids called non–Newtonian. These are
the fluids, for which, contrary to the Newtonian ones, a linear relation between the
stress tensor (τ ) and the rate–of–deformation tensor (γ) do not hold. Therefore, they
require more complicated constitutive relations to close the system of equations, that
has to be solved. Among a huge number of models one can distinguish between three
main classes of fluids involving an algebraic, a differential or an integral constitutive
equation.

Generalized Newtonian fluids. The first class express stress tensor through some
algebraic formula postulated a priori. Such models fit an experimental measurements
for various data like shear–rate (γ̇), extensional–rate (ǫ̇), pressure (p), etc (see [25,
32]). All those variables can influence viscosity (η) of non–Newtonian fluids, what
leads further to different flow patterns, stress distributions, pressure drops comparing
with a Newtonian ones. These kind of models are referred to as the generalized
Newtonian fluids, and stress tensor in this case can be written in a general form as

τ = f(η(γ̇, ǫ̇, p, ...), γ).

Here, f denotes model dependent algebraic relation. Despite a clear drawback of not
capturing the elastic effects of viscoelastic fluids, such generalized Newtonian models
are still widely used in industrial applications, and therefore are also considered in
this thesis.

Viscoelastic fluids: differential constitutive equations. The second class of consti-
tutive relations, that include elasticity effects, consist of differential models. They
can be written in a general form as

Dτ
Dt

= f(∇v, γ),

where f is model dependent tensor function. These are the most common models used
nowadays in simulations of viscoelastic fluids. Among many, one can list the most
often taking a stand models like Oldroyd–type, FENE–type, Phan–Thien Tanner,
Giesekus (see [1, 2, 3, 17, 32, 38]). For an isothermal problem, the set of highly coupled
differential equations, consisting of the continuity equation, the momentum equations
and the constitutive equation, have to be solved. A variety of numerical approaches
have been used to solve viscoelastic flow problems, like finite difference methods, finite
element methods, spectral methods and finite volume methods. Often the calculations
were restricted to stationary creeping flows. In the case of the axisymmetric abrupt 4:1
contraction flows, simulations have showed growth of the vortices, although for higher
Weissenberg numbers than observed in experiments. Weissenberg number We is
defined by the ratio of a characteristic length L in the specific flow and a characteristic
velocity U multiplied by a characteristic relaxation time τrelax, i.e. We = τrelaxU

L
.

Here, the relaxation time τrelax defines how much past deformations influence the
stress. For purely elastic materials τrelax = ∞, i.e. they never forget their initial
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Introduction and outline.

state, and for purely viscous fluids τrelax = 0. The viscoelastic materials are somehow
in between, for which holds 0 < τrelax <∞. Over years, the researchers had to face the
problem of performing stable calculations of viscoelastic fluids, modeled by differential
constitutive equations, for high Weissenberg number flows. Early attempts to solve
viscoelastic fluids problems failed to converge beyond We = O(10−1), which is merely
a perturbation of the Newtonian case. Over decades, this problem has been partially
resolved. Now, there exist many algorithms being able to perform stable simulations
up to We = O(10) for various domains. One can argue, however, that viscoelastic
flow computations are not yet robust and reliable procedure as for example classical
Newtonian flow problems, and further improvements are still needed.

Viscoelastic fluids: integral constitutive equations. The last and final class of
models discussed here consist of integral constitutive equations, which take a general
form as

τ =
∫ t

−∞
µ(t, t′)ft(t

′),

where µ(t, t′) is the memory function and ft(t
′) is a model dependent nonlinear strain

measure relative to the current time t. These are the most physically adequate mod-
els, since they take the full history of the deformations into account, not only the one
which can be determined from current stress. The integral models express the mem-
ory of polymeric liquids, namely that the polymer stress carried by a fluid particle
at current time of simulations is a function of the deformation history experienced at
past times by this particle following its trajectory. The particle paths along which one
has to compute the memory integral are not known a priori. Therefore, the problem
is highly nonlinear, even under creeping flow conditions. Another challenge here is
that the Lagrangian formulation of the constitutive model do not involve the Eulerian
velocity field in an explicit manner. This can be resolved by Backward Lagrangian
Particle Method (BLPM), for example. This method decouples the Lagrangian cal-
culations of the stress tensor by recalculating the (upstream) particle paths at each
time step of the simulations, with the Eulerian calculations of conservation of the
mass and the momentum equations. In BLPM the stress tensor is calculated along
particle paths. This method, however, has a drawback of being highly time and mem-
ory consuming, since the particle paths have to be calculated for each Eulerian grid
point and each time step of simulations. Moreover, in most of the cases the interme-
diate positions of particle tracking do not coincide with the grid nodes. Therefore,
some approximation formula has to be used at this point. Also a certain number of
velocities and the quantities appearing in the integrals have to be stored additionally.
This number depends on the relaxation time exhibited by a fluid, i.e. the longer the
relaxation time τrelax is, the higher is the number of stored quantities. An alterna-
tive method used to approximate integral constitutive equations is Deformation Field
Method (DFM). This is the first Eulerian technique for solving time dependent flows
with an integral constitutive equation introduced by Peters at al. ([37]). The basic
idea behind DFM is that the deformation history is described by a finite number of
deformation fields, which are convected and deformed by the flow field. The main
advantage of this Eulerian technique is that it removes the need of recalculating the
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particle paths and the calculation of the extra stress tensor along them.

In this thesis we focus on the numerical simulations of generalized Newtonian
fluids, obeying nonlinear relation between stress and strain tensors, and of viscoelastic
fluids modeled by the integral constitutive equations. For the latter, we choose the
most successful kinetic theory model for linear polymers, the Doi Edwards reptation
model, allowing simulations of the concentrated polymer solutions (see [9, 19, 27, 36,
47, 48, 49]), as well as the integral Oldroyd B model, widely used in the simulations
of dilute polymer solutions (see [1, 2, 3, 17, 38]).

1.2 Objectives and outline of the thesis.

This thesis aims to contribute
• to the analysis, development and validation of models for generalized Newtonian
and for viscoelastic (non–Newtonian) fluids,
• to development and validation of robust and reliable algorithms for simulation of
the generalized Newtonian flows,
• to comparison and validation of robust and reliable algorithms for simulation of the
viscoelastic (non–Newtonian) flows, as well as
• to the software implementation of the developed algorithms.

The first objective of the thesis is to systematically study existing models for gen-
eralized Newtonian fluids and for non–Newtonian fluids, and to propose and analyze
their proper extensions. One of the widely used models for the generalized Newtonian
fluids is the one named after Carreau. This model has a drawback of not being able
to predict experimentally observed growth of the vortices for shear-thinning fluids.
To overcome this flaw, we propose a new anisotropic viscosity model. It possess two
viscosities describing shear and extensional properties of the fluid, and can be consid-
ered as a natural extension of the isotropic viscosity Carreau model. The anisotropic
viscosity model gives ability to predict growth of the vortices even for shear-thinning
fluids, if additionally extensional-thickening is taken into account. That is exactly
what the experimentalists observe (growth of the vortices is related to the exten-
sional properties of the stress, i.e. fluids with unbounded extensional stress growth
show growth of the vortices). Afterwards, we present validation of the models used
in this thesis, describing the generalized Newtonian (Carreau constitutive equation,
anisotropic viscosity model) and the non–Newtonian fluids (integral Oldroyd B and
integral Doi Edwards constitutive equation), and compare them with already existing
numerical results from simulations of the viscoelastic fluids obtained by differential
counterpart (Oldroyd B model), or differential approximation (Doi Edwards model),
as well as with physical experiments.

The second objective of this thesis is to develop and implement a robust and
reliable algorithm for generalized Newtonian fluids. For such fluids the viscosity is
modeled as a function that varies in both space and time. This is contrary to the
Newtonian case where the viscosity is a constant value. Such variations of viscosity
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may differ couple of order of magnitude (see [22]). This results in strong coupling of
the momentum equations through their viscous term. Additionally, the momentum
equations are coupled through the convective term and the pressure. Due to vary-
ing viscosities, one has to take into account discretization of the mixed derivatives
appearing in the momentum equations. In many commercial solvers those terms are
treated in explicit way, i.e. calculated from the corresponding values computed in
the previous time step and taken as a source term. This may lead to the restriction
on the time step used in simulations due to the stability problems. To avoid it, here
the momentum equations are discretized and treated in coupled manner, i.e. the
mixed derivatives are discretized in implicit way. Efficient numerical simulations of
the generalized Newtonian flows is not a trivial task. While numerical methods for
the Newtonian flows are, in general, well studied (see [13, 15, 23, 43, 45, 50]), this is
not a case for the generalized Newtonian ones. For the Newtonian fluids, projection
type methods that decouple the momentum and the continuity equations are often
used (for details and further references on projection methods see [13, 15, 23, 43]).
Such methods might, however, not be efficient in the generalized Newtonian fluids
simulations, especially for highly varying and large viscosities. In such cases an al-
ternative to the segregated solvers, the fully coupled solvers, have to be used instead.
Now, the momentum and the continuity equations are solved together. An inter-
esting question is, which kind of solver, segregated or fully coupled, performs better
and more stable simulations for the generalized Newtonian fluids. In most of the
cases the system of partial differential equations, after linearization and discretiza-
tion, is solved via an iterative method. To improve the performance of the iterative
process, it is supplemented with an appropriate preconditioner. Again, much work
has been done for Newtonian fluids (see [4, 10, 26, 42]). Recently, a numerical study
of the performance of various iterative solvers applied to the generalized Newtonian
flow equations was presented in [22]. However, still additional analysis of various
preconditioners presented there is needed for better understanding.

The third objective of this thesis is to implement, validate, compare and systemat-
ically analyze algorithms for simulation of viscoelastic fluids modeled by integral–type
constitutive equation. We consider two methods, namely Backward Lagrangian Par-
ticle Method and Deformation Field Method. Since the implemented algorithms,
presented in this thesis, should be applicable for simulations of industrial processes,
such as plastic moulding, they should be applicable for arbitrary two and three di-
mensional domains. This gives rise to two constraints: Firstly, the algorithm has to
perform stable simulations in classical benchmark problems, like abrupt contraction,
or contraction–expansion domains, also for high Weissenberg numbers. Secondly, the
performed simulations should not take too much time and consume too much com-
puter memory. An acceptable computational time, which clearly depend on the size of
considered problem, should be rather of order of hours than days. All this is realized
by careful approximation of the time integral constitutive equation.

The thesis is organized as follows. In Chapter 2, the equations describing the isother-
mal flow of viscous and viscoelastic fluids are derived. Throughout the thesis we
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consider incompressible fluids. The set of partial differential equations that form the
well known system of Navier–Stokes equations is given. The equations are derived
by using the conservation laws for mass and momentum, and imposing a linear re-
lation between stress and rate–of-deformation tensors. Next, generalized Newtonian
liquids are considered. As aforementioned, the class of the generalized Newtonian
fluids consists of fluids having nonlinear relation between the stress tensor and the
gradients of velocity, which leads to a strain rate dependent viscosity in addition
to the dependence on thermodynamic variables, pressure and temperature. First,
we show Carreau viscosity model being able to deal with shear–thinning, or shear–
thickening properties of the fluid. Then, we discuss a similar model that additionally
includes extensional viscosity properties of the generalized Newtonian liquids. The
simulations are performed at constant temperature. To complete the picture of the
complexity of the behavior of viscosity, we present further possible extensions of those
models for the dependence on pressure and temperature. The last class of fluids dis-
cussed also here, the class of viscoelastic fluids, consist of both viscous and elastic
effects. The elastic effects are described by integral constitutive equations. First, we
present a general form of integral constitutive equation. Then two different models,
describing concentrated and dilute polymer solutions respectively, are given. The
concentrated polymer solutions and polymer melts are described by the integral Doi
Edwards tube model. It is supplemented by the chain length fluctuation. The dilute
polymer solutions are described by the integral Oldroyd B model.

Chapter 3 describes discretization and numerical methods used to solve the system
of differential equations supplemented by a constitutive equations, given in Chapter 2.
First, we describe how to handle the system of coupled integro–differential equations.
The integral constitutive equation is splitted from the Navier–Stokes equations and
taken as a source term in the momentum equations. Next, projection type solution
methods are presented. In particular, a coupled momentum projection method, which
is a modification of SIMPLE (Semi–Implicit Method for Pressure Linked Equations)
algorithm, is given. The momentum equations are solved coupled, i.e. the discretiza-
tion of all viscous terms is performed in implicit way. Next, we give short discussion
about fully coupled methods, where the continuity and the momentum equations are
solved together. Further, we present a finite volume discretization used in the simula-
tions. Since a collocated variable arrangement is chosen, a special discussion focused
on avoiding the checker–board pressure field is performed.

In Chapter 4, two known methods for approximating general integral constitutive
equations are discussed. First, a Lagrangian method, namely Backward Lagrangian
Particle Method, is presented. Then, we give an alternative Eulerian method, called
Deformation Field Method. In both methods an integral constitutive equation is
approximated by an infinite sum. We discuss possible ways to truncate this infinite
summation in order to minimize the computational time and memory requirements
needed for such discretization of the memory integrals.

In Chapter 5, we present preconditioners for saddle point problems. In particular,
generalized Newtonian flow equations with varying viscosity are analyzed. Since the
whole system of partial differential equations, that describe such fluids, is too compli-
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cated to analyze, the convective terms from the momentum equations are dropped.
We can do so, since the interest is in slow flow regimes of viscoelastic fluids, that
usually possesses large viscosities, thus having low Reynolds numbers. We give ana-
lytical results concerning eigenvalue distributions for both projection–type and fully
coupled solvers. We also present and discuss the influence of the mixed derivatives
on the performance of the iterative solvers.

In Chapter 6 we present numerical results. First, simulations of generalized New-
tonian fluids are discussed. We perform the validation of our work for shear–thinning
fluids. Next, extensional–thickening effect is taken in addition. As a result of such
addition, contrary to the shear–thinning fluid only, we obtain growth of the vortices,
which is in qualitative agreement with experimental observations. Next, we give
the results from the simulations of dilute polymer solutions described by the integral
Oldroyd B model. We show, that for low Weissenberg numbers it produces similar re-
sults as its differential counterpart. However, much higher Weissenberg number flows
are accessible when integral constitutive equation is chosen. Moreover, good qualita-
tive agreement with experiments is achieved. Further, we give simulation results of
concentrated polymer solutions modeled by the integral Doi Edwards model. Again,
we get very good agreement with experiments and the results obtained by its differ-
ential approximation. At the end of this Chapter, we present the discussion of the
performance of different iterative solvers supplemented by different preconditioners
in terms of the time step, number of grid points, changes of viscosity.

Finally, the research performed in this thesis is summarized in the concluding
remarks.
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Chapter 2

Governing equations.

In this Chapter, we present governing equations, which are used to describe the
isothermal flow of viscous and viscoelastic fluids. In Section 2.1, we derive the phys-
ical and mathematical formulation of conservation laws, which lead to the system of
Navier-Stokes equations describing the motion of viscous fluids. To obtain a complete
set of equations, the stress tensor has to be specified by a constitutive equation. It
describes typical behavior of considered material. Newtonian fluids obey linear rela-
tion between stress and rate–of–deformation tensors. In Section 2.2 we discuss this
relation. Next, the class of non-Newtonian fluids is discussed. Such fluids can not
be described by Navier-Stokes equations with a constant viscosity. The viscoelastic
materials show both viscous and elastic behavior when they are deformed and require
much more complicated constitutive equations. In Section 2.3, we present general-
ized Newtonian fluids. They relate stress and strain by some algebraic formula, being
able to capture variations of viscosity depending on shear rates, elongational rates,
pressure or temperature, for example. In Section 2.4, we discuss the models involv-
ing integral constitutive relation in order to account for the history of deformations.
To simulate flows of dilute and concentrated polymer solutions, we use the integral
Oldroyd B and Doi Edwards models, respectively.

2.1 The balance equations.

Many physical processes may be described by fundamental principles like conservation
of certain quantities. Let x(t′) ∈ Ω ⊂ Rd be the particle position in the domain Ω,
which is a subset of Rd with space dimension d, at some time t′. Then the velocity
v ∈ Ω ⊂ Rd of that particle at time t′ = t is defined as

v(x(t), t) =
dx(t′)

dt′
|t′=t. (2.1)

Let us consider transport of the physical quantity φ(x, t) in an arbitrary volume V(t).

15



Governing equations.

The total amount of the quantity φ contained in the volume V(t) equals

∫

V(t)

φ(x, t)dx. (2.2)

Thus, the rate of change of the quantity φ is expressed as

d

dt

∫

V(t)

φ(x, t)dx, (2.3)

where both the integrand φ(x, t), as well as the integration domain V(t), depend on
t. Therefore we need the mathematical tool to be able to calculate such expressions.
It is provided by the following theorem.

Theorem 1 (Reynolds transport theorem) Let φ : Rd × R → Rd be a continu-
ously differentiable function. Then for each volume V(t) the following equality holds

d

dt

∫

V(t)

φ(x, t)dx =

∫

V(t)

[
∂φ

∂t
(x, t) +∇ · (φv)(x, t)]dx. (2.4)

�

The proof may be found in [50]. Another useful mathematical tool that is used in
the forthcoming derivations of conservation laws is expressed by the Gauss divergence
theorem.

Theorem 2 (Gauss divergence theorem) Let V(t) be a region in space with
piecewise smooth, closed surface ∂V(t). Then the volume integral of the divergence
∇ · φ(x, t) of φ(x, t) over V(t) and the surface integral of φ(x, t) over the boundary
∂V(t) of V(t) are related by

∫

V(t)

∇ · φ(x, t)dx =

∫

∂V(t)

~n · φ(x, t)da, (2.5)

where ~n is outward pointing unit normal vector, dx is volume and da is surface
element.

�

For proof, see [50]. This theorem states, that the quantity φ changes the value only
due to the flow into or away from the volume V(t) through its boundary ∂V(t).
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Governing equations.

2.1.1 Conservation of mass.

The first law describing the fluid motion is the law of conservation of mass. It states,
that the mass of a piece of fluid contained in the volume V(t) is neither created nor
destroyed. Let ρ(x, t) be the density of the fluid at a position x and time t. The total
mass of the fluid contained in the volume V(t) is given as

∫

V(t)
ρ(x, t)dx. The fact

that the change of the mass is constant means that

d

dt

∫

V(t)

ρ(x, t)dx = 0. (2.6)

Applying Theorem 1 to the above formula and taking φ = ρ leads to

∫

V(t)

[
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t))]dx = 0. (2.7)

Since the derivation holds for arbitrary volume V(t), we conclude the differential form
of the conservation of mass, also called continuity equation, as

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)) = 0. (2.8)

Fluids, such that the density of each element remains constant during the motion,
what means dρ

dt
= 0, are called incompressible. In this case the equation (2.8) simpli-

fies its form to

∇ · v(x, t) = 0. (2.9)

2.1.2 Conservation of momentum.

The second principal physical law that fluid obeys is the conservation of momentum.
This quantity is defined as the product of mass and velocity

∫

V(t)

ρ(x, t)v(x, t)dx. (2.10)

According to the second Newton’s law, the rate of change of the momentum of the
fluid contained in the volume V(t) is equal to all forces acting on this fluid. There
are two types of forces acting on the fluid, body forces and surface forces. The body
force, like gravity acts on a fluid particle, and is proportional to its mass. It can be
expressed as

∫

V(t)
ρ(x, t)g(x, t)dx, where g(x, t) denotes the density of gravity force.

The surface forces are the one acting on the boundaries ∂V(t) of the fluid volume
V(t), and is usually described by the stress tensor σ̄. The stress consist of pressure
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and friction forces, which are coming from the interactions between fluid layers slid-
ing one relative to the other. Taking all together, conservation of momentum reads as

d

dt

∫

V(t)

ρ(x, t)v(x, t)dx =

∫

V(t)

ρ(x, t)g(x, t)dx +

∫

∂V(t)

~n · σ̄(x, t)da. (2.11)

Applying Theorem 1 to the left hand side and Theorem 2 to the second term on the
right hand side transforms the above equation to

∫

V(t)

[
∂ρ(x, t)v(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)⊗v(x, t))− ρ(x, t)g(x, t)−∇· σ̄(x, t)]dx = 0,

(2.12)

where ⊗ stands for dyadic product. Since it holds for every volume V(t) we get the
following differential form of conservation of momentum

∂ρ(x, t)v(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)⊗ v(x, t)) = ρ(x, t)g(x, t) +∇ · σ̄(x, t). (2.13)

As it was already mentioned the stress σ̄ consist of the pressure and the friction
forces. Since pressure is the force acting on the fluid element in absence of velocity
gradients, we can decompose σ̄ in two components

σ̄ = −pI + σ, (2.14)

where p denotes pressure, I identity operator and σ viscous part of the stress tensor.
The pressure is defined to be positive, if compression forces are acting on the surface,
i.e. if outward normal vector ~n is opposite to the force. Taking that into account
and assuming incompressibility of the fluid, we can rewrite equation (2.13) in the
following form

ρ
∂v(x, t)

∂t
+ (ρv(x, t) · ∇)v(x, t) = ρg(x, t)−∇p +∇ · σ(x, t). (2.15)

In [32], one can find the proof that stress tensor σ exist and is symmetric, i.e. σ =σT .
Viscous stress σ is related to the velocity gradients, namely to the rate of deforma-
tion, alternatively called rate of strain or strain, tensor γ. It is defined as

γ = (∇v +∇Tv) (2.16)

and describes how the fluid particle deforms within the flow. A good analysis of it
may be found in [18]. The quantity, that measures the magnitude of the rate of strain
is the mean shear-rate γ̇, defined as
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γ̇ =

√

1

2
[γ : γ] =

√

1

2

∑

ij

γijγji. (2.17)

2.2 Newtonian fluids.

The most known fluids, for which the components σ of the viscous stress tensor are
assumed to depend linearly on the instantaneous values of the strain, are called New-
tonian. This assumption leads to the result

σ = η0(γ −
1

3
δ(∇ · v)) + ζδ(∇ · v)), (2.18)

where η0 is the dynamic viscosity coefficient, ζ is called the second or the bulk vis-
cosity and δ is the Kronecker delta defined as

δij =

{
1, i = j
0, i 6= j.

(2.19)

Justification of above relation may be found in [18]. In equation (2.18), the first term
on the right hand side corresponds to deformations without the change in volume,
while the second term represents isotropic dilation. For shear flows the dynamic vis-
cosity, also called shear viscosity, η0 is important, while for compression flows is the
bulk viscosity. However, the focus here is on incompressible fluids, for which the
above equation (2.18) simplifies to

σ = η0γ. (2.20)

This relation together with the equations (2.9, 2.15) give the system of Navier-Stokes
equations, that describe the flow of incompressible, isothermal Newtonian fluids.

Viscoelastic fluids are examples of a class of fluids, called non - Newtonian fluids.
While the Newtonian fluids are characterized by a constant viscosity (i.e., constant
ratio between shear stress and the rate of strain), the non-Newtonian fluids require
more complicated constitutive relations in order to close the governing system of equa-
tions. In fact, variety of particular models are suggested in the literature for each of
the forms of the constitutive relations. Furthermore, the particular models can differ
in the way in which they are derived: either postulating an constitutive equation and
fitting its coefficient from measurements (like for the generalized Newtonian fluids),
or deriving the constitutive equation starting from microscopic phenomena (e.g., rep-
tation theories, molecular considerations, etc.). Now, the constitutive relations can
be in the form of a differential, or an integral equation (supplemented by further
constitutive relations). For a good review of a most popular differential models used
in simulations of viscoelastic models, the interested reader is referred to [32].
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2.3 Generalized Newtonian fluids.

In this Section models, that describe the class of generalized Newtonian fluids, are
discussed. These fluids may have extremely varying properties and behave in a dif-
ferent way as the Newtonian ones. The viscosity of materials can be influenced by
variables such as shear–rate γ̇, extensional–rate ǫ̇, for example. As soon as the vis-
cosity starts to vary for different values of listed variables, the fluids are referred to
the generalized Newtonian ones. In all cases, the relation between stress and strain
is local in time, i.e. σ = η(γ̇, ǫ̇, p, ...)γ.

2.3.1 Shear viscosity.

From a rheological point of view, the variation of viscosity with the shear-rate is
regarded as being the most important. In this content one distinguishes two major
classes of fluids, namely shear-thinning and shear-thickening fluids. The first class
consists of materials which appear to be Newtonian at low shear-rates. However,
after increasing shear-rates, the effective viscosity decreases. One of the reasons for
that may, for example, be the macromolecules in suspension in the fluid, which tend
to align in the direction of the flow. Typical behavior of viscosity versus shear-rate
is given in Figure 2.1. The examples of such fluids are dilute suspension of solids,
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Figure 2.1: Shear-thinning fluid. Viscosity versus shear-rate.

dilute solutions of high-molecular-weight polymers, liquid polymers and paper pulp.
On the other hand some materials, like corn starch suspension, exhibit opposite be-
havior. Again, for the low shear-rates the relation between stress and strain is linear,
however increase of shear-rates results in increase of viscosity. This shear-thickening
behavior may result from the fact, that during the flow initially rolled in balls macro-
molecules start to unroll into long chains. This leads to growth of viscosity. In Figure
2.2 typical behavior of such materials is presented. In order to model shear-thinning
or shear-thickening behavior of different materials, various viscosity models have been
proposed in the literature. In all of them, the viscosity is expressed as an algebraic
equation, which includes parameters that are used to fit given experimental data.
From many models, that are reviewed in [32], we choose a very common one, namely
Carreau model. It is expressed as
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Figure 2.2: Shear-thickening fluid. Viscosity versus shear-rate.

η(γ̇) = η0(1 + (Cuγ̇)2)
(n−1)

2 , (2.21)

where shear–rate γ̇ is defined by equation (2.17), η0 is the zero shear–rate viscosity
and Cu, n are the parameters to fit experimental data. For 0 < n < 1, the above
formula models shear–thinning fluid, n = 1 corresponds to the Newtonian fluid, and
finally n > 1 expresses shear–thickening behavior. Second parameter Cu, appearing
in (2.21), is used to measure the significance of shear–thinning or shear-thickening.
With the above defined viscosity, the stress tensor expressed in equation (2.20), trans-
forms to

σ = η(γ̇)γ. (2.22)

This model has showed a good ability in capturing shear–viscosity properties and is
still widely used in commercial softwares. However, it is not the only one property of
viscoelastic fluids.

2.3.2 Extensional viscosity.

Many complex fluids exhibit different behavior of viscosity in directions parallel and
perpendicular to the flow direction. Therefore, it is often necessary to distinguish
between extensional and shear viscosities, ηe and η respectively. Fluids, which show
decrease of extensional viscosity with increase of extensional strain rate ǫ̇ are called
extensional, or tension, thinning, whilst, when ηe grows with increase of ǫ̇, they are
called extensional, or tension, thickening. Over many years models like Carreau,
that can capture shear behavior of fluids were extensively studied. However, up to
the knowledge of the author there is still a lack of simple algebraic models being
able to deal with the combined effect of shear–thinning (thickening) and extensional–
thickening (thinning). Simple means, that it should have similar structure as the
Carreau model, thus could be considered as its natural extension. Moreover, this
model should be easily applicable for an arbitrary flow domains. After private com-
munications and discussions with Arnulf Latz [A.Latz, Fraunhofer ITWM, private
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communications], such model is proposed in the scope of this thesis. Let us first
define extensional strain rate as

ǫ̇ = ~t · γ~t, (2.23)

where ~t is given by

~t =
v

‖v‖ (2.24)

and denotes unit vector parallel to the flow direction. The same definition may be
found in [12], where authors discuss how to perform the measurements of elongational
viscosity. Now, having defined extensional strain rate ǫ̇, one can also use Carreau
model to predict extensional viscosity behavior as

ηe(ǫ̇) = η0(1 + (Cueǫ̇)
2)

(ne−1)
2 (2.25)

with fitting parameters ne, Cue. The first parameter indicates whether the fluid is
extensional–thinning (0 < ne < 1), extensional–thickening (ne > 1), or has con-
stant extensional viscosity η0 (ne = 1). The second parameter Cue is used to control
the strength of extensional viscosity effects. Next step in modeling is to define the
constitutive equation, which should include both, shear η(γ̇) and extensional ηe(ǫ̇)
viscosities. Therefore, taking into account the fact, that the diagonal terms of rate
of strain tensor γii represent the rate of elongation of an element of the fluid in re-
spective i− direction, whilst the off-diagonal terms γij(i 6= j) express deformations of
a fluid element (what corresponds to shearing), the stress tensor will now be defined as

σij = η(γ̇)(γij − δijγii) + ηe(ǫ̇)δijγii. (2.26)

Note, that the shear viscosity η enters the off–diagonal terms of the stress, while
the extensional viscosity ηe only the diagonal ones. This simple model includes both
shear and extensional effects, modeled by η(γ̇) and ηe(ǫ̇) respectively. Therefore, it
allows simulations of shear–thinning and extensional–thickening fluids, for example.

2.3.3 Dependence of viscosity on pressure and temperature.

To close the picture of complexity of viscosity behavior, let us discuss its dependence
from pressure and temperature, and possible extensions of models given by equations
(2.21, 2.25). It is known, that viscosity of many fluids increases exponentially with
increasing pressure. At low pressures this effect is negligible, however for high pres-
sures it can be important. The dependence of viscosity on pressure can be modeled
by Barus law (see [32]) as

η(p) = η0exp(αp), (2.27)
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where α is material parameter that is estimated by best fitting of experimental data.
This may be easily combined with Carreau models adding exp(αp) as a multiplicative
factor to (2.21, 2.25). Also variations in temperature can result in significant changes
in viscosity. The viscosity of most Newtonian liquids decreases as the temperature
increases. This phenomenon is known as temperature-thinning. One can model it by
including the temperature dependence in the zero-shear viscosity η0, which can be
expressed by Arrhenius law as

η0(T ) = a1exp(
a2

T
), (2.28)

where T is the absolute temperature of the fluid and a1, a2 are again fitting pa-
rameters. Combining all together, the originally presented functions of shear and
extensional viscosities (2.21, 2.25) transform to

η(γ̇, T, p) = η0(T )(1 + (Cuγ̇)2)
(n−1)

2 × exp(αp) (2.29)

and

ηe(ǫ̇, T, p) = η0(T )(1 + (Cueǫ̇)
2)

(ne−1)
2 × exp(αp) (2.30)

respectively.

2.4 Viscoelastic fluids.

Many natural and synthetic fluids are viscoelastic materials, for which the stress
of a fluid particle depends not only on the current flow field, as for Newtonian or
generalized Newtonian fluids, but also on the history of the deformation experienced
by that particle. This can be specified by a differential, or an integral model. In this
thesis only integral models are considered.

2.4.1 Integral constitutive equation.

Throughout the thesis constitutive equation of integral type is chosen as the most
general, and the most physically adequate approach to predict viscoelastic behavior
of the fluid. An attempt to simplify the study of the constitutive (differential and in-
tegral) models for viscoelastic fluids is based on introducing a Newtonian component
of the viscoelastic tensor, thus conditionally separating the viscous and the elastic
part of the stress tensor. This results in

τ = σ + T, (2.31)
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where τ denotes total, σ - Newtonian, or generalized Newtonian, and T - extra, or
alternatively called elastic, stress tensors, respectively. The stress tensor σ is given by
equation (2.20, 2.22 or 2.26). The above splitting (2.31) can be interpreted physically
as the solvent and elastic contributions to the stress in polymer solutions, or as the
stress response associated with the fast (σ) and slow (T) relaxation modes. Extra
stress tensor T expressed in the integral form is usually formulated in a Lagrangian
framework, which means, that it is evaluated at a moving fluid particle. Consider
such a fluid particle, that has a position vector x at the present time t and had a
position vector x′ at some past time t′. The deformation gradient tensor E is defined
by

Eij =
∂xi

∂x′
j

(2.32)

and expresses displacement of the particle moving from the point x′ to x. Such de-
formations introduce additional stress, that is coming, for example, from changes of
orientation of polymers. However, how the changes of configuration of polymers in-
fluence the flow is very material dependent. Therefore, let f(E(t, t′)) be some tensor
function, that depends on deformation gradient tensor E and may take different forms
for different fluids. Deformation tensor E satisfies the evolution equation

DE(t, t′)

Dt
= (∇v(t))T E(t, t′). (2.33)

To demonstrate this result, one has to take partial time derivative with respect to t′

of (i, j)th component of E, as follows

∂Eij

∂t
=

∂

∂t

∂xi

∂x′
j

=
∂vi

∂x′
j

=
∂vi

∂xk

∂xk

∂x′
j

, (2.34)

what after applying summation notation gives equation (2.33). Viscoelastic fluids
are somewhere in between purely elastic materials, like rubber, and the Newtonian
fluids, like water, for example. Elastic materials remember all the history of its de-
formations, what means that after applying a force to it, and then releasing, material
attains its initial shape again. Newtonian fluid is viscous, and once a force is applied,
it dissipates into heat. After removing the force fluid remains unchanged in its de-
formed shape. Viscoelastic materials possesses characteristic time, called relaxation
time, after which the history of deformations is forgotten. Moreover, the younger de-
formations influence stress more, than the older ones. In the simplest models they are
weighted by strain independent memory function µ(t, t′), which takes an exponential
form. This leads to integral model of general form

T =

∫ t

−∞

µ(t, t′)f(E(t, t′))dt′, (2.35)
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where the integral is taken along the past trajectories of the fluid particle. Clearly,
for the non-Newtonian fluids the momentum equation can be written as

ρ
∂v(x, t)

∂t
+ (ρv(x, t) · ∇)v(x, t) = ρg(x, t)−∇p +∇ · σ(x, t) +∇ ·T(x, t). (2.36)

Let us now discuss two possible choices of function f(E(t, t′)) in the case of concen-
trated and dilute polymer solutions.

2.4.2 Doi-Edwards model.

Let us first discuss the Doi Edwards model (see [9] ) that is used to simulate con-
centrated polymer solutions or polymer melts. Figure 2.3 presents schematic picture
of such materials. They consist of highly entangled polymers, indicated by a black
curves, that are immersed in Newtonian solvent. It is clear, that modeling has to
take into account interactions of different polymers and relation between the poly-
mers and solvent. Doi Edwards model is based on the so called reptation theory.
Consider a polymer chain (also called primitive chain) marked in Figure 2.3. Suppose

Figure 2.3: Schematic picture of highly entangled polymer solutions.

for a moment that other chains are frozen and regarded as fixed obstacles. Thus, one
can assume, that the indicated chain lies in a tube-like region formed by surrounding
chains (see Figure 2.4). If the polymer chain closed in such a tube moves perpendic-
ularly to its own contour, it drags many surrounded polymers and therfore exhibits
a large resistance. On the other hand, the movement of primitive chain along its
contour is much easier. It is thus plausible to assume, that the major mode of its dy-
namics is reptation. Changes of the configuration of the primitive chain is expressed
by the so called partial orientation tensor Q

Q(t, t′) =

〈
(E(t, t′)u(t′))⊗ (E(t, t′)u(t′))

‖ E(t, t′)u(t′) ‖

〉

0

1

〈‖ E(t, t′)u(t′) ‖〉0
, (2.37)

where the brackets (〈〉0) on the right–hand side denote an ensemble average over
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Figure 2.4: Schematic picture of the tube model.

unit vectors u(t′) representing the orientation of a tube segment. ⊗ stands for the
dyadic product and E(t, t′) is the deformation tensor. As it was mentioned, one of
the main assumptions in Doi Edwards reptation theory is that polymeric chains move
along itself. Roughly speaking, (2.37) means that each tube segment u(t′) of the de-
formed primitive chain, that initially can move in arbitrary direction, is restricted
to remain tangent to the chain after the deformation. Doi Edwards model links mi-
croscopic level, on which the model is derived, with the macroscopic flow field using
the affine deformation assumption. This means, that the primitive chain is deformed
in the same way as the macroscopic deformation. Mathematically, one can express
it as u→ Eu. Changes of the orientation of chains introduce extra stress described by

T = Ge

∫ t

−∞

µ(t, t′)Q(t, t′)dt′, (2.38)

where Ge is the elastic constant, and

µ(t, t′) =
1

τd

exp

(

−(t− t′)

τd

)

(2.39)

is the memory function that weights the contributions of the past deformations, which
influences the current stress. τd is the relaxation time. The latter describes how
fast the polymer chain leaves its constraint (tube like region). In general, longer
polymers need longer time to relax. One can see, that Doi Edwards model takes
the general integral form of constitutive equation, presented in Section 2.4.1, with
f(E(t, t′)) = GeQ(E(t, t′)). Over years, many additional effects not captured by the
original Doi Edwards model (2.38), have been included into the model. These are:
fluctuation of the contour length, the diffusive release of constraint by motion of the
surrounding chains ([6, 21]), also called ”double reptation”, convective constraint re-
lease in fast flows ([27]), and the chain stretching, which allows the length of the
chain to exceed its equilibrium length in fast flows. In this thesis the latter is also
considered. For a dynamics of the chain stretch the model proposed by G. Ianniru-
berto and G. Marrucci ([20]) is chosen here. The stretch of the backbone of chain
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is controlled by the local force balance of dissipative drag and elastic recovery. In
a flow, the extension of the tube around the backbone tends to drag the backbone
segment with it. The elasticity of the backbone acts in the opposite direction. At
flow larger than the reciprocal Rouse time, polymer chains get stretched. This is
modeled by a separate evolution equation for the average stretch ratio λ = L

L0
, where

L is a current tube length (averaged over all chains) and L0 is its equilibrium value, by

Dλ

Dt
= (∇v)T : Sλ− 1

τR

(fλ− 1), (2.40)

where S =
∫ t

−∞
µ(t, t′)Q(t, t′)dt′. The first term on the right hand side expresses the

rate of elongation of a line segment of length ∆L in the tangential direction, i.e. it
accounts for an affine deformations. The second describes the relaxation with the
Rouse time τR taken as a characteristic time. To account for a finite extensibility of
the chain, a non–linear factor

f =
λmax − 1

λmax − λ
(2.41)

is chosen, where λmax = Lmax

L0
is the maximum stretch ratio. Finally, the original Doi

Edwards stress tensor (2.38) transforms to

T = Gefλ2

∫ t

−∞

µ(t, t′)Q(t, t′)dt′. (2.42)

The quadratic dependence of the stress on λ comes from the assumption of Hooke’s
law with nonlinear proportionality f , where expression fλ denotes the tension of the
chain. It is chosen to become unity for the unstretched state λ = 1, and to become λ
for a hypothetical chain of unlimited extensibility (λmax →∞), which enjoys a linear
force law. For more details concerning this model we refer to [20].

2.4.3 Oldroyd B model.

Let us now discuss the second class of viscoelastic fluids considered here, namely the
class of dilute polymer solutions. Schematic picture of such fluids is presented in
Figure 2.5, and shows the distribution of the polymers submerged in the Newtonian
solver. Now, contrary to the concentrated polymer solutions, the polymers are not
entangled with each other, thus the interactions between different polymers are ne-
glected. One of the models used to describe those kind of fluids is the Oldroyd B
model. Historically, it was first proposed by Oldroyd in 1950 and was of differential
form. Later, equivalent integral formulation was found. The proof of the equiva-
lence of the integral and differential formulation can be found, for example, in [17] .
Polymers are modeled as an elastic dumbbell immersed in the Newtonian solvent and
consisting of two beds connected with a spring (see Figure 2.6). The motion of such
a single dumbbell is affected by the forces exerted by the spring, Brownian forces due
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Figure 2.5: Schematic picture of dilute polymer solutions.

Figure 2.6: The dumbbell model.

to the impact on the beads of the solvent molecules, and the drag force coming from
the differences of the velocity of the bead and the surrounding medium. Detailed
derivation can be found in [32], for example. Such assumption lead to the polymeric
stress tensor of the following form

T =
ηp

τ 2
Oldr

∫ t

−∞

dt′µ(t, t′)B(t, t′), (2.43)

where τOldr is the relaxation time, ηp is a polymeric constant,

µ(t, t′) = exp

(

−(t− t′)

τOldr

)

(2.44)

is again the memory function, and finally

B(t, t′) = E(t, t′) · ET (t, t′) (2.45)

is the so called Finger strain tensor. The latter describes the changes of the orientation
of polymers that further influence the extra stress tensor. It is known, that the
above model provides a constant shear viscosity and strain–hardening in extension
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([32]). Therefore, combining the generalized Newtonian stress tensor (2.22) with
the Oldroyd B integral stress tensor (2.43), one may account for the shear viscosity
properties, by fitting ηs(γ̇) from the experimental data, while the Oldroyd B model
may account for the elastic effects of the material. The Oldroyd B model takes the
general integral constitutive equation form, presented in Section 2.4.1, by choosing
the function f(E(t, t′)) = ηp

τ2
Oldr

B(E(t, t′)).

2.5 Summary.

In the balance equations, the stress tensor still has to be specified by the constitutive
equation. It obeys different relations for different fluids, thus taking different phe-
nomena into account. In the current Chapter, the balance equations, supplemented
by the constitutive equations describing various viscous and viscoelastic fluids, have
been presented. The resulting system of differential, or integro–differential equations
can be summarized as follows:

The balance equations.

balance of mass:
∇ · v = 0

balance of momentum:
ρ∂v

∂t
+ (ρv · ∇)v = ρg−∇p +∇ · σ +∇ ·T

The constitutive equations.

Newtonian (viscous) fluids:
σ = η0γ, T = 0

generalized Newtonian fluids dealing with shear viscosity properties:
σ = η(γ̇)γ, T = 0

generalized Newtonian fluids dealing with shear and extensional viscosity
properties:
σij = η(γ̇)(γij − δijγii) + ηe(ǫ̇)δijγii, Tij = 0

non–Newtonian viscoelastic fluids, Oldroyd B model:

σ = η0γ, T = ηp

τ2
Oldr

∫ t

−∞
dt′µ(t, t′)B(t, t′)

non–Newtonian viscoelastic fluids, Doi Edwards model:

σ = η0γ, T = Gefλ2
∫ t

−∞
µ(t, t′)Q(t, t′)dt′
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The set of equations describing Newtonian fluids is well studied, and the ways to
discretize them and further perform the simulations can be found in many CFD books
(see for example [13, 15, 45, 50]). However, performing stable and robust simulations
of generalized–Newtonian and non–Newtonian fluids is still a challenging task. The
viscosity of the former class is modeled by a time and space varying function, as it is,
e.g., in Carreau model. This situation needs a careful numerical treatment since, in
addition to the coupling between the balance equations, appearing also for the New-
tonian fluids, the variations of viscosity result in strong coupling of the momentum
equations through their viscous term. This may lead to stability problems. To over-
come such problems, we present in this thesis a modification of classical projection–
type methods (like SIMPLE, Chorin, etc.), where all the momentum equations are
solved coupled (i.e., cross-derivative terms are discretized in implicit way), as well as
the methods, where the momentum and the continuity equation are solved together
using a proper preconditioner. We show here, that such approaches are much more
robust, especially for large viscosity. Due to different algorithms presented in this
thesis, different levels of the coupling of the balance equations and easier readability,
we introduce some nomenclature: The projection–type methods solved with the mo-
mentum equations discretized in the implicit way (also the mixed derivatives), will
be called coupled momentum projection methods, while the algorithms where all the
balance equations are solved at once, fully coupled methods.
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Chapter 3

Solution of the governing
equations.

In this Chapter, we discuss the methods to handle the system of the given equa-
tions, presented in Chapter 2, and describing flows of the viscoelastic fluids. First, we
give the time discretization and the way to decouple integral and differential parts of
the given equations. Next, we investigate two different numerical solution schemes,
namely operator splitting approach via pressure correction and direct coupled ap-
proach with simultaneous treatment of velocity and pressure. Later, we discuss the
discretization method used in simulations, namely finite volume method on collocated
grid. At the end of this Chapter, we present special treatment of pressure correction
equation for projection type methods, and of divergence and pressure operators for
fully coupled method, in order to avoid well known problem of checker-board pressure
field.

3.1 Time discretization.

To simulate the flows of viscoelastic fluids, modeled by the integral–type constitu-
tive equation (the general form given by equation (2.35)) one has to solve a strongly
coupled system of integro-differential equations. A decoupling approach, based on
fractional time step discretization is used within these thesis. However, work on more
advanced coupling and decoupling approaches is a part of future research. Shortly,
the numerical algorithm reads as follows:

Step 1. Solve the continuity (2.9) and the momentum (2.36) equations taking
the polymeric tensor T in (2.36) as a source term (i.e., from the previous time step
calculation).

Step 2. Solve all the equations involved with integral constitutive equation
(2.35) using the velocity values obtained at Step 1.
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Let us now write down the time discretization scheme in more details. The dis-
cretization with respect to space variables is done with the finite volume method
on cell-centered grid (see, e.g., [15, 23]), what is discussed in Section 3.4. Suppose
for a moment, that the continuity (2.9) and the momentum (2.36) equations are
discretized in space. Denote by BT the discretization of the gradient operator, B
the discretization of the divergence operator, Dv the discretization of the diffusion
(viscous) operator and Cv the discretization of the convection operator. We use su-
perscript n+1 to denote values at the new time level and superscript n to denote the
old time values, τ = tn+1 − tn stands for the time step. With these notations, we get
following system to be solved for concentrated polymer solutions







Bvn+1 = 0

ρvn+1−vn

τ
= −BT pn+1 + Dvv

n+1 − Cvv
n+1 + BTn

En+1
−En

τ
= (BTvn+1)TEn

approximate Q̂
n+1

(En+1)

Tn+1 = Ge

∫ tn+1

−∞
dt′µ(tn+1, t′)Q̂(tn+1, t′),

or in the case of dilute polymer solutions







Bvn+1 = 0

ρvn+1−vn

τ
= −BT pn+1 + Dvv

n+1 − Cvv
n+1 + BTn

En+1
−En

τ
= (BTvn+1)TEn

Bn+1 = En+1 · (En+1)T

Tn+1 = ηp

τ2
Oldr

∫ tn+1

−∞
dt′µ(tn+1, t′)B(tn+1, t′).

Projection type, for example SIMPLE-like (see, e.g., [15]), or coupled algorithms are
applied for solving the balance equations at Step 1. In fact, the current algorithm
and software are extension of [23], where solution of the Newtonian flow problems are
considered. The more interesting part of the algorithm is the non-Newtonian part,
i.e. Step 2. Forward Euler scheme for the E deformation tensor is shown above,
second order Runge-Kutta method is also used for solving its evolution equation
(2.33). To calculate extra stress tensor of the general integral–type (2.35), two known
methods, namely Backward Lagrangian Particle Method (BLPM) and Deformation
Field Method (DFM), are used at this point of our algorithm. A detailed discussion
of those methods will be presented and discussed in the forthcoming Chapter 4.
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3.2 Projection type methods.

Again, we assume that the continuity (2.9) and the momentum (2.36) equations are
discretized in space. Using the same notations as in previous Section we rewrite them
in the following form

ρvn+1

τ
+ (Cv −Dv)v

n+1 + BT pn+1 = ρvn

τ
+ Sv

Bvn+1 = 0,

(3.1)

where v = (v1, v2, v3) denotes velocity, p is pressure, ρ the density and Sv represents
the body forces like gravity and also includes divergence of extra stress tensor T. The
system of equations (2.9, 2.36), that has to be solved at each time step t = tn+1, may
be written in a matrix form

(
A BT

B 0

) (
v
p

)

=

(
f
0

)

, (3.2)

where f = ρvn

τ
+ Sv and A = ( ρ

τ
I + Cv −Dv). Projection type methods, also called

pressure correction methods, or fractional step schemes, are discussed in this Section.
Instead of solving simultaneously the velocity an pressure components, the coupled
problem (3.2) is divided into simpler equations of the Poisson and the convection-
diffusion type. One way to derive such methods for incompressible fluids, using the
formalism of Turek [43], is following. Solving the first equation with respect to veloc-
ity gives

v = A−1(f − BT p). (3.3)

Substituting into the second one gives an equation for pressure

BA−1BT p = BA−1f. (3.4)

Direct solution of above system is not possible since A−1 is a full matrix. Therefore
an iterative procedure, preconditioned Richardson iteration, has to be applied. It can
be expressed as

pi+1 = pi −M−1(BA−1BT pi − BA−1f). (3.5)

Let δpi = pi+1− pi denote pressure correction at the i−th iteration. The above equa-
tion is rewritten as

Mδpi = −(BA−1BT pi −BA−1f) = −B(A−1BT pi − A−1f) = −Bvi, (3.6)

where vi denotes solution of equation (3.3) for given pi. The preconditioner M should

33



Solution of the governing equations.

be spectrally close to BA−1BT and the usual choice of it is

M = BH−1BT , (3.7)

where H is a diagonal matrix. Many possible choices were proposed, like H =
diag{A}, which results in well known SIMPLE scheme. Modifications, like H =
diag(part{A}), give different versions of the original SIMPLE algorithm (fractional
time step projection method). After solving equation (3.6) new pressure field is
calculated through its correction δpi. However, velocity vi will not in general sat-
isfy incompressibility constraint. Therefore, some correction has to be introduced to
project it out on divergence free space. It is realized by taking

vi+1 = vi + H−1BT δpi. (3.8)

As it is discussed by Turek in [43], the projection type methods are preferable in engi-
neering and commercial codes since in many applications, especially for high Reynolds
numbers, they seem to provide a fast and robust solutions. These schemes work per-
fectly for non steady problems with small viscosities (what assures large Reynolds
numbers), which require small time step by physical reason. However, they fail often
for steady or non steady flows with large viscosity parameter. Moreover, Turek dis-
cuss incompressible Newtonian fluids with constant viscosity, for which the matrix A
takes a diagonal form

A =





A11 0 0
0 A22 0
0 0 A33



 . (3.9)

Contrary, this thesis deals with the generalized Newtonian fluids. Due to the varying
viscosity, matrix A has a full block representation of the form

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (3.10)

It shows, that in the case of strong off-diagonal blocks the approximation of A with
an diagonal matrix H may not be good enough for a good performance of projection
schemes. Moreover, it brings additional coupling of the balance equations. Now, in
addition to the coupling of the continuity (2.9) with the momentum (2.36) equations,
and the coupling of the latter through the convective term, equations (2.36) are
strongly coupled through their viscous term.

3.2.1 Coupled momentum projection algorithm.

The SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations) , pro-
posed by Patankar and Spalding [33], is an example of the projection type methods.
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This algorithm is widely used presently for solving incompressible Newtonian flows.
One way to make an extension to the generalized Newtonian flows, where the matrix
A takes the full block representation (3.10), is to discretize the cross-derivative terms
in an explicit way. Such approach is very often done in commercial solvers. How-
ever, in many cases, especially for large and strongly varying viscosity problems, such
treatment of the mixed derivatives may lead to instabilities (what will be shown in
the numerical experiments in Chapter 6). One way to overcome such instabilities is
to decrease the time step τ used in the simulations. However, this lead to the increase
of the computational time, therefore the modified projection type algorithm, which
betters the stability of iterative process, is proposed in this Section. We restrict our
considerations to 2D case at this point. At each step of an iterative process one has
to solve





A11(v) A12(v) BT
1

A21(v) A22(v) BT
2

B1 B2 0









vk+1
1

vk+1
2

pk+1.



 =





F1

F2

0



 , (3.11)

where k + 1 stands for the number of the iteration to be performed. A11, A22 denote
linear operators, including time, diffusive (without mixed derivatives) and convec-
tive terms of the discretized momentum equations. A12, A21 denote linear operators
including mixed derivatives from the diffusive term. As it was already mentioned,
clearly for the Newtonian flows A12 = A21 = 0. [B1, B2]

T and [B1, B2] stand for
the discrete gradient and divergence operators respectively. Now, we will briefly de-
scribe coupled momentum projection algorithm following the formalism of Fletcher
(see [15]). Each iteration of this method contains the following steps:

(1) v0 = vn, p0 = pn.
(2) Compute v∗k+1

1 , v∗k+1
2 from

(
A11(v) A12(v)
A21(v) A22(v)

) (
vk+1
1

vk+1
2

)

=

(
F1

F2

)

. (3.12)

(3) Solve a Poisson-type equation for the pressure correction p′;

(4) Calculate velocity corrections v′ = −H-1BT p′;

(5) Correct the velocities vk+1 = v∗k+1 + αvv
′ and the pressure pk+1 = p* + αpp

′.
(6) vn+1 = vk+1, pn+1 = pk+1.

At the first step, the momentum equations are solved assuming the pressure is known
from the preceding iteration. Thus one obtains an initial approximation v∗ for the
velocity vector. At the next step, the pressure correction equation (PCE) is formed
aiming at satisfying the continuity equation. More precisely, one defines some veloc-
ity corrections through ~v′ = −H-1BT p′, and obtains PCE taking discrete divergence
from vk+1 = v∗k+1 + v′ , i.e. vk+1 = v∗k+1 −H-1BT p′, where

H = diag{
(

A11 A12

A21 A22

)

} (3.13)
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The obtained PCE looks as follows (see for details [13, 15])

Bvk+1 = −BH-1BT p′ + Bv∗k+1 = 0. (3.14)

The expression Bv∗k+1 is the so called mass source term. In the case of collocated
grids special interpolation schemes (for details see [35]) for the cell face velocities
must be used in order to avoid non-physical oscillations (it is discussed in Section
3.4.3). Underrelaxation parameters αv, αp are used to improve the convergence of
the algorithm (see [13, 23, 33] for details). Note, that modification of the standard
projection type methods, like SIMPLE, is done at point (3.12) of the above algorithm.
The momentum equations are solved coupled. It is preferable for us due to stability
reasons in simulations of the generalized Newtonian fluids with varying viscosity.

3.3 Fully coupled method.

Many viscoelastic fluids have large viscosities. Moreover, as indicated in Section
2.3, contrary to the Newtonian fluids, the viscoelastic materials may also enjoy big
variations in shear, or elongational viscosities. This further influences the strength
of the off-diagonal blocks of matrix A (given by equation (3.10)). For such cases
the use of projection type methods, presented in the previous Section, might not be
enough to perform stable calculations. On the other hand, adding elasticity of the
fluid, modeled by the integral constitutive equation (2.35), where one has to calculate
time integrals, gives restrictions on time step τ chosen in calculation. Too small
time step leads to huge memory requirements associated with the integral and also
increases significantly the computational time. Therefore, increasing stability of the
solver by decreasing the time step τ , what is possible in general, is not recommended
in simulations of viscoelastic fluids. To overcome these problems, i.e. to better the
stability of the solver and keep both the computational time and the memory needs
in reasonable orders, a fully coupled solver has to be used. It should be mentioned at
this point, that the fully coupled solvers require much more memory, compered to the
segregated ones. Now, the system (3.2) is solved simultaneously for both velocity and
pressure components. There are different fully coupled solvers. Some of them work
with untransformed system (3.2), others first transform the system (3.2) and after that
solve. There are some observations (see, e.g.[43]) that the fully coupled solvers are
preferable for steady state solutions and the decoupling techniques being preferable
for unsteady problems. However, very few particular cases are completely analyzed
and further studies have to be performed in order to confirm or reject above statement.
Detailed discussion and further references concerning coupled solvers can be found, for
example, in [4, 42]. To speed up calculations, the system (3.2) is supplied with some
appropriate preconditioner. The detailed discussion about different preconditioning
strategies, for both untransformed and transformed system (3.2), is postponed and
will be performed in Chapter 5.
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Figure 3.1: A representative CV.

3.4 Finite Volume discretization.

Let us now discuss the space discretization used. For simplicity, we restrict ourself to
2D case for all considerations in this Chapter. The extension to 3D case is straight-
forward. Let us first rewrite equations (2.9, 2.36) in a component–wise manner

∂

∂xj

(vj) = 0 (3.15)

ρ
∂vi

∂t
+

∂

∂xj

(ρvjvi)−
∂

∂xj

(η(
∂vi

∂xj

+
∂vj

∂xi

)) = − ∂p

∂xi

+ fi, i, j = 1, 2. (3.16)

Here v = (v1, v2)
T stands for the velocity vector, xj are Cartesian coordinates, ρ

stands for density, p is the pressure, η is the viscosity, that is usually space dependent,
and

fi =
∂

∂xj

Ti,j. (3.17)

Appropriate boundary conditions complete the system. The summation convention
over repeating indices is exploited above. A representative control volume (CV) in an
orthogonal grid is drawn on Figure 3.1 - its central node is the point P and the CV
index is (i, j). We assume, that the neighbor CVs in a certain space direction have
neighbor indices, although this is not obligatory for our consideration. The capital
letters W, E, S, N designate the centers of the neighbor CVs in WEST, EAST,
SOUTH, and NORTH directions correspondingly. The same (but lower case) letters
mark the centers of the CV walls in each direction. NW, NE (SW, SE) stands for the
centers of the NORTH (SOUTH) neighbors to the WEST and EAST neighbors of the
CV respectively. The letters nW, nE stand for the centers of the north walls of the
WEST and EAST neighbors of the CV. The size of the edges of our representative
CV are δx and δy: through them one defines the volume δV of the CV, and also the
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area of the CV faces in each direction (Aw, Ae, As, An). One also assumes, that the
volume integrals are calculated by midpoint cubature, i.e. as a multiplication of the
CV nodal value by the volume δV , while the surface integrals are equal to the product
of the value in the wall center and the wall area. Thus for the momentum equations
(3.16), after applying the Gauss divergence theorem (Theorem 2 from Section 2.1,
page 16), one obtains the following transport equations:

∂(ρv1)
∂t

δV +
{[

ρev1e(δy )ev1e − 2ηe

(
∂v1

∂x

)

e
(δy )e

]

−
[

ρwv1w(δy )wv1w − 2ηw

(
∂v1

∂x

)

w
(δy )w

]}

+
{[

ρnv2n(δx )nv1n − ηn

(
∂v1

∂y

)

n
(δx )n

]

−
[

ρsv2s(δx )sv1s − ηs

(
∂v1

∂y

)

s
(δx )s

]}

+
{

ηn

(
∂v2

∂x

)

n
(δx )n

]

− ηs

(
∂v2

∂x

)

s
(δx )s

]}

+

= S1δV.
∂(ρv2)

∂t
δV +

{[

ρev1e(δy )ev2e − ηe

(
∂v2

∂x

)

e
(δy )e

]

−
[

ρwv1w(δy )wv2w − ηw

(
∂v2

∂x

)

w
(δy )w

]}

+
{[

ρnv2n(δx )nv2n − 2ηn

(
∂v2

∂y

)

n
(δx )n

]

−
[

ρsv2s(δx )sv2s − 2ηs

(
∂v2

∂y

)

s
(δx )s

]}

+
{

ηe

(
∂v1

∂y

)

e
(δy )e

]

− ηw

(
∂v1

∂y

)

w
(δy )w

]}

+

= S2δV.
(3.18)

In the above formulas η (the dynamic viscosity) is a space dependent variable, and
S1 = − ∂p

∂x1
+ f1,S2 = − ∂p

∂x2
+ f2 . Let us first discuss the discretization of the viscous

and convective operators appearing in the equation (3.18). The linearization of the
momentum equation is of a fixed point type, where the convective terms are written
in an equivalent non-divergent form, i.e. ρv⋆

j
∂vi

∂xj
and the velocity components v⋆

j are

considered to be known from the previous iteration.
The remaining part of discretization of the system consisting of the continuity

(3.15) and the momentum (3.16) equations is discussed later. For projection type
methods, this remaining part is the pressure correction equation (for details see Sec-
tion 3.2) and its discretization is shown in Section 3.4.3. For fully coupled methods,
the remaining part consist of discretization of gradient and divergence operators and
is discussed in Section 3.4.4.

3.4.1 Discretization of the momentum equations.

The momentum equations (3.16) after an implicit discretization will have the follow-
ing general form

a1P φ1P +
∑

a1nghbφ1nghb +
∑

a2nghbφ2nghb =
a1P φ1P + a1W φ1W + a1Eφ1E + a1Sφ1S + a1Nφ1N

+a2NW φ2NW + a2NEφ2NE + a2W φ2W + a2Eφ2E+
a2SW φ2SW + a2SEφ2SE + a2Nφ2N + a2Sφ2S = SP .

(3.19)
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The variables (φ1, φ2) are the unknowns (φ1P , φ1nghb, φ2nghb) at the CV nodal point P
and at the nodes of the neighbors of this CV (see Figure 3.1) with the corresponding
coefficients a1P , a1nghb, a2nghb. SP is the point source/sink term for the variable φ1,
located at the CV node. The variables φ2 corresponds to the mixed derivatives ap-
pearing in (3.18). It is clear that in the first equation of (3.18) φ1 corresponds to v1

and φ2 corresponds to v2. In the second equation of (3.18) it is the other way around.
The system of linear equations obtained is solved most often by some iterative solver.
The size of the system is equal to the dimension number of the considered problem
times the number of CV nodes - because one writes such equation for each CV. Fur-
ther, the values at each internal wall are obtained through a linear interpolation of
the neighbor node values, what gives

φ1e = (1− f)φ1P + fφ1E , f = xe−xP

xE−xP
. (3.20)

Let us give the discretization of the convective and diffusive terms for the east (e)
wall for a regular orthogonal grids. Let us start with discretization of the convective
terms. We consider first order upwind differencing scheme (UDS). Other types of
discretization, i.e. higher order schemes, are also implemented but are not discussed
here and may, for example, be found in [15]. The convective term associated with the
east wall is (ρ v1e Ae)φ1e. If the CV wall is internal, i.e. the neighbor CV exists, the
convective term produces contributions to a1P or a1E

φe =

{
φ1P if v1e > 0 ⇒ a1P ←− (ρ v1e Ae) and a1E ←− 0
φ1E if v1e < 0 ⇒ a1P ←− 0 and a1E ←− (ρ v1e Ae)

. (3.21)

In the case of a Dirichlet boundary wall the value φ1e is known from the boundary
condition and the contribution is to the free term SP only: SP ←− (−ρ v1e Ae)φ1e.
Second order central difference scheme (CDS) is always used for discretization of the

diffusive terms. In case of the internal wall derivatives of the type
(

∂φ1

∂x

)

e
are approx-

imated as

(∂φ1

∂x

)

e
≈ φ1E − φ1P

xE − xP

, (3.22)

producing contributions to a1P ←− ηe

(
1

xE−xP

)

Ae and to a1E ←− −ηe

(
1

xE−xP

)

Ae

coefficients. If the east CV wall is a boundary one, first order of approximation is
used

(∂φ1

∂x

)

e
≈ φ1e − φ1P

xe − xP

. (3.23)

Then again one has a contribution to a1P ←− ηe

(
1

xE−xP

)

Ae and to SP ←− ηe

(
φ1e

xe−xP

)

Ae

for Dirichlet type of BCs, where φ1e is the known boundary value. For Neumann types
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of BCs the contribution is to the coefficient, associated with the additional unknown
in the boundary wall center, instead to SP directly. In fact, the normal derivative at
the east wall is approximated by formula (3.23), thus knowing its value, say φbound,
and the value at the center of CV, one can obtain φ1e from

φ1e ≈ φ1P + (xe − xP )φbound. (3.24)

Then the contributions looks the same as in the case of Dirichlet BCs, however now,
the contribution to the free term SP uses the wall values calculated from the previous
time step iteration.

3.4.2 Discretization of the mixed derivatives.

Second order scheme is also used for the mixed derivative terms. The symmetric
discretization, presented in the book of Wesseling (see, [50] and references therein),
is chosen. It assures, that when the solution has a certain symmetry, the discrete

approximation will also preserve this symmetry. The approximations of
(

∂φ2

∂x

)

n
, that

appears in first equation of the system (3.18), is performed in the following manner.
In the case of the internal wall

(∂φ2

∂x

)

n
≈ 1

2

(φ2NE − φ2NW

xNE − xNW

+
φ2E − φ2W

xE − xW

)

. (3.25)

Then the contributions to a2NE , a2NW , a2E , a2W take the following form:

a2NE ←− ηn

(
1

xNE−xNW

)

An, a2NW ←− −ηn

(
1

xNE−xNW

)

An,

a2E ←− ηn

(
1

xE−xW

)

An and a2W ←− −ηn

(
1

xE−xW

)

An.

If the north wall is a boundary one, the discretization looks as follows

(∂φ2

∂x

)

n
≈ 1

2

(φ2nE − φ2nW

xnE − xnW

+
φ2E − φ2W

xE − xW

)

. (3.26)

We treat the boundary conditions in the same way as in other diffusive terms. Again
we have contributions to coefficients a2E , a2W and Sp. For a Dirichlet boundary wall,
when φ2nW and φ2nE are known from the boundary condition, Sp takes the following
form

SP ←− ηn

( φ2nE

xNE − xNW

)

An − ηn

( φ2nW

xNE − xNW

)

An. (3.27)

Of course one can discretize the mixed derivatives explicit in time. In this case the

contribution to Sp is Sp ←−
(

∂φ2

∂x

)

n
. However, explicit treatment of those terms may

lead to the stability problems for certain class of problems. As it is discussed in [41],
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in constructing unconditionally stable difference schemes it is necessary to design the
schemes, where terms with viscous stresses in one way or another are referred to the
upper time–level. Therefore implicit treatment is recommended.

3.4.3 Discretization of the pressure correction equation (PCE).

For projection type methods, presented in Section 3.2, after the solution of momen-
tum equations, the velocity v∗ does not satisfy the continuity equation. Therefore,
using this equation one searches corrections of velocity in order the latter to fulfill
mass balance. Let us write the corrected velocities as

v = v∗ + v
′

, (3.28)

where v∗ is the solution of the momentum equations on the current step and v
′

is
velocity correction that has to be found. Let us discuss derivation of PCE on the ex-
ample of SIMPLE algorithm. The main assumption on this algorithm is that velocity
and pressure corrections are related by

v
′

1P = − 1

a1P

(p
′

e − p
′

w)δy. (3.29)

However, after solution of PCE we obtain the pressure corrections at the CV nodes,
but not at the walls, as (3.29) requires. Let us then consider an imaginary CV, having
a node at the wall e of basic CV. The east and west walls of this imaginary CV fall
then on the points P and E. If we apply the same consideration for this imaginary
CV, we obtain the same relation, but written in a way we need it

v
′

1e = − 1
ā

v1
P,e

(p
′

E − p
′

P )δy, āv1
P,e = (1− f)av1

P + fav1
P,E, f = xe−xP

xE−xP
. (3.30)

In the latter formula, the coefficient āv1
P of the imaginary CV is linearly approximated

by (3.20) using the values aP of the ”representative” CVs with nodes P and E. The
upper script v1 is used to distinguish from which equation of discretized momentum
equations aP comes from. The PCE is derived from the continuity equation (3.15),
the expression for the velocity corrections (3.28), and the relations (3.30) between
the velocity corrections and the pressure correction. One starts by integrating the
continuity equation (3.15) within the representative CV (its volume is δV = δxδy)

∫ ∫

CV

∂v1

∂x
dxdy +

∫ ∫

CV

∂v2

∂y
dxdy = 0.

Applying the Gauss divergence theorem (Theorem 2 from Section 2.1, page 16) to the
integrals in the left-hand side of the equation above, one obtains

(

v1eδy − v1wδy
)

+
(

v2nδx− v2sδx
)

= 0.
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The latter relation is valid both for the continuous variables and for the grid-function
of the numerical solution for the velocities. Therefore, one can express the velocity
components there through their initial approximations and their further corrections,
according to (3.28). We get

(

v
′

1eδy − v
′

1wδy
)

+
(

v
′

2nδx− v
′

2sδx
)

=

−
{(

v∗
1eδy − v∗

1wδy
)

+
(

v∗
2nδx− v∗

2sδx
)}

.
(3.31)

The expression closed in the contour brackets in the right–hand side of (3.31) is
the mass source term. This is the mass disballance within the CV for the velocity
approximation, that we have obtained after the solution of the momentum equations.
On the other side, the continuity equation (3.15) requires this mass disballance to be
zero. Thus, we look for such velocity corrections, which make this mass disballance
to vanish. We will further consider in details the calculation of the mass source
term. In the following equation we just denote it by MST . The equation itself is
obtained from (3.31) by replacing in its left-hand side the velocity corrections by the
expressions relating them to the pressure corrections, like (3.30). Thus we obtain

[

− 1
ā

v1
P,e

(p
′

E − p
′

P )(δy)2 + 1
ā

v1
P,w

(p
′

P − p
′

W )(δy)2

]

+
[

− 1
ā

v2
P,n

(p
′

N − p
′

P )(δx)2 + 1
ā

v2
P,s

(p
′

P − p
′

S)(δx)2

]

= −MST.

This equation gives the discretization coefficients for the PCE, which are

aE = − 1
ā

v1
P,e

(δy)2, aW = − 1
ā

v1
P,w

(δy)2,

aN = − 1
ā

v2
P,n

(δx)2, aS = − 1
ā

v2
P,s

(δx)2,

aP = −(aE + aW + aN + aS).

(3.32)

All averaged coefficients in (3.32), coming from the discretization of the momentum
equations, are calculated through linear interpolation similar to the one in (3.30).
One sees from (3.32) that PCE is a Poisson type equation. We need also to add
to the PCE coefficients (3.32) the free term, which is the mass source term taken
with a negative sign (see (3.31)). As it was mentioned earlier, the values at the walls
are linearly interpolated through the nodal values (see (3.20)). So, the wall values
for the velocities, used in (3.31) to calculate the mass source term, are also linearly
interpolated. Further in (3.32) we linearly interpolate the values of the aP coefficients
from the momentum equations. If the pressure and the velocity calculations are per-
formed on the same grid, this kind of interpolation creates non-physical oscillations
(see e.g. [33]). To overcome the problem, a special kind of interpolation for the wall
velocities ([35]) in the mass source term has to be applied. In order to find such cell-
face velocity approximations, which - after putting them in the right - hand side of
(3.31) - do not cause non-physical oscillations, the requested interpolation should take
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into account not only the velocity values in the neighboring nodes, but the pressure
also. We will derive the expression for the cell-face velocity v1e on the east wall (it is
”starred” in (3.31), here we skip the star). We consider the representative CV with
a point P as a center and its east neighbor denoted by E. We use our usual notation,
only adding the corresponding superscripts P or E to designate the CV the corre-
sponding quantity belongs to. Let us start the derivation from the v1−momentum
equations in these CVs, but writing separately in the expressions for the source terms
SP

P and SE
P those parts, which contain the pressure:

v1P = v1P
P =

1

aP
P

[

−
∑

aP
nghbv

P
1nghb + F P

1 − (pP
e − pP

w)δy

]

, (3.33)

v1E = v1E
P =

1

aE
P

[

−
∑

aE
nghbv

E
1nghb + F E

1 − (pE
e − pE

w)δy

]

. (3.34)

We also know that v1e is a linear interpolation (see (3.20)) from vP
1P and vE

1P , i.e.:

v1e = (1− f)vP
1P + fvE

1P , f = xe−xP

xE−xP
. (3.35)

By inserting (3.33) and (3.34) in (3.35), one obtains:

v1e = (1− f)

{

1
aP

P

[

−∑
aP

nghbv
P
1nghb + F P

1

]

− δy

aP
P

(pP
e − pP

w)

}

+

f

{

1
aE

P

[

−∑
aE

nghbv
E
1nghb + F E

1

]

− δy

aE
P

(pE
e − pE

w)

}

.

Let us write the last equation as

v1e = (1− f)

{

1
aP

P

[

−∑
aP

nghbv
P
1nghb + F P

1

]}

+f

{

1
aE

P

[

−∑
aE

nghbv
E
1nghb + F E

1

]}

−δy

[

(1− f) 1
aP

P

(pP
e − pP

w) + f 1
aE

P

(pE
e − pE

w)

]

.

(3.36)

Note, that now the last expression in the right–hand side of (3.36) is the linear
interpolation averaging (taken at the point e) of the quotient of the pressure difference
and the aP coefficient, i.e

(1− f)
1

aP
P

(pP
e − pP

w) + f
1

aE
P

(pE
e − pE

w) =

(
pe − pw

aP

)

e

.

Now, taking the ideas from the staggered grid approach (see [35]), the pressure dif-
ference at the east face is replaced by the difference of the pressures taken from the
neighboring cell centers, i.e. (pe − pw)e = pE − pP . One can then write the last term
in (3.36) as

−δy

[

(1− f) 1
aP

P

(pP
e − pP

w) + f 1
aE

P

(pE
e − pE

w)

]

=

−δy(pE − pP )

(

1
aP

)

e

= −δy(pE − pP )

[

(1− f) 1
aP

P

+ f 1
aE

P

]

.

(3.37)
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In a similar way we transform the first two terms in the right–hand side of (3.36).
We have

1
aP

P

[

−∑
aP

nghbv
P
1nghb + F P

1

]

=

1
aP

P

[

−
∑

aP
nghbv

P
1nghb + F P

1 − (pP
e − pP

w)δy − aP
Pv1P

︸ ︷︷ ︸

=0, from (3.33)

+(pP
e − pP

w)δy + aP
P v1P

]

.

So, for the first term in the right–hand side of (3.36), we finally get

1

aP
P

[

−
∑

aP
nghbv

P
1nghb +F P

1

]

=

[

vP
1P +

δy

aP
P

(pP
e − pP

w)

]

=

[

v1P +
δy

aP
P

(pP
e − pP

w)

]

. (3.38)

For the second term there, following the same sequence of derivations, we write

1

aE
P

[

−
∑

aE
nghbv

E
1nghb +F E

1

]

=

[

vE
1P +

δy

aE
P

(pE
e − pE

w)

]

=

[

v1E +
δy

aE
P

(pE
e − pE

w)

]

. (3.39)

Now, substituting (3.37), (3.38) and (3.39) in (3.36), we get the required approxima-
tion for the east cell-face velocity, i.e.

v1e = (1− f)
[

v1P + δy

a
v1,P

P

(pP
e − pP

w)
]

+ f
[

v1E + δy

a
v1,E

P

(pE
e − pE

w)
]

−δy(pE − pP )
[

(1− f) 1

a
v1,P

P

+ f 1

a
v1,E

P

]

, f = xe−xP

xE−xP
.

(3.40)

In (3.40) we have added to the coefficient aP another upper script v1 in order to
designate the discretization of which momentum equation is referred to. Following
the same style of derivation, one obtains similar approximations for each of the cell-
face velocities.

3.4.4 Discretization of discrete divergence and gradient op-

erators.

In previous Section 3.4.3 we have presented how to avoid non physical oscillations
when one uses projection type methods with collocated grids. In fact central difference
approximations for discrete gradient BT and discrete divergent B operators, based on
2h and h respectively, are used. Here h denotes general space sizes, so h = δx, h = δy
for discretization in x−, y−, directions respectively. For more detailed description see
[13]. In the case of the fully coupled solvers the system of the balance equations (3.15,
3.16), represented in the matrix form (3.2), is solved simultaneously for velocity and
pressure components. This means that the discretization of A, BT and B blocks of
(3.2) has to be performed. The way the block A is discretized was already presented
in the previous Sections, where discretization of convective and diffusive terms, as
well as mixed derivatives were discussed. The remaining part is a discretization of
BT and B blocks. Let us denote by BT

P and BP local discrete gradient and divergence
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operators, where subscript P indicates that operators are applied locally in a CV with
center at point P . As illustrated in [13] double sided discretization given by

BT
P =

( pE−pW

2δx
pN−pS

2δy

)

(3.41)

and
BP =

(
v1E−v1W

2δx
, v1N−v1S

2δy

)
(3.42)

may lead to a checkerboard pressure field. This can be avoided by using one sided
discretization, forward differences for divergence and backward differences for gradient
operators, or the other way around. The latter gives

BT
P =

( pE−pP

δx
pN−pP

δy

)

(3.43)

and
BP =

(
v1P −v1W

δx
, v2P−v2S

δy

)
, (3.44)

and is used in our calculations. The weak point of such discretization is that the
accuracy of this method is of first order only, what was shown in [16].
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Chapter 4

Approximation of the constitutive
equation.

In this Chapter, we discuss the approximation techniques of the integral constitutive
equation of general type presented in Section 2.4.1. In fact, the use of the integral
constitutive equations instead of a differential models has been comparatively rare.
The reason for that is certainly not a lack of interest, since often theories of memory
fluids yield constitutive equations of integral type (Doi and Edwards [9]), but the
numerical complexities associated with them. In [24], a review of different techniques
used for solving complex flows of viscoelastic fluids described by the constitutive
models of integral type is performed. Here, two methods, also reviewed in [24],
are explained: First, a Lagrangian method, namely Backward Lagrangian Particle
Method (BLPM), is presented. It combines the computations of Eulerian velocity and
pressure fields with the Lagrangian evaluation of the strain history along the particle
paths. Second, an alternative method, called Deformation Field Method (DFM), is
discussed. In this method, calculation of the extra stress tensor is performed in the
Eulerian reference frame. The discussion of a particular discretization of the memory
integral, given by equations (2.38, 2.43), in order to decrease the storage requirements
and the computational time is presented.

4.1 Backward Lagrangian Particle Method (BLPM).

The theory of viscoelasticity says, that the stress at certain fluid position depends
on the history of that fluid element [9]. To handle this a Lagrangian method, the
Backward Lagrangian Particle Method (BLPM) [49], has been formulated. The extra
stress tensor T, given by the integral constitutive equation (2.38 or 2.43), is calcu-
lated along the trajectories of Lagrangian particles that are convected by the flow.
Therefore this is the most natural way of calculating such memory integrals. Since
a different time levels will be involved in further discussions, before going to the
procedure the BLPM follows, let us introduce some nomenclature. Let t denotes the
current time of simulation process and t′ denotes the past times, i.e. t′ < t. In BLPM,
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positions of the particles at current time t are specified a priori, and located at each
mesh point, i.e. at the center of each control volume. Then, the particle trajectories
leading to these locations are calculated by tracking backward in time. It means that
the particle trajectories leading to the centers of control volumes change from one
time step to the next, so usually different Lagrangian particles arrive in those grid
nodes as time evolves. To describe this process mathematically, let us first denote
by r(t) the initial particle positions from which the backward tracking starts. The
particle trajectory is described by the following kinematic equation

Dr

Dt
= v(r, t). (4.1)

So, for a given arbitrary particle position r(t) of the flow domain, at the current time
t, the particle position at past times t′ < t can be obtained by integration backward
in time as

r(t′) = r(t)−
∫ t

t′
v(r(t), t)dt, (4.2)

where v(r(t), t) denotes the velocity of particle sampled at r(t) at time t. Let us write
the same procedure in a numerical manner. For that, suppose for a moment, that
Nd is the number of backward steps necessary to perform in order to reach the initial
particle position (the choice of Nd is discussed in Section 4.5). Next, let τ = tn+1− tn

denote the time step used in simulations, tn+1 will now denote the current time and
tn−Nd denote the time at which initial particle position is reached. Note, that since the
viscoelastic material do not remember all its deformation history, what was discussed
in Section 2.4.1, tn−Nd does not have to be equal to the starting time of simulations
t = 0. Finally, (4.2) transforms to

r(tn−Nd) = r(tn+1)−
n∑

i=n−Nd

∫ ti+1

ti
v(r(ti+1), ti+1)dt, (4.3)

what corresponds to calculating Nd integrals, where the integral for number i+1
uses the velocity v(r(ti+1), ti+1) taken along the particle trajectory between positions
r(ti+1) and r(ti). This requires storing all the intermediate Nd velocity fields between
the times tn−Nd+1 and tn+1. Additionally, at each time step, the array containing
of the Nd velocity fields has to be updated in the way, that the oldest velocities are
annihilated, the fields 1 ... Nd − 1 become fields 2 ... Nd, and the first position is
filled with the current velocity field v(r(tn+1), tn+1). The backward tracking has to
be performed for a certain number of the particles in the flow. This number coincides
with the number of grid nodes (control volumes). At the initial stages of the flow,
when the current time is smaller than the total tracking time τNd, tracking back is
stopped at time t = 0. It means that the tracking is performed until reaching the
time t = min(0, τNd). Moreover, it may happen that, due to the numerical errors, the
particle leaves the domain boundary. In such cases, since the particle is not allowed to
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leave the boundary, the tracking back is stopped and one assumes that such particle
sticks to the wall at the certain position, and this position is considered as the initial
one. Another possibility is, when during the backward tracking inflow is reached. In
such cases tracking is stopped and we assume, that new undeformed particles flow
into the domain. In both integral constitutive equations, describing the elastic stress
of concentrated (2.38) and dilute (2.43) polymer solutions, and presented in Sections
2.4.2 and 2.4.3 respectively, deformation tensor E (equation (2.32)) plays a crucial
role. In order to approximate memory integrals (2.38 and 2.43), the evolution equa-
tion for the deformation tensor E, given by the equation (2.33), has to be first solved.
Two possible ways to calculate it, in contents of the Lagrangian method, will be now
discussed. First, the tracking back is performed the initial particle position r(tn−Nd) is
found. One way to calculate E is following. After finding the initial position r(tn−Nd),
the evolution equation (2.33), which in coordinate–wise manner takes following form
(2D description for simplicity)







DE11(t,t′)
Dt

= ∂v1

∂x1
E11(t, t

′) + ∂v1

∂x2
E21(t, t

′)
DE12(t,t′)

Dt
= ∂v1

∂x1
E12(t, t

′) + ∂v1

∂x2
E22(t, t

′)
DE21(t,t′)

Dt
= ∂v2

∂x1
E11(t, t

′) + ∂v2

∂x2
E21(t, t

′)
DE22(t,t′)

Dt
= ∂v2

∂x1
E12(t, t

′) + ∂v2

∂x2
E22(t, t

′)

(4.4)

is solved along the particle paths using as a initial condition En−Nd
taken at r(tn−Nd).

The above system of equations is solved using either forward explicit Euler formula or
explicit second order Runge-Kutta method. Although we need only the initial condi-
tion to be able to calculate deformation E tensor, similarly as in backward tracking,
we have to store Nd deformation fields, because we need the initial condition at each
time step of the simulation. We update those fields in the same way as the velocity
fields. The velocity gradients (∇v(ti))T , that appear in (4.4), can be updated from the
velocity fields v(ti) or, as in our case, can be treated in the same way as deformation
and velocity fields, i.e. calculated at each time step and stored in arrays. This means
additional storage, but it safes a lot of time, since the approximation formula needed
for all intermediate tracking points (indicated in Figure 4.1) is quite expensive. Let

•
•

••

Figure 4.1: A representative backward particle tracking.
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us now give small modification of the above procedure. In fact, one does not need
to calculate the evolution equation (2.33) along all intermediate points of particle
path. Since once deformed particle remembers its deformation, it is enough to do the
following. First, the evolution equation (2.33) is solved by performing only one step
backward. At this point, as an alternative, one can use an equivalent Eulerian form
of (2.33)







∂E11(x,t,t′)
∂t

+ v1
∂E11(x,t,t′)

∂x1
+ v2

∂E11(x,t,t′)
∂x2

= ∂v1

∂x1
E11(x, t, t′) + ∂v1

∂x2
E21(x, t, t′)

∂E12(x,t,t′)
∂t

+ v1
∂E12(x,t,t′)

∂x1
+ v2

∂E12(x,t,t′)
∂x2

= ∂v1

∂x1
E12(x, t, t′) + ∂v1

∂x2
E22(x, t, t′)

∂E21(x,t,t′)
∂t

+ v1
∂E21(x,t,t′)

∂x1
+ v2

∂E21(x,t,t′)
∂x2

= ∂v2

∂x1
E11(x, t, t′) + ∂v2

∂x2
E21(x, t, t′)

∂E22(x,t,t′)
∂t

+ v1
∂E22(x,t,t′)

∂x1
+ v2

∂E22(x,t,t′)
∂x2

= ∂v2

∂x1
E12(x, t, t′) + ∂v2

∂x2
E22(x, t, t′),

(4.5)

where x denotes the centers of control volumes. After that backward tracking is per-
formed, as discussed above. Then, forward tracking starts, but despite recalculating
the deformation tensor E at each intermediate point of the particle path, one just
collects already known values. This will reduce the computational time, since one
does not have to approximate the velocity gradients at those intermediate points and
the evolution equation (2.33) for the deformation tensor E is solved once along each
particle path between the time levels t − τ and t, and not Nd − 1 times as in the
original method. It should be pointed out, that as it was mentioned in [37], and up to
the knowledge of author, no one has ever tried to use the technique of recalculating
the particle trajectories at each time step. In [47, 48] authors use BLPM to calculate
equation (2.33), however the integral (2.43) is solved with use of Deformation Field
Method.

4.2 Deformation Field Method (DFM).

The main assumption of the Deformation Field Method (DFM) [36, 37], is that the
deformation history exhibited by the particle is described by a finite number of de-
formation fields which are convected and deformed by the flow. Such assumption
leads to the loss of locality of the stress. Here, the locality means that the stress
at certain fluid particle depends only on the previous values evaluated at that fluid
element. However, DFM removes the need of recalculating the particle paths, what
gives a huge advantage in computational time in comparison with the BLPM. As it
was mentioned, one introduces tensor fields E(x, t, t′) where the spatial position x
is taken into account. Similar as in equation (4.5) x denotes the centers of control
volumes. At each instant of time, the deformation field is created and labeled by
the time of creation t′. As time evolves this field is transported and deformed by
the flow, obeying equation (4.5). All the information about the history of the flow is
now stored in the deformation fields E(x, t, t′) at each grid point x. This allows us to
calculate the extra stress tensor, given by the general form (2.35), at the current time
t and each grid point of the computational domain x, by integrating the weighted
contributions of all deformation fields that have been created so far. For more de-
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tails we refer interested reader to [36, 37]. After calculating the deformation tensors
E, obeying the evolution equation (2.33), it is obvious how to calculate Finger strain
tensor B (2.45) appearing in the integral Oldroyd B model (2.43). More attention has
to be paid to the partial orientation tensor Q (2.37), which describes the orientations
of the polymers in concentrated polymer solutions, and appears in the Doi Edwards
integral constitutive equation (2.38).

4.3 Calculation of the partial orientation tensor.

As it was already presented Section 2.4.2, the partial orientation tensor Q(x, t, t′)
depends on the deformation tensor E(x, t, t′), either calculated with BLPM, or with
DFM respectively. Only the meaning of the coordinate x will be slightly different in
the both cases. For BLPM it means the points on particle trajectory, where for DFM
x corresponds to grid points. To simplify notation, we introduce two functions

g(x, t) =
E(x, t, t′)u(t′)

‖ E(x, t, t′)u(t′) ‖ , (4.6)

f(x, t) = E(x, t, t′)u(t′). (4.7)

In this notation Q(x, t, t′) (equation (2.37)) has the following form

Q(x, t, t′) = 〈g(x, t)⊗ f(x, t)〉0
1

〈‖ f(x, t) ‖〉0
. (4.8)

To evaluate the ensemble average over the isotropic state, M vectors (i.e., uj(t
′), j =

1, ..., M.) are distributed such, that they cover the unit circle as homogeneously as
possible. From our experience, it is enough to take M = 40. In the discrete notation
equations (4.6) and (4.7) transforms to

gj(x, t) =
E(x, t, t′)uj(t

′)

‖ E(x, t, t′)uj(t′) ‖
, (4.9)

fj(x, t) = E(x, t, t′)uj(t
′). (4.10)

Finally, the partial orientation tensor Q, given by equation (4.8), is written in the
form, that is used in simulations as

Q̂(x, t, t′) ≈ 1

M

M∑

j=1

[gj(x, t)⊗ fj(x, t)] · 1
1
M

∑M

j=1 ‖ fj(x, t) ‖
. (4.11)
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4.4 Approximation of the extra stress tensor.

Since it has already been presented in previous Sections how to calculate the deforma-
tion E tensor and the partial orientation Q tensor, let us now discuss how to perform
the discretization of the memory integral. In the approximation, the general integral
constitutive equation, given by equation (2.35), is replaced by a sum as

T̄(x, t) =
∞∑

k=0

Wkf(Ek(xk, t, t
′
k)), (4.12)

where f(Ek(xk, t, t
′
k)) = GeQ̂k(xk, t, t

′
k) and f(Ek(xk, t, t

′
k)) = ηp

τ2
Oldr

Bk(xk, t, t
′
k) in case

of concentrated (without the chain stretch) and dilute polymer solutions respectively.
The tensor function f is calculated at all past times t′k and appropriate points xk.
Again, as discussed in previous Section, in the case of the BLPM these are the points
of the particle path, while in the DFM xk coincide with centers of the control volumes,
i.e. xk = x. So, the function f(Ek(xk, t, t

′
k)) contribute to the extra stress tensor T̄

at the current time t and all grid points x. Those contributions are weighted by

Wk = exp

(

−(∆k · τ)

τrelax

)

, k = 1, 2, .., (4.13)

with a general relaxation time denoted by τrelax. In particular, it denotes the Doi
Edwards relaxation time τrelax = τd in equation (2.38) and the relaxation time
τrelax = τOldr from the integral Oldroyd B model (2.43). Time increment ∆k in-
dicates that non–uniform time integration is also allowed, and a possible choices of
such integration will be discussed in next Section. Note, that the weights Wk decrease
when k increase, so it is natural to truncate the infinite summation to the value, say
Nd. Then, inserting the truncated approximation to (4.12) gives

T̄(x, t) =

Nd−1∑

k=0

Wkf(Ek(xk, t, t
′
k)). (4.14)

The weights Wk are position independent, so they can be calculated in advance of
the simulation, and they have to be calculated only once. Finally, if f(Ek(xk, t, t

′
k))

is bounded and the truncation (4.14) is performed at the time that is several times
larger than the relaxation time τrelax, then the error made by truncation should be
small since the memory function decays exponentially.

4.5 Non–uniform discretization of the memory in-

tegral.

In this Section we will present and discuss the approximation of the integral con-
stitutive equation (4.14) based on a non–uniform time increment. To calculate the
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approximation of the memory integral (2.35), one would ideally have to know all the
deformation fields E(xk, t, t

′
k) for all past times t′ 6 t. Then, the most naturally would

be to use a uniform time increment ∆k = 1 in the approximation (4.14) of the integral
constitutive equation, which coincide with the time step used in simulations. How-
ever, in many cases viscoelastic fluids consist of long polymers, what results in large
relaxation times. For such polymers the above mentioned uniform time discretization
(∆k = 1) is not suitable due to the memory requirements (too many deformation
fields would have to be stored) and the computational time needed to calculate those
approximations. Therefore, following the ideas introduced by Peters et al. in [37],

Figure 4.2: Figure presents which deformation fields are annihilated at appropriate
time iteration. Black squares denote deformations used in approximation of inte-
gral constitutive equation, red one denote shifted deformation fields after time step
and green circles denote annihilated deformations, which later are used to store the
youngest one.

a non–uniform time increment is performed. Now, the past times t′ 6 t are divided
into I intervals with increasing time increment. Each interval i = 0, .., I − 1 con-
tains a number of Ni fields with a time step 2iτ . Such discretization allows to keep
the total number of deformation fields that have to be stored (Nd) in a reasonable
orders. It also allows to span the memory of viscoelastic fluids possessing long re-
laxation times. In Figure 4.2, a schematic picture shows how it is realized. Assume
for a moment, that each interval contains of 4 deformations, as indicated in Figure
4.2. In general, one can choose an arbitrary number of deformation tensors in each
such interval. For approximation of integral (4.14), it is enough to have only one
deformation per interval. This means, that in the situation when two deformations
fall into one interval, the older remains and the younger is annihilated. The latter is
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then used to store the youngest deformation E0. In our approach the history fluid
exhibits is divided in 10 intervals. Each interval contains of 10 deformation fields with
equidistant time step. Therefore the number of stored deformation tensors per grid
node Nd = 100. The time step for the youngest deformations is the same as the time
step used in the calculations. Then the time steps for the older fields are obtained
by doubling the time steps from the previous intervals. Since the weights decreases
for older deformation fields, the error introduced with such treatment of the integral
should be relatively small. To say more definite about this error, we will also perform
the simulations with one equidistant time step used for all deformations, which is
equal to the time used in the simulations. The results obtained by such uniform and
non–uniform discretization of the memory integral will be compared. It is clear that
both, calculation time and memory requirements are more demanding in the former
case. Taking for example τrelax = 2 and time step τ = 10−3, one would have to store
Nd = 104 deformations in the case of uniform time discretization, while in the case of
non–uniform time discretization Nd = 102 spans the same history.

4.6 Calculation of the chain stretch.

The above discussions concern two particular methods (BLPM and DFM) one can
use in calculating approximations to the memory integrals of the general form (2.35),
that has been presented in Section 2.4.1. Therefore, it can be applied to all models of
such general form, also to the ones considered in this thesis, the integral Doi Edwards
and the integral Oldroyd B models. Since extension of the original Doi Edwards
model, by introducing the stretch of chains, is also considered here, let us finally
discuss how to solve the evolution equation for the stretch parameter λ. Its evolution
equation (2.40), presented in Section 2.4.2, is solved via the Backward Lagrangian
Particle Method, discussed in Section 4.1. At every grid point and every time step
of simulations, the trajectory of the particle that arrives at those points is predicted,
by integrating equation (4.1) one step τ in time. Then, at the starting points of the
trajectory the initialization of (∇v)T , S and λ is performed, by approximation of
the appropriate values stored at the nodal grid points and the corresponding time
level t − τ (it means that one step backward is performed). Then, the ordinary dif-
ferential equation (2.40) is integrated along the particle trajectories to obtain the
solution at the nodal points and current time t. At this point, similarly as in calcula-
tion of E deformation tensor, one can solve equation (2.40) in an Eulerian reference
frame. Equation (2.40) has to be first transformed by splitting material derivative
into partial derivative and convective term, i.e. Dλ

Dt
= ∂λ

∂t
+ (v · ∇)λ. Finally, the ap-

proximation of the extra stress tensor (4.14), according to equation (2.42), is given by

T̄(x, t) = fλ2
∞∑

k=0

Wkf(Ek(xk, t, t
′
k)). (4.15)

54



Approximation of the constitutive equation.

4.7 Few words about additional storage and ap-

proximation used in BLPM.

Our code is organized in the way, that we store all the values needed to calculate the
continuity (3.15) and the momentum (3.16) equations, i.e. velocities (v1, v2), pres-
sure (p), extra stress tensor (T) at the center of control volumes. In Section 4.1 and
Section 4.2 we have discussed how BLPM and DFM are performed. In both cases
Nd number of deformation tensors (E1,..,Nd

) have to be stored at each grid node. In
the case of BLPM additional storage of the velocities ((v1, v2)1,..,Nd

) is needed to be
able to perform backward and forward tracking of the particles. At this point one has
to approximate velocities at the intermediate points of tracking, what is indicated in
Figure 4.1. Also we have to approximate the values of collected along the particle tra-
jectories deformation fields exhibited by the particle. Having all the quantities stored
at the centers of control volumes, first we use bilinear interpolation to obtain proper
values at the corners of control volumes, and then we apply bilinear approximation,
using those values, to get the intermediate velocities and deformations. In 3D case
trilinear interpolations and trilinear approximations are used instead.
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Chapter 5

Preconditioning techniques for the
saddle point problems.

Chapter 5 concerns the solution techniques for the coupled system of partial differen-
tial equations, which arise from implicit discretization of the governing equations pre-
sented in Chapter 2. In particular, the main focus here is on generalized–Newtonian
fluids. After discretization and linearization of the given equations, one gets a two by
two block system (3.2), already presented in Section 3.2, called saddle point problem.
It is written in the following form

(
A BT

B 0

) (
v
p

)

=

(
f
0

)

.

As already indicated in Section 3.1, the block matrix BT denotes the discrete gra-
dient operator, B the discrete divergence operator. The block matrix A consists of
contributions from discretization of the time derivative, as well as from the viscous
and the convective terms from the momentum equations. Contrary to Newtonian
fluids, where the momentum equations are coupled through the convective term and
pressure, in the case of the generalized Newtonian fluids additional strong coupling
through the viscous term occur. Since the given system of equations describing such
fluids is too complex to perform an analysis of the solution techniques, some simpli-
fications have to be done. First, since most of the viscoelastic materials have large
viscosities and the slow flow regimes are considered here, one can drop the convec-
tive terms from the momentum equations. It means, that describing viscosity, for
example, by the Carreau model (see Section 2.3 and the explanation of this model
there), in the limiting case for very slow flows, i.e. γ̇ → 0, the given equations be-
come the Stokes equations. Moreover, we assume that A is symmetric and positive
definite. Further, let block B has a full rank and is conjugated with BT . However,
the above assumptions are in general not true, in fact A may unsymmetric, and block
B may posses rank deficiency. To be effective in solving the above system, good
preconditioning techniques are required. First, we will present an analysis of a block
diagonal preconditioner to A, in the context of the coupled momentum projection
type method presented in Section 3.2.1. In particular, an interesting question for us
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is how the mixed derivatives appearing in simulations of the generalized-Newtonian
fluids can influence the process of iterative solution. Next, different preconditioners
for unreduced, transformed and untransformed, system (3.2) are given and discussed.
In the considerations below we restrict ourself to 2D case (3D situation is a simple
extension).

5.1 Preconditioners for coupled momentum pro-

jection method.

The convergence rate of iterative methods depends on spectral properties of the coef-
ficient matrix. The idea of applying a preconditioner is to transform a linear system
into one that gives the same solution, but has better spectral properties at the same
time. For instance, if D approximates the coefficient matrix A in some way, the
transformed system

D−1Ax = D−1b (5.1)

has the same solution as the original system Ax = b, but the spectral properties
of its coefficient matrix D−1A may be more favorable. In projection–type meth-
ods, presented in Sections 3.2 and 3.2.1, preconditioners are applied at two places
of the projection–type algorithm. First preconditioner is applied to the matrix A
(from equation (3.2)), when solving intermediate velocity field, and second one for
discretized Poisson–like operator in pressure correction equation. Moreover, one can
solve the momentum equations iteratively for each velocity component separately by
decoupling them, i.e. by discretizing the cross derivatives explicitely. In such case,
the preconditioners are applied to each diagonal subblock of matrix A. When the
Stokes equations with constant viscosity (i.e. for Newtonian fluids) are considered,
the block matrix A from equation (3.2) takes the following form

A =

(
A11 0
0 A22

)

, (5.2)

and preconditioner of it can be written as a block diagonal one

D =

(
D11 0
0 D22

)

, (5.3)

where D11, D22 are preconditioners to blocks A11, A22 respectively. Choosing suffi-
ciently close D11, D22 to A11, A22, one can cluster eigenvalues of matrix A around
the unity number. Since many viscoelastic fluids exhibit variations of viscosity (see
Section 2.3), let us first analyze the influence of the terms corresponding to mixed
derivatives. As it was already discussed in Chapter 3, in such cases matrix A takes
the full block form

A =

(
A11 A12

A21 A22

)

, (5.4)
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where off–diagonal blocks A12, A21 correspond to terms ∂v1

∂x2
, ∂v2

∂x1
from the momentum

equations (3.16). To see the influence of those blocks, let us first assume that blocks
A12, A21 are nonsingular, and again block diagonal preconditioner (5.3) to A is applied.
Further, we assume that [x, y] 6= 0 is an eigenvector and ξ is the corresponding
eigenvalue. Following the approach from [4], for the analysis of the preconditioner
(5.3) we must analyze the eigenvalues of

D−1A =

(
D11 0
0 D22

)−1 (
A11 A12

A21 A22

)

, (5.5)

what is equivalent to

(
Ã11 Ã12

Ã21 Ã22

) (
x
y

)

= ξ

(
x
y

)

, (5.6)

where Ãij = D−1
ii Aij, i, j = 1, 2. A computation shows, that

{
Ã11x + Ã12y = ξx

Ã21x + Ã22y = ξy
⇔

{
Ã11x + Ã12y = ξx

x = ξÃ−1
21 y − Ã−1

21 Ã22y.

Substituting second equation into the first one, we obtain

ξÃ11Ã
−1
21 y − Ã11Ã

−1
21 Ã22y + Ã12y = ξ2Ã−1

21 y − ξÃ−1
21 Ã22y. (5.7)

Multiplying above equation form left by yT Ã21 we obtain

ξ2 ‖ y ‖2 −ξyT
(

Ã22 + Ã21Ã11Ã
−1
21

)

y + yT
(

Ã21Ã11Ã
−1
21 Ã22

)

y − yT
(

Ã21Ã12

)

y = 0.

(5.8)

Above results are put together in a theorem.

Theorem 3 Let D =

(
D11 0
0 D22

)

be a preconditioner to A =

(
A11 A12

A21 A22

)

that

comes form discretization of the momentum equations (3.16). Then the eigenvalues

of D−1A satisfy ξ =
a±
√

a2−4(b−c)

2
where a =

yT (Ã22+Ã21Ã11Ã−1
21 )y

‖y‖2 ,

b =
yT (Ã21Ã11Ã−1

21 Ã22)y

‖y‖2 , c =
yT (Ã21Ã12)y

‖y‖2 and [x, y] is an eigenvector of D−1A.

�
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The proof is following from the above derivations. Above theorem shows, that even
the choice D11 = A11 and D22 = A22 will not cluster eigenvalues around unity. In
such case a = 2, b = 1 and ξ = 1 ± √c, and it shows influence of the off–diagonal
blocks on eigenvalue distribution.

However, at this point appears the question if such block diagonal preconditioners
are good enough for the generalized Newtonian problems. To answer this question let
us first define, following [41], the standard Hilbert space H(Ω) with the dot product
and norm

(u, v) =

∫

Ω

u(s)v(s)ds, ‖u‖ = (u, u)
1
2 .

For the 2D vectors u,v the Hilbert space H2 = H⊗H with the dot product

(u,v) = (u1, v1) + (u2, v2)

is introduced. Since we are interested here in understanding the influence of cross
derivatives on iterative process, let us now analyze the divergence operator Dvv =
−∇ · σ (we use similar notation as in Sections 3.1 and 3.2) on the set of vector
functions v equal zero on ∂Ω. For simplicity, we assume that σ represents the Carreau
constitutive equation (2.22). Note, that operator Dv can be written in the matrix
form

Dv =

(
N11 N12

N21 N22

)

,

where
N11v1 = − ∂

∂x1
(2ν ∂v1

∂x1
)− ∂

∂x2
(ν ∂v1

∂x2
)

N12v2 = − ∂
∂x2

(ν ∂v2

∂x1
)

N21v1 = − ∂
∂x1

(ν ∂v1

∂x2
)

N22v2 = − ∂
∂x1

(ν ∂v2

∂x1
)− ∂

∂x2
(2ν ∂v2

∂x2
)

and ν = η(γ̇)
ρ

denotes the kinematic viscosity. In [41] authors have showed, that

(Dvv,u) = (v, Dvu), i.e. operator Dv = D∗
v > 0 is positive and self–adjoint. More-

over, they have showed that operator Dv and Laplace–like operator Lv = −∇·(ν∇v),
which can be written as

L =

(
L11 0
0 L22

)

,

where
L11v1 = − ∂

∂x1
(ν ∂v1

∂x1
)− ∂

∂x2
(ν ∂v1

∂x2
)

L22v2 = − ∂
∂x1

(ν ∂v2

∂x1
)− ∂

∂x2
(ν ∂v2

∂x2
),

are energy equivalent, i.e. ν(Lv,v) ≤ (Dvv,v) ≤ 2ν(Lv,v). This result shows,
that the block diagonal preconditioner (5.3) applied to the system (5.4), arising after
linearization and discretization of the momentum equations (3.16), is a good choice.

Let us illustrate the above results in a following numerical experiment. The perfect
case to see the influence of the off–diagonal blocks of matrix (5.4) on the iterative
procedure would be to choose such a test fluid, for which the coefficients coming from
the discretization of the viscous operator and entering the diagonal blocks A11, A22
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are multiplied by a constant value (η0), and the coefficients of the off-diagonal blocks
A12, A21 changes (η(γ̇)) for different fluid parameters. To be close to such perfect
situation, we choose an artificial fluid, described by a stress–strain relation (2.26),
where the elongational viscosity ηe remains constant and the shear viscosity η changes.
The values of the first enter the diagonal blocks of matrix A and the values of the
latter the off–diagonal ones. However, one has to point out that some of the values
coming from the cross derivatives enter also the diagonal blocks. In this experiment,
we choose the zero shear–rate viscosity η0 = 100 and the fluid parameters appearing
in (2.26) as Cue = 1, ne = 1, Cu = 1 and the only parameter that changes is n.
As already discussed in Section 2.3, the parameters Cu, n and Cue, ne are used to fit
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Figure 5.1: Eigenvalue distribution for block matrix A preconditioned with a block
diagonal preconditioner.

experimental data of shear and extensional properties of the fluid respectively. Figure
5.1 shows, that increase of n form n = 1.01 (low shear–thickening) to n = 1.6 (high
shear–thickening) results in larger spread of the eigenvalues distribution. It is what
one should expect, since choosing n = 1.6 results in much higher values of ηs(γ̇) in
the regions where γ̇ > 0 comparing with n = 1.01, thus increasing the strength of
the A12, A21 blocks. The maximum value of η in the latter case (n = 1.6) is 5 times
larger than in the former one (n = 1.01). On the other hand, one can see, that
such big increase of the shear viscosity η does not lead to significant dispersion of the
eigenvalue distribution, what should be expected after estimations given in [41].

As a preconditioner for a coefficient matrix B{diag(A)}−1BT , resulting form the
discretized pressure correction equation (3.14), one can for example choose an incom-
plete LU factorization (ILU) or its relaxed form (RILU(α) with relaxation parameter
0 < α < 1). For an overview of different preconditioners like ILU , RILU(α), MILU ,
Jacobi, SOR, etc. we refer interested reader to [39]. Keeping above results in mind,
let us now discuss some preconditioning techniques for unreduced saddle point prob-
lem (3.2).
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5.2 Preconditioners for untransformed fully cou-

pled system.

During years, many different preconditioning techniques for saddle point problems
have been developed. These are, for example, block LU preconditioners (see.[26]),
right oriented triangular preconditioners ([10, 42]), block Gauss-Seidel preconditioner
(as well as its symmetrized form), congruence transformation, block indefinite trian-
gular preconditioner ([4]), and others. In general (see [5]) applying a preconditioned
iterative method for solving a system of equations is equivalent to applying a non–
preconditioned method for solving the transformed system. The examples of such
approach can be found in [4, 10, 42]. Moreover in [42] it is stated, that left, right,
or double sided preconditioners give almost identical results. Several precondition-
ers for (3.2) are carefully analyzed in [4]. However, as already mentioned all those
preconditioners were analyzed for Newtonian flow problems (i.e. possessing constant
viscosity). Since we would like to compare different preconditioner techniques (for
untransformed and transformed system (3.2)) for variable viscosity fluids later on,
we have chosen two preconditioners applied to the untransformed system (3.2), and
presented in [4], the block Gauss-Seidel and the indefinite block triangular ones.

5.2.1 Block Gauss–Seidel preconditioner to untransformed

saddle-point problem.

The block Gauss-Seidel preconditioner to untransformed system (3.2) takes the form

DGS =

(
D1 0
B D2

)

, (5.9)

where D1 and D2 are symmetric, positive definite preconditioners to A and BD−1
1 BT

respectively. The analysis of the eigenvalues of

(
D1 0
B D2

)−1 (
A BT

B 0

)

=

(
D−1

1 A D−1
1 BT

D−1
2 B(I −D−1

1 A) −D−1
2 BD−1

1 BT

)

(5.10)

is collected in following theorem.

Theorem 4 Let DGS =

(
D1 0
B D2

)

be a preconditioner to L =

(
A BT

B 0

)

.

Then the eigenvalues of D−1
GSL satisfy ξ = 1 + 1

2
(a + b2 − 1)±

√

(a + b2 − 1)2 + 4a,

where a = x̃T (Ã−I)x̃
‖x̃‖2 , b = ‖B̃x̃‖

‖x̃‖
, x̃ = D

− 1
2

1 x, Ã = D
− 1

2
1 AD

− 1
2

1 , B̃ = D
− 1

2
2 BD

− 1
2

1 and [x,y]

is an eigenvector of D−1
GSL.

�
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Proof can be found in [4]. Let us look more close at equation (5.10). If one chooses
D1 close to A, the left lower block tends to a zero block, as well as upper left block
to the identity matrix. Now taking D2 close to BD−1

1 BT drives lower right block to
identity one. All this means that eigenvalues are clustered around unity number. In

fact, if D1 = A then a = 0 and eigenvalues ξ = 1 +

{
b2 − 1
0

are real and equal the

unit number and the eigenvalues of D−1
2 BD−1

1 BT , which are positive. Further if D2 =
BD−1

1 BT then b = 1. Clustering occurs also in the case when |a| is small. However,
when b is small, which happens for a nearly rank deficient matrix B, eigenvalues ξ
take values close to 1 + a and 0. This means that preconditioned matrix is nearly
singular.

5.2.2 Indefinite block triangular preconditioner to untrans-
formed saddle-point problem.

Second preconditioner, the indefinite block triangular, take the same saddle point
form as the given matrix (3.2)

DIT =

(
D1 BT

B 0

)

, (5.11)

where D1 approximates block A in some sense. For the analysis of above precondi-
tioner we will use following theorem.

Theorem 5 Let B, C, E be real matrices of order n×m, m×m and n× n
respectively, where B has a full rank (= m), C is positive semi-definite and E is
symmetric. Then the eigenvalues of the generalized eigenvalue problem

γ

(
I BT

B −C

)(
x
y

)

=

(
E 0
0 0

) (
x
y

)

, |x|+ |y| 6= 0 (5.12)

where x ∈ Cn and y ∈ Cm, satisfy:
(a) γ = xT Ex

xT (I+BT C−1B)x
, if Ex 6= 0 and C is positive definite.

(b) γ = 0 if and only if Ex = 0, x 6= 0 and the dimension of the eigenvector space
corresponding to the zero eigenvalue is m + q, where q = dim{ker(E)}.
(c) the nonzero eigenvalues are contained in the interval
min{0, ξmin(E)} ≤ γ ≤ ξmax(E).

�

Proof of above theorem is given in [4]. In the case when C = 0, there holds that for

γ 6= 0, γ = xT Ex
xT x

and corresponding eigenvector is

[
x
1
γ
(BBT )−1BEx

]

. Now, if D1 is
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a symmetric and positive definite preconditioner to A, we can write the system (3.2)
preconditioned by (5.11) in the following way

ξ

(
D1 BT

B 0

) (
x
y

)

=

(
A BT

B 0

) (
x
y

)

⇔

γ

(
D1 BT

B 0

) (
x
y

)

=

(
A−D1 0

0 0

) (
x
y

)

,

where γ = ξ − 1. Further, the above can be transformed to

γ

(
I B̃T

B̃ 0

) (
x̃
y

)

=

(
Ẽ 0
0 0

)(
x̃
y

)

,

where Ẽ = D
− 1

2
1 AD

− 1
2

1 − I, B̃ = BD
− 1

2
1 and x̃ = D

− 1
2

1 x. Since above problem has the
same form as (5.12) the analysis from Theorem 5 is applicable.

5.3 Preconditioners for transformed fully coupled

system.

Let us now discuss a two–stage approach. At the first stage system (3.2) is trans-
formed using a matrix like above mentioned preconditioners. In the second stage,
instead of using unpreconditioned iterative method, we use preconditioned one. For
the transformation we use matrix of the following form

(
H−1 0
−BH−1 I

)

, (5.13)

where H is some preconditioner to A and
(

H−1 0
−BH−1 I

) (
A BT

B 0

)

=

(
H−1A H−1BT

B(I −H−1A) −BH−1BT

)

.

The aim of such transformation is to obtain ”good” blocks at the main diagonal
of the transformed system. It is clear, that choice H = A leads to upper block
triangular system with identity operator I on left upper position. However, the
operator BA−1BT will have a full form in this case. Moreover, since we want to
apply preconditioner to transformed system later on, the computational effort at this
stage should not be big. Therefore similar to the projection-like algorithms, we select

H = diag{A}, (5.14)

or alternatively H = diag{part(A)}. Thus, we obtain transformed system

L̄ =

(
Ā B̄T

B(I − Ā) −BB̄T

)

, (5.15)
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where Ā = H−1A and B̄T = H−1BT . Let us now present and analyze three different
preconditioners applied to (5.15). Let D1 and D2 denote the nonsingular precondi-
tioners to Ā and −BD−1

1 B̄T respectively.

5.3.1 Block diagonal preconditioner to transformed saddle-
point problem.

Let us first consider a block diagonal preconditioner to L̄

D̄−1
D =

(
D−1

1 0
0 D−1

2

)

(5.16)

and assume that ξ is an eigenvalue and [x, y] 6= 0 corresponding eigenvector. Let us
analyze the eigenvalues of a matrix

(
D−1

1 0
0 D−1

2

) (
Ā B̄T

B(I − Ā) −BB̄T

)

=

(
D−1

1 Ā D−1
1 B̄T

D−1
2 B(I − Ā) −D−1

2 BB̄T

)

,

what leads to the equation
(

D−1
1 Ā D−1

1 B̄T

D−1
2 B(I − Ā) −D−1

2 BB̄T

) (
x
y

)

= ξ

(
x
y

)

.

This is equivalent to
{

D−1
1 Āx + D−1

1 B̄T y = ξx
D−1

2 B(I − Ā)x−D−1
2 BB̄T y = ξy

.

Multiplying the first equation from left by D−1
2 BD1 and summing up with the second

one gives
ξy = D−1

2 Bx− ξD−1
2 BD1x,

what further leads to

ξ2x− ξ(D−1
1 Āx−D−1

1 B̄T D−1
2 BD1x)−D−1

1 B̄T D−1
2 Bx = 0.

Let us now multiply above equation form left by xT BT B, what gives

ξ2‖Bx‖2 − ξxTBT (BD−1
1 Āx− BD−1

1 B̄T D−1
2 BD1x)− xT BT (BD−1

1 B̄T D−1
2 )Bx = 0.

We collect above results in theorem.

Theorem 6 Let D̄−1
D =

(
D−1

1 0
0 D−1

2

)

be a preconditioner to the transformed

system L̄ (from equation 5.15). Then the eigenvalue of D̄−1
D L̄ satisfy

ξ =
(a−b)±

√
(a−b)2+4c

2
, where a =

xT BT BD−1
1 Āx

‖Bx‖2 , b =
xT BT (BD−1

1 B̄T D−1
2 BD1)x

‖Bx‖2 ,

c =
xT BT (BD−1

1 B̄T D−1
2 )Bx

‖Bx‖2 and [x,y] is an eigenvector of D̄−1
D L.
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�

The proof is following from the above derivations. Suppose now, that we have taken
H = A at the first step during transformation. Then D1 = I, a = 1, b = c and
eigenvalues can be expressed as ξ = (1−c)±|(1+c)|

2
. Moreover, if one chooses D2 to be

symmetric and positive definite, the eigenvalues of −BD−1
1 B̄T D−1

2 are positive and

ξ =

{
1
−c

. Therefore, choosing D2 sufficiently close to the Schur complement clus-

ters eigenvalues around unity number. In practice, however, this is not possible since
A−1 is a full matrix, thus finding good preconditioner to the Schur complement is too
costly. Above result shows, that for the choice (5.14) of H during the transformation,
the block diagonal preconditioner (5.16) has a certain limit, i.e. it is not able to
cluster eigenvalues around unity number even for a perfect preconditioners D1 = Ā
and D2 = −BĀ−1B̄T (since a = 1, c = −1, b = xT BT BD1x

‖Bx‖2 ). To illustrate that, let
us make a numerical experiment for artificial shear–thinning fluid with a parameters
η0 = 100, Cu = 1 and n = 0.2 (for details concerning model parameters see Section
2.3). During transformation H = diag(A) and later we have chosen D1 = Ā and
D2 = −BĀ−1B̄T . Eigenvalue distribution for such a choice is shown in Figure 5.2,
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Figure 5.2: Eigenvalue distribution for optimal choice of block diagonal preconditioner
D̄D to transformed system L̄.

where max{Re} ≈ 6.5, min{Re} ≈ 0.15, max{Im} ≈ 0.86, min{Im} ≈ −0.86,.

5.3.2 Block lower triangular preconditioner to transformed
saddle-point problem.

Next preconditioner to be considered is a block lower triangular one to L̄ of the form

D̄−1
LT =

(
D−1

1 0
B(I − Ā) D−1

2

)

. (5.17)

Similarly as in previous case we will analyze eigenvalues of the matrix

D̄−1
LT L̄ =

(
D−1

1 Ā D−1
1 B̄T

D−1
2 B(I − Ā) + B(I − Ā)Ā −D−1

2 BB̄T + B(I − Ā)B̄T

)

.
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Now, we write the eigenvalue equation in a bit different way as
(

Ā B̄T

B(I − Ā) −BB̄T

) (
x
y

)

= ξ

(
D1 0

−D2B(I − Ā)D1 D2

) (
x
y

)

.

Further simple algebraic transformations result in a quadratic equation for eigenvalue
ξ as

ξ2x− ξ(D−1
1 Āx + D−1

1 B̄T B(I − Ā)D1x−D−1
1 B̄T D−1

2 BD1x)−D−1
1 B̄T D−1

2 Bx = 0,

which after multiplication form left by xT BT B transforms to

ξ2 − ξ(
xT BT BD−1

1 Āx

‖Bx‖2 +
xT BT BD−1

1 B̄T B(I−Ā)D1x

‖Bx‖2 − xT BT (BD−1
1 B̄T D−1

2 )BD1x

‖Bx‖2 )

−xT BT (BD−1
1 B̄T D−1

2 )Bx

‖Bx‖2 = 0.

We put together above results in another theorem.

Theorem 7 Let D̄−1
LT =

(
D−1

1 0
B(I − Ā) D−1

2

)

be a preconditioner to the transformed

system L̄ (from equation 5.15). Then the eigenvalue of D̄−1
LT L̄ satisfy

ξ =
(a+b−c)±

√
(a+b−c)2+4d

2
, where a =

xT BT BD−1
1 Āx

‖Bx‖2 , b =
xT BT (BD−1

1 B̄T B(I−Ā)D1)x

‖Bx‖2 ,

c =
xT BT (BD−1

1 B̄T D−1
2 )D1Bx

‖Bx‖2 , d =
xT BT (BD−1

1 B̄T D−1
2 )Bx

‖Bx‖2 and [x,y] is an eigenvector of

D̄−1
LTL.

�

For a proof see the derivations above. If again one has taken H = A during trans-
formation, then D1 = I, a = 1, b = 0, c = d and eigenvalues are the same as in
block diagonal preconditioner ξ = (1−c)±|(1+c)|

2
and the same discussion as before is

applicable. Moreover, in second extreme case, when H follows equation (5.14) and
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Figure 5.3: Eigenvalue distribution for optimal choice of block lower triangular pre-
conditioner D̄LT to transformed system L̄.

both D1 and D2 are chosen in optimal way (i.e. D1 = Ā, D2 = −BĀ−1B̄T ), the
block lower triangular preconditioner D̄LT returns the same results as block diagonal
one. This is confirmed in the same numerical experiment as performed for diagonal
preconditioner D̄D (see Figure 5.3), but applying D̄LT as a preconditioner to L̄.
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5.3.3 Block Gauss–Seidel preconditioner to transformed saddle-

point problem.

The last preconditioner discussed in this thesis, the block Gauss-Seidel applied to the
transformed system (5.15), removes above presented limitation. To motivate such
preconditioning strategy, let us write the system (5.15) in the block LU factorization
as

(
Ā B̄T

B(I − Ā) −BB̄T

)

=

(
Ā 0

B(I − Ā) −BĀ−1B̄T

) (
I Ā−1B̄T

0 I

)

. (5.18)

It shows, that applying from left the block Gauss-Seidel preconditioner to (5.15),
which is written in following form

D̄−1
GS =

(
D1 0

B(I − Ā) D2

)−1

=

(
D−1

1 0
−D−1

2 B(I − Ā)D−1
1 D−1

2

)

, (5.19)

where D1 and D2 are sufficiently close to Ā and −BD−1
1 B̄T respectively, will lead to

eigenvalue clustering. To confirm that, let us again analyze the eigenvalue problem
of the form

(
Ā B̄T

B(I − Ā) −BB̄T

) (
x
y

)

= ξ

(
D1 0

B(I − Ā) D2

)(
x
y

)

,

what is equivalent to

{
Āx + B̄T y = ξD1x

B(I − Ā)x−BB̄T y = ξB(I − Ā)x + ξD2y
. (5.20)

Multiplying first equation from left by B and summing up with second one gives

ξy = D−1
2 Bx− ξ(D−1

2 Bx + D−1
2 B(D1 − Ā)x).

Now, multiplying again first equation of (5.20) form left by ξD−1
1 and further using

the above result gives

ξ2x = ξD−1
1 Āx + D−1

1 B̄T D−1
2 Bx− ξ(D−1

1 B̄T D−1
2 Bx + D−1

1 B̄T D−1
2 B(D1 − Ā)x).

Finally, we transform above equation by multiplying from left by xT BT B to

ξ2 − ξ
xT BT BD−1

1 Āx

‖Bx‖2 − xT BT BD−1
1 B̄T D−1

2 Bx

‖Bx‖2 +

ξ(
xT BT BD−1

1 B̄T D−1
2 Bx

‖Bx‖2 +
xT BT BD−1

1 B̄T D−1
2 B(D1−Ā)x

‖Bx‖2 ) = 0.

Following theorem gather above results.
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Theorem 8 Let D̄−1
GS =

(
D1 0

B(I − Ā) D2

)−1

be preconditioner to transformed

system L̄ (equation 5.15). Then the eigenvalue of D̄−1
GSL̄ satisfy

ξ =
(a−b−c)±

√
(a−b−c)2+4b

2
, where a =

xT BT BD−1
1 Āx

‖Bx‖2 , b =
xT BT (BD−1

1 B̄T D−1
2 )Bx

‖Bx‖2 ,

c =
xT BT (BD−1

1 B̄T D−1
2 )B(D1−Ā)x

‖Bx‖2 and [x,y] is an eigenvector of D̄−1
GSL.

�

Again the proof is contained in the derivations above. The advantage of such precon-
ditioner is that, independent from the choice of H during the transformation step,
the clustering of eigenvalues around unity number is possible. It comes for the fact,
that if one chooses D1 ≈ Ā, D2 ≈ −BD−1

1 B̄T then a ≈ 1, b ≈ −1, c ≈ 0 and

ξ ≈ 1. Moreover if D1 = Ā the eigenvalues satisfy ξ =

{
1
−b

and, similarly to

DGS preconditioner presented in Section 5.2.1, are real and equal one and −b. The
latter is positive and taking sufficient close approximation D2 to the Schur comple-
ment (−BA−1BT ) result in b ≈ −1. Again, we repeat numerical experiment for
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Figure 5.4: Eigenvalue distribution for optimal choice of block Gauss–Seidel precon-
ditioner D̄GS to transformed system L̄.

shear–thinning fluid with the same fluid parameters as previously, i.e. η0 = 100,
Cu = 1 and n = 0.2. Result of applying block Gauss–Seidel preconditioner D̄GS to
L̄ with an optimal choice for D1 = Ā and D2 = −BD−1

1 B̄T is shown in Figure 5.4.
One can observe that eigenvalues are tightly clustered around unity number, where
Re = 1, max{Im} ≈ 4.6 · 10−6, min{Im} ≈ −4.6 · 10−6, what confirms previous
discussion. All eigenvalue distribution plots, i.e. Figures 5.1, 5.2 , 5.3 and 5.4, were
performed using MATLAB.

69



Preconditioning techniques for the saddle point problems.

70



Chapter 6

Numerical results.

In this Chapter, we present results obtained from numerical simulations of viscoelas-
tic fluids. As already discussed in previous Chapters, viscoelastic fluids consist of
both viscous and elastic properties. Therefore, first we present results of general-
ized Newtonian fluids, where we study dependence of viscosity variations on the flow.
In particular, we focus on both shear and elongational viscosity properties of the
fluid. First, we present the influence of shear–thinning viscosity properties on the
flow in a planar contraction domain. Since such fluids were already extensively stud-
ied, it is a good opportunity to validate our work. Then, we show the influence of
extensional–thickening on the flow. In this case, we observe very good agreement with
experiments. Another interesting case study are the so called Boger fluids, alterna-
tively named constant–viscosity elastic fluids. These are examples of dilute polymer
solutions, and are modeled by the integral Oldroyd B constitutive equation These
liquids helps in understanding the elasticity effects, artificially setting viscosity to a
constant value. Simulations show very good qualitative and quantitative agreement
with experiments, and results obtained by differential Oldroyd B counterpart, respec-
tively. Next, we present results from simulations of concentrated polymer solutions,
modeled by the integral Doi Edwards constitutive equation. We achieve very good
agreement with experimental data in prediction of first normal stress difference and
shear viscosity, defined as the ratio of a shear stress to a shear–rate. Finally, we
present performance of different iterative solvers, presented and discussed in the pre-
vious Chapter 5, with respect to time steps, geometries and deviation of the fluid
from Newtonian flow behavior.

6.1 Simulations of shear–thinning fluids.

There is much interest in understanding the flow of non-Newtonian fluids. However,
since many different effects, like shear and elongational rate dependent viscosities,
as well as elastic contribution influence the flow, it is important to look at the vary-
ing viscosity problems separately. Moreover, most of the viscoelastic fluids exhibit
shear–thinning behavior. Therefore, in current Section the simulation results of the
generalized Newtonian, shear–thinning, fluids are presented. To investigate the in-
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Figure 6.1: 2D planar contraction domain.
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Figure 6.2: The effect of varying Cu number on the calculated centerline velocity for
n=0.2, Carreau model.

teraction of shear-thinning, similarly as in [25], the Carreau model parameters Cu
and n will be varied (detailed description and explanation of the above model pa-
rameters is performed in Section 2.3). The result will be discussed in terms of the
centerline velocity profile, axial velocity profile in the plane of contraction and the
upstream vortex size. As a test geometry we use 4:1 planar contraction domain shown
in Figure 6.1. To exclude the inertial effects we choose the flow with Reynolds number
Re = 10−2 defined as Re = ρŪL

η0
, where ρ = 1[ g

cm3 ] stands for fluid density, L is the

width of the upstream channel, η0 = 100[Pas] is a zero–shear viscosity and Ū is av-

Figure 6.3: Carreau viscosity plots for n = 0.2, Cu = 0.01 (left figure), Cu = 100
(right figure).
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erage upstream channel velocity. Note, that for shear–thinning fluids local Reynolds
numbers can be higher, especially near to the walls where higher shear–rates occur
and decrease local viscosities even couple of order of magnitude. First, we examine
the changes of the centerline velocity profiles for high shear–thinning fluid (n = 0.2)
when changing Cu number. Results are presented in Figure 6.2. For Cu = 0.01
the axial velocity attain almost the same maximum as in Newtonian case (Cu = 0).
This should be expected, since for such low Carreau number the shear–rate required
for an onset of shear–thinning is almost not present (see left plot from Figure 6.3).
Carreau fluid, however, exhibits less steep axial velocity profile compared with the
Newtonian one. Further increase of Carreau Cu number results in decrease of cen-
terline velocity profiles. At Cu = 100, the flow is dominated by the power-law region
of the viscosity function (see right plot from Figure 6.3), and further increase of Cu
number does not change the velocity profile. Next, decrease of power-law index n at
constant Cu has quantitatively the same effect as increasing Cu at constant n. It is
shown in Figure 6.4. The reason for such behavior is that both combinations lead
to more shear–thinning. The effect of increasing Cu number, or decreasing power–
law index n on axial velocity profile at the contraction x = xc is shown in Figure
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Figure 6.4: The effect of varying n number on the calculated centerline velocity for
Cu = 100, Carreau model.

6.5. In both cases more shear–thinning fluids flatter fully-developed velocity profile
in downstream channel. Again, neither larger Cu nor smaller n do further change
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Figure 6.5: The effect of decreasing n with Cu = 100 (left figure) and increasing Cu
with n = 0.2 (right figure) on axial velocity profile at the contraction x = xc.
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Figure 6.6: Streamline plots for Newtonian fluid (upper left) and shear–thinning fluids
of the same zero–shear rate viscosity for n = 0.2 and Cu = 0.01 (upper right), Cu = 1
(lower left),Cu = 100 (lower right).

velocity profiles. Another well known fact is that shear–thinning decreases the sizes of
the upstream vortices compared to the Newtonian fluids of the same zero–shear rate
viscosity. The more shear–thinning fluid is, the smaller vortices it exhibits. These
behavior is reflected in Figure 6.6. All the results presented in this Section are in
very good agreement with the one showed in [25]. However, such results are contrary
to the large vortices observed experimentally in viscoelastic fluids (see for example
[7, 8, 11, 30]). One reason for it might be, that no elastic effects are considered.
Another can be connected with a lack of extensional viscosity properties.

6.2 Extensional viscosity effect.

Many viscoelastic fluids exhibits much larger vortices in contraction flows compared
with the Newtonian ones. During years, many experimental and numerical studies
were performed to understand the reasons for such formation of vortices. First major
work concerning the growth of vortices was presented by Cable and Boger (see [52]
and references therein). In all tested fluids there, the vortices were always present
and were increasing with higher flow rate. Authors have correlated such behavior
with the elasticity of the fluid. The elasticity was expressed by Weissenberg number
We = τrelax

Ū
L
, where Ū , L are average velocity and width of the downstream channel,

respectively. τrelax is a relaxation time that characterize the fluid. The observations
made in [52] were, that fluids with grater elasticity exhibited larger vortices. Similar
results were obtained by Nuygen and Boger in [30]. However, it was not supported
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by the work of White and Kondo [53] in experimental study of polymer melts. They
have shown that low density polyethylene and polystyrene exhibit vortices but high
density polyethylene, which is both elastic and shear–thinning, does not. They went
on to say that the origins of vortices may be due to the development of large ex-
tensional stresses in the entry region and that vortices are formed as a stress relief
mechanism. It is suggested, that only materials with an extensional viscosity that in-
creases with extensional rate exhibit vortex enhancement, whereas no, or only small,
vortices are present for the materials where extensional viscosity decreases or remains
constant with elongational rate. It was confirmed in a paper of White and Baird
[51], where two polymers, low density polyethylene and polystyrene, were considered.
At about the same Weissenberg number the first polymer exhibited vortices and its
growth while the second one did not. The difference, however, was in extensional
flow properties. Vortex growth was associated with unbounded extensional growth
in time at fixed extensional rate, whereas absence of vortices was associated with
bounded extensional stress growth. To validate the performance of the model (2.26),
presented in Section 2.3.2 and being able to distinguish between shear and extensional
properties of the fluid, we choose shear–thinning and extensional–thickening liquid
with the fluid parameters: Cu = 1, n = 0.8, Cue = 1, ne = 2 and zero-shear viscosity

Figure 6.7: Streamline plots for Newtonian fluid (upper left) and shear–thinning
extensional–thickening fluids of the same zero–shear rate viscosity η0 = 10[Pas] for
Cu = 1, n = 0.8, Cue = 1, ne = 2. Inflow velocity is increased for upper right, lower
left and lower right figure respectively.

η0 = 10[Pas]. Let us first consider 2D planar 4:1 contraction geometry (Figure 6.1).
As it was discussed in previous Section, shear–thinning itself decreases the vortices
for higher flow rates (see Figure 6.6). However, adding extensional–thickening into
the model changes this situation. As indicated in Figure 6.7, increase of the flow rate

75



Numerical results.

Figure 6.8: 3D planar contraction (left figure) and 3D square–to–square contraction
(right figure) geometries.

does not decrease the vortices. In fact, they increase in size and the vortex center
shifts toward the upstream channel. Moreover, the cell boundary changes its shape
from concave for Newtonian fluid (upper left plot in Figure 6.7) to convex one (lower
right plot in Figure 6.7). The situation becomes even more interesting in 3D planar
contraction flows. Experimentalists have examined the effect of geometry on the for-

Figure 6.9: 3D planar contraction geometry. Streamline plots, Newtonian fluid (left
figure) and extensional–thickening fluid (right figure).

mation of vortices. The most common test problems considered in the literature are
planar and axisymmetric entry flows. For the Newtonian fluids the results show little,
or no vortices at the corners for both cases. The observations show, that vortices in
planar contraction, if appear, are much smaller than in axisymmetric domain. Similar
situation happens in square–to–square geometry, which resembles axisymmetric one.
Therefore, after Evans and Walters [11], as a test geometries 7:1 planar contraction
and 7:1 square–to–square contraction domains, showed in Figure 6.8, are chosen. In
Figure 6.9 streamlines plots in 3D planar contraction of the Newtonian (left plot)
and the generalized Newtonian (right plot) fluids, at the same flow rate, are given.
For the Newtonian fluid no vortices are noticeable, whereas for the latter one, that
exhibits both shear–thinning and extensional–thickening, the vortices are clearly vis-
ible. The streamlines plots for the same test fluid in square–to–square geometry is
shown in Figure 6.11. Again, the Newtonian fluids exhibit no vortices, contrary to
the generalized Newtonian one. Moreover, the vortices are much larger comparing
with 3D planar contraction case, what is in a very good qualitative agreement with
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Figure 6.10: 3D planar contraction geometry. Extensional viscosity (left figure) and
shear viscosity (right figure).

Figure 6.11: 3D square–to–square contraction geometry. Streamline plots, Newtonian
fluid (left figure) and extensional–thickening fluid (right figure).

experiments. Such behavior is correlated with much higher growth of the extensional
stress in 3D square–to–square contraction, what is shown in Figures 6.10 and 6.12,
where extensional ηe(ǫ̇) and shear η(γ̇) viscosities are given. Moreover, for constant
ηe(ǫ̇), or extensional–thinning fluids no growth of the vortices was detected. Above
results may indicate the statement made by White and Kondo in [53], that only ma-
terials with clearly strong increasing of the elongational viscosities as a function of
extensional rate exhibit vortices.

6.3 Simulations of viscoelastic fluids.

Current Section concerns the results obtained from simulations of dilute and concen-
trated polymer solutions, where the integral Oldroyd B and the integral Doi Edwards
models are used respectively. First, we present comparison for Boger fluids, against
experiments and numerical simulations performed by equivalent differential Oldroyd
B model, in two and three dimensional contraction domains. Next, we present com-
parison between two methods used in approximation of the integral constitutive equa-
tions: Backward Lagrangian Particle Method (BLPM) and Deformation Field Method
(DFM), discussed in Sections 4.1 and 4.2 respectively. Further, the simulation results
of concentrated polymer solutions are shown. We obtain very good predictions of
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Figure 6.12: 3D square–to–square contraction geometry. Extensional viscosity (left
figure) and shear viscosity (right figure).
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Figure 6.13: Reattachement lengths against We numbers (left figure). Reattachement
lengths against We numbers for different meshes (right figure).

first normal stress difference and shear viscosity in simulations of polystyrene solu-
tion. Similar as in [46], adding chain length fluctuation to the original Doi Edwards
model results in growing of the vortices in contraction flows at high chain stretch flow
regimes.

6.3.1 Oldroyd B constitutive equation.

2D simulations.

Numerical computations are performed on regular Cartesian grid in 4:1 2D planar
contraction domain (see Figure 6.1) with L = 0.5. We use the same space grid steps in
all coordinates directions, δx = δy. In all simulation, the time step used is τ = 5·10−3.
The calculations have been performed for a range of Weissenberg numbers, which is
defined as We = τOldr · Ū

L
, where τOldr is the relaxation time, Ū is the mean outflow

velocity and L is the outflow channel width. To be consistent with experiments, the
Weissenberg number was increased by increasing the inflow velocity (thus increasing
Ū) and keeping the ratio We/Re, where Re is the Reynolds number, constant. We
also perform comparison with the simulations obtained in [1, 2, 3, 28, 38], where
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equivalent differential Oldroyd B model is used. In this case, we keep Re number
constant and the change of the We number is due to the change of the relaxation
time τOldr. To quantify the size of the vortices we use the reattachement length Lv (see
Figure 6.1). First, let us present quantitative comparison with the results obtained
by differential counterpart.
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Figure 6.14: Reattachement lengths against high We numbers.

We compare our work with the results presented in [1, 2, 3, 28, 38]. To be consis-
tent with those findings we have chosen the following fluid parameters: ρ = 1[ g

cm3 ],
ηs = 1[Pa s] and ηp = 8[Pa s]. Time discretization of the integral constitutive
equation is performed via Deformation Field Method (DFM), with non–equidistant
time step used (detailed discussion see in Section 4.5). Comparison of Backward
Lagrangian Particle Method (BLPM) and DFM, with equidistant time step used in
approximation of the integral model, will be shown later. The simulations are per-
formed for constant Re = 10−3. We change We number by changing relaxation time
τOldr. The number of stored deformation fields in this case is Nd = 100. We observe
decrease in the reattachement lengths as We is increased, what is consistent with
[1, 2, 3, 28, 38]. Results for the vortex behavior are presented in Figure 6.13. The

Figure 6.15: We=0 (left figure), We=0.5 (center figure), We=1 (right figure).

left figure shows comparison of the vortex behavior with the previously published
values. As it was pointed out in [3], there is dispersion in these results, however
our findings fall in the range of listed data. The right figure shows the mesh con-
vergence results for three consecutive refined meshes with space grid steps Mesh0 –
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Figure 6.16: We=1.5 (left figure), We=2 (center figure), We=2.5 (right figure).

δx = δy = 0.025, Mesh1 – δx = δy = 0.0179, Mesh2 – δx = δy = 0.0139 respectively.
Results for the coarsest mesh differ slightly from the finer and finest meshes, however
the reattachement lengths in Mesh1 and Mesh2 almost coincide. In Figures 6.15 – 6.16
we show the streamlines for different We numbers. We would like to point out, that
we have no problems with performing calculation for high We numbers. In Figure
6.14 we show comparison of the reattachement lengths with [28]. The reattachement
lengths are a bit lower in our simulations, however for We = 18 results coincide. We
have also checked that simulations are not time–dependent. In Table 6.1 we present
reattachement lengths at We = 1.5 numbers obtained for three different time steps τ
on the finest mesh. The change of time steps did not lead to any discernible change
in the results.

We 1.5
τ 10−3 2.5 · 10−3 5 · 10−3

Lv 1.368 1.378 1.392

Table 6.1: Time convergence for integral Oldroyd B model. Reattachement length Lv

against time step τ at We = 1.5.

Simulation of Boger fluid – B64.

In this subsection we present comparison of our results with experimental observations
for Boger B64 fluid. The model parameters for this fluid, taken from [11], are: ρ =
1.3[ g

cm3 ],τOldr = 0.05[s], ηs = 1.25[Pa s], ηp = 1[Pa s]. Now, according to the
experiments both Re and We numbers are changed by increasing the inflow velocity.
Good qualitative agreement with the experiments, namely growth of the vortices is
observed. In Figure 6.17, we show the streamline contours of our simulations for
different We and Re numbers. Starting from We = 0 and Lv = 1.5 (Newtonian
case), we have noticed that the reattachement length increases up to L = 2.47 for
We = 0.2. At the same time, at the We = 0 the cell boundary is concave with the
vortex center near the corner of the upstream tube. When we increase the flow rate,
the vortex center shifts towards the tube entrance, while the cell boundary changes its
shape from concave (Newtonian fluid) to convex one. Another important issue is the
difference in the pressure drop in comparison with the Newtonian fluid of the same
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viscosity. S.Nigen and K.Walters (see [31] ) show in their experimental work that
as long as the vortices do not grow, it is almost impossible to distinguish between
pressure drop/flow rate data for Boger and Newtonian fluid. The situation changes
when the vortices start to grow. Then, higher pressure drop is seen in the case of
Boger fluid. We also predict this behavior, what is illustrated in Figure 6.18. The
data, similarly as in [2] , are scaled by ηt

L
·UREF , where ηt = ηs + ηp and UREF is the

mean outflow velocity at We = 1. Summarizing, a very good qualitative agreement
with experimentalists (see [7, 8, 11, 30, 31] ) is achieved.

Figure 6.17: DFM simulations.We = 0 (upper left figure), We = 0.05, Re = 0.0125
(upper right figure), We = 0.1, Re = 0.025 (lower left figure), We = 0.2, Re = 0.05
(lower right figure).
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Figure 6.18: Pressure drops of the Newtonian (green color) and Boger (black color)
fluids against We numbers. The Newtonian pressure drops were sampled at the ap-
propriate mean outflow velocities Ū = We·L

τOldr
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Comparison of DFM and BLPM.

Very interesting questions concerning the time discretization of the integral constitu-
tive equation (2.38 or 2.43) has already appeared in Section 4.5. The first question,
that appeared there was, how the non–equidistant time step used in approximation
of (2.38 or 2.43), discussed in Section 4.5, influences the results. The second one,
also took up in Section 4.5, was connected with the loss of locality, when Defor-
mation Field Method is used in calculation of the extra stress tensor. To give an
answer to the first question, we have performed simulations of the viscoelastic fluid
with ρ = 1[ g

cm3 ], ηs = 1[Pa s] and ηp = 8[Pa s], however, the equidistant time step
was used in approximation of the time integral (2.43). The comparison with non–

Figure 6.19: Deformation Field Method (left figure), Backward Lagrangian Particle
Method (right figure) at We = 1.

Figure 6.20: BLPM simulations of Boger B64 fluid. We = 0.05, Re = 0.0125 (left
figure), We = 0.1, Re = 0.025 (center figure), We = 0.2, Re = 0.05 (right figure).

equidistant time step approximation of (2.43) was performed for various Weissenberg
numbers (We = 0.5, 1, 1.5, 2, 2.5), where the change of We number was due to the
change of the relaxation time τOldr. In the case of equidistant time step approxima-
tion, at We = 2.5 we had to store Nd = 1200 deformation fields, contrary to Nd = 100
in the non–equidistant case, to be able to span more than 90% of the fluid history.
This ended up in a drastic growth of the memory requirements. For all We numbers,
the relative differences in velocities and pressure fields, resulting from the simulations
with equidistant and non–equidistant approximation of the memory integral (2.43),
were less than one percent. In Backward Lagrangian Particle Method extra stress
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Figure 6.21: Streamlines contours in 3D planar 4:1 contraction domains. Newtonian
flow (left figure) and Boger B64 flow (right figure).

is calculated along the particle trajectories. This assures that the calculations are
local, i.e. the stress is carried by the particle. Performing both DFM and BLPM has
answered the second question posed at the beginning of this subsection. Comparison
were performed for two different viscoelastic fluids. The first one, described at the
beginning of Section 6.3.1, with ρ = 1[ g

cm3 ], ηs = 1[Pa s], ηp = 8[Pa s] and rela-
tive large relaxation time τOldr = 1, and second one (B64), also discussed in Section
6.3.1, with fluid parameters ρ = 1.3[ g

cm3 ], ηs = 1.25[Pa s], ηp = 1[Pa s] and small
relaxation time τOldr = 0.05. In Figure 6.19, we show streamlines contours for the
first fluid at We = 1. Both methods give almost identical vortex behavior. Figure
6.20 shows streamline contours from simulations of Boger B64 fluid, when BLPM was
used. Again, no differences to Figure 6.17 has been noticed. In all the calculations
the maximum relative difference in velocities was less 4%, and the maximum relative
difference in pressure was less than 3%. This results bring us to the conclusion, that
both methods perform similar results, however BLPM is much more memory and
time consuming. Computational time needed to perform BLPM for τOldr = 1 and
final time T = 10 was about 24 hours, while DFM performs the same calculations in
about 1 hour.

3D simulations.

In this subsection, we will show that the influence of the geometry on the vortex ac-
tivity of constant viscosity–elastic (Boger) fluids is reflected in our simulations, when
the integral version of the Oldroyd B model is used. The computational domains,
planar 3D contraction and square–to–square contraction, correspond to the ones cho-
sen in the experimental work by R.E Evans and K. Walters [11]. The geometries are
shown in Figure 6.8. In both cases the computational domain is closed in the cuboid
of the size [0, 8]× [0, 1]× [0, 1] in x−, y−, z− directions respectively. The contraction
wall is located along x = 4. Again, we use a regular Cartesian grid with space steps
δx = δy = δz = 0.05. The Weissenberg number is now defined as We = τOldr · Ū

L
.

However, to be consistent with the results presented in [11], Ū denotes now mean
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Figure 6.22: Streamlines contours in 3D square–to–square 4:1 contraction domains.
Newtonian flow (left figure) and Boger B64 flow (right figure).

velocity of the upper section of the domains and L is the width of it.

Simulation of Boger fluid – B64.

The experiments shows that, for Boger fluids, it is as difficult to avoid enhancement
of the vortices in square-to-square contractions, as it is to observe them in 3D planar
contractions. The vortices in planar contraction, if visible, are reduced in size and
intensity. Fluid parameters for Boger B64 fluid are: ρ = 1.3[ g

cm3 ],τOldr = 0.05[s],
ηs = 1.25[Pa s], ηp = 1[Pa s]. The experiments showed no vortex activity in planar
contraction. This is in agreement with our findings as shown in Figure 6.21 for
contraction ratio 4:1. The situation changes in square-to-square contraction domain.
In this case we observe, in agreement with experiment, vortex activity. In Fig. 6.22
clear vortices are visible, contrary to the Newtonian case. Both calculations were
done for We = 0.039 which is in the range of the values reported in [11].

6.3.2 Doi Edwards constitutive equation.

In current subsection we present results obtained form simulations of concentrated
polymer solutions. Two nearly monodisperse solutions, with an experimental data
available in [6, 19] and [46], are taken into considerations. The extra stress tensor is
modeled by the most successful tube model described by the time integral constitutive
equation (2.38), introduced by Doi and Edwards (in 1986) , as well as by equation
(2.42) where the possible stretch of polymers is included. Both models are evaluated
in rheometrical and complex flows. It is well known, that viscoelastic fluids, contrary
to the Newtonian one, exhibit non zero first normal stress difference N1 = Txx−Tyy in
steady state–state shear flows. In [6], Bhattacharjee et al. have published experimen-
tal data in both shear and extension for a 10% solution of a 3.9 ·106 molecular weight
polystyrene in diethyl phthalate. In addition, they have derived the values for the
Doi Edwards model parameters, which are: ρ = 1[ g

cm3 ], Ge = 3083[Pa], τd = 8.61[s],
τR = 0.282[s], λmax = 13.6 and η0 = 4570[Pa s].
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Figure 6.23: Rheological results for polystyrene solution. Left figure presents compari-
son of N1 = Txx−Tyy between the experimental data (black triangles) given in [6] and
calculated results (blue circle - original Doi Edwards model, green star - Doi Edwards
with chain stretch) against shear–rate γ̇. Central figure presents comparison of the
shear viscosity, defined as η( ˙γxy) = Txy

˙γxy
, against shear–rate ˙γxy between experimental

measurements and calculated results. Right figure shows calculated data of N1/Ge and
Txy/Ge against τdγ̇.

Figure 6.24: Streamlines plots for polystyrene solution at We = 0 (left figure),
We = 100 (center figure) and We = 200 (right figure).

For a numerical comparison of simulation results and rheological data of the first
normal stress difference N1, as well as the shear viscosity defined as η(γ̇xy) = Txy

˙γxy
,

we choose the plane Couette flow. Therefore, as a test geometry the channel with
upper wall moving at a constant velocity and static lower wall is taken. At the
inflow linear velocity profile, known analytically form the Newtonian Couette flows,
is imposed. At the outflow zero Neumann condition for velocities is satisfied. Note,
that in these comparison equations (3.15), (3.16) supplemented by models (2.38) or
(2.42) are solved, and the simulations are performed till the steady state is reached.
For the comparison, similarly as in [6], the modulus Ge is scaled in such a way, that the
zero–shear viscosity of the model coincides with the zero–shear viscosity of the data,
i.e. η0 = 4570[Pa s]. In Figure 6.23 comparison between experimental measurements
and the values obtained from the simulations, sampled at the middle point of the
channel, and thus being at less influenced by the boundaries, are shown. Left plot
shows comparison of the first normal stress difference N1 = Txx − Tyy. At small
shear–rates, where stretch of the chains brings no significant effects, both integral
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Figure 6.25: Polystyrene solution, the chain stretch at We = 50 (left figure) with
max(λ) = 5.096 and at We = 200 (right figure) with max(λ) = 12.096

models show almost the same results, as expected. However, for stretch dominated
regimes results start to differ. At such regimes, the original Doi Edwards model (2.38)

Figure 6.26: 2D planar contraction–expansion domain.

gives lower predictions than experimental values, while the Doi Edwards model with
the chain stretch (2.42) exhibits much higher values of N1. At about γ̇xy = 10,
experimental and calculated values coincide. The same observations are showed in
[6, 46], where authors have used differential approximation to the integral models
used here. Central plot from Figure 6.23 presents comparison of the shear viscosity
sampled experimentally and calculated through the formula η(γ̇xy) = Txy

˙γxy
. Again, very

good qualitative agreement with experiment is achieved. Right plot from Figure 6.23

Figure 6.27: Streamlines plots for polystyrene solution in 4:1:4 constriction at We = 0
(left figure), We = 250 (center figure) and We = 500 (right figure).

presents the values of N1/Ge and Txy/Ge against τdγ̇ obtained from our simulations.

86



Numerical results.

Unfortunately, experimental results for shear Txy stress for considered polystyrene
solution are not avaliable, however the tendency of both curves agrees qualitatively
with the results of various different polymer solutions shown, for example, in [19, 20,
29, 34]. We conclude, that both models are in very good qualitative agreement with
experiments in the range of shear–rates for which experimental data are available.

In the simulations of polystyrene solution in 4:1 planar contraction domain, given
in Figure 6.1, a stable calculations could be performed for high Weissenberg numbers,
up to We = O(102). Now, the Weissenberg number is defined as We = τd·Ū

L
, where

τd is relaxation time, Ū average upstream velocity and L the width of the upstream
channel. Figure 6.24 displays the streamlines for various We numbers. No vortex ac-

Figure 6.28: Polystyrene solution, the chain stretch at We = 250 (left figure) with
max(λ) = 8.494 and at We = 500 (right figure) with max(λ) = 11.436

tivity has been noticed when original Doi Edwards models was used, and the vortices
are of the same size as for Newtonian fluid with the same viscosity (We = 0). How-
ever, the situation changes when the chain stretch is considered in addition. At the
flows, where high stretch regimes are not achieved, the vortex activity coincide with
the ones obtained by the original Doi Edwards model. However, high stretching of
the chains, shown in Figure 6.25, introduce differences in vortices. At We = 200, the
vortices are much bigger than in the Newtonian case. Similarly as for Boger fluid B64,
the vortex center shifts towards the tube entrance, while the cell boundary changes
its shape from concave to convex one. Unfortunately, there are no numerical simu-
lations of considered here polystyrene solution, published for 4:1 planar contraction
geometry. Therefore no comparison can be performed.

However in [46], P. Wapperom and R. Keunings have presented simulation results
of this polystyrene solution in 4:1:4 axisymmetric sudden contraction–expansion ge-
ometry. This gives us a chance for further justification of our simulations. One has
to point out, that there are some differences in both simulations. P. Wapperom and
R. Keunings use differential approximation to integral Doi Edwards model with ad-
ditional effects of chain length fluctuation, convective constraint release and intrinsic
friction of the chain. The last two effects are not included in our case. Moreover,
they use geometry with rounded corners, thus avoiding singularity points, contrary to
the simulations presented here (see Figure 6.26). In Figure 6.27, we show streamline
contour plots near constriction. No vortex activity is noticeable as long as the high
stretch regimes are not reached (up to We = 100), and the vortices are of the same
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Figure 6.29: Streamline plots for polybutadiene solution at We = 0 (upper left),
We = 1 (upper right), We = 5 (lower left) and We = 10 (lower right).

Figure 6.30: Polybutadiene solution, the chain stretch at We = 1 (left figure) with
max(λ) = 1.487 and at We = 10 (right figure) with max(λ) = 2.363

order as in the Newtonian case. This is what one should expected, since similar be-
havior was found in [46], where vortices were decreasing with higher We numbers. As
indicated in [46], such decreasing of vortices happens at convected constraint release
dominated regimes, which is not considered here. In [46], authors could perform sta-
ble steady–state simulations up to We = 50. In our simulations, we could achieved
stable solutions up to We = O(103). Figure 6.28 shows the chain stretch for various
We numbers. It is seen there, that the high stretch regimes appear for much larger
We numbers than achieved in [46]. Similar as in 4:1 contraction geometry, those
high stretch regimes are correlated with the vortex growth (see Figure 6.27). To be
consistent with the definition of We used in [46], despite τd we have used equilibrium
relaxation time τeq = τd+τR, and half of the width of the upstream channel L. In 4:1:4
constriction geometry Ū denotes average velocity in smaller chanel at constriction.

In [19], G. Ianniruberto and G. Marrucci have identified parameter values for
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Figure 6.31: Streamlines plots for polybutadiene solution in 4:1:4 constriction at
We = 0 (upper left), We = 10 (upper right), We = 25 (lower left) and We = 100
(lower right).

a nearly monodisperse 7.5% polybutadiene solution of 3.5 · 105 molecular weight in
hydrocarbon oil. These are: ρ = 1[ g

cm3 ], Ge = 9000[Pa], τd = 0.75[s], τR = 0.5[s],
λmax = 2.5 and η0 = 1750[Pa s]. First, we present simulation results of this fluid
obtained in 4:1 planar contraction geometry. For the constitutive equation we have
chosen the integral Doi Edwards model supplemented by chain stretch λ. In Figure
6.29, the streamlines at different We numbers are displayed. We observe clear growth
of the vortices with increase of We numbers. Such growth of the vortices is correlated
with high chain stretch regimes. The use of original Doi Edwards model does not give
such results. In such case, the vortices do not change and are of the size of Newtonian
fluid with the same viscosity. In Figure 6.30, we present the chain stretch at various
Weissenberg numbers. High stretch regime is already obtained for We = 10 with
the maximum value max(λ) = 2.363. Comparing Figures 6.25 with 6.30 we can see,
that the chains start to stretch in downstream channel for both, polystyrene and
polybutadiene, solutions. Later, further increase of We number results in stretching
of chains also in the upstream channel.

Similar observation are obtained in 4:1:4 constriction geometry. Again, growth
of the vortices at the contraction wall, when increasing Weissenberg number, is pre-
dicted. It is displayed in Figure 6.31. The same effect is reported in [46], however
there authors could obtain stable steady state results up to We = 15. Using integral
Doi Edwards model allows to preform stable simulations for much higher Weissenberg
numbers, up to We = O(100). The contours of the chain stretch λ are shown in Fig-
ure 6.32. At Weissenberg numbers between 25 and 100 polymer chains become highly
stretch (up to max(λ) = 2.42 at We = 100) in the constriction region. As the We
number is increased, this region extend further upstream and downstream, and the
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Figure 6.32: Chain stretch λ for polystyrene solution in 4:1:4 constriction at We = 10
with max(λ) = 1.76 (left figure), We = 25 with max(λ) = 2.226 (center figure) and
We = 100 with max(λ) = 2.42 (right figure).

chain stretch is already significant far away from the constriction. Moreover, almost
full chain stretch is attained at We = 100.

6.4 Performance of iterative solvers.

Current subsection concerns the performance of different solvers applied in the sim-
ulations of liquid polymer flows. As already discussed in Chapter 2 the viscoelastic
material do not obey Newtonian behavior, thus it is necessary to use specific material
models in order to close the system of governing (continuity (3.15) and momentum
(3.16)) equations. In particular, we focus here on the generalized–Newtonian fluids,
modeled by the shear–dependent viscosity Carreau constitutive equation (2.21), or
its generalization adding extensional–viscosity properties (see equation (2.25)). As it
was already discussed such variable viscosity models lead to strong coupling of the
momentum equations (3.16) through the viscous terms, which is not a case for the
Newtonian fluids. An unsteady problem, starting simulations from the liquid being at
rest and calculating till reaching the steady state, is solved. During such process the
viscosity changes couple of orders of magnitudes. At each time step the continuity
(3.15) and the momentum (3.16) equations have to be solved. In Chapter 5 ana-
lytical results concerning different algorithms and preconditioning techniques, that
can be used in simulations, are presented. Before going to further discussion, let us
first recall some nomenclature that will be used in next considerations. We will de-
note by SIMPLE–like projection method the projection method, discussed in Section
3.2, where the mixed derivatives appearing in the discretization of the momentum
equations are treated in an explicit manner, i.e. taken from the previous time step it-
eration. Next, coupled–momentum projection method denotes the projection method,
presented in details in Section 3.2.1, where all terms from the viscous operator are
discretized in an implicit manner. Finally, fully coupled method denotes the method,
where the coupled momentum and continuity equations are solved together.
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Comparison of different solution algorithms

First, let us compare the performance of three solution algorithms listed above, i.e.
SIMPLE–like projection method, coupled momentum projection method and fully
coupled method, in terms of stability of calculations that could be achieved. For
that, the following numerical experiment was performed. Three fluids with different
viscosity properties, namely shear–thinning (with fluid parameters Cu = 1.0, n =
0.2), shear–thinning and extensional–thickening (Cu = 1.0, n = 0.2, Cue = 1.0,

η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Con. Div. Div. Div. Div. Div. Div. Div.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 6.2: Stability performance of three different solution techniques for shear–
thinning fluid, modeled by the Carreau constitutive equation (2.22), with the fluid
parameters Cus = 1.0, ns = 0.4.

ne = 0.4), and finally shear–thickening and extensional–thinning (Cu = 1.0, n = 1.1,
Cue = 1.0, ne = 0.4), were selected. The simulations were performed in planar 4:1
contraction domain (Figure 6.1) with the time step τ = 10−3. The only parameter
that was varied was the zero shear–rate viscosity η0. In all the cases the flow was
such, that the mean velocity in the smaller outflow channel Ū = 10[ cm

s
] (if the steady

state was reached). In Tables 6.2, 6.3, 6.4 the simulations result of the listed above
fluids are presented, where we indicate for which zero shear–rate viscosity η0 the
corresponding solution techniques converged (denoted by Con.) and gave steady
state solution, or diverged (denoted by Div.) and no solution was obtained. In
all the cases, as expected, the most stable behavior was obtained by the coupled
momentum projection method and the fully coupled method. For all range of the zero
shear–rate viscosities, that has been taken into considerations, stable steady–state
solutions were reached. The least stable was the SIMPLE–like solution algorithm. As
expected, explicit discretization of the mixed derivatives has led to stability problems.
The stable simulations could be obtained for all considered η0 only in the case of
the shear–thinning and extensional–thickening fluid. However, for shear–thinning
fluid (Table 6.2), and for shear–thickening and extensional–thinning one (Table 6.4),
stable calculations were obtained up to η0 = 10 and η0 = 1, respectively. This can
be explained from the fact, that for the first fluid the extensional viscosities that
enter diagonal blocks of the viscous operator ηe ≥ η0 (since the fluid is extensional–
thickening) and the shear viscosities ηs ≤ η0 enter the off–diagonal ones. This results
in stronger block diagonal dominance of the viscous operator, which is not the case for
the last two remaining fluids. We have also observed, that for large viscosities (η0 ≥
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η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Con. Con. Con. Con. Con. Con. Con. Con.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 6.3: Stability performance of three different solution techniques for shear–
thinning and extensional–thickening fluid, modeled by the extension of the Car-
reau constitutive equation (2.26), with the fluid parameters Cus = 1.0, ns = 0.4,
Cue = 1.0, ne = 1.1.

η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Div. Div. Div. Div. Div. Div. Div. Div.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 6.4: Stability performance of three different solution techniques for shear–
thickening and extensional–thinning fluid, modeled by the extension of the Car-
reau constitutive equation (2.26), with the fluid parameters Cus = 1.0, ns = 1.1,
Cue = 1.0, ne = 0.4.

5000) the convergence rate of the projection type methods (if they have converged)
was very poor, and high number of the non–linear iterations had to be performed
in order to get satisfactory result. It was not the case for the fully coupled method.
However, as discussed in Section 3.3, this method needs more memory compared to
the projection–type methods. Moreover, it takes more time to solve once coupled
momentum and continuity equations, than performing once the whole projection–
type procedure, i.e. predicting velocities, calculating pressure corrections, correcting
pressure and velocities (for detailed description see Section 3.2.1). Therefore, fully
coupled methods require good preconditioning techniques in order to reduce the time
needed to perform the simulations.

Performance of the preconditioning techniques for fully coupled method

The numerical experiments are performed on two simple test geometries, a channel
with a contraction and expansion in the middle and a 2:1 planar contraction (see
Figure 6.33). We will consider the fully coupled solver only, supplemented by different
preconditioning strategies discussed already in Chapter 5. We consider five different
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Figure 6.33: The variable viscosities in Venturi domain (left plot) and 2:1 planar
contraction domain (right plot).

preconditioners. Two of them are applied to the untransformed system, given by the
equation (3.2), of the form

(
A BT

B 0

) (
v
p

)

=

(
f
0

)

,

arising after linearization and discretization of coupled continuity and momentum
equations. These are the block Gauss–Seidel DGS (denote by UBGS, for details see
Section 5.2.1) and the indefinite block triangular DIBT (UIBT, discussed in Section
5.2.2). The three remaining are applied to first transformed system (3.2). These pre-
conditioners are the block diagonal D̄D (BD), the block lower triangular D̄LT (BLT)
and the block Gauss–Seidel D̄GS (BGS). The discussion concerning those precondi-
tioners and the way the system (3.2) is transformed was already presented in Section
5.3. All preconditioners used in simulations are collected in Table 6.5. For a lin-
ear solver two iterative methods are used, namely BiCGstab (bi–conjugate gradient
method, stabilized) and GMRES(m) (generalized minimal residual method, where m
denotes the number of sequences used). The performance of the iterative solvers is
investigated with respect to grid size and the time step used in simulations. More
precise information about the tests being performed is given in the following Table
6.6. As a test fluid we have chosen a 10% solution of a 3.9 · 106 molecular weight
polystyrene in diethyl phthalate. For a constitutive relation, the generalized New-
tonian Carreau viscosity model, with fluid parameters ρ = 1[ g

cm3 ], η0 = 4570[Pa s],
Cu = 10.5, n = 0.04 that fits the experimentally measured shear–thinning viscosity
of this fluid, has been chosen. At the inflow a parabolic velocity profile, with it’s
maximum value given in the Table 6.6, is imposed. Such flow conditions lead to large
variations in viscosity, what is shown in Figure 6.33. The variants for the blocks D1

and D2 in the preconditioners, given in Table 6.5, that have been used are following.
D1 is a preconditioner to the block matrix A (or transformed matrix Ā, for details
see Section 5.3). As it is discussed in Section 5.1 it is enough to use a block diagonal
one. Therefore, two such block diagonal preconditioners are considered, namely block
ILU , where incomplete LU factorizations are performed for diagonal blocks, denoted
by BILUA and block RILU (relaxed block ILU factorization for various β) denoted
by BRILUA(β). D2 is a preconditioner to the Schur complement, that will be de-
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UBGS D−1
GS =

(
D1 0
B D2

)−1

UBIT D−1
GS =

(
D1 BT

B 0

)−1

BD D̄−1
D =

(
D−1

1 0
0 D−1

2

)

BLT D̄−1
LT =

(
D−1

1 0
B(I − Ā) D−1

2

)

BGS D̄−1
GS =

(
D1 0

B(I − Ā) D2

)−1

Table 6.5: Preconditioners to the fully coupled method.

Domain Contraction - expansion 2:1 planar contraction
Grid Fine : 88704 fluid cells Fine : 89280 fluid cells

Coarse: 9856 fluid cells Coarse: 9920 fluid cells
Accuracy ǫ = 10−6 ǫ = 10−6

Time step Fine : 10−5 Fine : 10−5

Coarse: 10−2 Coarse: 10−2

Inflow velocity Uinf = 0.1[ cm
s

] Uinf = 0.05[ cm
s

]

Table 6.6: The set up for the performed tests in order to check different preconditioning
techniques applied to the fully coupled method

noted here by Λ = BD−1
1 BT (or alternatively Λ = BD−1

1 B̄T ). Since finding D−1
1 is

computationally costly, in the numerical simulations it is replaced by {diag(D1)}−1.
For preconditioners to Λ, we have chosen the incomplete LU factorization ILUΛ,
relaxed incomplete LU factorization RILUΛ(β), and finally, the block Λ has also
been inverted with use of Jacobi iterations preconditioned by RILUΛ(β). During the
transformation of the system (3.2), the transformation matrix H = (diag{part(A)})
(for details see equation (5.13)). In fact, similar idea as in relaxed incomplete LU
factorizations is used here. Diagonal matrix H is constructed by subtracting from the
diagonal entries of A the weighted sum of its row entries. It can be mathematically
written as H = (diag(A)− βAe), where e = [1, 1, 1..., 1]T and β is the weight. Note,
that taking β = 0 result in H = (diag(A)). In all the simulations, we have used such
a matrix H with β = 0.65. Increase or decrease of β did not improve the results.

Below, several tables with the results from simulations are presented. First, we
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BiCGstab TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−2 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8) > > >
RILUΛ(0.65) 168 5.1 999 — 999 — 474 9.52 999 —
BRILUA(0.8) > > >
JaccobΛ(8) 80 4.27 999 — 999 — 521 22.93 999 —
BILUA > > >
RILUΛ(0.65) 273 8.58 999 — 999 — 515 13.71 999 —
BRILUA(0.8) > > > >
ILUΛ 273 8.76 999 — 999 — 999 — 999 —
BILUA > > >
JaccobΛ(8) 131 7.54 999 — 999 — 434 21 999 —

Table 6.7: Number of iterations and CPU times for contraction expansion geometry
on coarse grid and coarse time step. BiCGstab iterative method used.

show five tables (Table 6.7, 6.8, 6.9, 6.10, 6.11) concerning simulations in contraction–
expansion geometry (see left plot from Figure 6.33). The iterative procedure was
stopped if the accuracy, presented in Table 6.6, has not been achieved within 999
steps. For a coarse grid the best results were achieved when the block Gauss–Seidel
preconditioner (BGS), applied to the transformed system (3.2), has been used. For
a coarse time step τ = 10−2, the best result was obtained with GMRES(100) solver
(Table 6.8) with block BILUA and JaccobΛ(8) preconditioners. The same number
of iterations was achieved by BiCGstab (Table 6.7) with block BRILUA(0.8) and
JaccobΛ(8) preconditioners, however it needed more computational CPU time to per-
form calculations. This is coming from more frequent action of the preconditioner
in the latter case. Neither the change of the relaxation parameter β nor increase
or decrease of the number of Jacobi iterations improved the results. However, the
situation changes when fine time step is chosen. In such situation BiCGstab (Table
6.9) performs better, in terms of iteration number and computational CPU time, for
all considered block preconditioners D1 and D2 comparing with GMRES(100) (Table
6.10). Moreover, BGS preconditioner was the only one, from all considered here,
that allowed us to reach the imposed accuracy on the fine grid. In Table 6.11 the
results are presented. Again, while for coarse time step the best results obtained
by BiCGstab and GMRES(100) with block RILUΛ(0.65) and JaccobΛ(8) were quite
similar, BiCGstab has performed much better when the fine time step τ = 10−5 was
chosen.

Similar results have been obtained in 2:1 planar contraction geometry (Tables 6.12,
6.13, 6.14, 6.15). For coarse grid, the best performance was achieved by BiCGstab
with BGS and block BRILUA(0.8) and RILUΛ(0.65) preconditioners for both coarse
and fine time steps. All the rest preconditioners, namely the block diagonal (BD), the
block lower triangular (BLT), applied to the transformed system (3.2), as well as the
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GMRES(100) TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−2 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8) >
RILUΛ(0.65) 280 11.05 570 18.93 570 21.27 999 — 704 30.05
BRILUA(0.8) >
JaccobΛ(8) 82 3.94 256 11.08 256 12.19 785 36.32 290 28.03
BILUA > > >
RILUΛ(0.65) 290 12.17 999 — 999 — 999 — 241 10.57
BRILUA(0.8) >
ILUΛ 300 12.37 575 19.83 575 22.17 999 — 474 21.26
BILUA

JaccobΛ(8) 80 3.9 191 8.77 191 9.58 549 26.73 151 15.03

Table 6.8: Number of iterations and CPU times for contraction expansion geometry
on coarse grid and coarse time step. GMRES(100) iterative method used.

ones applied to the untransformed system (3.2) – the block Gauss–Seidel (UBGS)
and the block indefinite triangular (UBIT), needed at least twice more iterations to
achieve imposed accuracy compared with already discussed BGS.

Moreover, for both geometries, when coarse grid with fine time step was chosen, in
most of the cases BLT was performing less iterations than BD, when BiCGstab was
used (Table 6.9, 6.14). Similar observations were done in [22], where BLT showed
better results than BD for all variants of preconditioners applied to subblocks of the
transformed system. However, the simulations there were performed with staggered
grid arrangement, contrary to collocated one used here, and for different domain.
Therefore the influence of the discretization on the iterative solver can not be pro-
vided now, however it is planned for a future work. In the case of GMRES(100)
iterative solver (not presented in [22]) both BD and BLT perform the same num-
ber of iterations (Table 6.8, 6.10, 6.13, 6.15). The first needs less computational time
since less work has to be done when it’s applied. Also GMRES(100) performed better
than BiCGstab when coarse time step was chosen.

In Table 6.16 the comparison between GMRES(100) and BiCGstab applied on
a fine grid is shown. Again, only (BGS) preconditioner applied to the transformed
system (3.2) allowed to reach imposed accuracy. GMRES(100) performed better when
coarse time step was taken, contrary to the simulation with the fine time step, where
BiCGstab was a better choice.

Let us now discuss the performance of the preconditioners applied to the un-
transformed system (3.2). Only results obtained on the coarse grids are presented,
since on the fine grid neither UBGS nor UBIT could achieve imposed accuracy
within 999 iterations. When the coarse time step was chosen, the block Gauss–
Seidel (UBGS) preconditioner performed better with BiCGstab solver, contrary to
the indefinite block triangular (UBIT) one, which has showed better results with
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Numerical results.

BiCGstab TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−5 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8)
RILUΛ(0.65) 49 1.57 125 2.49 116 3.19 250 5.35 179 6.42
BRILUA(0.8) >
JaccobΛ(8) 35 1.93 763 31.3 999 — 224 9.71 76 11.28
BILUA

RILUΛ(0.65) 78 2.78 172 3.75 179 5.37 274 7.23 74 3.19
BRILUA(0.8)
ILUΛ 53 1.68 90 1.83 89 2.52 216 4.85 127 5.34
BILUA

JaccobΛ(8) 40 2.45 658 28.8 152 7.87 179 8.76 54 8.49

Table 6.9: Number of iterations and CPU times for contraction expansion geometry
on coarse grid and fine time step. BiCGstab iterative method used.

GMRES(100) (see Tables 6.7, 6.8, 6.12 and 6.13). For a fine time step used the best
result was obtained by BiCGstab iterative method with UBIT and block BILUA

and RILUΛ(0.65) preconditioners. However, still UBIT needed at least twice more
CPU time than BGS with BRILUA(0.8) and RILUΛ(0.65) preconditioners.

Since in many applications the number of gid nodes is of order O(106), the use of
GMRES with long sequences is not suitable due to memory limitations. Therefore,
let us finally discuss the results obtained by GMRES(10) and presented in Table 6.17.
Calculations were done with use of block Gauss–Seidel preconditioner (BGS), applied
to the transformed system (3.2), on a coarse grid with a fine time step τ = 10−5. It
can be seen, that decreasing 10 times the number of sequences results in, at least,
5 times more iteration number needed to perform in order to reach the imposed
accuracy. Moreover, one needs at least 4 times more the CPU time to reach that
accuracy. Note, that GMRES method is preferred in [4, 42], however there more
academic examples are considered and such long sequences can be used. Also results
presented here show, that the GMRES with long sequences is a good choice when
relatively small (in terms of the number of grid points) geometries are considered.

6.5 Summary.

The simulation results of two classes of: generalized Newtonian and non–Newtonian
fluids, as well as performance of different solution techniques applied to the first class,
have been presented in this Chapter.

First, very good qualitative comparison of shear–thinning fluid, modeled by Car-
reau viscosity, is shown. Next, the results of anisotropic viscosity model are given. It
is shown, that extensional–thickening and shear–thinning fluids can predict growth
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GMRES(100) TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−5 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8)
RILUΛ(0.65) 83 3.05 210 6.98 210 7.83 893 31.78 155 6.07
BRILUA(0.8)
JaccobΛ(8) 55 2.28 143 5.86 143 6.52 288 13.28 103 10.31
BILUA

RILUΛ(0.65) 128 5.08 388 13.56 388 13.91 864 32.63 155 6.67
BRILUA(0.8)
ILUΛ 86 3.24 193 6.57 193 7.46 792 28.88 107 4.86
BILUA

JaccobΛ(8) 59 2.63 145 6.28 145 6.85 238 11.27 73 7.23

Table 6.10: Number of iterations and CPU times for contraction expansion geometry
on coarse grid and fine time step. GMRES(100) iterative method used.

of the vortices in various contraction domains, what is also observed in experiments.
Then, simulation results of dilute polymer solutions modeled by integral Oldroyd

B model are presented. Both quantitative and qualitative agreement with the results
obtained by differential counterpart and experimental observations, respectively, are
obtained.

Concentrated polymer solutions are modeled by integral Doi Edwards constitu-
tive equation with possible chain stretch. Very good quantitative agreement with
experimentally measured data of first normal stress difference and shear viscosity
for polystyrene solution is achieved. Also qualitative agreement with the results ob-
tained by differential approximation to Doi Edwards model in constriction geometry
is shown.

Both time integral constitutive equations allow to perform stable simulations for
much higher Weissenberg numbers compared with differential ones.

Growth of the vortices is always associated with much higher pressure drop than
for Newtonian fluid with the same viscosity.

Finally, the performance of projection type methods and fully coupled method
in simulations of generalized Newtonian fluids has been checked. It is shown, that
explicit discretization of the cross derivatives from momentum equations may lead to
stability problems. To avoid it, implicit discretization is recommended.

The performance of different preconditioners (applied to the fully coupled method)
and iterative methods was studied for two geometries (2:1 planar contraction and con-
traction expansion domains), on coarse and fine grid, using different time steps. The
best results are obtained with block Gauss–Seidel preconditioner applied to trans-
formed system of discretized and linearized continuity and momentum equations
(5.15). Only using this preconditioner allowed us to reach imposed accuracy on a
fine grid within 999 steps.
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BGS preconditioner
BiCGstab GMRES(100)

τ = 10−2 τ = 10−5 τ = 10−2 τ = 10−5

BRILUA(0.8) > 999 iter. 249 iter. > 999 iter. 560 iter.
RILUΛ(0.65) — 85 sec. — 227.52 sec.
BRILUA(0.8) 387 iter. 219 iter. 392 iter. 285 iter.
JaccobΛ(8) 229.32 sec. 140.06 sec. 214.38 sec. 154.45 sec.
BILUA > 999 iter. > 999 iter. > 999 iter. 994 iter.
RILUΛ(0.65) — — — 438.79 sec.
BRILUA(0.8) > 999 iter. > 999 iter > 999 iter. > 999 iter.
ILUΛ — — — —
BILUA 842 iter. 765 iter. 686 iter. > 999 iter.
JaccobΛ(8) 551.29 sec. 265.83 sec. 396.69 sec. —

Table 6.11: Number of iterations and CPU times for contraction expansion geometry
on fine grid and fine time step. BiCGstab against GMRES(100) iterative method
used.

BiCGstab performed better than GMRES(100) on a fine grid, when fine time step
was chosen, while, for a coarse time step the performance was similar.

Block lower triangular and block diagonal preconditioners, applied to the trans-
formed system (5.15), performed the same number of iterations when GMRES(100)
was used.

On coarse grid and coarse time step chosen, the block indefinite triangular pre-
conditioner, applied to the untransformed system (3.2), preformed better with GM-
RES(100) than BiCGstab. It was contrary to the block Gauss–Seidel (also applied
to (3.2)), which showed better behavior with BiCGstab solver.

Choosing GMRES(10) solver with short number of sequences, which is necessary
in industrial applications (domains of order 106 number of grid points) due to memory
requirements, needed high number of iteration steps to converge.
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BiCGstab TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−2 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8) > > >
RILUΛ(0.65) 119 3.58 999 — 999 — 381 7.71 999 —
BRILUA(0.8) > > >
JaccobΛ(8) 62 3.13 999 — 999 — 470 19.51 999 —
BILUA > >
RILUΛ(0.65) 282 9.58 999 — 999 — 395 9.85 191 7.8
BRILUA(0.8) > > >
ILUΛ 148 4.48 999 — 999 — 317 6.85 999 —
BILUA > > >
JaccobΛ(8) 115 6.32 999 — 999 — 288 13.12 999 —

Table 6.12: Number of iterations and CPU times for 2:1 planar contraction geometry
on coarse grid and coarse time step. BiCGstab iterative method used.

GMRES(100) TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−2 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8) >
RILUΛ(0.65) 198 7.78 889 29.88 899 33.62 999 — 983 37.62
BRILUA(0.8)
JaccobΛ(8) 75 3.36 200 8.99 200 9.74 756 33.99 379 35.69
BILUA > > >
RILUΛ(0.65) 298 12.6 999 — 999 — 999 — 195 8.8
BRILUA(0.8) >
ILUΛ 270 10.38 799 27.49 799 30.34 999 — 498 22.28
BILUA

JaccobΛ(8) 74 3.45 179 7.81 179 8.44 399 19.23 95 9.2

Table 6.13: Number of iterations and CPU times for 2:1 planar contraction geometry
on coarse grid and coarse time step. GMRES(100) iterative method used.
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BiCGstab TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−5 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8)
RILUΛ(0.65) 44 1.31 100 1.86 101 2.63 214 4.3 177 6.08
BRILUA(0.8)
JaccobΛ(8) 33 1.66 154 5.96 146 6.8 222 9.27 85 11.71
BILUA

RILUΛ(0.65) 75 2.55 155 3.14 158 4.43 306 7.62 76 3.16
BRILUA(0.8)
ILUΛ 47 1.44 76 1.49 76 2.02 211 4.56 109 4.33
BILUA

JaccobΛ(8) 36 1.99 170 7.05 139 6.74 206 9.3 56 8.17

Table 6.14: Number of iterations and CPU times for 2:1 planar contraction geometry
on coarse grid and fine time step. BiCGstab iterative method used.

GMRES(100) TRANSFORMED UNTRANSFORMED
BGS BD BLT UBGS UBIT

τ = 10−5 Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU
BRILUA(0.8) >
RILUΛ(0.65) 79 2.72 193 6.42 193 7.28 999 — 160 6.19
BRILUA(0.8)
JaccobΛ(8) 49 1.87 142 5.71 142 6.3 293 13.22 148 13.48
BILUA >
RILUΛ(0.65) 119 4.76 298 10.47 298 11.52 999 — 100 4.8
BRILUA(0.8) >
ILUΛ 78 2.71 129 4.04 129 4.53 999 — 97 4.4
BILUA

JaccobΛ(8) 59 2.4 100 4.62 100 4.97 282 13.19 80 7.67

Table 6.15: Number of iterations and CPU times for 2:1 planar contraction geometry
on coarse grid and fine time step. GMRES(100) iterative method used.
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BGS preconditioner
BiCGstab GMRES(100)

τ = 10−2 τ = 10−5 τ = 10−2 τ = 10−5

BRILUA(0.8) > 999 iter. 208 iter. > 999 iter. > 999 iter.
RILUΛ(0.65) — 63.9 sec. — —
BRILUA(0.8) 495 iter. 150 iter. 260 iter. 283 iter.
JaccobΛ(8) 278.37 sec. 84.57 sec. 132.85 sec. 146.45 sec.
BILUA > 999 iter. > 999 iter. > 999 iter. > 999 iter.
RILUΛ(0.65) — — — —
BRILUA(0.8) > 999 iter. 182 iter > 999 iter. > 999 iter.
ILUΛ — 59.14 sec. — —
BILUA > 999 iter. 489 iter. 390 iter. 330 iter.
JaccobΛ(8) — 301.61 sec. 217.83 sec. 180.21 sec.

Table 6.16: Number of iterations and CPU times for 2:1 planar contraction geometry
on fine grid and fine time step. BiCGstab against GMRES(100) iterative method
used.

BGS GMRES(10)
preconditioner Contraction - 2:1 planar

expansion contraction
Iter. CPU Iter. CPU

BRILUA(0.8)
RILUΛ(0.65) 541 10.4 721 13.12
BRILUA(0.8)
JaccobΛ(8) 410 12.85 269 8.06
BILUA >
RILUΛ(0.65) 816 17.64 999 —
BRILUA(0.8)
ILUΛ 660 12.95 978 18.13
BILUA

JaccobΛ(8) 310 10.41 320 10.07

Table 6.17: Number of iterations and CPU times for 2:1 planar contraction and
contraction expansion geometries on coarse grid and fine time step. GMRES(10)
iterative method used.
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Chapter 7

Concluding remarks.

This thesis deals with modeling aspects of generalized Newtonian and of non-Newtonian
fluids, as well as with development and validation of algorithms used in simulation of
such fluids.

The main contribution in the modeling part is the introduction and analysis of
a new model for the generalized Newtonian fluids, where constitutive equation is
of an algebraic form. Distinction between shear and extensional viscosities leads
to anisotropic viscosity model. It can be considered as a natural extension of the
well known Carreau model (isotropic viscosity), that deals only with shear viscosity
properties of the fluid, by taking additionally into account extensional viscosity prop-
erties. Numerical results, presented in section 6.2, show that the anisotropic viscosity
model gives much better agreement with experimental observations compared to the
isotropic one. Choosing extensional–thickening and shear–thinning fluid result, ac-
cording to the experiments, in growth of the vortices in contraction flows, contrary
to the shear–thinning fluid only (described by Carreau model). Moreover, as in ex-
periments, such effect is associated with the extensional stress, e.g. only fluids that
exhibit extensional stress growth with higher extensional–rates has shown it.

The second contribution of the thesis consist of development and analysis of ro-
bust and reliable algorithm for simulation of generalized Newtonian fluids. For such
fluids the momentum equations are strongly coupled through mixed derivatives ap-
pearing in the viscous term (unlike the case of Newtonian fluids). It is shown in
this thesis, that a careful treatment of those derivatives is essential in deriving ro-
bust algorithms. Modification of a standard SIMPLE-like algorithm is given, where
all the viscous terms from the momentum equations are discretized in an implicit
manner. Moreover, it is shown that a block diagonal preconditioner to the viscous
operator is good enough to be used in simulations. Furthermore, different solution
techniques, namely projection type methods (consist of solving momentum equa-
tions and pressure correction equation) and fully coupled methods (momentum and
continuity equations are solved together), are compared. It is shown, that explicit
discretization of the mixed derivatives lead to stability problems. Finally, analytical
estimates for three different preconditioners, applied to the transformed system aris-
ing after discretization and linearization of the momentum and continuity equations,
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are provided. A new preconditioner, block Gauss-Seidel applied to the transformed
system, is proposed. From the analysis one can see, that this preconditioner is able to
cluster eigenvalues around the unity number independent of the transformation step,
which is not the case for other preconditioners applied to the transformed system
and discussed here. It has also shown the best behavior (among all preconditioners
discussed in the thesis) in numerical experiments.

The third contribution consist of comparison and validation of numerical algo-
rithms applied in simulations of non-Newtonian fluids modeled by time integral con-
stitutive equations. Numerical results from simulations of dilute polymer solutions,
described by the integral Oldroyd B model, have shown very good quantitative agree-
ment with the results obtained by differential Oldroyd B counterpart in 4:1 planar
contraction domain at low Weissenberg numbers. In this case, the Weissenberg num-
ber is changed by changing the relaxation time. However, contrary to the differential
Oldroyd B model, the integral one allows to perform stable simulations also in the
range of high Weissenberg numbers. Moreover, we have obtained very good agree-
ment with experimental observations of Boger B64 fluid (section 6.3.1), where, ac-
cording to experiments, growth of the vortices with increasing Weissenberg number,
by increasing inflow velocity, is observed. Next, comparison of two methods used for
approximation of the time integral constitutive equation, namely Deformation Field
Method (DFM) and Backward Lagrangian Particle Method (BLPM), is performed. In
BLPM the particle paths are recalculated at every time step of simulations, what has
never been tried before. The results have shown, that in considered geometries both
methods give similar results. Finally, simulations of concentrated polymer solutions
(polystyrene and polybutadiene solutions), described by the integral Doi Edwards
model, supplemented by chain length fluctuations, have shown very good qualitative
agreement with the results obtained by its differential approximation in 4:1:4 con-
striction domain. Again, much higher Weissenberg numbers can be achieved when
integral model is used. Moreover, very good quantitative results with experimental
data of polystyrene solution for the first normal stress difference (N1 = Txx − Tyy,
where Txx and Tyy are diagonal components of the stress tensor) and shear viscosity

defined as the quotient of a shear stress and a shear rate, e.g. η(γ̇xy) = Txy

γ̇xy
, are

obtained.
Summarizing, in this thesis two classes of fluids described by: an algebraic and a

integral constitutive equations are considered. We have introduced new anisotropic
viscosity model, describing the generalized Newtonian fluids, which gives ability to
predict growth of the vortices even if shear–thinning fluid is considered. Moreover, it
is shown, that integral constitutive equations, describing non–Newtonian (viscoelas-
tic) fluids, allow to perform stable simulations for much higher Weissenberg numbers
compared with their differential counterpart (Oldroyd B) or approximations (Doi Ed-
wards). Finally, systematic analysis of solution techniques for generalized Newtonian
fluids has been performed.
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List of symbols

v = (v1, v2, v3) - velocity,
x = (x1, x2, x3) - space position,
p - pressure,
T - polymeric stress,
T̄ - approximation to T,
σ - viscous stress,
τ - total stress,
γ - rate of deformation tensor,
ρ - fluid density,
η0 - zero shear-rate viscosity (dynamic viscosity),
ν - kinematic viscosity
µ(t, t′) - memory function,
Q(t, t′) - Doi Edwards partial orientation tensor,
Q̂(t, t′) - approximation to Q,
Ge - elastic constant,
τrelax - general relaxation time,
τd - relaxation time (Doi Edwards model),
τR - the Rouse time,
E(t, t′) - deformation tensor,
u - unit vector tangent to the primitive chain,
L - average chain length,
L0 - average chain length in equilibrium,
λ = L

L0
- the average chain stretch ratio,

ηp - polymeric constant,
τOldr - relaxation time (Oldroyd B model),
B(t, t′) - Finger strain tensor,
δ - identity matrix,
γ̇ - shear rate,
ǫ̇ - elongational rate,
η(γ̇) - Carreau shear viscosity,
ηe(ǫ̇) - extensional viscosity,
Dv - discrete diffusion operator,
Cv - discrete convection operator,
BT - discrete gradient operator,
B - discrete divergence operator,
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τ = tn+1 − tn - time step,
Cu, n - parameters to fit shear properties of the fluid,
Cue, ne - parameters to fit elongational properties of the fluid,
T - temperature,
a1, a2 - parameters to fit zero shear-rate viscosity,
α - parameters to fit pressure dependence on viscosity,
δx, δy - space discretization sizes,
δV - volume of CV,
Aw, Ae, An, As - areas of west, east, north and south faces of CV,
ξ - eigenvalue,
[x, y] - eigenvector,
DGS - block Gauss–Seidel preconditioner to untransformed system,
DIT - block indefinite triangular preconditioner to untransformed system,
D̄D - block diagonal preconditioner to transformed system,
D̄LT - block lower triangular preconditioner to transformed system,
D̄GS - block Gauss–Seidel preconditioner to transformed system,
Re = ρŪL

η0
- Reynolds number,

We = τrelaxŪ
L

- Weissenberg number,
L - width of upstream channel in 2D planar contraction geometry,
Ū - average upstream channel velocity.
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