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Abstract

This thesis discusses methods for the classification of finite projective planes via exhaustive
search. In the main part the author classifies all projective planes of order 16 admitting
a large quasiregular group of collineations. This is done by a complete search using the
computer algebra system GAP. Computational methods for the construction of relative
difference sets are discussed. These methods are implemented in a GAP-package, which is
available separately.

As another result –found in cooperation with U. Dempwolff– the projective planes
defined by planar monomials are classified. Furthermore the full automorphism group of
the non-translation planes defined by planar monomials are classified.

Zusammenfassung

Die Arbeit befasst sich mit Methoden zur Klassifikation endlicher projektiver Ebenen
mittels vollständiger Suche. Im Hauptteil werden die projektiven Ebenen der Ordnung
16 klassifiziert, die eine große quasireguläre Kollineationsgruppe besitzen. Dies geschieht
durch eine vollständige Suche mit Hilfe des Computeralgebra Systems GAP. Dafür werden
Methoden zur Konstruktion relativer Differenzmengen erörtert. Diese Methoden wurden
vom Verfasser in einem GAP-Paket implementiert und sind separat erhältlich.

Ein weiteres Resultat (in Zusammenarbeit mit U. Dempwolff) ist die Klassifikation
der projektiven Ebenen, die durch planare Monome definiert sind. Für Ebenen, die durch
Monome definiert und keine Translationsebenen sind, wird die volle Automorphismen-
gruppe berechnet. Damit sind für alle planare Monome die Automoprhismengruppen der
zugehörigen Ebenen bekannt.
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Preface

During the last two decades, computational group theory and computational
finite geometries have become very active fields of research. The most promi-
nent result from this area is the proof of the non-existence of projective
planes of order 10 [LTS89]. But besides the proof of conjectures by complete
enumeration of the problem –or part of it– there is another reason for the
popularity of computational methods. Experiments using computer algebra
systems sometimes lead to new constructions or theorems as they encourage
“inspired guessing”. Computer algebra systems like GAP are of great help
here as they are easy to use and provide plenty of functionality. So it is not
necessary to do a lot of programming to just “have a look” at a few sample
cases.

The present thesis shows one instance of either case. In the main part,
a computer search is done to classify a certain type of projective planes. In
chapter 6 we prove a theorem (in cooperation with U. Dempwolff) which
grew from related experiments and a close investigation of a sample case.

This text is structured as follows:

In chapter 1 we will have a look at the connection between projective
planes and difference sets. Section 1.3 relates relative difference sets to pro-
jective planes and divisible designs. With a view towards a computer search
for relative difference sets, section 1.4 develops a tool called “coset signa-
ture”. This tool enables us to use information about the subgroup structure
of a group for the generation of relative difference sets in this group (and
even in others with a similar subgroup structure).

For the case of ordinary difference sets, chapter 2 demonstrates the use
of representation theory to calculate coset signatures in a certain class of
groups. As a result, a search for difference sets in groups of this class can
(normally) be done much easier.

In chapter 3 we approach the main objective of this thesis. The types
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of planes given by the classification of Dembowski and Piper [DP67] are
studied to find all projective planes of order 16 admitting a large quasiregular
automorphism group. For each case, a difference set construction is given and
the results of the corresponding computer search are stated as a theorem. The
algorithmic part of this search is considered in chapter 4. After a general
outline of the search algorithms, several aspects of the algorithms receive
special attention. Some examples for the implementation in GAP are given in
appendix B. In chapter 5 a few experiments in higher order are documented.
This illustrates some possibilities for further searches using similar methods.

Chapter 6 shows an example of how computer experiments may lead to
general results. Calculations for projective planes of order 81, as described in
chapter 5, led to the problem of identifying a projective plane (which turned
out to be the one of Coulter and Matthews [CM97]). From the attempt to
construct the full automorphism group of the projective plane and to find the
defining planar polynomial, arguments for the classification of planar mono-
mials in general were derived. The result is a theorem which classifies the
projective planes defined by planar monomials and determines the full auto-
morphism group for each of them. This part was done in cooperation with
Prof. Dempwolff and is submitted to “Innovations in Incidence Geometry”
[DR].

Finally, some open problems and possibilities for further work in this field
are discussed.

Most of the functionality needed for the computational part of this text
is implemented as a GAP package called “RDS” and is freely available from the
“Packages” section of the GAP homepage [Röd06]. The implementation was
done such that relative difference sets with λ > 1 –which do not play a role
in thesis– can also be studied.

I would like to thank several people and institutions for their support.
Prof. Dr. Dempwolff for giving me the chance to write this dissertation and
for his advice in doing so. The state Rhineland-Palatinate for supporting
my work with a scholarship. The University of Kaiserslautern, especially
the Department of Mathematics and the RHRK for letting me use their
Computers and other infrastructure. And all my friends and family for their
support during this time.
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Chapter 1

General theory

1.1 Notation

Let D be an incidence structure and p a point of D. Then [p] denotes the set
of blocks of D incident with p. Analogously, for a block B, the set of points
incident with B is denoted by [B]. We will also identify blocks with point
sets writing B = {p1, . . . , pn} = [B]. For a set {a1, . . . , an} of points (blocks),
[a1, . . . , an] is the set of blocks (points) incident with all of a1, . . . , an. When
talking about projective planes, blocks will also be called lines.

Let p be a point and B a block of an incidence structure D. The pair
(p, B) is called a flag if p is incident with B and anti-flag otherwise.

The set of all prime numbers will be denoted by P. All groups and
incidence structures are assumed to be finite. For n ∈ N, the cyclic group
of order n is denoted by Cn. For p ∈ P and n ∈ N the elementary abelian
group of order pn is denoted by Epn. For a group G, let Aut(G) denote
the group of automorphisms and Aut◦(G) the group of automorphisms and
anti-automorphisms.

1.1 Definition. Let M be a set and µ : M → N, the pair (M,µ) is called a
multiset. For all m ∈M , the number µ(m) is called multiplicity of m.

Let M be a set and n ∈ N. Let m ∈Mn and let m̃ := {x ∈M | x ∈ m}
be the set containing the entries of the tuplem. Furthermore, let µm̃ : m̃→ N

map x ∈ m̃ onto the number of times x occurs in then n-tuple m. Then
‖m‖ = (m̃, µm̃) is the multiset of m.

Loosely speaking, a multiset is a set which may contain the same element
several times. For M ⊆ N (or any totally ordered set) with |M | < ∞, the
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1.2. ORDINARY DIFFERENCE SETS

multiset (M,µ) can be identified with the tuple (m1, . . . , mn) where mi ≤
mi+1 for all 1 ≤ i < n =

∑
m∈M µ(m). So finite multisets may be compared

pointwise.

1.2 Ordinary difference sets

1.2 Definition. Let 1 < n and G a finite group. A set D ⊆ G with k = |D|
is called difference set of order n = k − λ, if for all 1 6= g ∈ G there exist
exactly λ pairs (a, b) ∈ D × D such that ab−1 = g. A difference set D is
called (v, k, λ)-difference set for v = |G|.

The following observations show the connection between difference sets
and projective planes.

1.3 Lemma. Let D ⊆ G be a (v, k, λ)-difference set. Then also D−1 is a
(v, k, λ)-difference set. In other words: for every 1 6= g ∈ G there are exactly
λ pairs (d1, d2) ∈ D×D with g = d−1

1 d2 and exactly λ pairs (d3, d4) ∈ D×D
with g = d3d

−1
4 .

Proof. First, let aD = bD. Then there are exactly |D| = k > λ pairs
(d1, d2) ∈ D2 such that b−1a = d1d

−1
2 holds. Hence a = b.

Now let 1 6= g ∈ G. Then there are exactly λ solutions for d1d
−1
2 = g, i.e.

|D ∩ gD| = λ. So (D, {gD | g ∈ G}) is a symmetric (v, k, λ)-design.
We may assume 1 ∈ D without loss of generality. Then 1 is contained

exactly in the blocks d−1D where d ∈ D. By the same argument g 6= 1 is
contained exactly in the blocks gd−1D with d ∈ D.

But |[1]∩ [g]| = λ and so there are exactly λ pairs (d1, d2) ∈ D2 satisfying

d−1
1 D = gd−1

2 D

and exactly λ pairs (d1, d2) ∈ D2 satisfying

d−1
1 = gd−1

2

1.4 Corollary. Let D ⊆ G be a (v, k, λ)-difference set and g, h ∈ G. Fur-
thermore, let d1id

−1
2i

= gh−1 be the presentations as quotients in D with
d1i , d2i ∈ D and 1 ≤ i ≤ λ. Then g and h are connected exactly by the lines
Dd−1

2i
h with 1 ≤ i ≤ λ.

7



CHAPTER 1. GENERAL THEORY

Proof. Obviously g ∈ Dd−1
2i
h. On the other hand, Dd−1

2i
h ∋ d1id

−1
2i
h = h.

And as d1g = d2h ⇐⇒ gh−1 = d−1
1 d2 these are all lines connecting h to

g.

1.5 Definition. Let G be a group and D ⊆ G. Define B = {Dg | g ∈ G},
then the incidence structure devD := (G,B,∈) is called development of D.

1.6 Theorem. Let G be a group and D ⊆ G a (n2+n+1, n+1, 1)-difference
set. Then devD is a projective plane of order n.

Via right multiplication, G defines a group of collineations of devD acting
regularly on points and blocks.

Proof. Let x, y ∈ G with x 6= y. By definition and 1.3 there is exactly one
pair (d1, d2) ∈ D ×D satisfying yx−1 = d−1

1 d2 and hence yd1 = d2x. So the
blocks xD and yD have exactly one point in common.

Now let x, y ∈ G be distinct points. Again, there is exactly one pair
(d3, d4) ∈ D ×D with xy−1 = d3d

−1
4 . Set z = d−1

4 y, then x = d3, d
−1
4 y = d3z

and y = d4z. Hence the block Dz contains the points x and y.
Let g ∈ G. Then there are exactly |D| blocks incident with g (as G acts

regularly). For the same reason all blocks have size |D|.

1.7 Definition. Let D be a design and let G ≤ Aut(D) act regularly on the
points and blocks of D. Then G is called Singer group of D.

An important tool in the study of difference sets is the presentation as
elements of the group ring Z[G]. This is done as follows:

̂: Pot(G) → Z[G]

M 7→
∑

g∈G

vgg where vg := χM(g)

where χM denotes the characteristic function of M . If there is no risk of
confusion, we identify D with its image under ̂ and write D =

∑
g∈G vgg.

Define

D−1 : =
∑

g∈G

vgg
−1

|D| : =
∑

g∈G

vg
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1.3. RELATIVE DIFFERENCE SETS

So difference sets may also be defined by the equation

DD−1 = n · 1 + λG.

Let ϕ : G→ H be an epimorphism with kerϕ = U . Then ϕ is canonically
lifted to the group ring by

(1.7.1)
(∑

vgg
)ϕ

=
∑

vgg
ϕ.

Then

(1.7.2) (DD−1)ϕ = n · 1ϕ + λ(Ĝ)ϕ = n · 1ϕ + λ|U |H.

Note. As the same letter is used for the lifted and the original homomor-
phism, the problem arises that in general (Ĝ)ϕ is not equal to Ĝϕ. So in this
case, the ̂ may not be omitted.

If ϕ : G → 1 is the trivial homomorphism, and D ∈ Z[G], then Dϕ =
|D| · 1 = k.

1.3 Relative difference sets

1.8 Definition. Let G be a finite group and 1 ∈ N ⊆ G. Then D ⊆ G
with k = |D| is called relative difference set with forbidden set N , if for some
λ ∈ N the following equation in Z[G] holds:

DD−1 = k + λ(G−N).

D is called (|G|/|N |, |N |, k, λ)-difference set.

Note that |G|/|N | isn’t necessarily an integer. This may be inconvenient
but as this notation is customary for N ≤ G, we will also use it in the general
case.

Note. (a) Sometimes, difference sets with 1 ∈ D are called “regular” dif-
ference sets. For the ease of notation, we do only consider regular
difference sets.

(b) Relative difference sets with N = {1} are ordinary difference sets as
defined on page 7.

9



CHAPTER 1. GENERAL THEORY

(c) Relative difference sets with forbidden sets (as opposed to those having
forbidden groups) are sometimes called neo-difference sets (see [Sch02,
GJ03b]).

1.9 Definition. Let G be a finite group. The set D ⊆ G is called partial
relative difference set with forbidden set N ⊆ G, if in Z[G]

DD−1 = κ+
∑

g∈G−N

vgg

holds for some 1 ≤ κ ≤ k and 0 ≤ vg ≤ λ for all g ∈ G−N .

Clearly, relative difference sets are also partial relative difference sets
(with κ = k and vg = λ for all g ∈ G−N). Let D ⊆ G be a partial relative
difference set. We say that D can be extended , if there is a relative difference
set D′ ⊆ G with the same forbidden set and D ⊆ D′. Clearly not every
partial relative difference set can be extended to a full relative difference set.

For a relative difference set D, the translates of D together with the
elements of G do not form a projective plane. Yet sometimes the incidence
structure defined by D may be lifted to a projective plane having G as a
group of collineations. In this case G will have one orbit of length |G| and
N will fix a substructure.

As for ordinary difference sets (see 1.3), we have

1.10 Lemma. Let D ⊆ G be a relative (m1, m2, k, λ)-difference set with
forbidden set N ⊆ G. Then also D−1 is a relative (m1, m2, k, λ)-difference
set with forbidden set N . In other words: for every g ∈ G − N there are
exactly λ pairs (d1, d2) ∈ D × D satisfying g = d−1

1 d2 and exactly λ pairs
(d3, d4) ∈ D ×D with d3d

−1
4 = g.

Proof. Let a, b ∈ G − N and aD = bD. As there are exactly |D| = k > λ
pairs (d1, d2) ∈ D2 solving b−1a = d1d

−1
2 , we have a = b.

Now let g ∈ G−N . Then there are exactly λ solutions for d1d
−1
2 = g, in

other words |D ∩ gD| = λ.
W.l.o.g. 1 ∈ D, then 1 is contained exactly in the blocks d−1D with

d ∈ D. By the same argument, we see that g 6= 1 is contained exactly in the
k blocks gd−1D with d ∈ D. So (G−N, {gD | g ∈ G−N}) is a symmetric
design. Therefore |[1] ∩ [g]| = λ and there are exactly λ pairs (d1, d2) ∈ D2

solving
d−1

1 D = gd−1
2 D
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1.3. RELATIVE DIFFERENCE SETS

and exactly λ pairs with
d−1

1 = gd−1
2

We have d−1
1 d2 = 1 ⇐⇒ d1d

−1
2 = 1 and every element of G − N may

be represented in exactly λ ways as d−1
1 d2. Every element of G − N may

also be represented as d1d
−1
2 in exactly λ ways. Hence, there is no pair

(d1, d2) ∈ D ×D with d1 6= d2 for which d−1
1 d2 ∈ N .

Now we will investigate some of the geometric properties of the forbidden
set N . And we will see which geometric objects are associated with relative
difference sets.

1.11 Lemma. Let D ⊆ G be a relative (|G|/|N |, |N |, k, λ)-difference set with
forbidden set N and g, h ∈ G with gh−1 6∈ N . Moreover, let d1id

−1
2i

= gh−1

be the presentations as quotients in D with d1i, d2i ∈ D and 1 ≤ i ≤ λ. Then
g and h are connected exactly by the lines Dd−1

2i
h with 1 ≤ i ≤ λ.

In particular, the points g, h ∈ G are disconnected in devD iff gh−1 ∈ N .

Proof. Obviously h ∈ Dd−1
2i
h. On the other hand, Dd−1

2i
h ∋ d1id

−1
2i
h = g.

And as d1g = d2h ⇐⇒ gh−1 = d−1
1 d2 these are all lines connecting h to g.

Now assume g, h to be disconnected. Then g 6∈ Dc−1h for all c ∈ D.
Hence gh−1 6∈ Dc−1 for all c ∈ D. Therefore gh−1 is not a quotient of two
elements of D. This shows gh−1 ∈ N .

1.12 Corollary. Let D ⊆ G be a relative difference set with forbidden set
N ⊆ G and U ≤ G with U ⊆ N . Then the cosets of U are totally disconnected
in devD. Moreover, D contains at most one element from each coset modulo
U .

Proof. Let n1g, n2g ∈ Ug with g ∈ G. As U is a group, we have n1g(n2g)
−1 ∈

U and so from 1.11 we know that n1g and n2g must be disconnected.

1.13 Corollary. Let D be a relative (|G|/|N |, |N |, k, λ)-difference set with
forbidden set N ⊆ G. Then NN−1 ⊆ N in Z[G]. In particular, N is closed
under inversion. Moreover, N is the union of all disconnected subsets of
devD containing 1.

Proof. By 1.11, the points 1 and g ∈ G are disconnected if and only if
g−1 ∈ N .

The fact that N−1 = N can also be seen like this: Assume x ∈ N−1 −N .
Then x can be written as a quotient in D but not in D−1. This contradicts
1.10.

11



CHAPTER 1. GENERAL THEORY

Note that this does not mean that N is a group or the union of groups.
Corollary 1.13 immediately implies

1.14 Corollary. Let D ⊆ G be a relative difference set with forbidden sub-
group N ≤ G, then the cosets of N are exactly the maximal totally discon-
nected point-sets of devD.

Proof. By 1.12, the cosets of N are totally disconnected.
Let h ∈ G−Ng with g ∈ G. Then g and h are in different cosets modulo

N and therefore gh−1 6∈ N . So g and h are connected and the cosets of N
are maximal totally disconnected.

If a set of points is totally disconnected, then each quotient of points is
in N . So the set is contained in a coset of N .

Designs admitting a partition of the point set such that every pair of
points from different classes has exactly λ lines joining them and every pair
of points from the same class has no line in common are called divisible
designs .

As seen above, designs defined by relative difference sets with forbidden
group are divisible designs. The point classes are given by the cosets of
the forbidden group. This implies that the forbidden group acts (via right
multiplication) on the point classes.

In fact, relative difference sets with forbidden group are essentially the
same as divisible designs with Singer group (for definition see 1.7):

1.15 Theorem. Let D be a divisible design with Singer group G. Let N ≤ G
be the stabiliser of a point class and D ⊆ G a block of D.

Then D is a relative difference set with forbidden group N and devD≃D.
Moreover, N can be identified with the point class containing 1 in devD.

Proof. Identify G with the points of D. The action of G on D is then
equivalent to the right regular representation of G. As G acts transitively on
the point classes, all classes have the same size and the stabiliser of a point
class acts transitively on that class.

We may therefore identify the stabiliser of a point class with the point
class containing 1.

The translates of D are the blocks of D, as G is a Singer group. Let
g ∈ G. The blocks containing g are exactly the ones of the form Dd−1g with
d ∈ D. But |[1] ∩ [g]| = λ for g ∈ G−N and |[1] ∩ [g]| = 0 if g ∈ N . Hence
D is a relative difference set with forbidden group N .

12



1.4. QUOTIENT IMAGES AND SIGNATURES

For more about divisible designs and relative difference sets, see Jung-
nickel [Jun82].

It is natural to call two difference sets isomorphic, if their devlopments
are isomorphic as incidence structures. However, this is rarely used. The
more general notion of equivalence is much easier to handle “from within the
group”.

1.16 Definition. Two partial relative difference sets D,D′ ⊆ G are called
equivalent if there is a g ∈ G and ϕ ∈ Aut(G) such that D = (Dg)ϕ. The
pair (g, ϕ) is called equivalence.

Two partial relative difference sets D,D′ ⊆ G are called strongly equiva-
lent, if they are equivalent and have the same forbidden set.

Obviously, equivalent difference sets induce isomorphic designs. As seen
in 1.10, the inverse of a relative difference set is again a relative difference
set. In general, devD−1 does not have the same isomorphism class as devD.
Instead we have:

1.17 Lemma. Let D ⊆ G be a relative difference set with forbidden set
N ⊆ G. Then devD ≃ (devD−1)d where ·d denotes the dual structure.

Proof. Let g ∈ G. Then [g] = {Da−1g | a ∈ D}. So the blocks of devD
meeting g can be identified with D−1g. In particular, D−1g is a block of
(devD)d and hence D−1 is a difference set for (devD)d.

So inverting a difference set means dualising the corresponding design.
As forbidden subsets are closed under inversion (1.13), we may introduce a
“weak” version of strong equivalence by admitting not only automorphisms,
but also anti-automorphisms of G. This is the form of equivalence we will be
concerned with.

1.4 Quotient images and signatures

1.18 Definition (Similar to [Bec04]). Let G be a finite group. D =
∑
vigi ∈

Z[G] is called “quotient image” of a relative difference set, if there are k, λ, s ∈
N and N =

∑|G|
i=1 nigi ∈ Z[G] satisfying

0 ≤ vi for all i

0 ≤ ni ≤ svi for all i

DD−1 = k + λ(sG−N)

(1.18.1)
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CHAPTER 1. GENERAL THEORY

Let D ⊆ G be a relative difference set with forbidden set N . As before,
we identify D with the corresponding element D̂ ∈ Z[G] of the group ring

and omit the ̂ . From the defining group ring equation for relative difference
sets

DD−1 = k · 1 + λ(G−N)

we see that D (read as an element of the group ring) is a quotient image of
a relative difference set (with s = 1).

Let U EG and ϕ : G→ G/U be the canonical epimorphism. Use the bar
convention for homomorphic images of ϕ. We lift ϕ to the group rings as
before and rewrite (1.7.2) for our case:

(1.18.2) (DD−1)ϕ = k · 1ϕ + λ(Ĝ− N̂)ϕ = k · 1ϕ + λ(|U |Ḡ− N̂ϕ)

Which is a quotient image in Z[G/U ]. So homomorphic images of relative
difference sets do also induce quotient images of relative difference sets. Now
consider the special case of U ≤ N ≤ G and U EG. From (1.18.2) we get

(DD−1)ϕ = k · 1ϕ + λ(|U |Ḡ− N̂ϕ) = k · 1ϕ + λ(|U |Ḡ− |U |N̄)

= k · 1ϕ + λ|U |(Ḡ− N̄).

So the image ofD under ϕ induces a quotient image of a relative difference set
which is actually a relative difference set itself (in G/U and with parameters
(|G|/|N |, |N |/|U |, k, λ|U |)). Remember that D contains at most one element
from each coset modulo U , so |D| = |Dϕ|.

And in particular, if U = N EG, the quotient image is even an ordinary
difference set with λ′ = λ|N |. And hence Dϕ is an ordinary (v/|N |, k, λ|N |)-
difference set in Ḡ = G/N .

When doing computer searches, this can be used to find relative difference
sets in a group G with λ > 1 by searching relative difference sets with λ′ = 1
in a group G′ with G≃G′/U ′. Here U ′EG′ and λ = |G′ : U ′|. This technique
is used by Hiramine [Hir04] to classify the relative difference sets in Alt(5).

1.19 Theorem. Let G = {g1, . . . , g|G|} be a finite group and g1 = 1G. Fur-
thermore let D =

∑
vigi =

∑
vgigi be the quotient image of a relative differ-

ence set in G. Then by definition DD−1 = k + λ(sG − N) with s ∈ N and
N =

∑
nigi ∈ Z[G].

Writing
∑
vi = k and vij = vgigj for the coefficient of gigj, we get
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1.4. QUOTIENT IMAGES AND SIGNATURES

∑
v2
i = λ(s− n1) + k(1.19.1)

∑

j

vjvij = λ(s− ni) for i 6= 1(1.19.2)

Proof. We have

(1.19.3)

DD−1 =
( |G|∑

i=1

vigi

)( |G|∑

j=1

vjg
−1
j

)
=

∑

i

gi

( ∑

j,k
gkg

−1
j

=gi

vkvj

)

=

|G|∑

i=1

gi

( |G|∑

j=1

vjvij

)
.

On the other hand,

(1.19.4) DD−1 = k + λ(sG−N) = k + λ
(
s

|G|∑

i=1

gi −
∑

nigi

)

Comparing (1.19.3) and (1.19.4), we get
∑

j

vjv1j =
∑

v2
j = k + λ(s− n1) and

∑

j

vjvij = λ(s− ni)

for i 6= 1.

From this we get a generalisation of a result of Bruck [Bru55] about
ordinary difference sets:

1.20 Corollary. Let G be a finite group and UEG. Furthermore, let D ⊆ G
be a relative difference set with forbidden set N . We define vi := |D ∩ gi|,
where {g1, . . . , g|G:U |} = G/U = Gρ and ρ is the natural homomorphism. Let
g1 = U and vij = |D ∩ gigj |. Then

∑
vi = k(1.20.1)

∑
v2
i = λ(|U | − |U ∩N |) + k(1.20.2)

∑

j

vjvij = λ(|U | − |gi ∩N |) for i 6= 1.(1.20.3)

15



CHAPTER 1. GENERAL THEORY

If N ≤ G, then

∑

j

vjvij =

{
λ(|U | − |U ∩N |) if g1 6= gi ∈ Nρ

λ|U | if gi 6∈ Nρ
(1.20.4)

Proof. By definition, D̂ =
∑

g∈G χD(g)g and hence D̂ρ =
∑
vigi. We recall

(1.18.2):
(D̂D̂−1)ρ = k + λ(|U |G/U − N̂ρ).

Theorem 1.19 then yields (1.20.1)–(1.20.3). Moreover, |N ∩ gρ| = |N ∩ U |
for all g ∈ G with gρ ∩ N 6= ∅, because if gρ = Un with n ∈ N , then
|Un ∩N | ≥ |U ∩N | = |Unn−1 ∩N | ≥ |Un ∩N |. And if gi 6= Nρ, then there
is no n ∈ N such that Un = gi, hence gi ∩N = ∅. This shows (1.20.4).

Note. • If we take N = 1 and λ = 1, we get the case of ordinary differ-
ence sets.

• Equation (1.20.1) does only depend on |G : U |.

• Equation (1.20.2) does not depend on G, but only on |U | and |U ∩N |.

• Equation (1.20.3) does not depend on the isomorphism class of G, but
only on the one of Gρ and on the relation of Nρ and Uρ.

Given a group G with N ⊆ G and U ≤ G the right sides of (1.20.1)–
(1.20.3) are known. So we may ask for possible solutions (v1, . . . , v|G:U |).
Here we choose the enumeration of the vi to be the same as the one of G/U .
So if G/U = {g1, . . . , g|G:U |} and gij = gigj, we write vi = vgi and vij =
vgij . Then (1.20.1) and (1.20.2) only give information about the multiset
‖(v1, . . . , v|G:U |)‖ while (1.20.3) is a condition on the vi themselves (loosely
speaking, a condition on the order of the entries of (v1, . . . , v|G:U |)).

1.21 Definition. Let N ⊆ G and U E G. Let G/U = {g1, . . . , g|G:U |} with
g1 = U and v = (vg1, . . . , vg|G:U|

) = (v1, . . . , v|G:U |) a solution of (1.20.1)–
(1.20.3) (with vij = vgigj). Then v is called “ordered signature” for U (relative
to N). The multiset ‖v‖ is called “admissible signature” for U (relative to
N).

As with (ordered) signatures of relative difference sets, we do also study
(ordered) signatures of quotient images of relative difference sets. Those are
the solutions of (1.19.1) and (1.19.2).

16



1.5. CENTRAL COLLINEATIONS OF PROJECTIVE PLANES

Of course, interesting quotient images are the ones which are induced by
images of relative difference sets under some group-homomorphism. In this
case s is the order of the kernel of the homomorphism. And N is the image
of the forbidden set.

1.22 Definition. Let S ⊆ G. For every U E G let {g1U, g2U, . . . , g|G:U |U}
be an enumeration of cosets modulo U with g1 ∈U. Define the mapping

sU : Pot(G) → N|G:U | sU(S)(i) = |S ∩ giU |

And σU = ‖sU‖.

For every relative difference set D and every U E G, the tuple sU(D) is
an ordered signature and the multiset σU(D) is an admissible signature. If
we search for relative difference sets, this yields a necessary condition for the
extendability of partial relative difference sets:

1.23 Corollary. Let S ⊆ G be a partial relative difference set. If S can be
extended to a relative difference set (see page 10), then for every U EG, we
have that σU(S) is pointwise less or equal to at least one admissible signature
for U . Moreover, S can only be extended, if sU(S) is pointwise less or equal
to at least one ordered signature.

The signature maps can also be used to test for equivalence of partial
relative difference sets:

1.24 Lemma. Let S ⊆ G be a partial relative difference set with forbidden
set N ⊆ G. Let N ⊆

{
n ∈ N | n

∣∣ |G|
}

and U = {U EG | |G : U | ∈ N}.
Then for all g ∈ G and all ϕ ∈ Aut◦(G)N we have

‖
(
σU(S)

)
U∈U

‖ = ‖
(
σU((Sg)ϕ)

)
U∈U

‖.

Note. Lemma 1.24 does only state an equation for multisets, one cannot
hope for σU(S) = σU ((Sg)ϕ).

1.5 Central collineations of projective planes

Let P be a projective plane and α a collineation of P. Recall that if α fixes
a point p ∈ P line-wise, then p is called “centre” of α. And if α fixes a line
L pointwise, L is called “axis” of α.

17



CHAPTER 1. GENERAL THEORY

The collineation α is called “axial”, if it has an axis. It is called “central”
if it has a centre. The following results are well known and can be found in
[Dem68, HP73].

1.25 Theorem. Let P be a projective plane and α a collineation of P. Then
α possesses a centre if and only if it has an axis.

If α is a central collineation with axis L and centre p, then α is called
“(p, L)-elation” if p ∈ L and “(p, L)-homology” if p 6∈ L.

1.26 Lemma. Let α be a non-trivial central collineation with axis L and
centre p, then α does not fix any point outside L ∪ {p}. And α does not fix
any line other than the lines [p].

In particular, a central collineation is completely determined by the image
of one moved point (one moved line). And if a central collineation fixes any
point outside L ∪ {p} or any line other than [p] ∪ {L}, it is the identity.

For a given point- line pair (p, L), the central collineations with centre
p and axis L form a group. The elations with given axis or given centre do
also form a group. And if α is a central collineation with centre p and axis
L and γ is any collineation, then αγ is a central collineation with centre pγ

and axis Lγ .

1.27 Theorem ([HP73, Thm. 4.14]). Let P be a finite projective plane of
order n and L a line of P. Let N be a group of (x, L)–elations. Let α be an
elation with axis L and centre y 6= x. Then the group 〈N,α〉 is an elementary
abelian p-group and p

∣∣ n.

1.28 Definition. Let P be a projective plane of order n. A line L of P is
called translation line, if the group of elations with axis L is transitive on the
points P−L.

The projective plane is called translation plane if it has a translation line.
The group of elations which have the translation line as its axis is called
translation group of P.

The definition of dual translation planes, translation points (dual trans-
lation lines) and dual translation groups is obvious.

1.29 Lemma. Let P be a projective plane and L a line of P with p, q ∈ L.
Let then L 6= M ∋ p be another line. If α is a (q,M)-homology and β is a
(p, L)-elation then αβ = βα

18



1.5. CENTRAL COLLINEATIONS OF PROJECTIVE PLANES

Proof. αβ is a homology with centre q and axis M as β fixes L pointwise
and p line-wise. Now observe that for a point x ∈ L with x 6∈ {p, q} we have
xβ

−1αβ = xα as β fixes x and xα. Hence αβ = βα.

1.30 Lemma. Let P be a projective plane and L,M two distinct lines of
P. Let p ∈ L −M and q ∈ M − L. If α is a (p,M)-homology and β is a
(q, L)-homology, then αβ = βα.

Proof. Obviously, αβ is a (p,M)-homology. Let x ∈ L and x 6= p. As β fixes
L pointwise, we have xα

β

= xβ
−1αβ = xα.
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Chapter 2

Representation theoretic
methods

Let ϕ be a representation of the group G with | kerϕ| = s. We lift ϕ to the
group ring as in (1.7.1)

(2.0.1)
(∑

vgg
)ϕ

:=
∑

vgg
ϕ.

The defining equation for ordinary difference sets then transforms to

(2.0.2) (DD−1)ϕ = n · 1ϕ + λĜϕ = n · 1ϕ + λsÎmϕ

Here Imϕ is the image of ϕ as a homomorphism of groups. If 1 6= ϕ is an
irreducible representation, we have Ĝϕ = 0. Hence (DD−1)

ϕ
= n.

For relative difference sets with forbidden set N we get

(2.0.3) (DD−1)ϕ = k · 1ϕ + λ(Ĝ−N)ϕ = k · 1ϕ + λ(sÎmϕ− N̂ϕ)

and for a non-trivial and irreducible ϕ we have (DD−1)ϕ = k − λN̂ϕ.
Now let U E G and ρ : G → G/U be the canonical epimorphism. Let

{g1, . . . , g|G:U |} be a system of representatives of G/U (sometimes called
cross-section) and D an ordinary difference set in G. Consider the map-
ping sU : Pot(G) → N|G:U | from definition 1.22. It maps D ∈ Z[G] onto the
tuple of coefficients (v1, . . . , v|G:U |) of D̂ρ =

∑
vig

ρ
i .

2.1 Corollary. Let (w1, . . . , w|G:U |) be an ordered signature for U . If for
one D ∈ Z[G] we have sU(D) = (w1, . . . , w|G:U |), then for every irreducible,
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non-trivial representation ϕ of G/U

(2.1.1)

( |G:U |∑

i=1

wig
ρ
i

)ϕ( |G:U |∑

i=1

wig
−ρ
i

)ϕ

= n

In fact, the quotient images of difference sets can also be described using
representation theory:

2.2 Theorem ([Bec04]). Let H be a finite group and δ =
∑
dhh ∈ Z[H ]

with |δ| = k and dh ≥ 0. Furthermore, let |H|
∣∣ v ∈ N and n + λv = k2.

δ is a quotient image of an ordinary difference set if and only if for every
non-trivial irreducible representation ϕ of H the equation δϕ(δ−1)ϕ = n1ϕ

holds.

2.0.1 Induced signatures

Let G be a finite group, U E G and let ϕ : G → G/U be the canonical
homomorphism. Furthermore let let {g1, . . . , gm} be a cross-section of G/U
and D =

∑m
i=1 vigi ∈ Z[G] a relative difference set in G. Then Dϕ =∑m

i=1wigiU ∈ Z[G/U ] is a quotient image of a relative difference set in G/U .

And we have
∑

g∈giU
vg = |( ̂giU ∩D)ϕ| = wgϕi .

Choosing a suitable enumeration, we get
P

vi=w1︷ ︸︸ ︷
v1, . . . , v|U |, . . . ,

P

vi=w|G:U|︷ ︸︸ ︷
v|G|−|U |+1, . . . , v|G|

So, if we know the ordered signature of a quotient image, we may use this
information to calculate ordered signatures of the pre-images. This will be
applied in the following setting:

Let G be a finite group and U, V EG with U EV . Let ϕ : G→ G/U and
ψ : G→ G/V be the canonical epimorphisms. Then V ϕ EG/U and

G/V ≃ (G/U)
/
(V/U).

Hence
{
gψ

−1ϕ | g ∈ G/V
}

is a partition of G/U . This is the partition into
cosets modulo V/U .

Let D ⊆ G be a relative difference set and {g1, . . . , g|G:V |} a system of
representatives of G/V , then sV (D)(i) =

∑
g∈(giV )ψ−1ϕ |D ∩ g|. In this way,

we get a refinement of signatures (going from signatures for V to signatures
for U E V ).
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CHAPTER 2. REPRESENTATION THEORETIC METHODS

2.1 Difference sets in extensions of Cs ⋉ Cq

For some groups, it is easy to find representations which are useful for search-
ing difference sets. We will now study the case of extensions of Cs ⋉ Cq.
These groups have an unitary representation which is convenient for search-
ing difference sets with the aid of a computer.

Let G be a finite group and U EG with G/U ≃Cs ⋉ CqWe write G/U =
〈a, b〉 with |a| = q, |b| = s and ab = am for some m ∈ N and ms ≡ 1 mod q.
Furthermore let ζ be a primitive qth root of unity. We define an s-dimensional
unitary representation Φ of G/U by

aΦ = diag(ζ, ζm, ζm
2

, . . . , ζm
s−1

), bΦ = π =




0 . . . 0 1
1 0 . . . 0
...

. . .
. . .

...
0 . . . 1 0


 ;(2.2.1)

here multiplying π from the right side permutes columns as (1, 2, . . . , s).
Let now D ⊆ G be an ordinary difference set of order n (i.e. N = 1 and

λ = 1). For 0 ≤ i < q and 0 ≤ j < s we define vij = |D ∩ ai−1bj−1|. Let D̃
be the image of D ∈ Z[G] under the canonical epimorphism lifted onto the
group rings. Then we have

(2.2.2) (D̃Φ)µν =
∑

i

vi(µ−ν+1)ζ
imµ−1

.

With ϑ = π−1 and GalQ(C) ∋ α : ζ 7→ ζm we get
(2.2.3)

D̃Φ =




M1 . . . Ms

Mα
1ϑ . . . Mα

sϑ
...

. . .
...

Mαs−1

1ϑs−1 . . . Mαs−1

sϑs−1


 =




M1 M2 . . . Ms

Mα
s Mα

1 . . . Mα
s−1

...
...

. . .
...

Mαs−1

2 Mαs−1

3 . . . Mαs−1

1


 = M

Hence we get the equations

MM̄ t = (D̃D̃−1)Φ = k 1+λ(G−N)Φ = n1
s∑

i=1

MiM̄i = n

s∑

i=1

MiM̄
αj

iϑj = 0 for all 1 ≤ j < s.
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2.3 Definition. Let M1, . . . ,Ms ∈ Q[ζ ] with primitive qth root of unity ζ
and α ∈ Gal(Q[ζ ]) with |α| = s and α : ζ 7→ ζm. Let ϑ ∈ Sym(s) be a cycle
of order s. Then the matrix

M(M1, . . . ,Ms, α, ϑ) =




M1 . . . Ms

Mα
1ϑ . . . Mα

sϑ
...

. . .
...

Mαs−1

1ϑs−1 . . . Mαs−1

sϑs−1




is called semi-circulant .

2.4 Theorem. Let M = M(M1, . . . ,Ms, α, ϑ) be a semi-circulant matrix.
Then:

(MM̄ t)ij =
(
(MM̄ t)1(j−i+1)

)αi−1

for i ≤ j(2.4.1)

(MM̄ t)ii =
(
(MM̄ t)t11

)αi−1

(2.4.2)

(MM̄ t)t = MM̄ t(2.4.3)

Proof. For the sake of simplicity we write ¯ = γ for complex conjugation.
Then

(MM̄ t)(i+1)(j+1) =
∑

k

Mαi

kϑiM̄
αj

kϑj

=
∑

k

(
MkϑiM

γαj−i

kϑj

)αi
=

∑

k

(
MkM

γαj−i

kϑj−i

)αi

= (MM̄ t)α
i

1(j−i+1)

shifting indices we get (2.4.1). A special case of this is (2.4.2). Statement
(2.4.3) does not even depend on the form of M :

(MM̄ t)t = M̄M t = MM̄ t

The semi-circulant matrices with fixed ϑ and α form a Q-algebra. For
α = 1 we obtain the Q[ζ ]-algebra of circulant matrices.
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CHAPTER 2. REPRESENTATION THEORETIC METHODS

2.1.1 Calculation of ordered signatures

If we want to calculate all ordered signatures for U E G, we first have to
calculate all possible entries M1, . . . ,Ms of D̃Φ where D ⊆ G is a difference
set. Thereafter, the preimage of Φ can be computed.
So we are looking for the semi-circulant matrices M satisfying MM̄ t = n1.
And M = M(M1, . . . ,Ms, α, ϑ) where Mi ∈ Z[ζ ] for all i and all coefficients
of Mi are non-negative, as the multiset of coefficients of Mi is an admissible
signature.

For the rest of this section let D ⊆ G be an ordinary difference set with
U E G and G/U = 〈b, a〉 ≃ Cs ⋉ Cq. Furthermore, let ϕ : G → G/U be the

natural epimorphism, D̃ = D̂ϕ and let the representation Φ be defined as in
2.1.

Lemma. If D̃Φ = M(M1, . . . ,Ms, α, ϑ), the sum of the coefficients of Mi is
| {d ∈ D | dϕ ∈ b−i+1} |.
Proof. This is just another way to write (2.2.2).

Here we have to be careful, as the presentation of Z[ζ ] ∋ z =
∑
aiζ

i is
not unique. For example

∑q−1
i=0 ζ

i = 0.
The right formulation is:

2.5 Lemma. Let D̃Φ = M(M1, . . . ,Ms, α, ϑ). Then there is a presentation
of the Mi ∈ Z[ζ ] as Mi =

∑
aiζ

i, such that the coefficients of every Mi are
non- negative and their sum is | {d ∈ D | dϕ ∈ b−i+1} |.

As already mentioned, the set of coefficients of the Mi is an admissible
signature for U . Because of lemma 2.5 the sums of the coefficients of the Mi

are an admissible signature for 〈a〉 and as in 2.0.1 we can use the signatures
for 〈a〉 E (Gϕ)Φ to calculate the coefficients of the Mi.

2.6 Lemma. Let U ′ EG with |G : U ′| = s and U ′ϕ = 〈a〉. If there is exactly
one admissible signature ‖(s1, . . . , ss)‖ (read as an s-tuple as on page 6) for
U ′, then there is a permutation η, such that (s1η, . . . , ssη) = (SM1, . . . , SMs

)
holds. Here SMi

is the sum of the coefficients of Mi.

Proof. Let {g1, . . . , gs} be a cross-section of G/U ′. Then {g1, . . . , gs}ϕ is
a cross-section of (G/U)

/
〈a〉 because U ′ϕ = 〈a〉. As ‖(s1, . . . , ss)‖ is an

admissible signature and {g1, . . . , gs}ϕ is a system of representatives, we get

‖(s1, . . . , ss)‖ = ‖(|D ∩ g1U
′|, . . . , |D ∩ gsU ′|)‖ = ‖(SM1, . . . , SMs

)‖
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So there is a permutation η as desired.

Lemma 2.6 and 2.5 enables us to refine known signatures: The signa-
ture ‖(s1, . . . , ss)‖ induces a set of signatures ‖(a(ℓ)

1,1, . . . , a
(ℓ)
1,q, a

(ℓ)
2,1, . . . , a

(ℓ)
s,q)‖ℓ∈I

with
∑

j a
(ℓ)
i,j ζ

j−1 = Mi for all ℓ in some index set I.

Note. (a) Using Φ, we do not only get admissible, but even ordered signa-
tures for U from the coefficients of the Mi.

(b) If s is a prime power and U ′ EG is an s′-Hall group, then U ′ϕ EGϕ is
the unique Hall group of the solvable group Gϕ and therefore U ′ϕ = 〈a〉.
So if there is a unique signature for U , we may use 2.6

To lower the cost for calculating theMi, the following symmetry argument
can be used.

2.7 Theorem. Let n ∈ N and M = M(M1, . . . ,Ms, α, ϑ) be a semi-circulant
matrix with MM̄ t = n1. Then also M ′ = M(M1ζ

a1 , . . . ,Msζ
as, α, ϑ) is

semi-circulant and M ′M̄ ′t = n1 with

a1 : = 0; aiϑ(j+1) ≡ m(aiϑj + c) mod |ζ |.(2.7.1)

Here α : ζ 7→ ζm as in definition 2.3 and 1 ≤ c ≤ |ζ | − 1 may be chosen
arbitrarily.

Proof. M ′ is semi-circulant by definition. So we only have to verify M ′M̄ ′t =
n1. According to (2.4.1) we only have to care for the entries of the first row
of M ′M̄ ′t. Obviously, (M ′M̄ ′t)11 = n. So let’s look at l 6= 1:

(M ′M̄ ′t)1l =
∑

i

Miζ
aiM̄αl−1

iϑl−1ζ
−a

iϑl−1m
l−1

=
∑

i

MiM̄
αl−1

iϑl−1ζ
ai−aiϑl−1m

l−1

(2.7.1)
=

∑

i

MiM̄
αl−1

iϑl−1ζ
(a
iϑl−1−aiϑl−1 )ml−1+cl = (MM̄ t)1lζ

cl

with cl =
∑l−1

j=1 cm
j . Because of MM̄ t = n1 the theorem is proven.

Note. (a) From 2.7 we get a group µ acting on the tuples (M1, . . . ,Ms).
So instead of testing all tuples, we may then choose one representative
M = M(M1, . . . ,Ms, α, ϑ) from every orbit of µ and test, if it satisfies
MM̄ t = n1.

(b) As seen in the proof of 2.7, it is not necessary to have a1 = 0. Any
other value may be used. But a1 = 0 was chosen for computational
reasons.
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Chapter 3

Quasiregular relative difference
sets

We will now turn to the main objective of this text. First, we give a definition
of quasiregular planes and state the theorem of Dembowski and Piper. Every
instance of the theorem is dealt with in a separate section. We give difference
set constructions of the respective planes and discuss special problems of the
classification. At the end of each section, a classification theorem for order
16 planes of the respective type is stated. We conclude this Chapter with a
theorem combining all the partial classifications of this chapter to get a full
classification of the quasiregular projective planes of order 16.

3.1 Definition. Let P be a projective plane of order n. Let G be a group
of collineations of P. The group G is called quasiregular if it acts regularly
on its point and block orbits.

So a quasiregular action means that for every point (every block) the
stabiliser of this point (block) is a normal subgroup in G.

In other words: If pg = p for some point (block) p and g ∈ G, then qg = q
for all q ∈ pG.

3.2 Definition. A quasiregular group G of collineations of the projective
plane P of order n is called large, if

(3.2.1) |G| > 1

2
(n2 + n+ 1).

By [Dem68, 4.2.8, p.181], a group of collineations of a projective plane
acts faithfully on at least one orbit. We may assume that this is an orbit of
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points. So a large quasiregular group of collineations has exactly one orbit
of size |G| on points.

3.3 Theorem (Dembowski-Piper, [DP67], [Dem68, 4.2.10, p.182]). Let G be
a quasiregular collineation group of the projective plane P of order n. Denote
by m = m(G) the number of point (or line) orbits of G, and by F = F(G)
the substructure of the elements fixed by G. If |G| > 1

2
(n2 +n+1), then there

are only the following possibilities:

DPa |G| = n2 + n + 1, m = 1 and F = ∅. Here G is transitive.

DPb |G| = n2, m = 3 and F is a flag.

DPc |G| = n2, m = n+ 2 and F is either a unique line A and all x ∈ A or
dually a unique point c and all lines X ∈ [c].

DPd |G| = n2 − 1, m = 3 and F is a unique non-incident point-line pair.

DPe |G| = n2 −√
n, m = 2 and F = ∅. In this case, one point and one line

orbit together form a Baer subplane.

DPf |G| = n(n − 1), m = 5 and F consists of two points u, v, the line
containing u and v and one other line through one of u, v.

DPg |G| = (n − 1)2, m = 7 and F consists of the vertices and sides of a
triangle.

Examples are known for all of these cases (for DPe only one example is
known. In this example, n = 4).

In [Dem68, 4.2.10] another case is mentioned. In this case G is elementary
abelian and |G| = (n−√

n+ 1)2. But Ganley and McFarland have shown in
[GM75] that a projective plane with a quasiregular group of collineations of
order (n−√

n+ 1)2 exists if and only if n = 4. And as |G| = (4 − 2 + 1)2 =
9 6> 1

2
(16 + 4 + 1) = 21

2
this case is not part of theorem 3.3.

Let P be a quasiregular projective plane and G a large quasiregular group
of collineations of P. Define P′ to be the incidence structure defined by the
point orbit of length |G|. We will find difference sets D ⊆ G such that
devD ≃ P′ and then recover P from P′. Fortunately the extension of P′ is
unique in all cases, so we can really recover P from the relative difference set
defining P′.
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CHAPTER 3. QUASIREGULAR RELATIVE DIFFERENCE SETS

Now we will run through the types of planes of theorem 3.3 and give
difference set constructions for each of them. Some of the arguments used
can also be found in [GJ03a, GJ03b, Pot95]. The focus will be on the case
of projective planes of order 16.

3.1 Ordinary difference sets: DPa

Let |G| = n2 + n + 1, m = 1 and F = ∅. Here P = P′ and we have to
consider ordinary (|G|, n+ 1, 1)-difference sets (i.e. N = {1}).

For n = 16, we have |G| = 273 = 3 · 7 · 13. The theorems of Sylow show
that the subgroups of the orders 7 and 13 are normal in G. So there is a
unique normal subgroup of order 7 · 13 = 91. Hence for all groups G of order
273 we have C91 EG. An easy calculation shows that the only solution for
(1.20.1) and (1.20.2) with V = C91, N = 1, k = 17 and λ = 1 is the multiset
‖(v1, v2, v3)‖ = ‖(3, 7, 7)‖. And we may assume that v3 = 3 by choosing a
suitable translate.

As some of the groups in this case are extensions of C3 ⋉ C7 or C3 ⋉ C13,
we may use the results of section 2.1 to calculate ordered signatures.

The following steps are used to find all difference sets of this type (up to
equivalence). For a more detailed description of the algorithms see chapter
4.

(a) Calculate possible ordered signatures.

(b) Calculate possible admissible (unordered) signatures.

(c) Generate partial difference sets containing 7 elements of V EG, V ≃C91.
This step uses costly algorithms to test equivalence of partial difference
sets (algorithm 6 of page 43).

(d) Extend partial difference sets to 14 elements by adding 7 elements of
the first non-trivial coset modulo V . Here we only check that the list
of quotients is duplicate-free.

(e) Reduce the partial difference sets using algorithm 9 of page 46.

(f) Add 3 more elements from the last coset modulo V and reduce as above.

(g) Generate projective planes from difference sets and determine the iso-
morphism class using algorithm 11 of page 48.
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3.2. THE CASE DPB

From a computer search, we get

3.4 Theorem. Let G be a group of order 273 and D ⊆ G a difference
set of type DPa. Then D induces a Desarguesian plane and G is cyclic or
G≃ C3 ⋉ C91 =

〈
a, b

∣∣ |a| = 3, |b| = 91, ba = b16
〉

.

Note that Kibler [Kib78] claims that there are two noncyclic relative
(273, 17, 1)-difference sets. But a quick calculation using GAP shows that the
group in case 13 of [Kib78] is cyclic of order 21 (and the set given is not a
difference set, as it has 11 elements in C21).

3.2 The case DPb

Here |G| = n2 and m = 3 and F is a flag (a,M). In this case, P′ is a
divisible design with Singer group G. By 1.15, we may represent P′ by an
(n, n, n, 1)–difference set D with forbidden subgroup N ≤ G of order n. So
P′ = devD.

As seen in section 1.3, the forbidden subgroup N can be identified with
the point class containing 1. The other point classes of P′ are exactly the
cosets of N . For any block Dg with g ∈ G, the parallel class containing Dg
is {Dgn | n ∈ N}.

Each point class defines an ideal line. And a can be identified with the
ideal point on all point classes of P′ (all cosets of N). Dually, the parallel
classes of P′ (the translates of “ordinary”, i.e. non-ideal, lines by an element
of N) define ideal points and M − {a} may be identified with the set of
parallel classes of P′. In this way, P can be reconstructed from P′. As M is
a line of ideal points, we will write M = ℓ∞.

The lines [a] − {ℓ∞} (that is, the point classes of P′) are an orbit of G
and as G acts quasiregular on the lines of P, all lines meeting a are stabilised
by N . Hence N E G and as N also stabilises all parallel classes of P′, we
have that N is a group of elations of P.

3.5 Lemma. Let D ⊆ G be a relative difference set of type DPb with forbid-
den group N EG. Then one of the following holds:

• N is the full group of elations with axis ℓ∞.

• N is elementary abelian.
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CHAPTER 3. QUASIREGULAR RELATIVE DIFFERENCE SETS

Proof. By 1.27, a group of elations with axis ℓ∞ is elementary abelian if it
contains two elations with different centres.

For planes of even order, there is a restriction on possible forbidden
groups:

3.6 Lemma. Let D ⊆ G be a relative difference set of order n ≡ 0 mod 2
relative to the forbidden subgroup N EG. Let ι ∈ G be an involution. Then
ι ∈ N .

Proof. Let P be the projective plane defined byD and ι ∈ G be an involution.
Then ι acts either as a Baer involution or as an elation on P as n is even
(see [Dem68, 4.1.9]).

Assume that ι is an elation with axis L 6= ℓ∞. Then ι fixes a point outside
ℓ∞ and as G acts regularly, ι fixes all affine points. So ι has axis ℓ∞. Let
L 6= ℓ∞ be a line fixed by ι. Then L must be an ideal line, as G acts regularly
on the other lines. So ι fixes all cosets of N and therefore ι ∈ N .

If ι fixes a Baer subplane, then ι fixes a point outside ℓ∞. But as G acts
regularly on the affine points, this is a contradiction

And for abelian groups, we even have:

3.7 Theorem ([Gan76, Jun87]). Let G be an abelian group or order n2 with
even n and D ⊆ G a relative difference set of type DPb. Then n is a power
of 2, the forbidden subgroup is elementary abelian and G≃ C4 × · · · × C4.

3.8 Theorem. Let G be a group of order 256 and D ⊆ G a relative differ-
ence set of type DPb. Then the projective plane defined by D is one of the
following:

• The Desarguesian plane.

• The semifield plane with kernel GF(2).

• The semifield plane with kernel GF(4).

• The Mathon Plane.

• The dual Mathon Plane.

See appendix A for the full list of groups of order 162 which admit a relative
difference set of type DPb.
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3.2. THE CASE DPB

3.2.1 A word about implementation

Let D ⊆ G be a relative difference set of type DPb and N EG the forbidden
subgroup. Then D is a system of representatives of the cosets modulo N by
1.12 as |G : N | = |D|.

This fact is used to implement a special case of startset generation (al-
gorithm 1). If a startset has a nonempty intersection with one of the cosets
modulo N , this coset is removed from the list of possible completions. In fact,
this is nothing but testing a particular coset signature (the one for N). One
advantage of this is, that startsets are generated after doing this test, whereas
in the other cases, the startsets are first generated and then tested. This re-
duces the number of signature tests as well as the list operations needed to
generate and discard startsets. A further improvement comes from adding
only elements from one coset modulo some other normal subgroup V E G
to existing startsets to generate new ones. This helps keeping the number of
startsets small. The group V E G will be chosen as in the other cases (see
4.2).

For the special case of n = 16, lemma 3.6 can be used. So any group G
which has no normal subgroup N of order 16 such that all involutions of G
lie in N can be discarded right away.

Algorithm 1 New startsets for case DPb
procedure NewStartsets(S,N,u,a)
# S: list of startsets; N : forbidden group; u ∈ G/V ; a ∈ N: number of elements from

u in a full relative difference set

C := {n ∩ u | n ∈ G/N}
R := ∅
for s ∈ S do

l :=
{
c ∈ ⋃

X∈C X
∣∣ s ∪ {c} is a partial relative difference set

}

C ′ := {c ∩ l | c ∈ C}
if l 6= ∅ and |C ′| + |s| = a then

let ∅ 6= c′ ∈ C ′ be of minimal size
add the sets {s ∪ {c} | c ∈ c′} to R

end if
end for
return R

end procedure
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CHAPTER 3. QUASIREGULAR RELATIVE DIFFERENCE SETS

Another problem in this case is to recognise projective planes. This test
is done in the following way:

(a) Calculate the Fano invariant as in algorithm 11.

(b) If the Fano invariant matches the one of a translation plane, calculate
the translation group of P (that is, the group of all elations with axis
M). If this group is transitive on the affine points, P is a translation
plane. And as all translation planes of order 16 are known [DR83,
Rei84] and have pairwise different Fano invariants [Roy], we know the
isomorphism type of P.

(c) If the Fano invariant is the one of the Mathon plane, construct an iso-
morphism by mapping a generating quadrangle of P onto a generating
quadrangle of the Mathon plane.

(d) To test for the dual Mathon plane, we calculate the dual plane of P

and test as in point (c) above.

The needed data (Fano invariant and the Mathon plane) for this calcula-
tion is available from Gordon Royle [Roy].

3.3 Case DPc, translation planes

Here |G| = n2 and m = n + 2. The fixed structure F is a line and all its
points or a point and the according lines.

Consider the case that G fixes a line B pointwise. Then G is a group of
central collineations with axis B. As G acts quasiregular, there is a point-
orbit of length n2 and hence, G acts transitively on the points outside B. So
G is a group of translations and P is a translation plane. Dually, if G fixes
a point and its lines, P is a dual translation plane.

As G is the translation group of a translation plane, G is elementary
abelian by 1.27 (for more on translation planes, see [Lün80]).

The translation planes of order 16 have been classified by U. Dempwolff
and A. Reifart [DR83, Rei84]. So this case will not be considered further.
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3.4. DPD: AFFINE DIFFERENCE SETS

3.4 DPd: Affine difference sets

Let |G| = n2 − 1 and m = 3 with F an anti-flag (a,M).
Here there are n2 − 1 points different from a, which do not lie on M . A

point class is defined by the points on a line through a. In the same way the
lines are partitioned into classes: every point on M defines a class of lines
containing it.

The following argument reconstructs P from P′ in this case:
First, define a as a new point and add a to each of the point classes of P′.
Then each of these extended point classes is defined to be a new line. This
extension of P′ is an affine plane which defines P.

So P′ is a divisible design with point classes defined by the lines (of P)
containing a. By 1.15, we may describe P′ by a (n+1, n−1, n, 1)-difference set
D with forbidden subgroup N . Again, N EG because G acts quasiregularly.

For n = 16 we have |G| = 162 − 1 = 255 = 3 · 5 · 17 and the theorems of
Sylow imply G = C255.

The program listed in appendix B.1 finds

3.9 Theorem. The only projective plane which admits C255 as a collineation
group of type DPd is the Desarguesian plane.

3.5 The case DPe

For |G| = n2 −√
n, m = 2 and F = ∅, one point orbit (and one line orbit)

defines a Baer subplane. Let B be the Baer subplane defined by G.
Piper [Pip75] has shown that quasiregular projective planes of type DPe

are equivalent to relative (n+
√
n+1, n−√

n, n, 1)-difference sets. Using the
results from section 1.3, a much shorter proof can be given as follows:

By 5.3, each line of P meets B in either 1 or
√
n + 1 points. G acts

transitively on these two classes of lines. The stabiliser N of a line meeting
B in

√
n + 1 points is a normal subgroup in G because of quasiregularity.

Furthermore, N consists of Baer collineations.
The points of P−B together with the lines meeting B in just one point,

define the divisible design P′. A point class of this design can be written
as L ∩ P′ for some line L meeting B in

√
n + 1 points. By definition, the

stabiliser of each point class is N .
So by 1.15, a line of P′ defines a relative (n +

√
n + 1, n − √

n, n, 1)-
difference set with forbidden normal subgroup N . It is easily seen that P
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CHAPTER 3. QUASIREGULAR RELATIVE DIFFERENCE SETS

can be reconstructed from P′. Ganley and Spence have shown in [GS75],
that n = 4 is the only prime power, for which an abelian relative difference
set of this type exists.

For n = 16 there are 13 non-abelian groups of order 162−4 = 252 having
a normal subgroup of order 16 − 4 = 12. Using GAP, we get

3.10 Theorem. There is no projective plane of order 16 of type DPe.

3.6 Type DPf : direct product difference sets

In case DPf we have a quasiregular group G of order n(n−1) which fixes two
points a, b and the line M containing them as well as another line L through
one of the fixed points (say, a).

The design P′ admits two partitions into point classes. These are defined
by the lines [a] and [b] of P. So P′ is not a divisible design as defined on
page 12. But using similar arguments as for the proof of 1.15, we see that P′

is represented by a relative difference set with a forbidden set which is the
union of two normal subgroups.

The forbidden normal subgroups have orders n and n− 1. They are the
line wise stabilisers of a and b, respectively, and consist of (a,M)-elations
and (b, L)-homologies, respectively. Let H be the group of homologies and
E the group of elations. Then H and E centralise each other by 1.29 and
G = HE. The arguments for the reconstruction of P from P′ are similar to
those used in case DPb.

3.11 Theorem ([Pot95]). Let D ⊆ G is a relative difference set of type DPf
of order n in an abelian group G.

• If n ≡ 0 mod 2 then the Sylow 2-subgroup of G is elementary abelian.

• If n ≡ 1 mod 2, then the Sylow 2-subgroup of G is cyclic.

As seen above, projective planes of type DPb and order n = 16 are
represented by relative (n/2, 2(n− 1), n− 1, 1) = (8, 30, 15, 1)-difference sets
and G = H ×E with H and E the forbidden normal subgroups.

The algorithm used to calculate all relative difference sets of this type is
outlined below.

(a) Calculate possible admissible unordered signatures.
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3.7. TYPE DPG: NEOFIELDS

(b) Generate partial difference sets containing 6 elements. This is a variant
of algorithm 6. It also exploits the fact that the difference set D to be
found is a system of representatives for G/E. And D contains exactly
one element from each nontrivial coset modulo H . This is also used in
a similar way as in algorithm 1 in case DPb.
This step uses costly algorithms to test equivalence of partial difference
sets.

(c) Extend partial difference sets to length 15 as above but without testing
for equivalence.

(d) Generate the projective plane from difference set and determine the
isomorphism class using Algorithm 11.

3.12 Theorem. Let P be a projective plane of order 16 and G a group
of collineations acting quasiregularly on P of type DPf . Then P is the
Desarguesian plane and G≃ C15 ×E16

3.7 Type DPg: Neofields

The case DPg is |G| := (n − 1)2 with 7 orbits on points and lines. Ghinelli
and Jungnickel have shown

3.13 Theorem ([GJ03b, 3.7] and [GJ03a, 8.1]). Let P be a projective plane
and G a collineation group with |G| = (n− 1)2 then the following statements
are equivalent:

(a) G is of Lenz-Barlotti type I.4

(b) G is quasiregular of type DPg

(c) P is the extension of an affine plane coordinised by a neofield K with
|K| = n− 1 and G≃K∗ ×K∗

(d) P can be represented by a relative difference set with forbidden set

under these conditions, G is necessarily abelian.
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CHAPTER 3. QUASIREGULAR RELATIVE DIFFERENCE SETS

So for order 16 we have G≃C15 ×C15. In particular K is a cyclic neofield
of order 16. The following relative difference set is given in [GJ03b] as an
example for this case:

(3.13.1) D = {(ξ, ψ) ∈ K∗ ×K∗ | ξ + ψ = 1} .

If K is actually a field, the projective plane defined by this difference set
is the Desarguesian plane. Ghinelli and Jungnickel [GJ03a] point out that
Hughes has shown in [Hug55] that any cyclic neofield of order 16 is a field.

The difference set construction is similar to that in case DPb and DPf .
This is the general idea: G fixes a triangle, so there are three sorts of point
classes in P′ (corresponding to the vertices of the triangle). The stabiliser
of such a point class is a normal subgroup in G and the union of the three
stabilisers is the forbidden set.

The stabiliser of a point class has order n − 1 (the factor group acts
transitively on the point classes for this vertex). So P is represented by a

relative ( (n−1)2

(3(n−2)+1)
, 3(n− 2) + 1, n− 1, 1)-difference set with forbidden set.

A Computer search shows

3.14 Theorem. Let D ⊆ C15 ×C15 be a relative difference set of type DPg.
Then D is Desarguesian.

3.8 Concluding theorem

We will close this chapter with the classification theorem for projective planes
of order 16 admitting a large quasiregular group of collineations. This collects
the classification theorems for cases DPa–DPg stated before and includes the
classification of the translation planes of order 16 by Dempwolff and Reifart
[DR83].

3.15 Theorem. Let P be a projective plane of order 16 and G a group with
273
2
< |G| acting quasiregularly on P. Then P is one of the following:

(a) The Desarguesian plane. In this case, G is of type DPa, DPb, DPc,
DPd, DPf or DPg.

(b) The semifield plane with kernel GF(2) or GF(4). Here G acts as a
group of type DPb or DPc.

(c) The Mathon plane (or its dual) and G acts as a group of type DPb.
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3.8. CONCLUDING THEOREM

(d) A translation plane with G acting as a group of type DPc. According
to [DR83], the isomorphism class of P is one of the following (or their
dual): the plane of Hall plane, the Lorimer-Rahilly plane, the Johnson-
Walker plane, the derived semifield plane, or the Dempwolff plane.
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Chapter 4

Implementation

In this chapter, some of the algorithms used to calculate relative difference
sets will be outlined. The basic functions are implemented as a GAP package
called “RDS” [Röd06]. For the sake of readability, the algorithms listed here
differ in some points from those implemented in GAP to find relative difference
sets. In particular, we will not describe the data structures used and will
always prefer “readable” descriptions over “fast” ones.

Throughout this section, G will be a finite group and N ⊆ G will be the
forbidden set.

We will now construct relative (|G|/|N |, |N |, k, λ)-difference sets in G
with the aid of a computer. The general idea for such a search is outlined in
algorithm 2.

In line 3 of algorithm 2, the set of normal subgroups may be chosen as
U := {U EG | |G : U | ≤ a} for some a ∈ N. Of course, there may not be
V ∈ U as desired in line 7. In this case, V has to be chosen such that it
has only few signatures and the following lines have to be processed for each
of these signatures. Finding all difference sets in line 10 is done by a fairly
simple recursive algorithm. No invariants are used in this step. Isomorphism
tests (line 13) are done using special invariants and by explicitly calculating
isomorphisms if necessary.

4.1 Calculation of admissible signatures

Algorithm 3 calculates the solutions of (1.20.1) and (1.20.2) (see page 15) as
multisets. Note that we represent multisets as tuples (with entries ordered as
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Algorithm 2 General idea for finding difference sets

Require: group G, parameters |N |, k, λ

Find all possible forbidden sets N ⊆ G.
2: for all N do

Choose set U of normal subgroups of G
4: for U ∈ U do

Calculate/test admissible signatures for U #algs. 3, 4, 5

6: end for
Find V ∈ U having only one ordered signature

8: Generate set S of startsets using cosets modulo V #alg. 6

for all S ∈ S do
10: Find all difference sets D ⊇ S #alg.10

end for
12: end for

Generate projective planes from the difference sets found and apply iso-
morphism checks #sec. 4.4

on page 6). For the solution of (1.20.3), we have to take care of the ordering
of the coefficients. Given a multiset of coefficients ‖(p1, . . . , p|G|/|U |)‖ solving
(1.20.1) and (1.20.2), as calculated by algorithm 3, we will have to check every
permutation of these coefficients to see if the permuted tuple is a solution of
(1.20.3). This is done by algorithm 4.

In this step, a tuple (p1, . . . , p|G/U |) can only be rejected if it has no per-
mutation which solves (1.20.3). Because of the computational efforts needed
to calculate all permutations, algorithm 4 does not calculate ordered signa-
tures, but only verifies if a tuple defines an admissible signature (i.e. has
an ordering which is an ordered signature). For ordered signatures, all per-
mutations have to be tested. Also to verify that a tuple does not define an
admissible signature, all permutations have to be considered. So if a tuple
has too many permutations, it is advisable not to do a full test but to assume
that the tuple defines an admissible signature. A suitable bound has to be
chosen depending on computer power.

As noted on page 16, admissible signatures do not depend on the isomor-
phism class of the group the relative difference set lives in. Especially in case
DPb and order n = 16 –where many groups have to be considered– repeated
tests of the same signature can be avoided by storing information about the
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subgroup structure of the groups together with the calculated signatures.

Algorithm 3 Calculation of admissible signatures for relative difference sets

Require: |G|, |U |, |N |, |U ∩N |, k, λ

R := ∅
L := {0, . . . , k − λ}
while L 6= ∅ do

l := maxL
if l2 ≤ k + λ(|U | − |U ∩N |) then

Π :=
{
(p1, . . . , p|G|/|U |)

∣∣ pi ∈ L, p1 = l, k =
∑

i pi
}

# Π is the set of partitions of k into sums of Length |G|/|U | containing l.

if
∑
p2
i = k + λ(|U | − |U ∩N |) then

Add (p1, . . . , π|G|/|U |) to R
end if

end if
Remove l from L

end while
return R

As seen in section 2.1, ordered signatures of ordinary difference sets may
be calculated with less effort in extensions of Cs ⋉ Cp. This is done by algo-
rithm 5.

Let ζ be a primitive qth root of unity. Algorithm 5 calculates non-negative
integers Mij , 1 ≤ j ≤ q, 1 ≤ i ≤ s with

∑q
j=1Mij = Si such that M =

M(M1, . . . ,Ms, α, ϑ) is a semi- circulant matrix with MM̄ t = n1. Here
Mi =

∑q
j=1Mijζ

j−1 and α : ζ 7→ ζm and ϑ := (1 . . . s).

Algorithm 5 uses lemma 2.7 and therefore can only be used to calculate
ordinary difference sets. Here the group of mappings from 2.7 acts on each
tuple (Mij)j , as well as on the concatenation of the tuples (and of course on
the corresponding algebraic integers).

A generalisation of algorithm 5 to relative difference sets is possible by
omitting the calculations using 2.7 and testing MM̄ t = k 1−λNΦ instead
of MM̄ t = (k − λ)1. Here N is the forbidden group and Φ is the unitary
representation defined in (2.2.1).
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Algorithm 4 Test for signatures of relative difference sets with forbidden
subgroup

Require: G,U,G/U, |U∩N |, and signature σ = (p1, . . . , p|G|/|U |) as returned
by algorithm 3
Assume that the signature is indexed by the elements of G/U .

Define N/U := {g ∈ G/U | g ∩N 6= ∅} .
if |U | = |U ∩N | and |N/U | = 1 then #i.e. if U = N

if pi ∈ {0, 1} for all pi ∈ σ then
return true

else
return false

end if
end if
Define Π to be the set of all permutations of (p1, . . . , p|G/U |)
for π ∈ Π do

if ∀1 6= o ∈ N/U :
∑

g∈G/U pgpgo = λ(|U | − |U ∩N |)
and ∀o ∈ G/U −N/U :

∑
g∈G/U pgpgo = λ|U | then

return true
end if

end for
return false
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Algorithm 5 Calculation of ordered signatures for extensions of Cs ⋉ Cq

Require: (S1, . . . , Ss), n, ζ, α

π := (1 . . . , q)
Symq ∋ γ : i 7→ q − i+ 1 for 2 ≤ i ≤ q/2 #comp. conj. on indices {1 . . . q}
ιi : {1, . . . , q} → {(i− 1)q, . . . , iq − 1} for 1 ≤ i ≤ s. j 7→ j + (i− 1)q
for B ∈ {1, . . . , s} do

tB := 0
for b ∈ {1, . . . , s− 1} do

tBπb := (tBπb−1+1)m mod q
end for
define Symq ∋ τB : j 7→ tj
αB :=

∏
τ ιii

end for
Γ := 〈τB,

∏s
i=1 γ

ιs〉 #the group from lemma 2.7 operating on indices

γ := 〈τB〉(2q+1,...,sq) #stabiliser of erverything but the first block

for each Si calculate the set Ci of all N[ζ ] ∋ z =
∑q−1

i=0 aiζ
i with

∑
ai = Si.

identify (a1 . . . , aq) with
∑q−1

i=0 ai+1ζ
i.

Ĉi := {xx̄ | x ∈ Ci} for 1 ≤ i ≤ s
T := Ĉ1 × · · · × Ĉs−1

for t ∈ T do
if n− ∑s−1

i=1 ti ∈ Ĉs then
t̃i := {x ∈ Ci | xx̄ = ti} for 1 ≤ i < s.
τ̃t := t̃1 × · · · × t̃s−1

choose one representative from each orbit of γ on τ̃t and remove the
rest from τ̃t.
# γ and Γ operate naturally on the components of τ ∈ τt

τt := τ̃t × {x ∈ Cs | xx̄ = n− ∑
ti}

end if
end for
T0 := {τt | t ∈ T} #we now have

∑
MiM̄i = n and

∑
m∈{Mi}

m = Si

for t ∈ T0 do
define τt as a system of representatives of the orbits of Γ on t

end for
R :=

{
τ ∈ ⋃

t∈T0
τt

∣∣ MM̄ t = (k − λ)1, for M = M((τ)1, . . . , (τ)s, α, π)
}

# here the elements of τ are treated as cyclotomics

for each τ ∈ R let τ̂ be the concatenation of the elements (tuples) of τ .
return { τ̂ | τ ∈ R}Γ.
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4.2 Startsets

Let G be a finite group and V EG. We assume that there is a unique ordered
signature for V . To find relative difference sets in G, we first generate start
sets (partial relative difference sets) “coset by coset” and then reduce the list
of start sets as outlined in algorithm 6. If S is a partial difference set, then
any C ⊆ G such that S ∪ {c} is still a partial difference set for all c ∈ C will
be called a set of “possible completions” for S. Given a partial difference set
and any set C ⊆ G, algorithm 7 returns the subset of all possible completions
of C for S.

Algorithm 6 Generate startsets

Require: unique ordered signature (p1, . . . , p|G:V |) for V E G, cosets
u1V, . . . , u|G:V |V , forbidden set N , a set U of normal subgroups of G, the
set S of signatures for all U ∈ U and A ≤ Aut◦(G). (see page 45)

S := {(1)} #the smallest partial difference set

for 1 ≤ i < |G : V | do
R := uiV
repeat

O := ∅
for all s ∈ S do

C:=RemainingCompletions(S,R,N) #alg.7

for i ∈ C do
Add s ∪ {i} to O

end for
end for
S := O #overwrite S with O

ReduceStartSets(A, S, S,U) #alg. 9

until ∀d ∈ S : |d| =
∑

j≤i pj
end for

The assumption to have just one ordered signature is very strong. But for
normal subgroups of low index, chances are good to have just one admissible
signature. In some of these cases it is possible to choose an ordered signature
without loss of generality (if there is just one admissible signature and all
entries of this signature –with at most one exception– are equal). In all other
cases the algorithm has to be applied to every ordered signature.
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Algorithm 7 Remaining completions

procedure RemainingCompletions(S,C,N)
# S: partial difference set, C ⊆ G, N: forbidden set

P := {ab−1 | a, b ∈ S}.
W := ∅
C ′ := C − (P ∪N)
for all c ∈ C ′ do

if Sc−1 ∩ (N ∪ P ) 6= ∅ then
add c to W .

end if
end for
return C −W

end procedure

The known admissible (ordered) signatures are now used in the algorithms
8 and 9.

Let the mappings σU and sU be the signature maps as in definition 1.22.
Algorithm 8 calculates the value of the signature map for every normal sub-
group U ∈ U. For those normal subgroups for which ordered signatures are
known, the ordered signature is also calculated. It furthermore tests if the
(ordered) signatures of a partial difference set are compatible with the known
admissible (ordered) signatures. If this is not the case, “false” is returned.

Algorithm 8 Signatures of partial difference sets

Require: partial difference set S, admissible signatures for a set U of normal
subgroups of G.
for U ∈ U do

if not (σU (S) ≤ σ (pointwise) for any admissible signature σ) then
return false

else if U has admissible ordered signatures then
if not (sU(S) ≤ σ (pointwise) for any ordered signature σ) then

return false
end if

end if
end for
return ‖(σU(S), sU(S))U∈U‖
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Algorithm 9 takes a set S of partial differences sets and A ≤ Aut◦(G).
As we generate difference sets “coset by coset”, we will choose A to be the
stabiliser of N and all cosets modulo U . So

A := Aut◦(G)N ∩
( ⋂

giU∈G/U

Aut◦(G)giU

)
.

It is assumed that the admissible signatures are already calculated and can
be used. The algorithm returns a subset of S, the elements of which have
pairwise different signatures.

Note. For algorithm 9, a suitable group of (anti-)automorphisms of G has
to be chosen. The above choice of A ensures that all difference sets generated
have the same forbidden set.

If A is very large, the reduction can be done using a list of subgroups
of A. Line 7 and 8 are then processed for every subgroup in this list. This
results in a considerable speedup in some cases.

Moreover, the set U of normal subgroups of G has to be chosen such that
the multiset ‖(σU(D))U∈U‖ is still an invariant for partial relative difference
sets. The natural choice for U is to take all normal subgroups of some given
orders. More intelligent choices are possible if some orbits of A on the set of
normal subgroups of G are known.

4.3 Brute force

The method for reducing startsets gets ever more time-consuming, as the
startsets get longer. Normally, we will generate startsets containing only el-
ements from one or two cosets modulo the normal subgroup V chosen in line
7 of algorithm 2. After this, a recursive brute force method is applied to each
startset S to find all difference sets containing S. This is described in algo-
rithm 10. Note that the set C in algorithm 10 must be a set of completions
as calculated by algorithm 7 (otherwise, the algorithm will produce wrong
results). In line 3, the variable k is the length of a full difference set. In line
6, we will normally not run over all elements from C but use an ordering
argument to add only elements larger than the ones previously added. This
avoids duplicates.

We may also generate partial difference sets using algorithm 10, choosing
a k′ < k and a suitable set C. For example, one could choose C to be a subset
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Algorithm 9 Reduction of startsets

procedure ReduceStartSets(A, S, S,U)
2: # A ≤ Aut◦(G), S: set of partial difference sets, S: admissible signatures for all

U ∈ U, U: set of normal subgroups of G (see note on page 45)

Define Partition Π on S by x ∼ y :⇔ ‖(σU(x))U∈U‖ = ‖(σU (y))U∈U‖
using algorithm 8

4: for π ∈ Π with |π| > 1 do
for s ∈ π do

6: T := {(l, { lx−1 | x ∈ l}) | l ∈ π}
T ′ :=

{
(l,M) ∈ T | ∃x ∈M : x ∈ sA

}

8: choose a representative of {t | (t,Mt) ∈ T ′ and t ∈ π} and re-
move the rest from π.

end for
10: end for

return
⋃
π∈Π π

12: end procedure

of a coset gV and k′ as the number of elements a difference set contains from
gV plus the length of S (as we assume to know ordered signatures modulo V ,
this is possible). After this step, we may make a reduction step and continue
with brute force.

4.4 Tests for the isomorphism class of projec-

tive planes

After all relative difference sets (up to equivalence) are found, the projec-
tive plane has to be reconstructed from the difference set. Chapter 3 gives
constructions for all cases DPa–DPg. The algorithms for this are not listed
here. They generally look like this:

1. Define points G and lines {Dg | g ∈ G}

2. Find parallel classes and add ideal points to each line.

3. Find point classes and add ideal lines.

When this is done, we use invariants for projective planes do determine
the isomorphism class of the planes generated. In some cases, there are
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Algorithm 10 Brute force generation of difference sets

procedure AllDifferenceSets(S, C, N, D)
2: # S: partial difference set, C ⊆ G: possible completions, N : forbidden set, D: set of

difference sets already found

if |S| = k − 1 then
4: Add {S ∪ {c} | c ∈ C} to D

else
6: for all i ∈ C do

S ′ := S ∪ {i}
8: C̃:=RemainingCompletions(S ′, C)

if |S ′| + |C̃| ≥ k − 1 and |S ′| ≤ k − 1 then
10: AllDifferenceSets(S ′, C̃, N,D)

end if
12: end for

end if
14: end procedure

full invariants (for example for the translation planes of order 16). In the
other cases, we will have to construct isomorphism between the planes found
and “known” planes with the same invariants. We will now consider some
invariants which were used for planes of order 16.

4.4.1 The Fano invariant

4.1 Theorem. Let P be a finite projective plane. For each point P of P let
nP denote the number of Fano- subplanes (the subplanes of order 2) contain-
ing this point.

If P′ is another projective plane and ϕ : P → P′ an isomorphism, then
nPϕ = nP for all points P of P.

So the multiset F (P) = ‖(nP )P∈P‖ is an invariant of the isomorphism
class of P.

4.2 Corollary. Let G be a group of collineations of the projective plane P,
and P a point of P. Then nP = nQ for all Q ∈ PG.

If we know a group of collineations of a projective plane, we choose a
representative of each point orbit and calculate the number of Fano-subplanes

47



CHAPTER 4. IMPLEMENTATION

in these points using algorithm 11. Gordon Royle [Roy] has a collection of
all known projective planes of order 16 and their respective Fano numbers.
This serves well for identification of the projective planes constructed from
relative difference sets. Note that the numbers calculated by algorithm 11
are only 2/7 of the numbers Royle calculated.

Algorithm 11 Fano counter

procedure NrFanoPlanesAtPoints({P1, . . . , Pn})
for x ∈ {P1, . . . , Pn} do

nx := 0
for all (b1, b2, b3) ∈ [x]3 with pairwise different bi do

for all π2, π3 ∈ [b1] − {x} with π2 6= π3 do
for all π4 ∈ [b2] − {x} do

b24 := [π2, π4]
π24 := [b24, b3]
b34 := [π3, π4]
π34 := [b34, b3]
b324 := [π3, π24]
b234 := [π2, π34]
if [b3, b234] = [b2, b324] then

increment nx by 1.
end if

end for
end for

end for
end for
return {(x, nx) | x ∈ {P1, . . . , Pn}}.

end procedure

4.4.2 Fingerprint and p-rank

The following invariant can be found in [Moo95] and is said to be due to
Conway.

Let P be a projective plane of order n and (P, ℓ) an anti-flag of P. Write

[ℓ] = {E1, . . . , En+1}
[P ] = {m1, . . . , mn+1}
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And assume that Ei is incident with mi for all 1 ≤ i ≤ n + 1. Now label
the points of mi as P = Pi,1, . . . , Pi,n+1 = Ei and label the lines of Ei as
ℓ = ℓi,1, . . . , ℓi,n+1 = mi.

Let i 6= j. Then each Pj,k lies on exactly one line ℓi,kσij through Ei for
some permutation σij . Now define the (n + 1) × (n+ 1) sign matrix

Aij :=

{
sgn(σij) for i 6= j

0 for i = j

The partial fingerprint of P with respect to (P, ℓ) is defined as the multiset
‖(|∑n+1

k=1 aikajk|)i,j‖ (with 1 ≤ i, j ≤ n + 1) of the modulus of the entries of
AAt. Obviously, the fingerprint is an invariant for P depending on the anti-
flag (P, ℓ). For translation planes, the canonical choice for (P, ℓ) is (P0, ℓ∞)
with ℓ∞ the line at infinity and some affine point P0.

For projective planes in general, we may define the complete fingerprint,
which is generated from an (n2 + n + 1) × (n2 + n + 1) sign matrix: Let
P1, . . . , Pn2+n+1 be the points of P and ℓ1, . . . , ℓn2+n+1 the lines of P. For
each point Pi and each line ℓi define an arbitrary but fixed ordering of the re-
spective lines (points) as [Pi] = {ℓi,1, . . . , ℓi,n+1} and [ℓi] = {Pi,1, . . . , Pi,n+1}.
For each anti-flag (Pi, ℓj) there is a canonical bijection between [Pi] and [ℓj ].
Now define σij to be the permutation of the indices induced by this bijection
and the chosen ordering of points and lines.

Again, we define a sign matrix Aij := sgn(σij) for i 6= j and Aii = 0 for
all 1 ≤ i ≤ n2 + n+ 1. And the complete fingerprint is the multiset ‖(|cij|)‖
with C = AAt.

A very basic invariant is the so-called p-rank:

4.3 Theorem. Let p ∈ P and P a projective plane. Then the rank of
the incidence matrix of P as a matrix over GF(p) is an invariant for the
isomorphism class of P.

4.4.3 How to choose an invariant

Which of the above invariants is suitable for an isomorphism test does obvi-
ously depend on the order n of the projective planes tested. Here are a few
observations from computer experiments for orders ≤ 81. These experiments
were done on a standard desktop computer.

For the Fano invariant in one point,
(
n+1

3

)(
n
2

)
n quadrangles have to be

tested (see algorithm 11 on page 11). And each test is a sequence of list
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operations. The Fano invariant is very strong in the sense that it is a com-
plete invariant for the known projective planes of order 16 and the semifield
planes of order 81, for example. For planes of order 32 the Fano can still be
calculated with little effort, while for order 81 it is very hard.

The partial fingerprint needs about n3 list operations per anti-flag. Con-
sequently, the full fingerprint takes n5 list operations and much more memory
than the partial fingerprint (the full fingerprint calculates a square matrix
with n2 +n+1 lines, whereas the partial fingerprint uses an (n+1)× (n+1)
matrix). For translation planes, there is a canonical choice for the anti-flag,
so the partial fingerprint is a good choice here. For translation planes of or-
der 81, for example, the partial fingerprint is easy to calculate but does not
distinguish all semifield planes (on the 27 semifields of order 81, the partial
fingerprint has only 4 different values, see [Dem]).

The p-rank needs about n2 list operations to generate the incidence ma-
trix. Calculating the rank of the matrix needs about (n2)3 operations in
the general case. Furthermore, the incidence matrix takes a lot of memory.
Nonetheless, calculating the p-rank is still faster than calculating the Fano
number.

And, of course, groups of elations and homologies can be combined with
the invariants mentioned before. In the example of semifield planes of order
81, using the partial fingerprint and the size of a group of homologies with
axis ℓ∞ gives 8 different values.
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Computer aided experiments in
higher order

Using GAP and the routines described in chapter 4, we may look for projective
planes in orders larger than 16. Interesting orders may be 25, 27 or 81.

A problem with higher order planes is that the groups involved are very
large, so a complete search of all planes with large quasiregular collineation
group as in the case n = 16 is very difficult. So we will restrict ourselves to
difference sets which are fixed under a given group-automorphism. In case
DPb, the following lemma characterises such automorphisms.

5.1 Lemma. Let 1 ∈ D ⊆ G be a relative difference set of type DPb with
forbidden group N E G. Let P be the projective plane defined by D. Then
Aut(P) ∩ Aut(G) = (Aut(G)N)D.

Elements of Aut(G) can be extended to act on the points of P. However,
the extension may not be a collineation of P. So Aut(P) ∩ Aut(G) is just
the group of extensions of group automorphisms which respect incidence.

Proof. Let ℓ∞ be the ideal line and p∞ the ideal point of P (see the construc-
tion on page 29). The points of ℓ∞−{p∞} can be identified with the parallel
classes of devD. So Aut(G) fixes ℓ∞. By 1.14, the cosets of the forbidden
subgroup N are exactly the point classes of devD. But the point classes of
devD are exactly the lines of P which are different from ℓ∞ and contain p∞.

And as Aut(G) fixes the point 1 ∈ G and acts on the point classes of
devD, we have Aut(P) ∩ Aut(G) ≤ Aut(G)N = Aut(G)ℓ0 where ℓ0 is the
line containing p∞ and 1 ∈ G.
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The parallel class of D in devD is {Dn | n ∈ N} and D ∩ N = {1} by
assumption. So Aut(G) ∩Aut(P) does also fix the parallel class of D which
is a point pD ∈ ℓ∞ and it also fixes D because 1 ∈ D.

So we have Aut(G) ∩ Aut(P) ≤ (Aut(G)N)D. On the other hand, every
element of (Aut(G)N)D clearly induces a collineation on P.

So in this case the elements of Aut(G) extending to collineations (some-
times called “multipliers”) of P automatically fix the difference set defining
P.

5.1 Type DPb and a Baer involution

In this section we will consider relative difference sets of type DPb. Moreover
we assume that there is an involutorial group automorphism fixing a Baer
subplane. This is not a very big restriction, as we have

5.2 Theorem ([Dem68, 3.1.2, 3.1.6]). Let P be a projective plane. The fixed
structure of an involutorial collineation is either of the form

{p, L} ∪ [p] ∪ [L]

with some point-line pair p, L or a Baer subplane (fixed pointwise). Involu-
torial collineations fixing a Baer subplane pointwise are called “Baer involu-
tions”.

5.3 Lemma. Let P be a projecive plane of order n2 and B a Baer subplane
of P. For every line l ∈ P we have |l ∩ B| ∈ {n+ 1, 1}.

Proof. As B is projectively closed, l has to have n + 1 points in B as soon
as more than 2 points are in B. Assume that l ∩ B = ∅. Then every line of
B meets l and no point of l is met by two lines of B, as B is closed. So l
has at least n2 + n + 1 points. But P has order n2, so l does only contain
n2 + 1 points.

5.4 Lemma. Let P be a projective plane of order n2 and ι a Baer involution.
Let ℓ∞ be a line of P, for which ℓι∞ = ℓ∞. Then |B∩ ℓ∞| = n+ 1, where B

is the Baer subplane.
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Proof. Let B be the Baer subplane fixed by ι. Then ℓ∞ meets B in either 1
or n+1 points. Suppose B∩ ℓ∞ = {p}. Then none of the points of ℓ∞−{p}
is fixed by ι. So the lines which do not contain p are tangents for B (they do
only contain one point of B). But this leaves B with only n2−1 < n2 +n+1
lines (the ones meeting p). A contradiction.

5.5 Corollary. Let D ⊆ G be a relative difference set of type DPb of order
n2. Let P be the projective plane defined by D. Let ι ∈ Aut(G) be an
involution fixing the Baer subplane B ⊆ P. Assume that 1 ∈ D and 1 ∈ B.
Then there is a ∈ D such that |Da−1 ∩ B| = n.

Proof. D is of type DPb and hence ℓι∞ = ℓ∞. So by 5.4, ℓ∞ has n+ 1 points
in B and every line in B contains a point of ℓ∞.

The translates of D containing 1 are exactly those of the form Da−1 with
a ∈ D. And as there are lines connecting 1 to points inside the Baer subplane
and meet ℓ∞ in different points, there is a translate of D which contains more
than one point of B. This finishes the proof.

5.1.1 Order 25

For n = 25, a computer search shows:

5.6 Theorem. Let D ⊆ G be a relative difference set of type DPb and order
25. Let P be the corresponding projective plane. If Aut(G) contains a Baer
involution of P, then P has the 5-rank and fingerprint (see section 4.4) of
one of the following three planes

(a) The Desarguesian plane

(b) The Walker plane

(c) The dual Walker plane

For the search, we first calculate all possible Baer involutions in Aut(G).
Another possibility is to calculate all F ≤ G with |F | = 25 (up to conjugacy
under Aut(G)N) and then find all involutions from CAut(G)N (F ).

Once we have an involution ι ∈ Aut(G)N and the group F fixed by ι, we
proceed as follows:

1. Generate startsets of length 5 consisting of elements of F .
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2. Calculate the Partition O of G− F into orbits of 〈ι〉.

3. Generate relative difference sets by adding elements of O to the startsets
of order 5. Use a slightly modified version of algorithm 1 (using orbits
instead of points).

The identification of the planes found is done using the data provided by
[Moo00], namely the 5-rank and the fingerprint.

Note that this does only proof that a plane of this type, which is not
a Desarguesian plane has the same invariants as the Walker plane (or dual
Walker plane). A strict test for isomorphism was not done.

5.1.2 Planes of order 81

To find planes P of type DPb and order 81 we will assume that P admits a
group isomorphism α of order 4 which fixes a subplane of order 3 such that
α2 is a Baer involution. Here the Baer subplane consists of the fixed points
of α and the orbits of 〈α〉 of length 2.

A computer search using GAP shows

5.7 Theorem. Let G = E812 and α ∈ Aut(G) with |α| = 4. Let α fix a
subgroup of order 9 element wise and α2 fix a subgroup of order 81 element
wise. Then a projective plane of order 81 and type DPb admitting α as a
collineation is one of the following:

(a) The Desarguesian plane

(b) A translation plane defined by a Dickson semifield with kernel GF (9)

(c) The Coulter-Matthews plane of order 81 defined by the monomial X5

over GF(34)

Difference sets are constructed first as difference sets in the subplane of
order 3 defined by the fixed points of α and then extended by adding 〈α〉-
orbits of length 2 until difference sets for the Baer subplane are found. Then
〈α〉-orbits of length 4 are added to find all of the difference sets in question.
The isomorphism class of the projective plane found is determined by calcu-
lating translation groups and groups of elations as well as the fingerprint (see
4.4.2). The semifields of order 81 are classified by U. Dempwolff [Dem]. The
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semifield planes of order 81 are almost uniquely determined by the combina-
tion of the partial fingerprint (with respect to ℓ∞ and an affine point), the
3-rank and the order of a group of homologies with centre ℓ∞. Only two cases
have the same invariants (and our case is one of the others). A full invariant
for the semifield planes of order 81 is given by the number of Fano subplanes
in an affine point. In case of the Coulter-Matthews plane, an isomorphism
is constructed explicitly.

55



Chapter 6

A result on planar functions

Here we will have a look at another construction for a special class of projec-
tive planes of type DPb. After the definition of planar functions, we turn to
the special class of planar monomials over finite fields. In a theorem found
together with U. Dempwolff [DR], a partition of planar monomials is defined
which coincides with the isomorphism classes of the projective planes de-
fined by planar monomials. Furthermore, the automorphism group of such
projective planes is determined.

6.1 Definition. Let M, N be finite groups. A map f : M → N is called
planar function, if for every 1 6= a ∈ M the mapping ∆f,a : M → N, x 7→
f(ax)f(x)−1 is bijective.

Every planar function f defines a projective plane P(f) as follows. Let

P := (M ×N) ∪ {(a) | a ∈M} ∪ {(∞)}
L(a, b) :=

{
(x, f(xa−1)b)

∣∣ x ∈ M
}
∪ {(a)} (a, b) ∈M ×N

L(c) := {(c, y) | y ∈ N} ∪ {(∞)} c ∈ M

L∞ := {(a) | a ∈ M} ∪ {(∞)}
L := {L(a, b) | (a, b) ∈M ×N} ∪ {L(c) | c ∈M} ∪ {L∞}

(6.1.1)

Then P(f) := (P,L) is a projective plane. The group M × N acts as a
regular and faithful group of collineations on P−{L∞}, the affine points of
P. And M ×N fixes (∞) and acts transitively on L∞ − (∞). The group N
induces the full group of elations with centre (∞) and axis L∞. So we have

6.2 Lemma. Let f : M → N be a planar function. Then M × N acts on
P(f) as a quasiregular group of type DPb.
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Planar functions are commonly studied [DO68, Dem68, Pot95, CM97] for
M ≃ N ≃ Epn with 2 6= p ∈ P and n ∈ N. In this case, f can be written as
a polynomial of degree less than pn over GF(pn). In fact, all known planar
functions are planar polynomials.

6.1 Planar monomials

As seen above, relative difference sets of type DPb in elementary abelian
groups are equivalent to planar polynomials. The following series of planar
monomials are known to the author:

• Dembowski and Ostrom [DO68] found that P(X2) is Desarguesian and
P(Xpa+1) is a commutative twisted semifield plane for 0 < a < n if
n/(n, a) ≡ 1 mod 2.

• Coulter and Matthews [CM97] have shown thatX(1+3α)/2 is planar over
GF(3n) for every α 6≡ ±1 mod 2n and that the according planes are
not translation planes.

For planar monomials over prime fields, the following was found indepen-
dently by several authors.

6.3 Theorem ([Joh87, Hir89, RS89, Glu90]). Let p ∈ P and 1 ≤ n < p.
Then Xn is a planar polynomial over GF(p) if and only if n = 2.

For q ≡ 0 mod 2 there is no planar polynomial over GF(q). This follows
immediately from 3.7. A search for relative difference sets in E38 led to the
following observations for planar monomials in general:1

Let F := GF(pn) for some 2 6= p ∈ P and 2 ≤ n ∈ N.

6.4 Theorem. Let Xm and Xm′
be planar functions over F ≃ GF(pn).

(a) P(Xm) and P(Xm′
) are isomorphic iff m′ ≡ mpk mod pn for some k.

(b) P(Xm) is a translation plane or a dual translation plane iff this plane is
Desarguesian with m ≡ 2pk mod pn or a commutative twisted semifield
plane with m ≡ (pa + 1)pk mod pn for 0 < a < n and n/(n, a) odd.

1in cooperation with U. Dempwolff. Submitted to “Innovations in Incidence Geometry”
in 9/2006 [DR]
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Note. For every planar monomial Xm, the automorphism group of P(Xm)
contains the multiplicative group of F and the Galois group of F :

• Z := {εa : (x, y) 7→ (ax, amy); (x) 7→ (ax) | a ∈ F ∗} ≃ F ∗

• D := 〈δ : (x, y) 7→ (xp, yp); (x) 7→ (xp)〉 ≃ Cn

The automorphism groups of the translation planes in question are known
(for the semifield case, see [Alb59, Alb61, BJJ99]). For the remaining cases,
it turns out that the automorphism group of P(Xm) is just the obvious one:

6.5 Theorem. Assume that P(Xm) is not a translation plane. Then

Aut(P(Xm)) ≃ ΓL(1, pn) · (F × F )

For the proof of 6.4 and 6.5 a few lemmas are needed. The following
lemma on Singer cycles is well known and follows from [Hup67, Satz 3.10],
for example.

6.6 Lemma. Let Z be a cyclic group of order pn−1 and V an n-dimensional
GF(p)-space and D : Z → GL(V ) a faithful representation.

(a) Let D′ : Z → GL(V ) be an irreducible representation. Then D′ is equiv-
alent to a representation Dk : Z → GL(V ) for some k ∈ {0, . . . , pn−1},
where Dk is defined by Dk(x) = D(x)k.

(b) Two irreducible representations Dk and Dℓ are equivalent iff ℓ ≡ kpa

mod pn with 0 ≤ a < n suitable.

6.7 Lemma. Let P = P(Xm) be a translation plane or a dual translation
plane and Z ≤ Aut(P) a cyclic group fixing the triangle {(0), (∞), (0, 0)}.
Suppose further, that the action of Z on L∞ − {(0), (∞)} is faithful and
regular. Then:

(a) P is Desarguesian or a commutative twisted semifield plane.

(b) Let W ≤ Aut(P)L∞ be an elementary abelian, Z-invariant p-group
such that CW (x) = 1 for 1 6= x ∈ Z and W contains no translation.
Assume that W ×N acts regular on the affine points of P and denote
by DW (DN) the representation of Z on W (N). Assume that DN is

irreducible. Then DN ∼ Dpℓ+1
W for some 0 ≤ ℓ < n.
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Proof. By [CM97, Cor. 5.12], P is a semifield-plane. Using [Dem88] we see
that P twisted field plane which is even commutative by [DO68]. This proves
(a).

For the proof of (b) let E be the group of elations with axis L(0) and centre
(∞). Denote by P the group of translations with centre (0). Then T = N×P
is the translation group of order p2n with respect to L∞ and N × E is the
dual translation group of order p2n with respect to (∞). Moreover V = ET
has order p3n and H = Aut(P)(∞),L∞ = KV . Here Z ≤ K = H(0),(0,0)

is isomorphic to a subgroup of ΓL(1, pn) × ΓL(1, pn) (see [Alb59, Alb61] or
[BJJ99]). Use the bar convention for homomorphic images modulo N . Then
V = E ⊕ P is a decomposition into Z-modules.

By assumption, W contains no translation, soW∩T = 1 andW∩NE = 1,
because W acts regularly on the affine lines through (∞). Clearly, W∩V 6= 1,
so that W ≤ V follows from W = [W,Z]. Therefore W projects faithfully
on E and P . Hence W ≃ E ≃ P as Z-modules. The commutator induces a
nontrivial, Z-invariant bilinear mapping (·, ·) : E × P → N .

Claim. DN ∼ Dpℓ+1

W
∼ Dpℓ+1

W , ℓ suitable.
We sketch a Lie ring type argument which can be found for instance in

G. Higmans work [Hig63, sec. 4] on Suzuki 2-groups:
By our assumptions, DE is irreducible (as DW is). Let z be a generator of

Z. Let λ be an eigenvalue of DE(z). Then E ≃GF(p)(λ)≃ F , in particular,
〈λ〉 = F ∗ and the eigenvalues of DE(z) are the Galois-conjugates λp

i

, 0 ≤ i <
n. In E ⊗GF(p) F , we may choose a basis u0, . . . , un−1 such that uiz = λp

i

ui;
and we may furthermore suppose that u0, . . . , un−1 are conjugate over GF(p),
so that the elements ofE are exactly the elements

∑
αp

i

ui for α ∈ F . Higman
calls such a basis a “conjugate basis for E adapted to z”. Of course, we can
also choose a conjugate basis for DP (z) adapted to z. The bilinear map (·, ·)
extends to the tensored modules E ⊗GF(p) F and P ⊗GF(p) F and at least
one product of an eigenvector for DE(z) and one for DP (z) is nontrivial as
this mapping is nontrivial. This shows that DN (z) has eigenvalues which are
conjugates of a λp

ℓ+1, ℓ suitable. By (a) of lemma 6.6 this implies the claim.

Using 6.3, Coulter and Matthews prove

6.8 Lemma ([CM97, Prop. 2.4]). If Xm is a planar polynomial over GF(pn)
then there are precisely two y ∈ GF(pn) with ym = 1. And m ≡ 2 mod p−1
and (m, pn − 1) = 2.
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Now let A := Aut(P(Xm)) and A0 = DZMN with D and Z as in the
note on page 58. And remember that M ×N = F × F .

6.9 Lemma. Assume that P is not a translation plane or a dual translation
plane. Then

(a) A = Aut(P) leaves L∞ and (∞) fixed.

(b) N is the group of all central collineations with axis L∞. In particular
N EA.

(c) CA(N) = 〈z0〉MN , where z0 is the unique involution in Z. In partic-
ular M = [CA(N), CA(N)] E A.

Proof. (a) is pretty easy: Assume that L∞ or (∞) are not fixed by A, then
suitable conjugates of N form the translation group with respect to a trans-
lation line or a translation point. But then P is a translation plane or a dual
translation plane. A contradiction.

For (b) let K be the group of central collineations with axis L∞. Assume
that K − N contains a translation. Using the action of M we even find a
translation 1 6= τ with centre (0). But then 〈τZ〉 would be the full group
of elations with respect to the flag ((0), L∞) and P is a translation plane, a
contradiction.
Therefore K − N is a set of homologies. If this set is not empty we get
(using the group action as before) a homology 1 6= κ with centre (0, 0). The
involution z0 is a homology with axis L(0) and centre (0) since m is even by
6.8. Thus z0κ = κz0 by 1.30. Moreover [M ×N, κ] ≤ CA(N) ∩K = N and
[M × N, z0] = M which shows [M,κ] = 1. But then M woud fix the centre
(0, 0) of κ, a contradiction.

For (c) let γ ∈ CA(N). Replacing γ by a suitable element from γM
we may assume that γ fixes the line L(0). Again replacing γ by a suitable
element from γN we may even assume that γ is a central collineation with
axis L(0). Therefore it’s centre lies on L∞.
Assume γ 6= 1. As γ fixes L∞ the centre of γ lies on this line. If γ is an
elation with centre (∞) then 〈γZ〉 is the full elation group with respect to
the flag ((∞), L(0)) and P is a dual translation plane, a contradiction. Thus
γ is a homology. If the centre of γ is not (0) then β = z0z

γ
0 is a central

collineation with axis L(0) which is inverted by z0 and zγ0 . Hence β is an
elation with centre (∞). But this case is ruled out already.
So (0) is the centre of γ and CA(N) = CMN with a group C of homologies
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with respect to the anti flag ((0), L(0)). The group CA(N)/N is represented
faithfully as a permutation group on L∞−{(∞)} and CN/N∩(CN/N)xN = 1
for xN ∈ CA(N)/N − CN/N . Hence CA(N)/N is a Frobenius group with
Frobenius kernel MN/N . This implies that C normalises M = [MN, z0]
as 〈z0〉 ≤ Z(C). If 〈z0〉 < C this group has on L(0, 0) an orbit containing
(at least) three points of the form (a1, b), (a2, b), (a3, b), a contradiction to
6.8.

With these tools, we will now turn to the proofs of 6.4 and 6.5.

Proof of 6.5. Use the bar convention for homomorphic images modulo N .
The group Ā0 has a 2-transitive, faithful action on L∞ − {(∞)}. So

GL(M̄GF(p)) & Ā/M̄ ≥ Ā0/M̄ ≃ ΓL(1, pn).

By [Kan80] Ā≃ AΓL(a, pb) with ab = n. If a = 1, we are done.
Consider the case a > 2. The group Ā contains an involution xN such

that |CL∞ xN | 6∈ {1, 2, pn/2 + 1, pn + 1}. As xN contains an involution,
this involution is either a homology or planar, a contradiction.

Thus a = 2. By 6.9 we have A/CA(N)≃ΓL(2, pn/2)/ 〈−1〉. Choose B <
A such that B/CA(N)≃ PSL(2, pn/2). Then z0MN ∈ B/MN ≃ SL(2, pn/2).
Set B0 = CB(z0). As M = [M, z0] a Frattini argument shows B = B0M and
B0 ∩M = 1. Moreover B0 induces by conjugation the group PSL(2, pn/2)
on N . Choose u ∈ B0 of order 4 such that u2 = z0. Then |CN(u)| > 1
as the involutions in PSL(2, pn/2) are conjugate. As u normalizes M we see
that 〈u〉 has on L(0, 0) an orbit of length 4 of the form {(a1, b), . . . , (a4, b)},
contradicting 6.8.

Proof of 6.4. Part (b) of the theorem follows directly from part (a) of lemma
6.9.

For the non trivial direction of part (a) of 6.4 assume that ϕ : P =
P(Xm) → P′ = P(Xm′

) is an isomorphism. By slight abuse of notation,
the points and lines of P′ will be named as those of P. Because of transi-
tivity of A′ = Aut(P′) we may assume that L∞ϕ = L∞ and that the points
(0), (0, 0), (∞) are mapped onto the corresponding points in P′. The iso-
morphism ϕ induces an isomorphism τ : A → A′; α 7→ ϕ−1αϕ. Now set
N ′ = Nτ , M ′ = Mτ etc. The group Z acts on M × N and (via τ) on
M ′ × N ′. Denote by DN , DN ′, DM , DM ′ the representations on the respec-
tive submodules. As τ is an isomorphism from ZMN to Z ′M ′N ′, we have
DN ∼ DN ′ and DM ∼ DM ′.
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If P′ is not a translation plane, theorem 6.5 implies that M × N is
characteristic in A and therefore (M × N)τ = M ′ × N ′. Moreover Z =
CDZ([DZ,DZ]) and hence Z ′ is the unique normal cyclic subgropup in D′Z ′

of order pn − 1, i.e. this group induces collineations of type εa on M ′ × N ′.
Thus DN ∼ Dm

M and DN ′ ∼ Dm′

M ′ and therefore Dm
M ∼ Dm′

M . By 6.6 we have
m ≡ mpk mod pn for some k.

Now suppose that P′ is a translation plane. Then P and P′ are commu-
tative twisted field or Desarguesian planes. The group N ′ is still a group of
((∞), L∞) elations, but the group M ′ may not be the one used in the defini-
tion of the planar function. Let M̃ ≤ A′ be the group used for the definition
of the planar function. Then lemma 6.7 implies (with M and M̃ in the role

of W ) that DN ∼ Dpl+1
M and DN ′ ∼ Dpℓ

′+1

M̃
. So m ≡ (pℓ + 1)pk mod pn and

m′ ≡ (pℓ + 1)pk
′

mod pn.
As the plane P′ is a commutative semifield plane, it has a description as

P(F, pa, p−a,−1) with 0 ≤ a < n and n/(n, a) ≡ 1 mod 2. For a > 0, the
plane is non-Desarguesian and P′ is Desarguesian if a = 0 (see [BJJ99] for
details). Two such planes P(F, pa, p−a,−1), P(F, pb, p−b,−1) are isomorphic
iff a = b or a = −b. But planes of type P(Xpk+1) are always translation
planes if Xpk+1 is planar [DO68]. So (pℓ + 1) ≡ (pℓ

′
+ 1)pc mod pn or

m′ ≡ mpd mod pn, respectively, for some c, d.

Note that theorem 6.4 also shows that the planes of Coulter and Matthews
are not translation planes. But the techniques used for the proof are com-
pletely different from those of [CM97]. Theorem 5.7 shows that for order 81
the only planar monomials are equivalent to X2 or the Coulter Matthews
monomial.
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Future work

In the present text, we discussed computational methods for the classification
of projective planes. Here we will have a look at the possibilities for further
work in this area. And as this thesis addresses theoretical and computational
matters, naturally open questions also fall in both of these areas.

Theoretical problems

In section 2.1, a special representation Φ was introduced to find invariants for
partial ordinary difference sets. A similar approach may also be of interest
for relative difference sets. The question, whether Φ can be used to get
information about the possible forbidden sets N is of particular interest.
More generally, the study of matrix representations for more general classes
of groups seems to be desirable in order to get restrictions on difference sets
from the defining equation.

As the result from chapter 6 relates the isomorphism class of a projective
plane to a notion of equivalence on monomials, it is tempting to ask if anal-
ogous results can be found for a more general class of planar polynomials.
Another part of the theory of planar functions seems to be little studied.
It is not yet known if there are planar functions, which are not defined on
elementary abelian groups. Only a few results for general planar functions
are known to the author [Hir90, Nak97, Nak93].

Computational issues

As seen in chapter 4, a key point for the generation of startsets is the knowl-
edge of admissible signatures. Algorithm 4 is very crude as it always com-
putes all permutations of a list and just gives up if the number of permuta-
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tions seems too big. For special classes of groups, more sophisticated algo-
rithms should be possible. Representations seem to be a very powerful tool
for this purpose. One task could be to develop a variant of algorithm 5 to
calculate signatures not only for ordinary but also for relative difference sets.
The central part of algorithm 5 consists of the calculation of all elements of
Z[ζ ] with non-negative coefficients and given modulus. Finding all z ∈ Z[ζ ]
with zz̄ = n ∈ N seems to be a quite hard problem in number theory. The
study of this problem using computational number theory may lead to some
methods for a more effective calculation.

Searching for new planes

With the tools developed in this text –and the implementation– computa-
tional experiments may be undertaken to find new planes. When planes of
order 25 are considered, the method from 5.1 can also be used for the other
cases of the Dembowski-Piper classification. For order 27 Baer involutions
are not available. In this case, one could search for difference sets which are
fixed by a group automorphism α. Further, one would suppose that α has
order 3 and fixes a subplane of order 3. In this case, it can be shown that
for planes of type DPb, the subplanes on which α acts are also of type DPb
(for cases DPd, DPf and DPg the same should be true). So the search can
start with generating difference sets of the subplanes.

As seen in chapter 5 relative difference sets of order 81 can be calculated
if automorphisms are known. Interesting cases may be the automorphism
groups of the semifield planes of order 81 as calculated by U. Dempwolff
[Dem]. Acting on E812 , some of these groups may have subgroups which also
admit an operation on another (possibly non-Desarguesian) projective plane.
So using these groups for orbit-wise generation of difference sets looks quite
promissing.
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Appendix A

The planes of order 16 and type
DPb

The following table contains the 590 groups of order 256 which admit relative
difference sets of type DPb.

The column labels “Des”, “Semi 2”, “Semi 4” and “Mathon” stand for
the Desarguesian plane, the semifield planes with kernel 2 and 4, respectively,
and the Mathon plane. Note that a group acts on the Mathon plane if and
only if it acts on the dual Mathon plane. So there is no extra column for the
dual Mathon plane. And, of course, a mark means that there is an action on
the corresponding plane. Groups which are not in the table do not admit a
relative difference set of type DPb.

The groups are numbered as in the small groups library of GAP:

There are 56092 groups of order 256.

They are sorted by their ranks.

1 is cyclic.

2 - 541 have rank 2.

542 - 6731 have rank 3.

6732 - 26972 have rank 4.

26973 - 55625 have rank 5.

55626 - 56081 have rank 6.

56082 - 56091 have rank 7.

56092 is elementary abelian.

Group number 6732 is C4
4. From this we get

A.1 Corollary. Let P be a projective plane DPb and order 16. Let G be a
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group of order |G| = 256 operating as a quasiregular collineation group of P.
Then

• G has rank at most 5.

• G acts on at most two of the following three kinds of planes: Desar-
guesian plane, semifield plane (with kernels GF(2) or GF(4)), Mathon
plane.

The projective planes of order 16 and type DPb

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

296 • • •
331 • •
420 •
843 • • •
855 • •
874 •
876 •
909 •
938 • •
947 • •
956 •
961 •
963 • •
978 •
980 •
985 •
1001 •
1038 •
1052 •
1053 •
1060 • •
1066 •
1081 •
1086 • •
1101 •
1104 •
1108 •
3322 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

4509 • •
5287 •
5688 • •
5848 • • •
6732 •
6738 •
6753 •
6756 •
6760 •
6769 •
6774 •
6775 •
6781 • •
6785 •
6792 •
6794 •
6800 •
6807 •
6814 • •
6817 •
6821 • •
6822 •
6838 •
6842 • •
6843 •
6844 •
6848 • •
6851 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

6852 •
6873 •
6897 •
6916 •
6917 •
6919 • •
6920 •
6922 •
6938 • •
6942 •
6943 •
6949 • •
6952 • •
6964 •
6966 •
6973 •
6988 •
6991 •
6994 •
6997 •
7012 • •
7030 •
7036 •
7039 •
7043 •
7045 •
7046 •
7048 •
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S
em

i
2

S
em

i
4

M
a
th

o
n

7049 •
7050 •
7053 •
7057 •
7071 •
7079 •
7080 •
7082 • •
7093 •
7101 •
7103 • •
7109 •
7111 •
7114 •
7121 •
7130 •
7139 •
7143 • •
7148 •
7149 •
7150 •
7151 •
7152 • •
7156 •
7162 • •
7167 •
7174 •
7179 •
7180 •
7191 •
7202 •
7205 •
7211 •
7214 •
7224 •
7226 •
7227 •
7233 •
7235 •
7238 •
7240 •
7258 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

7268 •
7272 •
7274 •
7284 •
7296 •
7306 •
7308 •
7316 •
7318 •
7334 •
7344 •
7366 •
7382 •
7402 •
7423 •
7429 •
7438 • •
7446 •
7447 •
7453 •
7454 • •
7458 •
7459 • • •
7460 •
7465 •
7471 • •
7473 •
7477 • •
7478 •
7489 •
7490 •
7498 •
7499 •
7519 •
7526 •
7538 •
7540 •
7542 •
7549 •
7562 •
7581 •
7583 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

7585 •
7586 •
7587 • •
7589 •
7593 •
7596 •
7602 •
7622 • •
7626 • •
7636 •
7638 •
7651 •
7652 •
7656 • •
7691 • •
7697 •
7698 •
7767 •
7769 •
7775 • •
7779 •
7788 •
7792 •
7838 •
7839 • •
7851 •
7855 •
7860 •
7866 •
7869 • •
7872 •
7926 •
7930 •
7938 •
7950 •
7963 •
7980 •
7982 •
7988 •
7996 •
7999 • •
8001 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8016 •
8017 •
8024 •
8030 •
8032 •
8036 •
8039 •
8040 •
8041 •
8044 •
8048 •
8063 •
8073 •
8074 •
8077 • •
8082 • •
8084 •
8085 • •
8086 • •
8087 •
8092 •
8096 • •
8104 •
8107 • •
8109 •
8116 • •
8121 •
8131 •
8134 •
8152 •
8154 •
8172 •
8179 •
8181 •
8198 •
8227 •
8239 • •
8241 • •
8244 •
8306 •
8335 •
8337 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8348 •
8355 •
8362 •
8370 •
8402 •
8423 •
8425 • •
8488 •
8491 •
8498 •
8509 •
8518 •
8521 •
8524 •
8530 •
8546 •
8561 •
8562 •
8569 •
8584 •
8589 •
8651 •
8671 •
8673 •
8679 • •
8680 •
8686 •
8687 • •
8691 •
8695 •
8708 •
8712 •
8717 •
8728 •
8735 •
8740 •
8748 •
8750 • •
8754 •
8755 •
8766 •
8767 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8778 •
8781 •
8782 •
8787 •
8801 •
8805 •
8835 •
8837 • •
8842 • •
8845 • •
8846 • •
8848 •
8849 •
8850 •
8855 •
8860 •
8875 •
8876 •
8878 •
8879 •
8884 •
8891 •
8906 •
8921 •
8923 •
8925 •
8930 •
8952 •
8987 •
8989 •
8991 •
8995 •
8997 •
9010 •
9019 •
9021 •
9025 •
9028 •
9029 •
9046 •
9051 • •
9053 •
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S
em

i
2

S
em

i
4

M
a
th

o
n

9054 •
9056 •
9063 •
9069 •
9070 •
9074 •
9081 • •
9083 •
9084 •
9096 •
9097 • •
9098 • •
9100 • •
9101 •
9104 •
9110 • •
9116 •
9118 •
9125 •
9126 •
9127 •
9128 • •
9131 •
9138 •
9143 •
9150 •
9151 •
9153 •
9154 •
9155 •
9156 •
9158 •
9160 •
9162 •
9164 •
9166 •
9167 •
9168 • •
9172 •
9173 •
9174 • • •
9176 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9182 •
9189 •
9191 • •
9192 •
9204 •
9208 • •
9209 •
9213 •
9218 •
9219 •
9220 •
9223 •
9224 •
9225 •
9227 •
9229 •
9231 •
9236 •
9269 • •
9281 •
9364 •
9375 •
9376 •
9377 •
9394 •
9395 •
9397 •
9398 •
9400 •
9401 •
9424 •
9432 •
9436 •
9441 •
9448 •
9470 •
9471 •
9473 •
9481 •
9512 •
9541 •
9542 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9553 •
9558 •
9564 •
9582 •
9586 •
9598 •
9599 •
9613 •
9617 • •
9618 • •
9674 • •
9675 •
9676 •
9683 •
9697 •
9698 •
9699 •
9701 •
9704 •
9709 •
9714 •
9720 •
9722 •
9727 •
9732 •
9733 •
9738 •
9740 •
9745 •
9748 •
9754 •
9757 •
9758 •
9764 •
9771 •
9772 •
9778 •
9780 •
9784 •
9794 •
9801 •
9814 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9815 •
9828 •
9831 •
9837 •
9862 • •
9868 •
9877 •
9878 •
9885 •
9893 • •
9896 •
9900 •
9903 •
9906 •
9912 •
9919 •
9926 •
9930 • •
9932 •
9934 •
9935 •
9936 •
9938 •
9946 •
9947 •
9959 •
9960 •
9963 •
9967 •
9971 •
9976 •
9978 •
9981 •
9982 •
9983 •
9984 •
9986 •
9988 •
9990 •
9991 •
10009 •
10020 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

10022 •
10024 •
10030 •
10039 •
10041 • •
10042 • •
10043 •
10060 • •
10066 •
10069 •
10073 •
10100 •
10116 •
10120 •
10142 •
10150 •
10166 •
10173 • •
10179 •
10190 •
10197 •
10198 •
10200 •
10206 •
10207 •
10234 •
10244 •
10246 •
10254 •
10263 •
10266 •
10268 •
10269 • •
10272 • •
10277 • •
10283 •
10285 •
10287 •
10294 •
10295 • •
10296 •
10297 • • •
10313 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

10437 • •
10528 •
10572 •
10636 •
10655 • •
10730 •
10734 • •
10739 •
10785 •
10796 •
10808 •
13317 •
13780 •
14204 •
14819 •
14829 •
27067 •
27101 •
27106 •
27131 •
27333 • •
27534 • •
27588 •
27677 •
27848 •
27880 •
27887 •
27916 •
27928 •
27932 •
29622 •
29676 •
29677 •
45194 •
45224 •
45244 •
45253 •
45257 •
45259 • •
45274 • • •
53237 •
53830 •
53959 •
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Appendix B

Some GAP programs

This appendix presents some example GAP programs to illustrate the imple-
mentation of the methods described in the previous chapters. It is also meant
as a demonstration of implementations using the GAP-package “RDS”.

The listings are presented to exhibit the underlying ideas. The programs
actually used contain parts producing visual feedback and data files for later
use. These parts are not included. For more documentation of the functions
used, see [GAP, Röd06].

B.1 A simple example: Case DPd

As seen in section 3.4, we do only have to look for difference sets in the cyclic
group of order 255. Calculating the admissible signatures with respect to the
normal subgroup U of index 3 gives:

gap> CosetSignatures(255,15,255/3,5,16,1);

[ [ 4, 4, 8 ] ]

So we may assume that the difference set we search contains 8 elements
from U and 4 from each other coset modulo U . The following program finds
all relative difference sets in C255.

Relative difference sets are represented as lists of integers. An ordering of
the elements of G is defined by PermutationRepForDiffsetCalculations.
When adding elements to a partial difference set, this ordering is used. Only
elements larger then the last entry of the partial difference set are added
(this is done by ExtendedStartsets). As the cosets modulo U may not
be compatible with the ordering defined on G, this ordering must be dis-
regarded when changing the coset modulo U . At this point, the function
ExtendedStartsetsNoSort is used.
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LoadPackage("RDS");

k:=16;

lambda:=1;

groupOrder:=255;

forbiddenGroupOrder:=15;

maxtest:=10^7;

G:=CyclicGroup(groupOrder);

Gdata:=PermutationRepForDiffsetCalculations(G);;

MakeImmutable(Gdata);

N:=First(NormalSubgroups(G),i->Size(i)=forbiddenGroupOrder);

Np:=GroupList2PermList(Set(N),Gdata);

globalSigData:=[];

normals:=Filtered(NormalSubgroups(Gdata.G),

n->Size(n) in [2..groupOrder-1]);

sigdat:=SignatureDataForNormalSubgroups(normals,globalSigData,N,Gdata,

[k,1,maxtest,true]);;

U:=First(sigdat,s->s.sigs=[ [ 4, 4, 8 ] ]).subgroup;

cosets:=RightCosets(G,U);;

U1:=cosets[2];

U2:=cosets[3];

Up:=GroupList2PermList(Set(U),Gdata);

ssets:=List(Difference(Up,Np),i->[i]);

comps:=Difference(Up,Np);;

ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);

repeat

ssets:=ExtendedStartsets(ssets,comps,Np,7,Gdata);

ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);;

until ssets=[] or Size(ssets[1])=7;

comps:=Difference(GroupList2PermList(Set(U1),Gdata),Np);

ssets:=ExtendedStartsetsNoSort(ssets,comps,Np,11,Gdata);

ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);;

repeat

ssets:=ExtendedStartsets(ssets,comps,Np,11,Gdata);

ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);;

until ssets=[] or Size(ssets[1])=11;

comps:=Difference(GroupList2PermList(Set(U2),Gdata),Np);

ExtendedStartsetsNoSort(ssets,comps,Np,15,Gdata);

repeat

ssets:=ExtendedStartsets(ssets,comps,Np,15,Gdata);

ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);;

until ssets=[] or Size(ssets[1])=15;

B.2 Case DPb

In case DPb, the difference set to find is a system of representatives of the
forbidden normal subgroup. This property is used for the generation of start-
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sets. As a consequence, special methods are implemented to find difference
sets of type DPb. These methods are listed in section B.2.1. For n = 16,
relative difference sets of type DPb occur in several groups. Tests for the
isomorphism class of these planes are done by reconstructing the projective
plane from the difference set and then testing invariants and isomorphisms,
if needed. A program for reconstruction and testing is given in section B.2.3.
Section B.2.2 has a program for finding relative difference sets of type DPb
with order n = 16 using the methods of B.2.1 and the “RDS” package.

B.2.1 Special methods

NewStartSets_potversion:=function(ssets,cosets,forbidden,aim,data)

local returnsets, set, lcomps, local_cosets, min, comps;

if ssets=[] or aim<=Size(ssets[1]) or Size(Set(ssets,Size))>1

then

Error("wrong parameters");

fi; returnsets:=[];

for set in ssets

do

lcomps:=Set(Flat(cosets));

lcomps:=RemainingCompletionsNoSort(set,lcomps,forbidden,data);

local_cosets:=List(cosets,i->Intersection(i,lcomps));

local_cosets:=Filtered(local_cosets,i->i<>[]);

if lcomps<>[] and Size(local_cosets)+Size(ssets[1])=aim

then

min:=Minimum(List(local_cosets,Size));

comps:=First(local_cosets,i->Size(i)=min);

Append(returnsets,List(comps,c->UnionSet(set,[c])));

fi;

od;

return Set(returnsets);

end;

MathonIsomorphism:=function(fixpoint,infline,data,mathon_quad,mathon_data)

local blocks, points, wlogpoint, block, point, point2,

iso;

if not Size(ProjectiveClosureOfPointSet(Set(mathon_quad),16,mathon_data))

=Size(data.blocks)

then

Error("Mathon plane must be given by generating quadrangle");

fi;

blocks:=Filtered(data.blocks,b->fixpoint in b);

RemoveSet(blocks,infline);

points:=Difference(data.points,infline);

wlogpoint:=First(points,p->not p in infline);

RemoveSet(points,wlogpoint);
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for block in blocks

do

for point in Filtered(block,p->p<>fixpoint)

do

for point2 in Difference(points,block)

do

quad:=Concatenation([fixpoint,wlogpoint],[point,point2]);

iso:=IsomorphismProjPlanesByGenerators(mathon_quad,

mathon_data, quad,data);

if iso<>fail

then

return iso;

fi;

od;

od;

od;

return fail;

end;

B.2.2 A program for finding difference sets of type DPb

The file functions b.gap should contain the functions from B.2.1. The
file mathondata.gap is supposed to contain the Mathon plane in the vari-
able “mathondata” and a generating quadrangle of the Mathon plane as
“mathon quadrangle”. This data is used for isomorphism testing (section
B.2.3). The Function SignatureDataForNormalSubgroups calculates ad-
missible signatures and stores them “globalSigData” so that they can be
reused when the next group is processed (see 1.20 and the note on page 16).

The program uses the group of (anti-)automorphisms of G for the reduc-
tion process. By lemma 1.17, the consequence is to treat difference sets as
equivalent, if they induce dual planes. On the other hand, a group acting
on a projective plane defined by a relative difference set does also act on the
dual plane, as the forbidden sets are always closed under inversion (1.13). So
we do not loose information here, but must keep in mind that planes always
come with their duals.

LoadPackage("RDS");

Read("functions_b.gap");

Read("mathondata.gap");

groupOrder:=256;

forbiddenGroupOrder:=16;

k:=16;

lambda:=1;

maxtest:=10^7;

for case in [1..NrSmallGroups(groupOrder)]
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do

isgoodgroup:=true;

foundsets:=[];

if not IsBound(results)

then

results:=[];

fi;

global_time_tmp:=Runtime();

G:=SmallGroup(groupOrder,case);

if Number(Set(G),i->Order(i)=2) >= forbiddenGroupOrder

then

isgoodgroup:=false;

Print("Too many involutions.\n");

else

n16s:=Filtered(NormalSubgroups(G),n->Order(n)=16);

if n16s=[]

then

isgoodgroup:=false;

else

n16s:=Filtered(n16s,n->ForAll(Difference(G,n),g->Order(g)<>2));

fi;

if n16s=[]

then

isgoodgroup:=false;

fi;

fi;

if isgoodgroup

then

Gdata:=PermutationRepForDiffsetCalculations(G);;

forbiddenGroups:=n16s;

if not IsBound(globalSigData)

then

globalSigData:=[];

fi;

for N in forbiddenGroups

do

Normals:=Filtered(NormalSubgroups(G),i->

(not (i=G or IsTrivial(i)) and Index(G,i)<17));

normalSubgroupsData:=SignatureDataForNormalSubgroups(Normals,

globalSigData,N,

Gdata,[k,1,maxtest,true]);;

if normalSubgroupsData=fail or ForAny(normalSubgroupsData,i->i.sigs=[])

then

isbadforbiddengroup:=true;

else

isbadforbiddengroup:=false;

fi;

if not isbadforbiddengroup
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then

niceone:=First(normalSubgroupsData,d->d.sigs=[[8,8]]);

if niceone<>fail

then

U:=niceone.subgroup;

Usig:=niceone.sigs[1];

Up:=First(niceone.cosets,c->1 in c);

Ucosets:=niceone.cosets;

else

niceone:=First(normalSubgroupsData,d->d.sigs=[[4,4,4,4]]);

if niceone<>fail

then

U:=niceone.subgroup;

Usig:=niceones.sigs[1];

Up:=First(niceone.cosets,c->1 in c);

Ucosets:=niceone.cosets;

else

#### if the above does not work, this works:

niceones:=Filtered(normalSubgroupsData,d->Size(d.sigs)=1

and Index(G,d.subgroup)>=2

and Size(Set(d.sigs[1]))<=2);

niceones:=Filtered(niceones,d->1 in

List(Collected(d.sigs[1]),i->i[2])

or Size(Set(d.sigs[1]))=1 or Size(d.sigs[1])=2);

max:=Maximum(List(niceones,n->Maximum(n.sigs[1])));

niceones:=Filtered(niceones,n->Maximum(n.sigs[1])=max);

if Size(niceones)=1

then

U:=niceones[1].subgroup;

Usig:=niceones[1].sigs[1];

Up:=First(niceones[1].cosets,c->1 in c);

Ucosets:=niceones[1].cosets;

else

if ForAny(niceones,n->Set(n.sigs[1])=[max])

then

niceones:=Filtered(niceones,n->

Set(n.sigs[1])=[max])[1];

elif ForAny(niceones,n->(Number(n.sigs[1],i->i=max)=1

and Size(Set(n.sigs[1]))=2))

then

niceones:=Filtered(niceones,n->

(Number(n.sigs[1],i->i=max)=1

and Size(Set(n.sigs[1])=2)));

else

max:=Minimum(List(niceones,n->Size(n.sigs[1])));

niceones:=Filtered(niceones,n->Size(n.sigs[1])=max);

max:=Maximum(List(niceones,n->

Size(Intersection(N,n.subgroup))));
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niceones:=Filtered(niceones,n->

Size(Intersection(N,n.subgroup))=max);

fi;

U:=niceones[1].subgroup;

Usig:=niceones[1].sigs[1];

Up:=First(niceones[1].cosets,c->1 in c);

Ucosets:=niceones[1].cosets;

fi;

fi;

fi;

aims:=Reversed(SortedList(Usig));

aims[1]:=aims[1]-1;

for i in [2..Size(aims)]

do

aims[i]:=Sum(aims{[1..i]});

od;

aims:=Filtered(aims,i->i<=k*1/2);

Np:=GroupList2PermList(Set(N),Gdata);

Ncosets:=Set(RightCosets(Gdata.G,N),g->

GroupList2PermList(Set(g),Gdata));

RemoveSet(Ncosets,Np);

Ucosets:=niceone.cosets;

autlist:=[Intersection(Stabilizer(Gdata.Ai,Np,OnSets),

Intersection(List(Ucosets,c->

Stabilizer(Gdata.Ai,c,OnSets))))];

for aimpos in [1..Size(aims)]

do

aim:=aims[aimpos];

Ncosetscomps:=List(Ncosets,i->

Intersection(i,Ucosets[aimpos]));

if aimpos=1

then

ssets:=Set(Flat(Ncosetscomps),i->[i]);

ssets:=ReducedStartsets(ssets,autlist,

normalSubgroupsData,

Gdata.diffTable);;

fi;

while (ssets<>[] and Size(ssets[1])<aim)

do

ssets:=NewStartSets_potversion(ssets,Ncosetscomps,

Np,aim,Gdata);

ssets:=ReducedStartsets(ssets,autlist,

normalSubgroupsData,

Gdata.diffTable);;

od;

od;

if ssets<>[]

then
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comps:=Difference(Union(Ucosets{[Size(aims)+1..Size(Usig)]}),Np);

foundsets:=[];

counter:=1;

ssets:=ExtendedStartsetsNoSort(ssets,comps,Np,k,Gdata);

for set in ssets

do

setcomps:=RemainingCompletions(set,comps,Np,Gdata);

Append(foundsets,AllDiffsets(set,setcomps,k-1,Np,Gdata));

od;

if foundsets<>[]

then

foundsets:=ReducedStartsets(

Set(foundsets,i->Difference(i,[1])),

[Stabilizer(Gdata.Ai,Np,OnSets)],

normalSubgroupsData,Gdata.diffTable

);

Apply(foundsets,i->Union(i,[1]));

Read("build_n_test.gap");

fi;

fi;

fi; #if not isbadforbiddengroup

od; #for N in forbiddenGroups

fi; # <\if isgoodgroup>

od; # <\for case in [1..NrSmallGroups(groupOrder)]

B.2.3 Reconstruction and isomorphism testing

The following program is contained in a file called “build n test.gap” and is
called from the program of section B.2.2. Note that the translation planes
of order 16 are known [DR83, Rei84]. And the translation planes of order 16
have pairwise different Fano-invariants [Roy]. So identification of the con-
structed plane is done using the list “fanoparameters”. If the Fano-invariant
matches the one of the Mathon plane, an isomorphism is constructed ex-
plicitly. For this test, the Mathon plane must be stored as “mathondata”
and a generating quadrangle of the Mathon plane must be known (called
“mathon quadrangle”).

fanoparameters:=[[1/2*[2611200],"DESARGUESIAN","des"],

[2/7*[426720,1161216,4569600],"SEMI2","semi2"],

[2/7*[856128,1666560,4569600],"SEMI4","semi4"],

[2/7*[900480,953400,1989120],"HALL","hall"],

[2/7*[900480,1041600,4569600],"dualHALL","dhall"],

[2/7*[520044,1268736,2161152],"LMRH","lmrh"],

[2/7*[515424,778176,4569600],"dualLMRH","dlmrh"],

[2/7*[1001616,1268736,2161152],"JOWK","jowk"],

[2/7*[962976,1257984,4569600],"dualJOWK","djowk"],
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[2/7*[586572,1021440,2161152],"MATHON? ",0],

[2/7*[606480,702912,2161152],"dualMATHON?",0]];

mathon_parameters:=2/7*[586572,1021440,2161152];

for diffnumber in [1..Size(foundsets)]

do

istransplane:=false;

diff:=PermList2GroupList(foundsets[diffnumber],Gdata);

trans:=Set(G,g->Set(diff*g));

parclasses:=Set(trans,t->Set(N,n->Set(t*n)));;

Apply(parclasses,c->Set(c,i->GroupList2PermList(i,Gdata)));

rawlines:=Set(trans,l->Set(GroupList2PermList(l,Gdata)));

lines:=StructuralCopy(rawlines);

for line in lines

do

AddSet(line,groupOrder+Position(parclasses,

First(parclasses,p->line in p)));

od;

rawnewlines:=Set(RightCosets(G,N),Set);

rawnewlines:=Set(rawnewlines,l->GroupList2PermList(l,Gdata));

newlines:=StructuralCopy(rawnewlines);

fixpoint:=groupOrder+Size(parclasses)+1;

Apply(newlines,l->Concatenation(l,[fixpoint]));

points:=[1..groupOrder+Size(parclasses)+1]; #=256+16+1=273

infline:=[groupOrder+1..Size(points)];

blocks:=Set(Concatenation([lines,newlines,[infline]])); #add \ell_\infty.

rawblocks:=Set(Concatenation([rawlines,rawnewlines]));

planedata:=ElationPrecalc(blocks);;

pointsforfano:=[fixpoint,

First(points,p->not p in infline),

First(infline,p->not p=fixpoint)];

fanoinvar:=NrFanoPlanesAtPoints(pointsforfano,planedata);

Print(First(fanoparameters,i->i[1]=Set(fanoinvar,j->j[2]))[2],"\n");

desabb:=First(fanoparameters,i->i[1]=Set(fanoinvar,j->j[2]))[3];

if Set(fanoinvar,i->i[2])=mathon_parameters

then

if MathonIsomorphism(fixpoint,infline,planedata,

mathon_quadrangle,mathondata)<>fail

then

Print("Yes!\n");

if desabb=0

then

desabb:="mathon";

fi;

else

Print("No!\n");

if desabb=0

then

desabb:="strange";
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fi;

fi;

else

transgroup:=Group(AllElationsAx(infline,planedata));

if NrMovedPoints(transgroup)=256 and Transitivity(transgroup)=1

then

istransplane:=true;

Print("Translation Plane!\n");

fi;

fi;

Gac:=Action(Gdata.G,Gdata.Glist,OnRight);

if not istransplane and not desabb="mathon"

then

Print("Not a translation plane. Testing dual:\n");

dualGac:=Action(Gac,rawblocks,OnSets);

dualplane:=DualPlane(blocks);;

dualblocks:=dualplane.blocks;;

line1:=dualplane.image[fixpoint];

line2:=Random(dualplane.image{Difference(infline,[fixpoint])});

dualplanedata:=ElationPrecalc(dualblocks);;

dualtransgroup:=Group(AllElationsAx(line1,dualplanedata));

dualfanoinvar:=NrFanoPlanesAtPoints(List(Orbits(dualGac,[1..273]),

Representative),dualplanedata);

Print(First(fanoparameters,i->i[1]=Set(dualfanoinvar,j->j[2]))[2],"\n");

dualdesabb:=First(fanoparameters,i->i[1]=Set(dualfanoinvar,j->j[2]))[3];

if Set(dualfanoinvar,i->i[2])=mathon_parameters

then

if MathonIsomorphism(First(Orbits(dualGac,[1..Size(dualblocks)]),

o->Size(o)=1)[1],

line1,dualplanedata,mathon_quadrangle,

mathondata)<>fail

then

Print("Yes!\n");

if dualdesabb=0

then

dualdesabb:="dualmathon";

desabb:="dmathon";

fi;

else

Print("No!\n");

if dualdesabb=0

then

dualdesabb:="strange";

fi;

fi;

fi;

fi;

od;
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[RS89] L. Rónyai and T. Szőnyi, Planar functions over finite fields, Com-
binatorica 9 (1989), no. 3, 315–320.

[Sch02] Bernhard Schmidt, Characters and cyclotomic fields in finite ge-
ometry, Lecture Notes in Mathematics, vol. 1797, Springer Verlag,
Berlin Heidelberg, 2002.

84



Werdegang des Verfassers

1997 Technisches Gymnasium Ludwigshafen
Allgemeine Hochschulreife

2000 Universität Kaiserslautern
Vordiplom in Mathematik mit Nebenfach Physik

2000–2004 Universität Kaiserslautern
Mehrfach wissenschaftliche Hilfskraft am Fachbereich Mathematik.

2003 Universität Kaiserslautern
Diplom in Mathematik mit Nebenfach Physik
Diplomarbeit: “Fahnentransitive Steinersysteme”

2004–2006 Universität Kaiserslautern
Stipendiat des Landes Rheinland-Pfalz nach LGFG.

About the author

2004–2006 University of Kaiserslautern
Doctoral grant of the state Rheinland-Palatinate

2000–2004 University of Kaiserslautern
Employed by the Department of Mathematics at several times as teach-
ing assistant (“Wissenschaftliche Hilfskraft”)

1998–2003 University of Kaiserslautern
“Diplom” in Mathematics with minor Physics
Thesis: “Fahnentransitive Steinersysteme”


