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Abstract We show the numerical applicability of a multiresolution method based on harmonic
splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the
Earth’s mass density distribution out of different types of gravity data, e.g. different radial deriva-
tives of the potential, at various positions which need not be located on a common sphere. This
approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g.
determined out of the splitting function of free oscillations, to an approximation of the whole mass
density function. The applicability of the presented tool is demonstrated by several test calcula-
tions based on simulated gravity values derived from EGM96. The method yields a multiresolution
in the sense that the localization of the constructed spline basis functions can be increased which
yields in combination with more data a higher resolution of the resulting spline. Moreover, we
show that a locally improved data situation allows a highly resolved recovery in this particular
area in combination with a coarse approximation elsewhere which is an essential advantage of this
method, e.g. compared to polynomial approximation.
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1 Introduction

Already for a long time, people are interested in the interior of the Earth. So, a classical prob-
lem in geophysics and physical geodesy is the determination of the Earth’s mass density distri-
bution. In general, the determination of the structures in the Earth’s interior is usually real-
ized by analyzing two types of data, namely either the gravitational data or the seismic data.
This paper studies the gravimetry problem, i.e. we reconstruct the density variations inside and
on the Earth’s surface from the gravitational potential and its functionals on and outside the
Earth. This problem and related ones have been discussed by several authors before, see e.g.
[1, 2, 3, 4, 5, 6, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and the
references therin.

From the mathematical point of view, the gravimetry problem is based on a Fredholm integral
equation of the first kind involving Newton’s law of gravitation. Thus, the relation between the
gravitational potential V of the Earth and the density distribution ρ is given by

V (y) =

∫

Earth

ρ(x)

|x− y|
dx.

In reality, the gravitational potential V can be determined for the Earth whereas the density ρ

represents the unknown part. This means that we have to consider the inversion of the equation
above. Problems of such kind are called inverse problems.
By Hadamard’s classification, that is the uniqueness, the existence and the stability of the solution,
we divide inverse problems in ill-posed and well-posed problems. It is a well-known fact that the
gravimetry problem is ill-posed because each of these three criteria can be invalid.

For finding an approximation for the solution of such an ill-posed inverse problem several
different methods are developed. The classical approach, for example, is a method using a trun-
cated singular value decomposition. This method has several well-known disadvantages like the
non-localizing character of the used spherical harmonics and the bandlimitedness of the solution.
Modern methods apply regularization techniques which use wavelets. With such a method we can
locally reconstruct our solution by applying kernels that are only essentially large in the interesting
region.

In this paper we briefly explain the already existing theory of a regularization method for the
gravimetry problem from measurements of satellite data using a spline-based multiresolution (see,
thereto, [10]). Afterwards, in more details we present the corresponding numerical realization.
Such an approach has several advantages. On the one hand, it includes the well-known useful
spline properties like the smoothing and the best approximating properties. And, on the other
hand, we can arbitrarily distribute the satellite data in the outer space of the Earth. For com-
parison, the wavelet methods developed for example in [20, 21, 22, 23, 24] demand the data to
be located on a spherical domain. This advantage of the spline approach includes, in particular,
the possibility to mix data from different satellite missions. So, we can combine different orbits
and different derivatives of the gravitational potential in the calculations of the Earth’s density
distribution. For testing this method we use, for the gravitational potential, its first radial deriva-
tive and its second radial derivative, a model generated out of EGM96, i.e. the ”Earth Gravity
Model 96” (see [18]), where the potential is represented by spherical harmonics. Modern satellite
techniques like SST (satellite-to-satellite tracking) used in the case of the satellites CHAMP (Chal-
lenging Minisatellite Payload, launch: 7/15/2000) and GRACE (Gravity Recovery and Climate
Experiment, launch: 3/17/2002) and SGG (satellite gravity gradiometry) intended for the planned
mission GOCE (Gravity and Steady-State Ocean Circulation Explorer, launch: 2007) yield data
from which we can derive the derivatives of the gravitational potential. For the presented method,
a combination with these modern satellite techniques can also be calculated in the future. More
precisely, the gradient of V , in particular the first radial derivative, is a part of SST generated on
a point grid in about 400 km altitude whereas the Hessian of V , in particular the second radial
derivative, is a part of SGG generated on a point grid in about 200 km altitude. In this framework
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we use an equiangular point grid and we simplify the Earth and the orbits as a ball and spheres,
respectively, where the latter is not a requirement of the method.
Furthermore, by the multiresolution spline approach, the approximating splines can be calculated
at different scales, such that we get for a higher scale a better resolution for the reconstruction of
the Earth’s interior, that is by decreasing the hat-width and, at the same time, by adding at each
step more and more data.

In this paper we first explain briefly the principles of the spline method for the approximation
of the harmonic density distribution and, then, the new numerical results are discussed.

2 Preliminaries

2.1 Spherical Functions

In order to translate the explained gravimetry problem into a spline interpolation problem we need
the following mathematical background:
Each point of the three-dimensional Euclidean space R

3, x = (x1, x2, x3)
T, |x| 6= 0, allows a unique

representation of the form x = rξ, r = |x|, ξ = (ξ1, ξ2, ξ3)
T, where ξ ∈ R

3, |ξ| = 1, is the uniquely
determined directional unit vector of x ∈ R

3 \ {0}. The unit sphere in R
3 is denoted by Ω, i.e.

Ω = {ξ ∈ R
3 | |ξ| = 1}. For the gravimetry problem we assume that the Earth has the shape of a

ball with radius β = 6 378 136.3 m. So, the surface, i.e. the sphere with center 0 and radius β, is
denoted by B. Bint and Bext = R

3 \Bint describe the Earth’s interior and exterior, respectively.
As usual, we introduce the spherical harmonics as restrictions of homogeneous harmonic polyno-
mials to Ω. More precisely, let Hn : R

3 → R be a homogeneous harmonic polynomial of degree
n ∈ N0, then the restriction Yn = Hn|Ω is called a spherical harmonic of degree n. The space of
all spherical harmonics of degree n is denoted by Harmn(Ω), and its dimension is known to be
dim(Harmn(Ω)) = 2n + 1. Spherical harmonics of different degrees are orthogonal in the sense of
the L2(Ω)-inner product, i.e.

(Yn, Ym)L2(Ω) =

∫

Ω

Yn(ξ)Ym(ξ) dω(ξ) = 0, n 6= m,

where dω is the surface element on Ω. Moreover, the set of spherical harmonics Yn,j of degree n ∈ N0

and order j = 1, . . . , 2n+ 1 forms an orthonormal basis of L2(Ω). Any spherical harmonic Yn, n ∈
N0, is an infinitely often differentiable eigenfunction of the Beltrami operator ∆∗ corresponding to
the eigenvalue (∆∗)∧(n) = −n(n+1), i.e. ∆∗

ξYn(ξ) = −n(n+1)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn(Ω). The
well-known addition theorem shows the relation between the spherical harmonics {Yn,j}j=1,...,2n+1

and the also well-known Legendre polynomials Pn of degree n ∈ N0:

2n+1
∑

k=1

Yn,k(ξ)Yn,k(η) =
2n+ 1

4π
Pn(ξ · η) ; ξ, η ∈ Ω.

2.2 Inner Harmonics

Because, in this paper, we are interested in the harmonic part of the Earth’s density distribution
we consider the harmonic functions on the ball Bint. The set of all these functions is denoted by

Harm(Bint) =
{

F ∈ C2(Bint) | ∆F = 0 in Bint

}

, where ∆F = ( ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
)F (x) is the Laplace

operator. Further, for all n ∈ N0, j = 1, . . . , 2n+ 1, the inner harmonics are defined by

HB
n,j(x) =

√

2n+ 3

β3

(

|x|

β

)n

Yn,j

(

x

|x|

)

, x ∈ Bint.

Indeed the inner harmonics are not dense in L2(Bint) as the spherical harmonics in L2(Ω), but
nevertheless they constitute a linear strict subspace of L2(Bint). Moreover, the orthonormal system
{

HB
n,j

}

n∈N0, j=1,...,2n+1
is complete in the Hilbert space

(

Harm(Bint), (·, ·)L2(Bint)

)

.
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2.3 Formulation of the Gravimetry Problem

Gravimetry means the determination of the Earth’s mass density distribution from measurements
of the gravitational potential. It is a classical problem in geophysics and physical geodesy and an
important application of the (geo)potential theory. Such a problem ranks among inverse problems.
The inverse problem is the task that is often found in science and mathematics where the values
of model parameters must be obtained via observed data.
From the mathematical point of view, the relation between the gravitational potential of the Earth
and the density distribution is given by the Fredholm integral equation of first kind involving
Newton’s law of gravitation (see, e.g. [14, 22, 33]):

(Tρ)(y) =

∫

Bint

ρ(x)

|x− y|
dx = V (y), y ∈ Bext.

Here, ρ ∈ L2(Bint) represents the unknown mass density function and V the gravitational potential
which is in practice only given on a finite point set. The inversion of this equation, then, is called
gravimetry problem.
It is a well-known fact that the space L2(Bint) needed for this problem can be decomposed in a direct
sum of the closed linear subspace Harm(Bint) and its L2(Bint)-orthogonal space Anharm(Bint).
Since this anharmonic space constitutes the null space of the operator T , only the harmonic part
of the density distribution can be explored from the gravitational potential. For this reason, we
restrict here our attention to the recovery of the harmonic part. The anharmonic part should
be determined from, e.g., seismic data and added to the result by the described method. This
anharmonic modelling (see also [2, 3, 4, 5, 11, 21, 22]) is a challenge for future research.
Furthermore, this inverse problem fulfills not even one of the three Hadamard’s criteria (existence,
uniqueness and stability) for a well-posed problem. It turns out that the gravimetry problem is
even an exponentially ill-posed problem which can be regularized by the method described here,
i.e. the solution can be approximated in a stable way.

3 Multiresolution Analysis of Harmonic Splines

Since the density can only be determined via an inverse problem with discretely given data we
represent the given information by linear continuous functionals F1, ...,FN . Examples of such
functionals are 0th to 2nd order radial derivatives of the corresponding gravitational potential at
certain points xk ∈ Bext outside the Earth. We define

G
(0)
k F :=

∫

Bint

F (y)

|y − xk|
dy,

G
(1)
k F := −

(

x

|x|
· ∇x

∫

Bint

F (y)

|y − x|
dy

)∣

∣

∣

∣

x=xk

,

G
(2)
k F :=

(

x

|x|
·

((

∇x ⊗∇x

∫

Bint

F (y)

|y − x|
dy

)

x

|x|

))∣

∣

∣

∣

x=xk

.

We assume the density F to be in a certain subspace HJ := H({ϕJ (n)};Bint) ⊂ Harm(Bint),
J ∈ N0 fixed, which is determined by a real sequence {ϕJ(n)}n∈N0 and contains all functions
F ∈ Harm(Bint) such that

(

F,HB
n,j

)

L2(Bint)
= 0 for all n ∈ N0 with ϕJ (n) = 0

and

‖F‖2
HJ

:=
∞
∑

n=0
ϕJ (n)6=0

2n+1
∑

j=1

(ϕJ (n))−2 (

F,HB
n,j

)2

L2(Bint)
< +∞. (1)

Usually, ϕJ (n) → 0 as n → ∞ will hold. Hence, (ϕJ (n))−2 → +∞ as n → ∞. Thus, the norm
‖F‖HJ

will significantly increase if F has a high energy at large inner harmonics degrees. In this
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sense, this norm is a measure for the non–smoothness of F . Moreover, the faster ϕJ (n) tends to 0
as n→ ∞, i.e. the more rapidly (ϕJ (n))−2 diverges, the stronger is condition (1). Indeed, one can
prove the following result.

Theorem 3.1

If the sequences {ϕJ(n)}n∈N0 , J ∈ N0, satisfy

(i) 0 ≤ ϕJ(n) ≤ ϕJ+1(n) ≤ 1 for all n, J ∈ N0 (monotonicity),

(ii)
∑∞

n=0(ϕJ (n))2n2 < +∞ for all J ∈ N0 (summability),

(iii) For every fixed n ∈ N0 the sequence {ϕJ(n)}J∈N0 is not identical to 0, i.e. there exists jn
such that ϕJ (n) > 0 for all J ≥ jn (non–triviality),

then the spaces HJ = H({ϕJ(n)};Bint) define a multiresolution analysis, i.e.

a) HJ ⊂ HJ+1 ⊂ H({ϕ(n)};Bint) ⊂ Harm (Bint) for all J ∈ N0,

b)
⋃

J∈N0
HJ

‖.‖H({ϕ(n)};Bint) = H({ϕ(n)};Bint) =: H∞,

where ϕ(n) := limJ→∞ ϕJ(n) for each n ∈ N0. Moreover, if ϕ(n) = 1 for all n ∈ N0 then
H∞ = Harm(Bint).

This means that we get a nested sequence of spaces. The larger J is, the “more” functions
are available and the higher the resolution can be expected to be. Furthermore, every function
in Harm(Bint) can be approximated arbitrarily well by an element of HJ if J is large enough,
provided that the sequences were chosen appropriately.
To construct splines we have to realize that the summability condition (see Theorem 3.1) implies
the existence and uniqueness of a so–called reproducing kernel which can here be represented by

KHJ
(x, y) =

∞
∑

n=0

2n+1
∑

j=1

(ϕJ (n))
2
HB

n,j(x)H
B
n,j(y)

=

∞
∑

n=0

(ϕJ(n))
2 (2n+ 3)(2n+ 1)

4πβ3
Pn

(

x

|x|
·
y

|y|

) (

|x| |y|

β2

)n

,

x, y ∈ Bint, where Pn is the Legendre polynomial of degree n. Provided that our data may
be represented as evaluation of a linearly independent set of linear and continuous functionals

{F1, ...,FN} =: F , which could, for instance, have the form of the derivatives G
(l)
k defined above,

then any function S ∈ HJ of the form

S(y) =

N
∑

j=1

ajFjKHJ
(·, y), y ∈ Bint,

with coefficients a1, ..., aN ∈ R is called harmonic spline at scale J relative to F . Here, FjKHJ
(·, y)

means that y is kept fixed and KHJ
(·, y) is merely considered as a function of the first argument

to which Fj is applied.

Theorem 3.2

If F = {F1, ...,FN} is a linearly independent system of linear and continuous real functionals on HJ

and y ∈ R
N is a given vector then there exists one and only one spline S(y) =

∑N
j=1 ajFjKHJ

(·, y),
y ∈ Bint, such that

FkS = yk for all k = 1, ..., N. (2)

The coefficients a1, ..., aN of this spline are given by the positive definite system of linear equations

N
∑

j=1

ajFkFjKHJ
(·, ·) = yk for all k = 1, ..., N.
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This means that corresponding to our given information FkS = yk for all k = 1, ..., N , e.g. of
different radial derivatives of the potential at different positions, there is a unique spline that
represents an approximation to the harmonic part of the density in the sense that it reflects the
known information. Note that adding a positive diagonal matrix to the matrix of the system above
changes the interpolation problem to an approximation problem with a smoother resulting spline.
For the calculation of the splines we have to know that

FiKHJ
(·, y) =

∞
∑

n=0

2n+1
∑

j=1

(ϕJ(n))
2 (

FiH
B
n,j

)

HB
n,j(y),

FkFiKHJ
(·, y) =

∞
∑

n=0

2n+1
∑

j=1

(ϕJ(n))
2 (

FiH
B
n,j

) (

FkH
B
n,j

)

. (3)

In case of the above mentioned examples of radial derivatives, i.e. if Fk is G
(l)
k for l ∈ {0, 1, 2}, we

have

G
(0)
k HB

n,j =
4π

2n+ 1

√

β3

2n+ 3

(

β

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

,

G
(1)
k HB

n,j =
n+ 1

|xk|

4π

2n+ 1

√

β3

2n+ 3

(

β

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

,

G
(2)
k HB

n,j =
(n+ 1)(n+ 2)

|xk|2
4π

2n+ 1

√

β3

2n+ 3

(

β

|xk|

)n
1

|xk|
Yn,j

(

xk

|xk|

)

.

Hence, the matrix of the system of linear equations may be represented by

G
(l)
i G

(m)
k KHJ

(·, ·) =

∞
∑

n=0

2n+1
∑

j=1

(ϕJ (n))
2
(

G
(l)
i HB

n,j

)(

G
(m)
k HB

n,j

)

=

∞
∑

n=0

(ϕJ(n))
2 4π

2n+ 1

β3

2n+ 3

(

β2

|xi| |xk|

)n

Pn

(

xi

|xi|
·
xk

|xk|

)

·







































































1
|xi| |xk|

; l = 0,m = 0,
n+1

|xi| |xk|2
; l = 0,m = 1,

n+1
|xi|2|xk|

; l = 1,m = 0,
(n+1)2

|xi|2|xk|2
; l = 1,m = 1,

(n+1)(n+2)
|xi| |xk|3

; l = 0,m = 2,
(n+1)(n+2)
|xi|3|xk|

; l = 2,m = 0,
(n+1)2(n+2)
|xi|2|xk|3

; l = 1,m = 2,
(n+1)2(n+2)
|xi|3|xk|2

; l = 2,m = 1,
(n+1)2(n+2)2

|xi|3|xk|3
; l = 2,m = 2,

=

∞
∑

n=0

(ϕJ(n))
2 4π

2n+ 1

β3

2n+ 3

(

β2

|xi| |xk|

)n

Pn

(

xi

|xi|
·
xk

|xk|

)

(n+ 1)δl,1+δm,1
(

n2 + 3n+ 2
)δl,2+δm,2

|xi|1+l|xk|1+m
,

where

δp,q :=

{

1, if p = q

0, if p 6= q

is the Kronecker delta.
The obtained series can be truncated for numerical purposes and calculated fast by the Clenshaw
algorithm (see [7, 8]).
Splines are typically interpolating functions with maximal smoothness. In our case, the norm
‖ · ‖HJ

serves as a measure for non–smoothness. Indeed, one can show that among all functions
F ∈ HJ satisfying (2) the interpolating spline of Theorem3.2 has minimal norm. Moreover, among
all splines the interpolating one is closest to the unknown real function F in the sense that it
minimizes ‖F − S‖HJ

among all splines S at scale J relative to F . Those two characteristics of
splines are usually called the 1st and 2nd minimum property.
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Since an increasing scale promises a higher resolution we can hope to have a corresponding con-
vergence result, certainly provided that we have enough information and no hole in it. This can
be concretized by having a look at the space H∗

∞ of all continuous linear functionals from H∞ to
R. We finally arrive at the following convergence theorem.

Theorem 3.3

Assume that the conditions of Theorem3.1 are satisfied. Let F ∈
⋃

J∈N0
HJ be a function (the har-

monic part of the unknown density function) and F := {Fi}i∈N be a (theoretically infinite) linearly
independent and closed1 system in H∗

∞. Construct finite subsystems F (NJ) := {F1, ...,FNJ
} ⊂ F ,

J ∈ N0, with increasing size (i.e. NJ ≤ NJ+1 for all J ∈ N0) that cover F (i.e. limJ→∞NJ = +∞).
For each scale J determine the unique spline SJ at scale J relative to F (NJ ) such that

FiSJ = FiF for all i = 1, ..., NJ

then
lim

J→∞
‖SJ − F‖H∞

= 0.

Note that each spline SJ continuously depends on the given data vector (F1F, . . . ,FNJ
F ) and

shows, therefore, only a small sensitivity to added noise.

4 Numerical Results

4.1 Preliminaries

This section deals with the numerical results of the reconstruction of the harmonic projection of
the Earth’s density distribution.
For our computations we use as a discrete point set the so-called Driscoll-Healy grid, an equian-
gular latitude-longitude grid. Further we apply data of the gravitational potential generated out
of EGM96, i.e. the ”Earth Gravity Model 96”, which is a spherical harmonic model of the Earth’s
gravitational potential complete to degree and order 360. As we already mentioned in the introduc-
tion of this paper, there are modern satellite techniques as SST and SGG from which we also get
data for the derivatives of the gravitational potential. The first radial derivative is a part of SST
(CHAMP, GRACE) which is here for our purposes generated on a point grid in 400km altitude
and the second radial derivative of SGG here generated on a point grid in 200 km altitude. There-
fore, for our calculations lateron we use different radii with different data sets. Furthermore, three
variable symbols {ψJ(n)}n,J are used for the computations. On the one hand two bandlimited
sequences, i.e. the Shannon and the cubic polynomial ones, are applied and on the other hand in
case of the non-bandlimited kernels we calculate with the Abel-Poisson kernel. For further details
on the implementation and additional numerical results we refer to [34].

Remark 4.1

In order to observe more details in the following plots, we have changed the colorbar in dependance
on the corresponding image. For achieving a better contrast, we manually set the limits of the
colorbar to restrict it to the interesting interval. But to get also the information about the real
limits, we endorse each plot with its minimum value and its maximum value which we note by
vmin and, accordingly, by vmax, both rounded off the integer value. These limits also give us more
information about the spline interpolation for example concerning boundary effects.

4.2 Results for the Whole Earth’s Surface

In this section we present our results concerning the whole Earth. Thereto, an evaluation point grid
with 90 000 points distributed over the whole Earth’s surface is applied for plotting the harmonic
density distribution. All results are variations of the harmonic density distribution because we cal-
culate without degrees 0, 1 and 2 which we eliminate by setting them equal to 0. Fig. 1(a) shows us

1This means that every functional in H∗
∞ can be approximated arbitrarily well by a finite linear combination of

functionals in F . In other words, there is no information related to F that cannot be approximately described by
the already given data.
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the harmonic density distribution which is computed out of the potential at 6 320 given data points
given on an equiangular grid with radius r0 = β ·1.001. The kernel is generated by the bandlimited
Shannon sequence at scale J = 9. In this figure we can clearly see, that we have insufficient data
points for such a high scale because we can recognize the several data points between all evaluation
points. This means that our hat-width is too small, and, therefore, Fig. 1(b) presents the same
result where we apply more, i.e. 14 280, data points. Here, we can no longer identify so clearly
each data point but nevertheless, it is not a satisfactory result for the gravimetry problem. Since
we have also attained the limits of the memory capacity of our computers we, consequently, try
another way, namely by changing the sequence for the kernels. For another bandlimited example
(see Fig. 2(a)) we use the sequence generated by a cubic polynomial at scale J = 9 and in case of
the non-bandlimited example (Fig. 2(b)) we utilize the Abel-Poisson sequence at scale J = 5.
Comparing all these figures, one can assume that the results applying the cubic polynomial kernel
yields better solutions than those calculated by the Shannon kernel and with the Abel-Poisson
kernel we achieve a really good approximation of the harmonic density distribution. As reference
we can use independent recoveries of the harmonic density out of EGM96 such as in [24].
First of all, we can clearly recognize most of the coastlines. So, we are able to see the continents as
North and South America, Africa and Australia. The continents Europe and Asia cannot explicitly
be represented by this reconstruction, but nevertheless we can realize the Himalayas in the North
of India, the Java Trench near Indonesia, the mid-Atlantic ridge, the mountain range underwater
near Japan and the Andes in the West of South America.

In the next section, we consider just a small part of the Earth because we want to determine
locally the Earth’s interior which is one advantage of the developed method. Localizing also allows
us to apply a point grid where the points lie closer to each other than that which we used for the
figures in this section.

(a) Computed from 6 320 data points at scale J = 9,
“

vmin ≈ −200 kg
m3 , vmax ≈ 132 kg

m3

”

.

(b) Computed from 14 280 data points at scale J = 9,
“

vmin ≈ −239 kg
m3 , vmax ≈ 232 kg

m3

”

.

Figure 1: Variation of the harmonic density distribution computed with the Shannon sequence.
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(a) Computed with the kernel generated
by a cubic polynomial at scale J = 9,
“

vmin ≈ −180 kg
m3 , vmax ≈ 138 kg

m3

”

.

(b) Computed with the Abel-Poisson kernel at scale

J = 5,
“

vmin ≈ −136 kg
m3 , vmax ≈ 115 kg

m3

”

.

Figure 2: Variation of the harmonic density distribution computed from 14 280 data points.

4.3 Results for South America

In this section we restrict our exploring domain in order to apply the developed method only to a
part of the Earth. We want to show that with this spline interpolation method we can also calculate
the harmonic density distribution locally. This means that we make further considerations only
for a relatively small part of the Earth, namely for South America. Because of this restriction we
are able to explore this region using point grids, where the points are closer to each other than
those of a point grid for the whole Earth’s surface. Thus, we present here results calculated with
an evaluation point grid with 40 479 points only in the restricted region. Note that we again plot
just a variation of the harmonic density distribution because we apply also in this section the
gravitational potential only from degree 3 up to degree 360.
At first we have tried to reconstruct the harmonic density distribution from only a small number of
data points (1 431) to get out the differences between each scale and each sequence with relatively
short computing times, namely about five hours on an ordinary PC. Numerical tests (see [34])
turned out that the best recovery can be achieved by using the Abel-Poisson kernels which are
presented in Fig. 3.
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Figure 3: Plot of the different Abel-Poisson kernels G
(m)
k KHJ

(·, x) (left column) and their differences

G
(m)
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(

KHJ+1(·, x) −KHJ
(·, x)

)

(right column) for all m ∈ {0, 1, 2} and all J ∈ {1, 2, 3}.
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Therefore, we show in this paper only results computed with these kernels and have, firstly,
analyzed the corresponding kernel matrices. In Fig. 4 we see an illustration of the different matrices
concerning the different m ∈ {0, 1, 2}. For the computations we also distinguish the radii used for
the several point grids. The calculations are done with the Abel-Poisson sequence at scale J = 5.
If we consider these matrices, we can directly remark the symmetry, the different sizes of their
entries and the bands which dominate the matrices. Since these matrices belong to the systems
of linear equations one requires a detailed consideration concerning the condition and the rank of
them. So, we explore especially the rank of the matrix for regularity.
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Figure 4: Plot of the different matrices G
(m)
i G

(m)
k KH8(·, ·) of South America computed for an 780

point grid each generated with the different radii.

In our case, we find out that the property of the full rank is dependent on the scale, on the
number of the points of their point grids and on the degree ñ ∈ N0 of the sum which we have to
truncate for the realization. The Table 1 shows us the connections between these three variables.
The values of this scheme represent such smallest ñ, which suffices for a regular matrix. For all
calculations we apply the Abel-Poisson sequence and we choose m = 0, i.e. we compute the matrix
only for the gravitational potential and not for its derivatives. Note that the entry ”-” tells us,
that we never attain a regular matrix regardless of which ñ we apply.
Additionally to this table we can remark that for larger ñ the condition number becomes smaller.
But although we have regular matrices they are not well-conditioned.
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number of data points scale 3 scale 4 scale 5 scale 6 scale 7 scale 8

1 176 121 109 105 105 104 104
1 431 - 121 118 117 116 116
1 652 - 136 131 130 129 128
1 953 - 149 144 142 141 140
2 312 - 167 158 156 155 154
2 555 - 182 171 168 166 166
2 964 - 203 186 182 180 179
3 320 - 231 198 194 194 191
3 784 - - 214 208 206 205
4 140 - - 231 221 218 217
4 606 - - 245 237 234 232
5 100 - - 259 249 246 244
5 564 - - 277 265 261 259
6 048 - - 291 277 273 271
6 669 - - 310 293 288 286
7 018 - - 326 306 300 298

Table 1: Values of the degree ñ ∈ N0, from which the corresponding kernel-matrix has a full rank,
that is for all n ≥ ñ, n ∈ N0, the matrix was observed to be regular.

In total we observe that a relatively high, but numerically acceptable degree of truncation can
yield well-conditioned, band-dominated matrices for a stable determination of the spline coeffi-
cients a1, . . . , aN .

Now, we come to the results concerning the reconstruction of the harmonic density distribution.
As we can see in Fig. 5(a) the number of data points is too small. Here, we can recognize each
point itself because the kernel localizes already at scale J = 4 too intensively such that it makes
no sense to consider results calculated at higher scales. Thus, we choose a data point grid, where
the difference between two adjoint points is smaller (see thereto Fig. 5(b)).

(a) Computed from 1 431 data points at scale J = 4,
“

vmin ≈ −97 kg
m3 , vmax ≈ 67 kg

m3

”

.

(b) Computed from 4 606 data points at scale J = 4,
“

vmin ≈ −204 kg
m3 , vmax ≈ 235 kg

m3

”

.

Figure 5: Variation of the harmonic density distribution calculated with the Abel-Poisson kernels.

However, for getting even better results, we use for the next plots (see Fig. 6) a point grid with
10 366 data points. By an input with such many data points we really obtain good results for the
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harmonic density distribution and, now, it makes sense to calculate at higher scales, too, which
can be seen in Fig. 6(b). Finally, for reasons of these good results, we can say that this spline
interpolation method is a good approach for reconstructing the harmonic density distribution,
mainly for detecting local details. For example, the Galapagos islands which are located in the
west of South America show the good approximation via this spline interpolation method as we
can clearly see them in these figures.

(a) J = 4,
“

vmin ≈ −425 kg
m3 , vmax ≈ 260 kg

m3

”

. (b) J = 8,
“

vmin ≈ −333 kg
m3 , vmax ≈ 301 kg

m3

”

.

Figure 6: Variation of the harmonic density distribution computed from 10 366 data points with
the Abel-Poisson kernels.

Next, for comparison to well-known interpolation methods by the principle of a multiresolution
analysis (see thereto, e.g., [24]), we demonstrate our results analogously. This means that we also
illustrate the detail information which arises from the difference of the results of two consecutive
scales. Thus, by increasing the scale and adding, simultanously, more data points the resolution
becomes better and better which is clearly shown in Fig. 7. In this figure we see in the left column
the spline SJ at different scales, J ∈ {6, 7, 8}, and in the right column the differences SJ+1 − SJ

for J ∈ {6, 7} representing detail information. Therefore, from the sum of the two reconstructions
in each row it follows the left image of the proximate row. At the same time, we add also more and
more data points and finally get for each higher scale a better resolution. In conclusion, the last
image presents a quite good reconstruction of the harmonic density distribution calculated from
the gravitational potential almost on the Earth’s surface.
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(a) S6 computed from 4 606 points,
“

vmin ≈ −201 kg
m3 , vmax ≈ 268 kg

m3

”

.

+
(b) S7 − S6,

“

vmin ≈ −161 kg
m3 ,

vmax ≈ 198 kg
m3

”

.

= ↘

(c) S7 computed from 7 018 points,
“

vmin ≈ −249 kg
m3 , vmax ≈ 268 kg

m3

”

.

+
(d) S8 − S7,

“

vmin ≈ −190 kg
m3 ,

vmax ≈ 208 kg
m3

”

.

= ↘

(e) S8 computed from 10 366 points,
“

vmin ≈ −333 kg
m3 , vmax ≈ 301 kg

m3

”

.

Figure 7: Plot like a multiresolution for a variation of the harmonic density distribution, that is
the plot of SJ in the left column and the plot of SJ+1 −SJ in the right column computed with the
Abel-Poisson kernels for J ∈ {6, 7, 8}.
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4.4 Combination of Several Data Sets

In the last two sections we have analyzed the reconstruction of the Earth’s interior from gravita-
tional data but, acually, we want to solve the gravimetry problem not only via the gravitational
potential but also in combination with its first and second radial derivative. Thus, our aim is to
reconstruct the Earth’s harmonic density distribution which is computed from a data set given by
the first radial derivative in 400km altitude, a second data set given by the second radial deriva-
tive in 200 km altitude and, additionally, from a third data set which is given by the gravitational
potential almost at the Earth’s surface.
The different radii are chosen for reasons of the different satellite orbits. Data for the first radial
derivative of the gravitational potential are given by CHAMP and GRACE which generate a data
set in about 400 km altitude, and the second radial derivative is a part of SGG which generates
a data set in approximately 200km. Consequently, in this section, we show the first images of
the harmonic density distribution calculated by combining several data sets. For the calculation
of such a combination we get a matrix in which we can differ three parts on the diagonal. This
matrix gives us a system of linear equations which has to be solved.
Fig. 8 presents the result of such a combination of three data sets with following properties:

1. 1 431 data points of the first radial derivative in 400 km altitude,

2. 2 555 data points of the second radial derivative in 200km altitude,

3. 4 140 data points of the zeroth derivative almost on the Earth’s surface.

On the left hand side, we see the original solution where we can clearly observe some boundary
effects. To remove those implications of such calculations we add 5% to the values of the diagonal
of the part concerning to the second radial derivative and 10% to the values of the diagonal of
the part concerning to the first radial derivative. But although we can solve the problem of
the boundary effects by such an appropriate regularization, we achieve a solution where several
details are vanished because this method smoothes our original result. This is the tribute for the
exponential ill-posedness of the downward continuation from satellite height.

(a) Non-regularized solution,
“

vmin ≈ −230 kg
m3 ,

vmax ≈ 196 kg
m3

”

.

(b) Appropriate regularization with 5% and 10%,
“

vmin ≈ −194 kg
m3 , vmax ≈ 172 kg

m3

”

.

Figure 8: Combination of the data provided by the cases 1.-3. and computed with the Abel-Poisson
kernel at scale J = 5

At last, we want to show that, by the harmonic spline interpolation method, we can ”zoom”
in an interesting area in order to achieve more details in this region. Therefore, we combine
two different data sets. Firstly, we apply data points computed globally from the second radial
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derivative of the gravitational potential which are located in 200km altitude and, secondly, we use
data points computed locally from the gravitational potential itself which are located almost on
the Earth’s surface. For the first data set we use for the calculation 6 320 data points distributed
over the whole Earth and the second data set consists of 2 964 data points distributed only over
the interesting region. For this region we have, therefore, as a start the few data which belong to
the data set calculated for the whole Earth and in addition to those data we have the information
which belong to the data set computed only for South America. This result is illustrated in Fig. 9.
Again we have to choose a factor for regularizing because without such a perturbance in the matrix
we do not achieve reasonable results due to the ill-posedness. This time we add 5% to the diagonal
of the matrix which belongs to the data for the whole Earth. Then, we can clearly see more details
of the harmonic density distribution in the region of South America, i.e. in the interesting area,
whereas the rest represents the harmonic density distribution with less information. Hence, the
method is indeed appropriate for mixing different data sets in order to achieve locally adapted
resolutions of the results.

Figure 9: Appropriate regularization of a variation of the harmonic density distribution as a combi-
nation of 6 320 data points computed globally from the second radial derivative of the gravitational
potential in about 200 km altitude and of, additionally, 2 964 data points computed locally from
the gravitational potential itself almost at the Earth’s surface. For both data sets we apply the

Abel-Poisson kernel at scale J = 5,
(

vmin ≈ −190 kg
m3 , vmax ≈ 131 kg

m3

)

.

5 Conclusion

The numerical results presented in the last three sections illustrate the approximation properties
of the harmonic spline interpolation method. More precisely, we discussed the application of this
method to an exponentially ill-posed problem in geophysics and physical geodesy. With it, we are
able to determine an approximation of the harmonic density distribution of the Earth by using
gravitational data, i.e. we applied a method for solving the classical gravimetry problem.

For the numerical realization we have a closer look at the data which we use for the right
hand side of the systems of linear equations. In reality, we obtain the data for the first radial
derivative of the gravitational potential and also those for the second radial derivative at satellite
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orbits. Therefore, we have to determine the Earth’s mass density distribution out of gravitational
information given outside the Earth. In particular, the gradient of the potential is part of SST
generated on a point grid in about 400km altitude and the Hessian of the potential is part of SGG
generated on a point grid in about 200 km altitude. Additionally, there exist gravitational data
obtained at the Earth’s surface which we also want to apply for our solution.

Therefore, concerning the data the explained spline interpolation method can be well adapted
to the real data situation. For our numerical realizations we indeed represented, for simplifications,
the orbits and the Earth’s surface by spheres with different radii, but for such an interpolation
method the data need not be located any more on a sphere which is often simply assumed as an
approximation to the satellite orbits. Another advantage is that we are able to combine different
types of data, more precisely, to combine different derivatives of the gravitational potential. Such
combinations of different data sets are shown in Fig. 8 and Fig. 9.
Furthermore, the larger the scale is chosen the smaller the hat-width of the basis functions be-
comes. Hence, in dependance on the different scales we have to choose a sufficiently dense data
grid. Here, we meet problems caused by the memory capacity of our computers such that the
number of the used data points is limited. We also discovered that for the bandlimited cases, such
as the Shannon sequences and those generated by a cubic polynomial, we do not achieve such
good approximations than for the Abel-Poisson kernels, especially for small scales. But for the
Abel-Poisson kernels we achieve really good reconstructions of the harmonic density distribution of
the Earth which we see in Fig 2(b). In addition, the resolution of the achieved solution can locally
be varied by increasing the data points in the corresponding region. So, we selected the region of
South America to solve, in the first instance, locally the gravimetry problem. We find out, that
the harmonic spline interpolation method is a better method for exploring locally a region than for
global calculations. After restricting to a small part of the whole Earth’s surface we realize several
details, like for example the Galapagos Islands.
At last, (see Fig. 9) we combine the global reconstruction from the satellite data and the local
reconstruction from the data obtained at the Earth’s surface and achieve a ”zooming-in” image.
This is also an interesting result based on the advantages of this spline interpolation method since,
now, we have two differently dense point grids combined in one figure and correspondingly locally
adapted resolutions of the result which is not achievable by polynomial approach.

6 Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation
(DFG), project MI 655/2-1, and also by the German Federal Ministry of Education and Research
(BMBF), project TIVAGAM.

References

[1] D.D. Ang, R. Gorenflo, and L.K. Vy. A Uniqueness Theorem for a Nonlinear Integral Equa-
tion of Gravimetry. Freie Universität Berlin, Fachbereich Mathematik, Serie A: Mathematik,
Preprint No. A-29/92.

[2] L. Ballani, J. Engels, and E.W. Grafarend. Global Base Functions for the Mass Density in
the Interior of a Massive Body (Earth). Manuscripta Geodaetica, 18:99–114, 1993.

[3] L. Ballani and D. Stromeyer. The Inverse Gravimetric Problem: A Hilbert Space Approach.
Proceedings of the International Symposium ’Figure of the Earth, the Moon, and other Plan-
ets’, P. Holota (ed.), Prague, 1982.

[4] L. Ballani and D. Stromeyer. On the Structure of Uniqueness in Linear Inverse Source Prob-
lems. In A. Vogel, A.K.M. Sarwar, R. Gorenflo, and O.I. Kounchev, editors, Theory and
Practice of Geophysical Data Inversion, Proceedings of the 8th International Mathematical

17



Geophysics Seminar on Model Optimization in Exploration Geophysics, Vieweg Verlag, Braun-
schweig, Wiesbaden, 1990.

[5] L. Ballani, D. Stromeyer, and F. Barthelmes. Decomposition Principles for Linear Source Prob-
lems. In G. Anger, R. Gorenflo, H. Jochmann, H. Moritz, and W. Webers, editors, Inverse
Problems: Principles and Applications in Geophysics, Technology, and Medicine. Mathemati-
cal Research, 74, Akademie-Verlag, Berlin, 1993.
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