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Preface

The fast development of the financial markets in the last decade has lead to the creation

of a variety of innovative interest rate related products that require advanced numerical

pricing methods. Examples in this respect are products with a complicated strong path-

dependence such as a Target Redemption Note, a Ratchet Cap, a Ladder Swap and

others. On the other side, the usage of the standard in the literature one-factor Hull

and White [34] type of short rate models allows only for a perfect correlation between all

continuously compounded spot rates or Libor rates and thus are not suited for pricing

innovative products depending on several Libor rates such as for example a ”steepener”

option.

One possible solution to this problem deliver the two-factor short rate models and in this

thesis we consider a two-factor Hull and White [34] type of a short rate process derived

from the Heath, Jarrow, Morton [30] framework by limiting the volatility structure of

the forward rate process to a deterministic one. For this reason, we start the thesis with

an introduction into the Heath, Jarrow, Morton [30] framework, examine the practical

problems with its application and prove as a special case the derivation of the short rate

dynamics for the limited volatility structure of a Cheyette [21] type .

In this place, we remark that one of the most commonly used numerical method for

approximating the price of an option when no closed-form solution is attainable is the

lattice method which (with a suitable choice of transition probabilities and transition

states) converges weakly to the approximated continuous process (see e.g. Cox, Ross and

Rubinstein [26], Hull [33] and many others). In this thesis, we shall often choose to use a

variety of modified (binomial, trinomial and quadrinomial) tree constructions as a main

numerical pricing tool due to their flexibility and fast convergence and (when there is no

closed-form solution) compare their results with fine grid Monte Carlo simulations. We use

Monte Carlo simulation as a verification tool due to its almost sure convergence ensured

by the Strong Law of Large Numbers (see e.g. Reider [56], Broadie and Glasserman [13],
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Glynn and Whitt [29], Korn and Korn [41] and others) but in this place we remark

that although very flexible, the fine grid Monte Carlo simulation is not a very practical

tool since the computational time it requires (especially in higher dimensions) is often

enormously long.

For the purpose of pricing the already mentioned innovative short-rate related products,

in Chapter 2 we offer and examine two different lattice construction methods for the

two-factor Hull-White [34] type of a short rate process which are able to deal easily both

with modeling of the mean-reversion of the underlying process and with the strong path-

dependence of the priced options. Additionally, we prove that the so-called rotated lattice

construction method overcomes the typical for the existing two-factor tree constructions

problem with obtaining negative ”risk-neutral probabilities”. With a variety of numerical

examples, we show that this leads to a stability in the results especially in cases of high

volatility parameters and negative correlation between the base factors (which is typically

the case in reality).

Further, noticing that Chan et al [18] and Ritchken and Sankarasubramanian [58] showed

that option prices are sensitive to the level of the short rate volatility, we examine in Chap-

ter 3 and Chapter 4 the pricing of European and American options where the short rate

process has a volatility structure of a Cheyette [21] type (introduced in details in Chapter

1). In this relation, we examine the application of the two offered lattice construction

methods and compare their results with the Monte Carlo simulation ones for a variety of

examples. Additionally, for the pricing of American options with the Monte Carlo method

we expand and implement the simulation algorithm of Longstaff and Schwartz [47]. With

a variety of numerical examples we compare again the stability and the convergence of

the different lattice construction methods.

Dealing with the problems of pricing strongly path-dependent options, we come across

the cumulative Parisian barrier option pricing problem. We notice that in their classical

form, the cumulative Parisian barrier options have been priced both analytically (in a

quasi closed form) and with a tree approximation (based on the Forward Shooting Grid

algorithm, see e.g. Hull and White [36], Kwok and Lau [44] and others). However,

2



in Chapter 5 we offer an additional tree construction method which can be seen as a

direct binomial tree integration that uses the analytically calculated conditional survival

probabilities. The advantage of the offered method is on one side that the conditional

survival probabilities are easier to calculate than the closed-form solution itself and on

the other side that this tree construction is very flexible in the sense that it allows easy

incorporation of additional features such as e.g a forward starting one. The obtained

results are better than the Forward Shooting Grid tree ones and are very close to the

analytical quasi closed form solution.

In Chapter 6, we pay our attention to pricing another type of innovative interest rate

alike products - namely the Longevity bond - whose coupon payments depend on the

survival function of a given cohort. Due to the lack of a market for mortality, for the

pricing of the Longevity bonds we develop (following Korn, Natcheva and Zipperer [42])

a framework that contains principles from both Insurance and Financial mathematic.

Further on, we calibrate the existing models for the stochastic mortality dynamics to

historical German data and additionally offer new stochastic extensions of the classical

(deterministic) models of mortality such as the Gompertz and the Makeham one (see e.g.

Benjamin and Pollard [5] for an extensive comparison of the existing classical models).

Finally, we compare and analyze the results of the application of all considered models to

the pricing of a Longevity bond on the longevity of the German males.
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Chapter 1

On the Practical Implementation of
the HJM Framework

In the general theory developed for the needs of pricing interest rate sensitive derivatives

there are two main streams.

The first theoretical direction is concentrated on specifying directly the dynamics of the

instantaneous short rate process as a Markov one and further (by the means of its time

dependent drift term) fit the zero-coupon bond prices deduced from the model to a set

of initially observed in the market zero coupon bond prices (usually called ”initial term

structure”). Main contributors to this theoretical stream are Hull and White [34]. The

major advantage of this type of models hides in their Markovian feature which allows

analytical and numerical tractability (e.g. recombining binomial/trinomial/quadrinomial

trees, easy Monte Carlo simulation etc.). However, their major drawback is that by

choosing the drift of the short rate process we are left with no freedom in selecting the

drift of the forward rate since the latter can be seen as a derived quantity of the short

one, see an example in Brigo and Mercurio [12].

The other stream in the literature is based on the Heath, Jarrow, Morton [30] framework

which permits an arbitrary term structure of volatility (and covariance) of the forward

rates across different maturities. In this framework, by specifying the volatility term struc-

ture of the forward rates, it is possible to deduce virtually any existing (or required) short

rate model. Another advantage of it is that the current term structure is by construction
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6 Chapter 1. On the Practical Implementation of the HJM Framework

an input parameter for it. However, its major drawback is (as it will be explicitly shown

in the next section) that in its general form it leads to a short rate process that is not a

Markovian one which causes limitation of its practical applicability.

A possible way to overcome the drawbacks of the two approaches is offered by Cheyette [20]

and Li, Ritchken and Sankarasubramanian [46] who introduce a reformulation of the

Heath, Jarrow, Morton [30] framework (by limiting the class of volatility functions of

the forward rates) which overcomes its practical difficulties while keeping the desired

generality of its forward rate representation.

In the next two sections, we will first introduce the Heath, Jarrow, Morton [30] framework

and explicitely state the core of its direct limited practical application and further intro-

duce and derive its mentioned reformulation offered by Cheyette [20] and Li, Ritchken

and Sankarasubramanian [46].

1.1 Introduction into the Heath Jarrow Morton Frame-

work

Let us assume we have a complete filtered probability space
(
Ω, {F}t∈[0,T ] , P

)
with a flow

of information given by the natural filtration {F}t∈[0,T ] satistying the usual conditions

and with a finite time horizon [0, T ]. Further, we assume an arbitrage-free market. In

addition, let us assume we are in a Heath, Jarrow, Morton [30] framework. This means

that the instantaneous forward rate f(t, T ) prevailing at the market at time t for a fixed

maturity T , evolves under the physical measure P according to

df(t, T ) = α(t, T )dt + σ(t, T )dW (t)

f(0, T ) = fM(0, T )

where fM(0, T ) denotes the market instantaneous forward interest rate curve at time

t = 0, W = (W1, . . . ,WN) is an N -dimensional Brownian motion under measure P ,

σ(t, T ) = (σ1(t, T ), . . . , σN(t, T )) is a vector of adapted processes and the drift α(t, T ) is

also an adapted process.
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Further, Heath, Jarrow, Morton [30] (from now on abbreviated as ”HJM”) showed that

in an arbitrage free market, the drift process of the instantaneous forward rate under the

risk-neutral martingale measure1 Q cannot be arbitrarily chosen, since it is completely

determined by the volatility function of the forward rate process in the following way

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds =
N∑

i=1

σi(t, T )

∫ T

t

σi(t, s)ds.

The integrated instantaneous forward interest rate is given by

f(t, T ) = f(0, T ) +
N∑

i=1

∫ t

0

σi(u, T )

∫ T

u

σi(u, s)dsdu +
N∑

i=1

∫ t

0

σi(s, T )dWQ
i (s)

where WQ
i (t) is now a Q-Brownian motion and thus the instantaneous short rate process

is easily found to be

r(t) = f(t, t) = f(0, t) +
N∑

i=1

∫ t

0

σi(u, t)

∫ t

u

σi(u, s)dsdu +
N∑

i=1

∫ t

0

σi(s, t)dWQ
i (s).

Now, notice that as the time t appears both as extremes of the integration and inside of

the integration functions, the short rate process is not Markovian. Put in another way,

the general HJM model can be seen as a joint Markov process in an infinite number of

forward rates, i.e. the state space of the dynamics is infinite dimensional even in the case

of only one random factor. Notice that even for i = 1, by Itô’s formula

dr(t) =

[
∂f(0, t)

∂t
+

∂

∂t

∫ t

0

σ(u, t)

∫ t

u

σ(u, s)dsdu +

∫ t

0

∂

∂t
σ(u, t)dWQ(u)

]
dt

+ σ(t, t)dWQ(t)

and the drift depends on the whole history of the Brownian motion and the forward

rate volatility. Therefore, approximation of its distribution via trees will involve non-

recombining trees which does not allow a high number of time steps.

As the Markov property of the short rate is a desired feature, a way is needed that leads

back to it. Carverhill [17] showed that there exist suitable constructions of the volatility

1The existence of an equivalent to the physical measure P risk-neutral measure Q is ensured by the
assumption of an arbitrage-free market (see e.g. Börk [8], Korn and Korn [41] and others).
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of the instantaneous forward rate for which the short rate is a Markov process. Thus, if

we write

σi(t, T ) = ξi(t)ψi(T ), i = 1, . . . , N

for some functions ξi and ψi that are deterministic and strictly positive, then the short

rate process can be calculated to be

r(t) = f(0, t) +
N∑

i=1

ψi(t)

∫ t

0

ξ2
i (u)

∫ t

0

ψi(s)dsdu +
N∑

i=1

ψi(t)

∫ t

0

ξi(s)dWQ
i (s).

In the case i = 1, applying Itô’s formula yields

dr(t) =

[
α′(t) + ψ′(t)

r(t) − α(t)

ψ(t)

]
dt + ξ(t)ψ(t)dWQ(t)

for α(t) := f(0, t) + ψ(t)
∫ t

0
ξ2(u)

∫ t

u
ψ(s)dsdu. Notice that we are back to the Hull-White

setting since we have now a Markovian short rate process with deterministic volatility.

However, limiting the class of volatility functions to a deterministic one is too restricting

and this leads us to the next section.

1.2 Markovian Short Rate Modeling of Cheyette Type

In 1992, Cheyette [20] proved that it is possible to approximate a large class of HJM

models with an arbitrage-free Markov model in a finite number of state variables up to

an arbitrary accuracy by just slightly limiting the class of volatility functions (but still

keeping its stochastic nature). Independent from him, in 1995 Li, Ritchken and Sankara-

subramanian [46] identified also the necessary and sufficient condition for capturing the

path dependence in the short rate process by a single additional condition and further

offered and investigated the lattice construction needed for the approximation of the short

rate process. However, due to small difference in the time of the two articles and for sake

of simplicity, in this thesis we will denote the obtained short rate model a ”Cheyette”

one and mention explicitly that we work with a lattice construction of a Li, Ritchken and

Sankarasubramanian [46]-type.
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In this thesis, we limit our attention only to the forward rate dynamics in a one-factor

context but remark that Cheyette [20] showed as an example that the US Treasury term

structure can be represented with three leading factors f̃ (i)(t, T ), i = 1, 2, 3 such that

f(t, T ) = f(0, T )+
∑

i f̃(t, T ) where the first two factors need five state variables and the

third one needs nine state variables.

Proposition 1. If we choose the following form of the volatility of the forward rate

σ(t, T ) :=
N∑

i=1

αi(T )
ξi(t)

αi(t)
(1.1)

for some deterministic functions of time α1, . . . , αn and adapted processes ξ1, . . . , ξN , then

although the interest rate itself is not a Markov process, it will be an ingredient in an

N × (N + 3)/2-state Markov process χ(·) = (r(·), ϕij(·)i,j=1,...,N) with

ϕij(t) = ϕji(t) =

∫ t

0

σi(s, t)σj(s, t)ds =

∫ t

0

αi(t)αj(t)

αi(s)αj(s)
ξi(s)ξj(s)ds, i, j = 1, . . . , N

where we have denoted σi(t, T ) = αi(T )ξi(t)/αi(t) for i = 1, . . . , N . Thus, the components

of the χ process form the system

dXi(t) =

(
Xi(t)∂tlogαi(t) +

N∑

k=1

ϕik(t)

)
dt + ξi(t)dWQ

i (t), Xi(0) = 0, i = 1, . . . N

dϕij(t) = [ξi(t)ξj(t) + ϕij(t)∂tlog (αi(t)αj(t))] dt i, j = 1, . . . , N.

where

r(t) = f(0, t) +
N∑

i=1

Xi(t).

Proof: Without loss of generality, we prove this for N = 1, i.e. for σ(t, T ) = α(T )
α(t)

ξ(t).

Recall

f(t, T ) = f(0, T ) +

∫ t

0

σ(u, T )

∫ T

u

σ(u, s)dsdu +

∫ t

0

σ(s, T )dWQ(s) (1.2)

then denoting by A(t) : R → R the primitive of α(t), i.e. dA(t)
dt

= α(t) we can write

∫ T

t

σ(t, s)ds = ξ(t)
A(T ) − A(t)

α(t)



10 Chapter 1. On the Practical Implementation of the HJM Framework

and substituting into (1.2) we obtain

f(t, T ) = f(0, T ) + α(T )

(∫ t

0

ξ2(s)
A(T ) − A(s)

α2(s)
ds +

∫ t

0

ξ(s)

α(s)
dWQ(s)

)
(1.3)

and thus also

r(t) = f(t, t) = f(0, t) + α(t)

(∫ t

0

ξ2(s)
A(t) − A(s)

α2(s)
ds +

∫ t

0

ξ(s)

α(s)
dWQ(s)

)
. (1.4)

From (1.4) we estimate

∫ t

0

ξ(s)

α(s)
dWQ(s) =

r(t) − f(0, t)

α(t)
−

∫ t

0

ξ2(s)

α2(s)
[A(t) − A(s)] ds (1.5)

which we will use later on.

On the other side, denoting

Γ(t) := f(0, t) + α(t)

∫ t

0

ξ2(s)
A(t) − A(s)

α2(s)
ds (1.6)

and differentiating (1.4) we obtain

dr(t) = Γ′(t)dt + α′(t)

∫ t

0

ξ(s)

α(s)
dW (s) + ξ(t)dWQ(t). (1.7)

Additionally, since

Γ′(t) : = f ′(0, t) + α′(t)A(t)

∫ t

0

ξ2(s)

α2(s)
ds + α2(t)

∫ t

0

ξ2(s)

α2(s)
ds

+α(t)A(t)
ξ2(t)

α2(t)
− α′(t)

∫ t

0

ξ2(s)A(s)

α2(s)
ds − α(t)A(t)

ξ2(t)

α2(t)

= f ′(0, t) + α′(t)A(t)

∫ t

0

ξ2(s)

α2(s)
ds + α2(t)

∫ t

0

ξ2(s)

α2(s)
ds − α′(t)

∫ t

0

ξ2(s)A(s)

α2(s)
ds

we obtain together with the expression (1.5)

dr(t) = f ′(0, t)dt + α2(t)

∫ t

0

ξ2(s)

α2(s)
ds dt +

α′(t)

α(t)
[r(t) − f(0, t)] dt + ξ(t)dWQ(t). (1.8)

At this moment, we notice that the stochastic process ξ(t) is in fact the volatility of the

spot interest rate. Further, in that form of the short rate, since ξ(t) is a stochastic process

(and we need its whole history until time t in order to be able to find the short rate), the
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spot rate is still not Markovian. However, by adding another variable ϕ(t) to account for

the path-dependence such that

ϕ(t) := α2(t)

∫ t

0

ξ2(s)

α2(s)
ds

we would have that χ = (r(t), ϕ(t)) is a Markov process. Thus, we can rewrite (1.8) as

dr(t) = µ(t, r, ϕ)dt + ξ(t)dWQ(t), r(0) = r0

µ(t, r, ϕ) := f ′(0, t) + ϕ(t) + ∂t log α(t) [r(t) − f(0, t)] .

Defining X(t) := r(t) − f(0, t) we can write its dynamic as

dX(t) = µ(t,X, ϕ)dt + ξ(t)dWQ(t), X(0) = 0

µ(t,X, ϕ) := ϕ(t) + ∂t log α(t)X(t)

and thus have the choice to model either directly the short rate process r(t) or the process

X(t).

Finally, we notice that by its definition, ϕ(t) can be written also as a solution of the

following general first order linear differential equation

dϕ(t) = ξ(t)2dt + ϕ(t)∂t log α(t), ϕ(0) = 0.

Proposition 2. Using the same notations, the forward rate f(t, T ) can be written as

f(t, T ) = f(0, T ) +
N∑

j=1

αj(T )

αj(t)

[
Xj(t) +

N∑

k=1

βk(t, T )ϕjk(t)

]

where

β(t, T ) :=
A(T ) − A(t)

α(t)
.

Proof: We show this again w.l.o.g. only for N = 1.

Recall that substituting the Cheyette’s form of the forward rate volatility (1.1) into the

HJM forward rate dynamic, we obtain

f(t, T ) = f(0, T ) + α(T )

(
ξ2(s)

A(T ) − A(s)

α2(s)
ds −

∫ t

0

ξ(s)

α(s)
dWQ(s)

)
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and plugging in (1.5) yields

f(t, T ) = f(0, T ) + α(T )

(
X(t)

α(t)
−

∫ t

0

ξ2(s)

α2(s)
[A(t) − A(s)]ds +

∫ t

0

ξ2(s)

α2(s)
[A(T ) − A(s)]ds

)

= f(0, T ) +
α(T )

α(t)
X(t) +

α(T )

α(t)

[A(T ) − A(t)]

α(t)

∫ t

0

ξ2(s)

α2(s)
α2(t)ds

= f(0, T ) +
α(T )

α(t)
X(t) +

α(T )

α(t)
β(t, T )ϕ(t)

This result shows explicitly that the entire forward rate curve f(t, T ) is known at any

time t in terms of the state variables Xi(t), i = 1, . . . , N .

Proposition 3. The zero coupon bond price P (t, T ) at time t with maturity at time T is

calculated in the Cheyette model as

P (t, T ) =
P (0, T )

P (0, t)
exp

(
−

N∑

j=1

βj(t, T )Xj(t) −
N∑

i,j=1

(Ai(T ) − Ai(t)) (Aj(T ) − Aj(t))

2αi(t)αj(t)
ϕij(t)

)

Proof: Due to the no-arbitrage assumption, the price of a zero-coupon bond P (t, T )

can be written as an expectation of its discounted payoff under an equivalent martingale

measure Q such that

P (t, T ) = EQ

(
e−

∫ T
t

r(s)ds

∣∣∣∣Ft

)
= e−

∫ T
t

f(t,u)du.

For simplicity, we prove the Proposition again only for N = 1.

Recalling that

f(t, T ) = f(0, T ) +
α(T )

α(t)
X(t) +

α(T )

α(t)
β(t, T )ϕ(t) (1.9)

we can find
∫ T

t

f(t, u)du =

∫ T

t

f(0, u)du +

∫ T

t

α(u)

α(t)
X(t)du +

∫ T

t

α(u)

α(t)
β(t, u)ϕ(t)du

=

∫ T

t

f(0, u)du +
X(t)

α(t)

∫ T

t

α(u)du +
ϕ(t)

α(t)

∫ T

t

(A(u) − A(t))

α(t)
α(u)du

=

∫ T

t

f(0, u)du + X(t)
A(T ) − A(t)

α(t)
+

ϕ(t)

α(t)2

∫ T

t

[A(u) − A(t)]dA(u)

=

∫ T

t

f(0, u)du + X(t)
A(T ) − A(t)

α(t)
+

ϕ(t)

α(t)2

[A(T ) − A(t)]2

2
.
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Using again the definition of β(t, T ) yields the short form

∫ T

t

f(t, u)du =

∫ T

t

f(0, u)du + X(t)β(t, T ) +
1

2
ϕ(t)β(t, T )2.

Substituting
∫ T

t
f(t, u)du into (1.9) yields the result.

Notice that for practical purposes, we can further restrict the volatility functions to those

that permit expressions in terms only of the current time and the constant relative ma-

turity (T − t) as

σ(t, T ) =
N∑

i=1

ξi(t) exp

(
−

∫ T

t

κi(u)du

)
=

N∑

i=1

ξi(t) exp

(
−

∫ T−t

0

κi(t + u)du

)

where κi(u)’s are deterministic functions of time. In this case, the dynamics of the com-

ponents of the χ process can be written in the slightly simplified form:

dXi(t) =

(
−κi(t)Xi(t) +

N∑

k=1

ϕik(t)

)
dt + ξi(t)dWQ

i (t), Xi(0) = 0, i = 1, . . . N

dϕij(t) = [ξi(t)ξj(t) − (κi(t) + κj(t)) ϕij(t)] dt, ϕij(0) = 0, i, j = 1, . . . , N.

Notice that κi(·), i = 1, . . . , N take the role of the mean-reversion rate in the factors of

the short rate dynamics under the risk-neutral measure Q.

Proposition 4. The forward rate f(t, T ) can be written as

f(t, T ) = f(0, T ) +
N∑

j=1

e−
∫ T

t
κj(x)dx

[
Xj(t) +

N∑

k=1

βk(t, T )ϕjk(t)

]

and the zero-coupon bond price P (t, T ) as

P (t, T ) =
P (0, T )

P (0, t)
exp

(
−

N∑

j=1

βj(t, T )Xj(t) −
1

2

N∑

i,j=1

βi(t, T )βj(t, T )ϕij(t)

)

where

β(t, T ) :=

∫ T

t

exp

(
−

∫ u

t

κ(x)dx

)
du.
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Proof: Follows directly from Proposition 2 and Proposition 3 by substituting with αi(t) =

e−κit.

Notice here that by limiting the class of volatility functions of the instantaneous forward

rate, one can derive virtually any known short-rate model. For example, as noticed by

Brigo and Mercurio [12], if we restrict the volatility function of the forward rate (in a

one-factor HJM framework) to a deterministic one then the model we obtain for the short

rate process is equivalent to a Hull-White one (e.g. a Hull-White extension of the Vasicek

model). Following that idea, in Chapter 2 we will limit ourselves to the case of N = 2

and deterministic functions ξ1 and ξ2 (i.e. deterministic volatility of the forward rate).

Then, expanding the ideas of Ritchken and Sankarasubramanian [57] for the construction

of a one-dimensional Cheyette-type tree we will offer and examine two different ways of

constructing two-dimensional trees for the chosen process.

In addition, since the two-factor short rate model we obtain from the HJM framework

(with deterministic volatility of Cheyette type) already contains the initial forward rates

as an input we notice that we do not need an extra calibration to the initial term structure

of the forward rates as it is done in the trinomial tree construction by Hull and White

(see e.g. Hull and White [35], Hull [37] or Hull [33]).

In Chapter 3 and Chapter 4, we will consider the case of a HJM forward rate with volatility

of Cheyette type. We will set N = 1 and ξ(t) = σr(t)γ for some γ ∈ R
+ and σ ∈ R

+

and use it for pricing options on stocks of an European and American type. For the

American options, we will perform a Monte Carlo simulation for which the Longstaff and

Schwartz [47] approach will be generalized for the Cheyette type of interest rate process.



Chapter 2

Numerical Solutions for the
Two-factor Hull-White Model

2.1 Motivation

In this Chapter, we are going to deal with a two-factor Hull-White interest rate model for

which we shall offer a modified method for its binomial tree construction that manages

some of the problems of the standard tree construction methods. In this moment, the

reader might ask himself the following two questions:

1. Why do we need to deal with two-factor interest rate models?

2. Why do we need to modify the standard tree construction methods?

The main purpose of this introduction section is to answer the upper questions.

Disadvantages of the One-Factor Interest Rate Models

The evolution of the whole yield curve is characterized by the evolution of a single underly-

ing quantity which is the interest rate r(·). As an example, if we consider the zero-coupon

bond prices at time t with maturity T , then using the relationship

P (t, T ) = EQ

[
exp

(
−

∫ T

t

r(s)ds

) ∣∣∣Ft

]

and specifying the parameters of the short rate allows us to reconstruct the bond prices

for all times t and maturities T . Therefore, choosing a poor model for the evolution of

15
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the short rate r(·) will result in a poor model for the whole yield curve.

If we consider now as an example of a one-factor model for the development of the interest

rate the Vasicek one1:

drt = κ (θ − rt) dt + σdWt, r(0) = r0

and notice that since it is an affine linear one we can write the zero-coupon bond prices

as P (t, T ) = A(t, T )e−B(t,T )rt for some deterministic functions A(·, ·) and B(·, ·) then, for

the continuously compounded spot rate R(t, T ) defined such that

P (t, T ) := exp [− (T − t) R (t, T )]

we obtain

R(t, T ) := − ln P (t, T )

T − t
= − ln A(t, T )

T − t
+

B(t, T )

T − t
rt.

Thus, if we want to price a complicated financial product depending on e.g. two contin-

uously compounded spot rates with maturities T1 and T2 we would need to use in the

pricing their correlation which unfortunately in a one-factor model is always calculated

to be

corr (R(t, T1), R(t, T2)) = 1.

Since in this model the continuously compounded spot rates are always perfectly corre-

lated for all maturities, a small change in one of them will immediately propagate though

the whole yield curve. Notice that this is also approximately valid for the Libor rates in

any model with only one factor for the interest rate dynamics. In this respect, the Libor

rate L(t, T ) is the simply-compounded (in contrast to the continuously compounded) spot

interest rate given at time t for maturity T , (t < T ) and is defined as

L(t, T ) :=
1 − P (t, T )

(T − t)P (t, T )

which means that the zero-coupon bond price expressed in terms of the Libor rate is given

by

P (t, T ) =
1

1 + (T − t)L(t, T )

which directly explains the meaning of the simple compounding.

1The same analysis is valid for any other one-factor affine-linear short rate model.
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Remark 2.1.1. We can give as an example of such a complicated product an option on

the so-called ”steepener” whose coupons are defined as

n [L(ti, T2) − L(ti, T1)]
+ , for i = 1, . . . , N, n ∈ N and T1 < T2.

where L(t, T ) denotes the Libor rate at time t with maturity T .

Notice that the core of the steepener hides in the expectation of the investors of steeper

development of the yield curve since the steeper it is, the higher the coupons will be. The

factor n is used to multiply the effect of the different development of the Libor rates with

different maturities.

If we consider now a two-factor additive Vasicek model (denoted in Brigo and Mercurio [12]

by G2++) given as

rt = x1
t + x2

t + ϕ(t)

dx1
t = −κ1x

1
t dt + σdW 1

t , x1(0) = 0

dx2
t = −κ2x

2
t dt + σdW 2

t , x2(0) = 0

with dW1dW2 = ρdt for which we can again write the bond prices as

P (t, T ) = A(t, T ) exp
(
−B1(t, T )x1

t − B2(t, T )x2
t

)

we obtain the following form of the continuously compounded spot rate

R(t, T ) := − ln P (t, T )

T − t
= − ln A(t, T )

T − t
+

B1(t, T )

T − t
x1

t +
B2(t, T )

T − t
x2

t .

Now notice that

corr (R(t, T1), R(t, T2)) = corr

(
B1(t, T1)

T1 − t
x1

t +
B2(t, T1)

T1 − t
x2

t ,
B1(t, T2)

T2 − t
x1

t +
B2(t, T2)

T2 − t
x2

t

)
6= 1

due to the correlation between the underlying processes i.e. in a two-factor model the

yields with different maturities are not modeled anymore as perfectly correlated ones.

In addition, various historical analysis of the whole yield curve based on Principle Com-

ponents suggest that under the objective measure two or three (but not! only one) prin-

ciple components usually explain most of the total variation. For example Jamshidian
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and Zhu [38] analyze JPY, USD and DEM data and show that only one factor explains

67%−76% of the total variation while three principle components account for 93%−94%.

For other examples we refer to Rebonato [55].

All examples suggest that more stochastic factors are needed in order to model the whole

yield curve evolution in a sufficiently accurate way. However, one has to make here a

compromise between increasing the numerical complexity of the problem and its better

modeling. In this respect, we notice that considering even two-factor models poses already

a lot of numerical difficulties and therefore, in this work we limit ourselves to a two-factor

interest rate modeling.

Disadvantages of the Classical Binomial Tree Construction Methods in a Two-

Factor Setting

We have already mentioned that there are some problems with the standard numerical

methods used for pricing claims contingent on the interest rate in a two-factor setting.

For the finite difference methods (and in particular binomial/trinomial tree construction

as a form of explicit finite difference methods, see for proofs of the equivalence Heston

and Zhou [31]) these are the risk-neutral probabilities that can become negative and

the complicated mean-reversion modeling. An extensive overview of the influence of the

negative coefficients in two-factor models is given by Zvan, Forsyth and Vetzal [67] for a

variety of finite-difference/finite element constructions. And for the difficulties of modeling

mean-reversion processes with a trinomial lattice we refer to Hull and White [37].

In this work, we offer a modified two-dimensional binomial lattice which ensures (by

rotation of the underlying processes in a similar way as the one by Hull and White [35]

and a proper definition of the jump heights, following Cheyette [21]) that the estimated

risk-neutral probabilities are well-defined and in addition allows easy implementation of

the mean-reversion feature. In addition, we show how the tree can be adapted for the

pricing of interest rate claims with a complicated path dependence by the means of a

construction similar to the Forward Shooting Grid algorithm (first offered by Hull and

White [36]) so that the lattice incorporates both discrete coupon payments and discrete

updates (jumps) in the value of the path-dependent variable.
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2.2 Introduction of the Model

Let us assume that the forward rate follows a one-factor HJM model which can be approx-

imated following Cheyette [21] as a two-state Markov process by limiting the volatility of

the forward rate to

σ(t, T ) =
2∑

i=1

σi(t)e
−

∫ T
t

κi(s)ds

with κi : [0, T ] → R
+, σi : [0, T ] → R

+, i = 1, 2. The forward rate equation with the

so-defined volatility can be written as a function of two state variables X1(t) and X2(t)

as

f(t, T ) − f(0, T ) =
2∑

i=1

exp

(
−

∫ T

t

κi(s)ds

)[
Xi(t) +

2∑

k=1

βk(t, T )ϕik(0, t)

]
(2.1)

for

βi(t, T ) =

∫ T

t

exp

(
−

∫ u

t

κi(s)ds

)
du, i = 1, 2.

The cumulative quadratic covariation of the state processes is defined as

ϕ11(u, t) =

∫ t

u

cov(X1(s), X1(s))ds =

∫ t

u

σ1(s)
2e−2

∫ t
s

κ1(x)dxds

ϕ12(u, t) =

∫ t

u

cov(X1(s), X2(s))ds = ϕ21(u, t) =

∫ t

u

ρ(s)σ1(s)σ2(s)e
−

∫ t
s
(κ1(x)+κ2(x))dxds

ϕ22(u, t) =

∫ t

u

cov(X2(s), X2(s))ds =

∫ t

u

σ2(s)
2e−2

∫ t
s

κ2(x)dxds.

Using r(t) = f(t, t) we can find from (2.1) the short rate to be

r(t) = f(0, t) + X1(t) + X2(t) (2.2)

where following Cheyette’s model, the state variables X1(t) and X2(t) are respectively

defined under an equivalent martingale measure Q as

dX1(t) =

(
−κ1(t)X1(t) +

2∑

k=1

ϕ1k(0, t)

)
dt + σ1(t)dW̃Q

1 (t), X1(0) = 0 (2.3)

dX2(t) =

(
−κ2(t)X2(t) +

2∑

k=1

ϕ2k(0, t)

)
dt + σ2(t)dW̃Q

2 (t), X2(0) = 0 (2.4)
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with correlation d〈W̃Q
1 , W̃Q

2 〉t = ρdt.

We notice that this construction is very similar to the G2++ (offered by Brigo and

Mercurio [12], see Section 2.1) and can be seen as its calibrated to the initial term structure

equivalent. Further, Brigo and Mercurio [12] show the equivalence between the G2++

model and the two-factor Hull-White short-rate model. In this work, we choose the upper

two-factor model due to its computational tractability and the fact that it fits the initial

term structure by its construction.

As next, for sake of simplicity let us set the volatilities and the mean-reversion drifts to

be constant. Thus, we can rewrite

dX1(t) = (−κ1X1(t) + ϕ11(0, t) + ϕ12(0, t)) dt + σ1dW̃Q
1 (t), X1(0) = 0 (2.5)

dX2(t) = (−κ2X2(t) + ϕ21(0, t) + ϕ22(0, t)) dt + σ2dW̃Q
2 (t), X2(0) = 0 (2.6)

with

ϕ11(0, t) =
σ2

1 (1 − e−2κ1t)

2κ1

ϕ12(0, t) = ϕ21(0, t) =
ρσ1σ2

κ1 + κ2

(
1 − e−(κ1+κ2)t

)

ϕ22(0, t) =
σ2

2 (1 − e−2κ2t)

2κ2

.

Using the form of the analytical strong solution of a generalized linear stochastic differ-

ential equation, we can write for s ≤ t

Xi(t) = e−κi(t−s)
(
Xi(s) +

∫ t

s

ϕi1(0, u)eκi(u−s)du +

∫ t

s

ϕi2(0, u)eκi(u−s)du +

∫ t

s

σie
κi(u−s)dW̃Q

i (u)
)

= Xi(s)e
−κi(t−s) +

∫ t

s

ϕi1(0, u)e−κi(t−u)du +

∫ t

s

ϕi2(0, u)e−κi(t−u)du +

∫ t

s

σie
−κi(t−u)dW̃Q

i (u)

for i = 1, 2 and therefore

EQ
(
r(t)|Fs

)
= f(0, t) + EQ(X1(t)|Fs

)
+ EQ(X2(t)|Fs

)
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= f(0, t) + X1(s)e
−κ1(t−s) + X2(s)e

−κ2(t−s)

+
σ2

1

2κ2
1

(
1 − e−κ1(t−s)

)2
+

σ2
2

2κ2
2

(
1 − e−κ2(t−s)

)2

+
ρσ1σ2

κ1κ2

(
1 − e−κ1(t−s)

) (
1 − e−κ2(t−s)

)
(2.7)

+ϕ11(0, s)e
−κ1(t−s)β1(s, t) + ϕ12(0, s)e

−κ1(t−s)β2(s, t) (2.8)

VarQ
(
r(t)|Fs

)
=

σ2
1

(
1 − e−2κ1(t−s)

)

2κ1

+ 2
ρσ1σ2

κ1 + κ2

(
1 − e−(κ1+κ2)(t−s)

)
+

σ2
2

(
1 − e−2κ2(t−s)

)

2κ2

.

(2.9)

where we notice that the short rate process r(t) is conditionally Gaussian.

Denoting

µr := EQ
(
r(t)|F0

)
= f(0, t) +

σ2
1

2κ2
1

(
1 − e−κ1t

)2
+

σ2
2

2κ2
2

(
1 − e−κ2t

)2

+
ρσ1σ2

κ1κ2

(
1 − e−κ1t

) (
1 − e−κ2t

)

σr := VarQ
(
r(t)|F0

)
=

σ2
1 (1 − e−2κ1t)

2κ1

+ 2
ρσ1σ2

κ1 + κ2

(
1 − e−(κ1+κ2)t

)
+

σ2
2 (1 − e−2κ2t)

2κ2

and using that the short rate is normally distributed with mean µr and variance σr we

can easily estimate the risk-neutral probability for the short rate to become negative to

be

Q(r(t) < 0) = EQ

(
11{r(t)<0}

)
= EQ

(
11{ r(t)−µr

σr
<−µr

σr

}
)

= Φ

(
−µr

σr

)
> 0

where Φ denotes the cumulative distribution function of the standard normal distribution.

We remark here that although the upper probability is in most cases negligibly small, this

is a definite drawback of the model. On the other side, considering models of the CIR

type for the underlying X1 and X2 processes (which will ensure that the short rate process

stays positive) requires (as noticed by Brigo and Mercurio [12]) to force their correlation

to be 0 in order to maintain at least the analytical tractability of the bond prices. In

this way, a compromise has to be made between the ability of the model to reproduce

”humped” term structure of the forward volatility (which requires a correlation between
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the base factors different from zero) and the ability of the model to ensure an interest

rate dynamics that remains positive.

To explain this in detail, notice that we can write the forward rates dynamic as

df(t, T ) = (·)dt +
2∑

i=1

e−κi(T−t)σidW̃Q
i (t)

and thus estimate

Var (df(t, T ))

dt
=

2∑

i=1

e−2κi(T−t)σ2
i + 2ρe−(κ1+κ2)(T−t)σ1σ2.

Plotting at any time t the volatility curve of the instantaneous forward rate such that

T 7→ Var(df(t,T ))
dt

gives us Figure 2.1. Now notice that a ”humped” shape of the volatility

curve can be achieved for some suitable values for κ1 and κ2 only in the case of ρ < 0.

Humped shape of the term structure of volatility means that the volatilities are rising at

short maturities to a maximum and then decrease for the longer maturities. Being able

to reproduce such an effect is a desirable feature of any forward rate model (also possible

in the Libor market model, see e.g. Brigo and Mercurio [12]) since the ”humped” shape

of the volatility curve is an often observed behavior of the market data.

We remark here that Cheyette [21] showed empirically using data from the US Treasury

that the long-term behavior of the interest rates is governed by mean reversion parameters

that are positive (for all principal components). This means that for T → ∞ we would

have σ(t, T ) → 0 or in specific the volatility of the forward rates with maturities far away

in the future approaches to zero. Further, the limit distribution of the short rate process

is the normal distribution with mean µr(∞) and variance σr(∞) which we find in the case

of positive mean-reversion parameters to be

µr −→
t→∞

µr(∞) = lim
t→∞

f(0, t) +
σ2

1

2κ2
1

+
σ2

2

2κ2
2

+
ρσ1σ2

κ1κ2

σr −→
t→∞

σr(∞) =
σ2

1

2κ1

+
2ρσ1σ2

κ1 + κ2

+
σ2

2

2κ2

.

In contrast to it, negative mean reversion coefficients would imply that the volatility of

the forward rates will diverge and allow the short rate to become arbitrarily large.
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(c) ρ = 0.8.

Figure 2.1: Volatility curve of the instantaneous forward rate. κ1 = 0.07, κ2 = 2, σ1 =
0.01, σ2 = 0.007.

Naturally, as next comes the question how to price financial instruments in the given

framework. One way to do this is to derive the pricing partial differential equation (PDE)

and then solve it for the respective boundary conditions. For this purpose, let us denote

V (t,X1, X2) to be a claim, contingent on the stochastic interest rate movement. By Itô’s

Lemma, follows that

dV (t,X1, X2) =
∂V

∂t
dt +

∂V

∂X1

dX1 +
∂V

∂X2

dX2

+
1

2

(
∂2V

∂X2
1

d〈X1〉 +
∂2V

∂X2
2

d〈X2〉 + 2
∂2V

∂X1X2

d〈X1, X2〉
)

=
∂V

∂t
dt +

2∑

i=1

(
−κiXi +

2∑

j=1

ϕij(0, t)

)
∂V

∂Xi

dt +
∂V

∂X1

σ1dW̃Q
1 +

∂V

∂X2

σ1dW̃Q
2

+
1

2

2∑

i,j=1

σiσj
∂2V

∂Xi∂Xj

dt (2.10)

Next, since we have an arbitrage-free market, the expected return of our tradable instru-

ment under an equivalent martingale measure Q should equal the riskless interest rate.

This is equivalent to requiring that EQ(dV (t,X1, X2)) = rV (t,X1, X2)dt. Applying the
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no-arbitrage requirement to (2.10) yields the pricing PDE:

0 =
∂V

∂t
+

1

2

2∑

i,j=1

σiσj
∂2V

∂Xi∂Xj

+
2∑

i=1

(
−κiXi +

2∑

j=1

ϕij(0, t)

)
∂V

∂Xi

− rV

(2.11)

The pricing PDE can be analytically solved for some simple types of options such as the

zero-coupon bond with the boundary condition V (T,X1, X2) = 1, the European bond

option, Caplet, Floorlet or Swaption.

Another way to price a contingent claim in this framework is to follow the so called

”Martingale Approach” which consists of calculating the expectation under an equivalent

martingale measure Q of its discounted future cash flows (see e.g. Börk [8], Hull [33],

Korn and Korn [41] and others). Therefore, if we assume that the claim we want to price

has at maturity T > 0 a payoff C(T,X1, X2) then its price at time t < T can be calculated

as

V (t,X1, X2) = EQ
(
e−

∫ T
t

r(s)dsC(T,X1, X2)
∣∣Ft

)
. (2.12)

If we take for an example the zero-coupon bond P (t, T ), then to estimate its price instead

of solving the pricing PDE, it is much easier to calculate (2.12) and thus obtain

P (t, T ) = EQ
(
e−

∫ T
t

r(s)ds
∣∣Ft

)
= e−

∫ T
t

f(t,u)du

= exp

(
−

∫ T

t

f(0, u)du −
2∑

i=1

∫ T

t

e−ki(u−t)Xi(t)du

)

. exp

(
−

2∑

i=1

∫ T

t

e−ki(u−t)

2∑

j=1

βj(t, u)ϕij(0, t)du

)

=
P (0, T )

P (0, t)
exp

(
−β1(t, T )X1(t) − β2(t, T )X2(t) −

1

2

2∑

i,j=1

βi(t, T )βj(t, T )ϕij(0, t)

)

(2.13)

with

β1(t, T ) :=

{
1−exp[−κ1(T−t)]

κ1
if κ1 6= 0,

T − t else.

β2(t, T ) :=

{
1−exp[−κ2(T−t)]

κ2
if κ2 6= 0,

T − t else
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Theorem 2.2.1. Using the already specified short rate dynamics, the price CB(t, T1, T2, K)

at time t of a European bond call option with maturity T1 > t and strike K on a zero-

coupon bond with maturity T2 > T1 is calculated to

CB(t, T1, T2, K) = P (t, T2)Φ




ln
(

P (t,T2)
KP (t,T1)

)
+ 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)




−P (t, T1)KΦ




ln
(

P (t,T2)
KP (t,T1)

)
− 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)




where Φ(·) denotes the cumulative standard normal distribution function and

Σ2
p(t, T1, T2) := β1(T1, T2)

2ϕ11(t, T1) + β2(T1, T2)
2ϕ22(t, T1) + 2β1(T1, T2)β2(T1, T2)ϕ12(t, T1).

The price PB(t, T1, T2, K) of a European bond put option is given by

PB(t, T1, T2, K) = −P (t, T2)Φ




ln
(

P (t,T2)
KP (t,T1)

)
− 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)




+P (t, T1)KΦ




ln
(

P (t,T2)
KP (t,T1)

)
+ 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)


 .

Proof: see Appendix A.

Remark 2.2.1. Notice that the modeling of the short rate process with the Gaussian

G2 + + model of Brigo and Mercurio[12] is equivalent to its modeling with the two factor

model we have deduced from Cheyette’s [21] construction. However, the definition of the

dynamics of the separate factors X1(t) and X2(t) differs and thus the proof of the closed-

form solution of a bond option is also different and for this reason, it is given in Appendix

A.

Theorem 2.2.2. Using the already specified short rate dynamics, the price C(t, T1, T2, K)

at time t of a caplet resetting at time T1 > t, with payoff at time T2 > T1 and strike K
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is calculated to

C(t, T1, T2, K) = P (t, T1)Φ




ln
(

P (t,T1)
KP (t,T2)

)
+ 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)




−K∗P (t, T2)Φ




ln
(

P (t,T1)
K∗P (t,T2)

)
− 1

2
Σp(t, T1, T2)

Σp(t, T1, T2)




with K∗ = 1
1+K(T2−T1)

, Φ(·) denoting the cumulative standard normal distribution function

and

Σ2
p(t, T1, T2) := β1(T1, T2)

2ϕ11(t, T1) + β2(T1, T2)
2ϕ22(t, T1) + 2β1(T1, T2)β2(T1, T2)ϕ12(t, T1).

Proof: By the no-arbitrage principle, the price of the Caplet is generally written as

C(t, T1, T2, K) = EQ
(
e−

∫ T2
0 r(s)ds(T2 − T1) [L(T1, T2) − K]+

∣∣∣Ft

)

and if we change to the QT1-forward measure (recall its definition in the proof of Theorem

2.2.1) it can equivalently be written as

C(t, T1, T2, K) = P (t, T1)E
QT1

(
e−

∫ T2
T1

r(s)ds(T2 − T1) [L(T1, T2) − K]+
∣∣∣Ft

)
.

Next, recalling that the Libor rate L(t, T ) is defined as

L(T1, T2) =
1

T2 − T1

(
1

P (T1, T2)
− 1

)

yields

C(t, T1, T2, K) = P (t, T1)E
QT1

(
e−

∫ T2
T1

r(s)ds [(T2 − T1)L(T1, T2) − (T2 − T1)K]+
∣∣∣Ft

)

= P (t, T1) (1 + K(T2 − T1))

.EQT1

(
e−

∫ T2
T1

r(s)ds

[
1

1 + K(T2 − T1)
− P (T1, T2)

]+
1

P (T1, T2)

∣∣∣∣Ft

)

= P (t, T1)
1

K∗

.EQT1

(
EQT1

(
e−

∫ T2
T1

r(s)ds [K∗ − P (T1, T2)]
+ 1

P (T1, T2)

∣∣∣∣FT1

) ∣∣∣∣Ft

)

= P (t, T1)
1

K∗

.EQT1

(
[K∗ − P (T1, T2])

+ 1

P (T1, T2)
EQT1

(
e−

∫ T2
T1

r(s)ds

∣∣∣∣FT1

) ∣∣∣∣Ft

)

= P (t, T1)
1

K∗E
QT1

(
[K∗ − P (T1, T2)]

+

∣∣∣∣Ft

)
=

1

K∗PB(t, T1, T2, K
∗)
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where we have used that

P (T1, T2) = EQ

(
e−

∫ T2
T1

r(s)ds

∣∣∣∣FT1

)
= EQT1

(
e−

∫ T2
T1

r(s)ds

∣∣∣∣FT1

)

since at time T1 the Q-measure and the QT1-measure coincide (i.e. we have that the

Radon-Nikodym derivative dQ
dQT1

= 1).

Apart from the very few closed-form solutions we have calculated, pricing interest rate

contingent claims with complicated path dependence in the given framework cannot be

done in an analytic form and therefore, we have to approximate their prices using different

numerical methods. One approach (which we do not consider here) can be to use the

Alternating Direction Implicit (ADI) finite difference method by Craig and Sneyd [27] to

approximate the pricing PDE (2.10).

Another option is to approximate the distribution of the underlying processes using recom-

bining trees. In this respect, we notice that in an earlier work of Krekel and Natcheva [43]

(about the numerical pricing of interest rate claims using the Cheyette’s model in a one-

factor case), the ADI finite difference method has showed comparatively the same results

as the tree one but with greater time consumption (due to the bigger grid construction).

Finally, another possibility is a direct estimation of the option value in (2.12) using a fine-

grid Monte Carlo simulation. For this method, we remark that apart from its flexibility

and almost sure convergence (based on the Strong Law of Large Numbers), it is also the

one with the biggest computer time consumption.

Therefore, in this thesis we have chosen to use the following two numerical approaches

➩ Tree construction approximating the distribution of the underlying processes

➩ Fine grid Monte Carlo simulation for comparison of the results.

As next, we are going to present two different ways for the construction of a two-

dimensional lattice for pricing interest rate claims. Theoretical and numerical comparison

between the two construction methods will also be delivered.
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2.3 Tree Construction with Rotation of the Base Pro-

cesses

2.3.1 The Idea of Rotation

One possible way to construct a two-dimensional tree is to rotate the base random vari-

ables at each time step in such a way that they are independent. This means that we

have to transform the stochastic processes X1 and X2 to space variables Y1 and Y2 which

are uncorrelated and linear combinations of the base ones.

A natural question that comes at this point is why we need a more complicated procedure

of rotating the basis processes rather than constructing directly a quadrinomial tree. The

motivation is that in a quadrinomial tree matching the given processes we come across

risk-neutral probabilities that are not bounded in [0, 1]2. However, in defense of the

quadrinomial tree it can be said that for most usual input parameters both trees deliver

almost the same results whereas the quadrinomial tree requires slightly less computer

memory. But still, in cases of even relatively high volatility parameters, the quadrinomial

tree leads to a greater estimation error and exhibits slower convergence to the true price.

At the same time, although more complicated to construct, the rotation tree uses properly

defined probabilities and is thus robust in the cases of high volatilities. Therefore, both

methods have their advantages and disadvantages which we will present and compare, as

well as observe their behavior in the pricing of a variety of options.

In this section, we will deal with the rotated tree. For this reason, we need first to make

a spectral decomposition of the covariance matrix of (dX1(t), dX2(t)):

1

dt
Σ :=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
= UΛU⊤ =

(
e11 e12

e21 e22

)(
λ1 0
0 λ2

)(
e11 e21

e12 e22

)
(2.14)

where we normalize the eigenvectors to length of one and thus

U :=

(
e11 e12

e21 e22

)
=

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
=

(
u′

1

u′
2

)

is the rotation matrix with rotation angle ϕ. Notice that U is an orthogonal matrix (i.e.

UU⊤ = I where I denotes the identity matrix) and Λ is a matrix with the eigenvalues of

2It will be shown later that though not bounded, the risk-neutral probabilities of the quadrinomial
tree converge with the refinement of the discretization to properly defined ones.
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Σ which are found as the solution of | 1
dt

Σ − λI| = 0. This is equivalent to solving

(
σ2

1 − λ
) (

σ2
2 − λ

)
= ρ2σ2

1σ
2
2.

and thus

λ1,2 =
1

2
(σ2

1 + σ2
2) ±

1

2

√
(σ2

1 + σ2
2)

2 − 4(1 − ρ2)σ2
1σ

2
2, ρ 6= 0 (2.15)

λ1 = σ2
1, λ2 = σ2

2, ρ = 0.

In addition, if we write cos ϕ = 1√
1+β2

and sin ϕ = β√
1+β2

as functions of some unknown β,

then substituting cos ϕ and sin ϕ in (2.14) and solving it for β we obtain β = ±−λ1+σ2
1

ρσ1σ2
. It

is an equivalent problem whether we take β =
−λ1+σ2

1

ρσ1σ2
or β = −−λ1+σ2

1

ρσ1σ2
(only the direction

of the rotation changes), therefore we choose to work with the first one.

Theorem 2.3.1. Defining Y := UX where Y = (Y1(t), Y2(t))
⊤ and X = (X1(t), X2(t))

⊤

or in specific

Y1(t) := u′
1
X = cos ϕX1(t) − sin ϕX2(t) (2.16)

Y2(t) := u′
2
X = sin ϕX1(t) + cos ϕX2(t) (2.17)

yields

dY1(t) = α1(t, Y1, Y2)dt +
√

λ1dW1(t)

and

dY2(t) = α2(t, Y1, Y2)dt +
√

λ2dW2(t)

where W1 and W2 are independent Brownian motions and the new drifts are found to be

α1(t, Y1(t), Y2(t)) := cos ϕµ1(t,X1) − sin ϕµ2(t,X2) (2.18)

= −(κ1 cos2 ϕ + κ2 sin2 ϕ)Y1(t) − sin ϕ cos ϕ(κ1 − κ2)Y2(t)

+ cos ϕ(ϕ11(t) + ϕ12(t)) − sin ϕ(ϕ21(t) + ϕ22(t))

α2(t, Y1(t), Y2(t)) := sin ϕµ1(t,X2) + cos ϕµ2(t,X2) (2.19)

= −(κ2 cos2 ϕ + κ1 sin2 ϕ)Y2(t) − sin ϕ cos ϕ(κ1 − κ2)Y1(t)

+ cos ϕ(ϕ21(t) + ϕ22(t)) + sin ϕ(ϕ11(t) + ϕ12(t))
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for µ1(t,X1) := −κ1X1(t) + ϕ11(t) + ϕ12(t) and µ2(t,X2) := −κ2X2(t) + ϕ21(t) + ϕ22(t).

Proof: Applying Itô’s Lemma, we obtain directly

dY1(t) = cos ϕdX1(t) − sin ϕdX2(t)

=
(
cos ϕµ1(t,X1) − sin ϕµ2(t,X2)

)
dt +

(
cos ϕσ1dW̃1(t) − sin ϕσ2dW̃2(t)

)

= α1(t, Y1, Y2)dt +
√

cos ϕ2σ2
1 + sin ϕ2σ2

2 − 2 cos ϕ sin ϕσ1σ2ρ dW1(t)

and

dY2(t) = sin ϕdX1(t) + cos ϕdX2(t)

=
(
sin ϕµ1(t,X1) + cos ϕµ2(t,X2)

)
dt +

(
sin ϕσ1dW̃1(t) + cos ϕσ2dW̃2(t)

)

= α2(t, Y1, Y2)dt +
√

sin ϕ1σ2
1 + cos ϕ2σ2

2 + 2 cos ϕ sin ϕσ1σ2ρ dW2(t)

for the drifts as defined in (2.18) and (2.19). Notice that to find the drifts we have used

that X = U⊤Y as U is an orthogonal matrix.

Next, we also want to show that the variances of the new processes are well-defined.

Estimating var(dY1(t)) yields

var(dY1(t)) = e2
11var(dX1(t))dt + e2

12var(dX2(t))dt + 2e11e12cov(dX1(t), dX2(t))

= e2
11σ

2
2 dt + e2

12σ
2
2 dt + 2e11e12σ1σ2ρ dt

= cos2 ϕσ2
1 dt + sin2 ϕσ2

2 dt − 2 cos ϕ sin ϕσ1σ2ρ dt

=
(σ2

1 − λ2)σ
2
1

λ1 − λ2

dt − (λ2 − σ2
2)σ

2
2

λ1 − λ2

dt +
2(ρσ1σ2)

2

λ1 − λ2

dt

=
1

2
(σ2

1 + σ2
2) dt +

1

2

√
(σ2

1 + σ2
2) dt − 4(1 − ρ2)σ2

1σ
2
2 dt

= λ1 dt.

By analogy follows that var(dY2(t)) = λ1 dt.

Finally, we want to show that Y1(t) and Y2(t) are independent which means that W1(t)

and W2(t) should also be independent. For that purpose, we calculate the covariance
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between the new processes

cov(dY1(t), dY2(t)) = 〈dY1, dY2〉t = E(dY1(t)dY2(t)) − E(dY1(t))E(dY2(t))

= α1(t, Y1, Y2)dt α2(t, Y1, Y2)dt + E
(√

λ1dW1(t)
√

λ2dW2(t)
)
− α1(t, Y1, Y2)dtα2(t, Y1, Y2)dt

= E
(
(e11σ1 dW̃1(t) + e12σ2 dW̃2(t))(e21σ1 dW̃1(t) + e22σ2 dW̃2(t))

)

= E
(
e11e21σ

2
1dW̃1(t)

2 + e12e21σ1σ2dW̃1(t)dW̃2(t) + e11e22σ1σ2dW̃1(t)dW̃2(t)

+e12e22σ
2
2(t)dW̃2(t)

2
)

= cos ϕ sin ϕσ2
1dt − sin2 ϕσ1σ2ρ dt + cos2 ϕσ1σ2ρ dt − cos ϕ sin ϕσ2

2 dt

and using the following equalities which one can directly derive from (2.14)

cos ϕ sin ϕ =
ρσ1σ2

λ2 − λ1

cos2 ϕ =
σ2

1 − λ2

λ1 − λ2

sin2 ϕ = −λ2 − σ2
2

λ1 − λ2

we find that

cov(dY1(t), dY2(t)) = 0.

Now, we have showed that the new factors are uncorrelated and therefore also the Brown-

ian motions W1(t) and W2(t) are uncorrelated. Since the Brownian motions are ingredients

in a Gaussian two-variate process this also implies their independence.

Remark 2.3.1. The covariance matrix of the new factors is exactly the matrix Λ of

eigenvalues of Σ and in addition the whole transformation preserves the variance of the

original processes such that

var(dX1(t)) + var(dX2(t)) = var(dY1(t)) + var(dY2(t))

Theorem 2.3.2. The covariance matrix Σ between the base processes X1 and X2 is pre-

served after the rotation.
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Proof: Using that X = U⊤Y we estimate

cov (X1, X2) = cov (Y1 cos ϕ + Y2 sin ϕ, −Y1 sin ϕ + Y2 cos ϕ)

= − cos ϕ sin ϕcov (Y1, Y1) − sin2 ϕcov (Y1, Y2) + cos2 ϕcov (Y1, Y2)

+ cos ϕ sin ϕcov (Y2, Y2)

= − cos ϕ sin ϕλ1 + cos ϕ sin ϕλ2

= ρσ1σ2

and also

var(X1) = var (Y1 cos ϕ + Y2 sin ϕ)

= cos2 ϕvar(Y1) + sin2 ϕ(Y2) + 2 cos ϕ sin ϕcov (Y1, Y2)

= cos2 ϕλ1 + sin2 ϕλ2 = σ2
1

where we have used that due to the independence of the processes Y1 and Y2 the covariance

between them is zero. By analogy, var(X2) = σ2
2.

2.3.2 Tree Construction

Following the same logic as in Li, Ritchken and Sankarasubramanian [46], let us assume

that at time t we are at nodes ya
1 and ya

2 . In the next time step, the first variable moves

either up to ya+

1 or down to ya−
1 and the second variable moves respectively up to ya+

2 or

down to ya−
2 . Next, in order to decrease the number of the unknown variables we define

the up and down jump heights of Y1 as functions of a new variable J1 and the up and

down jump heights of Y2 of another new variable J2.

Definition 2.3.1. Denoting Z1 := floor
[

α1(t,ya
1 ,ya

2 )
√

∆t√
λ1

]
and Z2 := floor

[
α2(t,ya

1 ,ya
2 )

√
∆t√

λ2

]
we

define

J1(t, y
a
1 , y

a
2) :=

{
Z1 if Z1 even,
Z1 + 1 else.

J2(t, y
a
1 , y

a
2) :=

{
Z2 if Z2 even,
Z2 + 1 else
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and thus define the up and down jumps of the base processes to be

ya+

1 := ya
1 +

(
J1(t, y

a
1 , y

a
2) + 1

)√
∆tλ1, ya−

1 := ya
1 +

(
J1(t, y

a
1 , y

a
2) − 1

)√
∆tλ1

ya+

2 := ya
2 +

(
J2(t, y

a
1 , y

a
2) + 1

)√
∆tλ2, ya−

2 := ya
2 +

(
J2(t, y

a
1 , y

a
2) − 1

)√
∆tλ2

Theorem 2.3.3. If we denote the probability of an up-jump of the first process by p1 and

of the second process by p2 and set

p1 =
α1(t, y

a
1 , y

a
2)
√

∆t +
(
1 − J1(t, y

a
1 , y

a
2)

)√
λ1

2
√

λ1

(2.20)

p2 =
α2(t, y

a
1 , y

a
2)
√

∆t +
(
1 − J2(t, y

a
1 , y

a
2)

)√
λ2

2
√

λ2

(2.21)

then with this choice of the probabilities and with the jump heights given in Definition

2.3.1, we have that the tree matches locally perfectly the first moments of the base processes

and approximately the second moments of the base processes. In addition, the covariance

between the basis processes is also perfectly matched.

Proof: Denoting the approximated (with the lattice) local mean and variance respectively

with Ê(∆yi) and v̂ar(∆yi), for i = 1, 2 and the true local mean and variance of the

underlying process by E(∆yi) and var(∆yi), for i = 1, 2 we notice by the definition of the

risk-neutral tree probabilities that

Ê(∆y1) = p1

(
ya+

1 − ya
1

)
+ (1 − p1)

(
ya−

i − ya
1

)
= α1 (t, ya

1 , y
a
2) ∆t = E(∆y1)

Ê(∆y2) = p2

(
ya+

2 − ya
2

)
+ (1 − p2)

(
ya−

2 − ya
2

)
= α2 (t, ya

1 , y
a
2) ∆t = E(∆y2)

which implies that the first moments are locally perfectly matched.

For the second moments, let us consider only the first process as the second one is analog

to it. For J1 given in Definition 2.3.1, we have that

v̂ar (∆y1) = Ê
(
∆y2

1

)
− Ê (∆y1)

2

= p1(J1(t, y
a
1 , y

a
2) + 1)2∆tλ1 + (1 − p1)(J1(t, y

a
1 , y

a
2) − 1)2∆tλ1 − α1(t, y1, y2)

2∆t2

= 4p1J1(t, y
a
1 , y

a
2)∆tλ1 + (J1(t, y

a
1 , y

a
2) − 1)2∆tλ1 − α1(t, y1, y2)

2∆t2

= −J1(t, y
a
1 , y

a
2)

2∆tλ1 + 2α1(t, y1, y2)∆t
√

∆tλ1J1(t, y
a
1 , y

a
2) − α1(t, y1, y2)

2∆t2

+λ1∆t2

= −(J1(t, y
a
1 , y

a
2)

√
∆tλ1 − α1(t, y1, y2)∆t)2 + λ1∆t
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and since var (∆y1) = λ1∆t there will be an equality only if

J1(t, y
a
1 , y

a
2) =

α1(t, y
a
1 , y

a
2)
√

∆t√
λ1

which is approximately the case by the definition of J1(t, y
a
1 , y

a
2).

Thus, we have obtained that v̂ar(∆y1) ≈ var(∆y1) which means that locally the variance

of the original process is approximately matched.

Finally, we want to show that with the so defined jump-heights and risk-neutral probabil-

ities the local approximated covariance between the new base processes Y1 and Y2 is still

zero. For that reason, note that

Ê (∆y1∆y2) = p1p2

(
ya+

1 − ya
1

) (
ya+

2 − ya
2

)
+ p1 (1 − p2)

(
ya+

1 − ya
1

) (
ya−

2 − ya
2

)

+ (1 − p1) p2

(
ya−

1 − ya
1

) (
ya+

2 − ya
2

)
+ (1 − p1) (1 − p2)

(
ya−

1 − ya
1

) (
ya−

2 − ya
2

)

= p1

(
ya+

1 − ya
1

) [
p2

(
ya+

2 − ya
2

)
+ (1 − p2)

(
ya−

2 − ya
2

)]

+ (1 − p1)
(
ya−

1 − ya
1

) [
p2

(
ya+

2 − ya
2

)
+ (1 − p2)

(
ya−

2 − ya
2

)]

= α2 (t, ya
1 , y

a
2) ∆t

[
p1

(
ya+

1 − ya
1

)
+ (1 − p1)

(
ya−

1 − ya
1

)]

= α1 (t, ya
1 , y

a
2) ∆tα2 (t, ya

1 , y
a
2) ∆t

and thus we obtain for the local covariance

ĉov (∆y1, ∆y2) = Ê (∆y1∆y2) − Ê (∆y1) Ê (∆y2) = 0.

To see what happens with the local covariance between the original processes X1 and X2

we can write in a similar way as in Theorem 2.3.2

ĉov (∆x1∆x2) = [∆y1 cos ϕ + ∆y2 sin ϕ, −∆y1 sin ϕ + ∆y2 cos ϕ]

= − cos ϕ sin ϕv̂ar(∆y1) − sin2 ϕĉov(∆y1, ∆y2)

+ cos2 ϕĉov(∆y1, ∆y2) + cos ϕ sin ϕv̂ar(∆y2)

and then referring to Theorem 2.3.3 we obtain

ĉov (∆x1, ∆x2) = − cos ϕ sin ϕλ1∆t + cos ϕ sin ϕλ2∆t = ρσ1σ2∆t = cov (∆x1, ∆x2) .
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The interpretation is that although we are constructing a rotated tree based on the two

independent processes Y1 and Y2, when we transform it back to the original problem the

covariance between the original processes X1 and X2 is preserved.

Remark 2.3.2. We want to point out here that we cannot choose exactly

J1(t, y
a
1 , y

a
2) =

α1(t, y
a
1 , y

a
2)
√

∆t√
λ1

because of two reasons

• If we want to construct a recombining tree we would like that the absolute value of

the up-jump and the absolute value of the down-jump are integer multiples of the

same jump heights. Notice that this will not be the case for real values of J1(t, y
a
1 , y

a
2)

and J2(t, y
a
1 , y

a
2). Therefore, we need a construction of J1(t, y1, y2) and J2(t, y1, y2)

that allows them to take only integer values;

• On the other side, if we choose simply

J1(t, y
a
1 , y

a
2) = floor

[
α1(t, y

a
1 , y

a
2)
√

∆t√
λ1

]

the tree will be allowed to expand endlessly, hence we will take no account of the

mean-reversion in the underlying processes. Finally, if we set

J1(t, y
a
1 , y

a
2) =

{
Z1 if Z1 even,
Z1 + 1 else.

J2(t, y
a
1 , y

a
2) =

{
Z2 if Z2 even,
Z2 + 1 else.

for Z1 := floor
[

α1(t,ya
1 ,ya

2 )
√

∆t√
λ1

]
and Z2 := floor

[
α2(t,ya

1 ,ya
2 )

√
∆t√

λ2

]
we notice that in a

”normal case” of not too strong mean reversion, the values of J1(t, y1, ya) and

J2(t, y1, y2) will most of the time be equal to zero. Thus, we will have a product

of two binomial trees in the usual sense. But as soon as |α1(t, y1, y2)| >
√

λ1∆t or

in other words as soon as the local mean dominates the local variance, the branching

of the tree will be changed and thus J1(t, y1, y2) and J2(t, y1, y2) will take the values
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of −2 in the upper part of the tree and of 2 in the down part. Thus, we would have

both required effects, namely that the local variance will be approximately matched

and the effect of mean reversion will be taken into account. See Figure 2.2 for an

example of the mentioned tree construction.

Remark 2.3.3. Notice that

ya+

1 = ya
1 +

(
J1(t, y

a
1 , y

a
2) + 1

)√
∆tλ1 ≥ ya

1 + α(t, ya
1 , y

a
2)∆t

and

ya−
1 = ya

1 +
(
J1(t, y

a
1 , y

a
2) − 1

)√
∆tλ1 ≤ ya

1 + α(t, ya
1 , y

a
2)∆t

can be interpreted as the up and down jumps bracketing the real local mean of the approx-

imated process.

Lemma 2.3.1. In addition to matching the first two moments of the base processes, the

probabilities in (2.20) and (2.21) are also well-defined, i.e. p1 ∈ [0, 1] and p2 ∈ [0, 1].

Proof: By definition

J1(t, y
a
1 , y

a
2) ∈

[
α(t, ya

1 , y
a
2)
√

∆t√
λ1

− 1,
α(t, ya

1 , y
a
2)
√

∆t√
λ1

+ 1

]

and therefore

(
1 − J1(t, y

a
1 , y

a
2)

)√
λ1 ∈

[
−α(t, ya

1 , y
a
2)
√

∆t, 2
√

λ1 − α1(t, y
a
1 , y

a
2)
√

∆t
]
.

Applying this to the definition of the probabilities in (2.20) and (2.21) one can easily see

that p1 ∈ [0, 1] and p2 ∈ [0, 1].

Once we have constructed the rotated two dimensional tree, we want to use it to price

contingent claims via backward recursion. Hence, we start with calculating the values

of the claim at maturity at each node of the tree and we denote them by gn(ya
1 , y

a
2)

3.

3Notice that typically the option value gi(·) at time ti = 1, . . . , n is given as a function of the interest
rate r (ti,X1(ti),X2(ti)) (and not as we define it of Y) but using X = YU⊤ we can easily transform the
rotated tree back to the original problem and thus w.l.o.g we are allowed to define directly the option
price as a function of the values of Y.
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Next, we assume we have calculated all the claim values at the (i + 1)-th period and now

we want to calculate them at the (i)-th one. In combining the trees, the independence

of the processes allows us to build the new probabilities by simple cross product of the

probabilities of the base processes. Thus, given that at time i the state variables are

(ya
1 , y

a
2) we have that

gi (y
a
1 , y

a
2) =

[
p1p2gi+1

(
ya+

1 , ya+

2

)
+ p1(1 − p2)gi+1

(
ya+

1 , ya−
2

)
(2.22)

+(1 − p1)p2gi+1

(
ya−

1 , ya+

2

)
+ (1 − p1)(1 − p2)gi+1

(
ya−

1 , ya−
2

)]
e−R(t,ya

1 ,ya
2 )∆t

where the interest rate as a function of the new base factors can be written as

R(t, y1, y2) := f(0, t) + (cos ϕy1 + sin ϕy2) + (− sin ϕy1 + cos ϕy2).

We repeat the procedure until we find g0(y1, y2) which is an approximation of the price

of the claim today.

2.4 Construction of a Quadrinomial Tree

Another way to deal with our problem consists of keeping the original underlying processes

dX1(t) = (−κ1X1(t) + ϕ11(t) + ϕ12(t)) dt + σ1dW̃ 1(t) (2.23)

dX2(t) = (−κ2X2(t) + ϕ21(t) + ϕ22(t)) dt + σ2dW̃ 2(t) (2.24)

and directly constructing a quadrinomial tree. For shortness of the notations, let us

denote the drifts of the two processes by ν1(t,X1) := −κ1X1(t) + ϕ11(t) + ϕ12(t) and

ν2(t,X2) := −κ2X2(t) + ϕ21(t) + ϕ22(t).

Next, if we assume that at time t the tree is in state (xa
1, x

a
2) then at time t + ∆t it can

move to the following four states

(
xa+

1 , xa+

2

)
with probability puu

(
xa+

1 , xa−
2

)
with probability pud

(
xa−

1 , xa+

2

)
with probability pdu

(
xa−

1 , xa−
2

)
with probability pdd
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Definition 2.4.1. Let us define the up and down jumps of both process by

xa+

1 := xa
1 +

(
J1(t, x

a
1) + 1

)√
∆tσ1, xa−

1 := xa
1 +

(
J1(t, x

a
1) − 1

)√
∆tσ1

xa+

2 := xa
2 +

(
J2(t, x

a
2) + 1

)√
∆tσ2, xa−

2 := xa
2 +

(
J2(t, x

a
2) − 1

)√
∆tσ2

where

J1(t, x
a
1) :=

{
Z1 if Z1 even,
Z1 + 1 else.

J2(t, x
a
2) :=

{
Z2 if Z2 even,
Z2 + 1 else.

for Z1 := floor
[

ν1(t,xa
1)
√

∆t

σ1

]
and Z2 := floor

[
ν2(t,xa

2)
√

∆t

σ2

]
.

Theorem 2.4.1. If the subsequent probabilities for the (ya
1 , y

a
2) node are given by

puu =
1

4

[
ρσ1σ2 + (J1 − 1)(J2 − 1)σ1σ2 − ν1(t, x

a
1)
√

∆t(J2 − 1)σ2 − ν2(t, x
a
2)
√

∆t(J1 − 1)σ1

σ1σ2

]

pdd =
1

4

[
ρσ1σ2 + (J1 + 1)(J2 + 1)σ1σ2 − ν1(t, x

a
1)
√

∆t(J2 + 1)σ2 − ν2(t, x
a
2)
√

∆t(J1 + 1)σ1

σ1σ2

]

pud =
1

4

[
−ρσ1σ2 − (J1 − 1)(J2 + 1)σ1σ2 + ν1(t, x

a
1)
√

∆t(J2 + 1)σ2 + ν2(t, x
a
2)
√

∆t(J1 − 1)σ1

σ1σ2

]

pdu =
1

4

[
−ρσ1σ2 − (J1 + 1)(J2 − 1)σ1σ2 + ν1(t, x

a
1)
√

∆t(J2 − 1)σ2 + ν2(t, x
a
2)
√

∆t(J1 + 1)σ1

σ1σ2

]

then with the choice of jump heights given in Definition 2.4.1, the tree matches locally

perfectly the first and approximately the second moments of the underlying processes and

in addition, up to terms of order ∆t2 it matches the local covariance between the underlying

processes.

Proof: Denoting the approximated (with the lattice) local mean and variance respectively

with Ê(∆xi) and v̂ar(∆xi), for i = 1, 2 and the true local mean and variance of the

underlying process by E(∆xi) and var(∆xi), for i = 1, 2 we notice that matching the first
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two moments implies that the risk-neutral tree probabilities have to solve

Ê(∆x1) = (puu + pud)(x
a+

1 − xa
1) + (pdu + pdd)(x

a−
1 − xa

1)
!
= E(∆x1) = ν1(t, x

a
1)∆t

(2.25)

Ê(∆x2
1) = (puu + pud)(x

a+

1 − xa
1)

2 + (pdu + pdd)(x
a−
1 − xa

1)
2

!
= E(∆x2

1) = σ2
1∆t + ν1(t, x

a
1)

2∆t2 (2.26)

Ê(∆x2) = (puu + pdu)(x
a+

2 − xa
2) + (pud + pdd)(x

a−
2 − xa

2)
!
= E(∆x2) = ν2(t, x

a
2)∆t

(2.27)

Ê(∆x2
2) = (puu + pdu)(x

a+

2 − xa
2)

2 + (pdu + pdd)(x
a−
2 − xa

2)
2

!
= E(∆x2

2) = σ2
2∆t + ν2(t, x

a
2)

2∆t2 (2.28)

Ê(∆x1∆x2) = ĉov(∆x1∆x2) + Ê(∆x1)Ê(∆x2)

= puu(x
a+

1 − xa
1)(x

a+

2 − xa
2) + pud(x

a+

1 − xa
1)(x

a−
2 − xa

2)

+pdu(x
a−
1 − xa

1)(x
a+

2 − xa
2) + pdd(x

a−
1 − xa

1)(x
a−
2 − xa

2)

!
= E(∆x1∆x2) = σ1σ2ρ∆t + ν1(t, x

a
1)ν(t, xa

2)∆t2 (2.29)

1 = puu + pud + pdu + pdd (2.30)

where ∆x1 and ∆x2 denote the changes in the respective processes x1 and x2 from time

t to time t + ∆t. Ignoring the terms of order ∆t2 in the matching of the correlation and

substituting with the definitions of xa±
1 and xa±

2 we solve equations (2.25), (2.27), (2.29)

and (2.30) for the four unknown probabilities and obtain

puu =
1

4

[
ρσ1σ2 + (J1 − 1)(J2 − 1)σ1σ2 − ν1(t, x

a
1)
√

∆t(J2 − 1)σ2 − ν2(t, x
a
2)
√

∆t(J1 − 1)σ1

σ1σ2

]

pdd =
1

4

[
ρσ1σ2 + (J1 + 1)(J2 + 1)σ1σ2 − ν1(t, x

a
1)
√

∆t(J2 + 1)σ2 − ν2(t, x
a
2)
√

∆t(J1 + 1)σ1

σ1σ2

]

pud =
1

4

[
−ρσ1σ2 − (J1 − 1)(J2 + 1)σ1σ2 + ν1(t, x

a
1)
√

∆t(J2 + 1)σ2 + ν2(t, x
a
2)
√

∆t(J1 − 1)σ1

σ1σ2

]

pdu =
1

4

[
−ρσ1σ2 − (J1 + 1)(J2 − 1)σ1σ2 + ν1(t, x

a
1)
√

∆t(J2 − 1)σ2 + ν2(t, x
a
2)
√

∆t(J1 + 1)σ1

σ1σ2

]

Next, let us calculate the local conditional variances for the already found probabilities
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first for the x1 process:

v̂ar (∆x1) = Ê
(
∆x2

1

)
− Ê (∆x1)

2

= (puu + pud)(x
a+

1 − xa
1)

2 + (pdu + pdd)(x
a−
1 − xa

1)
2 − ν1(t, x

a
1)

2∆t2

=

(
ν1(t, x

a
1)
√

∆t − (J1 − 1)σ1

2σ1

)
(1 + J1)

2∆tσ2
1

+

(
1 − ν1(t, x

a
1)
√

∆t − (J1 − 1)σ1

2σ1

)
(1 − J1)

2∆tσ2
1 − ν1(t, x

a
1)

2∆t

= −J2
1∆tσ2

1 + 2ν1(t, x
a
1)∆t

√
∆tσ2

1J1 − ν1(t, x
a
1)

2∆t + σ2
1∆t

= −(J1

√
∆tσ1 − ν1(t, x

a
1)∆t)2 + σ2

1∆t

and since var (∆x1) = σ2
1∆t we have as in the rotated tree that the local variance is

approximately matched due to the right definition of the J1 process. By symmetry, the

same follows for the x2 process.

Remark 2.4.1. Notice that although the sum of the probabilities is one, they are not

necessarily bounded between 0 and 1. It can however be shown that when we increase the

refinement, the probabilities converge to values between 0 and 1. It is also the case that

the probabilities are not well-defined mostly in extreme cases of high drifts, volatilities and

correlation.

A similar problem is encountered also in the Hull and White [37] 2-factor trinomial tree

construction and also by Brigo and Mercurio [12] in their quadrinomial tree construction.

There are two possible ways to proceed.

The first approach is to change the correlation coefficient at every node where the probabil-

ities are not bounded in [0, 1], until we have well-defined probabilities. Brigo and Mercurio

claim that this procedure although theoretically not consistent is practically applicable as

the correlation has a very negligible contribution to the result.

A second way, (considered by Zvan, Forsyth and Vetzal [67]) is to treat the probabilities

of the tree as weights and neglect that they are not properly defined. In this respect, the
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authors show for a variety of finite difference constructions (although for rather regular

parameters) that the meshes allowing for negative coefficients satisfy discrete maximum

and minimum principles as the mesh size parameter approaches zero and show no obvious

oscillations in the level curves of the priced option values.

In this thesis, we follow the second approach in the construction of the quadrinomial tree,

as at least theoretically we can increase the refinement of the tree until we have well-defined

probabilities.

Lemma 2.4.1. If we let the number of time steps tend to infinity and denote puu
∆t→0−→ p̃uu,

pud
∆t→0−→ p̃ud, pdu

∆t→0−→ p̃du, pdd
∆t→0−→ p̃dd, then we have that p̃uu ∈ [0, 1], p̃ud ∈ [0, 1],

p̃du ∈ [0, 1], p̃dd ∈ [0, 1].

Proof: Recall the definition of J1 and J2

J1(t, x
a
1) :=

{
Z1 if Z1 even,
Z1 + 1 else.

J2(t, x
a
2) :=

{
Z2 if Z2 even,
Z2 + 1 else.

and notice that as 0 is an even number and

Z1 = floor

[
ν1(t, x

a
1)
√

∆t

σ1

]
∆t→0−→ 0

Z2 = floor

[
ν2(t, x

a
2)
√

∆t

σ2

]
∆t→0−→ 0

then we have that

J1(t, x
a
1)

∆t→0−→ 0

J2(t, x
a
2)

∆t→0−→ 0.

Letting the number of time steps go to infinity and using that the correlation ρ ∈ [−1, 1]



42 Chapter 2. Numerical Solutions for the Two-factor Hull-White Models

we find that

puu
∆t→0−→ 1

4
(ρ + 1) ∈ [0,

1

2
]

pdd
∆t→0−→ 1

4
(ρ + 1) ∈ [0,

1

2
]

pud
∆t→0−→ 1

4
(−ρ + 1) ∈ [0,

1

2
]

pdu
∆t→0−→ 1

4
(−ρ + 1) ∈ [0,

1

2
]

Remark 2.4.2. Finally, let us examine the convergence of the probabilities for some

special cases of correlation. At first, let the two processes be perfectly correlated (ρ = 1).

Then we obtain that

puu
∆t→0−→ 1

2
, pdd

∆t→0−→ 1

2

pud
∆t→0−→ 0 , pdu

∆t→0−→ 0

which logically excludes the events where we have a jump-up in one of the trees and a

jump-down of the other one due to the perfect correlation.

Next, we consider the perfect negative correlation case. Here we find

puu
∆t→0−→ 0 , pdd

∆t→0−→ 0

pud
∆t→0−→ 1

2
, pdu

∆t→0−→ 1

2

which by analogy means that the trees are allowed to move only in opposite directions.

The last case is when the trees are uncorrelated (ρ = 0). Here we obtain

puu
∆t→0−→ 1

4
, pdd

∆t→0−→ 1

4

pud
∆t→0−→ 1

4
, pdu

∆t→0−→ 1

4
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Figure 2.2: Mean Reversion in an Adaptive Binomial Tree. Results are taken from a
rotated tree in the direction of the Y1 process where we have set κ1 = κ2 = 60%, σ1 =
σ2 = 0.3%, T = 1, ρ = 0.

which gives equal weights to all four jumps.

Notice that in the previous method for the tree construction we would always have conver-

gence of p1 and p2 to 0.5 as the one-dimensional trees are independent.

Finally, we can conclude that the probabilities are asymptotically well-defined and in-

creasing the number of time steps, we can obtain the right convergence. However, the

rate of this convergence is so slow that practically, the computer memory required to store

the refined tree is often insufficient. This is one reason to prefer the first method where

we have proved that the probabilities are well-defined.

Remark 2.4.3. A very interesting feature of both trees is that the jump-heights are node-

dependent and therefore (at each node) locally determined. This property of the tree allows

self-integration of the mean-reversion feature of the approximated process. For a compar-

ison, in the Hull and White [37] trinomial tree a certain choice of a ”stretch parameter”

jmax has to be done before implementing the algorithm. This parameter is used to change

the branching of the tree (and the respective probabilities) when it expands too much so that

the mean-reversion is reflected. In the typical one-dimensional case, Hull and White [37]

showed that in their trinomial tree construction, the indices of the nodes should not get
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greater than jmax which is calculated to be the smallest integer greater than 0.184/κ∆t

and should not get smaller than −jmax since otherwise the risk-neutral probabilities will

become negative.

We point out here that in the lattice construction methods we have presented so far, no

such external check is needed as this is done internally in the tree construction procedure

by the dependence of the jump heights on the drift parameters. See Figure 2.2.

2.5 Pricing of Path-Dependent Claims via Two - Di-

mensional Trees

2.5.1 General Idea

Let us assume that we are pricing options in a finite time horizon [0, T ] and the options

can have payouts at the discrete time points 0 ≤ T0 < T1 < . . . < Tm = T , where notice

that T0 is not necessarily 0.

Let us further assume that the claims we are pricing have ”strong path-dependence”

in the sense that their value is a function of at least one more independent variable

which accounts for the path-dependence. A typical example for options with strong

path-dependence is the Asian option whose payoff depends on the average value of the

underlying asset until expiry. For the pricing of the Asian option, Rogers and Shi [60]

showed that the so called ”running average” contains all the extra information needed

and they capture it by adding in the pricing PDE a new independent random variable to

account for it. The option value is then a function not only of the underlying processes

but also of this additional random variable.

Pioneers in the pricing of path-dependent options with strong path dependence with a

lattice-based method (called the forward shooting grid(FSG)) are Hull and White [36]

and Ritchken, Sankarasubramanian and Vijh [57]. They used the FSG algorithm in

specific for pricing European or American types of Asian and look-back options. A further

and more systematic framework was presented by Barraquand and Pudet [4] and an

extension of the FSG for pricing Parisian-style options was offered by Avellaneda and
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Wu [3] and Kwok and Lau [44]. The FSG approach is generally characterized by adding

the path-dependence as an auxiliary state vector at each node of the lattice and in contrast

to the finite-difference method, it does not need to deal with the corresponding governing

pricing differential equation. Notice that for some types of complicated path-dependence,

deriving a pricing PDE is not straightforward and in these cases the FSG has an advantage

over the finite-difference method (examples here are the cumulative or consecutive Parisian

barrier options).

Applied to our model, we notice that if we denote the extra variable that accounts for

the path dependence by Z, then for a contingent claim V with strong path dependence

we have

EQ (V (Ti+1)|FTi
) = EQ (V (Ti+1)|X1(Ti), X2(Ti), Z(Ti)) , for i = 0, . . . ,m

which means that although an option with strong path-dependence is not a Markov pro-

cess w.r.t. the underlying processes, it becomes Markovian when we add the information

contained in the last state of the variable accounting for the path-dependence.

This variable Z could be for example the running maximum or minimum of the past Libor

rates, the number of times a barrier has been hit or a variety of other functions of the

Libor rate which we are going to present in the next sections.

Remark 2.5.1. For a comparison, notice that options with ”weak dependence” have

a pricing PDE that can be written only in the underlying variables and time with some

proper boundary conditions. Therefore, using the tree construction method or the finite

difference method does not require the addition of any extra variables. Typical examples

of options with weak path-dependence are the simple Barrier options of the type ”down-

and-in”, ”down-and-out”, ”up-and-in” and ”up-and-out” or the American options.

Let us assume that the values of the state process Z(·) change discretely at the payout

time points 0 ≤ T0 < T1 < . . . < Tm = T . In order to be able to estimate the value of Z,

we need an initializing function Zinit(t,X1, X2) that gives us the start value of the process

and a change function Znext(t,X1, X2, Zpast) that gives us the jump of the Z-process at
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each payout point. Referring to Wilmott [63], we define the evolution of the Z-process by

the following steps

➩ Initialize Z

Z(T0) := Zinit(T0, X1(T0), X2(T0)) (2.31)

➩ Change Z at each time point T1, . . . , Tm

Z(Ti) := Znext (Ti, X1(Ti), X2(Ti), Z(Ti−1)) , i = 1, . . . ,m (2.32)

➩ Keep the value of Z for t ∈ [Ti, Ti+1), i = 0, . . . ,m

Z(t) := Z(Ti) (2.33)

With the latter construction of the state process Z we can easily price path-dependent

claims with a Monte Carlo simulation. In the next Section, we shall present several

financial instruments with strong path dependence contingent on the interest rate and for

each of them we shall define the appropriate path-dependent variable Z and its initializing

and renewing functions.

As the tree construction is an approximation of a continuous distribution, due to no-

arbitrage reasons we need the following requirement:

V
(
T−

i , X1(Ti), X2(Ti), Z(T−
i )

)
= V

(
T+

i , X1(Ti), X2(Ti), Znext(Ti, X1(Ti), X2(Ti), Z(T−
i )

)

(2.34)

for i = 1, . . . ,m and where T−
i denotes the time infinitesimally before Ti and T+

i denotes

the time infinitesimally after Ti.

This requirement is called a ”Jump Condition due to an update of Z” and is a simple

reflection of the fact that as we get closer to a point where the value of the Z-process will

be updated, due to the continuity of the underlying process (between two payoff points)
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and the deterministic rule of an update of Z, we become aware of the value of Z after an

update. Thus, the information about the future value of Z will already be incorporated

in the price of the contingent claim and since no money will really ”change hands” at an

update point, there can also be no jump in the price of the option (see Zhu and Stokes [66]

or Wilmott [63] for more details).

Notice that in (2.34) we have implicitly assumed that the value of the basis processes

does not change in the interval [T−
i , T+

i ] for all i = 1, . . . ,m and thus we can write

X1(T
−
i ) = X1(T

+
i ) = X1(Ti) and X2(T

−
i ) = X2(T

+
i ) = X2(Ti) for i = 1, . . . ,m. We keep

this assumption until the end of this work.

On the other side, due to simple no-arbitrage considerations notice that the value of the

option does change (or jump) in the case of payoffs at discrete time points (see Forsyth,

Vertzal and Zvan [28] or again Wilmott [63]). Thus, we require that

V
(
T−

i , X1(Ti), X2(Ti), Z(T+
i )

)
= V

(
T+

i , X1(Ti), X2(Ti), Z(T+
i )

)

+Payout
(
T+

i , X1(Ti), X2(Ti), Z(T+
i )

)
(2.35)

which is usually also called a ”Jump condition due to Payout”.

Now comes the question to apply both conditions to the tree procedure.

To answer it, let us first assume that the discretization of the time interval [0, T ] needed

for the tree construction consists of n time steps 0 ≤ t0 < t1 < . . . < tn = T such that n

is generally much bigger than m. Let us also assume for simplicity (which is relaxed in

the practical application) that there is always a time step of the tree on all payout points

i.e. we assume that the time slices of the tree can be written as T0 = t0 < . . . < tk =

T1 < . . . < tmp = Tm where p = n
m

with p ∈ N.

Range of Z :

While constructing the tree, we notice that various different paths lead to each node and

to each of them corresponds a different value of the Z variable that accounts for the path-

dependence of the option. Notice that after n time steps the different values of Z in a

single node will be equal to the total number of paths that lead to the specific node. Since

it is impossible to keep track of all of these values for a big number of discretization steps
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n, we choose to keep at each node only the range of the Z-values (i.e. the smallest and

the biggest value of Z attained in a given node) and then partition the obtained interval

into a finite number of points in which the option value will be computed.

2.5.2 Forward Construction of the Tree

We calculate the range of the Z variable in the forward construction of the tree where

we assume, without loss of generality (as this will be the case of all path dependent

options we will present in the next section and later price) that Znext(t,X1(t), X2(t), Zold)

is monotonously increasing in Zold. In addition, we make a difference between its values

before an update at time t which we denote again with Z(t−) and after an update at time

t which we denote with Z(t+) where t− is a time instance infinitesimally before time t

and t+ is a time instance infinitesimally after time t. Hence, we construct the range of

the Z-variable for all tj = 0, . . . , n in the following way:

➩ Initialize Z in t0:

Zmin(t−0 ) = Zmax(t
−
0 ) = Zinit (t0, X1(t0), X2(t0))

Zmin(t+0 ) = Zmax(t
+
0 ) = Zinit (t0, X1(t0), X2(t0)) .

➩ Point of a no-update of the value of Z, i.e. when tj 6= Ti, for i = 1, . . . ,m, j =

1, . . . , n, then the range of Z before a jump in node (∗) is given by [Zmin(t−j )∗, Zmax(t
−
j )∗]

such that

Zmax(t
−
j )∗ = max (Zmax(tj−1) of all nodes in tj−1 that lead to node (∗))

Zmin(t−j )∗ = min (Zmin(tj−1) of all nodes in tj−1 that lead to node (∗))

and its range after an update is given by [Zmin(t+j ), Zmax(t
+
j )] such that

Zmax(t
+
j )∗ = Zmax(t

−
j )∗

Zmin(t+j )∗ = Zmin(t−j )∗.
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Figure 2.3: One-dimensional Binomial Tree Example.

➩ Point of an update in the value of Z, i.e. when tj = Ti, for i = 1, . . . ,m, j =

1, . . . , n. First, we have to again find the range of Z before an update in node (∗)
which is given by [Zmin(t−j )∗, Zmax(t

−
j )∗] using

Zmax(t
−
j )∗ = max

(
Zmax(t

+
j−1) of all nodes in tj−1 that that lead to node (∗)

)

Zmin(t−j )∗ = min
(
Zmin(t+j−1) of all nodes in tj−1 that that lead to node (∗)

)

but then the range of Z in node (∗) after an update is given by [Zmin(t+i )∗, Zmax(t
+
i )∗]

such that

Zmin(t+i )∗ = Znext

(
ti, X

∗
1 (ti), X

∗
2 (ti), Zmin(t−i )∗

)

Zmax(t
+
i )∗ = Znext

(
ti, X

∗
1 (ti), X

∗
2 (ti), Zmax(t

−
i )∗

)
.

Thus, at each node we keep track of the maximum and minimum value of the Z process

that has been attained at that node.

Example 2.5.1. To illustrate the method of estimating the range of a path-dependent

variable Z we consider a simple one-dimensional binomial tree with discretization n = 2

and the specific nodes as denoted in Figure 2.3. Assume further that there is a change in

the Z process only at time t2. We proceed as follows:
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1). At time t = t0 node A:

Zmax(t
−
0 ) = Zmin(t−0 ) = Zmax(t

+
0 ) = Zmin(t+0 ) = Zinit (t0, X1(t0), X2(t0))

2). At time t = t1 node B:

Zmax(t
−
1 )B = Zmax(t

−
0 )A

Zmin(t−1 )B = Zmin(t−0 )A

Zmax(t
+
1 )B = Zmax(t

−
1 )B

Zmin(t+1 )B = Zmin(t−1 )B

by analogy for node C.

3). At time t = t2 node D:

Zmax(t
−
2 )D = Zmax(t1)

B

Zmin(t−2 )D = Zmin(t1)
B

Zmax(t
+
2 )D = Znext

(
t2, X1(t2)

D, X2(t2)
D, Zmax(t

−
2 )D

)

Zmin(t+2 )D = Znext

(
t2, X1(t2)

D, X2(t2)
D, Zmin(t−2 )D

)

and by analogy for node F. Notice that for node E:

Zmax(t
−
2 )E = max

(
Zmax(t1)

B, Zmax(t1)
C
)

Zmin(t−2 )E = min
(
Zmin(t1)

B, Zmin(t1)
C
)

Zmax(t
+
2 )E = Znext

(
t2, X1(t2)

E, X2(t2)
E, Zmax(t

−
2 )E

)

Zmin(t+2 )E = Znext

(
t2, X1(t2)

E, X2(t2)
E, Zmin(t−2 )E

)
.

Remark 2.5.2. Notice that if we were keeping the values of Z, then for a single node we

would have

Z(t−j ) = Z(t+j−1)
∗ for all j = 1, . . . , n (2.36)
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for all the four states at time tj stemming from node (∗) due to the construction of Z

(recall (2.33)) and also

Z(t+j ) = Znext

(
tj, X1(tj), X2(tj), Z(t−j )

)
if tj = Ti for j = 1, . . . , n, i = 1, . . . ,m

(2.37)

Z(t+j ) = Z(t−j ) if tj 6= Ti for j = 1, . . . , n, i = 1, . . . ,m. (2.38)

2.5.3 Backward Recursion

In the backward procedure, at each node we discretize the intervals [Zmax, Zmin] for both

before and after jump values into K ∈ N equidistant subintervals and denote the k-th

point by Zk with

Zk = Zmin + k
Zmax − Zmin

K
, k = 0, . . . , K.

Adopting the notation V (t−, X1(t
−), X2(t

−), Z(t−)) for the value of the claim at time t−

infinitesimally before t and V (t+, X1(t
+), X2(t

+), Z(t+)) for its value at time t+ infinitesi-

mally after t, we notice that in order to take into account both ”Jump Conditions” (2.34)

and (2.35) we need to combine the tree construction schemes of Figure 2.4 a.) and b.)

and thus obtain Figure 2.4 c.).

More precisely, in the backward tree construction we go through the following steps:

A. Find the value V (t−n , X1(tn), X2(tn), Zk(t
+
n )) of the option at maturity tn = Tm = T

for all k = 0, . . . , K using

V
(
t−n , X1(tn), X2(tn), Zk(t

+
n )

)
= Terminal Payout

(
tn, X1(tn), X2(tn), Zk(t

+
n )

)
, k = 0, . . . , K

if there is a final payout at maturity or using

V
(
t−n , X1(tn), X2(tn), Zk(t

+
n )

)
= 0, k = 0, . . . , K

if there is no payout at maturity.

B. For j = n, . . . , 0
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(a) Backward tree construction procedure in the case of a ”Jump Condition due to Pay-
out” (2.34).
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(b) Backward tree construction procedure in the case of a ”Jump Condition due to an
update of Z” (2.35).
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(c) Backward tree construction procedure in the case of both ”Jump Condition due to an
update of Z” (2.35) and ”Jump Condition due to Payout” (2.34).

Figure 2.4: Backward Tree Construction Scheme.
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1. a) If tj is a point of an update of Z, due to (2.34) we have that

V
(
t−j , X1(t

−
j ), X2(tj), Zk(t

−
j )

)

= V
(
t−j , X1(tj), X2(tj), Znext

(
tj, X1(tj), X2(tj), Zk(t

−
j )

))

for all k = 0, . . . , K and thus we can find the option values before a change in

the Z-process from the option values after an update of the Z-process (which

is found in step A.) by interpolation (see Remark 2.5.3).

b) If tj is not an update point of Z, then Zk(t
+
j ) = Zk(t

−
j ), k = 1, . . . , K and

V
(
t−j , X1(tj), X2(tj), Zk(t

−
j )

)
= V

(
t−j , X1(tj), X2(tj), Zk(t

+
j )

)
, k = 0, . . . , K.

2. Assuming that at time tj−1 we are in node (∗), due to (2.36) we have

Zk(t
−
j )∗uu = Zk(t

−
j )∗ud = Zk(t

−
j )∗du = Zk(t

−
j )∗dd = Zk(t

+
j−1)

∗, k = 0, . . . , K

for all four subsequent nodes and thus

V
(
t+j−1, X1(tj−1)

∗, X2(tj−1)
∗, Zk(t

+
j−1)

∗)

= puuV
(
t−j , X1(tj)

∗uu, X2(tj)
∗uu, Zk(t

+
j−1)

∗)

+pudV
(
t−j , X1(tj)

∗ud, X2(tj)
∗ud, Zk(t

+
j−1)

∗)

+pduV
(
t−j , X1(tj)

∗du, X2(tj)
∗du, Zk(t

+
j−1)

∗)

+pddV
(
t−j , X1(tj)

∗dd, X2(tj)
∗dd, Zk(t

+
j−1)

∗) , k = 0, . . . , K.

(2.39)

Recall that we have only estimated in step A.1) the option value V
(
t−j , ·, ·, ·

)
only

for the equidistant points Zk(t
−
j ) = Zmin(t−j ) + k

Zmax(t−j )−Zmin(t−j )

K
, k = 0, . . . , K. It

may thus happen that we do not have V
(
t−j , ·, ·, ·

)
exactly for the value of Zk(t

+
j−1)

∗

and we will need to linearly interpolate between the available values in order to

calculate (2.39).
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3. Next,

a) If tj−1 is a payout point, due to (2.35) we have that

V
(
t−j−1, X1(tj−1), X2(tj−1), Zk(t

+
j−1)

)

= V
(
t+j−1, X1(tj−1), X2(tj−1), Zk(t

+
j−1)

)

+Payout
(
t+j−1, X1(tj−1), X2(tj−1), Zk(t

+
j−1))

)
, k = 0, . . . , K.

Move to the previous timeslice (step B.).

b) If tj−1 is not a payout point, then

V
(
t−j−1, X1(tj−1), X2(tj−1), Zk(t

+
j−1)

)

= V
(
t+j−1, X1(tj−1), X2(tj−1), Zk(t

+
j−1)

)
, k = 0, . . . , K.

Move to the previous timeslice (step B.).

The final result (or the approximated price of the option) is given by V
(
t−0 , X1(t0), X2(t0), Zk(t

−
0 )

)
,

k = 0, . . . , K where since Zmax(t
−
0 ) = Zmin(t−0 ) we have that also Z0(t

−
0 ) = . . . = ZK(t−0 )

and therefore

V
(
t−0 , X1(t0), X2(t0), Z0(t

−
0 )

)
= . . . = V

(
t−0 , X1(t0), X2(t0), ZK(t−0 )

)
.

Remark 2.5.3. In point B1.a) in the backward recursion, let us assume that at time

tj we are at node
(
x∗

1, x
∗
2, Z(t+j )∗

)
for which the Z-process has the range before a change

[
Zmin(t−j )∗, Zmin(t−j )∗

]
and there is also a jump of Z at that point. Then, due to the

”Jump condition due to an update of Z” in (2.34) we require that

V
(
t−j , X∗

1 , X
∗
2 , Zk(t

−
j )∗

)
= V

(
t−j , X∗

1 , X
∗
2 , Znext

(
tj, X

∗
1 , X

∗
2 , Zk(t

−
j )∗

))
, k = 1, . . . , K.

(2.40)

It is now possible that the value of the option after a change in Z exactly for Znext

(
tj, X

∗
1 , X

∗
2 , Zk(t

−
j )∗

)

has not been calculated. However, as a consequence of the monotonicity of the renewing

function Znext(·) in Zold we would have that

Znext

(
tj, X

∗
1 , X∗

2 , Zk(t
−
j )∗

)
∈

[
Znext

(
tj, X

∗
1 , X∗

2 , Zmin(t−j )∗
)
, Znext

(
tj, X

∗
1 , X

∗
2 , Zmax(t

−
j )∗

)]
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and due to the right construction of the range of Z we would also have that

[
Znext

(
tj, X

∗
1 , X

∗
2 , Zmin(t−j )∗

)
, Znext

(
tj, X

∗
1 , X∗

2 , Zmax(t
−
j )∗

)]
⊂

[
Zmin(t+j )∗, Zmax(t

+
j )∗

]
.

As a result, the price of the contingent claim for values of Z slightly smaller and slightly

bigger than Znext

(
tj, X

∗
1 , X

∗
2 , Zk(t

−
j )∗

)
will be available4. Linearly interpolating between

then, using the normalized distances as weights, we can get the required value of the

option before a jump in the Z-process at time tj.

Remark 2.5.4. For analysis of the propagation of the interpolation error and its conver-

gence as the time step tends to zero, we refer to Barraquand and Pudet [4] or Forsyth,

Vetzal and Zvan [28].

2.5.4 Example 1: AutoCap

An AutoCap, also called a ”flexible cap” or a ”limit cap” is similar to a Cap, with the

additional feature that it allows at most γ ≤ m, γ ∈ N Caplets to be exercised over the

lifetime of the option and they have to be automatically exercised when in the money.

Notice that m denotes the total number of possible Caplets in the lifetime of the option.

Definition 2.5.1. At the end of a period i, an AutoCap Option is defined to have the

following payoff

Ni(ti − ti−1)ri

for a given deterministic notional value Ni, i = 1, . . . ,m and where

ri :=
(
L

(
ti−1, ti

)
− Ki

)+
1{Ai<γ}, i = 0, . . . ,m

with L (ti−1, ti) denoting the Libor rate, set at time ti−1 for a delivery at time ti and Ki,

i = 1, . . . ,m are given deterministic strike prices. The number of Caplets that have been

exercised before period i is defined as

Ai :=
∑

j<i

1{L(tj ,tj+1)>Kj}.

4Since we have divided the range of Z into K equidistant intervals, we interpolate between the closest
values in the discretization. We will notice later that for some of the options with complicated path-
dependence, the refinement of the discretization of Z will play an important role in the convergence of
the approximated option value to its true price.
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Thus, the total discounted (until time 0) payoff of the AutoCap can be written as

m∑

i=1

Ni(ti − ti−1)
(
L(ti−1, ti) − Ki

)+
D(0, ti)1{Ai<γ}.

for D(0, ti) denoting the proper discount rate for a payoff at time ti.

Remark 2.5.5. Recall for comparison that the discounted payoff of a simple Cap is given

by

m∑

i=1

N(ti − ti−1)
(
L(ti−1, ti) − K

)+
D(0, ti).

from where one can easily notice the resemblance with the AutoCap.

The construction of the Z-variable is as follows:

Zinit (t0, X1(t0), X2(t0)) := 0

Znext (ti, X1(ti), X2(ti), Zold) :=

{
Zold + 1 if L (ti−1, ti; X1(ti), X2(t2)) > si,
Zold else

where the Libor rate is given by

L(ti−1, ti; X1(ti), X2(t2)) =
1

ti − ti−1

(
1

Bond (ti−1, ti, X1(ti), X2(ti))
− 1

)

with the bond price as calculated in (2.13). Notice that we have chosen for a state Z-

variable the number of exercised Caplets. Afterwards, the payoff of the AutoCap can

easily be reconstructed with the help of the value of Z.

2.5.5 Example 2: Ladder Swap

Definition 2.5.2. A Ladder Swap is a financial product that has at the end of each period

i the following payoff

Ni(ti − ti−1)ri

for some given notional values N0, . . . , Nm and where the path-dependent random variable

ri is defined as follows:

r0 := s0

ri := ri−1 + si − L(ti−1, ti), i = 1, . . . ,m
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for given rates s0, . . . , sm fixed in advance and where L(ti−1, ti) denotes the Libor rate, set

at time ti−1 for a delivery at time ti.

The sum of all discounted (until time 0) payouts of the Ladder Swap can be written as

m∑

i=1

Ni(ti − ti−1)

(
s0 +

i∑

j=1

(sj − L (tj−1, tj))

)
D(0, ti)

or equivalently as

m∑

i=1

Ni(ti − ti−1)

(
i∑

j=0

sj −
i∑

j=1

L (tj−1, tj)

)
D(0, ti)

where we can notice that at the end of each period i there is an exchange of the ac-

cumulated until time ti fixed rate
∑i

j=0 sj for the accumulated until time ti Libor rates
∑i

j=0 L (tj−1, tj). Notice for comparison that the discounted payoff of a ”Receiver Forward

Swap” is given by

m∑

i=1

N(ti − ti−1) (S − L (ti−1, ti)) D(0, ti)

where we have again an exchange of a fix for floating rate.

The construction of the Z-variable is as follows:

Zinit (t0, X1(t0), X2(t0)) := s0

Znext (ti, X1(ti), X2(ti), Zold) := Zold + si − L(ti−1, ti; X1(ti), X2(t2)).

which means that we choose the value of the ri to be our additional state variable Z.

2.5.6 Example 3: Ratchet Cap

A Ratchet option (or cliquet option) is a series of consecutive forward start options. The

first is active immediately. The second becomes active when the first expires, etc. Each

option is struck at-the-money when it becomes active. The effect of the entire instrument

is an option that periodically ”locks in” profits. Ratchet features can be incorporated

into different structures. For example, there are Ratchet caps or Ratchet floors. In this

thesis, we will deal only with pricing of a Ratchet cap.
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Definition 2.5.3. A Ratchet Cap is a financial product that has at the end of each period

i the following payoff

Ni(ti − ti−1)ri

for some given notional values N0, . . . , Nn. The path-dependent random variable ri is

defined as

r0 := d0

ri := min (L(ti−1, ti), ri−1 + di) , i = 1, . . . ,m

for given steps d0, . . . , dm fixed in advance and where L(ti−1, ti) denotes the Libor rate set

at time ti−1 for a delivery at time ti.

The construction of the Z-variable is as follows:

Zinit (t0, X1(t0), X2(t0)) := d0

Znext (ti, X1(ti), X2(ti), Zold) := min {Zold + di, L (ti−1, ti; X1(ti), X2(t2))} .

where again we have chosen for a state variable the ri-process.

2.5.7 Example 4: Target Redemption Note

The target redemption note is an index linked note that provides a guaranteed sum of

coupons (target cap) with the possibility of early termination. In a typical structure,

the first coupon payment is fixed. The subsequent coupons are calculated based on an

inverse floating Libor / Euribor formula. Once the accumulated coupons have reached

the pre-specified target cap, the note will be terminated with final payment of the par.

This kind of structured products enjoyed great popularity among Asian investors when

the interest rates were at a low level in the early 2000’s. The major source of risk stems

from the uncertainty of the termination date of the note, which is the earlier of the pre-

specified note’s maturity date or the coupon payment date when the accumulated coupons

reach the target sum.
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Respectively, the pricing model of the Target Redemption Note is characterized by the

uncertain knock-out feature, where the knock-out criterion depends on a path dependent

state variable defined by the running accumulated coupon sum. In this sense, the Target

Redemption Note resembles an Asian barrier option where the knock-out is also deter-

mined by a path dependent variable defined by the weighted sum of the underlying equity

values.

In some simplified cases, such as a one-factor model for the interest rate and single coupon

date, it is possible to obtain closed form valuation formula for the note value by decom-

posing its value into a sum of discount bonds and a European put option (see Chu and

Kwok [22]).

Definition 2.5.4. A Target Redemption Note is a financial product that has at the end

of each period i the following payoff

Ni(ti − ti−1)ri

for some given notional values N0, . . . , Nm and where the path-dependent random variable

ri is defined as follows:

r0 := s0

ri :=

{
si − L(ti−1, ti) if

∑i
j=0 rj < F,

0 else

for given steps s0, . . . , sm fixed in advance, given target value F ∈ R and where L(ti−1, ti)

denotes the Libor rate set at time ti−1 for a delivery at time ti.

Thus, the total discounted payoff of the target redemption note can be written as

m∑

i=1

Ni(ti − ti−1)riD(0, ti).

The construction of the Z-variable is as follows:

If we denote Yi := si − L (ti−1, ti; X1(ti), X2(ti)) then

Zinit (t0, X1(t0), X2(t0)) := s0

Znext (ti, X1(ti), X2(ti), Zold) := Zold + Yi, i = 1, . . . ,m
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which means that we choose for a variable Z the running accumulated coupon sum. With

the help of it, we can construct also the ri-value as

r (t0, X1(t0), X2(t0)) := s0

r (ti, X1(ti), X2(ti)) :=

{
Yi if Z (ti, X1(ti), X2(ti)) < F,
0 else

and the discounted until time 0 payoff at time ti of the Target Redemption Note can then

be written as

Ni(ti − ti−1)r (ti, X1(ti), X2(ti)) D(0, ti)

2.6 Numerical Results

In this section, we will price several financial instruments. We assume an initial term

structure such that P (0, t) = e−r0t with r0 = 0.04. First, we will price with the lattice a

simple coupon bond in order to check whether the tree discounts correctly a simple claim.

The coupon bond has a maturity of 4 years and yearly coupons of 1 unit. Its price at

time 0 can be written as

4∑

i=1

P (0, ti), where ti = 1, 2, 3, 4.

Assuming a flat initial term structure, its price can be estimated to be 3.62297.

Next, we price a European bond option with maturity t0 > 0 on a bond with maturity t1

and having a payoff at maturity t0 of (P (t0, t1) − K)+ , t1 > t0 for some strike K. We

set t0 to 1 year, t1 to 5 years and the strike K = 0.04. We compare the result with the

closed-form solution in Theorem 2.2.1.

Further, we price a Caplet resetting at time t0 with maturity t1 > t0 and having a payoff

at time t1 of (L(t0, t1) − K)+ (t1 − t0) , t1 > t0 for some strike K. We set t0 to 1 year, t1

to 5 years and the strike K = 0.04. We compare the result with the closed-form solution

in Theorem 2.2.2

Finally, we price all types of path-dependent options presented in the previous section

where we set their maturity to be 5 years, m = 5, ti − ti−1 = 1 for all i = 1, . . . , 5 and for
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the notional values we set N0 = N1 = 0 and N1 = . . . = N5 = 1 which mean that their

first payout is at time T2 .

In addition, the option specific parameters are set for now as follows:

For the AutoCap:

γ = 3

K0 = K1 = 0

K2 = . . . = K5 = 0.04.

For the Ladder Swap:

s0 = s1 = 0

s2 = . . . = s5 = 0.04.

For the Ratchet Cap:

d0 = d1 = d2 = 0

d3 = . . . = d5 = 0.01.

For the Target Redemption Note:

s0 = s1 = 0

s2 = . . . = s5 = 0.04

F = 0.10

For comparison purposes we shall perform Monte Carlo simulations with 500 time steps

and 200000 paths for both processes.

The errors are cited in basic points (i.e. multiplied with 10000) and thus are defined as

(MC(Analytical)Price - Tree Price)*10000. We denote by N the number of time steps in

the tree construction and by Z the number of points in the discretization of the additional

variable Z. We change the volatilities, the mean-reversion rates and the correlation of the

base processes.
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Example 1 : Very Small Volatility Parameters:

Coupon Bond with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Analytical Tree Rotation error Quadrinomial Tree error

50 0.08 2 3.62297001 3.6229710 -0.00989 3.6229713 -0.01289
100 0.04 2 3.62297001 3.6229705 -0.00489 3.6229707 -0.00689
150 0.0266 2 3.62297001 3.6229703 -0.00289 3.6229705 -0.00489
200 0.02 2 3.62297001 3.6229702 -0.00238 3.6229703 -0.00289

Coupon Bond with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Analytical Tree Rotation error Quadrinomial Tree error

50 0.08 2 3.62297001 3.62297317 -0.0316 3.62297315 -0.0315
100 0.04 2 3.62297001 3.62297159 -0.0158 3.62297158 -0.0157
150 0.0266 2 3.62297001 3.62297106 -0.0105 3.62297105 -0.0104
200 0.02 2 3.62297001 3.62297079 -0.0078 3.62297079 -0.0078

European Call Bond Option with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Analytical Tree Rotation error Quadrinomial Tree error

50 0.08 2 0.780299176 0.780299196 -0.000200 0.780299222 -0.00046
100 0.04 2 0.780299176 0.780299185 -0.000090 0.780299199 -0.00023
150 0.0266 2 0.780299176 0.780299182 -0.000060 0.780299191 -0.00015
200 0.02 2 0.780299176 0.780299181 -0.000048 0.780299188 -0.00012

Caplet with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Analytical Tree Rotation error Quadrinomial Tree error

50 0.08 2 1.1082836e-002 1.108239306e-002 0.00443 1.108275882e-002 0.00078
100 0.04 2 1.1082836e-002 1.108268437e-002 0.00152 1.108279144e-002 0.00045
150 0.0266 2 1.1082836e-002 1.108271527e-002 0.00121 1.108278169e-002 0.00055
200 0.02 2 1.1082836e-002 1.108274682e-002 0.00090 1.108280284e-002 0.00034

Caplet with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Analytical Tree Rotation error Quadrinomial Tree error

50 0.08 2 1.1213899e-002 1.121669148e-002 -0.02792 1.121430021e-002 -0.00401
100 0.04 2 1.1213899e-002 1.121540741e-002 -0.01508 1.121413883e-002 -0.00239
150 0.0266 2 1.1213899e-002 1.121344029e-002 0.00459 1.121401645e-002 -0.00117
200 0.02 2 1.1213899e-002 1.121456900e-002 - 0.0067 1.121404101e-002 -0.00142
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AutoCap (Path-dependent) with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 3.90479e-003 3.8411939e-003 0.64 3.9001881e-003 0.0460
100 0.04 2 3.90479e-003 3.8971497e-003 0.08 3.9010158e-003 0.0374
150 0.0266 2 3.90479e-003 3.9048011e.003 -0.00011 3.8961161e-003 0.085

AutoCap (Path-dependent) with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 5.4499854e-003 5.5561257e-003 -1.0612 5.46149314e-003 -0.1150
100 0.04 2 5.4499854e-003 5.4336662e-003 0.1632 5.43083113e-003 0.1915
150 0.0266 2 5.4499854e-003 5.4089610e.003 0.4102 5.43404719e-003 0.1594

Target Redemption Note (Path-dependent) with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 -2.837077e-003 -2.82245635e-003 -0.1462 -2.82207981e-003 -0.1499
100 0.04 2 -2.837077e-003 -2.82250247e-003 -0.1457 -2.82231464e-003 -0.1476
150 0.0266 2 -2.837077e-003 -2.82230841e-003 -0.1477 -2.83252200e-003 -0.0456

Target Redemption Note (Path-dependent) with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 -2.8665385e-003 -2.82232619e-003 -0.4421 -2.82227836e-003 -0.4426
100 0.04 2 -2.8665385e-003 -2.82338856e-003 -0.4315 -2.82282161e-003 -0.4372
150 0.0266 2 -2.8665385e-003 -2.92704178e-003 0.6050 -2.893116347e-003 0.2658

Ratchet Cap (Path-dependent) with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 5.047297e-002 5.0474014e-002 -0.01 5.04744031-002 -0.01
100 0.04 2 5.047297e-002 5.0474006e-002 -0.01 5.0474014e-002 -0.01
150 0.0266 2 5.047297e-002 5.0474006e-002 -0.01 5.0474012e-002 -0.01

Ratchet Cap (Path-dependent) with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 5.0470901e-002 5.04740498e-002 -0.03148 5.04740507e-002 -0.03149
100 0.04 2 5.0470901e-002 5.04740103e-002 -0.03119 5.04740207e-002 -0.03119
150 0.0266 2 5.0470901e-002 5.04740182e-002 -0.03117 5.04740185e-002 -0.03117



64 Chapter 2. Numerical Solutions for the Two-factor Hull-White Models

Ladder Swap Option (Path-dependent) with ρ = −0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.04 2 1.351349e-001 1.3515803e-001 -0.2313 1.3515881e-001 -0.2391
100 0.08 2 1.351349e-001 1.3515797e-001 -0.2307 1.3515835e-001 -0.2345
150 0.0266 2 1.351349e-001 1.3515821e-001 -0.2331 1.3515847e-001 -0.2357

Ladder Swap Option (Path-dependent) with ρ = 0.7

σ1 = 0.2%, σ2 = 0.3%, κ1 = 90%, κ2 = 30%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.04 2 1.3507154e-001 1.3517148e-001 -0.999 1.3517159e-001 -1.000
100 0.08 2 1.3507154e-001 1.3517102e-001 -0.994 1.3517107e-001 -0.995
150 0.0266 2 1.3507154e-001 1.3517151e-001 -0.999 1.3517155e-001 -1.000

And for some other parameter values

AutoCap (Path-dependent) with ρ = 0.98

σ1 = 0.5%, σ2 = 0.4%, κ1 = 80%, κ2 = 60%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 7.7397869e-003 7.9309435e-003 -1.91 7.8554489e-003 -1.14
100 0.04 2 7.7397869e-003 7.759374e-003 -0.20 7.7681009e-002 -0.28
150 0.0266 2 7.7397869e-003 7.8000845e-003 -0.60 7.7833874e-002 -0.43

Auto Cap (Path-dependent) with ρ = −0.98

σ1 = 0.5%, σ2 = 0.4%, κ1 = 80%, κ2 = 60%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 2.3047699e-003 2.2990304e-003 0.06 2.3392384e-003 -0.32
100 0.04 2 2.3047699e-003 2.3022782e-003 0.02 2.3255449e-003 -0.21
150 0.0266 2 2.3047699e-003 2.3004871e-003 0.0428 2.3064832e-003e -0.017

The results exhibit that both methods perform almost equally well for very small volatility

parameters with errors in most of the cases smaller than one base point. We remark here that

for the upper parameter values, the probabilities in the quadrinomial tree are well-defined, i.e.

in [0, 1] and the differences between the two tree constructions are mostly due to numerical

errors. Further, we notice only a negligible difference in the performance of the methods due to

a positive or negative correlation between the basis factors X1 and X2.

Example 2: Higher Volatility Parameters:

On the other side, it can also be observed that for higher volatility parameters the performance

of the quadrinomial tree is worse than the rotated one. This effect is observed exclusively in the
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case of negative correlation between the base factor. To demonstrate it, we give as an example

the Target Redemption Note for σ1 = 7%, σ2 = 5%, κ1 = 40%, κ2 = 50%, ρ = −0.9 where we

obtain the following results:

Target Redemption Note (Path-dependent) with ρ = −0.9

σ1 = 7%, σ2 = 5%, κ1 = 40%, κ2 = 50%

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

25 0.16 2 -1.2859698e-002 -1.21752837e-002 6.844 -1.13128957e-002 12.468
50 0.08 2 -1.2859698e-002 -1.29474606e-002 -0.878 -9.89736977e-003 29.623
75 0.053 2 -1.2859698e-002 -1.20955741e-002 7.641 -1.05767920e-002 22.829
100 0.04 2 -1.2859698e-002 -1.27701130e-002 0.893 -1.29176814e-002 0.579

which are also plotted in Figure 2.5.

Notice that the results of the Target Redemption Note are very sensitive to the values of the extra

variable Z and its discretization and (especially in the case of the quadrinomial tree) converge

to the MC price with the increase of its refinement (Figure 2.5b)). Additionally, in Figure

2.7 a) and b) we have plotted a section of the two-dimensional tree for both tree construction

methods, taken at the 25-th time slice with n = 50 (in the pricing of a Target Redemption Note

with the upper parameters). For the quadrinomial tree, it is easy to see on Figure 2.7 a) that

there is a strong oscillation of the option price for small values of X1 and X2 due to unbounded

probabilities. Whereas the solution surface of the rotated tree remains well-behaved.

In addition, we have plotted in Figure 2.7 c) and d) the projection of the respective solution

surfaces in 2.7 a) and b) on the X1/X2 plane. Notice that Figure 2.7 d) clearly reflects the

idea of rotation of the base processes. Whereas the grid of the quadrinomial tree is very regular

(equidistant). Note that due to the small mean-reversion parameters there is no ”contraction”

of the quadrinomial tree (i.e. we have always I = J = 0).

Further, we have plotted a projection of the payoff from Figure 2.7 b) on the plane of the new

independent variables Y1 and Y2 in Figure 2.8. We can conclude that due to the resulted scaling,

the mean-reversion plays a role and as a result there are no points in the grid for very high values

of Y1 and very low of Y2 and vice versa. This causes on its turn in the X1/X2 plane projection

of the Rotated tree ”fatter” long sides for middle value of X1 and X2 and ”thinner” long sides

for the rest of their values.
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Figure 2.5: Target Redemption Note (approximated) prices for σ1 = 7%, σ2 = 5%, κ1 =
40%, κ2 = 50%, ρ = −0.9.
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Figure 2.6: AutoCap (approximated) prices. Discretization of Z=2.
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As an additional example, we price the AutoCap option for the parameter cases σ1 = σ2 =

30%, κ1 = 70%, κ2 = 80%, ρ = −0.8 and σ1 = 70%, σ2 = 40%, κ1 = 0.5%, κ2 = 80%, ρ =

−0.8. The results are plotted in Figure 2.6. The AutoCap tree results (in both cases) show no

sensitivity to the refinement of the Z-discretization for which reason we have set its refinement

to 2. In these two additional examples, we observe again a smaller error in the rotated tree

compared to the quadrinomial one.

Example 3: One Extreme Case of High Volatilities and High Mean Reversion Pa-

rameters

We present also a very extreme case of high volatilities and high mean reversion parameters

where the quadrinomial tree strongly deteriorates while the rotated one still delivers a good

performance

Auto Cap (Path-dependent)

σ1 = 30%, σ2 = 30%, κ1 = 99%, κ2 = 99%, ρ = −0.99

N dt Z Monte Carlo Tree Rotation error Quadrinomial Tree error

50 0.08 2 2.554497e-002 2.5682228e-002 -1.38 9.6793597e-003 158.67
100 0.04 2 2.554497e-002 2.522369e-002 3.21 1.2283712e-003 132.61
150 0.0266 2 2.554497e-002 2.539574e-002 1.49 1.3981513e-003 115.63

Example 4: Low Mean Reversion, Varying Volatility and Correlation

The aim of the following examples is to examine the behavior of both tree constructions for

some cases of high to very high volatility parameters but low mean-reversion ones. In addition

we switch between two values of the correlation parameter namely −0.9 and 0.9. The errors are

now cited in real terms and not in base points. The errors of both tree constructions in pricing

a Caplet (with the same specifications, i.e. t1 = 5, t0 = 1, strike K = 0.04) are plotted in Figure

2.9 and Figure 2.10.
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Figure 2.7: Payoff and Projection of the Payoff (on the X1/X2 plane) of a Target Re-
demption Note for the case σ1 = 7%, σ2 = 5%, κ1 = 40%, κ2 = 50%, ρ = −0.9 taken at
the 25-th timeslice with total number of timeslices 50.
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Figure 2.8: Projection of the Payoff of a Target Redemption Note on the Y1/Y2 plane for
the case σ1 = 7%, σ2 = 5%, κ1 = 40%, κ2 = 50%, ρ = −0.9 taken at the 25-th timeslice
with total number of timeslices 50.

Further, we want to investigate the observed effects for the pricing of two path dependent options

- the Target Redemption Note and the Ladder Swap. For that purpose, for the next examples we

have increased the maturity of the options to 7 years and have changed some of their parameters

such that we have

s0 = s1 = 0

s2 = 0.02, s3 = s4 = 0.03, s5 = s6 = 0.04, s7 = 0.05.

where we have also set for the Target Redemption Note F = 0.12. We obtain:

Ladder Swap with ρ = −0.9

σ1 = 90%, σ2 = 90%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 2.86763e+00 6.400748e-01 2.2275552 -8.428768e+11 842876792002.868000
20 2.86763e+00 1.489964e+00 1.3776664 -3.422984e+08 342298354.167630
30 2.86763e+00 1.796071e+00 1.0715593 6.016619e+00 -3.148989
40 2.86763e+00 2.283599e+00 0.5840313 -7.076765e-01 3.575307
50 2.86763e+00 2.501697e+00 0.3659333 -4.628053e-01 3.330435
60 2.86763e+00 2.543226e+00 0.3244041 -2.832525e-01 3.150883
70 2.86763e+00 2.748769e+00 0.1188606 1.402770e-02 2.853602
80 2.86763e+00 2.844098e+00 0.0235318 2.388298e-01 2.628800
90 2.86763e+00 2.841081e+00 0.0265491 3.911545e-01 2.476475
100 2.86763e+00 2.961832e+00 -0.0942025 6.281544e-01 2.239476
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Ladder Swap with ρ = 0.9

σ1 = 90%, σ2 = 90%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -7.84978e-01 -1.471202e+00 0.6862248 -1.157618e+00 0.372640
20 -7.84978e-01 -8.700793e-01 0.0851017 -8.181388e-01 0.033161
30 -7.84978e-01 -8.490842e-01 0.0641066 -8.246925e-01 0.039715
40 -7.84978e-01 -7.976934e-01 0.0127158 -7.840143e-01 -0.000963
50 -7.84978e-01 -7.626637e-01 -0.0223139 -7.529692e-01 -0.032008
60 -7.84978e-01 -8.113270e-01 0.0263494 -8.041798e-01 0.019202
70 -7.84978e-01 -7.719267e-01 -0.0130509 -7.688833e-01 -0.016094
80 -7.84978e-01 -7.383356e-01 -0.0466419 -7.376970e-01 -0.047281
90 -7.84978e-01 -8.023587e-01 0.0173811 -8.015865e-01 0.016609
100 -7.84978e-01 -7.709323e-01 -0.0140452 -7.706375e-01 -0.014340

Ladder Swap with ρ = −0.9

σ1 = 50%, σ2 = 50%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 1.50316e+00 1.217355e+00 0.285809 -6.006052e-01 2.1037692
20 1.50316e+00 1.271119e+00 0.232045 1.899037e-01 1.3132603
30 1.50316e+00 1.244211e+00 0.258953 4.739671e-01 1.0291969
40 1.50316e+00 1.310946e+00 0.192218 7.296757e-01 0.7734883
50 1.50316e+00 1.320741e+00 0.182423 8.546492e-01 0.6485148
60 1.50316e+00 1.299980e+00 0.203184 9.083278e-01 0.5948362
70 1.50316e+00 1.330615e+00 0.172549 9.969131e-01 0.5062509
80 1.50316e+00 1.334704e+00 0.168460 1.043537e+00 0.4596274
90 1.50316e+00 1.319388e+00 0.183776 1.059590e+00 0.4435740
100 1.50316e+00 1.338949e+00 0.164215 1.106336e+00 0.3968281

Ladder Swap with ρ = 0.9

σ1 = 50%, σ2 = 50%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -0.10373173 -1.445031e+00 1.341299 -1.362594e+00 1.2588625
20 -0.10373173 -8.922175e-01 0.788486 -8.855572e-01 0.7818255
30 -0.10373173 -9.449847e-01 0.841253 -9.461692e-01 0.8424374
40 -0.10373173 -7.110663e-01 0.607335 -7.190635e-01 0.6153318
50 -0.10373173 -5.506210e-01 0.446889 -5.581335e-01 0.4544018
60 -0.10373173 -5.400103e-01 0.436279 -5.481474e-01 0.4444157
70 -0.10373173 -3.325943e-01 0.228863 -3.435943e-01 0.2398626
80 -0.10373173 -2.098351e-01 0.106103 -2.215388e-01 0.1178071
90 -0.10373173 -1.931371e-01 0.089405 -2.048920e-01 0.1011603
100 -0.10373173 1.133653e-02 -0.115068 -3.109587e-03 -0.1006221
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Ladder Swap with ρ = −0.9

σ1 = 30%, σ2 = 30%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 6.93384e-01 5.7845165e-01 0.1149327 4.0053174e-01 0.29285261
20 6.93384e-01 5.5491769e-01 0.1384667 4.4936433e-01 0.24402002
30 6.93384e-01 5.3235637e-01 0.1610280 4.5559076e-01 0.23779359
40 6.93384e-01 5.4647404e-01 0.1469103 4.8895455e-01 0.20442980
50 6.93384e-01 5.4430036e-01 0.1490840 4.9786969e-01 0.19551466
60 6.93384e-01 5.3460807e-01 0.1587763 4.9492574e-01 0.19845861
70 6.93384e-01 5.4243168e-01 0.1509527 5.0861261e-01 0.18477174
80 6.93384e-01 5.4165415e-01 0.1517302 5.1201308e-01 0.18137127
90 6.93384e-01 5.3544992e-01 0.1579344 5.0872533e-01 0.18465902
100 6.93384e-01 5.4085501e-01 0.1525293 5.1692471e-01 0.17645964

Ladder Swap with ρ = 0.9

σ1 = 30%, σ2 = 30%, κ1 = 7%, κ2 = 8%, discretization Z=5

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 2.5563909 -6.295121e-01 3.1859030 -7.020275e-01 3.25841838
20 2.5563909 - 5.208313e-02 2.6084740 -8.983768e-02 2.64622858
30 2.5563909 2.528229e-01 2.3035680 2.276696e-01 2.32872130
40 2.5563909 1.002572e+00 1.5538191 9.731592e-01 1.58323170
50 2.5563909 1.442116e+00 1.1142749 1.411112e+00 1.14527843
60 2.5563909 1.623284e+00 0.9331071 1.593369e+00 0.96302192
70 2.5563909 2.100554e+00 0.4558374 2.070354e+00 0.48603660
80 2.5563909 2.381355e+00 0.1750357 2.351806e+00 0.20458454
90 2.5563909 2.469916e+00 0.0864748 2.441972e+00 0.11441940
100 2.5563909 2.794737e+00 -0.2383462 2.767436e+00 -0.21104542

Notice firstly that both tree constructions show similar results in the case of positive correlation

parameter with the quadrinomial one converging with a slightly faster rate. On the other side, for

volatility parameters starting already from around 30% and correlation −0.9, the Rotated tree

construction exhibits better performance than the standard Quadrinomial one. The difference

between the trees increases fast with the increase of the volatility. For volatility level of 90%, the

Quadrinomial tree shows strongly inconsistent results whereas the Rotated one although also

clearly deteriorating its performance with the increase of volatility has still a fast convergence.

In Figure 2.11, we have plotted a section of both trees at time 25-th time slice for n = 50 for the

price of the Ladder Swap. Notice that in the quadrinomial lattice, the highest option value is

given for extremely low values of X1 and X2 and has an order of 1012. This means that the effect

of the not properly defined probabilities cannot be spread throughout the option value surface
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Figure 2.9: Errors of both tree method in the pricing a Caplet for the case κ1 = 7%, κ2 =
8%.
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Figure 2.10: Errors of both tree method in the pricing a Caplet for the case κ1 = 7%, κ2 =
8%.
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Figure 2.11: Payoff of a Ladder Swap for the case σ1 = 50%, σ2 = 50%, κ1 = 7%, κ2 =
8%, ρ = −0.9 taken at the 25-th timeslice with total number of time slices 50.

(and be equalized) but will be scaled with values around 1012, leading to a strong misprizing

of the option value. On the other side, the option value surface in the Rotated tree is again

well-behaved and shows no clear outliers.

The same effects can also be observed for the upper parameters in the pricing of the Target

Redemption Note. We present only the results for ρ = −0.9, since again for positive correlation

we have almost the same results for both tree construction methods:

Target Redemption Note with ρ = −0.9

σ1 = 90%, σ2 = 90%, κ1 = 7%, κ2 = 8%, discretization Z=15

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -1.0071863 -1.221873e+00 0.214687 -1.143659e+04 11435.582124
20 -1.0071863 -1.077609e+00 0.070423 1.519367e+06 -1519368.055186
30 -1.0071863 -1.095081e+00 0.087895 -2.243462e+07 22434615.292814
40 -1.0071863 -1.029860e+00 0.022674 -6.872019e+06 6872018.460814
50 -1.0071863 -1.001604e+00 -0.005583 -8.495306e+03 8494.298428
60 -1.0071863 -9.752971e-01 -0.031889 1.854531e+01 -19.552497
70 -1.0071863 -9.101032e-01 -0.097083 -3.987027e-01 -0.608484
80 -1.0071863 -8.710932e-01 -0.136093 -3.303453e-01 -0.676841
90 -1.0071863 -8.511218e-01 -0.156064 -3.635602e-01 -0.643626
100 -1.0071863 -7.705619e-01 -0.236624 -2.968952e-01 -0.710291
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Target Redemption Note with ρ = −0.9

σ1 = 70%, σ2 = 70%, κ1 = 7%, κ2 = 8%, discretization Z=15

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -0.811372 -0.907822 0.096451 -1.236249 0.424877
20 -0.811372 -0.810489 -0.000883 23.539616 -24.350988
30 -0.811372 -0.841646 0.030275 -27.469004 26.657633
40 -0.811372 -0.823041 0.011669 0.530456 -1.341828
50 -0.811372 -0.797412 -0.013960 -0.226540 -0.584831
60 -0.811372 -0.776865 -0.034506 -0.192494 -0.618878
70 -0.811372 -0.736652 -0.074719 -0.175243 -0.636128
80 -0.811372 -0.733268 -0.078104 -0.177795 -0.633577
90 -0.811372 -0.712344 -0.099028 -0.189708 -0.621663
100 -0.811372 -0.667772 -0.143600 -0.197093 -0.614279

Target Redemption Note with ρ = −0.9

σ1 = 50%, σ2 = 50%, κ1 = 7%, κ2 = 8%, discretization Z=15

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -0.599460 -0.619322 0.019862 -0.547591 -0.051869
20 -0.599460 -0.601981 0.002521 -0.338054 -0.261406
30 -0.599460 -0.616508 0.017048 -0.339077 -0.260383
40 -0.599460 -0.569402 -0.030058 -0.244711 -0.354749
50 -0.599460 -0.559740 -0.039720 -0.216601 -0.382859
60 -0.599460 -0.560428 -0.039032 -0.162388 -0.437072
70 -0.599460 -0.554784 -0.044676 -0.142801 -0.456659
80 -0.599460 -0.541449 -0.058011 -0.124179 -0.475281
90 -0.599460 -0.521677 -0.077783 -0.114069 -0.485391
100 -0.599460 -0.508636 -0.090824 -0.106292 -0.493168

Target Redemption Note with ρ = −0.9

σ1 = 30%, σ2 = 30%, κ1 = 7%, κ2 = 8%, discretization Z=15

N Monte Carlo Tree Rotation error Quadrinomial Tree error

10 -0.361349 -0.352093 -0.009256 -0.286948 -0.074401
20 -0.361349 -0.364224 0.002875 -0.289876 -0.071473
30 -0.361349 -0.374245 0.012896 -0.253331 -0.108018
40 -0.361349 -0.348053 -0.013296 -0.233170 -0.128179
50 -0.361349 -0.345188 -0.016161 -0.198542 -0.162807
60 -0.361349 -0.346147 -0.015202 -0.178248 -0.183101
70 -0.361349 -0.327695 -0.033654 -0.157891 -0.203458
80 -0.361349 -0.323829 -0.037520 -0.124031 -0.237318
90 -0.361349 -0.321888 -0.039461 -0.095669 -0.265680
100 -0.361349 -0.304775 -0.056574 -0.106369 -0.254980

We can conclude that also in the case of the Target Redemption Note, the rotated tree strongly

outperforms the quadrinomial one (for high volatility parameters and correlation of −0.9). The
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difference between both tree constructions is clearly visible for volatility starting around 30%

and increases with the increase of volatility.

Remark 2.6.1. Notice that for the well-known trinomial two-factor Hull-White [37] tree con-

struction, first the base factors are assumed to be independent and the risk-neutral probabilities

are calculated and then the probabilities are adjusted to reflect the correlation between the base

factors. As a result, (similar to the quadrinomial tree case) it may happen that the probabili-

ties are not bounded between zero and one. In such a case, the authors choose every time the

probabilities are negative or greater than one the biggest/smallest correlation that forces the prob-

abilities to be well-defined. Although in such a case it is obvious that a bias will be induces, Hull

and White [37] prove that this bias will converge to zero as the refinement of the tree increases.

Recall that we have proved that this is also the case with the probabilities in the quadrinomial

tree.

On the other hand, if we are constructing a two-dimensional tree for processes with high volatil-

ities, we have showed that the effect of the not well-defined probabilities induces a significant

bias and although in such a case theoretically the tree converges, practically a proper refinement

cannot be reached. Although, the bias in the trinomial tree of Hull and White was not examined

here, a similar effect in cases of high volatilities is to be expected.

In addition, the standard trinomial two-factor Hull-White [37] tree is much harder to construct

due to the fact that first a tree with no mean-reversion has to be constructed and then node by

node shifted with a drift chosen so that the tree is consistent with the initial term structure. In

contrast to it, the new binomial tree constructions, by definition exactly fits the current term

structure.

2.7 Final Remarks

At the end, we want to answer the question when one of the tree constructions is superior to the

other. Specifying two very general cases for the volatility - high volatility (higher than 30%)

and low volatility(lower than 30%) and also two cases for the correlation ρ > 0 and ρ < 0 we

can then summarize:
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High Volatility Low Volatility

ρ > 0 Rotated Tree≈Quadrinomial Tree Quadrinomial Tree Slightly Better

ρ < 0 Rotated Tree Definitely Better No Clear Preference

Notice that although the rotated tree construction delivers slightly worse results than the quadri-

nomial tree construction for the case of very low volatilities and positive (and some in cases for

negative) correlation between the base factors, due to its good results in the other cases and the

well-defined tree probabilities we can conclude that it is a robuster (than the quadrinomial tree)

lattice construction method.

However, by calibration of the G2 + + model to market caps or Swaption prices, Brigo and

Mercurio [12] show that the obtained calibrated correlation is usually very negative (e.g. they

obtain ρ = −0.9914 when calibrating to caps, which naturally means that in that case a one-

factor model might be sufficient and ρ = −0.7019 when calibrating to Swaptions, which clearly

exhibits the need for a two-factor model, see [12] p.157 and p.158) but the calibrated volatilities

are very small which leads to the case in which it is hard to give a practical preference to any

of the models. In that specific case, for different values of the mean-reversion parameters we

can often observe that either one of the tree constructions outperforms the other, but it is hard

to specify clear distinction values for these parameters. In this respect, a future work in that

direction might help the study of the different lattice construction methods.

As next, we mention that both offered tree construction methods are easy to implement and

program. Additionally, they are also easy to adapt for pricing different path-dependent options

and are much faster than other numerical methods such as the Monte Carlo simulation or the

finite-difference grid.

Finally, one should mention that the offered tree construction methods require a significant

amount of computer RAM memory since it is not known in advance when the contraction point

of the tree (due to the mean reversion of underlying process) will be reached and thus a standard

tree construction procedure cannot be used. This is not the case in the trinomial two-factor
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Hull-White [37] trees where one has to estimate in advance the maximal allowed expansion of

the lattice. While from a theoretical point of view, the former feature is an advantage of our

offered tree construction to the trinomial two-factor Hull-White [37] one, from a practical point

of view this causes difficulties and does not allow (with the present standard computer power)

a tree construction with more than 300 timesteps.

2.8 Suggestions for Further Research Topics

A possible topic to investigate can be a comparison of the convergence of our tree constructions

to the two-factor Hull and White trinomial lattice construction. It is can also be interesting to

implement the pricing of a ”steepener” and investigate the influence of the correlation between

the base factors on its value as well as their mean reversion parameters. Calibration to market

steepener prices is also an interesting research point.



Chapter 3

Pricing European Options with an
Interest Rate of Cheyette Type

3.1 Introduction

There is a wide range of controversial studies about the influence of the volatility structure of

spot and forward interest rates on the prices of interest-rate sensitive claims. The oldest one

is done by Hull and White [34], who argue on the bases of several numerical examples that

models with a simple Vasicek type volatility can be used as an approximation even for a true

volatility structure of a square root form as this would not induce a significant error in the prices

of interest-rate sensitive claims.

The first numerical results opposing Hull and White [34] are delivered by Chan et al [18] who

show after testing several interest rate models (with different volatility specifications) that option

prices are sensitive to the level of the short rate volatility. However, in the models they have

tested, the initial term structure of the zero coupon bonds also changes with the volatility

specification and additionally influence the option prices. As a result, one cannot argue how

strong the option prices are influenced only by a change in the volatility term structure.

The latest studies by Ritchken and Sankarasubramanian [58] overcome this additional influence

by initializing all tested models to the same term structure and the same initial set of forward

volatilities. On the bases of a variety of numerical examples, they prove that the use of gener-

alized Vasicek type volatility structure models as an approximation in the cases when the true

79



80 Chapter 3. Pricing European Option with Cheyette Interest Rate

volatility structure is not of that type can lead to a serious misprizing error. For that purpose,

they have used as a comparison a volatility structure of a Cheyette [21] type (introduced in

details in Chapter 1) which allows fluctuation of the volatility of the spot interest rate with its

level and can be used as an approximation of a big set of possible volatility structures. How-

ever, due to the complicated dynamic of the corresponding (to the Cheyette volatility structure)

short rate process, their numerical examples are based only on Monte Carlo simulation which is

unfortunately time consuming and thus limits the practical application of the model.

In this Chapter, adopting a volatility structure of a Cheyette [21] type, we contribute to the

practical application of the model by offering two fast and easy to implement lattice construction

methods for the pricing of interest rate sensitive claim. Finally, we perform several numerical

examples in order to compare and examine their advantages and disadvantages and also offer

methods to improve their convergence.

3.2 Definition of the Underlying Processes

In the following section, we assume that we have a complete probability space
(
Ω, {F}t∈[0,T ] , P

)

and the HJM setting where the volatility of the forward rate is limited to the following form

σ(t, T ) := σf (t, t)e−
∫ T

t
κ(x)dx (3.1)

where σf (t, t) is the instantaneous short rate volatility and κ is a deterministic integrable func-

tion1. In such a framework, (recall Chapter 1) the price of any interest rate derivative is com-

pletely determined by a two-state Markov process χ(·) = (r(·), φ(·)) where r(·) represents the

short rate and φ(t) denotes the cumulative quadratic variation process

φ(t) =

∫ t

0
σ(s, t)2ds.

Assume also that we have an arbitrage-free market which implies that there exists at least one

equivalent (to the physical measure P ) martingale measure we denote Q under which the stock

price has the following dynamics

dS(t) = S(t) [r(t)dt + σ1dW1(t)] , S(0) = S0 (3.2)

1Notice that if we limit κ to a positive constant, this would reflect the notion that distant forward
rates are less volatile than near-term rates.
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where W1(t) is a standard Brownian motion under Q and σ1 > 0 is the deterministic volatility

of the stock price dynamic.

Recall further that under the class of volatilities of the forward rate given in (3.1), the instan-

taneous short rate process r(·) and the accumulated until time t variance of the forward rate,

evolve according to

dr(t) = µ(t, φ, r)dt + σf (t, t)dW2(t), r(0) = r0 (3.3)

dφ(t) =
[
σ2

f (t, t) − 2κ(t)φ(t)
]
dt, φ(0) = 0

µ(t, φ, r) = κ(t) [f(0, t) − r(t)] + φ(t) +
d

dt
f(0, t)

where σf (t, t) = σ2r(t)
γ , γ ≥ 0, σ2 ∈ R

+, f(0, t) denotes the instantaneous forward interest

rate set at time 0 for time t and W2(t) is a standard Brownian motion process under the

risk-neutral measure Q. The instantaneous correlation between the two processes is given by

d〈W1(·), W2(·)〉t = ρdt. In this case, notice that

φ(t) =

∫ t

0
σ(s, t)2ds =

∫ t

0
σ2

2r(u)2e−
∫ t

u
κ(x)dxdu.

Remark 3.2.1. The interest rate process (3.3) allows us by changing the elasticity parameter

γ to choose between a variety of driving processes. For example, setting γ = 0, we obtain the

generalized Vasicek [61] model

dr(t) = µ(t, φ, r)dt + σ2dW2(t), r(0) = r0

or by setting it to 0.5, we obtain the square root structure of Cox, Ingersoll and Ross [25]

dr(t) = µ(t, φ, r)dt + σ2

√
r(t)dW2(t), r(0) = r0.

Notice that if we want the volatility of the instantaneous interest rate to fluctuate with the level

of the short rate, we require that γ ≥ 0. Further, studies by Richken and Sankarasubramania [58]

reveal in a variety of numerical examples that while setting the elasticity parameter γ to zero

might lead to pricing errors, the choice of different spot rate volatility structure (i.e. different

γ 6= 0) may not be that important. For that reason, in this Chapter we focus our attention only

on the case γ = 1.
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Assuming we want to price a claim V (t, r(t), φ(t), S(t)) contingent on both the short rate and

the stock price and with payoff at time T given by F (T, r(T ), φ(T ), S(T )), we can write its price

by the martingale method as an expectation under a risk-neutral measure Q of its discounted

payoff such that

V (t, r(t), φ(t), S(t)) = EQ
(
e−

∫ T
t

r(s)dsF (T, r(T ), φ(T ), S(T ))
∣∣Ft

)

or equivalently derive its pricing PDE. First, by means of Itô’s Lemma, we obtain

dV (t, r(t), φ(t), S(t)) =
∂V

∂t
dt +

∂V

∂r
dr +

∂V

∂φ
dφ +

∂V

∂S
dS

+
1

2

(
∂2V

∂r2
d〈r〉 +

∂2V

∂S2
d〈S〉 + 2

∂2V

∂rS
d〈r, S〉

)

=
∂V

∂t
dt +

∂V

∂r
(µ(t, φ, r)dt + σ2r(t)

γdW2(t))

+
∂V

∂φ

(
σ2

2r(t)
2γ − 2κ(t)φ(t)

)
dt +

∂V

∂S
S(t) (r(t)dt + σ1dW1(t))

+
1

2

(
∂2V

∂r2
σ2

2r(t)
2γ +

∂2V

∂S2
σ2

1S(t)2 + 2
∂2V

∂rS
σ1σ2r(t)

γS(t)ρ

)
dt.

By eliminating uncertainty, we require due to the no-arbitrage principle that the expected return

of our tradable instrument is the riskless interest rate, i.e.

EQ (dV (t, r(t), φ(t), S(t))) = r(t)V (t, r(t), φ(t), S(t)) dt.

This leads to the pricing PDE

∂V

∂t
+

∂V

∂r
µ(t, φ, r) +

∂V

∂φ

(
σ2

2r(t)
2γ − 2κ(t)φ(t)

)
+

∂V

∂S
S(t)r(t)

+
∂2V

∂r2
σ2

2r(t)
2γ +

∂2V

∂S2
σ2

1S(t)2 + 2
∂2V

∂rS
σ1σ2r(t)

γS(t)ρ − r(t)V (t, r(t), φ(t), S(t)) = 0

with the boundary condition

V (T, r(T ), φ(T ), S(T )) = F (T, r(T ), φ(T ), S(T )) .

Now, due to the complexity of the pricing PDE, we cannot solve it analytically even for the most

simple vanilla options. Therefore, numerical methods are required in order to price contingent

claims in the given framework. As in the previous Chapter, we will concentrate on lattice

methods and Monte Carlo Simulation.
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3.3 Two-Dimensional Tree Construction

Our aim, after choosing the dynamics of the underlying processes, is to be able to price claims

contingent on the stock price and the interest rate. Due to the complicated nature of the

underlying processes, this cannot be done in a closed form. Therefore, we need to apply numerical

methods. In this section, we will present two possible lattice construction methods and compare

their results with fine-grid Monte Carlo simulations.

For the purposes of the future tree construction, we need to transform the underlying stochastic

processes into processes with a deterministic volatility. This can be achieved, by taking the

natural logarithm of the stock price as one of the underlying processes of the two-dimensional

tree:

d
(
log(S(t))

)
= (logS(t))′ dS(t) +

1

2
(logS(t))′′ d〈S〉t

=

(
r(t) − 1

2
σ2

1

)
dt + σ1dW1(t).

Denote it by S∗(t) := log(S(t)) and rewriting the expression above, we have

dS∗(t) =

(
r(t) − 1

2
σ2

1

)
dt + σ1dW1(t) (3.4)

S∗(0) = log(S0). (3.5)

Next, since the stochastic volatility of the interest rate process is also an obstacle for the tree

construction, we define a new process

Y (t) :=

∫
1

σf (t, t)
dr(t) =

∫
1

σ2r(t)γ
dr(t) (3.6)

and show that it has a unit diffusion coefficient. Integrating (3.6), we obtain

Y (t) = f(r(t)) =





r(t)1−γ

σ2(1−γ) for γ 6= 1 ,

log(r(t))
σ2

else.

and we can also transform Y (t) to obtain the short rate r(t), by using the inverse function

f−1(Y (t)) and thus

r(t) =





[σ2Y (t)(1 − γ)]
1

1−γ for γ 6= 1 ,

eσ2Y (t) else.
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Using Ito’s Lemma, we can now calculate the dynamics of the new process Y

dY (t, r(t)) =
∂Y (t, r(t))

∂t
dt +

∂Y (t)

∂r(t)
dr(t) +

1

2

∂2Y (t, r(t))

∂r(t)2
d〈r〉t

=
∂Y (t, r(t))

∂t
dt +

∂Y (t, r(t))

∂r(t)
µ(t, φ, r)dt +

∂Y (t, r(t))

∂r(t)
σ2r(t)

γdW2(t)

+
1

2
σ2

2r(t)
2γ ∂2Y (t, r(t))

∂r(t)2
dt

=
∂Y (t, r(t))

∂t
dt +

∂Y (t, r(t))

∂r(t)
µ(t, φ, r)dt + dW2(t)

+
1

2
σ2

2r(t)
2γ ∂2Y (t, r(t))

∂r(t)2
dt

=

(
Yt + Yrµ(t, φ, r) +

1

2
σ2

2r
2γYrr

)
dt + dW2(t).

We plug in the dynamics of r(·) for the two cases of γ and obtain

1.) γ 6= 1

dY (t, r(t)) = Ytdt +
r(t)−γ

σ2
µ(t, φ, r)dt +

1

2
σ2

2r
2γ

(
−γ

σ
r(t)−γ−1

)
dt + dW2(t)

= mr(t, Y, φ)dt + dW2(t), where

mr(t, Y, φ) = Yt +
r(t)−γ

σ2
µ(t, φ, r) +

1

2
σ2

2r
2γ

(
−γ

σ
r(t)−γ−1

)

= Yt +
[σ2Y (t)(1 − γ)]

− γ
1−γ

σ2
µ(t, φ, r) − γ

2(1 − γ)Y (t)

= Yt +
[σ2Y (t)(1 − γ)]

− γ
1−γ

σ2

(
kf(0, t) + φ(t) +

d

dt
f(0, t)

)

−kY (t)(1 − γ) − γ

2(1 − γ)Y (t)

with Y0 =
r1−γ
0

σ2(1−γ) .

2.) γ = 1

dY (t, r(t)) = Ytdt + Yrµ(t, φ, r)dt +
1

2
σ2

2r(t)
2Yrrdt + dW2(t)

= mr(t, Y, φ)dt + dW2(t), where

mr(t, Y, φ) = Yt +
1

σ2r(t)
µ(t, φ, r) − 1

2
σ2

= Yt +
1

σ2r(t)

(
kf(0, t) + φ(t) +

d

dt
f(0, t)

)
− k

σ2
− σ2

2
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with Y0 =
log r0

σ2
.

Thus, we have transformed the original problems (3.2) and (3.3) for γ 6= 1 to

dS∗(t) = ms(Y )dt + σ1dW1(t), S∗(0) = S∗
0

dY (t) = mr(t, Y, φ)dt + dW2(t), Y (0) = Y0

dφ(t) =

[
σ2

2

(
σ2Y (t)(1 − γ)

) 2γ
1−γ − 2κφ(t)

]
dt, φ(0) = 0

where

ms(Y ) :=
(
σ2Y (t)(1 − γ)

) 1
1−γ − 1

2
σ2

1

and respectively for γ = 1 to

dS∗(t) = ms(Y )dt + σ1dW1(t), S∗(0) = S∗
0

dY (t) = mr(t, Y, φ)dt + dW2(t), Y (0) = Y0

dφ(t) =
[
σ2

2e
2σ2Y (t) − 2κφ(t)

]
dt, φ(0) = 0

where

ms(Y ) := σ2e
σ2Y (t) − 1

2
σ2

1.

3.3.1 Tree Construction with Rotation

In this section, we will present a method to price claims contingent on the underlying two

processes by using the method of rotated two-dimensional tree, presented in Section 2.3. For

that purpose, we need to find two independent new processes that are linear combination of the

basic ones. Following the same steps as before, we decompose the covariance matrix between

dS∗(t) and dY (t)

1

dt
Σ :=

(
σ2

1 ρσ1

ρσ1 1

)
=

(
e11 e12

e21 e22

) (
λ 0
0 λ

) (
e11 e21

e12 e22

)
(3.7)

and find the eigenvalues

λ1,2 =
1

2
(σ2

1 + 1) ± 1

2

√
(σ2

1 + 1)2 − 4(1 − ρ2)σ2
1.
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The rotation matrix is denoted by U and

U :=

(
e11 e12

e21 e22

)
=

(
cos ϕ − sinϕ
sinϕ cos ϕ

)

where ϕ is the rotation angle and cosϕ = 1√
1+β2

, sinϕ = β√
1+β2

, β =
−λ1+σ2

1
ρσ1

. The new

independent processes Y1 and Y2 are thus written as

Y1(t) = cos ϕ S∗(t) − sinϕ Y (t) (3.8)

Y2(t) = sinϕ S∗(t) + cos ϕ Y (t). (3.9)

Referring to Theorem 2.3.1, we obtain that Y1(t) and Y2(t) have the following dynamics

dY1(t) = α1(t, φ, Y1, Y2)dt +
√

λ1dW̃1

dY2(t) = α2(t, φ, Y1, Y2)dt +
√

λ2dW̃2

dφ(t) =
[
σ2

2R(Y1, Y2)
2γ − 2κφ(t)

]
dt

with W̃1 and W̃2 denoting independent Brownian motions under a risk-neutral measure Q and

where

R(Y1, Y2) :=





[
σ2

(
cos ϕY2(t) − sinϕY1(t)

)
(1 − γ)

] 1
1−γ

for γ 6= 1 ,

exp
(
σ2

(
cos ϕY2(t) − sinϕY1(t)

))
else.

The drifts of the new processes are found as

α1(t, φ, Y1, Y2) = cos ϕ ms(Y1, Y2) − sinϕ mr(t, φ, Y1, Y2)

α2(t, φ, Y1, Y2) = sin ϕ ms(Y1, Y2) + cos ϕ mr(t, φ, Y1, Y2).

Notice that using Y = g(Y1, Y1), we have transformed the drifts ms(·) and mr(·) as functions of

the new independent processes Y1 and Y2

ms(Y ) = ms (g(Y1, Y2)) := ms(Y1, Y2)

mr(t, Y, φ) = mr (t, g(Y1, Y2), φ) := mr(t, Y1, Y2, φ)
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where the transformation function g(Y1, Y2) is found from (3.8) and (3.9) as

Y (t) = g(Y1, Y2) = cos ϕY2(t) − sinϕY1(t).

In addition, we have

S∗(t) = cos ϕY1(t) + sin ϕY2(t).

Finally, we can now approximate the distribution of Y1 and Y2 by two independent trees following

the procedure of the Chapter 2.

Forward Construction:

Assume that at time t, the tree is in state (ya
1 , ya

2). At time t + ∆t, the new states of the

underlying processes Y1 and Y2 are given by

ya+

1 := ya
1 +

(
J1(t, φ

a, ya
1 , ya

2) + 1
)√

∆tλ1, ya−
1 := ya

1 +
(
J1(t, φ

a, ya
1 , ya

2) − 1
)√

∆tλ1

ya+

2 := ya
2 +

(
J2(t, φ

a, ya
1 , ya

2) + 1
)√

∆tλ2, ya−
2 := ya

2 +
(
J2(t, φ

a, ya
1 , ya

2) − 1
)√

∆tλ2.

Notice that since the process φ is locally deterministic, the value φa+
and φa−

will be equal and

entirely determined by the current state variables (ya
1 , ya

2 , φa). Thus, we have

φa+
= φa−

= φ∗ = φa +
[
σ2

2R(ya
1 , ya

2)2γ − 2κφa
]
∆t.

Since these values are completely determined by the preceding node, after some time steps the

total number of distinct values φ at each node will depend on the total number of paths leading

to that node. Therefore, we use (as in Li, Ritchken and Sankarasubramanian [46]) two values

φmax and φmin to keep track of the biggest and smallest value of all φ variables at that node. In

particular, at the φa node we denote with φa
max and φa

min respectively the maximal and minimal

value of φ and then partition the interval [φa
max, φa

min] into m equidistant subintervals. We

denote by φa
k the k-th point where

φa
k = φa

min +
1

m

(
φa

max − φa
min

)
, k = 0, . . . , m

and

φa
min = φa

1 < φa
2 < . . . < φa

m = φa
max.
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Let us denote the probability of an up-jump of the first process by p1 and of the second process by

p2. By the requirement that the approximating tree matches the first moment of the underlying

process, we obtain that the risk-neutral probabilities have to satisfy

p1(y
a+

1 − ya
1) + (1 − p1)(y

a−
1 − ya

1) = α1(t, φ
a, ya

1 , ya
2)∆t

p2(y
a+

2 − ya
2) + (1 − p2)(y

a−
2 − ya

2) = α2(t, φ
a, ya

1 , ya
2)∆t

from where we find

p1 =
α1(t, φ

a, ya
1 , ya

2)
√

∆t +
(
1 − J1(t, φ

a, ya
1 , ya

2)
)√

λ1

2
√

λ1
(3.10)

p2 =
α2(t, φ

a, ya
1 , ya

2)
√

∆t +
(
1 − J2(t, φ

a, ya
1 , ya

2)
)√

λ2

2
√

λ2
. (3.11)

Now, let us say more about the choice of J1 and J2. We denote Z1 := floor
[

α1(t,φa,ya
1 ,ya

2 )
√

∆t√
λ1

]

and Z2 := floor
[

α2(t,φa,ya
1 ,ya

2 )
√

∆t√
λ2

]
. And then define

J1(t, φ
a, ya

1 , ya
2) :=

{
Z1 if Z1 even,
Z1 + 1 else.

J2(t, φ
a, ya

1 , ya
2) :=

{
Z2 if Z2 even,
Z2 + 1 else.

Notice that with this definition of the jump heights and the risk-neutral probabilities, we can

prove in the same way as in Theorem 2.3.3 that the approximating tree matches the first and

second moment of the underlying processes.

Backward Recursion:

Finally, once we have constructed the rotated two dimensional tree, we want to use it to price

contingent claims via backward recursion. Hence, we start with calculating the values of the

claim at each node of the tree at maturity, by substituting in the payoff functions the respective

states of the underlying processes. We denote the option values at maturity by gn(ya
1 , ya

2 , φ∗).

Next, we come to the backward recursion. Therefore, we assume we have calculated all the claim

values until the (i+1)-th period and we want to calculate them at the (i)-th period. Given that

at time i, the state variables are (ya
1 , ya

2 , φa∗) we have that

gi (y
a
1 , ya

2 , φa) =
[
p1p2gi+1

(
ya+

1 , ya+

2 , φa∗) + p1(1 − p2)gi+1

(
ya+

1 , ya−
2 , φa∗) (3.12)

+(1 − p1)p2gi+1

(
ya−
1 , ya+

2 , φa∗) + (1 − p1)(1 − p2)gi+1

(
ya−
1 , ya−

2 , φa∗)]e−R(ya
1 ,ya

2 )∆t
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As the value φa∗ is completely determined by the predecessor node (ya
1 , ya

2 , φa), it can happen

that the value of the claim at the successor nodes exactly for φa∗ is not available. At the same

time, the values of the claim for example at the node (ya∗
1 , ya∗

2 , φa∗
+ ) for a slightly bigger value of

φa∗ and at the node (ya∗
1 , ya∗

2 , φa∗
− ) for a slightly smaller value of φa∗ will be available, where we

have that

φa∗
− ≤ φa∗ ≤ φa∗

+ .

In such a case, the values of the claim at the node (ya∗
1 , ya∗

2 , φa∗) can be found by a linear

interpolation between the available surrounding values. Thus, if we denote

∆φ :=
φmax(ya+

1 , ya+

2 ) − φmin(ya+

1 , ya+

2 )

m

and

l := floor

[
φa∗ − φmin(ya+

1 , ya+

2 )

∆φ

]
.

where φmax(ya+

1 , ya+

2 ) and φmin(ya+

1 , ya+

2 ) denote the biggest and smallest value of φ at the

(ya∗
1 , ya∗

2 , φa∗) node, then we notice that we have found exactly the surrounding values

φa∗
l = φa∗

− ≤ φa∗ ≤ φa∗
+ = φa∗

l+1.

And therefore, if we denote by q :=
φa∗−φa∗

l

∆φ the relative distance (or weight), we can find the

required value of the claim by the following interpolation

gi+1

(
ya+

1 , ya+

2 , φa∗
)

= q gi+1

(
ya+

1 , ya+

2 , φa∗
l+1

)
+ (1 + q) gi+1

(
ya+

1 , ya+

2 , φa∗
l

)

Remark 3.3.1. Notice that at the edges of the tree, we would always have φmax = φmin as there

is only one possible path leading to each of the edges. Hence, there is no need for interpolation

at those nodes.

Finally, we repeat the same procedure until we obtain also qi+1(y
a+

1 , ya−
2 , φa∗) , gi+1(y

a−
1 , ya+

2 , φa∗)

and qi+1(y
a−
1 , ya−

2 , φa∗). Thus, we have all the ingredients we need to calculate (3.12) and letting

i = n, . . . , 0 we can find the approximated price of the claim at time 0 as q0(y1(0), y2(0), φ(0)).
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3.3.2 Quadrinomial Tree

For the construction of the quadrinomial tree, we choose as base processes the natural loga-

rithm of the stock price S∗ and the Y process. Thus, assuming that at time t the tree is in state

(Sa, ya, φa) then, at time (t + ∆t) the new states of the S∗ and Y processes are denoted respec-

tively by Sa+
, Sa−

and ya+
, ya−

. The new states are reached with the following probabilities:

(
Sa+

, ya+
)

with probability puu

(
Sa+

, ya−
)

with probability pud
(
Sa−

, ya+
)

with probability pdu
(
Sa−

, ya−
)

with probability pdd.

and are given by

Sa+
:= Sa + u, Sa−

:= Sa + d

for the S∗ process where u is the height of its up-jump and d the height of its down-jump and

ya+
:= ya + (J(t, ya, φa) + 1)

√
∆t, ya−

:= ya + (J(t, ya, φa) − 1)
√

∆t.

For the Y process we have

J(t, ya, φa) :=

{
Z if Z even,
Z + 1 else.

for Z := floor
[
mr(t, y

a, φa)
√

∆t
]
. Notice that the jump heights of the Y process are chosen

as in the one-dimensional Ritchken and Sankarasubramanian [58] lattice and therefore we do

not comment about them. On the other side, the jump heights of the S∗ process require more

explanation. If we recall that the jump heights and the probabilities of the tree should be chosen

in such a way that the tree matches the local mean and variance of the S∗ process, we require

that

E (∆S) = ms (t, ya)∆t = (puu + pud)
(
Sa − Sa+

)
+ (pdu + pdd)

(
Sa − Sa+

)
(3.13)

E
(
∆S2

)
= σ2

1∆t + ms (t, ya)2 ∆t2 = (puu + pud)
(
Sa − Sa+

)2
+ (pdu + pdd)

(
Sa − Sa+

)2
.

(3.14)
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If we assume (in order to decrease the number of unknown variables) that u = −d and use

1 = puu + pud + pdu + pdd (3.15)

we obtain

(puu + pud) =
ms (t, ya)∆t − u

2u

u2 = σ2
1∆t + ms (t, ya)2 ∆t2.

Ignoring the terms of order higher than ∆t, yields a tree known in the one-dimensional case as a

Cox, Ross and Rubinstein [26] lattice where u = σ1

√
∆t. Adding to equations (3.13) , (3.14) and

(3.15) the new equations referring to the Y -process and the correlation between the processes

E (∆y) = mr(t, y
a)∆t = (puu + pdu)

(
ya − ya+

)
+ (pdu + pdd)

(
ya − ya−

)

E
(
∆y2

)
= ∆t + mr(t, y

a)2∆t2 = (puu + pdu)
(
ya − ya+

)2
+ (pdu + pdd)

(
ya − ya−

)2

E (∆S∆y) = σ1ρ∆t = puu

(
Sa − Sa+

) (
ya − ya+

)
+ pdu

(
Sa − Sa−

) (
ya − ya+

)

+pud

(
Sa − Sa+

) (
ya − ya−

)
+ pdd

(
ya − ya−

) (
Sa − Sa−

)

we solve for the risk-neutral probabilities and obtain

puu =
1

4

[
ρσ1 − (J − 1)σ1 − ms (t, ya)

√
∆t(J − 1) + mr (t, ya, ϕ)

√
∆tσ1

σ1

]

pdd =
1

4

[
ρσ1 + (J + 1)σ1 − ms (t, ya)

√
∆t(J + 1) − mr (t, ya, ϕ)

√
∆tσ1

σ1

]

pud =
1

4

[
−ρσ1 + (J + 1)σ1 + ms (t, ya)

√
∆t(J + 1) − mr (t, ya, ϕ)

√
∆tσ1

σ1

]

pdu =
1

4

[
−ρσ1 − (J − 1)σ1 + ms (t, ya)

√
∆t(J − 1) + mr (t, ya, ϕ)

√
∆tσ1

σ1

]
.

The φ process is locally deterministic and we calculate it for γ 6= 1 by

φa+
= φa+

= φa∗ = φa +
[
σ2

2 (σ2y
a(1 − γ))

2γ
1−γ − 2κφa

]
∆t,

and for γ = 1 by

φa+
= φa+

= φa∗ = φa +
[
σ2

2e
2σ2ya − 2κφa

]
∆t.
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Pricing claims with the quadrinomial lattice follows the same steps as in the two dimensional

rotated tree and thus we have again

gi (S
a, ya, φa) =

[
puugi+1

(
Sa+

, ya+
, φa∗) + pudgi+1

(
Sa+

, ya−
, φa∗) (3.16)

+pdugi+1

(
Sa−

, ya+
, φa∗) + pddgi+1

(
Sa−

, ya−
, φa∗)]e−f−1(ya)∆t

where the values of the claim for φ∗a are interpolated as in the previous section.

3.4 Numerical Results

In this section, we construct the already described rotated and quadrinomial lattices and use

them to price simple Vanilla Call and Put options. Further, we compare the obtained results

with a Monte Carlo Simulation, performed with the following Euler-type discretization

r(ti+1) = r(ti) +
[
κ
(
f(0, ti) − r(ti)

)
+ φ(ti) +

d

dt
f(0, ti)

]
∆ti + σ2r(ti)

γ∆W̃ 2
i

φ(ti+1) = φ(ti) +
[
σ2

2r(ti)
2γ − 2κφ(ti)

]
∆ti

S(ti+1) = S(ti) + S(ti)
[
r(ti)∆ti + σ1

(
ρ∆W̃ 2

i +
√

1 − ρ2∆W̃ 1
i

)]

with S(t0) = S0, r(t0) = r0 , ϕ(t0) = 0, 0 = t0 < t1 < . . . < tn = T and where we have denoted

∆ti = ti+1 − ti and ∆Wi := W (ti+1) − W (ti). Notice that we have decomposed the correlated

Brownian motions W1 and W2 into a sum of independent Brownian motions W̃ 1 and W̃ 2 using

Cholesky decomposition. As a result, we can easily simulate (3.3) and (3.2) using the given

forward simulation scheme.

Black-Scholes Smoothing:

Small improvement of the convergence of a lattice for pricing European options can be done using

the method of Black-Scholes trees proposed by Broadie and Detemple [13]. This method

consists of substituting the option value (at the period exactly before maturity) with the Black-

Scholes formula (see Appendix C). The motivation is that at time tn−1, the value of the European

claim is given by

EQ
(
exp

(
−rtn−1∆n−1

)
(K − Stn)+

∣∣∣Ftn−1

)
= BS

(
Stn−1 , rtn−1 , K, ∆n−1

)

where BS(·) denotes the Black-Scholes price of an European option with time to maturity ∆n−1,

spot price Stn−1 , strike K and constant interest rate rtn−1 . Although the calculation of the value
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of the cumulative standard normal distribution function requires some extra time, since this is

done only at the last time slice, the computational effort will not be significantly increased. As a

result the method is easy to implement, even in a more complicated tree than the simple binomial

one and does not cost a lot of extra time. The method is also easy to adapt for the pricing of

American type of options, by substituting the continuation value of the American claim with

the Black-Scholes formula. This will be explained in more details in the next chapter. However,

the BS smoothing method is not very flexible since it can be applied only for the pricing of

options for which the required closed-form solution one time step before maturity exists. In this

respect, it cannot be applied for pricing options with complicated path dependence (e.g. some

of the examples from the previous chapter).

Setting σr = 23%, γ = 1, κ = 0.083, S0 = 36, σs = 30% and r0 = 4% we price a European Put

Option with strike K = 40 and maturity T = 1. For the Monte Carlo simulation, we set the

number of time steps to 500 and the number of paths to 200000. The results for correlation

ρ = 0.8 and S0 = 30 are given in Figure 3.1 a) and for ρ = 0.8 and S0 = 40 in Figure 3.1 b). In

addition, the results for correlation ρ = −0.8, K = 40 and S0 = 30 are plotted in Figure 3.2 a)

and for ρ = −0.8, K = 36 and S0 = 40 in Figure 3.2 b).

From the plots, one can easily notice that the rotated tree exhibits significantly smoother conver-

gence than the quadrinomial tree. For that reason, we have applied the BS smoothing method

only to the quadrinomial lattice. We can observe that the smoothed quadrinomial tree almost

coincides with the rotated lattice. In addition, the correlation between the underlying processes

has small influence on the estimated option value, in contrast to the two-factor interest rate case

we investigate in Chapter 1.

Further, we price a European Call option with K = 40, S0 = 36, ρ = −0.8 and the rest of the

parameters set as before. We plot the results in Figure 3.3 a). In addition, the results for a

European Call option with K = 40, S0 = 30 and ρ = 0.8 are plotted in Figure 3.3 b).

Example 3.4.1. To demonstrate the advantage of the rotated tree construction methods, we

consider a simplified example of pricing options on two stocks which can be priced with a closed-

form solution. For this purpose, let us assume that the dynamics of the stock prices are given
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(b) European Put Option Price with Strike K = 40
and S0 = 40.

Figure 3.1: Comparison of the Monte Carlo simulation, rotated tree or quadrinomial tree
approximated prices of a European Put option. The correlation is set to ρ = 0.8.
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Figure 3.2: Comparison of the Monte Carlo simulation, rotated tree or quadrinomial tree
approximated prices of a European Put option. The correlation is set to ρ = −0.8.
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Figure 3.3: Comparison of the convergence of the numerical price of a European Call
option delivered by Monte Carlo simulation, Rotated tree or Quadrinomial tree.

directly under the risk-neutral measure Q as

dS1(t) = S1(t) [rdt + σ1dW1(t)] , S1(0) = S0
1

dS2(t) = S2(t) [rdt + σ2dW2(t)] , S2(0) = S0
2

where W1(t) and W2(t) are Brownian motions under the risk-neutral measure Q with correlation

ρ, r is the risk-neutral interest rate and σ1 > 0 and σ2 > 0 are the volatilities of the stock price

processes.

Further, for our demonstration purposes we price two type of options:

1. A European Call Option with strike K, on the maximum of the two stocks and with payoff

at maturity T given by

(max (S1(T ), S2(T )) − K)+ .

2. A digital Call Option with strike K and payoff at maturity T given by

11{S1(T )≥K, S2(T )≥K}.
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In addition to the offered rotated and quadrinomial (Cox, Ross and Rubinstein [26] type) tree

constructions, we examine a quadrinomial tree with alternative construction procedure (offered

by Hull [33]), which consists of fixing puu + pud = 1
2 and puu + pdu = 1

2 , relaxing the Cox, Ross

and Rubinstein [26] assumption u = 1
d and finding the new up and down jumps to be

u1 =

(
r − 1

2
σ2

1

)
∆t + σ1

√
∆t, d1 =

(
r − 1

2
σ2

1

)
∆t − σ1

√
∆t

u2 =

(
r − 1

2
σ2

2

)
∆t + σ1

√
∆t, d2 =

(
r − 1

2
σ2

2

)
∆t − σ1

√
∆t.

We have denoted by u1 and d1 respectively the up and down jumps of log (S1(t)) and by u2 and

d2 the up and down jumps of log (S2(t)). The new probabilities are found as

puu =
1

4
(1 + ρ) pud =

1

4
(1 − ρ)

pdd =
1

4
(1 + ρ) pdu =

1

4
(1 − ρ) .

Notice that the alternative quadrinomial tree construction procedure yields well-defined probabil-

ities, but the values of stocks at the central nodes at all time slices after 2∆t will be different

than their values at time 0. In contrast, the Cox, Ross and Rubinstein [26] (CRR) construction

procedure produces a symmetrical around the central node lattice. In addition, in the case of

mean-reversion in the approximated processes we cannot use (at least directly) such an alterna-

tive construction in the adaptive way we have presented in this Chapter 1 (in the sense of using

node-dependent jump heights).

We set r = 5%, σ1 = 10%, σ2 = 30%, T = 0.25, S1(0) = S2(0) = 40, K = 40, ρ = 0.7 and

obtain for the European Call option on the maximum of two assets Figure 3.4 a) (with exact

solution 2.89055 for which we refer to Zvan, Forsyth and Vetzal [67]) and for the European

digital Call option Figure 3.4 b) (with exact solution 0.410929 for which we refer again to Zvan,

Forsyth and Vetzal [67]).

The results we obtain for Example 3.4.1 (in the case of a simple vanilla option), exhibit much

smoother convergence of the rotated tree in comparison to both the quadrinomial CRR and Hull

lattices. It can also be concluded that the pricing error of the rotated lattice is of a similar order

as the Hull lattice.
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(a) European Call option on the maximum of two
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(b) European digital Call option.

Figure 3.4: Comparison of the convergence of the numerical prices delivered by the Ro-
tated and the Quadrinomial tree.

By the digital option pricing, the rotated tree results clearly outperform both quadrinomial tree

constructions. The Hull lattice again shows better results than the CRR one. However, it also

exhibits a saw-tooth convergence effect due to the non-symmetric lattice. We notice that the

same results were also observed by Zvan, Forsyth and Vetzal [67] for a variety of finite-difference

construction although they claim that a rotated mesh is not appropriate when interpolation is

needed, e.g.in cases of discrete dividends. In this respect, we have seen in the previous chapter

that there might be a small deterioration of the rotated tree in the case of discrete payments and

positive correlation coefficient, however the deterioration of the quadrinomial lattice in cases of

high volatility and correlation parameters is much stronger.

Finally, this allows us to claim that rotation of a two-dimensional lattice delivers faster and

smoother convergence, independent of the underlying processes (but as long as they allow con-

stant coefficients representation or transformation), compared to the direct quadrinomial lattice.

However, in this Chapter, we have considered pricing options only of European type and in the

next one we will further investigate the behavior of the two-dimensional lattices for pricing
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American options.



Chapter 4

Pricing American Option with an
Interest Rate Process of Cheyette
Type

4.1 Introduction

The American options are contingent claims that allow exercise at any instant until the maturity

of the option. The problem of their pricing can be transformed to a free boundary problem (see

McKean [48]) or equivalently be written as an optimal stopping problem (see McKean [48],

Bensoussan [6], Karatzas [39]).

Regardless of the various representations of the American option value, due to the free boundary

it is not possible to find its closed form solution and thus numerical methods are required. Apart

from the well-known finite difference (or in specific lattice) methods for which an extensive liter-

ature is available, there is a relatively new theoretical stream which consists of transformation of

the American option pricing problem to a forward-backward stochastic differential equation with

reflection and its simulation with the help of Monte Carlo methods (see Touzi and Buchard [11],

Zhang [65], Longstaff and Schwartz [47], Clément, Lamberton and Protter [23], Andersen [2]

etc.). All these methods are used to estimate an exercise strategy (not necessarily the optimal

one!) and thus can be seen as lower bounds of the American option price. As an only reference

of an upper bound of the price of an American option, we cite Rogers [59].

In this Chapter, our main aim is to price an American put option on a stock price with stochastic

99
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interest rate of Cheyette type, using the tree construction procedures from the previous Chapter

and compare the results to Monte Carlo simulation using the adapted (for the stochastic interest

rate of Cheyette type) algorithm of Longstaff and Schwartz [47].

4.2 Transformation of the Problem as a FBSDE with

Reflection

The goal of this section is to present the American option pricing problem for the given stochastic

processes as a Forward-Backward stochastic differential equation (FBSDE) with reflection and

to comment on the difficulties of its Monte Carlo simulation.

Let us assume again we have a complete probability space
(
Ω, {F}t∈[0,T ] , P

)
and the stock

price process and the riskless interest rate process follow the same dynamic under an equivalent

martingale measure Q as given in the Chapter 3.

Let us further consider the case of a simple American put option with strike K and maturity T .

Following Touzi and Buchard [11], we can rewrite the pricing problem as a Forward-Backward

stochastic differential equation given by

dS(t) = S(t)
[
r(t)dt + σ1dW 1(t)

]
, S(0) = S0 (4.1)

dr(t) = µ(t, φ, r)dt + σf (t, t)dW 2(t), r(0) = r0 (4.2)

dφ(t) =
[
σ2

f (t, t) − 2κ(t)φ(t)
]
dt

µ(t, φ, r) = κ(t) [f(0, t) − r(t)] + φ(t) +
d

dt
f(0, t)

dY (t) = r(t)Y (t)dt − ZtdW 1(t), Y (T ) = (K − S(T ))+ (4.3)

Y (t) > (K − S(t))+ (4.4)

where σf (t, t) = σ2r(t)
γ , γ ≥ 0, σ2 ∈ R

+ and the instantaneous correlation between the two

processes is given by d〈W 1(·), W 2(·)〉t = ρdt. Thus, one can notice that the forward components

are the stock price S(t) and the interest rate r(t) and the backward component is the price of
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the American option which is denoted by Y (t). The system can also be rewritten as

S(t) = S(0) +

∫ t

0
r(u)S(u)du +

∫ t

0
S(u)dW 1(u) (4.5)

Y (t) = g(ST ) +

∫ T

t
r(u)Y (u)du −

∫ T

t
dW 1(u) + AT − At (4.6)

Y (t) ≥ g(St), t ∈ [0, T ] (4.7)

where (St, Yt, rt, Zt) should be adapted with respect to the complete Brownian filtration {F}t∈[0,T ],

Yt ∈ L2 for ∀t ∈ [0, T ], Zt ∈ L2([0, T ]), g(St) := (K − St)
+ and A is a non-decreasing càdlàg

process such that

∫ T

0
(Yt − (K − St)

+)dAt = 0, A0 = 0.

The intuitive meaning of the A-process is to ”push” the solution of the BSDE upwards, so that

it remains above the obstacle which in our case is the early exercise boundary. It has also the

financial meaning of the cost for early exercise of the American option.

Let us now assume that π is an arbitrary discretization of [0, T ] such that 0 = t0 < t1 . . . < tn = T

and |π| := max
1≤i≤n

|ti − ti−1|. Let us also denote the appropriate discrete filtration by

Fπ
i := σ

(
Sπ

tj , r
π
tj

)
j≤i

, i = 1, . . . , n.

Then, for the forward components of the reflected FBSDE we use the classical Euler scheme

of discretization. Thus, the discretized Stock price and interest rate process become

rπ
ti+1

= rπ
ti +

[
κ
(
f(0, ti) − rπ

ti

)
+ φπ

ti +
d

dt
f(0, ti)

]
∆tπi + σ2

(
rπ
ti

)γ
∆πW̃ 2

i

φπ
ti+1

= φπ
ti +

[
σ2

2

(
rπ
ti

)2γ − 2κφπ
ti

]
∆πtπi

Sπ
ti+1

= Sπ
ti + Sπ

ti

[
rπ
ti∆

πti + σ1

(
ρ∆πW̃ 2

i +
√

1 − ρ2∆πW̃ 1
i

)]

with S(t0) = S0, r(t0) = r0 , ϕ(t0) = 0, ∆i = ti − ti−1 and ∆πW̃i := W̃ (ti+1)
π − W̃ (ti)

π,

i = 1, . . . , n. Notice that we have decomposed the correlated Brownian motions W 1 and W 2

into a sum of the independent Brownian motions W̃ 1 and W̃ 2 using Cholesky decomposition. In

this form, we notice that it is straightforward to simulate the forward components using Monte

Carlo methods.
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On the other side, we cannot directly use the Euler discretization scheme for the backward

component

Y π
ti − Y π

ti−1
= rπ

ti−1
Y π

ti−1
∆π

i − Zπ
ti−1

∆π
i W 1

i (4.8)

since then, the Y π
ti−1

will be given by

Y π
ti−1

=
1(

1 + rπ
ti−1∆π

i

)Y π
ti − 1(

1 + rπ
ti−1∆π

i

)Zπ
ti−1

∆π
i W 1

i (4.9)

which is obviously not measurable w.r.t. Fπ
ti−1

. Therefore, in order to obtain a measurable

backward simulation scheme, we need to take an expectation of (4.9) conditioned on Fπ
ti−1

. If

we consider in addition the reflection boundary, we obtain the following recursion

Y π
T = (K − ST )+

Y π
ti−1

= max

(
1

1 + rπ
ti−1

∆π
i

EQ
(
Y π

ti

∣∣∣Fπ
ti−1

)
,
(
K − Sπ

ti−1

))

≈ max

(
EQ

(
exp

(
−rπ

ti−1
∆π

i

)
Y π

ti

∣∣∣ Fπ
ti−1

)
,
(
K − Sπ

ti−1

)+
)

. (4.10)

To obtain the Z-component, we multiply (4.8) with ∆πW 1
i and take again expectation with

respect to Fti−1 . Thus,

Zπ
ti−1

=
1

∆π
i

E
(
Y π

ti ∆
πW 1

i

∣∣∣ Fti−1

)
.

However, since we are only interested in the simulation of the American option price, we can

ignore the Z-component as it has only connection to the hedging strategy. The interesting

question now is how to estimate the conditional expectation, we need for simulating the Y -

process. There are generally three approaches in the literature:

➩ Nonparametric Regression (Kernal estimator) : Carrièr [16];

➩ Maliavin Calculus : Nizar Touzi and Bruno Buchard [11], Zhang [65];

➩ Linear Regression : Longstaff and Schwartz [47] which we abbreviate to (LS), Clément,

Lamberton and Protter [23], Andersen [2];
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We are not going to comment here about the first method and for the second one we are going

to give only a motivation for the case of zero interest rates. Notice that

EQ(Yti

∣∣Fti−1) = EQ(v (Wti)
∣∣Wti−1 = ωti−1)

=
EQ

(
v (Wti) 11{Wti−1=ωti−1}

)

EQ
(
11{Wti−1=ωti−1}

)

where we have denoted Yti := v (Wti) and have used w.l.g. that due to the Markovian property

of the stock prices Fti−1 = Sti−1 = Wti−1 . A straightforward Monte Carlo simulation of the

conditional expectation using N paths will have the form

EQ
(
Yti

∣∣Fti−1

)
≈ 1

N

N∑

j=1

v
(
W j

ti

)
11{

W j
ti−1

=ωti−1

}

11{
W j

ti−1
=ωti−1

}

with the simulated Dirac measure always taking values of zero and thus causing the Monte Carlo

approximation to fail. A way to overcome this problem is offered by Bouchard, Ekeland and

Touzi [10] and consists of transforming the conditional expectation using Malliavin Calculus to

EQ
(
Yti

∣∣Fti−1

)
=

EQ
(
v (Wti)h

(
Wti−1 , ωti−1

))

EQ
(
h

(
Wti−1 , ωti−1

))

where h(, ) denotes the Heaviside function defined as h(x, y) = 11x≥y and which allows (in a more

sophisticated way) the usage of Monte Carlo simulation (see Touzi and Buchard [11]).

4.3 Simulation of a FBSDE with Reflection with the

LS Algorithm

The core of the Monte Carlo simulation of American Options is the estimation of the conditional

expectation of its continuation value, needed for the simulation of the backward component of

the pricing FBSDE with reflection. Finding an algorithm that is able to do this allows us to

completely specify the optimal exercise strategy of an American option for each simulated path

of the underlying security.

In the following section, we are going to present the algorithm of Longstaff and Schwartz [47]

for the estimation of the conditional expectation in (4.10). The very idea of it is to estimate

the required conditional expectation via least squares minimization using the cross-sectional
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information of the simulated paths. The method is generally easy to implement and also to

adapt for the case of Cheyette interest rates.

4.3.1 Motivation

In the process of presenting the method of Logstaff and Schwartz [47], we need first to give

a general motivation for using the least-squares method for an approximation of a conditional

expectation. For that reason, referring to Brockwell and Davis [14], p.63, we give the following

definition of a conditional expectation in the L2 sense:

Definition 4.3.1. If Z1, . . . , Zm are random variables on (Ω, F, P ) and Y ∈ L2(Ω, F, P ), then

the conditional expectation of Y given Z1, . . . , Zm is defined by the projection

E(Y |Z1, . . . , Zm) = PM(Z1,...,Zm)Y

where M(Z1, . . . , Zm) is the closed subspace of L2 consisting of all random variables in L2 which

can be written in the form φ(Z1, . . . , Zm) for some Borel function φ : Rm → R.

On the other side, since the conditional expectation of Y is an element of the space of square-

integrable functions L2([0, T ]), which itself is a separable Hilbert space, there exists a countable

orthonormal basis of M(Z1, . . . , Zm) and the conditional expectation can be presented as a

linear combination of the elements of the basis. Thus,

E(Y |Z1, . . . , Zm) =

∞∑

j=0

ajfj , aj ∈ R, fj(·) : R → R

where the basis functions f1(·), . . . , fM (·) can be taken to be polynomials in Z1, . . . , Zm such as

the Laguerre, Hermite, Chebyshev, Jacobi or other polynomials.

Since the spanning sp (1, f1(·), . . . , f∞(·)) = M(Z1, . . . , Zm), we would obtain from both presen-

tations of the conditional expectation that

E(Y |Z1, . . . , Zm) = PM(Z1,...,Zm)Y = P sp (1,f1(Z1,...,Zm),...,f∞(Z1,...,Zm))Y

which transforms the problem to an easier one since now we are looking for a projection on a

set of countable basis.
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For practical purposes, we use only the first M elements of the latter sum. We can find the

estimators â1, . . . , âM of the needed parameters using the following least squares minimization

min
a1,...,aM

N∑

i=1


Yi −

M∑

j=0

ajfj(Z
j
1 , . . . , Z

j
m)




2

for some observations (Y1, . . . , YN ),
((

Z1
1 , . . . , Z1

m

)
, . . . ,

(
ZN

1 , . . . , ZN
m

))
, N ∈ N. Thus, we obtain

the following approximation of the conditional expectation

Ê(Y |Z1, . . . , Zm) =
M∑

j=1

âjfj(Z1, . . . , Zm).

4.3.2 The Longstaff and Schwartz Algorithm

In this section, we will shortly present the adaptation of the Longstaff and Schwartz [47] algo-

rithm for Monte Carlo simulation of American options to the case of stochastic interest rate of

Cheyette type.

The general idea of the LS algorithm is first to simulate using MC the forward components of the

FBSDE and then starting at maturity, to calculate stepwise backwards the optimal stopping rule

using the reflection principle with continuation value that has been estimated via Least-squares

minimization which on its turn takes into account the information of all simulated paths.

Assuming we perform N ∈ N simulations of the underlying process we have now two steps:

Step 1. At maturity tn = T , the holder of an American option has the choice only to exercise

the option if it is in the money or leave it if it is not. The situation is exactly the same as by

the European type of options. Thus, we are going to construct an optimal stopping strategy,

starting from the maturity so that at time tn, we have N decisions to make whether to exercise

or not.

Let us keep in an n × N matrix Λ = (α)i,j the optimal stopping strategy, so that at the end of

the algorithm we will have for each time point ti, i = 1 . . . , n and each path {j}, j = 1, . . . , N

αi,j :=

{
1, if we stop
0 if we continue.
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Thus, at maturity tn we have for j = 1, . . . , N

αn,j :=

{
1, if (K − Stn) > 0
0 else.

Further, for each time point until time t0 we have to make the choice whether to continue keeping

the option or exercise it. In order to estimate the continuation value, as shown in the motivation

for the algorithm, we choose a quadratic function for the least squares regression. The algorithm

is easily generalized for any polynomial.

Step 2. Assume that we are at time ti−1 in the simulation, where we have already found the

optimal stopping strategy from time ti to the maturity tn. Thus, we have found all αi,j , . . . , αn,j ,

where for each simulated path only one of them can be 1, since we can exercise the American

option only once.

Next, looking for the optimal stopping rule at time ti−1, we need to find the continuation value,

which can be written for each path j = 1, . . . , N as

EQ
(
exp

(
−rti−1∆i

)
Yti

∣∣Fj
ti−1

)
. (4.11)

Due to the fact that the stock price follows a Markov process and the Cheyette interest rate is

an ingredient in a Markov process, (4.11) can be rewritten as

EQ
(
exp

(
−rti−1∆i

)
Yti

∣∣∣Sj
ti−1

, r j
ti−1

, φj
ti−1

)
. (4.12)

Notice also that since by definition φti−1 is uniquely determined by rti−2 and φti−2 and we

condition only on the last state and not on the whole history of the process, we can thus omit

it from the condition.

Next, for the following regression we need the discounted optimal payout of the American option

for each path {j} at time ti, i.e. the value of exp
(
−r j

ti−1
∆i

)
Y j

ti
and we notice that although

we do not keep its running value, we have found the optimal strategy from time ti until the

maturity tn for each simulated path. Hence, we can use the information hidden in it to find the

possible payoff of the American option for each path. Therefore, let us denote the discounted

up to time ti−1 ex-post realized payoff for path j from continuation from time ti to maturity tn
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by

Y :=




Y 1
i
...

Y N
i




and for each path j = 1, . . . , N at time ti find it as

Y j
i =

n∑

k=i

αkj

(
K − Sj

tk

)+
exp


−

k∑

p=i−1

rj
tp∆p


 .

Further, we denote with X the matrix of the current values of the underlying two processes

needed for the regression such that

X :=




(
S1

ti−1

)2 (
r1
ti−1

)2
S1

ti−1
r1
ti−1

S1
ti−1

r1
ti−1

1

...
...

...
...

...
...(

SN
ti−1

)2 (
rN
ti−1

)2
SN

ti−1
rN
ti−1

SN
ti−1

rN
ti−1

1




If we denote S2 :=

((
S1

ti−1

)2
, . . . ,

(
SN

ti−1

)2
)′

, r2 :=

((
r1
ti−1

)2
, . . . ,

(
rN
ti−1

)2
)′

, S :=
(
S1

ti−1
, . . . , SN

ti−1

)′
,

r :=
(
r1
ti−1

, . . . , rN
ti−1

)′
, Sr :=

(
S1

ti−1
r1
ti−1

, . . . , SN
ti−1

rN
ti−1

)′
, 11 := (1, . . . , 1)′, Θ := (a1, a2, b1, b2, c, d)′,

then we can write the mean squared error as

S(Θ) =
N∑

j=1

(
Y j

i − a1

(
Sj

ti−1

)2
− a2

(
rj
ti−1

)2
− b1S

j
ti−1

− b2r
j
ti−1

− cSj
ti−1

rj
ti−1

− d

)2

= ‖Y − a1S
2 − a2r

2 − b1S − b2r − cSr − d 11‖2

and find by the Projection Theorem that there is a unique vector Θ̂

Ŷ = XΘ̂ =
(
â1S

2 + â2r
2 + b̂1S + b̂2r + ĉSr + d̂ 11

)

which minimizes S(Θ), such that

Θ̂ =
(
X′X

)−1
X′Y. (4.13)

Notice that if X′X is a singular matrix there are infinitely many solutions of Ŷ = XΘ̂ but XΘ̂

is the same for all of them.

Having found an estimation for (4.12) for each path j = 1, . . . , N , such that

ÊQ
(
exp

(
−rti−1∆i

)
Yti

∣∣Sj
ti−1

, rj
ti−1

)
= â1

(
Sj

ti−1

)2
+ â2

(
rj
ti−1

)2
+ b̂1S

j
ti−1

+b̂2r
j
ti−1

+ ĉSj
ti−1

rj
ti−1

+ d̂
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we obtain directly the optimal stopping rule for the time ti−1 as

αi−1,j :=

{
1, if

(
K − Sj

ti−1

)+
> ÊQ

(
exp

(
−rti−1∆i

)
Yti

∣∣Sj
ti−1

, rj
ti−1

)

0 else.

It is easy to notice that if
(
K − Sj

ti

)
≤ 0 then the immediate exercise value of the American

option is zero and in that case the option will not be exercised. Thus, for all out of the money

payoffs we do not need to calculate the continuation value as for them we can directly set the

respective α equal to zero. Longstaff and Schwartz [47] showed that this leads to a significant

increase in the efficiency of the algorithm. Practically, instead of N elements, the vector Y will

have for each time ti only N∗
j−1 ≤ N elements such that

N∗
j−1 =

N∑

j=1

11{(
K−Sj

ti−1

)
>0

}.

In addition, we should notice that as soon as it becomes optimal to exercise, the American option

will be exercised and therefore stops existing. Thus, if αi−1,j = 1 then αi,j = αi+1,j = . . . =

αn,j = 0 for all j = 1, . . . , N . The interpretation is that for each simulated path, the American

option can be exercised at most once and if exercised, the payoff is paid and the option does not

exist anymore.

Remark 4.3.1. Notice that although the stock price and the interest rate are correlated, there

will be no effect on the estimated expectation since the fitted value of the regression is unaffected

by the degree of correlation between the explanatory variables.

After we have found the optimal stopping strategy for all paths j = 1, . . . , N and all discrete

time points t1, . . . , tn, the approximated value of the American option at time t0 is given by

Y0 =
1

N

n∑

i=1

N∑

j=1

αij exp

(
−

i∑

k=0

rj
tk

∆k

)(
K − Sj

ti

)+
.

4.4 The Lattice Approach

Using trees is the standard way to deal with reflected FBSDE or with linear programming

problems. Both lattices from Chapter 3 are also applicable for pricing American options with

an interest rate process of Cheyette type.
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As in the previous section, we can calculate the value of an American type of option by the

following backward routine

YT = (K − ST )+, for all nodes of the tree at maturity

Y j
ti−1

= max

(
exp

(
− rj

ti−1
∆i

)
EQ

(
Yti

∣∣∣Fj
ti−1

)
,
(
K − Sj

ti−1

)+
)

, for node {j} at time ti−1.

The conditional expectation above is approximated as

EQ
(
Yti

∣∣∣Fj
ti−1

)
≈ pj

uuY uu
ti,j + pj

udY
ud
ti,j + pj

duY du
ti,j + pj

ddY
dd
ti,j

where pj
uu, pj

ud, p
j
du and pj

dd are the risk-neutral probabilities at node {j} calculated by the lattice

construction methods presented in Chapter 3.

4.5 Numerical Results

We have calculated as a first numerical example an American put option with maturity T = 1

and strike K = 36 and where the process parameters are σr = 23%, γ = 1, κ = 0.083, ρ =

0.8, S0 = 40, σs = 30% and r0 = 80%. Using the Longstaff and Schwartz Monte Carlo simulation

algorithm we have obtained the following two tables:

American Put Option, LS Monte Carlo Results

Number of Simulations Discretization MC 90% asympt. CI

1000 200 2,5150483 [2.2755226,2.7545631]
5000 200 2.4591275 [2.3545425,2.5637043]
10000 200 2.3621708 [2.2912535,2.4330854]
50000 200 2.3413370 [2.3102514,2.3724324]
100000 200 2.3419884 [2.3201125,2.3638695]
200000 200 2.3448583 [2.3273747,2.3602747]

American Put Option, LS Monte Carlo Results

Number of Simulations Discretization MC 90% asympt. CI

200000 50 2.323347 [2.307922,2.338765]
200000 100 2.341988 [2.320113,2.363870]
200000 150 2.332644 [2.317256,2.348018]
200000 200 2.344858 [2.323347,2.360275]

In the first table, we can observe the convergence of the result with the increase of the number of

simulations and have cited in addition the 90% asymptotic confidence interval1 (CI). We remark

1 For an explanation of the MC estimation of the asymptotic confidence intervals, we refer to Chapter
6.
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that even only with 200000 MC simulation and 200 time steps we are at the boundary of the

current standard computer power (in the sense of computer time) but still we do not obtain

sufficiently tight CI.
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(a) Convergence of the trees with the increase of the
number of time slices without BS smoothing.

0 20 40 60 80 100 120 140 160 180
2.28

2.3

2.32

2.34

2.36

2.38

2.4

2.42

2.444

2.46

Number of Timeslices

O
p

tio
n

 V
a

lu
e

LS MC Result
90% aympt. CI
90% aympt. CI
Rotated Tree Price
Quadrinomial Tree Price

(b) Convergence of the trees with the increase of the
number of time slices with BS smoothing.

Figure 4.1: Comparison of the convergence of the Rotated Tree and the Quadrinomial
Tree in the calculation of an American Put Option with strike K = 36, maturity T = 1,
S0 = 40, ρ = 0.8. For the LS MC simulation we have used 200000 simulated paths and
200 timesteps.

The second table we have used to show that simply increasing the number of time steps cannot

lead to improvement of the result if we keep the same number of MC simulations. In fact, it

even leads to a deterioration of the confidence intervals since it increases the numerical error

of the simulation (see e.g. Touzi and Bouchard [11] for an extensive analysis of the connection

between the error of the regression and the error of the MC simulation to the total estimation

error).

Further, we compare the performance of both trees for the same option and process parameters

in Figure 4.1a). As an additional example we use T = 1, K = 30, S0 = 40, ρ = 0.6, σr =

23%, γ = 1, κ = 0.083 and σs = 30% and we plot the respective results in Figure 4.2a).

We notice that both trees deliver good results with insignificant additional time expense, com-

pared to the European option pricing. We can also observe that the rotated tree delivers



4.5 Numerical Results 111

0 20 40 60 80 100 120 140 160 180
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Number of Timeslices

O
p

tio
n

 V
a

lu
e

LS MC Result
90% asympt.CI
90% asympt.CI
Rotated Tree Price
Quadrinomial Tree Price

(a) Convergence of the trees with the increase of the
number of time slices without BS smoothing.
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Figure 4.2: Comparison of the convergence of the Rotated Tree and the Quadrinomial
Tree in the calculation of an American Put Option with strike K = 30, maturity T = 1,
S0 = 40, ρ = 0.6. For the LS MC simulation we have used 200000 simulated paths and
200 timesteps.

smoother convergence, which was also the case for European options.

Black-Scholes Smoothing:

As already mentioned in the previous chapter, an improvement of the convergence the lattice

constructions can be done using the method of Black-Scholes trees. This method, used for

improving the convergence of the binomial tree for pricing of American options consists of

substituting at the period exactly before the maturity of the option the continuation value with

the Black-Scholes formula. The motivation is that at time tn−1, the continuation value of the

American claim is given by

EQ
(
exp

(
−rtn−1∆n−1

)
Ytn

∣∣Ftn−1

)
= EQ

(
exp

(
−rtn−1∆n−1

)
(K − Stn)+

∣∣∣Ftn−1

)

= BS
(
Stn−1 , rtn−1 , K, ∆n−1

)

where BS(·) denotes again the Black-Scholes price of an European option with time to maturity

∆n−1, spot price Stn−1 , strike K and constant interest rate rtn−1 . Performing numerical sim-

ulation of the previous examples we obtain Figure 4.1b) and Figure 4.2b). Comparison to the

results before the BS smoothing reveals again especially in the Quadrinomial tree construction
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a significant improvement of the convergence.

4.6 Suggestions for Further Research Topics

Since now we have all component to price reasonably a convertible bond, a topic for further

research can be the practical implementation of its pricing algorithm by adding in addition a

jump-diffusion dynamic of the underlying stock price (recall the previous chapter). One can also

adapt and test the algorithm of Andersen [2] for the case of stochastic interest rate of Cheyette

type and compare its behavior to the Longstaff and Schwartz [47] one.



Chapter 5

Pricing Cumulative Parisian
Call/Put Options with Modified
Binomial/Trinomial Trees

Both continuously and discretely monitored barrier options share the same drawback - they

tempt either the option buyer or the option seller to try to influence the underlying stock price

which leads to the so called ”barrier wars”. As a solution, the financial markets have offered

several instruments that both preserve the barrier feature of the option and minimize the risk

of manipulation. The oldest example is the so called ”Asian barrier option” which is written on

the weighted sum of the discretely observed underlying stock prices.

Another recent development of the financial markets is the ”Parisian” option, which is knocked-

in (or out) when the underlying stock price stays above (or below) the barrier a minimum period

of time, referred to as a ”window”. In this case, we differentiate between continuous period of

time (or consecutive days) and cumulative period of time (the sum of all days outside the bar-

rier, not necessarily consecutive). For a quasi-analytical solution of the continuously monitored

(also cumulative) Parisian barrier down-and-out option, we refer to Chesney, Jeanblanc-Picque

and Yor [19] who define the option value in terms of an integral expressed as an inverse Laplace

transform using the theory of Brownian excursions. Hugonnier [32] finds a quasi closed-form

analytical solution for the continuously monitored cumulative Parisian barrier option and later

Moraux [50] slightly corrects Hugonnier’s quasi-analytical solution although he agrees with the

correctness of his numerical implementation. Further, for a partial differential equation formula-

113
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tion of the continuously monitored cumulative and consecutive Parisian barrier options we refer

to Haber, Schönbucher and Wilmott [63] and Vetzal and Forsyth [62].

In this Chapter, we will introduce a new pricing method for the continuously monitored cumula-

tive Parisian barrier option that combines a Cox, Ross and Rubinstein [26] binomial or trinomial

lattice construction with a closed-form solution of the (conditional on the starting and ending

stock value) knock-out probabilities using the theory of Brownian excursions. The presented

method is both easy to implement and requires no extra interpolation. Further, it shows results

very close to the analytical solution. For comparison with the existing lattice methods based on

the Forward Shooting Grid algorithm for pricing continuously monitored Put or Call cumulative

Parisian barrier options, we refer to Kwok and Lau [44].

Definition 5.0.1. A continuously monitored ”Cumulative Parisian Barrier-Up Call Option”

(CPCall+) with maturity T and strike K pays at maturity the amount (S(T ) − K)+ if in a

pre-specified interval [T0, T ], 0 ≤ T0 < T the stock price S(t) remains ”cumulatively” above a

certain level L time longer than a fraction R ∈ R, R ∈ (0, 1) of the length of the interval.

  

S
(t

)

tt t

L

i i + 1

Example 5.0.1. Usual case in the praxis is a ”window” [ti, ti+1] of 30 days and a fraction R

of ”20 out of 30 days”.
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5.1 Definition of the Problem

Let us assume we have a complete probability space
(
Ω, {F}t∈[0,T ] , P

)
and an arbitrage-free

market. Let us further assume that we are in the Black-Scholes world (see more about it in

Appendix C) where the stock price follows a Geometric Brownian motion which is given directly

under the unique risk-neutral measure Q (equivalent to P with respect to {Ft}) as

dSt = St

[
(r − q) dt + σdWQ

t

]
, σ > 0

S(0) = S0

with a constant riskless interest rate r and a continuous dividend yield q.

The price CPCall+(0) of the cumulative Parisian barrier-up call option at time 0 for a window

[0, T ] is given by

CPCall+(0) = EQ
(
e−rT [ST − K]+ 11{A}

)

A :=

∫ T

0
11{St≥L}dt ≥ RT

where A denotes the the set of events on which the option is not knocked out.

If we approximate the distribution of the stock price via a discrete random walk and use in

addition the formula of total probability we would obtain

CPCall+(0) ≈
∞∑

x=0

e−rT EQ
(
[ST − K]+ 11{A}

∣∣ST = x
)
Q (ST = x)

≈
∞∑

x=0

e−rT [x − K]+ Q
(
A

∣∣ST = x
)
Q (ST = x) . (5.1)

In this chapter, we choose to work with a binomial or trinomial lattice method for approximation

of the distribution of the stock price, introduced by Cox, Ross and Rubinstein [26] (CRR).

Starting with the binomial tree, we denote the up-move by u and the down-move by d and

choose d = 1
u . Further, we denote the risk-neutral probabilities of an up-jump by pu and of a

down-jump by pd and referring to CRR, we can write them as

pu = 1 − pd =
e(r−q)∆t − d

u − d

u =
1

d
= eσ∆t
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where ∆t = T
n with n denoting the number of timesteps in the binomial tree. With these choices,

the binomial price process converges weekly to the geometric Brownian motion as n → ∞.

Next, we notice that in a binomial lattice, the price of a plain vanilla call option can be approx-

imated by

Call(0) ≈ e−rT
n∑

j=0

pj
upn−j

d

(
n
j

) [
S0u

jdn−j − K
]+

. (5.2)

If we can now estimate the probability of the stock price starting in S0 and ending at time T

in S0u
jdn−j , j = 0, . . . , n to stay longer than a fraction R of the time above the barrier L,

we could approximate also the price of the cumulative Parisian call option in a way similar to

(5.2) and corresponding to (5.1). Specifically, denoting the conditional probability of a survival,

conditioned on the starting and ending stock value by p̃ (S0, ST ), we can write it as

p̃ (S0, ST ) := Q
( ∫ T

0
11{St≥L}dt ≥ RT

∣∣∣ S0, ST

)

and the Parisian call option price can be approximated at time 0 as

CPCall+(0) ≈ e−rT
n∑

j=0

pj
upn−j

d

(
n
j

)
p̃

(
S0, S0u

jdn−j
) [

S0u
jdn−j − K

]+
. (5.3)

In the next section, we will deal with the calculation of p̃ (S0, ST ), which is called ”occupational

time probability”.

In the case of a trinomial tree construction, let us denote the risk-neutral probabilities for the

stock price to keep its value, to jump down and to jump up by pm, pd and pu respectively. Let

us also denote the changes in the stock price in the middle-node, down-node and up-node by

m, d and u respectively, where by following Hull [33] we assume that m = 1 and u = 1
d . By

matching the first and second moment of the stock price, we find

pu =

√
∆t

12σ2

(
r − q − σ2

2

)
+

1

6

pm =
2

3

pu = −
√

∆t

12σ2

(
r − q − σ2

2

)
+

1

6

u =
1

d
= eσ

√
3∆t
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Using a trinomial lattice as a discrete approximation method, we can rewrite (5.1) for the

cumulative Parisian call option price as

CPCall+(0) ≈ e−rT
n∑

j=0

j∑

k=0

pj−k
u pk

mpn−j
d

(
n

j − k, k, n − j

)
p̃

(
S0, S0u

j−kmkdn−j
)

.
[
S0u

j−kmkdn−j − K
]+

(5.4)

where

(
n

j − k, k, n − j

)
=

n!

(j − k)!k!(n − j)!

are the coefficients of a generalization of the Pascal’s triangle to three dimensions called Pascal’s

pyramid or tetrahedron.

5.2 Calculation of the Occupational Time Probabili-

ties

Recall that in order to incorporate the ”cumulative Parisian” call feature in the tree, we need

to find the following probability

Q
( ∫ T

0
11{St≥L}dt ≥ R T

∣∣∣ S0, ST

)
= EQ

(
11{Γ≥R T}

∣∣∣ S0, ST

)

where we denote Γ :=
∫ T
0 11{St≥L}dt.

Remark 5.2.1. Notice that the time the stock price process spends cumulatively above and below

the barrier sums up to the total time T , i.e.

∫ T

0
11{St≥L}dt +

∫ T

0
11{St≤L}dt = T.

Therefore, we have the following relation between the probabilities of the occupational time of a

Brownian motion below or above a barrier L

Q
( ∫ T

0
11{St≥L}dt ≥ R T

∣∣∣ S0, ST

)
= Q

(
T −

∫ T

0
11{St≤L}dt ≥ R T

∣∣∣ S0, ST

)

= Q
( ∫ T

0
11{St≤L}dt ≤ (1 − R) T

∣∣∣ S0, ST

)

= 1 − Q
( ∫ T

0
11{St≤L}dt ≥ (1 − R) T

∣∣∣ S0, ST

)
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which allows us an easy transformation between the upper probabilities, once we have estimated

one of them. Hence, with a little effort we can also calculate all types of down-and-in, up-and-in,

down-and-out or up-and-out continuously monitored cumulative Parisian call/put options.

Similar to the relationship between the upper probabilities, Chesney, Jeunblanc and Yor [19],

Hugonnier [32]and Moraux [50] show that if we denote by CPCall(·) and CPPut(·) the prices of

the continuously monitored cumulative Parisian barrier Call/Put option (with subindices ” + ”

or ” − ” whether the occupational time is considered above or below the barrier) given as a

function of the cumulative ”window” time, then the following parity relationships hold:

CPCall∓ (RT ) + CPCall± ((1 − R)T ) = BSCall(T ) (5.5)

CPPut∓ (RT ) + CPPut± ((1 − R)T ) = BSPut(T ) (5.6)

with BSCall(T ) and BSPut(T ) denoting the Black-Scholes prices of a European Call or re-

spectively Put option with the same stock price parameters as the cumulative Parisian barrier

option. For the general proof of the these relationships, we refer again to Chesney, Jeanblanc

and Yor [19], Hugonnier [32] and Moraux [50] and state here an easy proof of their validity in

the case of the binomial/trinomial tree approximation we have offered.

Lemma 5.2.1. If we denote the respective approximated (with the offered lattice method) prices

of the different types of continuously monitored cumulative Parisian barrier Call/Put options

with ĈPCall
∓
(·), ĈPCall

±
(·),ĈPPut

∓
(·) and ĈPPut

±
(·) and the approximated (with a CRR

lattice) simple vanilla Call/Put option price by Ĉall(·) and P̂ ut(·), then the following parity

relationships hold

ĈPCall
∓

(RT ) + ĈPCall
±

((1 − R)T ) = Ĉall(T ) (5.7)

ĈPPut
∓

(RT ) + ĈPPut
±

((1 − R)T ) = P̂ ut(T ) (5.8)

Proof: Since the different cases are analogical, we will prove only

ĈPCall
+

(RT ) + ĈPCall
−

((1 − R)T ) = Ĉall(T )

for the binomial tree construction.
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Recall that due to (5.3) we can write the price of the cumulative Parisian Call option with

window time (RT ) above the barrier L as

ĈPCall
+

(RT ) = e−rT
n∑

j=0

pj
upn−j

d

(
n
j

)
p̃

(
S0, S0u

jdn−j
) [

S0u
jdn−j − K

]+

with

p̃ (S0, ST ) := Q
( ∫ T

0
11{St≥L}dt ≥ RT

∣∣∣ S0, ST

)
.

Then, using (recall Remark 5.2.1)

Q
( ∫ T

0
11{St≥L}dt ≥ RT

∣∣∣ S0, ST

)
= 1 − Q

( ∫ T

0
11{St≤L}dt ≥ (1 − R) T

∣∣∣ S0, ST

)

yields

ĈPCall
+

(RT ) = e−rT
n∑

j=0

pj
upn−j

d

(
n
j

) (
1 − Q

( ∫ T

0
11{St≤L}dt ≥ (1 − R) T

∣∣∣ S0, ST

))

[
S0u

jdn−j − K
]+

= e−rT
n∑

j=0

pj
upn−j

d

(
n
j

) [
S0u

jdn−j − K
]+

−e−rT
n∑

j=0

pj
upn−j

d

(
n
j

)
Q

( ∫ T

0
11{St≤L}dt ≥ (1 − R) T

∣∣∣ S0, ST

) [
S0u

jdn−j − K
]+

= Ĉall(T ) − ĈPCall
−

((1 − R)T ) .

The rest of the cases follow by analogy due to Remark 5.2.1. The proof for the trinomial lattice

approximation follows the same steps as the binomial one.

Now, let us denote m := 1
σ

(
r − q − σ2

2

)
and notice that St = S0e

σ(mt+Wt) = S0e
σZt , where

Zt = Wt + mt. Our next goal in calculating the occupational time probabilities is to move

from the risk-neutral probability measure Q under which Wt is a driftless Brownian motion to

an equivalent (with respect to {F}t∈[0,T ] ) probability measure Q∗ under which Zt is a driftless

Brownian motion.

The measure Q∗ is defined by the Radon-Nikodym density D(T ), given by Theorem B.0.2 as

D(T ) =
dQ

dQ∗

∣∣∣
FT

= emZT−m2

2
T and

1

D(T )
=

dQ∗

dQ

∣∣∣
FT

=
1

e−mWT− 1
2
m2T

.
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Denoting L∗ = 1
σ log

(
L
S0

)
, Γ∗ =

∫ T
0 11{Zt≥L∗}dt and referring to the Cameron-Martin-Girsanov

Theorem B.0.1, we obtain

EQ
(
11{Γ≤R T}

∣∣∣ S0, ST

)
=

EQ∗
(
11{Γ∗≤R T}D(T )

∣∣∣ S0, ST

)

EQ∗
(
D(T )

∣∣∣ S0, ST

)

where notice that G = {S0, ST } is a sub-sigma field of F and G = {S0, ST } = {W0, WT } =

{Z0, ZT }. Then, plugging in the Girsanov density D(T ) yields,

EQ
(
11{Γ≤R T}

∣∣∣ S0, ST

)

=
EQ∗

(
11{Γ∗≤R T} emZT−m2

2
T

∣∣∣ Z0, ZT

)

EQ∗
(
emZT−m2

2
T

∣∣∣ Z0, ZT

) = EQ∗
(
11{Γ∗≤R T}

∣∣∣ Z0, ZT

)

= Q∗
( ∫ T

0
11{Zt≥L∗}dt ≤ R T

∣∣∣ Z0, ZT

)
(5.9)

where Z0 = 0 and ZT = 1
σ log ST

S0
=: y.

Next, we denote the joint density of the occupational time Γ∗ and the location of Z at time T

by fΓ∗,Zt(x, y), the density of Z at time T by fZT
(y) and the conditional on ZT = y density of

Γ∗ by fΓ∗,ZT =y(x). Then, we have that

Q∗
(
Γ∗ ≤ RT

∣∣∣ ZT = y
)

=

∫ RT

0
fΓ∗,ZT =y(x)dx =

∫ RT

0

fΓ∗,ZT
(x, y)

fZT
(y)

dx.

The density of the Brownian motion at time T is given by

fZT
(y) =

1√
2πT

e−y2/2T

and referring to Borodin and Salminen [9] p.158, we have the following four different cases for

the joint density fΓ∗,Zt(x, y):

1. L ≥ S0, L ≥ ST (⇔ L∗ ≥ 0, L∗ ≥ y)

fΓ∗,Zt(x, y) =
a
√

T − v

πT 2
√

v
e
− a2

2(T−v) dvdy +
1

√
2πT

3
2

(1 − a2

T
)e−

a2

2T Erfc(
a
√

v√
2T (T − v)

)dvdy

where a := 2L∗ − y.
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2. S0 ≤ L ≤ ST (⇔ 0 ≤ L∗ ≤ y)

fΓ∗,Zt(x, y) =
( c

√
v

πT 2
√

T − v
+

L∗√T − v

πT 2
√

v

)
e
− c2

2v
− L∗2

2(T−v) dvdy

+
1

√
2πT

3
2

(1 − a2

T
)e−

a2

2T Erfc
(c

√
T − v√
2Tv

+
L∗√v√
2T (t − v)

)
dvdy

where c := y − L∗, a := 2L∗ − y.

3. ST ≤ L ≤ S0 (⇔ y ≤ L∗ ≤ 0)

fΓ∗,Zt(x, y) =
( −L∗√v

πT 2
√

T − v
+

d
√

T − v

πT 2
√

v

)
e
−L∗2

2v
− d2

2(T−v) dvdy

+
1

√
2πT

3
2

(1 − a2

T
)e−

a2

2T Erfc
(−L∗√T − v√

2Tv
+

d
√

v√
2T (t − v)

)
dvdy

where d := L∗ − y, a := 2L∗ − y.

4. L ≤ S0, L ≤ ST (⇔ L∗ ≤ 0, L∗ ≤ y)

fΓ∗,Zt(x, y) =
( −a

√
v

πT 2
√

T − v

)
e−

a2

2v dvdy

+
1

√
2πT

3
2

(1 − a2

T
)e−

a2

2T Erfc
(−a

√
T − v√
2Tv

)
dvdy

where a := 2L∗ − y.

We have denoted with Erfc(.) the error function which is given by

Erfc(x) :=
2√
π

∫ ∞

x
e−v2

dv

where substituting v = u√
2
, dv = 1√

2
du and noticing that we integrate u in [

√
2x,∞], we obtain

Erfc(x) =
2√
2π

∫ ∞

√
2x

e−
u2

2 du = 2ϕ(−
√

2x)

where ϕ(·) is the cumulative standard normal distribution function.

Remark 5.2.2. For the special case of S0 = ST = L ⇔ L∗ = y = 0, we have that

Q∗
( ∫ T

0
11{Zt≥0}dt ∈ dv

∣∣∣ Z0 = ZT = 0
)

=
1

T
11[0,T ](v)dv

and thus

(5.9) =
1

T

∫ RT

0
11[0,T ](v)dv = R.
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Finally, analytically or numerically calculating (??) for the different four cases, we can obtain

the required probability. Notice that the interest rate r does not enter in the formula of the

estimated probabilities, due to the conditioning on the starting and ending point of the stochastic

process since the only uncertainty left is the one driven by the underlying Brownian motion.

Remark 5.2.3. To speed-up the calculation of the upper probability, we can scale the time

from [0, T ] to [0, 1] and thus be able to always integrate from 0 to 1 with a new variance σ
√

T .

Therefore, notice that

St = S0 exp

[(
r − 1

2
σ2

)
t + σWQ(t)

]

= S0 exp

[(
rT − (σ2

√
T )2

2

)
t

T
+ σ

√
TWQ

(
t

T

)]

where
√

TWQ( t
T ) = WQ(t) both ∼ N (0, t)

∫ T

0
11{St≥L}dt ≤ R T ⇔

∫ T

0
11{

S0 exp
[(

rT− (σ
√

T )2

2

)
t
T

+σ
√

TW Q( t
T )

]}dt ≤ R T (5.10)

substitute t = uT , t ∈ [0, T ] ⇒ dt = Tdu and u ∈ [0, 1] and obtain,

∫ 1

0
11{

S0 exp
[(

rT− (σ
√

T )2

2

)
u+σ

√
TW Q(u)

]}du T ≤ R T

Let us denote,

S∗(u) = S0 exp

[(
rT − (σ

√
T )2

2

)
u + σ

√
TW (u)

]

Then,

S∗(0) = S0

S∗(1) = S∗
0 exp

[(
rT − (σ

√
T )2

2

)
+ σ

√
TW (1)

]

and

Q
(
(5.10)

)
= Q

(∫ 1

0
11{S∗(u)}du ≤ R

∣∣∣S∗(0), S∗(1)

)

Now, the same formulas apply as before, but for volatility σ
√

T and time interval [0, 1]. Note

that although the interest rate is now rT it causes no change in the calculations as it cancels

out.
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If we want to price a cumulative Parisian barrier option with a forward starting window [T1, T2],

i.e. T1 > 0, we can construct a standard binomial/trinomial tree until the beginning of the

window and then integrate directly until the maturity of the option. Visually, this is shown

in Figure 5.1 and assuming only for notational easiness that the number of time steps n1 from

[0, T1] and n2 from [T1, T2] are chosen so that ∆t = T1
n1

= T2−T1
n2

(and thus the jump heights are

the same before or during the window) we can write the approximated via a binomial type of

tree price of the option as

C(0) ≈ e−rT2

n1∑

j=0

pj
upn1−j

d

(
n1

j

) n2∑

i=0

pi
upn2−i

d

(
n2

i

)

.p̃
(
S0u

jdn1−j , S0u
jdn1−juidn2−i

) [
S0u

jdn1−juidn2−i − K
]+

.

T
1
 T

2
 

Parisian Window 

Figure 5.1: Adopting the method for the pricing of options with a cumulative Parisian
window starting in the future.

One of the advantages of the offered method to the closed-form solution is exactly this flexibility

in adapting different features of the Parisian option.

5.3 Results

In this section, we compare the prices of the continuously monitored cumulative Parisian call

option, obtained from the offered modified lattice method to the quasi-analytical solution results
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by Hugonnier [32] and the FSG lattice constructed by Kwok and Lau [44]. We set the starting

stock price S0 = 95, the strike K = 100, the barrier L = 110, the volatility σ = 20%, the

maturity T = 1, the interest rate r = 5% and the continuous dividend yield to 2%. We variate

the fraction R between the values 0.25, 0.5 and 0.75. For the results of the quasi-analytical

solution by Hugonnier [32] and the FSG lattice by Kwok and Lau we refer to Kwok and Lau [44]

(exhibit 3) and thus we obtain the following table:

R quasi-analytical FSG FSG FSG Direct Binom. Direct Trinom.
solution n=500 n=1000 Extrapol. Tree (n = 500) Tree (n = 500)

0.25 4.88453 4.71818 4.76807 4.88851 4.88495 4.88459

0.5 3.08308 2.88602 2.94335 3.08175 3.08251 3.08212

0.75 0.98758 0.85923 0.89504 0.98149 0.98618 0.98620

where the results of the offered tree construction are given under the names ”Direct Binomial

Tree” and ”Direct Trinomial Tree” and n denotes the number of time steps in the tree construc-

tions. Additionally, in Figure 5.2 we have plotted for R = 0.25 (keeping the other parameters

the same as before) the direct binomial and trinomial lattice prices of the cumulative Parisian

call option agains the number of time slices.

Notice that the results we obtain are better than the FSG lattice constructions of Kwok and

Lau [44] already with only 200 time steps. The reason for this is that the ”direct tree” con-

struction uses analytically estimated conditional on the starting and ending point knock-out

probabilities. Moreover, it has in addition no interpolation error as in the FSG algorithm. The

offered tree construction is intuitive and in addition easy to construct for all cases of continu-

ously monitored cumulative Parisian options. Furthermore, it allows for some flexibility in the

features of the option such as a forward staring window.

However, its major drawback is that it is not flexible in the sense that for the pricing of any other

type of Barrier options, the conditional on the starting and ending point knock-out probability

has to be explicitly estimated while this is not needed in the FSG lattice pricing method.
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Figure 5.2: Convergence of the direct binomial and trinomial tree results with the number
of time slices. The quasi closed-form solution result and the extrapolated FSG result are
taken from Kwok and Lau [44].

5.4 Suggestions for Further Research Topics

A possible topic for further research is the pricing of the continuously monitored consequent

Parisian options with the offered algorithm for which we have to estimate the respectice condi-

tional knock-out probabilities. In addition, the algorithm can be applied for pricing convertible

bonds with cumulative Parisian call feature. The method is also applicable when combining

the stock price dynamic with a stochastic interest rate one but only as long as a direct integra-

tion until the maturity of the simple option (without the barrier feature) is possible. Additional

difficulty in this respect is the usual mean-reversion feature of the stochastic short rate processes.



Chapter 6

Longevity Bonds - Pricing, Modeling
and Application for German Data

This chapter is similar to the article of Korn, Natcheva and Zipperer [42] in which it additionally

focuses on introducing new two-factor stochastic models for the mortality rate dynamics and

consequently on delivering further numerical examples and analysis.

6.1 Introduction

Besides the interest rate risk, the longevity risk is the second major risk factor that has to be

considered in the process of determining the premium of a life insurance. While it is possible

to face the interest rate risk, due to the rich market of interest rate derivatives, it is generally

impossible to hedge the longevity risk. In this thesis, with the usage of the term ”longevity risk”

it is meant the uncertain increase in life expectancy over time.

In the pricing of a life annuity, an insurer has to estimate the life expectancy for a long period

of time. This estimation is typically performed in big time intervals and the life expectancy

is assumed to be constant between two estimation dates. However, a research based on the

data by the Federal Statistical Office of Germany reveals that in the last decade, mortality has

been constantly decreasing and hence, the life annuities have been typically underpriced. As

an extreme case, it may thus happen that the insurance premium does not suffice to cover the

insured payments.

126
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In this situation, a solution of the capital markets is to offer and trade specific insurance risks

such as the so called ”Longevity Bonds” with coupon payments depending on the development

of the survival function of a given cohort1, which can be used for hedging at least a big portions

of the longevity risk (examples here are the SwissRe - Mortality Bond linked to short-term,

catastrophic mortality risk and the EIB/BNP-Paribas Longevity Bond (see Cairns et al. [15] or

Cowley and Cummins [24]). The estimate of the advantages of such financial products is strongly

related to their price. In order to be able to assess them, we shall present in the this chapter

a simplified (but flexible in respect to the applied model) approach for pricing longevity bonds

which compounds ideas from Cairns, Blake and Dowd [15] and Milevsky and Promislow [49].

Further, we will offer two additional models - a stochastic two-factor variation of the well-known

Gompertz model and a stochastic variation of the well-known Makeham model - which describe

in a natural way the development of longevity and deliver very satisfactory results in their

application on real data.

We stress here that in the pricing of the longevity bonds one has to consider the following

difficulties:

• A reliable (implicit) calibration of the survival parameters, based on the prices of the

respective financial instruments (e.g. the calibration of the short rate parameters in the

financial market) is not possible due to the lack of corresponding market and the following

non-tradability of the longevity risk.

• In the pricing of the bond, the trend of increasing life expectancy has to be explicitly

calibrated.

• For the simultaneous pricing of interest rate risk and longevity risk, a combination between

principals based on financial mathematics and actuarial science has to be found.

In this place, we have to point out that the pricing of longevity bonds makes sense only when

we deal with mortality curves that change with time. If the mortality curve were to be exactly

described by a mortality table that stays constant in (calender) time, then we could with the

1An example of a cohort is the population of 65-year-olds at the issue data of the bond.
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means of that table directly estimate the price of the mortality risk (for a sufficiently big pop-

ulation on which the coupons of the longevity bonds are based). However, in order to avoid

a systematic error in the estimation of the future payments of the longevity bond, a concept

featuring the time dependence of the mortality curve has to be considered. Here, one can follow

one of the (at least) two approaches

• Extrapolation of the past mortality curves, which are based on the realized number of

deaths.

• Modeling the development of the mortality as a stochastic process and simulating the

future mortality via Monte Carlo simulation.

In the following subsections, we will present and define the longevity bond we are going to deal

with, consider some different mortality rate models and their time dependent variations. Finally,

we propose methods for pricing the longevity bond.

6.2 Longevity Bonds and Survival Probabilities

We want to present here as a base product the longevity bond we are going to further deal

with and note that it borrows its form from the longevity bond, structured by BNP Paribas

and issued by the European Investment Bank in November 2004. For this reason, we consider

a reference cohort whose members are at age x(x > 0) at the starting time t = 0. The coupon

payments S(ti) of the longevity bond are payed at times ti, i = 1, . . . , N and are defined by the

fraction of survivors from the initial cohort at the respective time points. This allows us to write

them in the simplified form

S(i) =
number of survivors from the cohort at time i

number of individuals in the cohort at time 0
(6.1)

where we set S(0) = 1. Note that the height of the coupon payments as their time comes should

be regulated in the contract and be possible to track (for example based on the data published

by a National Statistical Office). For the further steps in the pricing of the longevity bonds, we

make the following assumption:

Assumption 6.2.1. The interest rate risk and the longevity risk are independent.
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This assumption directly implies that the value of the coupon payments S(t) of the longevity

bond can be written under an appropriate pricing measure (we do not discuss its form here but

leave it for a later section) as

E


exp


−

i∫

0

r (s) ds


S (i)


 = P (0, i)E (S (i)) (6.2)

in which P (0, i) denotes the market price at time 0 of a zero-coupon bond with maturity i.

Further, using the notation2

p (t, T0, T1, x) := P (Individ. alive in T1 |Individ. alive in T0, Ind. has in 0 age x, ft ) (6.3)

for time points t, T1, T0 with t ≤ T1, T0 < T1 (and ft the σ-algebra that contains the complete

information until time t about the interest rate and mortality development) follows directly by

the linearity of expectation and (6.1) that

E (S (i)) = p (0, 0, i, x) . (6.4)

If we assume that there exists a current mortality table that models mortality rates sufficiently

well, one can directly estimate from it the values of p(0, 0, i, x) - usually denoted by ipx - and

via (6.4) obtain as the fair price of the longevity bond

n∑

i=1

P (0, i) ipx. (6.5)

However, as a definite tendency towards longevity can be empirically observed (see Oliveri [51])

the usage of a current (and therefore underestimating the survival probabilities) mortality table

would assign to the longevity bond a very low value. To avoid this, one has to model the survival

probabilities as time dependent ones. One approach to do this consists of taking the already

realizes survival probabilities (respectively their empirical analogies)

ipx (t) =
The number of (x + i) years olds at time t + i

The number of x years olds at time t
, t ∈ {− (i + 1) , · · · ,−Ni} (6.6)

as values of a time dependent function, approximating it via appropriate interpolation (e.g.

spline or polynomial interpolation) and afterwards from the interpolated function f
(i)
x (.) obtain

the required estimator through extrapolation

ip̂x (0) = f (i)
x (0) , i = 1, ..., N. (6.7)

2Cairns at al. [15] name this probability ”forward survival probability”.
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In this work, we are not going to deal with this method any further (see as a reference Oliveri

and Pitacco [52] or Pitacco [54] for more details in that direction.) but will present several

stochastic models, based on different variations of the traditional mortality laws.

6.3 Longevity Bonds and Dynamic Modeling of Mor-

tality

Besides the extrapolation methods, there exists in the literature another stream of methods

(applied by Cairns, Blake and Dowd [15] for the special case of the EIB/BNP longevity bond)

which consists of modeling the survival probabilities via parameterization of the mortality rates.

In this connection, let as first assume time-independent survival probabilities and define the

mortality rates as

ipx = exp


−

i∫

0

µx+sds


 (6.8)

which means again that the mortality rate µx depends only on the age x of the single person. In

the history of Insurance mathematics, there have been developed a variety of approaches which

parametrise the development of the mortality rate with the change of the age of the single person

(especially for non-integer ages x), where we refer to Pitacco [54] for historical overview. As an

example of the most popular approaches for parametrical representation (called also ”Mortality

Laws”), we give

µ(G)
x = αeβx, α, β > 0 (Gompertz model), (6.9)

µ(M)
x = αeβx + γ, α, β > 0, γ ≥ 0 (Makeham model), (6.10)

µ(T )
x = α1e

−β1x + α2e
−β2(x−η)2 + α3e

β3x, αi, βi, η ≥ 0 (Thiele model) (6.11)

where one can notice that the Thiele model contains the other two models as a special case since

it is capable to model mortality satisfactory over the whole life span. In this respect, its first

term is used to describe infant mortality, the second one to describe mortality at young adult

ages (mainly accidental) and the last one to describe mortality at old ages. Since the longevity

risk concerns only the people at old ages (higher than 50), for which the contribution of the first
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two terms is negligible, we notice that for the purpose of pricing longevity bonds, the Gompertz

and the Makeham model are more suitable.

Another form of generalization of the Makehams model that we will further use is the so called

model of Perks (see Perks [53]) and it defines the mortality rate as

µ(P )
x =

αeβx + γ

1 + δeβx + εe−βx
, α, β, γ, δ, ε ≥ 0 (6.12)

Alternatively, it is also possible to model directly the survival probability px as time independent

e.g.

1 − pH
x

pH
x

= A(x+B)C

+ De−E(log x−log F )2 + GHx, (Heligan-Pollard model) (6.13)

where one can notice the similarity to the Thiele model of mortality rates and thus we have the

same interpretation of the meaning of its three terms.

Since all these models are very well known, we are not going to deal further with their advantages

and disadvantages, but will refer instead to the standard literature in which this is done (see

e.g. Benjamin and Pollard [5]). Under the assumption that the mortality rates follow one of

the above models, we can obtain via simple integration of (6.4), (6.8), (6.9), (6.10), (6.12) for

example for the Gompertz, Makeham and Perks case the following closed form solutions for

S(t):

Proposition 5. Under the assumption that the mortality rates follow one of the classical mor-

tality rate models, the respective conditional survival probabilities until age x + i are given by

a) in the Gompertz model:

E (S (i)) = ipx = exp

(
−α

β
eβx

(
eβi − 1

))
(6.14)

b) in the Makeham model:

E (S (i)) = ipx = exp

(
−

(
α

β
eβx

(
eβi − 1

)
+ γ i

))
(6.15)

c) in the Perks modell for the special case γ = ε = 0

E (S (i)) = ipx = e−
αi
δ

(
1 + δeβx

1 + δeβ(x+i)

)αi
δ

. (6.16)
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Figure 6.1: Data for West German males by the SBA.

Proposition 5 points out that in order to be able to calculate the survival probabilities, one

has to first estimate the parameters of the respective model using the already realized survival

probabilities (or more precisely, using the observed relative frequencies).

However, if we plot the historical survival probabilities px for some different past years or

respectively the calibrated to them mortality rates using e.g. the calibrated parameters of the

classical Gompertz model (see Figure 6.1), we notice a clear longevity trend. Hence, from now

on we will concentrate on developing dynamic variations of the classical Mortality laws that are

able to capture such a trend of longevity.

The most simple way to do this, is to choose one of the given Mortality laws and to substitute its

parameters by time dependent functions. This approach corresponds to the already described

interpolation (and extrapolation) of the survival probabilities approach.

However, we choose here to follow another approach, in which the parameters of the mortality

law are substituted by stochastic processes which can be uniquely described by a parameter

vector Θ (e.g. a Brownian motion with drift ν and volatility σ so that Θ = (ν, σ)). The

mortality rates can then be written as stochastic processes of the form

µx (t) = µx (t; θ) (6.17)
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and the current survival probabilities of a x-years old individual until time t are given by

tpx (0) := p (0, 0, t, x) = E (S (t)) = E


exp


−

t∫

0

µx+s (s) ds





 . (6.18)

The clear advantage of this approach is that after estimating the parameter vector Θ, one

can simulate paths of the future mortality rates via Monte Carlo Simulation and additionally

calculate confidence intervals for the survival probabilities. For the realization of this method,

the following algorithm can be formulated (based on the ideas of Lee and Carter[45]):

Algorithm: ”Stochastic Modeling of Mortality Rates ”

0. Choose a parameterized stochastic form of the applied mortality rates law (respectively

for the survival probabilities).

1. Using the observed death rates, estimate the realized mortality rates (respectively survival

probabilities)

2. Calibrate the parameters of the chosen stochastic process to the realized time series of the

mortality rates estimated in 1.

After the calibration of the stochastic process in step 2., we have now fully specified its param-

eters and we can proceed to its Monte Carlo Simulation.

In the next section, we are going to examine the application of two existing models of this

approach, namely the Cairns et al and Milevski and Promislow MP models. We will also offer

and examine two additional models which can be seen as stochastic variations of the Gompertz

and the Makeham classical laws and we therefore name them respectively ”stochastic Gompertz”

and ”stochastic Makeham” models.

6.3.1 Time dependent Perks Model

This model is offered by Cairns, Blake and Dowd [15], in which the authors offer a discrete in

time modeling of the survival probabilities via a two-dimensional Brownian motion with drift.

In specific, they define p(t + 1, t, t + 1, x) to be the fraction of individuals with age x at time 0
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and still alive at time t ≥ 0 that have survived until time t + 1. With the assumption that

p̂ (t + 1, t, t + 1, x) =
1

1 + eA1(t+1)+A2(t+1)(x+t)
(6.19)

for all historical time points t and all ages x3, one can estimate using historical data (with the

help of least-squares minimization) the values of (A1(t), A2(t)).

In specific, Cairns, Blake and Dowd [15] assume that the A-process follows the dynamics

A (t + 1) = A (t) + ν + CZ (t + 1) , ν ∈ R
2, C ∈ R

2,2, t = 0, 1, 2, ... (6.20)

where C denotes an upper triangular matrix and the Z-process is the increment of a two-

dimensional Brownian motion between time points t and t+1. From 6.19 follows that the A1(t)

process is responsible for time dependent changes of mortality that affect all ages, while the

A2(t) process reflects time dependent changes of mortality that are different for the different

ages.

Remark 6.3.1. Cairns, Blake and Dowd’s [15] model can also be seen as a stochastic variation

of the classical Heligan-Pollard mortality law:

1 − pH
x

pH
x

= A(x+B)C

+ De−E(log x−log F )2 + GHx.

by ignoring the irrelevant for modeling old-age mortality first two terms and setting G = eA1

and H = eA2 so that px = 1
1+eA1+A2x .

After estimating the past values of the A-process, one can easily find an estimate for its mean

µ and covariance matrix CC⊤ using assumption (6.20) about the dynamic of A.

We want to demonstrate this method with the help of data for Germany. For that reason, we

define as a reference population the German males aged 60-90 and use the official data published

by the Federal Statistical Office from 1993-2004. For the past values of the A-vector, we obtain

Figure 6.2. and for the needed estimators:

ν̂ =

(
−0.05959
0.0004465

)
, ĈC⊤ =

(
0.000842388 −0.00001004
−0.00001004 0.000000124

)
, Â(2004) =

(
−10.65677
0.102009

)
.

3For the needs of the pricing of the EIB/BNP longevity bond we limit the starting ages of the cohorts
to 60 until 90 ones. The reason is that more than two time dependent factors are needed to match the
survival probabilities at all ages and in addition, this is not needed for pricing longevity bonds.
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Figure 6.2: Data for the German males (aged 60-89) from 1993-2002 from the Federal
Statistical Office(SBA).

Although the covariance between the processes A1(t) and A2(t) is very small, their correlation

is −0.98238. We can notice from the covariance matrix that both processes develop almost

deterministically, which is additionally caused by the smoothing of the mortality data done by

the Federal Statistical Office. To demonstrate this, we plot in Figure 6.3 the historical mortality

rates cited by the Federal Statistical Office and their unsmoothed equivalents by the Human

Mortality Database (http://www.mortality.org/ ) for the year 2002.

The respective estimated parameters using historical mortality data from 1991-2002 by the

Human Mortality Database (HMD) are found as

ν̂ =

(
−0.03917
0.0001478

)
, ĈC⊤ =

(
0.002924269 −0.00004349
−0.00004349 0.000000690

)
, Â(2004) =

(
−10.84976
0.105443

)

and the correlation between the processes is estimated to −0.96818.

Due to the big variation in the HMD data of the historical mortality rates at higher ages, we can

perform weighted Least-squares method in order to estimate the needed parameters. We refer

to Yue [64] for analysis on the usage of different weights in the estimation of the parameters

from historical mortality data and chose as weights the number of individuals in each age group.
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We obtain

ν̂ =

(
−0.05604
0.0003863

)
, ĈC⊤ =

(
0.000970319 −0.00001166
−0.00001166 0.000000145

)
, Â(2004) =

(
−10.56728
0.1007317

)
.

The correlation ρ becomes now −0.982504, i.e. ”smoothing” the data by using weights increased

the correlation between the base processes. Due to its transparency, the ”raw” data by the HMD

can be used for a variety of analysis. For an example, one can analyze the effects of the different

smoothing method on the correlation of the stochastic factors. In this respect, the SBA cites only

the already smoothed data. However, since only the data by the SBA has an official character,

in this thesis, we base our analysis on it.
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Figure 6.3: Mortality rates for the German males (aged 60-95) estimated by the HMD
and the SBA for the year 2002.

6.3.2 Milevsky and Promislow’s model

Cairns et al. offer as a modification of the Milevsky and Promislow’s model for the development

of the mortality rates the following stochastic model of the Gompertz type4

µ(G)
x (t) = αeβx+σY (t), α, β, σ > 0 (6.21)

4Originally, Milevsky and Promislow offer this model for the ”instantaneous” mortality rate h(t),
which they call ”hazard rate” such that

pt(T ) = e−
∫

T

t
µsds = E

(
e−

∫
T

t
hsds

)
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where Y (t) follows an Ornstein-Uhlenbeck process given as

dY (t) = −νY (t) dt + dW (t) , Y (0) = 0, ν ≥ 0. (6.22)

As we want to calibrate the model to the historical German data, we need first to estimate the

values of µG
x (t). For that reason, using the relation

p (t, x) := p (t + 1, t, t + 1, x) = exp


−

t+1∫

t

µ
(G)
x+s (s) ds


 (6.23)

we obtain for past, integer time points t

d

dt
ln (p (t, x)) = µ

(G)
x+t (t) − µ

(G)
x+t+1 (t + 1) . (6.24)

While we can now approximate the left side of (6.24) through a suitable difference such as

for example ln(p(t, x)) − ln(p(t − 1, x))), for the proper representation of the right side, we are

searching for an appropriate starting value µG
x (0) that can be used to approximate the rest of the

realized mortality rates. One way to do this is to use the ”earlier” realized survival probabilities

and to calibrate a classical Gompertz model to them. For that purpose, for the starting year t0

we assume that

p (t0, x) = px = exp


−

x+1∫

x

µ(G)
s ds


 = exp


−

x+1∫

x

αeβsds


 = exp

(
−α

β

(
eβ(x+1) − eβx

))

and in order to estimate the parameter α and β we use

ln (− ln(px)) =
(
ln(α) − ln(β) + ln

(
eβ − 1

))
+ βx.

Substituting

A : = ln(α) − ln(β) + ln
(
eβ − 1

)

B : = β

where

dh(t) = αeβt+σY (t), α, β, σ > 0

dY (t) = −νY (t) dt + dW (t) , Y (0) = 0, ν ≥ 0.

Notice that in this form the ”hazard rate” depends only on the time but not on the cohort age.
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we obtain via (weighted) least squares the estimators Â and B̂ and therefore also

β̂ = B̂

α̂ = exp
(
Â + ln(β̂) − ln

(
eβ̂ − 1

))
.

The parameters ν and σ of the Ornstein-Uhlenbeck process can now be estimated via the

Maximum-Likelihood method using that the process Y (t) possesses a transition density of a

normal distribution or more precisely, using that

σ (Y (t + 1) − Y (t)) ∼ N

(
σY (t) e−ν , σ2 1 − e−2ν

2ν

)
. (6.25)

For the observations ln
(
µ

(G)
x (ti + 1) /µ

(G)
x (ti)

)
, i = 1, ..., n one can obtain the Log-Likelihood

function (see Ait-Sahalia [1]):

ln (ν, σ) = −n

(
ln

(√
2π

)
+ ln (σ) + ln

(√
1 − e−2ν

2ν

))

−
n∑

i=1

(
ln

(
µ

(G)
x (ti+1)

µ
(G)
x (0)

)
− ln

(
µ

(G)
x (ti)

µ
(G)
x (0)

)
e−ν

)

2σ2 1−e−2ν

2ν

2

. (6.26)

Finally, numerical maximization of the Log-likelihood function delivers the needed estimates of

the parameters ν and σ of the Ornstein-Uhlenbeck process.

If we recall that in the case of Germany we dispose only with data from 1993-2004, we chose

1993 as a starting year and the German males aged 60− 89 as a reference population. Thus, for

the calibration of µ
(G)
x (0), we obtain

α̂ = 0.00005759

β̂ = 0.09263573.

which we use in the Maximum-Likelihood Method to obtain

σ̂ = 0.02751

ν̂ = 0.
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6.3.3 Idea for a Model: Stochastic Gompertz

If we assume for a moment that the mortality rate follows the standard Gompertz model

µx = αeβx, α, β > 0

and take the case of Germany with observations for the last twelve years of the survival proba-

bilities p(t, x), then calibrating the parameters α and β for each year separately using weighted

LS (see Yue [64]) and plotting them over time yields Figure 6.4. It is easy to notice now that

both parameters exhibit strong time dependence, which is a reflection of the improvement of

longevity over time. In specific, the α parameter is responsible for the general improvement at

all ages and the β for the improvement at different ages.

Choosing a model for α(t), we need to ensure that it stays positive (required by the Gompertz

construction) and also decreases with time (to reflect the improving mortality).

For that reason, we choose a model of the following form

dα(t) = −κα(t)dt + σ1α(t)dW1(t), κ > 0, σ > 0

α(0) = α0.

where W1(t) denotes a Brownian motion under the physical measure. The solution of the above

SDE is given by

α(ti) = α(ti−1)

(
−κ (ti − ti−1) −

1

2
σ2

1 (ti − ti−1) + σ1 (W1(ti) − W1(ti−1))

)
, for ti−1 ≤ ti.

Thus, notice that since we have α̂(2004) = 0.000028343 > 0, the requirement of positivity of the

α(t) process is fulfilled. We can easily calibrate the parameters κ and σ1 using the estimated

time series α̂(1993), . . . , α̂(2004) and the natural logarithm of the α-process:

dln (α(t)) = −
(

κ +
1

2
σ2

1

)
dt + σ1dW1(t), ln (α(0)) = ln (α0) .

Denoting δ := −κ − 1
2σ2

1 and using the estimators

δ̂ =
1

11

2003∑

i=1993

ln

(
α(ti+1)

α(ti)

)

σ̂2
1 =

1

10

2003∑

i=1993

(
ln

(
α(ti+1)

α(ti)

)
− δ̂

)2

,
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Figure 6.4: Data for the German males (aged 60-89) from 1993-2002 from the Federal
Statistical Office(SBA).

we find for the data of the SBA

σ̂2
1 = 0.0009681

κ̂ = −δ̂ − 1

2
σ̂2

1 = 0.0632616

At the same time, we have also estimated β̂(1993), . . . , β̂(2004) and assuming that β follows a

measurable stochastic process of the form

dβ(t) = µdt + σ2dW2(t), σ2 > 0

β(0) = β0,

where W2(t) denotes a Brownian motion under the physical measure, we can calculate estimates

of the mean µ and the variance σ2
2 using

µ̂ =
1

11

2003∑

i=1993

(
β̂(ti+1) − β̂(ti)

)

σ̂2
2 =

1

10

2003∑

i=1993

(
β̂(ti+1) − β̂(ti) − µ̂

)2
.
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and obtain for the SBA data:

µ̂ = 0.000521236

σ̂2
2 = 0.000000141394.

Assuming a correlation between the Brownian motions W1 and W2 and denoting it by ρ,

we obtain as an estimate of it ρ̂ = −0.98279. We need also for our simulation purposes

β̂SBA(2004) = 0.098369335. We notice that although the β-process can become negative with a

positive probability, this case is highly unlikely to happen due to the positive mean, the positive

starting value (e.g. for a simulation starting in 2004 we use β(0) = β̂(2004) = 0.098369335) and

the small variance.

To sum up, we offer a model we name ”Stochastic Gompertz” which models the mortality rate

as

µSG
x (t) = α(t)eβ(t)x

for a stochastic, measurable process α(t)

dα(t) = −κα(t)dt + σ1α(t)dW1(t), α(0) = α0, κ, σ1 > 0

and a second stochastic, measurable process β(t) with the dynamics:

dβ(t) = µdt + σ2dW (t), σ2 > 0

β(0) = β0

where both Brownian motions are given under the physical measure and their correlation is

denoted by ρ.

Remark 6.3.2. Similar to the model of Cairns et al., the stochastic Gompertz model is based on

two stochastic factors. The first one takes into account the general improvement (or deteriora-

tion) of mortality that influences all ages and the second one takes into account the improvement

(or deterioration) of mortality that influences higher ages more than lower ones. It is an inter-

esting remark, that both Cairns et al. model and the stochastic Gompertz model show increasing

trend of improving mortality at all ages (notice the decreasing trend in A1(t) and α(t)) and de-

terioration of life expectancy at higher ages (notice the increasing trend of A2(t) and β(t)). Both
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Figure 6.5: Simulation of the Survivor Index for the 65-years old males in 1972, 1982,
1992 and 2002 using data for West Germany from the HMD.

effects lead to the so called ”rectangularization” of the survival probabilities curve which has

the interpretation that due to medical improvements or better life standards, the amount of peo-

ple at middle ages was (and is) increasing with the years, but the amount of people at extremely

high ages, was (is) increasing at much lower tempo, or was (is) even decreasing. The translation

of the survival probabilities curve to right is called ”expansion” effect. As an example of the both

effects, we have plotted in Figure 6.5 the simulated expected value of the survivor index for the

ages 65 − 105, conditioned on survival until age 65 and starting the simulation in years 1972,

1982, 1992 and 2002.

6.3.4 Idea for a Model: Stochastic Makeham

If we consider the classical Makeham model, instead of the Gompertz one (recall (6.10)), we

would have

p (t0, x) = px = exp


−

x+1∫

x

µ(G)
s ds


 = exp

(
−α

β

(
eβ(x+1) − eβx

)
− γ

)
.

In order to estimate the parameter α, β and γ we have to use now a non-linear least squares

minimization where a special care has to be taken to find the global solution due to the variety
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Figure 6.6: Data for the German males (aged 60-89) from 1993-2002 from the Federal
Statistical Office(SBA).

of very similar local minima in the objective function. We refer here to methods for global

optimization such as the ”Simulated annealing” and others.

In addition, since we have in the stochastic Makeham model two factors that influence the

general mortality (α and γ) and one modeling the age-specific improvements in the mortality

(β), the intuitive interpretation of the Cairns et al. [15] case or the stochastic Gompertz one is

now lost. We choose to model only the γ-process as a stochastic one, such that

dα(t) = −κα(t)dt, α(0) = α0

dβ(t) = µdt, β(0) = β0

dγ(t) = νdt + σdW (t), γ(0) = γ0, σ > 0.

For completeness, we present here also the results for the Makeham case, where the historical

series are given in Figure 6.6 and the estimated parameters for the data by the SBA from 1993
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until 2004 are found as

κ̂ = 0.0799

µ̂ = 0.000704

ν̂ = −0.00000144

σ̂ = 0.0007408,

where α̂(2004) = 0.0000203, β̂(2004) = 0.1025 and γ̂(2004) = 0.000444.

6.3.5 Mortality and Short Rate Modeling

On the basis of the formulas (6.4) and (6.8), one can notice that for the time dependent de-

velopment of the stochastic mortality rates it is possible to consider a variety of well known

models from the short rate world (as long as these models ensure the positivity of the short

rates). However, some feature of these models, such as the mean reversion, will make no sense

in the modeling of mortality rates so that we can already reject the Vasicek, CIR and Hull-White

models from the list of possible models. In order to model the increase of the mortality rates,

with the increase of the age of the individual, log-normal models such as the Dothan or the

Black-Karasinski seem to be appropriate.

In this respect, we are not going to present here any specific model but we will remark that

the stochastic mortality rates, modeled by Milevsky and Promislow, resemble the short rate

Black-Derman-Toy model and the model by Cairns et al. [15] can be seen as a discrete in time

variation of the Dothan short rate model.

In all the presented examples, we have shown how to calibrate the parameters of the chosen

stochastic processes to the observed death frequency. As next, we are going to use these esti-

mated parameters in a Monte Carlo simulation, in order to estimate the future values of the

coupon payments S(t), needed for the pricing of the longevity bond.
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6.4 Pricing of Longevity Bonds

In Assumption 6.2.1, we require the independence of the interest rate and longevity risk, which

directly implies that we can separate the pricing of both risks in a multiplicative way. Here, we

should mention that the short rate risk is tradable (i.e. linear short rate products such as bonds

are tradable) and therefore it should be priced under an appropriate martingale measure Q

(which means that the discounted with the money market account longevity bond price process

should be a martingale under the measure Q). Therefore, if we further assume that the market

price P (t, T ) at time t of a zero coupon bond with maturity T is given by

P (t, T ) = EQ


exp


−

T∫

t

r (s) ds




∣∣∣∣∣∣
ft




(i.e. the interest market uses for pricing exactly measure Q, or an equivalent to it), then we can

write the price of the longevity bond as

P (L) (t) = EQ




N∑

i=1

exp


−

i∫

t

r (s) ds


 S (i) 1{t≤i}

∣∣∣∣∣∣
ft


 =

N∑

i=1

P (t, i)EQ (S (i) |ft ) 1{t≤i},

given that we have assumed that the interest rate risk and the mortality rate risk continue to

be independent under the pricing measure Q.

Due to the non tradability of the mortality risk, we can not apply here any of the standard

pricing principles of the financial mathematics (such as no arbitrage or replication principle) as

they are here either not valid or not helpful. We offer to use instead one of the classical pricing

principles, coming from the insurance mathematics (such as the expectation or the variance one).

As a result, we offer a pricing concept that combines the no-arbitrage principle, on the interest

rate side and a security margin in the spirit of the insurance mathematics as an insurance against

the (non tradability of the) mortality risk, on the mortality side.

In this connection, we assume that the price of a zero coupon bond in the interest rate world is

given as a conditional expectation under measure Q, which we use for the pricing of the longevity

bond and which uniquely determines (only!) the interest rate component in the upper equation

for the price of the longevity bond. Notice that the only probability measure that describes

the time dependent development of mortality is the physical P -measure, which is defined by
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the calibration of the stochastic processes to the historical mortality data. Independent of the

underlying mortality model (be it a classical, time dependent deterministic or stochastic one),

the measure P is objectively verifiable and in addition it is compatible with the risk-neural

pricing formula when

P (L) (t) = EQ




N∑

i=1

exp


−

i∫

t

r (s) ds


 S (i) 1{t≤i}


 =

N∑

i=1

P (t, i) EP (S (i) |ft ) 1{t≤i}

(6.27)

is valid, i.e. when P is responsible for the ”mortality component of Q”.

In practice, the prices of the traded longevity bonds will however be greater that the ones cal-

culated using the upper formula and obtained following the principles of financial mathematics.

The reason for this, can be explained in two ways:

1.Application of the Expectation Principle

We can write the relationship between the market price of the longevity bond P
(L)
M (0) and

P (L)(0) as

P
(L)
M (0) = (1 + δ)P (L) (0)

for a constant δ > 0 and explain the higher market price P
(L)
M (0), offered by the issuer, with

the application of the actuarial ”expectation principle” with a premium parameter δ. It is

also possible to explain the difference between the ”fair” price of the longevity bond and its

market price by means of other actuarial principles, such as the ”(semi)-variance principle”, the

”exponential principle”, the ”quantile principle”, the ”Esscher principle” or others. However,

the more complicated relationship using higher moments will also require a more complicated

calculation of the part of the payments that is influenced by the mortality risk.

2.Risk Neutral Pricing and Change of Measure

In this section, keeping the risk-neutral pricing approach, we want to explain the difference

between the ”fair” price and the market price of the longevity bond. This is done with the help

of a new martingale measure Q(λ), which describes the mortality component with a measure

Pλ, instead with the physical measure P . Cairns, Blake and Dowd [15] apply the measure Pλ

by simply substituting the drift vector ν of the underlying process, under measure P by ν −Cλ,
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under measure Pλ. Notice that in this sense, λ plays the role of the ”market price of mortality

risk”. Using numerical methods, one can try to estimate such a vector λ by matching

P
(L)
M (0) = P

(L)
Q(λ) (0) =

N∑

i=1

P (0, i)EP λ
(S (i)). (6.28)

Notice that a solution vector λ to (6.28) must not! necessarily exist.

We are now going to demonstrate the application of the change of measure method with the

help again of the German historical data. For that purpose, let us consider the Cairns, Blake

and Dowd [15] model and a reference population of German males aged 60-89. Recall we have

already estimated for them the required parameters ν̂, Ĉ and Â(2004). Setting N = 25, the

initial cohort age to 65, δ = 0.0183, the interest rate to 4% and solving numerically (6.28) yields

the solution set

I :=

{
(λ∗

1, λ
∗
2) s.t.

(
P

(L)
M (0) − P

(L)
Q(λ) (0)

)2
≤ ε

}

for some small tolerance parameter ε. Plotting the surface of the squared error in Figure 6.7 (as a

function of λ1 and λ2) we can notice that the solution set of the minimization problem converges

to (an almost straight) line. Choosing points on the solution line5, changes the curvature of the

survivor index S(t) (see Figure 6.8), and can be interpreted as a choice of a measure that puts

more weight on earlier or later coupons. The motivation which measure to choose can depend

for example on the term structure of interest rates or other internal bank principles.

Applying the same method on the stochastic Gompertz model such that the drift of the β(·)
process is substituted by µ−σλ for λ ∈ R and solving numerically (6.28), we obtain Figure 6.9.

Note that as in the Cairns at el. [15] case, there is a variety of solutions solving (6.28).

Monte Carlo Simulation of the Longevity Bond:

In order to be able to estimate the price of the longevity bond at time 0, we need to simulate

E (S(i)|f0) , for i = 1, . . . , N

where N is the number of coupons of the longevity bond.

5Cairns et al. consider only measures of the form Q(λ1,0), Q(0,λ2) and Q(λ,λ) which seem to be close
to the solution line.
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Figure 6.8: Estimated value of E [S(t)] for the German males aged 60-89, using the
Cairns et al. model, under the measures P,Q(1.22, 0), Q(0,−6.91), Q(0.59,−3.36). Data
from 1993-2004. Number of MC simulations 5000.
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Figure 6.9: Estimated value of E [S(t)] for the German males aged 60-89, using the
stochastic Gompertz model, under the measures P,Q(0.21, 0), Q(0, 0.22), Q(0.28,−0.067).
Data from 1993-2004. Number of MC simulations 5000.

Then, in the Cairns et al. [15] case, using

S(i) = p̂(1, 0, 1, x), . . . , p̂(i − 1, i, i − 1, x)

we approximate

E (S(i)|f0) ≈
1

M

M∑

j=1

p̂j(1, 0, 1, x), . . . , p̂j(i − 1, i, i − 1, x), for i = 1, . . . , N

where M is the number of Monte Carlo simulations, p̂j(1, 0, 1, x), . . . , p̂j(i − 1, i, i − 1, x) is the

j-th path of simulated realized survival probabilities and the convergence follows by the Strong

Law of Large Numbers.

As we have already mentioned, using Monte Carlo simulation allows us to calculate confi-

dence intervals for the survival probabilities. For that reason, let us denote each path Yij :=

p̂j(1, 0, 1, x), . . . , p̂j(i − 1, i, i − 1, x), j = 1, . . . , M , i = 1, . . . , N . Thus, since we simulate

independent paths of the underlying process, we have that Yi1, . . . , YiM are i.i.d. with mean

µi = E(S(i)|f0) and variance σi and according to the Central Limit Theorem we have that

1

M

M∑

j=1

Yij
a.s.−→ Z ∼ N

(
µi,

σ2
i

M

)
.
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Using that Ȳi−µi

Ŝi,M/
√

M
∼ tM−1 where Ȳi := 1

M

∑M
j=1 Yij , we obtain for the mean value µi =

E (S(i)|f0) and for γ = 90%, the following asymptotic confidence interval

[
Ȳi −

Ŝi,M√
M

d 1+γ
2

, Ȳi +
Ŝi,M√

M
d 1+γ

2

]

where d 1+γ
2

is the 1+γ
2 quantile of the student tM−1 distribution and Ŝ2

i,M := 1
M−1

∑M
j=1

(
Ȳi − Yij

)2
.

In the stochastic Gompertz model, using

E (S(i)|f0) = E
(
e−

∫ i
0 µx+s(s)ds

)
, for i = 1, . . . , N

we approximate

E (S(i)|f0) ≈ 1

M

M∑

j=1

exp

(
−

i∑

t=1

m∑

k=1

µj

x+(t−1)+ k
m

(
t − 1 +

k

m

)
i

m

)
, for i = 1, . . . , N

≈ 1

M

M∑

j=1

exp

(
−

i∑

t=1

m∑

k=1

α

(
t − 1 +

k

m

)
eβ(t−1+ k

m)(x+t−1+ k
m) k

m
i

m

)

where m denotes the discretization of the integral between two coupon dates, needed for its

numerical simulation. Note that if we set m = 1, the complexity of the problem will be the

same as in the Cairns et al. [15] model. The derivation of the confidence intervals is the same as

above, since it is based on the properties of the Monte Carlo simulation and not of the specific

model.

6.5 Comparison Between the Models:

Let us now make a comparison between the four presented models, using the estimated parame-

ters for the reference population of German males (aged 60-89) by the historical data of the SBA

1993-2004 For that purpose, setting the cohort age to 65 and N = 40, we simulate using MC

the value of EP [S(i) |f0 ] for i = 1, . . . , 40 and plot the results in Figure 6.11. We can observe

that the Cairns et al. curve is very close to the stochastic Gompertz and stochastic Makeham

ones.

Further, notice that the Milevsky and Promislow curve predicts very high mortality rates, which

is caused by the attempt to capture an almost deterministic time-dependent effect via parameters
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Figure 6.10: Simulated with Monte Carlo paths of the mortality rate µx+t(t) of the 65 (in
2004) year old German males.

responsible mostly for the volatility. Based on this results, one can conclude that the model of

Milevsky and Promislow can not be used as a mortality rate dynamics (which was suggested by

Cairns et al.) but should be mainly used to model the ”instantaneous” mortality rate, as it was

originally intended to.

To support additionally our statement, we compare in Figure 6.10 several Monte Carlo paths

of the mortality rate µ(t) of the 65-year old (in 2004) German males, via the Milewski and

Promislow’s model and the stochastic Gompertz model . We observe strong fluctuations of the

mortality rate in the Milewski and Promislow’s model, and almost deterministic ones in the

stochastic Gompertz model.

In this place, one can argue the need of a stochastic model for the development of the mortality

rate and in fact, for short maturities, its stochastic modeling might be really not needed. How-

ever, since typically a longevity bond has a maturity of 25 years and longer, we can notice that

for such long maturities, we do observe fluctuations in the mortality rate development, which

motivates the effort of its modeling as a stochastic process in order to obtain a correct price for

the longevity bond.

Finally, since we are interested in pricing a longevity bond, we want to compare the results

using the different models. For that reason, we specify first the features of the bond to be as in
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Figure 6.11: Estimated value of EP [S(t)] for the German males, using the models of
Cairns et al., Milevsky and Promislow and the stochastic Gompertz. Data from the SBA
from 1993-2004.

the EIB/BNP longevity bond, i.e. maturity 25 years, cohort age 65 at 2004 and we also set for

simplicity the interest rate to 4% and use 5000 MC simulations. Using (6.27), we obtain for the

data published by the SBA:

Modellart: PL(0)

Cairns et al. 11.388

Milevsky and Promislow 10.317

stochastic Gompertz 11.360

stochastic Makeham 11.416

Again, notice that the Cairns et al., the stochastic Gompertz and the stochastic Makeham models

deliver very similar results. Whereas, the Milevsky and Promoslow one strongly underprices the

longevity bond (recall Figure 6.11).

6.6 Conclusion and Remarks

In this chapter, based on the article of Korn, Natcheva and Zipperer (2006), a general framework

for pricing longevity bonds was presented. First the existing in the literature approaches for

stochastic modeling of the survival probabilities (by Cairns et al.) and the mortality rates (by

Milewski and Promislow) have been examined, with the help of the historical mortality data for
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Germany from 1993-2004. And afterwards, two natural approaches for stochastic modeling of the

mortality rates, expanding the well-known classical mortality laws of Gompertz and Makeham

have been offered and examined.

The comparison of the examined models has revealed, that besides the Milevsky and Promislow

model, all models are capable of calibrating well the historical trend of increasing longevity

and thus are appropriate to be used for its future forecasting. In addition, their stochastic

components add fluctuation around that trend in a similar fashion and lead to very similar,

though different results. The advantage of the offered models is based on fact that it is more

natural to deal with the mortality rate stochastic dynamics (than the survival probability one)

due to its strong similarity to the well-developed short rate modeling.

However, which of these models is more appropriate to use for pricing longevity bonds is a

natural question to come, but not the goal of this Chapter. Our aim is to offer, additionally to

the existing one, new possible ways to model stochastically mortality rates (and thus longevity)

and leave it open for further discussion how the goodness of these models can be compared.

In this chapter, using the data for the German males, we have been limited to the historical

data of only twelve years, in which well behaved, almost deterministic trend in longevity was

to be observed. To show that this is generally not the case, we have plotted in Figure 6.12 the

estimated values of A1(t) and A2(t) from the Cairns et al. model for the West German males,

using data by the HMD from 1956 − 2002. Additionally, in Figure 6.13 we have plotted their

values for the East German males, from 1956 − 2002, again using data by the HMD. We notice

that political regime changes have a very strong influence on the trend of the mortality, where

in specific, they cause jumps in the trend, change of its direction, etc.

We shall now analyze the two possible jumps 6 in mortality, from the side of an insurer or a

pension plan who buys a longevity bond:

6By the usage of ”jump in mortality”, it is meant a change in mortality, stronger that the usual
fluctuation, e.g. Figure 6.12 and Figure 6.13. The small fluctuations have been modelled by adding
Brownian motions to the mortality rate dynamics. The strong changes have not been explicitely modelled,
due to the insufficient data for their calibration.
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Figure 6.12: Data for the West German males (aged 60-89) from 1956-2002 from the
Human Mortality Database.
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Figure 6.13: Data for the East German males (aged 60-89) from 1956-2002 from the
Human Mortality Database.
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• A regime change that causes longevity to strongly deteriorate

In this case, the buyer of a longevity bond will receive very small coupons, compared to

the high longevity bond price he has payed7. At the same time, he will also have very

small annuity payments. In total, he is still worse off and therefore he carries the risk of

a possible regime change that causes longevity to strongly deteriorate.

• A regime change or medical improvement that strongly improves longevity

In this case, the buyer of a longevity bond will receive very high coupon payment relative

to the lower longevity bond price he has payed. At the same time, he will also have high

annuity payments. In total, he profits from this situation and thus the risk lays in the

longevity bond issuer.

To summarize, in the two possible mortality jump events the risk lays either in the longevity

bond buyer or in he longevity bond issuer. Notice that in this respect, the higher offered price of

the longevity bond, issued by the EIB/Paribas (than the one estimated by the historical data)

has the explanation that the EIB/Paribas put a higher weight on the second event and this finds

its application (as commented) in the so-called actuarial ”expectation principle”.

6.7 Suggestions for Further Research Topics

In this place, we mention that further research and a possibly more sophisticated approach might

be needed in order to be able to incorporate a regime change in the underlying mortality model.

However, such an approach will inevitably have to face the difficulty of insufficient historical

data. It is also a very interesting idea to try to explain the trend of longevity (captured e.g. by

the historical series of A1(t) and A2(t) in the Cairns et al. model) by regressing it on several

macroeconomical quantities. This can then be used to predict the mentioned strong changes in

the longevity trend, since a delay effect is to be expected.

7Recall that especially in the case of German data we have at our disposal only historical data of
constantly improving mortality and thus this ”optimism” is translated to the calibrated parameters and
consequently leads to a high longevity bond price.



Appendix A

Proof of Theorem 2.2.1

Proof:

Adopting all notation from Chapter 1, we will consider here only the European call bond option

and the proof for the put option will follow by analogy. For that reason, notice that the price

of the European call bond option, can generally be written under a martingale measure Q as

CB(t, T1, T2, K) = EQ
(
e−

∫ T1
t r(s)ds [P (T1, T2) − K]+

∣∣∣Ft

)
.

In order to remove the stochastic discounting in the expectation, we can change to the equivalent

T1-forward risk-adjusted measure QT1(associated with the bond maturing at time T1), defined

as

dQT1

dQ
=

B(0)P (T1, T1)

B(T1)P (0, T1)
,

where B(t) denotes the money-market account, driven by

dB(t) = B(t)r(t)dt, B(0) = 1.

Thus, we obtain

CB(t, T1, T2, K) = P (t, T1)E
QT1

(
[P (T1, T2) − K]+

∣∣∣Ft

)
.

Our next step will be to find the dynamic of the P (T1, T2) bond, under the QT1 measure. Notice

that

dQT1

dQ
=

exp
(
−

∫ T1

0 r(u)du
)

P (0, T1)
=

exp
(
−

∫ T1

0 [f(0, u) + X1(u) + X2(u)] du
)

P (0, T1)

= exp

(
−

∫ T1

0
[X1(u) + X2(u)] du

)
.
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Now, by integration by parts we have
∫ T1

0
X1(u)du = T1X1(T1) −

∫ T1

0
udX1(u) =

∫ T1

0
(T1 − u)dX1(u) + T1X1(0).

As next, using that X1(0) = 0 and by the definition of the dynamic of the X1 process, we obtain

∫ T1

0
X1(u)du =

∫ T1

0
(T1 − u)

[
−κ1X1(u) +

2∑

k=1

ϕ1k(0, u)

]
du +

∫ T1

0
(T1 − u)σ1dWQ

1 (u).

Adding the solution of the SDE of the X1 process, which conditioned on F0 can be written as

X1(u) =
σ2

1

2
β1(0, u)2 +

ρσ1σ2

κ1κ2(κ1 + κ2)

[
κ2 − (κ1 + κ2)e

−κ1u + κ1e
−(κ1+κ2)u

]
+

∫ u

0
σ1e

−κ1(u−s)dWQ
1 (s),

we have that

−κ1

∫ T1

0
(T1 − u)X1(u)du

= −κ1

∫ T1

0
(T1 − u)

[
σ2

1

2
β1(0, u)2 +

ρσ1σ2

κ1κ2(κ1 + κ2)

[
κ2 − (κ1 + κ2)e

−κ1u + κ1e
−(κ1+κ2)u

]]
du

−κ1σ1

∫ T1

0
(T1 − u)

∫ u

0
e−κ1(u−s)dWQ

1 (s)du.

Using again integration by parts yields

−κ1σ1

∫ T1

0
(T1 − u)

∫ u

0
e−κ1(u−s)dWQ

1 (s)du = −σ1

∫ T1

0

(
(T1 − u) − 1 − e−κ1(T1−u)

κ1

)
dWQ

1 (u).

Summing up the upper calculations, we obtain
∫ T1

0
X1(u)du = −κ1

∫ T1

0
(T1 − u)

[
σ2

1

2
β1(0, u)2

]
du

−κ1

∫ T1

0
(T1 − u)

[
ρσ1σ2

κ1κ2(κ1 + κ2)

[
κ2 − (κ1 + κ2)e

−κ1u + κ1e
−(κ1+κ2)u

]]
du

−σ1

∫ T1

0
(T1 − u)dWQ

1 (u) +
σ1

κ1

∫ T1

0

(
1 − e−κ1(T1−u)

)
dWQ

1 (u)

+

∫ T1

0
(T1 − u)

2∑

k=1

ϕ1k(0, u)du + σ1

∫ T1

0
(T1 − u)dWQ

1 (u)

in which we notice that some of the terms cancel out. Next, by direct integration we estimate
∫ T1

0
(T1 − u)

[
−κ1σ

2
1

2
β1(0, u)2 + ϕ11(0, u)

]
du

=

∫ T1

0
(T1 − u)

[
−κ1σ

2
1

2

(1 − e−κ1u)
2

κ2
1

+
σ2

1

(
1 − e−2κ1u

)

2κ1

]
du

=
σ2

1

2κ2
1

[
T1 +

2e−κ1T1

κ1
− 3

2κ1
− e−2κ1T1

2κ1

]
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in which we have used that

∫ T1

0
(T1 − u)e−κ1udu =

T1e
−κ1T1

κ1
+

e−κ1T1 − 1

κ2
1

.

and

∫ T1

0
(T1 − u)

[
ρσ1σ2

κ1κ2(κ1 + κ2)

[
κ2 − (κ1 + κ2)e

−κ1u + κ1e
−(κ1+κ2)u

]]
du

=
ρσ1σ2

κ1κ2(κ1 + κ2)

[
(
κ2

2 + κ1κ2

)
T1 + (κ1 + κ2)

e−κ1T1 − 1

κ1
−

(
κ2

2 + κ1κ2

) e−(κ1+κ2)T1 − 1

(κ1 + κ2)2

]
.

The same steps are applied for the integration of the X2-process and therefore, we obtain finally

dQT1

dQ
= exp

(
−1

2
Υ(T1) −

2∑

i=1

σi

κi

∫ T1

0

(
1 − e−κi(T1−u)

)
dWQ

i (u)

)

with

Υ(T1) =
σ2

1

κ2
1

[
T1 +

2e−κ1T1

κ1
− 3

2κ1
− e−2κ1T1

2κ1

]
+

σ2
2

κ2
2

[
T1 +

2e−κ2T1

κ2
− 3

2κ2
− e−2κ2T1

2κ2

]

+
2ρσ1σ2

κ1κ2

[
T1 +

e−κ1T1 − 1

κ1
+

e−κ2T1 − 1

κ2
− e−(κ1+κ2)T1 − 1

κ1 + κ2

]
.

Further, we decompose the Brownian motions WQ
1 (t) and WQ

2 (t) into a sum of two independent

Brownian motions W̃Q
1 (t) and W̃Q

2 (t) such that

dWQ
1 (t) = dW̃Q

1 (t)

dWQ
2 (t) = ρdW̃Q

1 (t) +
√

1 − ρ2dW̃Q
2 (t)

and then we can rewrite

dQT1

dQ
= exp

(
− 1

2
Υ(T1) −

∫ T1

0

(
σ1

κ1

(
1 − e−κ1(T1−u)

)
+ ρ

σ2

κ2

(
1 − e−κ2(T1−u)

))
dW̃Q

1 (t)

−σ2

κ2

∫ T1

0

√
1 − ρ2

(
1 − e−κ2(T1−u)

)
dW̃Q

2 (t)

)
.

Simple integration shows that

Υ(T1) =

∫ T1

0

(
σ1

κ1

(
1 − e−κ1(T1−u)

)
+ ρ

σ2

κ2

(
1 − e−κ2(T1−u)

))2

du

+
σ2

2

κ2
2

(1 − ρ2)

∫ T1

0

(
1 − e−κ2(T1−u)

)2
du
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which, due to the Girsanov Theorem for the change of measure, implies (referring to Brigo [12])

that the Brownian motions W̃QT1

1 (t) and W̃QT1

2 (t), under the forward measure QT1 , are given as

dW̃QT1

1 (t) = dW̃Q
1 (t) +

(
σ1

κ1

(
1 − e−κ1(T1−t)

)
+ ρ

σ2

κ2

(
1 − e−κ2(T1−t)

))
dt

dW̃QT1

2 (t) = dW̃Q
2 (t) +

σ2

κ2

√
1 − ρ2

(
1 − e−κ2(T1−t)

)
dt.

Since W̃Q
1 (t) and W̃Q

2 (t) are independent Brownian motions, so are also W̃QT1

1 (t) and W̃QT1

2 (t).

Then, the processes X1(t) and X2(t) are given under the forward QT1 measure as

dX1(t) =

[
−κ1X1(t) +

2∑

k=1

ϕ1k(0, t) − σ2
1

κ1

(
1 − e−κ1(T1−u)

)
− ρ

σ1σ2

κ2

(
1 − e−κ2(T1−u)

)]
dt

+σ1dWQT1

1 (t), X1(0) = 0

dX2(t) =

[
−κ2X2(t) +

2∑

k=1

ϕ2k(0, t) − σ2
2

κ2

(
1 − e−κ2(T1−u)

)
− ρ

σ1σ2

κ1

(
1 − e−κ1(T1−u)

)]
dt

+σ2dWQT1

2 (t), X2(0) = 0

where we have defined

dWQT1

1 (t) = dW̃QT1

1 (t)

dWQT1

2 (t) = ρdW̃QT1

1 (t) +
√

1 − ρ2dW̃QT1

2 (t)

in order to preserve the correlation between X1(t) and X2(t) under the forward QT1 measure.

Having found the dynamic of the underlying processes under the forward QT1 measure, we need

as a next step the variance of the natural logarithm of the bond price P (T1, T2), under that

measure. Thus, due to (2.13) and since the change of measure changes only the drift of the

process and not its variance, we can write

varQT1
(ln (P (T1, T2)) |Ft) = β1(T1, T2)

2varQT1
(X1(T1)|Ft) + β2(T1, T2)

2varQT1
(X2(T1)|Ft)

+2β1(T1, T2)β2(T1, T2)cov
QT1

(X(T1), X2(T2)|Ft)

= β1(T1, T2)
2varQ (X1(T1)|Ft) + β2(T1, T2)

2varQ (X2(T1)|Ft)

+2β1(T1, T2)β2(T1, T2)cov
Q (X(T1), X2(T2)|Ft)

= β1(T1, T2)
2ϕ11(t, T1) + β2(T1, T2)

2ϕ22(t, T1)

+2β1(T1, T2)β2(T1, T2)ϕ12(t, T1).
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where the subindex reflects under which measure the variance or covariance is being calculated.

We denote

Σ2
p(t, T1, T2) := β1(T1, T2)

2ϕ11(t, T1) + β2(T1, T2)
2ϕ22(t, T1) + 2β1(T1, T2)β2(T1, T2)ϕ12(t, T1).

Since any tradable asset discounted with a bond maturing at time T1 is a martingale under

the QT1-forward measure, then denoting in addition the mean of the ln(P (T1, T2)) under the

QT1-forward measure as µp(t, T1, T2) we have that

P (t, T2)

P (t, T1)
= EQT1

(P (T1, T2)|Ft) =

∫ +∞

−∞

1√
2πΣp(t, T1, T2)2

exe
− (x−µp(t,T1,T2))2

2Σp(t,T1,T2)2 dx

= eµp(t,T1,T2)+ 1
2
Σp(t,T1,T2)2

∫ +∞

−∞

1√
2πΣp(t, T1, T2)2

e
−(x−(Σp(t,T1,T2)2+µp(t,T1,T2)))

2

2Σp(t,T1,T2)2 dx

= eµp(t,T1,T2)+ 1
2
Σp(t,T1,T2)2

due to the normality of ln(P (T1, T2)) as a sum of two normally distributed random variables.

Thus, we do not have to additionally estimate the mean of ln(P (T1, T2)), since we can present

it as

µp(t, T1, T2) = ln
P (t, T2)

P (t, T1)
− 1

2
Σp(t, T1, T2)

2. (A.1)

Finally, following the same steps as in the calculation of the Black-Scholes formula (see Appendix

C), we obtain for the price of the European call bond option

CB(t, T1, T2, K) = P (t, T1)

[
eµp(t,T1,T2)+ 1

2
Σp(t,T1,T2)2Φ

(
µp(t, T1, T2) − lnK + Σp(t, T1, T2)

2

Σp(t, T1, T2)

)

−KΦ

(
µp(t, T1, T2) − lnK

Σp(t, T1, T2)

) ]

= P (t, T2)Φ




ln
(

P (t,T2)
KP (t,T1)

)
+ 1

2Σp(t, T1, T2)

Σp(t, T1, T2)




−P (t, T1)KΦ




ln
(

P (t,T2)
KP (t,T1)

)
− 1

2Σp(t, T1, T2)

Σp(t, T1, T2)




where Φ(·) denotes the cumulative standard normal distribution function.
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Girsanov Theorems

Theorem B.0.1 (Conditional Girsanov Theorem). Let G be a sub-σ-field of F on which

two probability measures Q and P are given. If Q is absolutely continuous with respect to P with

dQ = ΛdP and X is Q-integrable, then ΛX is P -integrable and

EQ(X|G) =
EP (XΛ|G)

EP (Λ|G)
Q − (a.s.)

Proof: refer to Klebaner [40]

Theorem B.0.2 (Cameron-Martin-Girsanov Theorem). Let B(t), 0 ≤ t ≤ T , be a Brow-

nian motion under a probability measure Q, and µ 6= 0. Consider the process W (t) = B(t)+µt.

There exists a measure P equivalent to Q, such that W (t) is P -Brownian motion. The Girsanov

density is given by,

dQ

dP
(W ) = Λ = eµW (T )− 1

2
µ2T and

dP

dQ
(B) =

1

Λ
= e−µB(T )− 1

2
µ2T

Proof: refer to Klebaner [40]
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Black-Scholes Formula

Let (Ω, F,P) be a complete probability space endowed with a filtration (Ft)t≥0. Further, let us

assume that we have a complete, arbitrage-free market where the stock price S(t) follows

a lognormal walk under the unique (due to the complete market), equivalent (to the physical

measure P) martingale measure Q, such that

dS(t) = S(t)
[
r(t)dt + σdWQ(t)

]
, S(0) = S0

where WQ(t) denotes a Brownian motion under the measure Q, the riskless interest rate r(t) is

a deterministic function of time and the volatility σ > 0 is a constant. Further, assuming no

transaction cost, no dividents on the underlying and continuous delta hedging, we can

derive (see Black and Scholes [7]) by replication that the price V(t) of a contingent (on the stock

price) claim with payoff at maturity T > t of F (T, S(T )) is a solution to the following pricing

linear parabolic PDE:

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rV

∂V

∂S
− rV = 0 (C.1)

with the final condition

V (T, S(T )) = F (T, S(T )).

This can be written, due to the Feynman-Kac representation Theorem as

V (t, S(t)) = EQ

(
e−

∫ T
t

r(s)dsF (T, S(T ))

∣∣∣∣ Ft

)
(C.2)

where EQ(·) denotes an expectation under the equivalent martingale measure Q.
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Theorem C.0.3. For an European call option with payoff F (T, S(T )) = (S(T ) − K)+ at ma-

turity T and a strike K > 0, we have that

V (t, S(t)) = S(t)Φ(d1) − Ke−
∫ T

t
r(s)dsΦ(d2)

where

d1 =
log

(
S(t)
K

)
+

(∫ T
t r(s)ds + 1

2σ2(T − t)
)

σ
√

T − t

d2 = d1 − σ
√

T − t

and Φ(·) denotes the cumulative distribution function of the standard normal distribution.

The price of an European put option with payoff at maturity F (T, S(T )) = (K − S(T ))+ for a

strike K > 0 is given by

V (t, S(t)) = −S(t)Φ(−d1) + Ke−
∫ T

t
r(s)dsΦ(−d2)

for the same notations of d1 and d2.

Proof: We will give the proof of this well-known theorem for the only reason that we refer to

it in another place of this thesis. We show it only for an European call option.

From the equivalence of the pricing PDE (C.1) to the expectation in (C.2) follows that we are

free to choose to solve any of them. Choosing to calculate (C.2) yields

V (t, S(t)) = EQ

(
e−

∫ T
t

r(s)dsF (T, S(T ))

∣∣∣∣ Ft

)
= EQ

(
e−

∫ T
t

r(s)ds (S(T ) − K)+
∣∣∣∣ Ft

)

= e−
∫ T

t
r(s)ds

∫ ∞

−∞

1√
2π(T − t)

e
− x2

2(T−t)

(
S(t)e

∫ T
t

r(s)ds− 1
2
σ2(T−t)+σx − K

)+
dx

= e−
∫ T

t
r(s)ds

∫ ∞

K∗

1√
2π(T − t)

S(t)e
∫ T

t
r(s)ds− 1

2
σ2(T−t)+σx− x2

2(T−t) dx

−Ke−
∫ T

t
r(s)ds

∫ ∞

K∗

1√
2π(T − t)

e
− x2

2(T−t) dx

= S(t)

∫ ∞

K∗

1√
2π(T − t)

e
− (x−(T−t)σ)2

2(T−t) dx − Ke−
∫ T

t
r(s)ds

∫ ∞

K∗

1√
2π(T − t)

e
− x2

2(T−t) dx

= S(t)Φ

(
σ(T − t) − K∗

√
T − t

)
− Ke−

∫ T
t

r(s)dsΦ

( −K∗
√

T − t

)

with K∗ = 1
σ

[
log

(
K
S + 1

2σ2(T − t) −
∫ T
t r(s)ds

)]
.
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