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1. Introduction

This thesis contains the mathematical treatment of a special class of analog microelec-
tronic circuits called translinear circuits. The goal is to provide foundations of a new
coherent synthesis approach for this class of circuits. The mathematical methods of the
suggested synthesis approach come from graph theory, combinatorics, and from algebraic
geometry, in particular symbolic methods from computer algebra.
Translinear circuits [Gil75, Gil96] form a very special class of analog circuits, because
they rely on nonlinear device models, but still allow a very structured approach to
network1 analysis and synthesis. Thus, translinear circuits play the role of a bridge
between the �unknown space� of nonlinear circuit theory and the very well exploited
domain of linear circuit theory.
The nonlinear equations describing the behavior of translinear circuits possess a strong
algebraic structure that is nonetheless �exible enough for a wide range of nonlinear
functionality. Furthermore, translinear circuits o�er several technical advantages like
high functional density, low supply voltage and insensitivity to temperature.
This unique pro�le is the reason that several authors consider translinear networks as
the key to systematic synthesis methods for nonlinear circuits [DRVRV99, RVDRHV95,
Ser05].2
This thesis proposes the usage of a computer-generated catalog of translinear network
topologies as a synthesis tool. The idea to compile such a catalog has grown from the
observation that on the one hand, the topology of a translinear network must satisfy
strong constraints which severely limit the number of �admissible� topologies, in particu-
lar for networks with few transistors, and on the other hand, the topology of a translinear
network already �xes its essential behavior, at least for static networks, because the so-
called translinear principle requires the continuous parameters of all transistors to be
the same.
Even though the admissible topologies are heavily restricted, it is of course a highly
nontrivial task to compile such a catalog. Combinatorial techniques have been adapted
to undertake this task.
The idea to utilize synthetic lists of network topologies is not new in analog circuit de-
sign: Catalogs of VCCS topologies are used for CMOS circuit design by E. Klumperink
and others [Klu97, KBN01, Sch02, Sch04].
1In this thesis, a �circuit� means electronics hardware, whereas a �network� means its mathematical
model.

2The �Wiley Encyclopedia of Electrical and Electronics Engineering� expresses the prominent role
of translinear circuits by the fact that the entire entry for �nonlinear circuits� consists only of a
reference to �translinear circuits�.
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1. Introduction

In a catalog of translinear network topologies, prototype network equations can be stored
along with each topology. When a circuit with a speci�ed behavior is to be designed, one
can search the catalog for a network whose equations can be matched with the desired
behavior.
In this context, two algebraic problems arise: To set up a meaningful equation for a net-
work in the catalog, an elimination of variables must be performed, and to test whether
a prototype equation from the catalog and a speci�ed equation of desired behavior can
be �matched�, a complex system of polynomial equations must be solved, where the so-
lutions are restricted to a �nite set of integers. Sophisticated algorithms from computer
algebra are applied in both cases to perform the symbolic computations.
All mentioned algorithmic methods have been implemented and successfully applied to
actual design problems at Analog Microelectronics GmbH (in the following: AMG),
Mainz.
The thesis is organized as follows:
Chapter 2 collects some graph-theoretic and algebraic background that will be needed
in the other chapters.
Chapter 3 �rst reviews the basic concepts and facts about translinear circuits, then gives
an analysis of their topology and develops some abstract notions to model the topology
in terms of graph theory.
Chapter 4 is about techniques for producing catalogs of combinatorial objects and the
specialization of these techniques to list translinear network topologies exhaustively for
a given number of transistors.
The concerns of Chapter 5 are the structure of the equations describing a translinear
network's behavior, and the algebraic problems which have to be solved when the net-
work catalog is to be equipped with prototype network equations and when it is searched
for a network with a particular behavior.
Chapter 6 reports about the successful application of the developed synthesis method-
ology in the design of a new humidity sensor system of AMG.
As an impression of the catalog of networks that is produced, an overview over the static
formal translinear networks with 6 or less transistors is given in Appendix A.
The algorithms presented in this thesis for building and searching a catalog of translinear
network topologies have been implemented using C++, Singular, andMathematica.
Some details and comments of the implementations are included in Appendix B.
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2. Prerequisites

For the algebraic notions used in this thesis, we refer to textbooks, e.g. [CLO97, FS83,
Lan94, GP02]. For some of the notions we need from Graph Theory, the literature shows
subtle inconsistencies, so we clarify these notions in Section 2.1. Section 2.2 collects
some nonstandard constructions and facts about toric ideals, which will be needed in
Chapter 5.

2.1. Notions from Graph Theory

De�nition 2.1. A directed graph or digraph is a triple G = (V, E, ι) of two sets V
and E and a map ι : E → V × V . The elements of V are called nodes or vertices, the
elements of E are called branches. ι is called the incidence map of G. For a branch
e ∈ E with ι(e) = (v1, v2), v1 is called its tail node or start vertex and also denoted
by tail(e), and v2 is called the head node or terminal vertex of e and also denoted
by head(e). We say that a branch e �points from tail(e) to head(e)�.
Remark 2.2. De�nition 2.1 allows parallel branches and self-loops in a digraph. (A
pair of parallel branches consists of distinct elements e, e′ ∈ E with ι(e) = ι(e′); a self-
loop is a branch e ∈ E with tail(e) = head(e).) Authors in graph theory frequently
exclude both in digraphs. If parallel branches or self-loops occur, they rather speak of a
directed multigraph. Here, we deliberately chose De�nition 2.1 to be as it is.
De�nition 2.3. A digraph G = (V, E, ι) is called �nite if both V and E are �nite sets.
Remark 2.4. In all examples of this thesis, digraphs are �nite.
If G is a directed graph, its set of nodes will also be denoted by V (G), and its set of
branches will also be denoted by E(G).
De�nition 2.5. A walk in a digraph G is an alternating �nite sequence

W = (v0, e1, v1, . . . , el−1, vl−1, el, vl)

of nodes and branches such that for each j = 1, . . . , l, either ι(ej) = (vj−1, vj) or ι(ej) =
(vj, vj−1). In the former case, ej is called a forward branch, in the latter case it is
called a backward branch of W. We say that W is a walk from v0 to vl. The number
l ∈ N0 is called the length of W . If the nodes v0, . . . , vl (and thus also the branches)

7



2. Prerequisites

are pairwise distinct, W is called a path. If v0 = vl, W is called a cycle. A cycle
(v0, e1, . . . , vl−1, el, v0) with pairwise distinct nodes v0, . . . , vl−1 is called a loop.
Sometimes we use the notation E(W ) := {e1, . . . , el} for the set of branches appearing
in a walk W = (v0, e1, v1, . . . , el, vl). The walk←−W := (vl, el, vl−1, el−1, . . . , v1, e1, v0) is the
reversed walk (path/cycle/loop, resp.) of W .
If a walk (path/cycle/loop) W has no backward branches, we call it a directed walk
(path/cycle/loop).
De�nition 2.6. Let G be a digraph, let W = (v0, e1, v1, . . . , el, vl) be a walk in G, and
let e ∈ E(G) be any branch of G. For j = 1, . . . , l, de�ne

µ(W, e, j) :=


1 if e = ej and ι(e) = (vj−1, vj),
−1 if e = ej and ι(e) = (vj, vj−1),
0 if e 6= ej.

The incidence index of e in W is

µ(W, e) :=
l∑

j=1

µ(W, e, j).

Remark 2.7. In e�ect, µ(W, e) is the number of times e appears as a forward branch in
W minus the number of times e appears as a backward branch in W . If W is a path or
a loop, µ(W, e) is either 1, −1, or 0. Note that µ(

←−
W, e) = −µ(W, e) for every walk W

and every branch e.
De�nition 2.8. Let W = (v0, e1, v1, . . . , el, vl) and W ′ = (v′0, e

′
1, v
′
1, . . . , e

′
l′ , v

′
l′) be two

walks such that vl = v′0. Then we de�ne the walk
W ? W ′ := (v0, e1, v1, . . . , el, vl, e

′
1, v
′
1, . . . , e

′
l′ , v

′
l′)

from v0 to v′l′ . Furthermore, for every branch e with tail(e) = vl, we de�ne the walk
W ? e := (v0, e1, v1, . . . , el, vl, e, head(e))

from v0 to head(e).
De�nition 2.9. We call a digraph G connected, if for any two nodes v, v′ ∈ V (G),
there is a walk in G from v to v′.
De�nition 2.10. Let G = (V, E, ι) be a digraph, and let V̄ ⊆ V be a subset of its
nodes. We de�ne the digraph G|V̄ := (V̄ , Ē, ῑ) by Ē :=

{
e ∈ E| ι(e) ∈ V̄ × V̄

} and
ῑ(e) := ι(e) for e ∈ Ē. If G|V̄ is a connected digraph, and if furthermore there is no
other node subset V ′ such that V̄ $ V ′ ⊆ V and G|V ′ is connected, then G|V̄ is called
a connected component of G.
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2. Prerequisites

Lemma 2.11. For every �nite digraph G, there is a �nite number of subsets V1, . . . , Vs ⊂
V (G) such that

1. The connected components of G are exactly G|V1, . . . , G|Vs.

2. V1 ∪ · · · ∪ Vs = V (G).

3. Vj ∩ Vk = ∅ for j, k = 1, . . . , s and j 6= k.

Proof. The existence of one connected component G|V1 is easily shown. Continue with
G|(V \ V1) to obtain V2, and so on.
De�nition 2.12. G is called biconnected if it is connected and remains so after the
removal of an arbitrary node, that is, if for every v ∈ V , the digraph G|(V \ {v}) is
connected.
De�nition 2.13. Let G be a directed graph and let V (G) = {v1, . . . , vn}. The adja-
cency matrix AG ∈ Nn×n

0 of G is de�ned as follows: For j, k = 1, . . . , n, the entry AG
jkis the number of di�erent branches e ∈ E(G) with ι(e) = (vj, vk).

Remark 2.14. Obviously, the adjacency matrix depends on the order which the nodes
v1, . . . , vn are indexed with. Because in most cases it is clear by notation how the nodes
are ordered, it is common practice in textbooks to neglect this dependence. We follow
this practice in most parts of this thesis. However, we emphasize here the non-uniqueness
of the adjacency matrix, because it will be an important issue in Chapter 4.
De�nition 2.15. Let G be a directed graph, let V (G) = {v1, . . . , vn} and let E(G) =
{e1, . . . , eb}. The incidence matrix MG ∈ Zb×n of G is de�ned as follows: For j =
1, . . . , b and k = 1, . . . , n,

MG
jk :=


0, if head(ej) 6= vk 6= tail(ej) or head(ej) = tail(ej) = vk,

1, if head(ej) = vk 6= tail(ej),

−1, if head(ej) 6= vk = tail(ej).

Remark 2.16. The incidence matrix depends on the ordering of the nodes as well as on
the ordering of the branches.
De�nition 2.17. Let G be a directed graph with E(G) = {e1, . . . , eb}, and let S be a
loop of G. The loop incidence vector of S is

uS :=

 µ(S, e1)...
µ(S, eb)

 .

Notation 2.18. We denote the transposed matrix of a matrix A by At.
Lemma 2.19. For every loop S of a digraph G, uS ∈ ker

(
MG

)t
.
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2. Prerequisites

Proof. Straightforward.
Proposition 2.20. For every u = (u1, . . . , ub)

t ∈ ker
(
MG

)t ⊂ Zb, there are loops
S1, . . . , Sr, r ∈ N0 such that u = uS1 + · · ·+ uSr and for every l = 1, . . . , r:

1. Whenever uj = 0, then µ(Sl, ej) = 0.

2. Whenever uj > 0, then µ(Sl, ej) ≥ 0.

3. Whenever uj < 0, then µ(Sl, ej) ≤ 0.

Proof. (Sketch.) By induction on |u| := ∑b
j=1 |uj|. Carefully selecting one branch after

the other, we can construct a loop S1 such that 1.-3. hold (for l = 1). Then we continue
with u− uS1 instead of u.
Corollary 2.21. ker

(
MG

)t is generated by the loop incidence vectors.

De�nition 2.22. A tuple of loops S1, . . . , Sr is called a system of fundamental loops
if uS1 , . . . , uSr form a basis of ker

(
MG

).
2.2. The Toric Ideal of a Digraph

To any directed graph G, we can associate its toric ideal, an algebraic object that carries
the essential information about the loop structure of G. (In this way, the toric ideal of
G is similar, and in fact closely related to the cycle space and to the fundamental groups
of G.) In the context of this thesis, the toric ideal of a digraph is of particular interest,
because in the case of a translinear digraph (see De�nition 3.5) it actually consists of
the translinear loop equations of any network based on that digraph. We will come back
to the role of this toric ideal of a translinear network in Subsection 5.1.1.
Of course, there is a general notion of a toric ideal, independent of digraphs and networks.
Toric ideals are not only the algebraic building blocks giving rise to the very rich toric
geometry (see [Ful97] for an introduction), they also have applications in integer pro-
gramming and combinatorics and thus attract much attention from the computational
viewpoint [Stu97, The99].
De�nition 2.23. Let k be any �eld and let M = (mij) ∈ Zn×b be an integer matrix. The
toric ideal of M over k, denoted by IA, is the kernel of the k-algebra-homomorphism

k[x1, . . . , xb] → k[t1, . . . , tn, t
−1
1 , . . . , t−1

n ],
xj 7→ t

m1j

1 . . . t
mnj
n .

Remark 2.24. Any toric ideal is prime, since it is the kernel of a homomorphism into an
integral domain.
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2. Prerequisites

Notation 2.25. For u = (u1, . . . , ub) ∈ Zb, de�ne the monomials m+
u :=

∏
uj>0 x

uj

j ,
m−u :=

∏
uj<0 x

−uj

j , and the binomial Bu := m+
u −m−u ∈ k[x1, . . . , xb].

Lemma 2.26. IA is generated by {Bu |u ∈ ker(M) ⊂ Zb}.

Proof. [Stu97, Corollary 4.3]
Notation 2.27. For an ideal J ⊂ k[x1, . . . , xb], we denote its saturation with respect to
all variables by sat(J). That is, sat(J) = {f | ∃ monomial m : mf ∈ J }.
Lemma 2.28. If u1, . . . , us form a basis of ker(M), then IA = sat(〈Bu1 , . . . , Bus〉) .

Proof. [Stu97, Lemma 12.2]

We now focus our attention on the toric ideal of a digraph.
Several authors have examined the toric ideal of a general undirected graph [SVV94,
dLST95, OH99]. Ishizeki and Imai have considered toric ideals of acyclic digraphs and
Gröbner bases of them [Ish00b, II00b], their publications seem to be the only ones where
the toric ideal of a digraph has been mentioned hitherto.
De�nition 2.29. Let G be a directed graph. The toric ideal of G, denoted by IG, is
the toric ideal of its transposed incidence matrix (MG)t over Q.
Remark 2.30. If we identify Q[x1, . . . , xb] with the free Q-algebra on the set of branches,
and Q[t1, . . . , tn, t

−1
1 , . . . , t−1

n ] with the free Q-algebra on the set of nodes and their in-
verses, then IG is the kernel of the homomorphism de�ned by e 7→ head(e)(tail(e))−1 for
each branch e.
Notation 2.31. For the incidence vector uS of a loop S, we abbreviate m+

S := m+
uS
,

m−S := m−uS
, and BS := BuS

.
Lemma 2.32. For a digraph G,

IG = 〈BS |S loop of G〉

Proof. In view of Lemma 2.26, it su�ces to show that Bu ∈ 〈BS |S loop of G〉 for
every u ∈ ker

(
MG

)t. From Proposition 2.20 we obtain loops S1, . . . , Sr such that
u =

∑r
i=1 uSi

, and m+
Si
and m−Sj

are coprime for all i, j = 1, . . . , r. Thus m+
u =

∏r
i=1 m+

Si

and m−u =
∏r

i=1 m−Si
. We can write Bu as

Bu =
r∑

i=1

(∏
j<i

m−Sj

)(∏
j>i

m+
Sj

)
BSi

.
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The last lemma of this chapter provides a possibility to determine a �nite generating set
for the toric ideal of a digraph:
Lemma 2.33. Let u1, . . . , us be the loop incidence vectors of a system of fundamental
loops of G. Then IG = sat(〈Bu1 , . . . , Bus〉).

Proof. Follows from Lemma 2.28.
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3. Translinear Network Theory

As mentioned earlier, the goal of this thesis is a coherent and well-structured synthesis
methodology for translinear circuits, based on a catalog of topologies.
To give proper foundations for the new synthesis approach, we develop in this chap-
ter (after an introduction to translinear circuits and an earlier synthesis approach in
Sections 3.1 and 3.2) a mathematically rigorous perception of translinear circuits. In
particular, we give a clean de�nition of a �translinear network� from a topological point
of view.

3.1. The Translinear Principle

This section gives a review of the so-called translinear principle, the functional principle
of translinear circuits. It has been formulated and given its name by Barrie Gilbert in
1975 [Gil75].
The translinear principle relies on an exponential voltage-to-current relationship of cer-
tain devices. The original �translinear device� is the bipolar NPN transistor, other
devices with valid exponential models are diodes, PNP transistors and MOS transistors
operating in weak inversion [Wie93]. Recently, an emulation of a bipolar transistor has
been proposed [DBS04], where a subnetwork structure of three CMOS transistors and
one diode shows the necessary exponential behavior.
In our circuit diagrams, we will use the symbol of a bipolar NPN transistor, shown in
Figure 3.1, to represent an abstract �translinear device�, and we will simply use the term
�transistor� for such an abstract device. It follows from the above that several di�erent
silicon implementations of a �transistor� are possible.

collector

emitter

base

Figure 3.1.: The symbol for a bipolar NPN transistor, our placeholder for a �translinear
device�.
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3. Translinear Network Theory

The ideal exponential model of a transistor is given by the equation
ICE = ISeVBE/UT , (3.1)

saying that its collector current ICE (the current from collector to emitter) is exponen-
tially dependent on the base voltage VBE (the voltage between base and emitter). In
this model, IS and UT are device- and operation-dependent parameters called saturation
current and thermal voltage, respectively. It is assumed that IS > 0 and UT > 0.
We usually make the additional model assumption that the base current (the current
from base to emitter) of a transistor is zero.

3.1.1. The Static Translinear Principle

The key structures of translinear networks are so-called translinear loops. We call
a loop W of the network digraph a translinear loop if it satis�es the following three
properties:

• W consists exclusively of base-emitter branches of transistor.
• All transistors involved share the same pair (IS, UT ) of parameters.
• W consists of as many forward branches as backward branches. Remember that
we regard the branches to point �from base to emitter�.

Figure 3.2 shows two examples for a translinear loop.

The interesting property of translinear loops is that due to the exponential transistor
model, we can deduce a multiplicative relation of collector currents from Kirchhoff's
Voltage Law (KVL): Denote the base voltages of the transistors in W -forward orienta-
tion by V f

1 , . . . , V f
r , the base voltages of the transistors in W -backward orientation by

V b
1 , . . . , V b

r . Then KVL for W reads
V f

1 + · · ·+ V f
r = V b

1 + · · ·+ V b
r .

I2f I3fI1f
I1f

I2f

I1b I2b
I1b

I2b

I3b

Figure 3.2.: Examples for translinear loops.
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3. Translinear Network Theory

Iin1

Iin2

Q1 Q2

Q3 Q4

v1

v2
v3

Iout

Figure 3.3.: A geometric mean circuit

Taking advantage of the common parameters, we deduce

eV f
1 /UT · . . . · eV f

r /UT = eV b
1 /UT · . . . · eV b

r /UT

and multiplication by Ir
S yields(

ISeV f
1 /UT

)
· . . . ·

(
ISeV f

r /UT

)
=
(
ISeV b

1 /UT

)
· . . . ·

(
ISeV b

r /UT

)
.

Considering the model equation eqn. (3.1), this means exactly
If
1 · . . . · If

r = Ib
1 · . . . · Ib

r , (3.2)

where If
1 , . . . , If

r and Ib
1, . . . , I

b
r denote the collector currents of the transistors whose

base-emitter branches are W -forward or W -backward, respectively.
Remark 3.1. Note that Is and UT don't occur any more in eqn. (3.2). This means that
the relation between the collector currents holds independently of these parameters,
provided they are indeed common. One nice e�ect of this is that translinear networks
are essentially temperature-insensitive.
Example 3.2. The loop indicated by thick lines in Figure 3.3 is a translinear one, being
made up of the base-emitter branches of transistors Q1, . . . , Q4. (We assume that UT

and IS coincide for the four transistors.) Application of the translinear principle yields1

I1 · I3 = I2 · I4. (3.3)
1Here we simply denote the collector current of a transistor Qj by Ij . We will stick to this convention
in the following examples, too.
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3. Translinear Network Theory

u1 u2
y+ y-

v1 v2
v4

v5

v6

v3

Q1 Q2 Q3 Q4

Q5 Q6 Q7

Figure 3.4.: A translinear frequency doubling network. (Since its �rst publication by
Genin and Konn in 1979 [GK79], this network has become a very promi-
nent example application of the translinear principle.)

Now remember our assumption that base currents are zero. Taking this into account,
Kirchho�'s Current Law (KCL) for v1 means that I3 = Iin1. Similarly for v2 : I1 = Iin2,
and for v3: I4 = I2 = Iout. Thus we can substitute the collector currents in eqn. (3.3)
by Iin1, Iin2 and Iout:

Iin2 · Iin1 = Iout · Iout,
so Iout =

√
Iin1 · Iin2 (since Iout, being a collector current, must be positive). That means,

the network �computes� the geometric mean of the two inputs.
Example 3.3. As an example for a network with several translinear loops, consider the
network of Figure 3.4.
Transistors Q1, Q2, Q6, Q5 form a translinear loop. The according equation is

I1 · I5 = I2 · I6. (3.4)
Another translinear loop consists of transistors Q3, Q4, Q7, Q6. This gives

I3 · I6 = I4 · I7. (3.5)
By Kirchho�'s Current Law and our neglection of base currents, we can rewrite eqn. (3.4)
and eqn. (3.5) as

u1 · u1 = y+ · (y+ + y−),

y− · (y+ + y−) = u2 · u2.
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3. Translinear Network Theory

A little computation reveals that

y+ − y− =
u2

2 − u2
1√

u2
1 + u2

2

.

If we apply sinusoidal inputs with a 90◦ phase shift, like
u1 = |a sin t| ,
u2 = |a cos t| ,

with a �xed a ∈ R, then the di�erential output becomes
y+ − y− = a cos 2t,

that is, the network shows a frequency doubling behaviour for these inputs.

So every translinear loop leads to an equation of the form of eqn. (3.2). Summarizing
the translinear principle in words:

In a loop of base-emitter branches of transistors with the same thermal volt-
age and the same saturation current, with an equal number of forward and
backward branches, the product of collector currents of the transistors whose
base-emitter branches are forward in the loop is equal to the product of col-
lector currents of the transistors whose base-emitter branches are backward
in the loop.2

3.1.2. Motivation for a Catalog of Topologies

The following properties of static translinear (STL) networks can be observed from the
examples of the preceding subsection:

• STL networks can be described in terms of currents by systems of polynomial
equations.
• In such a system, no continuous parameters occur. This is due to the fact that UT

and IS vanish from the equations as soon as the STL principle is applied.
• The topology of translinear networks satis�es strong constraints. One of these
constraints is the condition that the number of forward and backward branches
in a translinear loop be the same. Another constraint concerns the connection of
collectors; it will be considered in Subsection 3.3.2.

2This is the author's version of many similar formulations of the translinear principle as found in the
literature [Gil68, pp. 364�365], [See88, p. 9], [Gil96, p. 107], [Min97, p. 6].
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3. Translinear Network Theory

The second property means that the behavior of a STL network is already �xed by the
network topology. In particular, there is only a �nite number of di�erent STL networks
when the number of transistors is bounded!
Together with the third property, which says that the number is not only �nite but also
�not too large�, this observation has inspired the idea of a complete catalog of �small�
STL networks. If along with each network appropriate equations are stored, such a
catalog can serve as a design tool in an obvious way: When the designer is in search for
a circuit with a given desired behavior, she or he can simply run through the catalog to
�nd a network whose equations match that behavior.
Chapter 5 of this thesis is about the details of the usage of such a catalog.

3.1.3. The Dynamic Translinear Principle

For so-called dynamic translinear circuits, another circuit element comes into play: The
capacitance. The symbol for a capacitance looks like this:

An ideal capacitance has the model equation
Icap = CV̇cap, (3.6)

where of course Icap denotes the current through and Vcap the voltage across the element,
and the dot is used to denote time derivative. The device parameter C > 0 is the
capacity.
Consider a loop containing one capacitance and one or more base-emitter branches of
transistors, as in Figure 3.5. This time, the branch orientations do not matter.

...

...C

Figure 3.5.: A dynamic translinear loop.
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Q1 Q2

Q3 Q4 Q5 Q6

v1

v2
v3

v4

y

u1

u2

C

Figure 3.6.: A translinear integrating network. [See90]

KVL for such a dynamic translinear (DTL) loop is

Vcap =
l∑

j=1

±Vj, (3.7)

where the signs depend on the branch orientations. From eqn. (3.1) we deduce that

V̇j = UT
İj

Ij

for j = 1, . . . , l, so eqn. (3.6) and the di�erentiation of eqn. (3.7) yield

1

C
Icap = UT

l∑
j=1

± İj

Ij

. (3.8)

In short, the dynamic translinear principle says that for every DTL loop, eqn. (3.8)
holds.
Example 3.4. Figure 3.6 shows a translinear integrating network. The (static) translin-
ear loop equations for this network are

I1 · I4 = I2 · I5, (3.9)
I3 = I4, (3.10)
I6 = I5. (3.11)
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3. Translinear Network Theory

There is a dynamic translinear loop consisting of the capacitance and, say, Q6. (One
could as well consider the loop consisting of the capacitance and Q5 or the loop consisting
of the capacitance, Q2, Q1 and Q4.) The according equation is

1

C
Icap = UT

İ6

I6

. (3.12)

The node equations according to KCL are
I3 = u1 for v1, (3.13)
I5 = I1 + u2 for v2, (3.14)

and I4 + Icap = I2 for v3. (3.15)

I1, . . . , I5 and Icap can be eliminated from eqns. (3.9) to (3.15), yielding

(u2 − I6) · u1 = (u1 + CUT
İ6

I6

) · I6,

which can be simpli�ed to
u2 · u1 = CUT İ6.

If we assume the input u2 to be a constant scaling factor, we see that the input u1

is proportional to the time derivative of the output y = I6. So indeed, the network
e�ectively performs integration.

Although dynamic translinear networks have important applications, this thesis is mainly
about STL networks, and capacitances won't occur very often. In particular, the imple-
mentation of a topological catalog as a synthesis tool, which has been produced in the
framework of this thesis, is restricted to STL networks.

3.2. Translinear Decomposition of Polynomials

We use the term �translinear decomposition� to denominate the process (or the result)
of �nding a way of writing a polynomial f ∈ Q[x1, . . . , xn] as an algebraic expression
which can be interpreted as one or more translinear loop equations. We think of the
variables x1, . . . , xn as the inputs and outputs of a network to be designed, and of f
as an implicit description of the network's desired behavior. Translinear decomposition
is an important step of the design trajectory for translinear networks as described by
Mulder et. al. [MSvdWvR99].
If one is only interested in networks with only one translinear loop, translinear decom-
position amounts to �nding a way of writing f in the form

f = L1 · . . . · Lr −M1 · . . . ·Mr,
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3. Translinear Network Theory

where Li and Mi are linear combinations of x1, . . . , xn. An algorithm for translinear
decomposition in the 1-loop case is included in the work of Mulder et. al. [MSvdWvR99,
pp. 91�107]. The author has developed an alternative algorithm [Ils02] and has com-
pared both algorithms using implementations in Mathematica.
In the general case of several translinear loops, translinear decomposition is much more
complicated: Given f , we have to look for �translinear polynomials�

f1 =L11 · . . . · L1r1−M11 · . . . ·M1r1 ,

...
fs =Ls1 · . . . · Lsrs−Ms1 · . . . ·Msrs

(corresponding to s translinear loops) in the enlarged polynomial ring
Q[x1, . . . , xn, xn+1, . . . , xn+s−1]

such that f1 = · · · = fs = 0 implies f = 0 for any given set of real values for
x1, . . . , xn+s−1. Here the terms Lij and Mij denote linear combinations of the vari-
ables x1, . . . , xn+s−1.
The condition �f1 = · · · = fs = 0 implies f = 0� can be ensured algebraically by
choosing f1, . . . , fs in such a way that f lies inside the ideal 〈f1, . . . , fs〉, that is, in such
a way that there exist h1, . . . , hs ∈ Q[x1, . . . , xn+s−1] with

f = h1f1 + · · ·+ hsfs. (3.16)

Note that since f contains only x1, . . . , xn, the remaining variables xn+1, . . . , xn+s−1 must
cancel on the right hand side of eqn. (3.16).
No good algorithms are known for translinear decomposition in the general case (also
called parametric decomposition), and it doesn't seem probable that a satisfactory al-
gorithmic solution can be found, since the problem is in some sense �the wrong way
around� compared to classical problems of computer algebra. Also, there are so many
degrees of freedom that one can expect a very large number of solutions among which
it would be complicated to recognize �good� ones.
Another problem that arises when employing the �translinear decomposition� design
trajectory is that it is not clear, once a suitable decomposition is found, how to make
the collector currents in fact equal the linear combinations Ljk and Mjk.
Still, it seems worthwhile to research about the algebraic problem of translinear decom-
position. However, due to the problems mentioned, the design approach of this thesis
avoids translinear decomposition.
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3. Translinear Network Theory

3.3. The Topology of Translinear Networks

In this section, we give a precise formulation of what a �translinear network� is in terms of
graph theory. It will be the basic mathematical model of a translinear circuit's topology
and consists essentially of a strict formulation of the constraints which the topology
of translinear networks has to obey. Although these constraints have all been known
before (their identi�cation is due to E. Seevinck [See88]), their translation into strict
mathematics is new.
The precise mathematical formulation is necessary for the speci�cation of the combina-
torial task of compiling complete lists of topologies, considered in Chapter 4.
It has been developed in collaboration with E. J. Roebbers and has been published
earlier [Ils04, IR04]. The successful application (see Chapter 6) of the techniques of this
thesis prove that the topological model �ts very well with the industrial needs.

3.3.1. Translinear Digraphs

Translinear digraphs are the mathematical objects that are used to represent the core
structure of a translinear network, the structure consisting of the translinear loops.
De�nition 3.5. A translinear digraph is a digraph G satisfying the following prop-
erties:

1. Every loop of G has as many forward branches as backward branches.
2. G is biconnected.

One should think of a translinear digraph G as the digraph formed by the base-emitter
branches of a translinear network, that is, the branches of G are in 1-to-1-correspondence
with the transistors of the network, and for each branch e, tail(e) corresponds to the
base node and head(e) to the emitter node of the respective transistor.
Figure 3.7 shows the translinear digraphs of the example networks from Section 3.1.
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v1 v2

v4v3 v5

v6

e1 e2 e3 e4

e5 e6 e7

(a) The translinear digraph of the
frequency doubling network (see
Figure 3.4).

e1
e2

e3

e4
e5

e6

v1

v2 v3

v4

(b) The translinear digraph of the inte-
grating network (Figure 3.6).

Figure 3.7.: Two translinear digraphs. The nodes carry the same names as in the cor-
responding networks; branch ej in the digraphs corrsponds to transistor Qj

in Figure 3.4 or Figure 3.6, respectively.

Condition 1 in De�nition 3.5 obviously re�ects the main requirement on translinear loops
as presented in Section 3.1. The reason for including Condition 2 into the de�nition
is that the loops of di�erent biconnected components of the base-emitter digraph are
decoupled, so we can consider the corresponding sub-networks seperately.
The concept of a translinear digraph as the core of a translinear network was introduced
by E. Seevinck [See88], although he concentrated on undirected graphs.3 (Seevinck's
de�nition di�ers from the one given here in some more respects.)
It turns out that condition 1 of De�nition 3.5 has a nice reformulation, as expressed by
the following theorem:
Theorem 3.6. Let G be a digraph. The following two statements are equivalent:

1. Every loop of G has as many forward arcs as backward arcs.

2. There exists a map r : V (G)→ Z such that

∀ e ∈ E(G) : r(tail(e)) = r(head(e)) + 1.

3This is the reason that the term "translinear graph" is found very often in the literature, whereas
"translinear digraphs" have not found much attention hitherto.
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3. Translinear Network Theory

Proof. First assume there exists a map r as in statement 2. Consider any loop W =
(v0, e1, v1, . . . , el, vl), vl = v0 of G. By assumption,

r(vj) = r(vj−1)− µ(W, ej)

for all j = 1, . . . , l. Inductively it follows that

r(vl) = r(v0)−
l∑

j=1

µ(W, ej)

and, because vl = v0,
l∑

j=1

µ(W, ej) = 0.

Since µ(W, ej) = ±1 for all j = 1, . . . , l, the latter is a sum of as many 1's as -1's, which
just means that W contains as many forward arcs as backward arcs.
For the other direction of the proof, assume that every loop contains as many forward
arcs as backward arcs. In terms of incidence indices, this means∑

e∈E(W )

µ(W, e) = 0 (3.17)

for every loop W . It follows that eqn. (3.17) also holds if W is any cycle.
Construct a map r with the stated property in the following way: For each connected
component C of G, pick an arbitrary vertex vC ∈ V (C). Then, for each vertex v ∈ V (C),
�x a walk P from vC to v and de�ne

r(v) := −
∑

e∈E(P )

µ(P, e).

It is now necessary to show that this de�nition is independent of the chosen walk P . So,
let P ′ be another walk from vC to v. Then P ?

←−
P ′ is a cycle and

0 =
∑

e∈E(P?
←−
P ′)

µ(P ?
←−
P ′, e)

=
∑

e∈E(P )

µ(P, e)−
∑

e∈E(P ′)

µ(P ′, e),

in particular
−
∑

e∈E(P )

µ(P, e) = −
∑

e∈E(P ′)

µ(P ′, e),

which shows that r(v) is indeed well-de�ned.
Applying this construction to every connected component C of G, the map r indeed
gets the desired property: Let e0 ∈ E(C) be any branch of some component C. If W
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is a walk from vC to tail(e0), W ′ := W ? e0 is a walk from vC to head(e0), and by the
de�nition of r,

r(head(e0)) =−
∑

e∈E(W ′)

µ(W ′, e)

=−
( ∑

e∈E(W )

µ(W ′, e)
)
− µ(W ′, e0)

=−
( ∑

e∈E(W )

µ(W, e)
)
− 1

=r(tail(e0))− 1.

It is clear that if a map r as in the second statement of Theorem 3.6 exists, so does a
map r0 that ful�lls the same condition as well as the additional property

min
v∈V (G)

r0(v) = 0. (3.18)

(Simply de�ne r0(v) := r(v) − min
v′∈V (G)

r(v′).) The nodes can then be partitioned into
�levels� or �layers�, such that a branch always points from one layer to the next lower
layer:

V = V0 ∪̇ V1 ∪̇ . . . ∪̇ VR,

where Vj = {v ∈ V | r0(v) = j} and R := max
v∈V

r0(v). This is illustrated in Figure 3.8.

Example 3.7. In Figure 3.7(a), R = 2, V0 = {v6}, V1 = {v3, v4, v5} and V2 = {v1, v2}.
In Figure 3.7(b), R = 2, V0 = {v4}, V1 = {v2, v3} and V2 = {v1}.
De�nition 3.8. We call a digraph ful�lling one and thus both conditions of Theorem
3.6 a layered digraph.

We see that a translinear digraph is nothing but a biconnected layered digraph.
For any connected layered digraph, the additional property of eqn. (3.18) makes r0

unique.
De�nition 3.9. Let G be a connected layered digraph. For a node v ∈ V (G), we call
the integer r0(v) the rank of v, and also denote it by rank(v).

In other words, the rank of a node is the index of the layer it belongs to.
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V0

V1

V2

V3

Figure 3.8.: layers of a translinear digraph

What is crucial about the layers of the translinear digraph of a network is that the rank
of a node corresponds nicely to a certain range of the electric potential the node will
have in an actual circuit. This is because the voltage drop along a base-emitter branch
is always much larger than the swing of potential at one particular node.
Since the rank is a node invariant, it also helps a lot in the classi�cation of translinear
digraphs, as will become apparent in Chapter 4.

3.3.2. Connection of Collectors

The previous subsection dealt with the base-emitter connectivity of a translinear net-
work, which can be encoded in a translinear digraph. The main piece of information that
is furthermore needed to describe a complete network is where to connect the collectors
to.
Let e be a branch of a translinear digraph G. The collector of the transistor correspond-
ing to e can only be connected to a node v of G if rank(v) > rank(head(e)). The reason
is that head(e) is the emitter node, and the collector needs a higher potential than the
emitter. E. Seevinck considered this condition in the construction of his �T-matrices�
[See88].
We denote the collector node of a transistor corresponding to a branch e of the translinear
digraph by C(e).
Example 3.10. For the integrating network (Figure 3.6), we have C(e3) = v1, C(e4) =
v3 and C(e5) = v2 (using branch names as in Figure 3.7(b)).
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But a collector does not necessarily need to be connected to a node of the translinear
digraph. It can also serve as a (current-mode) output of the network, or it can be
connected directly to a voltage supply. We will express this by C(e) = vext, imagining
vext as an additional node outside of G.
Example 3.11. In Figure 3.6/Figure 3.7(b), C(e1) = C(e2) = C(e6) = vext.

In summary:
A translinear network topology is speci�ed by
• a translinear digraph G

• and a map C : E(G) → V (G) ∪̇ {vext}, where C has the property that for each
e ∈ E(G), either C(e) = vext or

rank(C(e)) > rank(head(e)). (3.19)
We identify

a branch e with a transistor,
tail(e) with the transistor's base node,

head(e) with the transistor's emitter node,
and C(e) with the transistor's collector node.

We call the map C the collector assignment of the network. (The notion of a collector
assignment will be re�ned in Section 3.4. )
Example 3.12. We can describe the frequency doubling network of Figure 3.4 by the
pair (G, C), where G is the translinear digraph depicted in Figure 3.7(a) and C is the
collector assignment

C(e1) =v1,

C(e2) =vext,
C(e3) =vext,
C(e4) =v2,

C(e5) =v3,

C(e6) =v4,

C(e7) =v5.

Remark 3.13. Note that in the latter example, C(ej) = tail(ej) for j = 1, 4, 5, 6, meaning
that the collector is connected to the same node as the base of the respective transistor.
In such cases of diode-like transistor usage, the condition expressed by eqn. (3.19) is
�automatically� satis�ed, since by the de�nition of the rank of a node,

rank(tail(e)) = rank(head(e)) + 1.
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The information given by a translinear digraph G and a collector assignment C is already
a fairly complete description of a translinear network. In particular, a netlist for simula-
tion or symbolic analysis of the network can be set up, if just some necessary �interface�
information is added, for instance the connection of independent current sources which
represent inputs of the network. These interfacing issues will be considered in Section
3.4.

3.3.3. Insertion of Capacitances

The considerations of the preceding subsection are valid for STL networks as well as
for DTL networks. But while the topology of a STL network is su�ciently modeled by
a translinear digraph and a collector assignment, we must make one addition for DTL
networks: How are capacitances allowed to be connected in the network?
The answer is quite simple: A capacitance can be inserted between any pair of nodes of
the translinear digraph. In Figure 3.6, for example, the capacitance branch is between
node v3 and the ground node v4, which are both nodes of the underlying translinear
digraph (see Figure 3.7(b)).
Thus, a DTL network topology is given by a triple (G, C, Ecap) of a translinear digraph
G, a collector assignment C on G, and a subset Ecap of the set of 2-element subsets of
G. (See also [IR04].) Ecap then consists of those pairs of nodes where a capacitance is
connected inbetween.

3.4. The Interface of a Translinear Network

This section addresses the question of what should be considered as the �interface� of a
translinear network, i. e. of how inputs are applied to and outputs are supplied by the
network.
Since the introduction of the translinear principle by Barrie Gilbert [Gil75] it is clear
that inputs and outputs of a translinear network are in current mode.

3.4.1. Outputs

All collectors which are designated �external� by the collector assignment C (i. e., the
collectors of those transistors for which C(e) = vext ) can be used as outputs of the
network. But not only the current of a single collector, also sums or di�erences of them
can be considered as outputs. To be general, we consider a single symbolic output y of
a network which is a sum of positive and negative collector currents:

y =
∑

C(e)=vext
σ(e)xe, (3.20)
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where xe denotes the collector current of the transistor corresponding to branch e and
σ(e) ∈ {−1, 0, 1}.

Example 3.14. For the frequency doubling network (Figure 3.4), σ(e2) = 1 and σ(e3) =
−1. For the integrating network (Figure 3.6), σ(e1) = σ(e2) = 0 and σ(e6) = 1.

To avoid the usage of σ, we will henceforth work with the following re�ned concept of a
collector assignment: From now on, a collector assignment will be a map

C : E(G)→ V (G) ∪̇ {vout+, vout-, vvoid}

such that for every e ∈ E(G):
C(e) ∈ {vout+, vout-, vvoid} or rank(C(e)) > rank(head(e)).

Thus, the symbolic output of a network will be (compare to eqn. (3.20)):
y =

∑
C(e)=vout+

xe −
∑

C(e)=vout-
xe. (3.21)

3.4.2. Inputs and Ground Node Selection

In principle, an independent input current iv can be applied to any node v of the translin-
ear digraph G. The only restriction is that the sum of all input and output currents
(the latter are now all collector currents with C(e) ∈ {vout+, vout-, vvoid}) must always be
zero, which cannot be satis�ed if independent currents are prescribed for all nodes of G.
(In this case, the modelling assumptions about the transistors are not valid anymore.)
Therefore, one has to select one particular node v0 of G that serves as a �valve� whose
�dependent input� current results from values of the �true� inputs and of the outputs.
(One should regard this dependence in terms of KCL for the ground node.)
For convenience, we will always choose this �valve� node as the �reference� or �ground�
node of the circuit, thus there will be no distinction between �valve node� and �ground
node�, and we simply assume that we have an independent current source connected to
each node of G except one, which we call the ground node and denote by v0. We call all
other nodes �input nodes�.
In the examples we have seen so far, most of the nodes of the translinear digraph have no
current source connected to them. This amounts to an indepentent input which happens
to be a constant zero and is not to be confused with the role of the ground node!
Example 3.15. For the frequency doubling network (Figure 3.4): v0 = v6; iv1 = u1,
iv2 = u2, iv3 = iv4 = iv5 = 0.
Example 3.16. For the integrating network (Figure 3.6): v0 = v4; iv1 = u1, iv2 = u2,
iv3 = 0.
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3. Translinear Network Theory

A triple (G, C, v0) of a translinear digraph G, a collecor assignment C (in the re�ned
sense) and a ground node v0 is a network description which is complete in the sense
that the network equations can entirely be set up. The resulting system of polynomial
equations will be studied in Section 5.1. That system contains all node equations but the
one of v0. For this reason, the current into the collector of the transistor corresponding
to a branch e with C(e) = v0 does not occur in the network equations. The same is true
if C(e) = vvoid, while in all other cases, the collector current belonging to e does a�ect
the system: either in the node equation of C(e) ∈ V (G)\{v0} or, if C(e) ∈ {vout+, vout-},
in the output equation.
Hence, for the system of network equations, it does not matter whether C(e) = vvoid or
C(e) = v0 for a branch e. To avoid redundant entries in our catalog, we do not allow
C(e) = v0 for any e. The simplest possibility to guarantee C(e) 6= v0 for all e is to
choose v0 ∈ V (G) \ img(C).
We arrive at the following precise formal de�nition of a translinear network:
De�nition 3.17. A (static) formal translinear network is a triple N = (G, C, v0)
of a translinear digraph G, a map C : E(G) → V (G) ∪̇ {vout+, vout-, vvoid} and a node
v0 ∈ V (G) \ img(C), such that for every e ∈ E(G):

C(e) ∈ {vout+, vout-, vvoid} or rank(C(e)) > rank(head(e)).

We call C the collector assignment of N and v0 the ground node of N . The
number of transistors of N is the number of branches of G.

3.5. Topologies for 4-terminal MOS transistors

Next to bipolar transistors, subthreshold MOS transistors can be employed as �translin-
ear device�.
In the preceding sections, we frequently used a terminology that is adopted from the
bipolar case. Speaking of MOS transistors, we should replace �base� by �gate�, �emitter�
by �source� and �collector� by �drain�. But in addition to these three terminals, several
authors have begun to use the �back gate� or �bulk� terminal of MOS transistors as
an independent fourth terminal, instead of short-circuiting it �by law� with the source
terminal [Ser05, MvdWSvR95, AB96, SGLBA99].
The topological concepts developed in the preceding sections are based on 3-terminal
transistor devices. This section gives some ideas to adapt the concepts for 4-terminal
MOS devices. However, a coherent description as for the 3-terminal case is not achieved.
Our proposals are based on the �general translinear principle for subthreshold MOS
transistors� by Serrano-Gotarredona, Linares-Barranco and Andreou [SGLBA99]. We
restrict to subthreshold MOS transistors employed in forward region.4 For examples, we
refer to the literature mentioned above.
4We did the same for bipolar transistors by using eqn. (3.1) as model equation.
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MOS translinear loops consist either of gate-source branches or of bulk-source branches.
Analogously to the translinear digraph, which is the �base-emitter� digraph of bipolar
translinear networks, we can consider a gate-source digraph Ggate and a bulk-source
digraph Gbulk of a MOS translinear network. Ggate and Gbulk share a common node set

V := V (Ggate) = V (Gbulk),

and furthermore, there is bijection
h : E(Ggate)→ E(Gbulk)

identifying branches representing the same transistor, such that
tail(e) = tail(h(e))

for each e ∈ E(Ggate). (Since both tails are to be identi�ed with the source of the
transistor.)
According to [SGLBA99], it is not necessary to impose any loop condition similar to the
one for the bipolar case (�as many forward as backward branches�) to Ggate or Gbulk.
The biconnectedness condition applies to the �superposition� digraph

(V, E(Ggate) ∪̇ E(Gbulk), ι).

The examples in [SGLBA99] show that neither Ggate nor Gbulk can be assumed to be
biconnected by itself, in fact, they cannot even be assumed to be connected.
For connecting the drain terminals, one should require that they are provided with a
higher potential than the corresponding source terminal. However, lacking layers of
Ggate or Gbulk , we cannot use a convenient formal condition, like eqn. (3.19) for the
bipolar case, to express this requirement. In the example circuits known to the author,
all drain terminals are either used as outputs or are short-circuited with the gate terminal
of the respective transistor.
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Translinear Networks

The preceding chapter provides a way to regard translinear networks as formal combi-
natorial objects. This chapter describes techniques to generate complete lists of these
formal objects, in order to compile catalogs of translinear networks which are exhaustive
in the sense that they contain all possible topologies.
Synthetic lists of translinear graphs and translinear digraphs have been produced before
[See88, Wie93]. However, the idea to list complete network descriptions is new.
The �rst section of this chapter introduces a common method in combinatorics to list
graphs or other combinatorial objects. Since the core structures of translinear networks
are translinear digraphs, Section 4.3 describes how to specialise the method for this par-
ticular class of digraphs, prepared by Section 4.2 on the generation of general digraphs.
Sections 4.4 and 4.5 then deal with the exhaustive generation of collector assignments
and complete formal networks for a given translinear digraph.

4.1. Orderly Generation

This section describes orderly generation, a method for exhaustive generation of combi-
natorial objects. It was developed mainly by R. Read [Rea78]. It will be applied to the
generation of formal translinear networks in the following sections.
Subsection 4.1.1 introduces the general class of problems which orderly generation ap-
plies to. Subsection 4.1.2 then covers the basic ideas of orderly generation, and in
Subsection 4.1.3 the main type of applications of orderly generation is presented.

4.1.1. Cataloging Problems

The term �catalog� is used here to refer to a complete but redundance-free list of com-
binatorial structures such as elementary ones like sequences, permutations or partitions,
but also more complex ones like graphs in several variants (simple graphs, multigraphs,
digraphs, trees, colored graphs, etc.), designs [Dem97, And90, AK92, Col96, BJL99] or
linear codes [BFK+98, in particular chapter 3].1
1Of course, the literature provides plenty of more examples of combinatorial structures which a catalog
makes sense of. In fact, structure is brought into the vast range of examples by a well-developed the-
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3

4

1 2


0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0



3 4

1

2
0 0 0 0
0 0 0 0
0 0 0 1
1 1 0 0


Figure 4.1.: Two labeled digraphs and their adjacency matrices.

Catalogs of these structures are useful in many respects: In pure mathematics, they can
serve as a source of examples, especially for testing new conjectures. Also, classi�cation
problems in many mathematical disciplines often boil down to discrete cataloging prob-
lems. In practical applications, catalogs allow to get hands on error-correcting linear
codes, designs of agricultural experiments, isomers of a molecule, or, being the motiva-
tion of the present work, possible topologies of electrical networks.
Main references for cataloging techniques, which can also be paraphrased as generation
of structures, are [Lau93, Lau99, GLM97, Rea78]. Related but not to be confused with
generation is enumeration (counting) of structures, treated by [Red27, PR87, KT83,
GJ83, dB64]. Both generation and enumeration are dealt with in [Ker99] or [KS99].
Except for the most simple structures, it is a nontrivial task to produce a catalog. The
di�culties will become apparent after the following general formulation of a cataloging
problem.
Assume that for each b ∈ N, we have a �nite set Lb whose elements are easily digitally
represented and also easily listed in the sense that we can produce a list of all elements of
Lb in a time that is proportional to their number |Lb|. Furthermore, assume Lb∩Lb′ = ∅
for b 6= b′ ∈ N and denote L :=

⋃∞
b=0 Lb. We call the elements of Lb the labeled

structures of size b.
In the case of digraphs, for example, we take a �xed set of nodes V and let Lb be the set
of digraphs with node set V and exactly b branches. Adjacency matrices are a convenient
digital representation of digraphs, and we can think of Lb as those matrices whose total
sum of entries is b.
Figure 4.1 shows two digraphs and their adjacency matrices. Since the matrices di�er,
we have two di�erent elements of Lb.
Unfortunately, the labeled structures are not yet what we are really interested in. Rather,
we are interested in unlabeled structures which are isomorphism classes of the labeled
structures. Since the two digraphs in Figure 4.1 are clearly isomorphic, we do not want

ory of so-called species representing the types of combinatorial structures. [Ehr65, Joy81, BLL98],
see also [Ker99, pp. 1�20].
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4. Combinatorial Generation of Translinear Networks

to have both of them in a list of �all digraphs with 4 nodes and 3 branches�, rather we
want to have only one representative looking like this:

The example makes quite clear where the terminology �labeled� and �unlabeled� comes
from.
In general, we have an equivalence relation ∼ on Lb, where A ∼ B is to be interpreted
as �A and B di�er only by their labelings� or �A and B are isomorphic�.2 Thus, an
unlabeled structure of size b is an element of Lb/ ∼.
In the case of digraphs with n nodes and b branches, the equivalence relation in terms of
adjacency matrices is the one induced by the action of Sn consisting of simultaneous row
and column permutations: Two n × n matrices A, B ∈ Lb are �isomorphic� if and only
if there is a permutation σ which, when applied simultaneously to rows and columns,
transforms A into B:

A ∼ B ⇐⇒ ∃ σ ∈ Sn : For all i, j = 1, . . . , n : Bij = Aσ(i)σ(j).

(In Figure 4.1 above, σ = (1 3)(2 4) transforms the two matrices into each other. σ also
permutes the node labels of the two digraphs in the appropriate way.)
The example of digraphs is presented here because digraphs are of course the structures
we are speci�cally interested in for our purposes; further examples of labeled and unla-
beled structures are nicely presented in the �rst chapters of [Ker99]. Quite an interesting
example is the one of linear codes, where equivalence is isometry of codes, i.e. equivalent
codes are guaranteed to show the same error-correcting behavior.
In general, the best way to represent an unlabeled structure digitally is to represent it
by one of the labeled structures it is made up of. That means that we can de�ne a
catalog as a subset U ⊂ L which has the property that for every A ∈ L there is a unique
B ∈ U such that A ∼ B. In other words, U should contain exactly one element from
each isomorphism class. Such a set U is called a complete system of representatives
or a transversal of L/ ∼.
It is worth to point out that in principle, there is of course no problem to list unlabeled
structures completely : One can just list the labeled structures. Every unlabeled structure
will be represented in the list at least once. The problem is that because in most cases
it will be represented by quite a lot of labeled structures, the list gets very redundant
2In more precise notation, one would use ∼b instead of ∼. Omitting the reference to b does not,
however, cause any ambiguity. In fact, we can de�ne ∼ globally on L =

⋃∞
b=1 Lb by specifying that

A ∼ B should imply that A and B are of the same size.
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and much too long, so that even when one just wants a complete list and redundance
doesn't disturb by itself, the reduction of complexity obtained by eliminating isomorphs
can be a great improvement of e�ciency.
The naive approach for generating a transversal of Lb/ ∼ is expresssed by the following
pseudocode:
Algorithm 1 generateTransversal
1: Ub := ∅
2: for all x ∈ Lb do
3: if there is no u ∈ Ub with x ∼ u then
4: Ub := Ub ∪ {x}
5: end if
6: end for
7: return Ub

This algorithm is very slow because the isomorphism test u ∼ x, which is in most cases
very expensive, is performed very often. In the following subsection it will be shown
how this can be avoided.

4.1.2. Canonicity and Augmentation

The basic idea to avoid the isomorphism test of Algorithm 1 is very intuitive:
If we �nd some de�nition of �canonicity�, a property that exactly one element of each
∼-class possesses, we can simply test all labeled structures for this property and thus
generate the set of �canonical� elements of Lb, which is then our transversal of Lb/ ∼ :
Algorithm 2 generateCanonicalTransversal
1: Ub := ∅
2: for all x ∈ Lb do
3: if x is canonical then
4: Ub := Ub ∪ {x}
5: end if
6: end for
7: return Ub

This is a considerable improvement compared to Algorithm 1, because the so-far built
Ub doesn't need to be searched through in each cycle.
Note that it does not matter for Algorithm 2 if we replace Ub by the complete U , this
amounts to the same as successive generation of each Ub. In contrast to this, the splitting
of U into the Ub's is substantial for Algorithm 1, since in line 3 we would have to check
all elements u ∈ U , instead of only u ∈ Ub, for being an isomorph of x.
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An appropriate de�nition of canonicity is easily found: Usually, the set L of labeled
structures is endowed with some natural total order, which comes from a numerical or
lexicographical interpretation of the �labelings� and their digital representations. For
example, one can imagine a 0-1-matrix (representing a simple labeled graph or digraph),
read row by row, as a binary encoded integer. Thus, graphs are ordered by the integer
ordering.
But once we have �xed a total order < on L, we simply de�ne the canonical representative
of a ∼-class to be the maximal one with respect to <,

x ∈ L canonical :⇐⇒ y < x for all y ∈ L with y ∼ x and y 6= x.

The details of the canonicity check in algorithm 2 of course depend on the de�nition
of a canonical structure, but it can be expected that this test is as expensive as one
isomorphism test. For instance, to test two digraphs with n nodes for isomorphism, in
general one has to try the n! bijections between their node sets. To test the adjacency
matrix A of one n-node digraph for canonicity, one has to compare A with the n! row-
and column- permuted matrices P−1

σ APσ, σ ∈ Sn, to �nd out whether A is maximal.
(Here, Pσ denotes the permutation matrix of σ, de�ned by

(Pσ)ij =

{
1 if σ(i) = j

0 otherwise
for i, j = 1, . . . , n.)
Thus it is further desirable to reduce the number of canonicity checks. This is possible
if a suitable augmentation operation is at hand which produces structures of size b + 1
from a structure of size b. In most applications, plenty of di�erent augmentations can
be thought of. To make an augmentation really useful, it should satisfy the following
requirement.
De�nition 4.1. Let U ⊆ L be a transversal of L/ ∼. A U-complete augmentation
is a map

aug : L→ P(L)

such that for every b ∈ N, aug(x) ⊆ Lb+1 for x ∈ Lb and⋃
x∈Ub

aug(x) ⊇ Ub+1,

where Ub := U ∩ Lb.

An example of a quite versatile U -complete augmentation is given in the next subsection.
If aug is a U -complete augmentation, the following algorithm obviously computes the
transversal Ub+1 from Ub:
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Algorithm 3 generateByAugmentation
1: Ub+1 := ∅
2: for all u ∈ Ub do
3: for all x ∈ aug(u) do
4: if x is canonical then
5: Ub+1 := Ub+1 ∪ {x}
6: end if
7: end for
8: end for
9: return Ub+1

Algorithm 3 can be successively applied from b = 0 on (assuming U0 = L0 or something
likewise trivial) to a desired size.
The fundamental di�erence compared to algorithms 1 and 2 is that in order to take
advantage of the augmentation, we now really depend on the decomposition U =

⋃
Ub.

The gain is that it is not necessary to run through all labeled structures of size b to
generate the transversal Ub.
Remark 4.2. If the augmentation has the property that every structure of size b + 1
has a unique predecessor of size b, that is, if aug(u) ∩ aug(u′) = ∅ for u 6= u′, then we
know for sure that in line 3 of Algorithm 3, x is not yet included in Ub+1. This makes
the insertion of x into Ub+1 easier to implement and faster. We will make use of this
advantage throughout our particular applications.
A similar e�ciency of insertion can be achieved if we choose the canonicity to be maxi-
mality with respect to some total order <, as proposed above, and furthermore the
elements of aug(x) are always given as a <-ordered list: We can then store Ub+1 as a list
that we always keep <-ordered as well, so that in line 3 of Algorithm 3, we only need to
compare x with the last element of Ui+1 to �nd out whether x is to be appended or not.
This variant is the original orderly generation by Read [Rea78] and the best justi�cation
of its name.

4.1.3. Generation of Canonical Words

This subsection deals with the generation of canonical words, which is both a good
example to illustrate the technique of orderly generation and also the basic tool which
will be used in the following sections to produce catalogs of digraphs and networks.
Let M be a �nite or countable set and let l be a positive integer. The labeled objects
are the words of length l over M , that is,

L = M l = {(x1, . . . , xl)| xj ∈M}.
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Now let G ≤ Sl be a permutation group and take ∼ to be the equivalence relation
induced by G on M l: For x, y ∈M l,

x ∼ y :⇐⇒ ∃ σ ∈ G : y = xσ,

where xσ := (xσ(1), . . . , xσ(l)) if x = (x1, . . . , xl) ∈M l.
Our goal is to apply orderly generation to produce a transversal of M l/ ∼ = M l/G.
From now on, we assume that M = N. This is the case in most applications; if not, we
can utilize an injection of M into N.
We can decompose M l according to the cross sum of words: M l =

⋃̇∞
b=0Lb , where

Lb :=
{
(x1, . . . , xl) ∈M l |x1 + · · ·+ xl = b

}
.

This decomposition is clearly invariant under the action of G and thus compatible with
∼. For convenience, we will use the short notation xΣ := x1 + · · ·+ xl for the cross sum
of x = (x1, . . . , xl).
As total order on M l we use the lexicographical order,

(x1, . . . , xl) <lex (y1, . . . , yl) :⇔ ∃ j, 1 ≤ j ≤ l such that
x1 = y1, x2 = y2, . . . , xj−1 = yj−1 and xj < yj,

and our canonical words are those which are maximal with respect to <lex among their
∼-class (i.e., their G-orbit).
Next we de�ne an augmentation operation augword on M l. To do so, for x = (x1, . . . , xl) ∈
M l, let augword(x) be the set of words yielding x when the last non-zero entry is decre-
mented: Let j0 := max{j|xj 6= 0} and put

augword(x) := { (x1, . . . , xj0 + 1, 0, . . . , 0),
(x1, . . . , xj0 , 1, 0, . . . , 0),
(x1, . . . , xj0 , 0, 1, 0, . . . , 0),

...
(x1, . . . , xj0 , 0, 0, . . . , 0, 1) }.

(4.1)

(In the exceptional case x = (0, . . . , 0), assume j0 = 1.)
Theorem 4.3. [Rea78] augword is a M l

max-complete augmentation.

Proof. We have to show that for b ∈ N,⋃
xΣ = b

x canonical

augword(x) ⊇ {y canonical | yΣ = b + 1}.
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So let y = (y1, . . . , yl) be canonical with yΣ = b + 1.
Let j be the index determined by yj+1 = · · · = yl = 0 and yj > 0 (j = l if yl > 0).
De�ne x = (x1, . . . , xl) by

x1 := y1

...
xj−1 := yj−1

xj := yj − 1

xj+1 := yj+1 = 0
...

xl := yl = 0

Obviously, xΣ = yΣ − 1 = b and y ∈ augword(x). It remains to show that x is canonical,
we do this by contradiction: If x is not canonical, there is a σ ∈ G with xσ > x. We
show that then also yσ > y, which is a contradiction because y is canonical.
Since xσ > x, there exists an index k with

xσ(1) = x1,

...
xσ(k−1) = xk−1,

xσ(k) > xk.

If k ≥ j, we have
xσ(1) = x1,

...
xσ(k−1) = xk−1,

xσ(k) > xk,

xσ(k+1) ≥ 0 = xk+1,

...
xσ(l) ≥ 0 = xl,

which means that (xσ)Σ > xΣ , obviously a contradiction. So k < j. Since yµ ≥ xµ for
all µ = 1, . . . , l,

yσ(1) ≥ xσ(1) = x1 = y1,... ... ...
yσ(k−1) ≥ xσ(k−1) = xk−1 = yk−1,
yσ(k) ≥ xσ(k) > xk = yk.

hence yσ > y, and the proof is �nished.
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Having de�ned canonicity and augmentation, we are now able to catalog the G-orbits
in M l by successive application of Algorithm 3, starting from L0 = {0}. Note that we
have the case aug(x) ∩ aug(y) = ∅ for x 6= y as mentioned in Remark 4.2.

4.2. Generation of Digraphs

Assume that we wish to build a catalog of the digraphs with n nodes for a given positive
integer n. As �digital representation� of digraphs we use adjacency matrices, thus we
take

L = Nn×n
0

as the set of labeled objects. As the �size� of a digraph, we consider its number of
branches, so

Lb =

{
A ∈ L

∣∣∣∣∣
n∑

j,k=1

Ajk = b

}
for b ∈ N0. (Remember that both parallel branches and self-loops are allowed in our
de�nition of a digraph, see page 7.) This perception of �size� will be quite convenient
later on, because for a translinear digraph, it re�ects the number of transistors of the
respective network.
If we view an n×n -matrix as a word of length n2, consisting of the concatenation of the
matrix rows, the number of branches is just the cross sum. That means, we can apply
the generation of words presented in Subsection 4.1.3, to generate adjacency matrices.
The permutation group to consider on the words of length n2 is the image of the group
monomorphism

ι : Sn ↪→ Sn2

de�ned by
ι(σ)(nj + k) = σ(j)n + σ(k)

for σ ∈ Sn, j = 0, . . . , n − 1 and k = 1, . . . , n. It will be more convenient, however, to
regard the action of Sn on the set of matrices, instead of a subgroup of Sn2 acting on
the set of words.
An algorithm for the generation of all digraphs with n nodes is derived easily as a
specialisation of Algorithm 3:
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Algorithm 4 generateDigraphs(integer n > 0)

1: U0 := {0n}
2: for b := 1 to ∞ do
3: Ub := ∅
4: for all A ∈ Ub−1 do
5: for all A′ ∈ augword(A) do
6: if isCanonicalDigraph (A′) then
7: Ub := Ub ∪ {A′}
8: end if
9: end for
10: end for
11: Output: Ub

12: end for

(Here, 0n denotes the n× n zero matrix.)
We can explicitely write down the canonicity test needed in line 6 of Algorithm 4:

Algorithm 5 isCanocialDigraph(square matrix A)

1: n := n(A)
2: for all σ ∈ Sn do
3: if P−1

σ APσ >lex A then
4: return false
5: end if
6: end for
7: return true

The >lex comparison in line 3 of Algorithm 5 is meant as lexicographical comparison of
the words formed by concatenation of the matrix rows, and n(A) in line 1 means the
number of rows (which is equal to the number of columns) of A.
Algorithm 4 is the basis for sophisticated and very fast graph generation systems that
are used in particular for listing chemical isomers [Rea78, Ker99, Hea72, Gru93, GLM97,
PR87, Pól37].
Algorithms 4 and 5 give a method to generate digraphs with a given number of nodes.
When we use a digraph to model an electrical network, the number of branches is closely
linked with the number of network elements. Thus it is indeed an appropriate measure
of �size� or �complexity� of the network. The number of nodes, in contrast, is quite
irrelevant. Therefore it is quite inconvenient for us that Algorithm 4 needs a number
of nodes to be prescribed. We would prefer an algorithm which generates digraphs
independly of the number of nodes.
In the following, such an algorithm is developed.
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Up to now, we use an augmentation that adds exactly one branch to a digraph and
leaves the node set �xed. To get away from the �xed number of nodes, we can allow
the insertion of new nodes while adding a branch: We consider not only the insertion of
a branch between two existing nodes, but also a new branch from an existing to a new
node or vice versa, or even a new isolated branch between two new nodes. We restrict to
digraphs without isolated nodes. (It would be trivial, however, to generate all digraphs
from those without isolated nodes. For our purpose, however, disconnected digraphs are
irrelevant.)
As before it is very helpful to discuss the augmentation by means of its reversal, the
deletion of branches. We distinguish 4 cases when we delete a branch:

1. Neither tail nor head of the branch becomes isolated. This is the �standard� case
which Algorithm 3 restricts to.

2. The head node becomes isolated and vanishes. The tail node stays.
3. The tail node becomes isolated and vanishes. The head node stays.
4. Both head node and tail node become isolated and vanish.

The dimension (number of rows/columns) of the corresponding adjacency matrix of
shrinks by 1 in cases 2 and 3, and it shrinks by 2 in case 4. In case 1, of course, the
dimension does not change.
We now consider in detail, for the 4 cases, how the adjacency matrix of the augmented
digraphs can look like if the adjacency matrix of the branch-deleted digraph is A.

1. The branch is inserted between two existing nodes. The adjacency matrix of the
augmented digraph is one from augword(A).

2. The new branch points from an existing node to a new node. The adjacency matrix
of the augmented digraph is one of

A→1 :=


A

1
0
...
0

0 · · · 0 0

 , . . . , A→n :=


A

0
...
0
1

0 · · · 0 0

 .

3. The new branch points from a new node to an existing node. The adjacency matrix
of the augmented digraph is one of

A←1 :=

 A

0
...
0

1 0 · · · 0 0

 , . . . , A←n :=

 A

0
...
0

0 · · · 0 1 0

 .
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4. The new branch points from one new node to another. The adjacency matrix of
the augmented digraph is

A↔ :=


A

0 0
... ...
0 0

0 · · · 0
0 · · · 0

0 1
0 0

 .

(We do not take into account the matrix
A

0 0
... ...
0 0

0 · · · 0
0 · · · 0

0 0
1 0

 ,

because it is not canonical.)
Remark 4.4. If A is canonical, augmentations according to 2 or 4 always yield canonical
matrices. This is not the case for augmentations according to 3.
We can use the following (non-terminating) algorithm to generate literally all digraphs
without isolated nodes and without self-loops.
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Algorithm 6 crossGenerateDigraph
1: U0 := {(0)}
2: for b := 1 to ∞ do
3: Ub := ∅
4: for all A ∈ Ub−1 do
5: for all A′ ∈ augword(A) do
6: if isCanonicalDigraph (A′) then
7: Ub := Ub ∪ {A′}
8: end if
9: end for
10: for j = 1 to n(A) do
11: Ub := Ub ∪ {A→j}
12: end for
13: for j = 1 to n(A) do
14: if isCanonicalDigraph(A←j) then
15: Ub := Ub ∪ {A←j}
16: end if
17: end for
18: Ub := Ub ∪ {A↔}
19: end for
20: Output: Ub

21: end for

4.3. Generation of Translinear Digraphs

In this section, we explain how to adapt Algorithm 6 for the generation of translinear
digraphs.
First, in Subsection 4.3.1, we investigate the special structure of adjancency matrices of
layered digraphs. Subsection 4.3.3 presents the augmentation and Subsection 4.3.2 the
canonicity we use for layered digraphs. Subsection 4.3.4 brie�y tells how to restrict to
translinear digraphs when applying the generation of layered digraphs.
We can dispense with pseudocode in this section, the structure of the algorithms is clear
from the pseudocode in the preceding sections.

4.3.1. Adjacency matrices of layer digraphs

Consider the adjacency matrix of a layered digraph. Assume the digraph is connected,
so the rank of each node is well-de�ned. Because we know that there can never be a
branch from node v to node w if rank(w) 6= rank(v)+1, we only need to store adjacency
matrices �from one layer to the next�. If the maximal rank of any node of G is R, and
the number of nodes of rank k is nk, we need R matrices A(1), . . . , A(R), where A(k) has
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dimensions nk−1 × nk. This makes a total of ∑R
k=1 nk−1nk entries, which is always less

than the n(n − 1)/2 entries we need to store for the complete adjacency matrix.3 (We
continue to denote the total number of nodes by n, so here n = n0 +n1 + · · ·+nR.) The
matrices A(1), . . . , A(R) can be regarded as blocks of the complete adjacency matrix, if
we order the nodes according to their rank. Outside of these blocks are then only zeros:

rank 0 rank 1 rank 2 rank R− 1 rank R

rank 0 0 0 0 0 0

rank 1 A(1) 0 0 0 0

rank 2 0 A(2) 0
. . . . . .

rank R− 1 0 0 0
. . . 0 0

rank R 0 0 0 A(R) 0

So we represent a layered digraph by a tuple of matrices. Our set of labeled structures
is

L =

(A(1), . . . , A(R))

∣∣∣∣∣∣
R positive integer,
A(k) ∈ {0, 1}nk−1×nk for k = 1, . . . , R,
n0, . . . , nR positive integers

 .

The �size� is still the total number of branches, namely

b =
R∑

k=1

nk−1∑
i=1

nk∑
j=1

A
(k)
ij .

Isomorphisms of layered digraphs consist of bijections of the node sets that preserve
rank. These bijections decompose into permutations �inside� each rank. The equivalence
relation to consider is the following.
De�nition 4.5. For A = (A(1), . . . , A(R1)), B = (B(1), . . . , B(R2)) ∈ L, we de�ne A ∼ B
if and only if A and B have the same dimensions (n0, . . . , nR) (in particular R1 = R2 =
R) and there exist permutations σ0 ∈ Sn0 , . . . , σR ∈ SnR

such that for k = 1, . . . , R,
i = 1, . . . , nk−1, j = 1, . . . , nk:

B
(k)
ij = A

(k)
σk−1(i)σk(j).

4.3.2. Canonicity

We view a matrix tuple (A(1), . . . , A(R)) as word of length ∑R
k=1 nk−1nk by reading the

matrices one after the other, and each matrix word by word. Thus, a matrix tuple
3The number n(n−1)/2 takes into account that a translinear digraph is acyclic, so with an appropriate
numbering of the nodes, the adjacency matrix has zeros in the lower triangular part as well as on
the diagonal.
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(A(1), . . . , A(R)) is canonical if and only if for all (σ0, . . . , σR) ∈ Sn0 × · · · × SnR
, there is

an integer j, 1 ≤ j ≤ R, such that
A(1) = P−1

σ1
A(1)Pσ0 ,

...
A(j) = P−1

σj−1
A(j)Pσj−2

,

A(j+1) >lex P−1
σj

A(j+1)Pσj−1
,

where the inequation is to be omitted if j = R.
The canonicity test can be performed by testing all permutation tuples (σ0, . . . , σR) ∈
Sn0 × · · · × SnR

.
(For the implementation of the class �ranked� (see Appendix B), a re�ned and more e�-
cient version of the canonicity test is used that incorporates the successive computation
of the automorphism group of the layered digraph.)

4.3.3. Augmentation

As we distinguished 4 �augmentation cases� in the general digraph case, we distinguish
6 augmentation cases of layered digraphs. We classify them as sub-cases of the general
digraph cases as follows:

1. No new node appears. The new branch is inserted between layer R and layer R−1.
AR is replaced by an element of augword(AR).

2. The new branch points from existing node of rank R to a new node of rank R− 1.
AR is replaced by  AR

0
...
0
1

 , (4.2)

and a zero row is appended to AR−1. (In contrast to the general digraph case,
there is only one possibility of this augmentation. The �1� does not appear at
another than the last position of the new column in eqn. (4.2), because otherwise
decrementing the last non-zero entry would not yield AR.)

3. The new branch points from a new node to an existing node.
a) The new node appears in the top layer, the new branch points from layer R

to layer R− 1. AR is replaced by one of[
AR

1 0 · · · 0

]
, . . . ,

[
AR

0 · · · 0 1

]
.
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b) The new node appears �above� the old top layer. A matrix AR+1 is appended
to the matrix tuple, where AR+1 is one of[

1 0 · · · 0
]
, . . . ,

[
0 · · · 0 1

]
.

4. Both head and tail of the inserted branch are new nodes.
a) The new tail node has rank R, the new head node has rank R − 1. AR is

replaced by  AR

0
...
0

0 · · · 0 1

 ,

and a zero row is appended to AR−1.
b) The new tail node has rank R+1 (in particular, a new top layer is introduced),

the new head node has rank R. A zero row is appended to AR, and the matrix
AR+1 = [ 0 · · · 0 1 ]

is appended to the matrix tuple. Note that the represented digraph is dis-
connected and that all further canonical augmentations of the matrix tuple
will represent a disconnected digraph.

4.3.4. Specialization for Translinear Digraphs

Having derived techniques for the generation of layered digraph, we specialise them
for the generation of translinear digraphs. As translinear digraphs are nothing but
biconnected layered digraphs, we can simply generate all layered digraphs and �lter
them for the biconnected ones. The algorithm of Tarjan [Jun99, p. 343] is available for
e�ciently testing a (di)graph for biconnectedness.
We can increase the e�ciency of the generation of translinear digraphs if we do not
generate all layered digraphs but try to leave out those which are for sure never aug-
mented to a biconnected one (that is, not even after several augmentations). The �rst
measure we take is to omit the augmentation 4b, because resulting digraphs would be
disconnected. As second measure, we do not apply augmentation 3b whenever there are
any leaf nodes (nodes with only one branch incident) in layers 0, . . . , R− 1. Besides 4b,
augmentation 3b is the only augmentation introducing a new layer, and obviously, leaf
nodes in the lower layers would stay �forever�, so that none of the digraphs obtained by
repeated augmentation would be biconnencted.
Orderly generation of translinear digraphs as described has been implemented in C++
and applied to list all translinear digraphs with 9 or less branches. As results, Figure 4.2
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Figure 4.2.: The translinear digraphs with 6 or less branches.

shows the translinear digraphs with up to 6 branches4, and the following table shows
the numbers of the translinear digraphs with b = 4, . . . , 9 branches.

number of branches: 4 5 6 7 8 9
number of translinear digraphs: 2 3 19 39 174 559

4.4. Generation of Collector Assignments

In this section, we consider the generation of all collector assignments for a given translin-
ear digraph G.
De�nition 4.6. Two collector assignments C1, C2 on G are called isomorphic if there
is a digraph automorphism ϕ : G→ G such that C1(ϕ(e)) = ϕ(C2(e)) for every branch
e ∈ E(G), where ϕ(vout +) := vout+, ϕ(vout-) := vout- and ϕ(vvoid) := vvoid.
De�nition 4.6 re�ects topological equivalence of collector assignments. However, we
decide to use a broader notion of equivalent collector assignments, where the isomorphism
classes comprise objects that might represent slightly di�erent topologies, but whose
system of network equations will look the same.
De�nition 4.7. Two collector assignments C1, C2 on G are called generalized iso-
morphic if there exist a digraph automorphism ϕ : G → G and a permutation σ on
V (G) such that σ permutes only the top layer of G and

ϕ(C2(e)) = C1(ϕ(e))

4Admittedly, the list of the 24 translinear digraphs with up to 6 branches can as well be compiled
without computer. For space reasons, we do not list translinear digraphs with more branches, since
such a listing could only consist of a computer-generated display of the adjacency matrices and not
of the more pleasant diagrams.
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whenever rank(C2(e)) < R and
σ(C2(e)) = C1(ϕ(e))

whenever rank(C2(e)) = R.

A permutation of the top layer nodes doesn't a�ect the network equations, because
the corresponding node equations are just permuted among themselves as well, but not
changed. The reason for this, in turn, is that there cannot be any emitters connected to
a top layer node. For nodes where emitters are connected to, the emitter contributions
to the node equations would �stay�, whereas the collector contributions �follow� the
permutation. (Here, the irrelevance of base currents is crucial. See Subsection 5.1.2 for
a detailed formulation of the node equations.)
To represent a collector assignment C digitally, we �x an order e1, . . . , eb of the branches
of G and use a tuple of integers X(C) = (c1, . . . , cb), where cj identi�es the node C(ej).
On the set of these b-tuples of integers, we consider the induced action of the automor-
phism group Aut(G). Since an automorphism ϕ of G permutes the branches as well as
the nodes, it not only permutes the positions of the integers in X(C), it also changes
the integers themselves.
Unfortunately, this means that we cannot reduce the cataloging problem for these in-
teger tuples to the cataloging problem of words as it is formulated in Subsection 4.1.3,
because the latter is restricted to the case where isomorphic words di�er only by a pure
permutation of the positions.
But still, we can de�ne a canonical integer tuple to be the lexicographically maximal one
among its Aut(G)-orbit. Taking into account the generalized isomorphism of collector
assignments according to De�nition 4.7, we adjust:
X(C) is canonical if it is maximal in its Aut(G)× SnR

-orbit. Here, SnR
is considered as

the symmetric group on VR, the set of nodes of rank R. (A permutation of these top
layer nodes changes the corresponding integers cj, but not their positions.)
We have seen that canonicity can be applied, but augmentation can not. Because of
the latter, we fall back to Algorithm 2 to generate the collector assignments on a given
translinear digraph.

4.5. Cataloging Formal Networks

We have derived algorithms for the generation of translinear digraphs and for the gener-
ation of collector assignments for a particular translinear digraph. Given a pair (G, C)
of a digraph and a collector assignment, it is trivial to derive all possible complete formal
network descriptions in terms of De�nition 3.17: Just list the triples (G, C, v0), where
v0 ∈ V (G) \ img(C).
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For various reasons it may happen that the circuit modelled by a formal network
(G, C, v0) is of no practical value. For example, consider a source v of G, that is, a
node which is not the head of any branch. No emitter is connected to v. Since we as-
sume an independent input current applied to v unless v = v0, we get into trouble if no
collector is connected to v as well, because the bases cannot compensate the externally
forced current. Consequently, we discard formal networks possessing a source v of G
with C(e) 6= v for all branches e.
Obviously, a network without any output is of no use. Therefore, only collector as-
signments with C(e) ∈ {vout+, vout-} for at least one branch e are to be considered.
Furthermore, if there is no branch e with C(e) = vout+, the output of the network is

y = −
∑

C(e)=vout-
xe

(compare eqn. (3.21)). We assume that for applications an inverted output −y is equally
of bene�t as y is, so we can swap vout+ and vout-. Thus we can require C(e) = vout+ for
at least one branch e without losing any non-redundant formal network.
Both of the stated �practical value� conditions are incorporated into the following de�-
nitions.
De�nition 4.8. We call a formal translinear network (G, C, v0) valid, if C(e) = vout+
for at least one e ∈ E(G), and for each source v of G, either v = v0 or there is at least
one e ∈ E(G) with C(e) = v.
A collector assignment is valid, if we can be sure that it leads to a valid formal network:
De�nition 4.9. We call a collector assignment C on a translinear digraph G valid, if
C(e) = vout+ for at least one e ∈ E(G) and there is at most one source v of G such that
v 6∈ img(C).
(In case there is exactly one such source node, it can and must be chosen as ground
node.)
The combinatorial methods presented in this chapter have been implemented in C++
and have been used to generate exhaustive and non-redundant lists of formal translinear
networks with up to 8 transistors. The following table shows the numbers of pairs
(G, C) of a translinear digraph G and a collector assignment C on G, as generated by
the program tlgen (see Appendix B), and the numbers of those pairs where C is valid.

number of
transistors pairs (G, C) valid pairs

4 250 177
5 2248 1868
6 51930 42102
7 1149476 978812
8 32125843 27335135
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For up to 6 transistors, Appendix A shows how the numbers in the right column split
up for the particular digraphs.
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Synthesis Tool

Thanks to the combinatorial algorithms presented in Chapter 4, a catalog of the static
formal translinear networks with up to 8 transistors is available. The formal networks
are given as tripels (G, C, v0) as speci�ed by De�nition 3.17. In this chapter, we show
how the catalog can e�ectively put into use as a resource for network synthesis.
Throughout the chapter, we will denote the input nodes of a formal network N =
(G, C, v0) by v1, . . . , vn−1 (thus V (G) = {v0, . . . , vn−1}) and the branches of G by
e1, . . . , eb.

5.1. Translinear Network Equations

In this section, we investigate how the system of network equations looks like for a formal
translinear network.
We remind that in general, the behavior of an electrical network is described by

• the loop equations (given by Kirchho�'s Voltage Law),
• the node equations (given by Kirchho�'s Current Law),
• and the element equations.

In the case of a translinear network, the loop equations and the element equations
(namely the exponential transistor model) are merged by the translinear principle and
result in the translinear loop equations.
Thus, the behavior of a static translinear network is entirely described by the translinear
loop equations and the node equations. For dynamic translinear networks, one has to
add the equations resulting from the dynamic translinear principle (eqn. (3.8)) to make
the behavioral network description complete.
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5.1.1. Translinear Loop Equations

Consider the translinear digraph G of a formal network. We have seen in Section 2.2 that
the ideal generated by {BS|S loop of G} ⊂ Q[x1, . . . , xb] is exactly the toric ideal IG of
G. If we interpret each variable xj as the collector current of the transistor corresponding
to branch ej of G, the translinear loop equation for a loop S is BS = 0. That means that
we can use IG to conveniently capture all of the network's translinear loop equations.
Remark 5.1. Since G is a layered digraph (see De�nition 3.8), IG is homogeneous. This
is quite easy to see, because for a loop S of any digraph G, the polynomial BS is
homogenous if and only if S has as many forward branches as backward branches, so IG

is homogeneous if and only if G is layered.
From Lemma 2.33 we know how we can compute the toric ideal of a digraph: Take a
fundamental loop system S1, . . . , Sc of G, then IG is the saturation of 〈BS1 , . . . , BSc〉.

5.1.2. Node Equations

Consider an input node vj ∈ V (G), 1 ≤ j ≤ n− 1, of a formal translinear network N =
(G, C, v0). Since we neglect the base currents of the transistors, the only contributions
to the node equation of vj come from emitters, collectors, and the independent input
current ij (in Subsection 3.4.2 denoted by ivj

). Thus, the node equation of vj is

0 = ij +
∑

1≤k≤b
head(xk)=vj

xk −
∑

1≤k≤b
C(xk)=vj

xk.

5.1.3. The Network Ideal

For a formal translinear network N = (G, C, v0), we consider the system consisting of

• the translinear loop equations,
• the node equations,
• and the output equation y =

∑
C(ek)=vout+

xk −
∑

C(ek)=vout-
xk (compare eqn. (3.21)).

We call the ideal generated by the corresponding polynomials the network ideal :
De�nition 5.2. Let N = (G, C, v0) be a formal static translinear network. The net-
work ideal IN ⊂ Q[x1, . . . , xb, i1, . . . , in−1, y] is the ideal generated by

• the toric ideal IG ⊂ Q[x1, . . . , xn−1] ⊂ Q[x1, . . . , xb, i1, . . . , in−1, y],
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• the polynomials
−ij +

∑
head(ek)=vj

xk −
∑

C(ek)=vj

xk (5.1)

for j = 1, . . . , n− 1,
• and the polynomial

−y +
∑

C(ek)=vout+
xek
−

∑
C(ek)=vout-

xek
.

Remark 5.3. IN is homogeneous and prime. This can easily be deduced from the fact
that IG is homogeneous and prime (see Remarks 2.24 and 5.1) and the fact that each
remaining generator is linear and contains a variable not contained by any other gener-
ator.

5.1.4. Elimination of Collector Currents

As inputs of a formal translinear network we have the input currents i1, . . . , in−1, the
output is y. To get a direct input-output relationship, we eliminate the remaining vari-
ables, the collector currents x1, . . . , xb, from the network ideal. We denote the resulting
ideal by I ′N :

I ′N := IN ∩Q[i1, . . . , in−1, y].

The computer algebra system Singular [GPS01] has been used to compute IN and to
perform the elimination for each formal network in the catalog with 7 or less transistors.
It has been found that every time the inputs i1, . . . , in−1, expressed as linear combinations
of the collector currents via eqn. (5.1), are linearly independent, I ′N turns out to be a
principle ideal. In other words, in these cases the elimination of collector currents always
yielded a single polynomial equation fN(i1, . . . , in−1, y) = 0 in the input and output
currents.
It is very probably a general fact that I ′N is a principle ideal whenever i1, . . . , in−1 are
linearly independent. Computations for some networks with more than 7 transistors
support this, too. A proof, however, has not been found.
The catalog of formal networks has been equipped with a generator fN ∈ Z[i1, . . . , in−1, y]
of I ′N for every formal network N .
Remark 5.4. Since IN is homogeneous and prime, so are I ′N and fN .
Remark 5.5. Depending on which collectors are assigned to vout+ and vout-, it may happen
that the translinear loop equations are simply thrown away during the elimination.
This is the case if and only if fN is linear and represents a kind of degeneration of the
network N : The input-output relation is not at all in�uenced by the translinear loops!
We can ignore these degenerated networks, the linear behavior can as well be achieved
by pure current addition/substraction via node equations, without any transistors.
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5.2. The Input Matrix

Assume a circuit is to be designed whose desired behaviour is given by a polynomial
equation g(u1, . . . , us, y) = 0, where u1 . . . , us are input variables and y is an output
variable. (For simplicity we restrict to the case of only one output.) We assume that g
has integer coe�cients and is irreducible.
We now want to test all formal translinear networks from our catalog whether they can
be used to implement g. Since we have computed for each formal network N = (G, C, v0)
in the catalog a polynomial fN ∈ Z[i1, . . . , in−1, y] describing its behavior, we test the
suitability of a particular formal network N by testing whether fN �matches� g.
This matching test is not as simple as it appears: We must clearify how to identify the
inputs u1, . . . , us with the inputs currents i1, . . . , in−1 of the formal network.
We assume that for each input uk, we can use as many current sources as we want, each
delivering the same current uk. In our model, each of these current sources is connected
between the ground node v0 and one of the input nodes v1, . . . , vn−1. Both orientations
are possible, so that the current source contributes either uk or −uk to the respective
input current ij. Of course, several sources can be connected to one input node, even
several sources with the same input current uk. Thus, the relation of the available inputs
u1, . . . , us with the formal node inputs i1, . . . , in−1 is

ij =
s∑

k=1

bjkuk

for j = 1, . . . , n−1 with bjk ∈ Z. Without additional circuitry, an input node cannot be
supplied with anything else than a �nite sum of the currents delivered by the available
sources.
We call the matrix B := (bjk) ∈ Z(n−1)×b the input matrix

Example 5.6. For the network in Figure 5.1,
i1
i2
i3
i4

 =


−1 −1
0 −1
0 2
1 0

( u1

u2

)
,

so B =

( −1 −1
0 −1
0 2
1 0

)
.

To make the polynomials fN and g �comparable�, we map fN to Z[u1, . . . , us, y] via
ϕB : Z[i1, . . . , in−1, y] → Z[u1, . . . , us, y],

i1 7→ b1,1u1 + · · ·+ b1,sus,
...

in−1 7→ bn−1,1u1 + · · ·+ bn−1,sus,

y 7→ y.
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u1

u1

u2 u2

u2u2

y

v3

v0

v1
v2

v4

Q1
Q2

Q3 Q4

Q5 Q6

Figure 5.1.: A translinear network.
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We can now formulate precisely what we mean by a match of fN and g:
De�nition 5.7. Let f ∈ Z[i1, . . . , in−1, y] and g ∈ Z[u1, . . . , us, y]. A match of f onto
g is a matrix B ∈ Z(n−1)×s such that g = λϕB(fN) for some λ ∈ Q∗.
(Obviously, we allow multiplication by a nonzero constant λ because g = 0⇔ λg = 0.)
For practical reasons, we restrict to matches where the coe�cients bjk are bounded by
an integer l, usually l = 1 or l = 2. By the matching problem, we mean the problem to
determine all matches B ∈ {−l,−l + 1, . . . , l − 1, l}(n−1)×s of fN onto g.

5.3. Solution of the Matching Problem

If the total degree of g does not equal the total degree of fN , we know that no match
of fN onto g exists. From now on we assume equality of the degrees and de�ne deg g =
deg fN =: d.
We solve the matching problem algorithmically by comparison of coe�cients: g =
λϕB(fN) if and only if every coe�cient of the polynomial g − λϕB(fN) vanishes. Re-
garding the coe�cients as polynomials in the entries of B and in λ, we get a system of
polynomial equations which must be solved by the entries of every B that is a match.
Formally, we introduce indeterminates w := {wjk}j=1,...,n−1

k=1,...,s
for the entries bjkof B and

Λ for λ and consider the homomorphism of rings
ϕ : Q[i1, . . . , in−1, y] → Q[u1, . . . , us, y,w, Λ]

ij 7→
s∑

k=1

wjkuk.

The ideal
Icoef := 〈coef(Λϕ(fN)− g,M) |M ∈ Mond(u1, . . . , us, y)〉 ⊂ Q[w, Λ]

(where Mond(u1, . . . , us, y) is the set of monomials of degree d in u1, . . . , us, y) represents
the system of equations which the entries of B have to satisfy to be a �match�.
To force the entries of B to be integers in the range {−l, . . . , l}, we demand additionally

wjk · (wjk − 1)(wjk + 1) · · · · · (wjk − l)(wjk + l) = 0

for j = 1, . . . , n− 1 and k = 1, . . . s.

We need to compute the zero set Z(I0) of the ideal

I0 :=

〈
Icoef,

{
l∏

ν=−l

(wjk − ν)

}
j,k

〉
⊂ Q[w, Λ].
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5. A Catalog of Topologies as a Synthesis Tool

By our arti�cial inclusion of
{∏l

ν=−l(wjk − ν)
}

j,k
, the ideal is zero-dimensional and

there are no irrational points.
We can compute these points of Z(I0) using Gröbner Basis methods. For example, a
computation of the minimal associated primes of I0 reveals maximal ideals representing
the points of Z(I0) and thus the matches we are looking for.
To increase e�ciency, the computation can be performed over a �nite �eld Z/p instead
of Q. In this case, it is possible that solutions over Z/p appear which are no solutions
over Q. This can be avoided by choosing the prime number p su�ciently large.
A Singular procedure has been written that determines all matches of a given network
polynomial fN onto a given �target behavior� polynomial g, see Appendix B. As further
parameters, the procedure takes the bound l and a prime number p, so that the user
can specify over which �nite �eld the computation shall be performed.

5.4. Final Network Check

Assume we have found a match, so that we know a formal network N = (G, C, v0) and
an input matrix B such that ϕB(fN) = 0 is exacly the behavior we want.
In the system of network equations (see Subsection 5.1.1), we can replace ij by∑s

k=1 bjkuk

for j = 1, . . . , n− 1 and solve it for the collector currents x1, . . . , xb, obtaining them as
functions of u1, . . . , us.
There is a �nite number of solutions x

(1)
ν (u1, . . . , us), . . . , x

(dν)
ν (u1, . . . , us) for each col-

lector current.

5.4.1. Positivity Check of Collector Currents

All collector currents must be positive, otherwise our transistor model (eqn. (3.1)) is
invalid.
Usually, the speci�cation of the desired network behavior includes a range umin

k < uk <
umax

k for each input, umin
k ∈ R ∪ {−∞}, umax

k ∈ R ∪ {∞}. Given these ranges, we
can check for each collector current xν which of the solutions x

(ξ)
ν violate the condition

x
(ξ)
ν (u1, . . . , us) > 0.

The extended functionality (�simpli�cation using assumptions�) of the Mathematica
function Simplify [Wol99] performs this check satisfactorily.
In all example computations it was found that there is at most one ξ ∈ {1, . . . , dν}
with x

(ξ)
ν (u) > 0 for all u ∈ ]umin

1 , umax
1 [× · · ·× ]umin

s , umax
s [. If there is none, a hardware

implementation of the network will not work, because the model assumption of posi-
tive collector currents is not satis�ed. We can delete the pair (N, B) from our set of
�candidates�.
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5. A Catalog of Topologies as a Synthesis Tool

But if there is indeed a positive solution for each collector current, we have determined
the exact explicit dependence of the collector currents on u1, . . . , us, and thus also the
exact explicit dependence of the output

y =
∑

C(e)=vout+
xe −

∑
C(e)=vout-

xe

on u1, . . . , us.

5.4.2. Output Function Check

After the positivity check of collector currents, we have an explicit description of the
network behavior in the form y = h(u1, . . . , us), and we know that

g(u1, . . . , us, h(u1, . . . , us)) = 0.

Still, it might be that the intended behavior was a di�erent branch of the solution of the
polynomial equation g = 0. (For example, we may look for a network with y =

√
u1 and

thus specify g = y2−u1. Then the network search may yield a network with y = −√u1.
Of course, less pathological examples exist where the di�erence is more than the sign.)
The comparison of h with the intended explicit behavior is our last check to �lter out
formal networks which are of no practical relevance.
Both the positivity check of collector currents and the output function check have been
implemented in Mathematica.
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6. Example Application

The following example comes from industrial applications at the company Analog Micro-
electronics GmbH (in the following: AMG). The problems, communicated by E. J. Roeb-
bers from AMG, concern the question whether the nonlinear behavior of a certain sensor
device can be compensated by a static translinear circuit. This chapter is joint work
with E. J. Roebbers.
A humidity sensor subsystem for air conditioning is in development at AMG. The sensor
device to be used is optimized for an operating temperature of 23◦C; at this temperature,
its output is virtually proportional to the relative humidity. For other temperatures,
it shows deviations from this linear behavior which are to be compensated. For this
purpose, an �analog computation� circuit is desired to reconstruct the deviation. The
circuit of course needs a second input where information about the actual temperature
is provided independently of the sensor output.
We denote the real relative humidity by H, the output of the sensor (the �measured
humidity�) by Hm. The following information about the output deviation Hm − H at
some temperatures has been provided by AMG:

H -10◦C 23◦C 50◦C 70◦C 100◦C 140◦C
10% -1% 0% 1% 2% 3% 4%
20% -1.5% 0% 1.5% 3% 4.48% 6%
30% -1.63% 0% 1.82% 3.55% 5.55% 7.43%
40% -1.74% 0% 2.08% 4% 6.31% 8.35%
50% -1.78% 0% 2.2% 4.2% 6.78% 8.78%
60% -1.78% 0% 2.27% 4.35% 6.94% 9%
70% -1.78% 0% 2.31% 4.43% 7% 9%
80% -1.78% 0% 2.31% 4.51% 7.12% 9%
90% -1.78% 0% 2.31% 4.51% 7.12% 9%

Since the desired circuit shall �compute� Hm−H from Hm (and the temperature T ), we
plot the points (Hm, Hm −H) for the above data:

60



6. Example Application
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The �rst task was to �nd an algebraic function fspec as speci�cation of a �translinear
synthesis� problem, so that these points satisfy (or are close to)

Hm −H = fspec(Hm, T ).

Some �educated guessing� and heavy usage of theMathematica-Functions FindMinimum
and ProjectiveRationalize (from the standard package NumberTheory`Rationalize`)
have found the function fspec (Hm, T ) = λ(T )y(HM), where

λ(T ) = −0.0012167 (t− 10)(t− 1)(t + 3), t =
T

23◦C ,

y(Hm) =
hHm −H2

m + Hm

√
5h2 − 2hHm + H2

m

2h
, (6.1)

and h = 0.3294. The function y is one of the two solutions of the implicit polynomial
equation

hH2
m + hHmy −H2

my − hy2 = 0. (6.2)
The following plot shows the surprisingly high quality of the approximation:
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6. Example Application

λ consists of simple multiplications and can be implemented easily by translinear as
well as other analog circuitry, we don't go into further details of this part of the design
problem.
Instead we concentrate on the synthesis of a subcircuit implementing y, where the tools
developed in the framework of this thesis have been applied succesfully.
The implicit description of the desired network behavior is given by (compare eqn. (6.2))

0 = g := u2
1u2 + u1u2y − u2

1y − u2y
2.

The inputs are u1 = Hm and u2 = h. (We use a stationary input current source for u2

to supply the constant h to the network.) We wish to implement g(u1, u2, y) = 0 by a
circuit with at most 6 transistors.
15 of the 24 translinear digraphs with 6 or less branches consist of only one loop of length
4 and some parallel branches, see Appendix A. For these 15 digraphs, the toric ideal
has exactly one generator of degree 2 and no generator of higher degree. Consequently,
for all formal networks N = (G, C, v0) where G is one of these digraphs, deg fN = 2 <
3 = deg g, so the networks do not come into question for implementing g.
There are 9 digraphs remaining with 6 branches each. In the table of Appendix A, they
carry the indices 6,7,8,9,10,19,20,21 and 24. A search for matches has been conducted
through all formal networks based on one of these 9 digraphs. As bound for the entries
of the input matrix, l = 2 was chosen.
For each of the 9 digraphs, the following table shows the number of pairs (N, B) of
a formal translinear network N and an input matrix B which have been found. The
second column shows the number of formal matches where ϕB(fN) = g (see Section
5.2), the third column shows how many of these passed the test for positive collector
currents and correct explicit output function (see Section 5.4). The fourth column
shows the approximate duration of the match search through all formal networks of the
corresponding digraph (on a 1 GHz Pentium III processor) . The duration of the �nal
network check, in comparison, can be neglected. (For digraph 6, it took 0.2 seconds; for
digraph 24, it took approximately 10 minutes.)

digraph index pairs (N, B) with ϕB(fN) = g �relevant� pairs (N, B) search duration
6 3 1 5 seconds
7 9 0 6.5 minutes
8 2 0 8 seconds
9 94 10 5.3 minutes
10 333 49 6.5 hours
19 40 9 8 seconds
20 870 167 2 days
21 387 0 5 seconds
24 1542 203 6 days
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6. Example Application

Some of the networks have been simulated by E. J. Roebbers, employing transistor
models that re�ect the state-of-the-art IC technology of AMG. The simulations con�rm
that the networks indeed behave close to eqn. (6.1). At the time of writing, the found
networks are awaiting more simulations and tests at AMG to decide which ones to adopt
as candidates for hardware implementation.
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7. Conclusion

The research reported in this thesis provides

• a coherent mathematical �translinear network theory�, consisting of a graph theo-
retic modelling framework for the topology of translinear circuits, and an analysis
of the system of equations describing their behavior,
• the concept of a catalog of topologies for translinear networks as a resource for
circuit design,
• algorithms to build such a catalog and to search it for a network complying with
a particular behavior,
• and implementations of the algorithms, resulting in a software toolbox for translin-
ear network synthesis.

As result, an exhaustive catalog of all static formal translinear networks with at most 8
transistors is available.
The details and implementations of the algorithms are worked out only for static net-
works, but can easily be adopted for dynamic networks as well.
While the implementation of the combinatorial algorithms is stand-alone software writ-
ten �from scratch� in C++, the implementation of the algebraic algorithms, namely the
symbolic treatment of the network equations and the match �nding, heavily rely on the
sophisticated Gröbner basis engine of Singular and thus on more than a decade of
experience contained in a special-purpose computer algebra system.
The application reported on in Chapter 6 proves the applicability of the developed
synthesis approach.
It is worth to point out the new observation made by this thesis that the translinear
loop equations of a network are precisely represented by the toric ideal of the network's
translinear digraph.
Altogether, the key role of translinear circuits as systematically designable nonlinear
circuits is con�rmed and strengthened.
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7. Conclusion

Suggestions for Further Research

It is doubtful whether a catalog of dynamic translinear (DTL) network topologies could
be an as e�ective tool as a catalog of only static networks topologies. The numbers of
formal DTL networks will be much larger than for STL networks, so the sheer size of
the catalog will grow to a severe obstruction, even if we restrict to networks with 1 or 2
capacitances.
However, the symbolic methods for match �nding can be modi�ed easily to include
the determination of capacitance values as continuous parameters next to the discrete
parameters the input matrix consists of.
Another direction of concept extension is the extension for MOS translinear circuits, see
Section 3.5. If a suitable formulation for admissable drain connections can be found, the
combinatorial and algebraic techniques of this thesis should be adaptable for a catalog
of MOS translinear topologies.
For academic interest one might try to prove the �principle ideal property� of static
formal translinear networks (see Subsection 5.1.4), possibly with re�ned assumptions.
Of course, if the developed software tools appear to be of interest for a number of users,
a proper user interface and an export link to circuit analysis software (for simulation or
more detailed symbolic analysis) should be worked on. E�ciency could be improved by
supplementing the match search routine with a suitable database management of the
catalog.
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A. The Static Formal Translinear

Networks with up to 6 Transistors

There are 2 translinear digraphs with 4 branches, 3 with 5 branches, and 19 with 6
branches. For each of these digraphs, the following tables show in the third column the
number of di�erent (with respect to generalized isomorphism, see De�nition 4.7) valid
collector assignments on G and in the fourth column the number of formal translinear
networks (G, C, v0) showing a nonlinear input-output relation.

Networks with 4 transistors:
digraph index translinear digraph coll. assignments formal networks

1 35 29

2 142 144

Networks with 5 transistors:
digraph index translinear digraph coll. assignments formal networks

3 388 358

4 600 660

5 880 1083
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A. The Static Formal Translinear Networks with up to 6 Transistors

Networks with 6 transistors (continued on next page):
digraph index translinear digraph coll. assignments formal networks

6 300 291

7 537 398

8 413 628

9 1974 2593

10 4444 3757

11 661 577

12 661 727

13 661 727

14 959 910

15 1088 1235
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A. The Static Formal Translinear Networks with up to 6 Transistors

digraph index translinear digraph coll. assignments formal networks

16 754 867

17 2040 2608

18 2040 2608

19 2037 3471

20 7927 6499

21 2742 5073

22 1600 1829

23 2240 2848

24 9024 11602
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B. Implementations

B.1. Overview of the Implementations

The algorithms presented in this thesis for building and searching a catalog of translin-
ear network topologies have been implemented using C++, Singular [GPS01], and
Mathematica [Wol99].
Implementations for building the catalog include:

• The combinatorial algorithms for the generation of static formal translinear net-
works as presented in Chapter 4.
The implementation is in C++, brief class descriptions and header �le excerpts
are found in Section B.2. The implementation comprises two executables:
� graphgen, a little tool for generating translinear digraphs,
� tlgen, the main program for the generation of formal networks.

• The elimination of collector currents from the system of network equations, see
Subsection 5.1.4.
The output of tlgen is one �le of Singular code for each translinear digraph. A
sample is included in Section B.3. If executed, the Singular code performs the
elimination of collector currents, and, in those cases where the elimination yields
nonlinear equations (see Remark 5.5), writes the results in a �le of �.mp� format1.

Thus the catalog consists of one .mp �le for each translinear digraph. For each collector
assignment on the respective digraph, the .mp �le contains an ideal representing the
system of network equations where the collector currents have been eliminated. Since
a ground node is not yet speci�ed at this point, node equations for all nodes of G are
used for this system.
On a 2 GHz Athlon XP 2800 processor, tlgen takes about 10 hours to generate the
formal networks with up to 8 transistors. The generation of formal networks with up
to 7 transistors is �nished after 15 minutes, the generation of networks with up to 6
transistors after 1 minute.

1See the Singular documentation for this so-called MultiProtocol format.
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B. Implementations

Implementations for using the catalog include:

• A Singular procedure matchfind, for testing a network polynomial fN for a
match onto a �target behavior polynomial� g, see Section 5.3. The code of this
procedure is listed in Section B.4.
• A Singular procedure netsearch which searches the formal networks based on
a particular translinear digraph for a network complying with a given behavior.
As parameters, it takes a �target polynomial� g, a digraph identi�cation index,
and a bound for the entries of the input matrix. netsearch reads the .mp �le
corresponding to the identi�ed digraph. The code of netsearch is not listed in
this appendix, because it consists mainly of bookkeeping. The functional tasks it
ful�lls are to iterate through the collector assignments C, for each C to succes-
sively pick possible ground nodes v0, for each v0 to eliminate the input current
variable iv0 from the pre-processed network equations and thus determine the net-
work polynomial fN , and then to call matchfind.
netsearch writes an output �le in Mathematica language containing the topol-
ogy of the found networks, various information about their systems of equations,
and the determined input matrices.
• A Mathematica function postest which performs the �nal network checks for
positive collector currents and for the correct output function, as presented in
Section 5.4. The Mathematica code is listed in Section B.5.
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B. Implementations

B.2. Combinatorial Generation of Formal Networks

B.2.1. The class �matrix�

The objects of this class represent integer matrices and are used for adjacency matrices
of digraphs.
class matrix
{
protected:
ubyte rows;
ubyte cols;
ubyte * data;
int cmp_permute(const permutation&, const permutation&) const;
public:
matrix(const ubyte& value);
matrix(const ubyte&, const ubyte&);
matrix(const matrix&);
matrix& operator =(const matrix&);
virtual ~matrix();
void set_entry(ubyte row, ubyte col, ubyte value)
{ data[ row * cols + col ] = value; }

ubyte rs() const { return rows; }
ubyte cs() const { return cols; }

// permute rows and columns
matrix permute(const permutation& rowperm, const permutation& colperm) const;

bool is_zero() const;
void add_zero_row();
void add_zero_col();

// test whether the matrix is canonical w.r.t. the given group of column
// permutations and all row permutations
bool is_canonical(const mpsims& colgroup) const;

// test whether a pair of a row permutation and a column permutation is
// an automorphism, i.e. does not change the matrix
bool test_automorphism(const permutation& rp, const permutation& cp) const;

friend istream& operator >>(istream &, matrix &);
friend ostream& operator <<(ostream &, const matrix &);
friend class ranked;
friend class edge_coloring;
friend ostream& operator <<(ostream &, const ranked &);

};
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B. Implementations

B.2.2. The classes �permutation� and �multiperm�

The objects of the class �permutation� represent elements of Sn. The objects of the class
�multperm� represent elements of Sn1 × · · · × SnR

.

class permutation : public vector<ubyte>
{
private:
permutation() : vector<ubyte>() {}
public:
permutation(const ubyte& size);

// compute the inverse permutation
permutation inv() const;

// product/concatenation of permutations
permutation operator * (const permutation& perm) const;

};

class multiperm : public vector<permutation>
{
private:
multiperm() {}
public:
static const multiperm NIL;
multiperm(const vector<ubyte>& order);

// inverse and product of multiperms...
multiperm inv() const;
void mult_left(const multiperm& mp)
{

transform(mp.begin(),mp.end(),begin(),begin(),multiplies<permutation>());
}

void mult_right(const multiperm& mp)
{

transform( begin(), end() ,mp.begin(),begin(),multiplies<permutation>());
}

// dimension vector
vector<ubyte> order() const
{
...
}

};
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B.2.3. The class �mpsims�

An object of this class represents a subgroup of Sn1 × · · · × SnR
. The class name comes

from the data structure called sims chains [KS99, Jer86], which is used to store the
subgroup.

class mpsims // sims chain of multiperms
// represents subgroup G_1 x ... x G_n of S_1 x ... x S_n

{
private:
typedef vector<multiperm> transversal;
vector<ubyte> order;
vector<transversal> sims;
mpsims();
public:
// build identity sims chain
mpsims(const vector<ubyte>& _order);

// enclose a multiperm with the precondition that it will only affect the
// two top ranks
void enclose_2top(multiperm);

// helper class for iterating through the elements of G_n
class top_iterator;

// restrict to the n-1 non-top ranks
void decap();

// cross product with the trivial permutation group on nr points
void trivially_extend(ubyte nr);

// cross product with the maximal G_(n+1) such that
// G_n x G_(n+1) consists of automorphisms
void auto_extend(const matrix&);

friend ostream& operator <<(ostream& out, const mpsims& chain);
};

class mpsims::top_iterator
{

...
};
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B.2.4. The class �ranked�

An object of this class represents a layered (or �ranked�) digraph.

class ranked // representations of layered digraphs
{
private:
vector<matrix> adj; // adjacency matrices
// The k-th matrix is the matrix from potential k to potential k+1.
// (note the case k=0!)
bool test_leaf(ubyte node) const;
public:
ranked(const composition&);
ranked(const matrix&);

// number of nodes
int vertices() const;

// loop equations for a system of fundamental loops
string tl_equations() const;

...

// compute augmentations, write them in the given queue
// max_parallel is an optional bound for the matrix entries
mpsims augment(queue<ranked>&, ubyte max_parallel = 0) const;

// compute automorphism group
mpsims autogroup() const;

// how many nodes in each layer
vector<ubyte> dim() const;

ubyte entry(ubyte rank, ubyte row, ubyte col) const;
friend istream& operator >> (istream& in, ranked&);
friend ostream& operator << (ostream& out, const ranked&);

};

74



B. Implementations

B.2.5. The class �network�

An object of this class represents a collector assignment on a translinear digraph. (In
the sense of De�nition 3.17, it is not a complete network description, since it lacks
information about the ground node. However, given a network object of this class, we
know G and C, and it is trivial to iterate through all ground nodes v0 ∈ V (G)\ img(C).)

// some auxiliary classes...

class multinode : public vector<ubyte>
{
private:
public:

multinode(ubyte cardinality) : vector<ubyte>(cardinality) {}
ubyte& node_at(ubyte index) { return operator[](index); }
const ubyte& node_at(ubyte index) const { return operator[](index); }
void zero() { fill(begin(),end(),0); }
void zero_C(ubyte min_rank);
bool inc(ubyte min_rank, const vector<ubyte>& dim);
bool inc_out();
bool inc_C(ubyte min_rank, const vector<ubyte>& dim);
ubyte outsign() const;
int compare(const multinode&) const;
multinode apply_mp(ubyte max_rank,const multiperm&) const;

};

class mnmat : public vector<multinode> // mnmat = multinode matrix
{
public:

int permcmp(ubyte max_rank,const multiperm&) const;
int permcmp(ubyte max_rank, multiperm, const permutation&) const;
bool inc(ubyte min_rank, const vector<ubyte>& dim);
bool inc_C(ubyte min_rank, const vector<ubyte>& dim);
bool inc_out();

};

inline bool operator < (multinode m1, multinode m2)
{

if(m1.size()!=m2.size())
throw err("< :multinodes must have same cardinality");

else
return lexicographical_compare(m1.begin(),m1.end(),m2.begin(),m2.end());

}
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B. Implementations

//
// NETWORK CLASS
//
class network {
private:
vector<ubyte> dim;
vector<mnmat> c; // c = collector connections
mutable set<ubyte> gnodes;
public:
network(const ranked& graph); // "zero-network": all collectors are outputs
// note that the graph is flipped (top rank becomes 0-rank)

// compute "the next" collector assignment, 3 variations
// return true iff "next" exists
bool inc();
bool inc_out();
bool inc_C();

// test for canonicity
bool is_canonical(mpsims g) const;

// test for generalized canonicity
bool is_gcanonical(mpsims g) const;

// complement of the image of the collector assignment
// groundnodes() only works if node_equations() has been called before
set<ubyte> groundnodes() { return(gnodes); }

string transistor_list() const;
string node_equations() const;
string internal_vars() const;
string output_vars() const;
friend ostream& operator <<(ostream&, const network&);

};
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B.3. Sample tlgen Output

The following Singular code is the beginning and the end of the tlgen output �le for
the translinear digraph with index 1 (see Appendix A).

int count;
proc testlin (ideal j)
{
int is_linear = 1;
for(int k=1; k<=size(j); k++) { if( deg(j[k]) != 1 ) { is_linear=0;}}
if (is_linear==0) { count++; }
return(is_linear);
}

ring r = 0, (y,i(10),i(11),i(00),i(01),x(000),x(001),x(010),x(011) ), dp;
ideal id_nodes, id_net, id_e, lindep_nodes;
int islin;
list outvarlist;
string outfile="1.mp";
link l="MPfile:w " + outfile;
write(l,r);
"sng/1";
poly xprod=x(000)* x(010)* x(001)* x(011);
ideal id_graph = x(011)* x(000) - x(010)* x(001) ,
0;
LIB "elim.lib";
id_graph = sat(id_graph,xprod)[1];
write(l,id_graph);
list groundnodes;
id_nodes = -y +x(011),
- i(10),
- i(11) +x(000),
- i(00) -x(000) -x(001),
- i(01) -x(010) -x(011)
;
lindep_nodes = eliminate(id_nodes,xprod);
id_net = id_graph,id_nodes;
id_e = eliminate(id_net,xprod);
id_e;
islin = testlin(id_e);
if( islin == 0)
{

write(l,"TransistorList[
{ Emitter[0,0], Base[1,0], Collector[1,1]},
{ Emitter[0,1], Base[1,0], Collector[void]},
{ Emitter[0,0], Base[1,1], Collector[void]},
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B. Implementations

{ Emitter[0,1], Base[1,1], Collector[outp]}]");
write(l,id_nodes);
write(l,id_e);
groundnodes =list();
if(eliminate(lindep_nodes,i(10)) == 0 )
{ groundnodes= insert(groundnodes,i(10)); }
write(l,groundnodes);

}
id_nodes = -y +x(001),
- i(10),
- i(11) +x(000),
- i(00) -x(000) -x(001),
- i(01) -x(010) -x(011)
;
lindep_nodes = eliminate(id_nodes,xprod);
id_net = id_graph,id_nodes;
id_e = eliminate(id_net,xprod);
id_e;
islin = testlin(id_e);
if( islin == 0)
{

write(l,"TransistorList[
{ Emitter[0,0], Base[1,0], Collector[1,1]},
{ Emitter[0,1], Base[1,0], Collector[void]},
{ Emitter[0,0], Base[1,1], Collector[outp]},
{ Emitter[0,1], Base[1,1], Collector[void]}]");

write(l,id_nodes);
write(l,id_e);
groundnodes =list();
if(eliminate(lindep_nodes,i(10)) == 0 )
{ groundnodes= insert(groundnodes,i(10)); }
write(l,groundnodes);

}
id_nodes = -y +x(001) -x(011),
- i(10),
- i(11) +x(000),
- i(00) -x(000) -x(001),
- i(01) -x(010) -x(011)
;
lindep_nodes = eliminate(id_nodes,xprod);
id_net = id_graph,id_nodes;
id_e = eliminate(id_net,xprod);
id_e;
islin = testlin(id_e);
if( islin == 0)
{
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write(l,"TransistorList[
{ Emitter[0,0], Base[1,0], Collector[1,1]},
{ Emitter[0,1], Base[1,0], Collector[void]},
{ Emitter[0,0], Base[1,1], Collector[outp]},
{ Emitter[0,1], Base[1,1], Collector[outm]}]");

write(l,id_nodes);
write(l,id_e);
groundnodes =list();
if(eliminate(lindep_nodes,i(10)) == 0 )
{ groundnodes= insert(groundnodes,i(10)); }
write(l,groundnodes);

}

...

id_nodes = -y +x(011),
- i(10),
- i(11) +x(000) +x(010) +x(001),
- i(00) -x(000) -x(001),
- i(01) -x(010) -x(011)
;
lindep_nodes = eliminate(id_nodes,xprod);
id_net = id_graph,id_nodes;
id_e = eliminate(id_net,xprod);
id_e;
islin = testlin(id_e);
if( islin == 0)
{

write(l,"TransistorList[
{ Emitter[0,0], Base[1,0], Collector[1,1]},
{ Emitter[0,1], Base[1,0], Collector[1,1]},
{ Emitter[0,0], Base[1,1], Collector[1,1]},
{ Emitter[0,1], Base[1,1], Collector[outp]}]");

write(l,id_nodes);
write(l,id_e);
groundnodes =list();
if(eliminate(lindep_nodes,i(10)) == 0 )
{ groundnodes= insert(groundnodes,i(10)); }
write(l,groundnodes);

}
write(l,"EOF!");
close(l);
"72 (total number of networks)";
"35 (number of valid networks)";
"number of effectively non-linear networks:";
count;
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B.4. Match Finding

The following Singular procedure is used to check a network polynomial fN for a
match onto a polynomial g (see Section 5.3).

LIB "primdec.lib";

proc matchfind (poly netpoly, poly g, int n_u, int n_c,
int coefbound, int modulus, ideal addconstraints)

{
def rc=basering;
int j,k;
poly intconstraint = c(1);
for( j = 1; j<=coefbound; j++ )
{

intconstraint = intconstraint*(c(1)-j)*(c(1)+j);
}

ideal intconstraints = addconstraints;
for ( j = 1; j<=n_c; j++ )
{
intconstraints = intconstraints,subst(intconstraint,c(1),c(j));

}
poly uymon=y;
for ( j=1; j <= n_u; j++ )
{

intconstraints = intconstraints,subst(intconstraint,c(1),b(j));
uymon = uymon * u(j);

}
matrix netcoef = coef(netpoly,uymon);
matrix gcoef = coef(g,uymon);

list solutions = list();
poly zero = dummy1*g - netpoly;
matrix zerocoef=coef(zero,uymon);
ideal sdum=std(dummy1);
for( j=1; j<=ncols(zerocoef); j++)
{

if( reduce(zerocoef[2,j],sdum) == 0 )
{
return(list());

}
}

ideal coefcompare = zerocoef[2,1..ncols(zerocoef)];
coefcompare = intconstraints,coefcompare,dummy1*dummy2-1;

ideal p;
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ring modring=modulus,(c(1..n_c),b(1..n_u),dummy1,dummy2),dp;
ideal coefcompare = imap(rc,coefcompare);
coefcompare=std(coefcompare);
list l=minAssGTZ(coefcompare);
ideal idprime;
for( j=1; j <= size(l); j++)
{

idprime = interred(l[j]);
setring rc;
p = imap(modring,idprime),intconstraints,coefcompare;
p = std(p);
if( p[1] != 1 )
{
solutions = insert(solutions,eliminate(p,dummy1*dummy2));

}
setring modring;

}
setring rc;
return(solutions);

}
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B.5. Final Network Checks

The following Mathematica code is used for the �nal network check (see Section 5.4),
incorporating the positivity test for the collector currents and the output function check.

allposQ[terms_List]:=Select[terms,Simplify[#>0,assump]=!=True& ,1];
postest:=Module[{l},

l=Read[inp,Expression];
found=0;
While[Not[l===EndOfFile],

l=l/.{u[1]->U,u[2]->H};
eqs=l[[4]];
positives=Select[Solve[eqs,colcurs],allposQ[colcurs/.#]=={}&];
If[Length[positives]>1,
Print["???"];
Exit[]
];

If[ positives != {} && Simplify[func ==
y/.Solve[(l[[5]]/.positives[[1]]/.l[[3,1]]) == 0,y][[1]]]

,
found++;
Print["Network number: ",l[[1]]];
Print["ground node: ",l[[2]]];
Print["interface: ",l[[3]]];
Print["netlist: ",l[[6]]];
Print["collector currents: ",positives[[1]]];
];

l=Read[inp,Expression];
];

Close[inp];
Print["found ",found," networks"];

];
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