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While in classical scheduling theory the locations of machines are assumed to be fixed we will show how
to tackle location and scheduling problems simultaneously. Obviously, this integrated approach enhances
the modeling power of scheduling for various real-life problems. In this paper, we present in an exemplary
way theory and a solution algorithm for a specific type of a scheduling and arather general, planar location
problem, respectively. More general results and a report on numerical tests will be presented in a subsequent
paper.
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1 Introduction

Scheduling and location theory are equally important areas of operations research with a wealth of applica-
tions. For many of these applications it is obvious, that dealing with these problems in the usualsequential
manner (i.e., taking the output of one of the problems as input of the other) weakens the model and should
be replaced by anintegratedapproach (i.e., solving both problems simultaneously). The latter problem,
which we callScheLocwas first introduced by Hennes and Hamacher [4] where machines can be located
anywhere on a network. A more detailed investigation on this type of ScheLocwas given by Hennes [3].

The focus of this study is to investigate and analyze planar ScheLoc (P-ScheLoc) problems, where
machines can be located anywhere in a given planar region. In this shortnote, we restrict ourselves to the
single machine case. Starting from a general formulation and the main concepts of this new class, a specific
P-ScheLoc problem – makespan problem with variable release dates – is discussed in detail. We give a first
formal description of this problem and derive two conditions to detect optimalsolutions directly. Moreover,
we present a problem reformulation using a modified version of the EarliestRelease Date (ERD) rule. An
important tool for solving this problem is the construction of release date bisectors and ordered regions. In
our problem formulation the release dates are shown to be be representable by a special type of distance
functions, so-called gauges. Using these results, we develop an efficient solution algorithm based on Linear
Programming (LP) for polyhedral gauges, which also include as specialcases the rectilinear and maximum
distances. Finally, complexity results and some concluding remarks are presented.

The results are based on diploma theses of Elvikis [1] and Kalsch [5].

2 Basics

We are given a setJ = {1, . . . ,n} of jobs with nonnegativeprocessing times pi , i ∈ J , which must be
scheduled nonpreemptively on a single machineM. In addition, we assume thatM can be placed anywhere
in the planeR2 and that each jobi ∈ J has a givenstorage location ai ∈ R2. Hence the generalSingle
Machine Planar ScheLoc (1-P-ScheLoc) Problemconsists of choosing amachine location X∈ R2, under
the constraint that the set of jobsJ is completely processed and that all processing conditions are satisfied.
Our goal is to optimize some scheduling objective function which depends notonly on the sequence of jobs,
but also on the choice ofX.



In 1-P-ScheLoc problems, each jobi ∈ J is additionally characterized by the following parameters. The
storage arrival timeσi ≥ 0 represents the time at which jobi is available at its storage locationai . If σi = 0,
theni is already available at its storage at the beginning of the processing sequence. Thetravel speedνi > 0
represents the rate of motion of jobi , or equivalently the rate of change of position, expressed as distance
per unit time. Hence after jobi is available at its storage locationai , we can start to movei from its storage
to the machineM. The time at whichi can start its processing is given by its arrival time atM. It is obvious
that this time can be interpreted as the job release date. Now, letdisti be a general distance function onR2

corresponding toai andτi := 1
νi
> 0, thenr i(X) := σi + τi disti(ai ,X) is called thevariable release dateof

job i for M dependent on its machine locationX ∈ R2. Moreover, the sequence in which the jobs are to be
processed on the machine is defined by a permutationπ of {1, . . . ,n}, whereπ( j) = i means that jobi is the
jth job in the processing order. The set of all permutations of{1, . . . ,n} is denoted byΠn. Then for each
sequenceπ ∈ Πn and each machine locationX ∈ R2, we can easily calculate the completion times for all
jobs i ∈ J using the following recursive formula

Cπ(1)(X) = rπ(1)(X) + pπ(1), (1)

Cπ( j)(X) = max{Cπ( j−1)(X) , rπ( j)(X)} + pπ( j) ∀ j ∈ {2, . . . ,n}, (2)

wherepπ( j) defines the processing time of jobπ( j). Finally, the maximum completion time (or makespan)
in X ∈ R2 is given by

Cmax(X) = max{C1(X), . . . ,Cn(X)} = Cπ(n)(X). (3)

To illustrate the modeling potential of this approach, we concentrate on a specific 1-P-ScheLoc problem,
the makespan problem with variable release dates.

3 The Problem

In general, the single machine makespan problem with variable release dates(1-MPVRD) can be formulated
using (1)-(3):

min Cπ(n)(X)

s.t. Cπ( j)(X) ≥ Cπ( j−1)(X) + pπ( j) ∀ j ∈ {2, . . . ,n} (4)

Cπ( j)(X) ≥ rπ( j)(X) + pπ( j) ∀ j ∈ {1, . . . ,n} (5)

π ∈ Πn (6)

X ∈ R2 (7)

where completion time formula (1)-(2) is explicitly represented by constraints (4)-(5). It easy to see that
if pi = 0 for all i ∈ J , then 1-MPVRD reduces to a classical 1-center facility location problem. Ifwe fix X
a priori, then we only have to solve a classical makespan problem with fixed release dates. Furthermore, for
a given sequenceπ ∈ Πn, we only have to solve a 1-facility location problem to obtain an optimal machine
location. For convex distance functions and a fixed sequenceπ ∈ Πn, it is obvious that the objective function
Cπ(n)(X) is convex onR2. Note that, (5) can be replaced byCi(X) ≥ r i(X) + pi for all i ∈ J .

The following two sufficient criteria describe situations, where one of the job locations is an optimal
ScheLoc location for the machine. They are proved using the trivial lowerboundLB := mini∈J {σi}+

∑
i∈J pi .



Proposition 1. If there exists a job i∈ J with i ∈ argmin{σs : s = 1, . . . ,n} andσi + pi ≥ rs(ai) = σs +

τs dists(as,ai) for all s ∈ {1, . . . ,n} then ai is an optimal machine location andπ∗ = (i, π∗(2), π∗(3), . . . , π∗(n))
∈ Πn with π∗(s) , i, s ∈ {2, . . . ,n}, defines an optimal job sequence.

Proposition 2. Let π∗ ∈ Πn be an optimal sequence in X= ai with i ∈ argmin{σs : s = 1, . . . ,n}. If
σi +

∑
j=1,...,l pπ∗( j) ≥ rπ∗(l+1)(ai) for all l ∈ {1, . . . ,n− 1}, then ai is an optimal machine location.

In the following, we assume that neither of the preceding conditions hold such that we have to develop
an efficient algorithm to solve ScheLoc.

Recall that 1-MPVRD reduces for a given machine locationX ∈ R2, to a classical makespan problem
with fixed release datesr i(X) = r i , i ∈ J . In this case, we can use the well-known ERD rule to obtain an op-
timal job sequence. Thus, for every machine locationX ∈ R2 we can easily obtain an optimal job sequence
π ∈ Πn using theScheLoc ERD rule: For machine locationX ∈ R2, sort the jobsi ∈ J in increasing order
of their release datesr i(X), i.e., rπ(1)(X) ≤ . . . ≤ rπ(n)(X). Thus, 1-MPVRD can be reformulated using the
provided ScheLoc ERD rule:

min Cπ(n)(X)

s.t. (4)− (7)

rπ(1)(X) ≤ . . . ≤ rπ(n)(X) (8)

Here it should be noted that the objective function is in general non-convex onR2 (see Example 1).

Example 1. Consider two jobs with storage locationsa1 = (0,0) anda2 = (10,5) with rectilinear distance
l1. Moreover, letp1 = 1 andp2 = 15,σ1 = σ2 = 0 andν1 = ν2 = 1:

Cmax(a1) = max{r2(a1), r1(a1) + p1} + p2 = max{15,0+ 1} + 15= 30

Cmax(a2) = max{r1(a2), r2(a2) + p2} + p1 = max{15,0+ 15} + 1 = 16

Cmax(0.5 · (a1 + a2)) = max{7.5,7.5+ 1} + 15= max{7.5,7.5+ 15} + 1 = 23.5

If we assume that our distance functions are convex, then it is easy to seethat the objective function is
also convex in each of the regions in which the sequence of inequalites (8)does not change.

4 Geometrical Properties: Bisectors and Ordered Regions

Let i, j ∈ J with i , j. Then the setBi, j := {X ∈ R2 | r i(X) = r j(X)} is called therelease date bisectorwith
respect to jobi located inai and job j located ina j .

The bisectors divide the plane into various(release date -) ordered regions Oπ := {X ∈ R2 | rπ(1)(X) ≤
. . . ≤ rπ(n)(X)} defined by permutationsπ ∈ Πn (see Figure 1). In eachOπ, the order of the release dates does
not change. Note that, ordered regions are in general neither convexnor connected.

For eachX ∈ Oπ an optimal job sequence of problem 1-MPVRD is obtained byπ. Thus solution
of a location problem for alln! permutations of possible ordered regions solves the ScheLoc problem 1-
MPVRD. As we will show subsequently, the efficiency of this approach follows, since for a large class of
distance functions, only apolynomial number of these ordered regions needs to be considered, since for
many sequencesπ we have thatOπ = ∅, which means that theseπ can not be optimal sequences.
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Figure 1: Fundamental directions, Bisectors and Ordered regions generated bya1, a2, a3 associated with
disti = l1, i = 1,2,3

The considered class of distance functions is the class of polyhedral gauges with respect toai , i ∈ J =
{1, . . . ,n}, defined byγBi (X) := inf {λ > 0 | X ∈ λBi} (see e.g. Minkowski [6], Nickel and Puerto [7]). Here
Bi is theunit ball of the gauge given by a polytope inR2, i.e., a convex, compact polyhedral set, containing
the origin in its interior. A polyhedral gauge is a convex distance function and even a norm (calledblock
norm), if it is additionally symmetric. Examples for block norms are the rectilinear distance l1 and the
maximum distancel∞, both having polyhedral unit balls (Bl1 andBl∞) with four extreme points.

Denote the set ofextreme pointsof the polytopeBi ⊆ R
2 by Ext(Bi) = {ei

g | g = 1, . . . ,Gi}. Moreover,
we defineGi := {1, . . . ,Gi}, i ∈ {1, . . . ,n}, andG := max{Gi | i = 1, . . . ,n}. The half-linesξig, g ∈ Gi , i ∈
{1, . . . ,n}, starting at the origin 0 and passing through an extreme pointei

g ∈ Ext(Bi) are calledfundamental
directions. Moreover, we defineΓi

g as thefundamental conegenerated by two consecutive fundamental
directionsξig andξig+1, whereξiGi+1 := ξi1. Clearly,

⋃
g∈G〉 Γ

i
g = R

2 for everyi ∈ {1, . . . ,n} (see Figure 2).
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Figure 2: Fundamental directions and cones generated by the extreme points of the convex polyhedronBi

The polar setB◦i of Bi is defined byB◦i := {X ∈ R2 | < X, p > ≤ 1, ∀ p ∈ Bi}. (Here and in the
following, we use the denotation< X, p > for the inner productx1p1+ x2p2 in R2.) Its set of extreme points
is denoted byExt(B◦i ) = {ei◦

g | g = 1, . . . ,Gi}. For example, the polar set corresponding toBl1 is Bl∞ , and
vice versa.

Lemma 1. (Ward and Wendell [10])For all i ∈ {1, . . . ,n} and X∈ R2 the polyhedral gaugeγBi (X) can be
computed byγBi (X) = max{< ei◦

g ,X > | ei◦
g ∈ Ext(B◦i )}.



Lemma 2. (Thisse et al. [9])For i ∈ {1, . . . ,n} let Bi ⊆ R
2 be a polytope andγBi its corresponding

polyhedral gauge. ThenγBi is a linear function on every fundamental coneΓi
g, g ∈ Gi .

The region-wise linearity of polyhedral gauges is one of the reasons why the ScheLoc algorithm of
this paper is efficient. The other is the fact that only polynomially many regions (sequences)need to be
considered in our 1-MPVRD ScheLoc problem.

Theorem 1. The number of nonempty ordered regions| Πord
n := {π ∈ Πn | Oπ , ∅} | is polynomially bounded

byO(n4G2).

Rodríguez-Chía et al. [8] proved this result for polyhedral gauges without weights. Since the main ar-
gument in their proof is the linearity of polyhedral gauges on every fundamental cone established in Lemma
2, it can easily be extended to release dates, which are generated by polyhedral gaugesγBi using additional
multiplicative (τi) and additive (σi) weights.

The preceding geometrical insights combined with linear programming yield an efficient solution algo-
rithm for ScheLoc. This is shown in the next section.

5 Polynomial ScheLoc Algorithm

For all sequencesπ ∈ Πord
n consider the following parametric linear programLP(π):

min Cπ(n)(X)

s.t. Cπ( j)(X) ≥ Cπ( j−1)(X) + pπ( j) ∀ j ∈ {2, ...,n} (9)

Ci(X) ≥ σi + τi < ei◦
g ,X − ai > +pi ∀e

i◦
g ∈ Ext(B◦i ) ∀i ∈ J (10)

X ∈ R2 (11)

From Lemma 1 we getr i(X) = σi + τi γBi (X − ai) = σi + τi max{< ei◦
g ,X > | ei◦

g ∈ Ext(B◦i )}. For each
π ∈ Πord

n let X∗π be an optimal solution toLP(π). If X∗π ∈ Oπ, then we know thatπ is a local optimal sequence
in X∗π. If X∗π < Oπ, then it is obvious that we can easily find another sequenceπ ∈ Πord

n , by evaluating and
sorting the release dates inX∗π in increasing order, such thatCπ(n)(X∗π) ≤ Cπ(n)(X∗π), which means thatπ is
dominated byπ. Thus, for eachπ ∈ Πord

n we only have to find an optimal machine location by solving the
parametric linear programLP(π) and output the globally best solution.

The complexity of this algorithm is characterized by the determination ofΠord
n and the complexity of

solving the corresponding linear programsLP(π). Both can be done in polynomial time.

6 Conclusion

The class of ScheLoc problems is a new approach to scheduling with variable machine locations. In this
paper we have introduced the 1-P-ScheLoc makespan problem where the release dates are depending on
the distance between the (given) locations of the jobs and the (unknown) location of the machine. If this
distance is given by polyhedral gauges, we showed that ScheLoc canbe reduced to the solution ofK linear
programs, whereK is a polynomial in the number of jobs and extreme points of the unit balls describing the
gauge. Special cases include ScheLoc problems with respect to rectilinear or maximum distances.

In [2] we show that the ScheLoc problem introduced in this paper can be considered as a special case
of a broader class. In addition to the plane tessellation and LP algorithm we also propose an alternative



algorithm which is based on the computation of a finite dominating set (FDS), i.e., afinite set of candidate
solutions. Numerical tests will compare the different approaches.
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