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While in classical scheduling theory the locations of machines are assumeéixedwe will show how
to tackle location and scheduling problems simultaneously. Obviously, this atéelgapproach enhances
the modeling power of scheduling for various real-life problems. In thigpape present in an exemplary
way theory and a solution algorithm for a specific type of a scheduling aathar general, planar location
problem, respectively. More general results and a report on nurhistawill be presented in a subsequent
paper.
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1 Introduction

Scheduling and location theory are equally important areas of operagisearch with a wealth of applica-
tions. For many of these applications it is obvious, that dealing with theséepnshin the usuadequential
manner (i.e., taking the output of one of the problems as input of the otheRens the model and should
be replaced by aimtegratedapproach (i.e., solving both problems simultaneously). The latter problem,
which we callScheLoawvas first introduced by Hennes and Hamacher [4] where machinesecimcdted
anywhere on a network. A more detailed investigation on this type of Scheasgiven by Hennes [3].

The focus of this study is to investigate and analyze planar ScheLoch@-8c) problems, where
machines can be located anywhere in a given planar region. In thisreitertwe restrict ourselves to the
single machine case. Starting from a general formulation and the main ¢swédipis new class, a specific
P-SchelLoc problem — makespan problem with variable release dates eussgid in detail. We give a first
formal description of this problem and derive two conditions to detect op8oiations directly. Moreover,
we present a problem reformulation using a modified version of the EdRedstise Date (ERD) rule. An
important tool for solving this problem is the construction of release datetbiseand ordered regions. In
our problem formulation the release dates are shown to be be reprdsdmtabspecial type of distance
functions, so-called gauges. Using these results, we develdficierg solution algorithm based on Linear
Programming (LP) for polyhedral gauges, which also include as speasak the rectilinear and maximum
distances. Finally, complexity results and some concluding remarks aenteds

The results are based on diploma theses of Elvikis [1] and Kalsch [5].

2 Basics

We are given a seff = {1,...,n} of jobswith honnegativeprocessing times;pi € , which must be
scheduled nonpreemptively on a single machvhdn addition, we assume th&t can be placed anywhere

in the planeR? and that each job € J has a giverstorage location ac R2. Hence the gener@ingle
Machine Planar ScheLoc (1-P-ScheLoc) Probleonsists of choosing machine location Xe R?, under

the constraint that the set of jolgsis completely processed and that all processing conditions are satisfied.
Our goal is to optimize some scheduling objective function which dependsihobn the sequence of jobs,

but also on the choice of.



In 1-P-ScheLoc problems, each job 7 is additionally characterized by the following parameters. The
storage arrival timer; > 0 represents the time at which jols available at its storage locatian If o = 0,
theni is already available at its storage at the beginning of the processingwequéderavel speed; > 0
represents the rate of motion of job or equivalently the rate of change of position, expressed as distance
per unit time. Hence after jolis available at its storage locati@an we can start to moviefrom its storage
to the machiné. The time at which can start its processing is given by its arrival timévatlt is obvious
that this time can be interpreted as the job release date. Nowisiebe a general distance function BA
corresponding te andr; = 71' > 0, thenrj(X) := o + 7; dist(a, X) is called thevariable release datef
jobi for M dependent on its machine locatine R?. Moreover, the sequence in which the jobs are to be
processed on the machine is defined by a permutatwii{1, ..., n}, wheren(j) = i means that jobis the
j'" job in the processing order. The set of all permutationglof. ., n} is denoted byl,. Then for each
sequencer € II, and each machine locatiof € R?, we can easily calculate the completion times for all
jobsi € g using the following recursive formula

Cr)(X) = rz@)(X) + Pr(a)s (1)
Cr(jy(X) = max{Cr(j—1)(X) , (X)) + Py Yi€{2,...,n}, (2)

wherep,j) defines the processing time of jog)). Finally, the maximum completion time (or makespan)
in X € R? is given by

Cinax(X) = maxCy(X), ..., Cn(X)} = Ca(n)(X). 3)

To illustrate the modeling potential of this approach, we concentrate on disfie-SchelLoc problem,
the makespan problem with variable release dates.

3 TheProblem

In general, the single machine makespan problem with variable releas¢ dd483/RD can be formulated
using (1)-(3):

min Crxn(X)

s.t. Cr(p(X) = Cr(j-y(X) + prjy Vi€i2,...,n} 4)
Cr(pX) 2 rx(p(X) + prj)  Vi€d{l,....n} (5)
rell, (6)
X € R? 7

where completion time formula (1)-(2) is explicitly represented by constradiiés). It easy to see that
if pj =0foralli € 7, then 1-MPVRD reduces to a classical 1-center facility location probleme Hix X
a priori, then we only have to solve a classical makespan problem with gkeglse dates. Furthermore, for
a given sequence € I, we only have to solve a 1-facility location problem to obtain an optimal machine
location. For convex distance functions and a fixed sequercH,, it is obvious that the objective function
Cr(n)(X) is convex orR2. Note that, (5) can be replaced 8y(X) > ri(X) + pi for alli € J.

The following two stfficient criteria describe situations, where one of the job locations is an optimal
ScheLoc location for the machine. They are proved using the trivial loba@ndLB := minic 7 {oi}+Xics Pi.



Proposition 1. If there exists a job £ J withi € argminfos: s=1,...,nfandoi + p; = rs(q) = o5+
Tsdisty(as, &) forall s € {1,...,n} then ais an optimal machine location and = (i, 7*(2), 7*(3), ..., 7*(n))
e II, withz*(s) #1i, s€ {2,...,n}, defines an optimal job sequence.

Proposition 2. Letn* € II, be an optimal sequence in X g with i € argminfos : s=1,...,n}. If

In the following, we assume that neither of the preceding conditions holdthat we have to develop
an dficient algorithm to solve ScheLoc.

Recall that 1-MPVRD reduces for a given machine locatfoa R?, to a classical makespan problem
with fixed release dateg(X) = r;, i € . In this case, we can use the well-known ERD rule to obtain an op-
timal job sequence. Thus, for every machine locadoa R? we can easily obtain an optimal job sequence
n € I, using theSchel oc ERD rule: For machine locatiotX € R?, sort the jobs € J in increasing order
of their release datas(X), i.e.,r1)(X) < ... < ryxn(X). Thus, 1-MPVRD can be reformulated using the
provided SchelLoc ERD rule:

min Crn(X)
s.t. @)- (7
M0)(X) < ... < Iy (X) (8)

Here it should be noted that the objective function is in general nonexcowR? (see Example 1).

Example 1. Consider two jobs with storage locatioas= (0, 0) anda, = (10, 5) with rectilinear distance
I1. Moreover, letp; = 1 andp, = 15,01 =02 =0andvy = vo = 1:

Cmax@) = maxra(ag), r1(az) + p1} + p2 = max150+ 1} + 15= 30
Cmax(@z) = max{ri(ag), r2(az) + pz} + pr = max{150+ 15} + 1 = 16

Crmax(0.5 - (a1 + 8)) = max7.5,7.5 + 1} + 15= max7.5, 7.5 + 15} + 1 = 235

If we assume that our distance functions are convex, then it is easy tbaddbe objective function is
also convex in each of the regions in which the sequence of inequalitde8)not change.

4 Geometrical Properties: Bisectorsand Ordered Regions

Leti, j € J withi # j. Then the seB"l := {X e R?| rj(X) = rj(X)} is called therelease date bisectawith
respect to job located ina; and jobj located ina;.

The bisectors divide the plane into variduelease date -) ordered regions,O= {X € R? | r,q)(X) <
... < Iy (X)} defined by permutationse I1;, (see Figure 1). In eadd,, the order of the release dates does
not change. Note that, ordered regions are in general neither coaveonnected.

For eachX € O, an optimal job sequence of problem 1-MPVRD is obtainedrbyThus solution
of a location problem for alh! permutations of possible ordered regions solves the SchelLoc problem 1
MPVRD. As we will show subsequently, théfieiency of this approach follows, since for a large class of
distance functions, only polynomial number of these ordered regions needs to be considered, since for
many sequenceswe have thaO, = (), which means that thegecan not be optimal sequences.
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Figure 1. Fundamental directions, Bisectors and Ordered regionsagetidya;, a,, az associated with
dist =14,i=1,2,3

The considered class of distance functions is the class of polyhedigégavith respect te;, i € J =
{1,...,n}, defined byyg,(X) := inf{1 > 0| X € A8;} (see e.g. Minkowski [6], Nickel and Puerto [7]). Here
B; is theunit ball of the gauge given by a polytopelt?, i.e., a convex, compact polyhedral set, containing
the origin in its interior. A polyhedral gauge is a convex distance functiahemen a norm (calletlock
norm), if it is additionally symmetric. Examples for block norms are the rectilinear distgnand the
maximum distanceé,,, both having polyhedral unit ball$(, and5,_) with four extreme points.

Denote the set aéxtreme pointsf the polytopeB; € R? by Ext{(B;) = e'g lg=1,...,Gj}. Moreover,
we defineG; = {1,...,Gj},i € {1,...,n}, andG := maxG; | i = 1,...,n}. The half- Ilneg' gegG,ice
{1,...,n}, starting at the origin 0 and passing through an extreme p@mtExt(B.) are called‘undamental
dlrectlons Moreover, we deflneF' as thefundamental congenerated by two consecutive fundamental

dlrectlonsfg andg:ﬁl, WherefG e §1 Clearly,Ugeg, Ty = R? for everyi € {1,...,n} (see Figure 2).

& ri=ri

Figure 2: Fundamental directions and cones generated by the extrertseqidhre convex polyhedraB;

The polar setB; of B; is defined byB; (XeR? |[<X,p><1 Vpe B} (Here and in the
following, we use the denotation X, p > for the inner produck; p; + X2 P2 in R2.) Its set of extreme points
is denoted byEX(B;) = {e'g | g=1,...,Gj}. For example, the polar set correspondingtpis 8, , and
vice versa.

Lemma 1. (Ward and Wendell [10]For alli € {1,...,n} and Xe R? the polyhedral gaugesg, (X) can be
computed by (X) = max< €5, X > | € € Ext(B))}.



Lemma 2. (Thisse et al. [9])Fori € {1,...,n} let B; € R? be a polytope andg, its corresponding
polyhedral gauge. Thepg is a linear function on every fundamental cdi’be gegGi.

The region-wise linearity of polyhedral gauges is one of the reasons why the SchelLoc algorithm of
this paper is flicient. The other is the fact that only polynomially many regions (sequemees) to be
considered in our 1-MPVRD ScheLoc problem.

Theorem 1. The number of nonempty ordered regiq)ﬁ[ﬁrd = {n €Il | Oy # 0} | is polynomially bounded
by O(n*G?).

Rodriguez-Chia et al. [8] proved this result for polyhedral gaugdsowt weights. Since the main ar-
gument in their proof is the linearity of polyhedral gauges on every fonsstdal cone established in Lemma
2, it can easily be extended to release dates, which are generated bggralygaugesg, using additional
multiplicative (rj) and additive ;) weights.

The preceding geometrical insights combined with linear programming yieléfiaiept solution algo-
rithm for SchelLoc. This is shown in the next section.

5 Polynomial Schel oc Algorithm

For all sequences e 119 consider the following parametric linear program(z):

min Crn(X)

s.t. Cr((X) = Cr(j-y(X) + prj) Viel2 ...n} 9)
Ci(X)20i+7 <€, X—a>+p Ve, e Ex(B)) VieJ (10)
X € R? (11)

From Lemma 1 we get(X) = o + 7 y5 (X — &) = o + 7y maX< €;,X >| € € Ext(8)}. For each
m € 119 let X* be an optimal solution taP(x). If X: € O, then we know that is a local optimal sequence
in X:. If X* ¢ O, then it is obvious that we can easily find another sequanedI®', by evaluating and
sorting the release dates Xj in increasing order, such th@;,)(X;) < Cyn(X;), which means that is
dominated byr. Thus, for eachr € 113 we only have to find an optimal machine location by solving the
parametric linear programP(rr) and output the globally best solution.

The complexity of this algorithm is characterized by the determinatiofi%t and the complexity of
solving the corresponding linear prograitr®(r). Both can be done in polynomial time.

6 Conclusion

The class of SchelLoc problems is a new approach to scheduling with leangizhine locations. In this
paper we have introduced the 1-P-SchelLoc makespan problem weereldhse dates are depending on
the distance between the (given) locations of the jobs and the (unknoeatjdo of the machine. If this
distance is given by polyhedral gauges, we showed that SchelLdwecsduced to the solution &f linear
programs, wher& is a polynomial in the number of jobs and extreme points of the unit balls desgthen
gauge. Special cases include SchelLoc problems with respect to rectimaaximum distances.

In [2] we show that the ScheLoc problem introduced in this paper camhsidered as a special case
of a broader class. In addition to the plane tessellation and LP algorithm wéempose an alternative



algorithm which is based on the computation of a finite dominating set (FDS), firiteaset of candidate
solutions. Numerical tests will compare théfdrent approaches.
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