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Abstract

We present a theory for locally supported approximate identities
on the unit ball in R

3. The uniform convergence of the convolutions of
the derived kernels with an arbitrary continuous function f to f , i.e.
the defining property of an approximate identity, is proved. Moreover,
a closed representation for a class of such kernels is given.
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1 Introduction

The advantages of locally supported kernels for approximating structures are
well–known and have already been studied intensively also for the sphere.
The early paper [15] uses a tensor product ansatz to construct locally sup-
ported splines on the sphere. In [2, 6] axisymmetric locally supported basis
functions on the 2–sphere are introduced by use of Bernstein polynomials.
Their treatment as foundation for spherical spline interpolation in certain
Sobolev spaces is discussed in [14]. In [5] their application to satellite data
is investigated. Their iterated convolutions yields further advantages such
as a multiresolution analysis and locally supported spherical wavelets, see
the construction of spherical up functions [7]. This topic is also discussed
in [1] where additionally a closed representation of the iterated kernels is
derived. In [8] locally supported wavelets and multiresolution analyses are
developed for a general manifold setting with special consideration of the
sphere. Furthermore, [12] treats among others locally supported splines on
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the n–sphere based on Wendland’s function.
In this paper we show how locally supported kernels on the 3–dimensional
unit ball can be constructed. We prove that those kernels establish an ap-
proximate identity for all continuous functions on the ball. The correspond-
ing convergence is uniform.
Moreover, we derive a closed representation for a certain family of such lo-
cally supported approximate identities allowing the choice of the smoothness
of the kernel function. Without closed representation of the kernel Φδ one
would have to do a numerical integration over the intersection of two balls
to evaluate the kernel, where each x requires such a numerical integration
to get all values Φδ(x, y). This can, certainly, be realised in practice. How-
ever, the derived closed representation essentially accelerates the calculation
process and reduces the total error. Only the numerical calculation of the
convolution integral of the approximate identity is left.
Note that approximate identities on balls in R

3 are studied e.g. in [11]. Fur-
ther works on localizing (but not necessarily locally supported) kernels, like
scaling functions and wavelets, on the 3D ball can e.g. be found in [9, 10, 13].
An exemplary application of approximating structures on three–dimensional
balls can be found in geophysics. There, the choice of appropriate tools for
describing features of the Earth’s interior, such as the mass density, the speed
of propagation of seismic P and S waves and other rheological quantities, is
still a field of research.

2 Definitions and Notation

N0 and R represent the sets of all non–negative integers and all real numbers,
respectively, such that R

3 is the 3-dimensional Euclidean space. Moreover,
let B :=

{

x ∈ R
3 | |x| ≤ 1

}

be the closed unit ball in R
3 with centre at the

origin, where |x| :=
√

∑3
i=1 x2

i is the Euclidean norm in R
3, and Bδ(x) :=

{

y ∈ R
3 | |x − y| < δ

}

, δ > 0, be the open ball of radius δ with centre at x in
R

3. As usual, C(B) denotes the Banach space of all real–valued continuous
functions on B with the norm ‖f‖C(B) := supx∈B |f(x)|, f ∈ C(B).
Let Φ : B × B → R be an integrable function such that for each x ∈ B,
Φ(x, ·) is positive almost everywhere in B. For 0 < δ < 2 and for all x ∈ B
we define Ψδ(x) :=

∫

B∩Bδ(x) Φ(x, z) dz. With this abbreviation the kernel
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Φδ : B × B → R is defined by

Φδ(x, y) :=

{

Φ(x,y)
Ψδ(x) if y ∈ B ∩ Bδ(x)

0 otherwise
. (1)

Obviously, Φδ has the local support supp(Φδ(x, ·)) = B ∩ Bδ(x). Note that,
usually, we choose the parameter δ > 0 sufficiently close to 0.
Moreover, for f ∈ C(B) we define the convolution of f and Φδ by

f ? Φδ :=

∫

B

f(y)Φδ(·, y) dy.

3 Approximate Identity

Theorem 3.1 Let Φ and Φδ be as defined above. If f is a continuous func-
tion defined on B then ‖f ? Φδ − f‖C(B) → 0 as δ → 0 + .

Proof. From the construction of Φδ, it is clear that

∫

B

Φδ(x, y)dy =

∫

B∩Bδ(x)
Φδ(x, y)dy = 1 (2)

for all x ∈ B and all δ > 0. Therefore, we can write

|(f ? Φδ)(x) − f(x)| =

∣

∣

∣

∣

∫

B

(f(y) − f(x)) Φδ(x, y) dy

∣

∣

∣

∣

≤

∫

B∩Bδ(x)
|f(y) − f(x)| Φδ(x, y) dy

Since f is continuous on the compact set B, it is uniformly continuous on B,
therefore, for each ε > 0 there exists δ > 0 such that

‖f ? Φδ − f‖C(B) ≤ sup
x∈B

(

∫

B∩Bδ(x)
ε Φδ(x, y) dy

)

= ε

by (2). This also holds true if we replace δ by δ̃ ∈ ]0, δ]. Hence, as δ → 0+
we have ‖f ? Φδ − f‖C(B) → 0.

Now we present some examples of locally supported approximate identities.
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Example 3.1 The function Φδ;k : B × B → R defined by

Φδ;k(x, y) :=

{

(δ − |x − y|)k
(

∫

B∩Bδ(x) (δ − |x − z|)k dz
)−1

if y ∈ B ∩ Bδ(x)

0 otherwise

for all k ∈ N0, is a locally supported approximate identity in B. Note that
Φδ;k(x, ·) ∈ C(k−1)(B \ {x}) ∩ C(B) for k ≥ 1. We will derive a closed
representation for this family of kernels in the next section.

Example 3.2 If we define Φ(x, y) = exp (−k|x − y|) for all x, y ∈ B and
k ∈ N0 then the function in (1) is also a locally supported approximate
identity.

4 Closed Representation of Some Kernels

We are interested here to calculate expressions of the form

∫

B∩Bδ(x)
(δ − |x − z|)k dz =

k
∑

j=0

(

k

j

)

δk−j(−1)j

∫

B∩Bδ(x)
|x − z|j dz.

We, thus, restrict our attention to the determination of

Fj(x) :=

∫

B∩Bδ(x)
|x − z|j dz.

For symmetry reasons it suffices to assume that x = (0, 0, |x|)T. Note that
the intersection of ∂Bδ(x) and ∂B is a planar circle whose plane cuts Bδ(x).
We have to distinguish two cases:

(i) x is below or on this cutting plane.

(ii) x is above this cutting plane.

In each case we subdivide the integral into the integration over three different
domains, see Figures 1 and 2.
Obviously, we have in case (i)

Fj(x) =

∫

P1

|x − z|j dz +

∫

P2

|x − z|j dz +

∫

P3

|x − z|j dz
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P1 P2 P3

Figure 1: Subdivision of the integration in case (i)

P1 P2 P3

Figure 2: Subdivision of the integration in case (ii)

and in case (ii)

Fj(x) =

∫

P1

|x − z|j dz −

∫

P2

|x − z|j dz +

∫

P3

|x − z|j dz.

We use the following parameterization in polar coordinates

z = x +





r sinϑ cos ϕ
r sin ϑ sinϕ

r cos ϑ



 . (3)

For P1 we have the ranges r ∈ [0, δ], ϕ ∈ [0, 2π[, ϑ ∈ [π − θ, π]. The angle θ
can be calculated by the cosine theorem as follows:

12 = |x|2 + δ2 − 2|x|δ cos θ ⇔ cos θ =
|x|2 + δ2 − 1

2|x|δ
. (4)
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Note that δ > 0 and that the case x = 0 corresponds to θ = π for sufficiently
small δ. Thus, using |x − z| = r we obtain

∫

P1

|x − z|j dz =

∫ δ

0

∫ 2π

0

∫ π

π−θ

rj · r2 sin ϑ dϑ dϕ dr

=
2π

j + 3
δj+3 (− cos ϑ)|ππ−θ =

2π

j + 3
δj+3(1 + cos(π − θ))

=
2π

j + 3
δj+3(1 − cos θ).

Note that this result is true in cases (i) and (ii) and is also valid if Bδ(x) ⊂ B
where θ = π. Hence,

∫

P1

|x − z|j dz =

{ 4π
j+3 δj+3 if |x| + δ ≤ 1

2π
j+3 δj+3

(

1 − |x|2+δ2−1
2|x|δ

)

else.

Obviously, in case of |x|+ δ ≤ 1, in particular x = 0, the other two integrals
are not needed.
P2 represents a cone. We parameterise it again using (3) but in case (i) with
the ranges ϕ ∈ [0, 2π[, ϑ ∈ [0, π − θ], and r ∈ [0, ρ(ϑ)] where

cos ϑ =
|ξ| − |x|

ρ(ϑ)
⇔ ρ(ϑ) =

|ξ| − |x|

cos ϑ
.

Introducing the angle θ1 = arccos |ξ| (see Figures 1 and 2) we get from the
cosine theorem

δ2 = |x|2 + 12 − 2|x| · 1 · cos θ1 ⇔ (|ξ| =) cos θ1 =
|x|2 + 1 − δ2

2|x|
.

Hence,

ρ(ϑ) =
1

cos ϑ

−|x|2 + 1 − δ2

2|x|
.

Note that the case ϑ = π/2 can only occur if θ = π/2 which corresponds to
|ξ| = |x| where Vol (P2) = 0.
In case (ii), the ranges are ϕ ∈ [0, 2π[, ϑ ∈ [π − θ, π], and r ∈ [0, ρ̃(ϑ)] with

cos(π − ϑ) =
|x| − |ξ|

ρ̃(ϑ)
⇔ − cos ϑ =

|x| − |ξ|

ρ̃(ϑ)
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such that ρ̃(ϑ) = ρ(ϑ).
Hence, writing in general ϑ ∈ [ϑ1, ϑ2] we get

∫

P2

|x − z|j dz =

∫ ϑ2

ϑ1

∫ ρ(ϑ)

0

∫ 2π

0
rjr2 sinϑ dϕ dr dϑ

=
2π

j + 3

∫ ϑ2

ϑ1

ρ(ϑ)j+3 sinϑ dϑ

=
2π

j + 3

(

1 − δ2 − |x|2

2|x|

)j+3 ∫ ϑ2

ϑ1

sinϑ

cosj+3 ϑ
dϑ

=
2π

j + 3

(

1 − δ2 − |x|2

2|x|

)j+3 ∫ cos ϑ2

cos ϑ1

−1

tj+3
dt

=
2π

(j + 3)(j + 2)

(

1 − δ2 − |x|2

2|x|

)j+3(
1

cosj+2 ϑ2
−

1

cosj+2 ϑ1

)

.

Hence, using (4) we arrive at

∫

P2

|x − z|j dz =
2π

(j + 3)(j + 2)

(

1 − δ2 − |x|2

2|x|

)j+3

×















(

(

1−|x|2−δ2

2|x|δ

)−j−2
− 1

)

in case (i)
(

(−1)j+2 −
(

1−|x|2−δ2

2|x|δ

)−j−2
)

in case (ii).

Note that the two cases are characterised as follows:

(i) |ξ| ≥ |x| ⇔ θ ≥ π
2 ⇔ |x|2 + 1 − δ2 ≥ 2|x|2 ⇔ 1 − δ2 ≥ |x|2

(ii) |ξ| < |x| ⇔ θ < π
2 ⇔ 1 − δ2 < |x|2

In this sense, the case θ = π
2 ⇔ |x|2 = 1− δ2, where the integral vanishes, is

also covered by the final formula.
P3 is parameterised by (3), too. The ranges are in case (i) given by ϕ ∈
[0, 2π[, ϑ ∈ [0, π−θ], and r ∈ [ρ(ϑ), R(ϑ)], where ρ(ϑ) is the same expression
that was used for P2. The larger radius referring to ∂B is given by the cosine
theorem (see Figure 3)

12 = |x|2+R(ϑ)2−2|x|R(ϑ) cos(π−ϑ) ⇔ 0 = R(ϑ)2+2|x|R(ϑ) cos ϑ+|x|2−1.
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Figure 3: Illustration of the quantities, left: case (i), right: case (ii).

This equation has only one positive solution for R(ϑ), namely

R1(ϑ) = −|x| cos ϑ+
√

|x|2 cos2 ϑ − |x|2 + 1 = −|x| cos ϑ+

√

−|x|2 sin2 ϑ + 1.

In case (ii) we have ϕ ∈ [0, 2π[, ϑ ∈ [0, π], and r ∈ [0, R2(ϑ)] where

R2(ϑ) =

{

−|x| cos ϑ +
√

−|x|2 sin2 ϑ + 1 if ϑ ≤ π − θ
ρ(ϑ) if ϑ > π − θ.

Note that R2(π − θ) = δ and ρ(π − θ) = δ.
For case (i) we obtain

∫

P3

|x − z|j dz =

∫ 2π

0

∫ π−θ

0

∫ R1(ϑ)

ρ(ϑ)
rj+2 sinϑ dr dϑ dϕ

= 2π

∫ π−θ

0

1

j + 3

(

R1(ϑ)j+3 − ρ(ϑ)j+3
)

sinϑ dϑ

=
2π

j + 3

∫ π−θ

0

(

(

−|x| cos ϑ +

√

−|x|2 sin2 ϑ + 1

)j+3

−

(

1 − |x|2 − δ2

2|x|

)j+3
1

cosj+3 ϑ

)

sinϑ dϑ.

With the substitution t = |x| cos ϑ we obtain

∫

P3

|x − z|j dz = −
2π

j + 3

∫ −|x| cos θ

|x|

(

(

−t +
√

t2 − |x|2 + 1
)j+3

−2−j−3
(

1 − |x|2 − δ2
)j+3 1

tj+3

)

1

|x|
dt



4 CLOSED REPRESENTATION OF SOME KERNELS 9

=
2π

|x|(j + 3)

j+3
∑

r=0

(

j + 3

r

)∫ |x|

−|x| cos θ

(−t)r
(

t2 − |x|2 + 1
)

j+3−r
2 dt

+
2π

|x|(j + 3)
2−j−3

(

1 − |x|2 − δ2
)j+3 1

−(j + 2)

(

(−|x| cos θ)−j−2 − |x|−j−2
)

.

We use the abbreviation

Ij,r(|x|,−|x| cos θ) :=

∫ |x|

−|x| cos θ

tr
(

t2 − |x|2 + 1
)

j+3−r
2 dt.

Using [3], p. 49, we get

a) if r is even and j + 3 − r is odd, i.e. j is even, then

Ij,r(|x|,−|x| cos θ) =



χR+(r)
(t2 + 1 − |x|2)

j+5−r
2

j + 4



tr−1

+

r
2
−1
∑

q=1

(−1)q (r − 1)(r − 3) · · · (r − 2q + 1)

(j + 2)j · · · (j − 2q + 4)

(

1 − |x|2
)q

tr−2q−1





+(−1)
r
2 (r − 1)!!

(

1 − |x|2
)

r
2





2
∏

p=− r
2

+3

(j + 2p)





−1

×







t
(

t2 + 1 − |x|2
) 1

2

j − r + 4







(

t2 + 1 − |x|2
)

j−r
2

+1
+

+

j−r
2

+1
∑

q=1

(j − r + 3)(j − r + 1) · · · (j − r − 2q + 5)

(j − r + 2)(j − r) · · · (j − r − 2q + 4)

×
(

1 − |x|2
)q (

t2 + 1 − |x|2
)

j−r
2

+1−q







+
(j − r + 3)!!

(

1 − |x|2
)

j−r
2

+2

2
j−r
2

+2
(

j−r
2 + 2

)

!
ln
(

t +
(

t2 + 1 − |x|2
)

1

2

)









∣

∣

∣

∣

∣

∣

|x|

−|x| cos θ

(5)

where (2p + 1)!! := 1 · 3 · 5 · · · (2p + 1) for p ∈ N0. It should be noted
here that empty sums are set to zero (i.e.

∑b
ν=a . . . := 0 if b < a),
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empty products are set to one, χR+ represents the indicator function
of R

+, and (−1)!! := 1.

b) if r is odd and j + 3 − r is odd, i.e. j is odd, then

Ij,r(|x|,−|x| cos θ) =

r−1

2
∑

q=0

(

r−1
2

q

)

(

|x|2 − 1
)

r−1

2
−q (

t2 + 1 − |x|2
)q+ j+5−r

2

j − r + 5 + 2q

∣

∣

∣

∣

∣

∣

|x|

−|x| cos θ

.

(6)

For even j + 3 − r the integration is easy:

Ij,r(|x|,−|x| cos θ) =

j+3−r
2
∑

q=0

( j+3−r
2

q

)∫ |x|

−|x| cos θ

tr+2q dt
(

1 − |x|2
)

j+3−r
2

−q
(7)

=

j+3−r
2
∑

q=0

( j+3−r
2

q

)

1

r + 2q + 1

(

|x|r+2q+1 − (−|x| cos θ)r+2q+1
) (

1 − |x|2
)

j+3−r
2

−q
.

Hence,

∫

P3

|x − z|j dz =
2π

|x|(j + 3)

j+3
∑

r=0

(

j + 3

r

)

(−1)rIj,r

(

|x|,
1 − |x|2 − δ2

2δ

)

−
π2−j−2

|x|(j + 3)(j + 2)

(

1 − |x|2 − δ2
)j+3

(

(

1 − |x|2 − δ2

2δ

)−j−2

− |x|−j−2

)

in case (i). In case (ii) we obtain

∫

P3

|x − z|j dz =

∫ 2π

0

∫ π−θ

0

∫ R1(ϑ)

0
rj+2 sinϑ dr dϑ dϕ

+

∫ 2π

0

∫ π

π−θ

∫ ρ(ϑ)

0
rj+2 sinϑ dr dϑ dϕ

= −
2π

j + 3

∫ −|x| cos θ

|x|

(

−t +
√

t2 − |x|2 + 1
)j+3 1

|x|
dt +

∫

P2

|x − z|j dz

=
2π

|x|(j + 3)

j+3
∑

r=0

(

j + 3

r

)

(−1)r

∫ |x|

−|x| cos θ

tr
(

t2 − |x|2 + 1
)

j+3−r
2 dt
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+

∫

P2

|x − z|j dz

=
2π

|x|(j + 3)

j+3
∑

k=0

(

j + 3

k

)

(−1)rIj,r(|x|,−|x| cos θ) +

∫

P2

|x − z|j dz.

We, thus, have a closed representation for the kernels

Φδ;k(x, y) :=

{

(δ − |x − y|)k
(

∫

B∩Bδ(x)(δ − |x − z|)k dz
)−1

if y ∈ B ∩ Bδ(x)

0 otherwise,
(8)

k ∈ N0. We summarize here the formula for the denominator in (8):

∫

B∩Bδ(x)
(δ − |x − z|)k dz =

k
∑

j=0

(

k

j

)

δk−j(−1)j 4π

j + 3
δj+3 if |x| + δ ≤ 1,

∫

B∩Bδ(x)
(δ − |x − z|)k dz =

k
∑

j=0

(

k

j

)

δk−j(−1)j

(

2π

j + 3
δj+3

(

1 −
|x|2 + δ2 − 1

2|x|δ

)

+
2π

(j + 3)(j + 2)

(

1 − δ2 − |x|2

2|x|

)j+3
(

(

1 − |x|2 − δ2

2|x|δ

)−j−2

− 1

)

+
2π

|x|(j + 3)

j+3
∑

r=0

(

j + 3

r

)

(−1)rIj,r

(

|x|,
1 − |x|2 − δ2

2δ

)

−
π2−j−2

|x|(j + 3)(j + 2)

(

1 − |x|2 − δ2
)j+3

(

(

1 − |x|2 − δ2

2δ

)−j−2

− |x|−j−2

))

,

if |x| + δ > 1 and |x|2 ≤ 1 − δ2,

∫

B∩Bδ(x)
(δ − |x − z|)k dz

=
k
∑

j=0

(

k

j

)

δk−j(−1)j

(

2π

j + 3
δj+3

(

1 −
|x|2 + δ2 − 1

2|x|δ

)

+
2π

|x|(j + 3)

j+3
∑

r=0

(

j + 3

r

)

(−1)rIj,r

(

|x|,
1 − |x|2 − δ2

2δ

)

)

if |x| + δ > 1 and |x|2 > 1 − δ2,
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where Ij,r is given by (5), (6), and (7), respectively, depending on the parity
of j and r.

5 Numerical Results

For numerical verification, we take a function as a test function and try
to reconstruct it. To compute our convolution on B we use the standard
separation of an integral on B

∫

B

F (x)dx =

∫ 1

0
r2

∫

∂B

F (rξ) dω(ξ) dr.

For the integral over the sphere we used an equiangular grid and the quadra-
ture method given in [4] and for the line integral we used Simpson’s rule. Our

test function is f(y) = 250
√

105
2π

(y2
1 − y2

2)y3 sin(50|y|), y = (y1, y2, y3) ∈ B.

We calculated the convolution of f with the approximate identity in Exam-
ples 3.1 (with k = 1) and 3.2 for δ = 0.01 and δ = 0.004 and plotted the
result on the y1 = 0 plane, see Figures 4 and 5. The kernel of Example 3.2
was calculated numerically.
For δ = 0.01 we used 300 × 300 × 300 grid points for the integration on B.
We also calculated the rooted mean square error which is 6.0300 in case of
the kernel of Example 3.1 and is 6.2460 in case of the kernel of Example 3.2
for this δ. For δ = 0.004 we used 1000 × 1600 × 1600 grid points for the
numerical integration on B. The rooted mean square error is here 4.3077 in
case of the kernel of Example 3.1 and 4.9977 in case of the kernel of Example
3.2 for this δ. Note that always only a small number of the grid points is
relevant for each integral due to the local support.
In the plots of the error one can see that there is a significant error at the
boundary but near the poles where there are more points the error is com-
paratively small. So one can reduce this by using a larger number of grid
points near the boundary. We also observed that the kernel of Example 3.1
gives better results than the kernel of Example 3.2.
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Figure 4: (a,b) Graph of the closed representation of the function given in
Example 3.1, where x = (0,−1, 0) is fixed, plotted in the y1 = 0 plane. In (a)
we have δ = 0.1 and in (b) δ = 0.01; (c) Graph of the function in Example
3.2, where x = (0,−1, 0) is fixed, plotted in the y1 = 0 plane with δ = 0.01
and (d) is the graph of our test function
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Figure 5: (a,c) are the graphs of the difference of the actual function f and
the reconstructed function with parameter δ = 0.01 and δ = 0.004, respec-
tively, using the kernel of Example 3.1 (with the closed representation), and
(b,d) are the graphs of the difference of the actual function f and the recon-
structed function with the same parameters as in (a,c), respectively, using
the kernel of Example 3.2. (e) is the graph of the reconstructed function
f with parameter δ = 0.004 using the kernel of Example 3.1 and (f) is the
graph of the reconstructed function f with parameter δ = 0.004 using the
kernel of Example 3.2.
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