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Symbols

a0 equilibrium distance of atoms
a atomistic accelerations
b fine scale displacements
B matrix of interpolation weights from fine scale values to the

equilibrium positions of the atoms
c(κ) wave speed
C elasticity constant
C l(Ω1, Ω2) l-times continuous differentiable mapping from Ω1 to Ω2

d displacements of coarse scale nodes
E energy
Ekin instantaneous kinetic energy
Epot instantaneous potential energy
f ,F forces
F̄α coarse scale deformation gradient
g(x) weight function
H Hessian
I identity matrix
k spring constant
kB Boltzmann’s constant
L Laplace transformation

L̂ Liouville operator
m atomic mass
m̃ space dimension
m̂ number of extra weights for new interpolation
M atomic mass matrix
n number of atoms
ñ ratio of the distance of coarse scale nodes, compared

to equilibrium distance of atoms
N matrix of interpolation weights from coarse scale values

to the equilibrium positions of the atoms
p atomistic momenta
P projection operator
q atomic positions
q0 atomistic equilibrium positions
Q orthogonal projection operator
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6 SYMBOLS

r0,αβ interatomic distance in undeformed state
rαβ interatomic distance in deformed state
R(t) random force
T temperature
u atomic displacements
uc coarse scale part of atomistic displacements
uf fine scale part of atomistic displacements
w interpolation weight
Wα energy density
x positions of coarse scale nodes
δ(x) delta function
δj,k Kronecker symbol
∆t time discretization
∆T coarse scale time step
∆x, ∆y atomic discretisation
∆X, ∆Y coarse scale discretisation
εr relative error in the energy
κ wave vector
ρ phase space density
Σ stress tensor
ΣC configurational part of the stress tensor
ΣK kinetic part of the stress tensor
Θ(t) memory kernel
Φ potential energy
ω wave frequency
B fine scale momenta
H Hamiltonian function
L Lagrangian function
O Landau symbol
P coarse scale momenta



Introduction

Molecular dynamics, the numerical solution of the Newtonian evolution equations
for particles, first came up in the 1950th when the first computer simulations of
liquids were carried out [5]. It is constantly developed further and is nowadays a
widely used method to study diverse effects in material science of liquids and solids.

A problem of such simulations is, that the system under consideration often
consists of a huge number of particles with complicated interaction and requires a
very small time step for the numerical solution of the system of ordinary differential
equations. The simulation of a huge system with molecular dynamics is therefore
often not directly possible. In many cases, periodic boundary conditions [5] can
be used to avoid this problem, but it depends on the effects of interest if such an
approximation is applicable. E.g. for the simulation of surface coating by sputtering,
we cannot use periodic boundary conditions, at least not in growth direction, since
a free surface is necessary there. A possible solution is to describe the surface effects
with an atomistic model and to use a coarser model several atomic layers away from
the boundary.

Such problems do not only occur in molecular dynamics simulations but in dif-
ferent areas in the computer simulation of real materials. To describe an effective
material behaviour often requires to take into account different physical effects. The
characteristic length and time scales of these can be very different. Therefore, a sim-
ulation of all relevant effects on the finest scale is often impossible. The different
effects can thereby be important in different parts of the domain or in the whole do-
main, and they usually influence each other. Different mathematical models, valid
on different length and time scales or in different parts of the domain, are then
necessary to describe the complex behaviour. This models can be e.g. quantum-
mechanical, atomistic or continuum descriptions.

The coupling of different models, the transition between them and the effective
numerical solution are therefore a basic requirement for the study of material be-
haviour by computer simulation. Dependent on the type of interaction between the
different scales, several coupling or approximation methods have been developed.

The first class are the hierarchical methods. The computations on each scale are
performed separately, and the results determine the parameters or the constitutive
equations on the next coarser scale (e.g. [24, 25, 26, 6]). The fine scale computations
in this upscaling approaches are often performed on a small representative volume
element, to compute the effective properties for the model on the next coarser level.
An example is the computation of macroscopic properties like the diffusion coefficient
or the viscosity from microscopic simulations. They are then used in macroscopic
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8 INTRODUCTION

simulations on the level of continuum mechanics.
Another possibility, especially for different models in different parts of the do-

main, is the coupling by multi-scale boundary conditions. The results in one part of
the domain are used as boundary conditions for another part. They can be updated
in every time step for dynamic and in every iteration step for static simulations, or
they can be prescribed for the whole simulation. An example for the latter one are
the extended system methods in molecular dynamics simulations, where the atom-
istic evolution equations are changed to guarantee e.g. a constant temperature in
the whole domain or at the boundary (cf. [11, 33, 43, 44]).

The third class are the concurrent coupling approaches, where the results on
the different scales are computed simultaneously. In contrast to the hierarchical
methods, not only the information of the fine scale is used on the coarse scale but
also vice versa.

The focus of this thesis are concurrent coupling methods in molecular dynamics
simulations for the coupling of an atomistic and a coarse scale region. Different
methods for such a coupling are constructed in the literature. An example for the
case of a static problem is the quasi-continuum method [46, 64, 65, 68], for dynamic
problems there are many approaches like the concurrent coupling of length scales
method [1, 16, 69], the bridging scales method [53, 55, 55, 71], the coarse grained
molecular dynamics [58, 60] and many others [10, 17, 21, 23, 27, 28, 32, 47, 50, 62,
63, 72, 73]. For an overview of different methods see e.g. [22, 49, 56, 59].

Outline In the first chapter, we explain the physical effects in a sputtering process
and present the basic ideas of molecular dynamics simulations. In chapter 2, the
special requirements in the approximation of the simulation of surface coating by
sputtering are explained, local observables to compare the results are defined and
the concurrent coupling of length scales and the bridging scales method are pre-
sented. In chapter 3, we investigate both methods with regard to their applicability
in the simulation of surface coating. We show that the first one leads to the reflec-
tion of fine scale waves at the interface between atomistic and coarse scale region,
the second one gives an approximation that is not energy conserving. Therefore,
we present in chapter 4 a new method, based on the displacement splitting of the
bridging scales method and motivated by a projection operator approach, to derive
the coupling of an atomistic and a coarse scale region, together with a reflectionless
boundary condition at the interface, directly from the Lagrangian function of the
system. Possible approximations in the Lagrangian that lead to energy conserving
approximations for the coupling are discussed in chapter 5, as well as numerical as-
pects of this approximations. Additionally, we show how to choose the interpolation
from coarse to fine scale in such a way that the dispersion relation in the coarse
scale region is correct for the approximations. Examples for one dimensional simu-
lations are given. In chapter 6, the use of this orthogonal displacement splitting for
two dimensional simulations is explained and examples and comparisons with the
bridging scales method and for different interpolation functions are given.



Chapter 1

Molecular dynamics simulations of

a sputtering process

In this chapter, the basic ideas of molecular dynamics simulation as a numerical
method to solve Hamiltonian systems are presented. In section 1.1, we explain the
physical effects in a sputtering process that is one example of a system, where a
simulation on different scales can be necessary. Then we state some basic principles
of Hamiltonian systems in section 1.2 and of statistical mechanics in section 1.3,
to provide the necessary fundamental concepts for a classical mechanics model of
the sputtering process. In section 1.4, the numerical solution of the model with
molecular dynamics is explained.

1.1 Sputtering process

Sputtering processes are used e.g. in the production of semiconductors. Single copper
atoms are sputtered there on a silicon crystal, in such a way that after a while a
thin layer of copper builds out on top of the crystal. This layer typically consists of
several mono-layers of copper atoms.

The atoms hitting the crystal usually have a high kinetic energy, which leads
to several effects. First of all, the crystal heats up due to the extra kinetic and
binding energy. Therefore, in the real production process, some cooling is necessary,
to avoid this increase in temperature. Later on we will see, that one of the most
important problems in numerical simulations of a sputtering process is to model this
energy transfer. In addition to this heating up, an excitation is imported, leading
to waves travelling through the crystal. When an atom hits the crystal, it does not
necessarily remain on top of the other atoms, but, due to its high kinetic energy, it
can penetrate into the already sputtered layers or even into the crystal, producing
again travelling waves. Altogether, this leads to the development of stresses. This
should usually be controlled in the production process.

Since it is very difficult in the real process to detect the influence of the process
parameters on this stress development, the aim of a DFG project at the Fraunhofer
ITWM is to simulate the sputtering process with molecular dynamics, which will be
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10 CHAPTER 1. MOLECULAR DYNAMICS SIMULATIONS

Figure 1.1: schematic illustration of the sputtering process

explained in the following.

1.2 Hamiltonian systems

We give an overview of some basic concepts of classical mechanics. The notation
follows [2], a more detailed derivation of the equations can be found there or in other
textbooks of classical mechanics.

To simulate the sputtering process numerically, we first need a mathematical
model to describe the atomic motion. In classical mechanics, this is given by New-
ton’s second law,

mjaj(t) = Fj(t), j ∈ {1, . . . , n}
where aj and mj denote the acceleration and the mass of atom j, Fj the force acting
on this atom and n the number of atoms.

The second possibility to get the system of equations, is to derive them from the
Lagrangian formulation. The Lagrangian function L is defined as

L(q, q̇, t) :=
1

2

n
∑

j=1

mj q̇
2
j (t) − Φ(q1(t), . . . , qn(t)),

where the first term on the right is the kinetic energy, Φ(q) is the potential energy
and qj and q̇j denote the position and velocity of atom j. We concentrate in the
following only on pair potentials. If L is a smooth function, the variational principle
of Hamilton states, that the atoms move in such a way that the first variation of
the integral over the Lagrangian function vanishes, i.e.

δ

∫ b

a

L(q, q̇, t) = 0.
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From this principle, the equations of motions can be derived as

∇qL(q, q̇, t) − d

dt
∇q̇L(q, q̇, t) = 0,

with ∇x = ( ∂
∂x1

, . . . , ∂
∂xn

) [2]. Introducing the conjugate momenta,

pj(t) :=
∂L
∂q̇j

,

we can change from Lagrangian to Hamiltonian description via Legendre transfor-
mation,

(q, q̇, t) 7→ (q, p, t)

H(q, p, t) :=
n

∑

j=1

p2
j

mj

− L(q, q̇(p), t) =
1

2

n
∑

j=1

p2
j

mj

+ Φ(q).

Now, the Hamiltonian system can be derived as partial derivatives of this Hamilto-
nian H,

q̇j =
∂H
∂pj

=
pj

mj
,

ṗj = −∂H
∂qj

= −∂Φ

∂qj
= Fj.

(1.1)

We end up with a system of first order differential equations, where the right hand
side can be highly nonlinear, since the potential energy can be rather complicated.

Since

d

dt
H(q, p, t) =

n
∑

j=1

(

∂H(q, p, t)

∂qj

q̇j +
∂H(q, p, t)

∂pj

ṗj

)

=

n
∑

j=1

(

∂H(q, p, t)

∂qj

∂H(q, p, t)

∂pj
− ∂H(q, p, t)

∂pj

∂H(q, p, t)

∂qj

)

(1.2)

= 0

holds, the Hamiltonian is a first integral, called the energy [37, 2].
If we define the Liouville operator L̂ in the following way,

iL̂ :=

n
∑

j=1

q̇j
∂

∂pj
+ ṗj

∂

∂qj
=

n
∑

j=1

∂H
∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
,

the energy conservation (1.2) can be rewritten as

iL̂H = 0.



12 CHAPTER 1. MOLECULAR DYNAMICS SIMULATIONS

If we have a mechanical system, consisting of many atoms and a Hamiltonian
formulation, describing its time evolution, we can try to solve the Hamiltonian
system of equations, to get the positions and momenta at every arbitrary point in
time. However, in most of the simulations, we are not interested in this huge amount
of data, but only in the time evolution of so called observables, which are functions
that depend on the actual positions and momenta of the atoms,

A(t) = A(q(t), p(t)).

This are e.g. autocorrelation functions or transport coefficients that can be calculated
from ensemble averages of autocorrelation functions. An example is the diffusion
coefficient D, which can be calculated from the autocorrelation of the velocity v,

D =
1

3

∫ ∞

0

〈v(t)v(0)〉 dt,

with 〈 · 〉 the ensemble average, which is explained in the next section.
The observables are usually quantities that are available from measurements.

Therefore, they can be used to validate theoretical models of real life systems or to
compute this quantities in case that measurements are very difficult. In terms of
the Liouville operator, their evolution is given as

Ȧ(q(t), p(t)) = iL̂A(q(t), p(t)),

with the formal solution

A(q(t), p(t)) = exp(iL̂t)A(q(0), p(0)).

1.3 Statistical mechanics

If we can solve the Hamiltonian equations, we can compute the values of the ob-
servables from the positions and momenta of the atoms. Since real physical systems
often consist of millions of atoms, in many cases statistical methods can be used to
calculate averages and fluctuations of certain observables. Some of the basic ideas
of statistical mechanics are outlined in the following. A more detailed description
can be found e.g. in [40, 70, 35].

If we have a mechanical system, consisting of n atoms in a d dimensional space,
the system is well defined by its 2nd degrees of freedom, the position and momentum
of each atom in each coordinate direction. Every configuration of the coordinates of
the system can be considered as a point in a 2nd-dimensional space, the so called
phase space. By Γ = (q, p) we denote a point in this phase space and a collection
of points is called an ensemble. Since a Hamiltonian system is energy conserving,
the total energy is given by its initial conditions. If the system is evolving in time,
the trajectory can only reach points on the surface of a sphere in phase space that
conserves this energy.

If we are not especially interested in the positions and momenta of the atoms, but
only in macroscopic quantities, like temperature, pressure, etc. that are calculated
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from the microscopic configuration, it is sufficient to consider the phase space density
ρ(Γ). This function is a probability density that gives the probability of finding a
system of n atoms in a given region in phase space. Therefore, we get

∫

ρ(Γ)dpdq = 1

if we integrate over the whole phase space. This density can change in time. But
since systems can neither be destroyed nor created, the total derivative of the density
is zero. This fact is stated by the Liouville theorem,

dρ

dt
=

∂ρ

∂t
+

n
∑

i=1

q̇i
∂ρ

∂qi

+ ṗi
∂ρ

∂pi

=
∂ρ

∂t
+ iL̂ρ = 0

or
∂ρ

∂t
= −iL̂ρ,

which can be considered as the foundation of statistical mechanics.
If the density ρ in every point in phase space does not change in time, ∂ρ/∂t = 0,

the corresponding ensemble is ergodic and is called an equilibrium ensemble. For
an ergodic system the ergodic hypothesis

lim
t→∞

∫ t

0

A(Γ(t))dt = 〈A(t)〉t = 〈A(Γ)〉ens =

∫

A(Γ)ρ(Γ)dΓ (1.3)

holds, which states that the time average is equal to the ensemble average. The
symbol 〈 · 〉 will be used in the following for expectations. According to the ergodic
theorem, we can compute them from time average or from phase space average,
as long as the system is in equilibrium. In molecular dynamics simulations (cf.
section 1.4), the averages are computed from the time average over a long time
interval, in Monte Carlo simulations from ensemble averaging.

As mentioned above, the phase space density depends on the macroscopic prop-
erties of the system. If we consider a closed system, the invariants are the energy
E, the volume V and the number of particles N . The corresponding ensemble is
called the microcanonical ensemble or NVE ensemble, with a density distribution
proportional to the delta-function

ρ(E) ∼ δ(E −H).

If the system under consideration is a subsystem of a larger system with energy
exchange but without particle exchange, the invariants are the temperature T , again
the number of particles N and the volume V . Therefore, it is called NVT ensemble
and the phase space density is given by

ρ ∼ exp(−H/kBT ).

Furthermore, for a Hamiltonian system the equipartition theorem holds, i.e.
〈

pi
∂H
∂pj

〉

= δi,jkBT,

〈

qi
∂H
∂qj

〉

= δi,jkBT, (1.4)
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where kB is Boltzmann’s constant and δi,j the Kronecker symbol. It states that,
on average, we get the same energy for each degree of freedom in the system. The
temperature T is the average over the instantaneous temperature T defined as

T =
2Ekin

dnkB
=

1

dnkB

n
∑

i=1

p2
i

mi
,

with Ekin the instantaneous kinetic energy [5]. We need this definition of tempera-
ture later on for the constant temperature simulation in our approximation.

The concepts of statistical mechanics, presented above, are of course not only
valid for systems of atoms but for all kinds of systems of particles with an analogous
Hamiltonian formulation.

1.4 Molecular dynamics

With (1.3) we can compute averages over observables in general with the distribu-
tion function ρ, without solving the system of ordinary differential equations (1.1).
However, evaluation of the integral is not possible in most of the cases, especially
if the Hamiltonian is very complicated. Additionally, in our example of the surface
sputtering process, the system is out of equilibrium if an atom hits the surface of
the crystal. Therefore, even with statistical methods, there is a need to solve the
Hamiltonian system of equations numerically. This is done in molecular dynamics
simulations. We present the basic concepts and refer to some textbooks, e.g. [38] or
[5], for more details.

Since the Hamiltonian system (1.1) is energy conserving, we should discretise the
system in time and choose a symplectic numerical integrator, i.e. one that conserves
the energy of the system. Widely used is the Verlet algorithm or one of its several
modifications. In the following, we use the velocity Verlet algorithm that gives the
positions and velocities v(t) = q̇(t) to second order accuracy. The position update
is obtained from the Taylor expansion

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2a(t) + O(∆t3),

with the accelerations a(t) = q̈(t). To derive the velocity update, we need the Taylor
expansion of the velocity and the acceleration update,

v(t + ∆t) = v(t) + ∆t a(t) +
1

2
∆t2ȧ(t) + O(∆t3), (1.5)

a(t + ∆t) = a(t) + ∆t ȧ(t) + O(∆t2). (1.6)

We insert ȧ(t) from (1.6) in (1.5) to obtain

v(t + ∆t) = v(t) +
1

2
∆t(a(t) + a(t + ∆t)) + O(∆t3).

We use this update algorithm, since it gives the positions and velocities in the
same time step. Other algorithms use staggered time steps for the computation of
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positions and velocities, e.g. q(t+∆t) and v(t+∆t/2), and interpolate the velocities
in between, to compute the kinetic and potential energy at the same time.

In a simulation, the update of the velocity Verlet algorithm is usually performed
in three steps,

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2a(t),

v

(

t +
∆t

2

)

= v(t) +
1

2
∆t a(t),

v(t + ∆t) = v

(

t +
∆t

2

)

+
1

2
∆t a(t + ∆t),

to avoid the necessity of storing the acceleration of the old and new time step
simultaneously.

Since the computation of the atomic forces is usually the most time consuming
part of a molecular dynamics simulation, implicit integration schemes, that require
additionally the calculation of the Hessian of the potential, can typically not be
used. It is less costly to take an explicit integration scheme with a smaller time
step.

As important as the choice of the numerical integrator, is the sampling of ini-
tial conditions for molecular dynamics simulations. From the equipartition theorem
(1.4), it is known, that the average kinetic energy per degree of freedom is pro-
portional to the temperature in an equilibrium system. For the momenta, we get
directly the variance of the distribution 〈pi

∂H
∂pi

〉 = 〈p2
i /mi〉 = 1/mi σ(pi) = kBT . We

can choose them e.g. from a Gaussian (N) distribution or a uniform (U) distribution,

pi ∼ N(0, kBTmi) or pi ∼ U
(

−
√

3kBTmi,
√

3kBTmi

)

.

The situation is different for the positions, since 〈qi
∂H
∂qi

〉 gives not their variance,
i.e. we cannot sample them directly from a given distribution. A possibility to
circumvent this problem is to choose all positions at the equilibrium values q0,
which are the positions of mimimal potential energy, and to sample the momenta
with twice the temperature. The system will reach the equilibrium after some time,
i.e. the energy will be distributed equally to all degrees of freedom according to
the equipartition theorem. However, the number of time steps necessary for this
equilibration depends strongly on the system.
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Chapter 2

Approximations in molecular

dynamics simulations

Since in many molecular dynamics simulations a huge system of ordinary differential
equations has to be solved, some efforts have been made to develop methods that
reduce the complexity of the system. They range from the use of periodic simulation
boxes [5] to the upscaling of atomistic equations, e.g. [6, 25, 26]. All these methods
have in common, that their applicability depends strongly on the underlying atom-
istic model and on the effects that we want to study. In section 2.1, we explain the
advantages of using a coupled system as an approximation in the molecular dynam-
ics simulation of the sputtering process. Then, we define a local stress tensor for
the atomistic model in section 2.2, and we explain in section 2.3 how we want to
compare fully atomistic and approximated solutions with respect to this local stress
tensor and the energy in the system. In sections 2.4 and 2.5 two methods to derive
such a coupled system are presented. We will analyse and compare them for model
problems in the next chapter.

2.1 Approximations in the simulation of the sput-

tering process

The basic problems in molecular dynamics simulations are often very time consuming
force calculations and the requirement of very small time steps in the simulation.
The tabular gives an overview of the different time scales for the sputtering process.

time scale [s] process
10−15 time step of the integrator

10−5-10−4 time between two copper atoms hitting a typical
simulated crystal slap

10−1 time for a complete copper layer to grow

The number of atoms for which the Hamiltonian system of equations can be solved,
is therefore strongly limited, as is the total simulation time. One possibility to
circumvent this problems, is to use a small simulation box with periodic boundary

17
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PSfrag replacements

MD coupling approximation

Figure 2.1: different regions of the crystal

conditions. However, this method cannot be used in the simulation of the sputtering
process, at least not in all coordinate directions, since we need a free boundary at
the surface of the crystal, where the layer of copper develops. Additionally, periodic
boundary conditions are mainly used for the simulation of equilibrium situations.
In contrast to this, our system is not in equilibrium anymore, after a copper atom
hits the surface.

Using only a small system without periodic boundary conditions is also not
possible. This would lead to a heating up of the system, since the high energy of the
sputtered atoms cannot leave the system. Each atom hitting the crystal generates a
perturbation, travelling through the crystal, that would be reflected at the boundary
of our simulation box, causing another non physical effect in the system.

On the other hand, we do not want to use an upscaling approach, in the sense
of deriving evolution equations on a larger scale and solving them numerically on a
coarser grid. The effects near the surface, like atomic hopping [63] or the penetration
of atoms into the crystal, occur on the atomic level and cannot be covered by a model
valid on a larger scale. However, such effects are very improbable several layers of
atoms away from the surface. We can assume that the important effects there,
like travelling waves, are of such kind that we do not need the whole atomistic
information anymore, but can describe them on a coarser scale. Like this, we get a
division of our crystal in two parts, one with an atomistic description, one with a
description on a coarse level and a transition region in between, see figure 2.1.

On the coarse level, we want to use again a system of ordinary differential equa-
tions, but with less degrees of freedom due to a larger space discretisation. For
such an approximation we have to face two problems. First, we need good evolution
equations on the coarse scale, i.e. the information that we compute on this scale
should be the equivalent information that we would get from an atomistic simula-
tion. Second, we have to couple the coarse scale equations to the atomistic ones.
In our simulations, the information that we want to keep on the coarse scale is the
velocity of propagation of coarse scale waves. How we can verify that this quantity
is correct, is explained in section 2.3.
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2.2 Definition of microscopic stress tensor

In section 1.1, the development of stresses in the crystal during the sputtering process
was explained. Naturally, the stress is a quantity measured on a macroscopic scale,
defined for a continuum model of a system. If we want to calculate something like
a stress in atomistic simulations, we first need the connection of this quantity to
the microscopic scale. The derivation, used in the following, was carried out in [36].
We summarize shortly the derivation of the microscopic stress tensor, which will be
used here for the one and two dimensional case (d = 1, 2), using the notation of [45].

The basic idea is to define mesoscopic quantities as local averages of microscopic
values. The derivation of a local stress tensor starts with the definition of a local
continuous mass density function,

ρ(x, t) :=

n
∑

i=1

mig(qi(t) − x), (2.1)

which is a weighted average of the mass of the particles in the neighbourhood of the
continuum point x. The weight function g(x) should fulfil the following conditions:

• g(x) is a non-negative local function in space, i.e. the function is non-zero only
in a small neighbourhood of x,

• g(x) ∈ C1(Rd, R), i.e. g(x) is a differentiable mapping from R
d to R,

• g(x) is normalized:
∫

Rd

g(x)dx = 1.

The third condition is necessary to obtain spatial averages for the mesoscopic func-
tions, which are consistent with the microscopic quantities. These quantities are
defined like the mesoscopic ones, with a delta-function instead of g(x). For the mass
density we get the equality

∫

Rd

n
∑

i=1

miδ(qi(t) − x)dx =

∫

Rd

n
∑

i=1

mig(qi(t) − x)dx.

Taking the time derivative of (2.1) and using the Hamilton equations (1.1), we
can derive from the macroscopic equation of continuity,

∂ρ(x, t)

∂t
= − div p(x, t),

a continuum expression for the momentum p(x, t),

p(x, t) =
n

∑

i=1

pi(t)g(qi(t) − x).
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The spatial divergence is defined as

divf :=
d

∑

k=1

∂

∂xj
fj.

With the momentum conservation equation, a similar expression for the micro-
scopic stress tensor σ can be derived,

∂p(x, t)

∂t
= div σ(x, t).

Since the component of the time derivative of the continuous momentum in coordi-
nate direction α,

ṗα(t) = −
n

∑

i=1

∂Φ

∂qα
i

g(qi(t) − x) +

n
∑

i=1

d
∑

β=1

pα
i pβ

i

mi

∂

∂qβ
i

g(qi(t) − x), (2.2)

consists of two parts, we split the stress tensor σ accordingly into a configurational
and a kinetic part, i.e.

σ = σC + σK . (2.3)

If the kinetic part is defined as

σαβ
K (t) := −

n
∑

i=1

pα
i pβ

i

mi
g(qi(t) − x), (2.4)

its divergence gives directly the second part of (2.2).
To find σC in such a way that its divergence is the first part of (2.2), this part is

rewritten as

−
n

∑

i=1

∂Φ

∂qα
i

g(qi(t) − x) = −1

2

n
∑

i=1

n
∑

j=1

i6=j

∂Φ

∂qα
i

[g(qi(t) − x) − g(qj(t) − x)]

= −
n

∑

i=1

n
∑

j>i

∂Φ

∂qα
i

∫

Cij

∇qg(q(t) − x)dq. (2.5)

In (2.5) Cij denotes a curve from qi to qj. If the gradient is taken with respect to x
instead of q and Cij is the straight line connecting qi and qj, one obtains

−
n

∑

i=1

∂Φ

∂qα
i

g(qi(t) − x) = ∇x

n
∑

i=1

n
∑

j>i

∂Φ

∂qα
i

∫

Cij

g(q(t) − x)dq

= ∇x

n
∑

i=1

n
∑

j>i

∂Φ

∂qα
i

(qi(t) − qj(t))

∫ 1

0

g(qi(t) − qijs − x)ds,

with qij := qi(t) − qj(t). The derivative of a pair potential can be rewritten as

∂Φ

∂qα
i

= Φ′(|qij|)
qα
ij

|qij|
,
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Figure 2.2: one dimensional example for stress tensor (left) and atomistic energy
(right)

to get finally

σαβ
C (t) =

n
∑

i=1

n
∑

j=i+1

Φ′(|qij|)
qα
ijq

β
ij

|qij|

∫ 1

0

g(qi(t) − qijs − x) ds.

For the evaluation of the continuum stress, the weight function is not considered
in every continuum point x but only at points on a regular coarse grid. A possible
choice of the function g(x), which will be used in the following, is

g(x) :=
d

∏

α=1

1

δα
cos2

(

π

2

xα

δα

)

Θ
(

(δα)2 − (xα)2
)

,

where Θ(x) denotes the characteristic function,

Θ(x) =

{

1 , x ≥ 0
0 , x < 0

,

and δα gives the width of the support of the weight function in every coordinate
direction α.

Figure 2.2 shows on the left panel a one dimensional example of this stress
tensor, for a chain of 151 atoms and a harmonic potential with nearest neighbour
interaction. All stress and energy plots for the one dimensional examples are made
with Matlab 6.5. Initial displacements and momenta are zero for all atoms, only
the first atom gets a non-zero initial momentum to produce a perturbation in the
chain. In chapter 3, this model problem will be explained in more detail. On one
axis we mark the equilibrium positions of the atoms, on the other the simulation
time (∆t = 0.1, k = m = a0 = 1). The colour corresponds to the value of the stress
tensor that has only one entry for the one dimensional case. The perturbation
is travelling from the left end of the chain to the right, where it is reflected. It
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produces a stress in the chain at the atoms that are moved due to the perturbation.
Therefore, the local stress tensor can be used to visualize the time evolution of such
a perturbation. The support of the weight function g(x) in figure 2.2 is δ = 3a0.
If the spatial coarse graining of the stress tensor is increased, by increasing δ, the
resolution of the stress tensor decreases, since very small local effects get lost in the
averaging.

2.3 Comparing the solutions

Our main goal is to find an approximation for the huge system of ordinary differential
equations, which describes the sputtering process. According to section 2.1, this
should be done in such a way that the atomistic information is kept in one part
of the domain and a coarse scale approximation is used in the remaining part, to
reduce the overall system size.

If this reduced system is solved numerically, of course, some information con-
tained in the original system gets lost. Therefore, it is not possible to compare
positions and momenta of the two systems one by one, but it has to be defined with
respect to which quantities the solutions should be identical.

The transport of energy in the system is of special importance for the sputtering
process. Therefore, the first quantity for the comparison of fully atomistic and
approximated solution is the time evolution of the energy in the atomistic region.
On the right panel of figure 2.2, the energy of the first 51 atoms of the example
considered in section 2.2,

Eat =
1

2

51
∑

i=1

p2
i

mi
+

1

2

51
∑

i=2

k(qi − qi−1 − a0)
2, (2.6)

is given over time. The red line is the kinetic, the blue one the potential and the
green line the total energy. When the perturbation is travelling through the chain
and leaves the region of the first 51 atoms, the energy of this atoms decreases. We
will show later that one of the basic problems in the coupling of atomistic and coarse
scale equations is the reflection of waves in the transition region from atomistic to
pure coarse scale description. If parts of the waves are reflected, the energy decrease
in the atomistic region is changed, since the perturbation cannot leave this region
completely.

The second quantity, to compare the solution of fully atomistic and approximated
system, is the microscopic stress tensor, defined in the previous section. If we have
spurious reflections in the transition region, they can be observed as deviations from
the fully atomistic stress in 2.2.

With the atomistic energy and the local microscopic stress tensor, two criteria
are defined, to check for reflections of waves and other influences of an approximation
on the solution in the atomistic region.

Additional to the requirement that this influences should be as small as possible,
the information computed on the coarse scale should be the corresponding informa-
tion of the atomistic solution. If some perturbation is travelling through the crystal,
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the velocity of this perturbation in the coarse scale region should be conserved. We
will explain now how this velocity is computed for the one dimensional case.

A perturbation consists of different harmonic waves with different wave vectors
κ, and each wave vector has a different velocity in an atomistic system. If the
harmonic solution of atom i for given κ,

uj(t) = exp(i(ωt + jκ∆x)),

is plugged into the system of differential equations, we can solve for the frequency
ω(κ). The dependence of the frequency on the wave vector is called the disper-
sion relation, and ∆x denotes here the space discretisation parameter. With this
information, the velocity of propagation of the harmonic wave can be computed as

c(κ) =
ω(κ)

κ
.

To resolve a wave on a grid, we need at least two discretisation points per wave
length λ = 2π/κ. This is the spatial analogon to the Nyquist sampling theorem,
which states, that a signal has to be sampled with twice its frequency that it can be
reconstructed from the sampling information. Therefore, the maximum wave vector
is given by the space discretisation,

κ ∈
(

0,
π

∆x

]

.

Since the number of harmonic solutions of the system corresponds to the number of
atoms, the different wave vectors are

κj =
π

j∆x
, j ∈ {1, . . . , n − 1}.

As an example, we compute the wave speed for the chain of 151 atoms with
harmonic nearest neighbour interaction from section 2.2. Each inner atom has the
evolution equation

mül(t) = k(ul−1 − 2ul + ul+1),

with l the index of the atom. The resulting dispersion relation is

ω2 = 4
k

m
sin2

(κa0

2

)

.

The limit of the velocity,

c(0) := lim
κ→0

ω(κ)

κ
=

dω(κ)

dκ

∣

∣

∣

κ=0
=

√

k

m
a0,

depends only on the parameters m, k and a0. If the velocity is scaled with the
inverse of this factor,

c̃(κ) :=
ω(κ)

κ

1

a0

√

m

k
, (2.7)

the result is a function with limit 1, independent of parameters. Figure 2.3 shows
this scaled dispersion relation for the example.

The quantities presented here for the comparison of atomistic and approximated
solutions will be used in the next chapters for the evaluation of several approxima-
tions of some model problems.
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Figure 2.3: example of dispersion relation

2.4 Concurrent coupling of length scales method

This method to approximate a large molecular dynamics system by the coupling
with a finite element approximation of partial differential equations was developed
in 1998 [1], as a dynamic extension of the quasicontinuum method [68, 64, 65], used
to approximate quasi-static atomistic problems, e.g. nano-indentation in a crystal.
It includes also a coupling with a quantum mechanical tight-binding scheme for
more exact interatomic force calculations, which will not be considered here. In the
following, we give a short outline of the coupling of molecular dynamics with the
finite element method. The method is described in detail in [1, 69], the atomistic
calculation of the finite element elasticity constants in [68, 16]. The finite element
method as an approximation for the solution of partial differential equations will
not be explained here, since it can be found in many textbooks (e.g. [74, 12, 9]). We
mention here only the important aspects for the coupling.

The main idea is to divide the domain into a molecular dynamics and a finite
element region, depending on the required accuracy of the solution. Then, an overall
Hamiltonian is defined, depending on the atomistic positions q and velocities q̇ in
the molecular dynamics part HMD, on the displacements u and velocities u̇ in the
finite element part HFE, and on both in the transition region HMD/FE:

H(q, q̇, u, u̇) := HMD(q, q̇) + HMD/FE(q, q̇, u, u̇) + HFE(u, u̇).

The molecular dynamics Hamiltonian is defined in the usual way,

HMD(q, q̇) :=
1

2

∑

i∈I

miq̇
2
i +

1

2

∑

i,j∈I

Φ(|qi − qj|),

and the finite element Hamiltonian is defined as the variational integral of linear
elasticity [61],

HFE(u, u̇) :=
1

2

∫

∑

µ,ν,λ,σ

εµν(x) Cµνλσ ελσ(x) dΩ +
1

2

∫

ρ(x)u̇2(x)dΩ,
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with the linearised strain tensor

εµν :=
1

2

[

∂uµ

∂xν
+

∂uν

∂xµ

]

.

Stress and strain are linearly related by the fourth order elasticity tensor C that can
be determined from the underlying atomistic model [68, 16]. In chapter 3, we will
give an example for the computation of C. It is however not necessary to assume
linear elasticity in the finite element region [69].

The finite element Hamiltonian is continuous, therefore we have to discretise it
to find a numerical solution and to define the coupling in the transition region. As
usual in solving partial differential equations with the finite element method, the
domain is discretised in so called finite elements, e.g. triangles in two or tetrahedra
in three dimensions, and local interpolation functions ϕ(x), e.g. linear hat functions,
are defined on this discretisation.

If the displacements and velocities on the finite elements are approximated with
this local functions,

u(x) =
∑

j

ujϕj(x), u̇(x) =
∑

j

u̇jϕj(x),

we get again a discrete Hamiltonian

HFE =
1

2

∑

k

∑

i,j

(uiK
k
ijuj + u̇iM

k
iju̇j).

The coefficients Kk
ij and Mk

ij are computed from the finite element interpolation
functions,

Mk
ij =

∫

Ωk

ρ ϕi(x)(ϕj(x))T dx, Kk
ij =

∫

Ωk

∇ϕi(x) C (∇ϕj(x))T dx,

where Ωk denotes the finite element k. We assume that the mass density ρ is
constant in the whole domain. The coefficients are computed separately for each
element, to be able to compute also the forces for each element separately in the
transition region. For the finite element masses, we can use a so called lumped mass
approximation, i.e. the mass of every node is defined as the sum of all corresponding
coefficients Mk

ij,

Mii =
∑

k

∑

j

Mk
ij, Mij = 0, for j 6= i.

Then, the finite element Hamiltonian has the same structure as the atomistic
Hamiltonian,

HFE =
1

2

∑

k∈K

∑

i,j∈I

uiK
k
ijuj +

1

2

∑

i∈I

Miiu̇
2
i . (2.8)

This has the advantage, that we can use the same update algorithm as in the atom-
istic region. Since we want to use this finite element Hamiltonian only for the
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Figure 2.4: transition region between atoms (left) and finite elements (right)

elements in the pure coarse scale region, the set K denotes the elements and I the
nodes in this region.

Finally, we need a Hamiltonian for the transition region between atoms and finite
elements, which is marked grey in figure 2.4. By starting with a continuous formula-
tion in the finite element region, the information of the transition from atomistic to
approximated equations is lost, and it has to be reproduced now artificially. There-
fore, the finite element nodes in this region are chosen as the equilibrium positions
of the atoms, i.e. every displacement of an atom from its equilibrium position can
be considered as a nodal displacement and vice versa. Forces due to interaction over
the interface are computed with respect to both the atomistic and the finite element
description and contribute both with half of their weight to the resulting force in
the transition region. That is

HMD/FE :=
1

4

∑

i∈Ĩ

miq̇
2
i +

1

4

∑

i,j∈Ĩ

Φ(|qi − qj|)

+
1

4

∑

k∈K̃

∑

i,j∈Ĩ

uiK
k
ijuj +

1

4

∑

i∈Ĩ

Miiu̇
2
i ,

with u̇i = q̇i, ui = qi − qeq,i, ∀i ∈ Ĩ ,

where the set Ĩ denotes atoms and the set K̃ elements in the transition region,
and qeq,i is the equilibrium position of atom i, i.e. the position of minimal potential
energy. This choice of the Hamiltonian in the transition region is somehow artificial,
since it is not motivated by transition from atomistic to coarse scale.

In [65] a three dimensional example of crack propagation was computed with
this coupling scheme, with an atomistic region and two neighbouring finite element
regions in one direction. In the orthogonal direction periodic boundary conditions
were used, for both the atoms and the finite element nodes, and in the finite element
region a two dimensional solution was computed under the assumption of a plane
strain situation. For a constant strain rate at the finite element boundaries and a
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Figure 2.5: linear interpolation from coarse scale nodes to atoms (left) and displace-
ment splitting (right)

constant velocity gradient within the slab, no reflection of waves at the interface
between atomistic and finite element region was observed. However, for waves with
small wave length in the atomistic region, this cannot be expected. The influence
of this reflections in the situation of the sputtering process and the dependence on
the coupling scheme will be investigated in chapter 3.

The coupling of length scales scheme was also used for other applications, like dis-
location emission at the silicon/silicon-nitride interface [7], a projectile impact on a
3D block of crystalline silicon [52], and induced stress distributions in silicon/silicon-
nitride nano-pixels [48].

2.5 Bridging scales approximation

Another approach, for approximating the huge system of ordinary differential equa-
tions in molecular dynamics simulations, was developed in 2003 by G. Wagner and
W. K. Liu [71]. The main difference to the coupling of length scales approach is,
that a coarse scale description is not derived as an approximation of a continuum
formulation. Instead, a coarse scale grid is defined, and evolution equations are
derived for the coarse scale nodes. We summarize the main ideas and refer to the
original publication for a more detailed description.

Coarse and fine scale Lagrangian The starting point is the choice of the coarser
grid. We choose the equilibrium position of every ñth atom as a coarse scale node.
On this grid, we define an interpolation from the coarse scale nodes back to the
atomic scale. With Nj we denote the interpolation function of node j, with Nij its
evaluation at the equilibrium position of atom i,

Nij = Nj(qeq,i), i ∈ {1, . . . , n}, j ∈ {1, . . . , nc},

where nc denotes the number of coarse scale nodes. We can choose e.g. linear finite
element hat functions as interpolation functions. Figure 2.5 shows on the left panel
an example for ñ = 3. The advantage of evaluating the interpolation functions at
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the equilibrium positions, instead of the time dependent atomic positions is, that
the interpolation matrix is constant in time.

The displacements of the atoms from their equilibrium positions,

u = (ui(t))i∈{1,...,n} = (qi(t) − qeq,i)i∈{1,...,n},

are split into the contribution from the coarse scale uc, and from the fine scale uf ,

u = uc + uf .

The coarse scale contribution is given by the interpolation from the coarse scale
node displacements, denoted by d = (di)i∈{1,...,nc},

uc := Nd. (2.9)

While the interpolation defines the transition from coarse to fine scale, we need
also a projection as transition from fine to coarse scale. It is defined as the least
square approximation of the atomistic displacements with respect to the atomic
mass matrix M , which is a diagonal matrix with the atomic masses mi. Hence

(u − Nd)T M(u − Nd) 7→ min ⇒ d = (NT MN)−1NT Mu. (2.10)

This definition assures that the projection of interpolated displacements reproduces
the original values:

d = (NT MN)−1NT MNd.

With (2.9) and (2.10), we can define the projection operator P ,

Pu := uc = Nd = N(NT MN)−1NT Mu,

and, with the orthogonal operator Q := I−P , the fine scale part of the displacements
is defined as

uf = u − uc = (I − P )u = Qu,

with the identity matrix I. Finally, the atomistic displacements can be written as

u = Pu + Qu = Nd + Qu, (2.11)

with the singular matrix Q.
On the right panel of figure 2.5, we show an example for the displacement split-

ting. The coarse scale part (green) is linear between two coarse scale nodes, the fine
scale part (red) is the difference to the whole atomistic displacements (blue).

If we put (2.11) into the molecular dynamics Lagrangian, we get

L =
1

2

n
∑

i=1

miu̇
2
i − Φ(u) =

1

2
u̇T Mu̇ − Φ(u)

=
1

2
u̇T QT MQu̇ +

1

2
ḋT NT MNḋ − Φ(Nd + Qu), (2.12)
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where, due to

NT MQ = NT M(I − N(NT MN)−1NT M) = 0,

the kinetic energy terms decouple.
From the Lagrangian, we can derive the equations of motion

d

dt

(

∂L
∂ḋ

)

− ∂L
∂d

= 0 ⇒ NT MNd̈ = −∂Φ

∂d
= −NT Φ′(Nd + Qu), (2.13)

d

dt

(

∂L
∂u̇

)

− ∂L
∂u

= 0 ⇒ QT MQü = −∂Φ

∂u
= −QT Φ′(Nd + Qu), (2.14)

where Φ′ denotes the derivative of Φ with respect to the whole argument. Since the
matrix Q is a projection, i.e. QQ = Q, and commutates with the mass matrix M ,
MQ = QT M , even if not all atomic masses are identical, QT MQ = QT M holds. In
equation (2.14) we get

QT Mü = −QT Φ′(Nd + Qu).

Since Q is singular, this system of equations has no unique solution, but a particular
solution is given by the solution of the original molecular dynamics system,

Mü = −Φ′(u), (2.15)

and its projection.
In this case, the information of the first system of equations (2.13) is completely

redundant. But since we want to calculate the total displacement only in one part of
the domain and neglect the fine scale information in the rest, we need in particular
the derived coarse scale equations. Since the equations for the fine scale and the
coarse scale displacements do not decouple, some approximation is necessary to get
pure coarse scale equations.

Domain decomposition: coupling of coarse and full dynamics We divide
the atoms into the real ones, denoted in the following with subscript 1, and those
for which we want to neglect the fine scale part of the displacement, marked with
subscript 2. Omitting this fine scale displacements leads to wave reflections at the
interface and wrong dispersion relation in the pure coarse scale region. Therefore,
Wagner and Liu proposed to use a reflectionless boundary condition at the interface
and the computation of coarse scale internal forces −NT Φ′(u) with the so called
Cauchy-Born rule, see below.

Reflectionless boundary condition To derive the reflectionless boundary con-
dition, the force is first linearised with respect to the fine scale displacements which
we want to neglect.

−Φ′(u) = f(u) = f(uc, u1,f , u2,f) ≈ f(uc, u1,f , 0) − K2u2,f ,
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with K2 denoting the coefficients of the linear terms of u2,f of the Taylor expansion
of f around u2,f = 0. With this approximation, we get the evolution equations:

M1ü1 ≈ f1(uc, u1,f , 0) − K12u2,f , (2.16)

M2ü2 = M2(ü2,c + ü2,f) ≈ f2(uc, u1,f , 0) − K22u2,f ,

where M1, M2 and K12, K22 denote the parts of the matrices M and K2 for the
two kinds of atoms. Next, the force f2 is linearised with respect to u1,f , and it is
assumed that ü2,c depends only on uc:

M2ü2,c ≈ f2(uc, 0, 0) ⇒ M2ü2,f ≈ −K21u1,f − K22u2,f , (2.17)

where K21 denotes the coefficients of the linear terms of the expansion of f2 around
u1,f = 0.

Laplace transformation of the second equation, with U(s) := L{u(t)}, yields

[s2I + M−1
2 K22]U2,f(s) = −M−1

2 K21U1,f(s) + su2,f(0) + u̇2,f(0).

If we solve for U2,f and make an inverse Laplace transformation, we obtain an
expression for u2,f and with (2.16) new approximate evolution equations for the real
atoms,

M1ü1 = f1(uc, u1,f , 0) −
∫ t

0

θ(t − τ)ã2(τ)dτ + R(t),

with

θ(t) = K12L
−1{[s2I + M−1

2 K22]
−1}, (2.18)

ã2(t) = −M−1
2 K21u1,f(t),

R(t) = θ̇(t)u2,f(0) + θ(t)u̇2,f(0). (2.19)

The term R(t) represents the influence of the initial fine scale displacements and
velocities which we want to neglect on the force calculation of the real atoms. The
memory integral, with the memory kernel θ(t), gives the influence of this fine scale
displacements due to the interaction of the corresponding atoms with the real atoms.

Boundary conditions to avoid reflections of waves are also used e.g. in [29, 30]
for the wave equation.

Coarse scale forces The other problem is the coarse scale force calculation in
(2.13), in the region where we want to neglect the fine scale displacements. The
approach used here to calculate this forces is similar to that in the quasi-continuum
method and in the concurrent coupling of length scales method.

The derivation of the coarse scale forces is based on two assumptions. The first
one is to assume that the potential energy can be written in terms of an energy
density Wα, that is

Φ(u) =
∑

α

Wα(u)∆Vα,
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with ∆Vα the volume per atom. The second assumption is, that this energy density
depends on the coarse scale displacements only through the coarse scale deformation
gradient F̄α, defined as

F̄α := I +
∑

j

∂Nj

∂x

(

qeq,α

)

dj.

The force at a coarse scale node can be written as

−(NT Φ′(u))j = −∂Φ(u)

∂dj
= −

∑

α

∂Wα(u)

∂dj
∆Vα = −

∑

α

∂Wα

∂F̄α

∂F̄α

∂dj
∆Vα

= −
∑

α

∂Nj

∂x

(

qeq,α

) ∂Wα

∂F̄α

∆Vα. (2.20)

We can calculate the change in the energy density according to the deformation
gradient, under the assumption that the interatomic distances rαβ in the deformed
state depend on the initial ones r0,αβ through the deformation gradient F̄α, as

rαβ = (F̄α − 1)r0,αβ. (2.21)

This connection is known as Cauchy-Born rule [68]. If we determine the potential
energy from the atomistic distances (2.21), we can compute the energy density and
the force for every node just from the coarse scale displacements. In chapter 3, we
will give an example of such a computation of the coarse scale force.

Remarks The first example problem, considered in [71], was a one dimensional
chain of atoms with harmonic potential and an initial perturbation given by the
superposition of a coarse and a fine scale initial displacement, with good results for
the reflectionless boundary condition.

The method was extended and applied for the two and three dimensional case
[55, 53], using a Green’s function approach for the numerical computation of the
reflectionless boundary condition [42], and to a continuum temperature equation
[54].

An advantage of the bridging scales algorithm is, that we have two systems of
equations, one for the coarse and one for the fine scale degrees of freedom. Therefore,
the coupling scheme allows easily to use a larger time step for the update of the coarse
scale equations. The only thing we have to do, is to interpolate the coarse scale
displacements in time, to get the necessary values for the atomistic force calculation
(2.14) [71].

A disadvantage is, that due to the approximation in equation (2.17), the bound-
ary condition cannot be derived from the Lagrangian of the system and that due to
the splitting of the fine scale displacements into two parts, according to the atoms
on both sides of the interface, the approximation is not energy conserving. This will
be discussed in detail in section 4.1.
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Chapter 3

One dimensional analysis and

extension of existing methods

x To find out how applicable the methods presented in the previous chapter are in
the numerical simulation of the sputtering process, we consider now some model
problems. Starting with the easiest interatomic interaction, a one dimensional har-
monic potential with nearest neighbour interaction, we analyse in section 3.1 the
concurrent coupling of length scales and the bridging scales method for this prob-
lems. Continuing with more complicated potentials, still harmonic ones with more
than nearest neighbour interaction and anharmonic ones in section 3.2, we study
the additional problems. Extensions of the bridging scales method that solve some
of the remaining problems are given.

In the following, we consider always the case of an atom at the boundary of the
domain with high initial momentum, instead of a sputtered atom. This is reasonable,
since it is difficult to model the sputtering with a harmonic potential and we are
only interested in the coupling of atomistic and coarse grained description, some
atomistic layers away from the surface.

3.1 Harmonic chain of atoms

As a first example, we consider the easiest one dimensional model problem, a chain
of n atoms connected with springs.

The Hamiltonian for the harmonic potential with nearest neighbour interaction is

H =
1

2

n
∑

i=1

p2
i

m
+

1

2

n
∑

i=2

k(qi − qi−1 − a0)
2, (3.1)

33
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with k the spring constant, m the atomic mass and a0 the equilibrium distance of
the atoms. The Hamilton equations of motion for each atom i are

q̇i =
∂H
∂pi

=
pi

m
,

ṗi = −∂H
∂qi

= k(qi−1 − 2qi + qi+1).

For this model problem, the transition from the atomistic system of ordinary
differential equations to the corresponding continuum partial differential equation,
the linear wave equation, can be derived by taking the limit a0 → 0 while keeping
m/(ka2

0) constant [34]. But even if we know the correct continuum description, the
problem of the discretisation of the continuum equation and the coupling to the
molecular dynamics equations remains.

In the following, we want to analyse the two coupling schemes, presented in the
previous chapter, for this model problem. We consider two numerical examples and
compare and discuss the results for the two different approximations.

Numerical example 1 For the first numerical example, we consider a chain with
n = 151 atoms. Initially, all atoms are in their equilibrium position. To find out
how the approximations deal with an atomistic perturbation travelling through the
chain, the first atom gets a high initial momentum, while the momenta of the other
atoms are zero,

qi(0) = qeq,i, i ∈ {1, . . . , n}, p1(0) = 0.01, pi(0) = 0, i ∈ {2, . . . , n}.

The atomic parameters are set to m = k = a0 = 1, and we solve the molecular
dynamics system with a velocity Verlet algorithm with time step ∆t = 0.1. For
the different approximations, we consider the first 51 atoms as real atoms, i.e. their
evolution is computed according to the original Hamilton equations, while the so-
lution of the remaining 100 atoms is approximated. In figure 3.1, we compare the
stress over time of the fully atomistic system (left) with a very rough approximation,
where we just omit the equations for the right 100 atoms (right). In both cases, the
stress is evaluated according to equation (2.3), with the width of the support of the
weight function δ = 3a0, at the equilibrium positions of all 151 atoms. We run the
computation over 2400 time steps.

In the left panel of the figure, we see that the perturbation travels from left
to right and is only reflected at the end of the chain. We see also dispersion of
the different wave lengths contained in the perturbation that have different wave
speeds. In the right panel, we can see, that the perturbation is again reflected at
the last moving atom, i.e. the system behaves like a chain of only 51 atoms. There
is no possibility for the perturbation to leave the region of the real atoms, and the
resulting stress differs significantly from that of the solution for the whole chain.

Beside the stress, we want to compare the approximations with respect to the
energy Eat of the first 51 atoms, given by equation (2.6), and the displacement of a
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Figure 3.1: stress at the atomistic equilibrium positions, full (left) and reduced
(right) system

single atom, which provides also a measure of wave reflection at the interface between
atomistic and approximated region. Figure 3.2 shows in the left panel, that in the
fully atomistic simulation, the energy Eat reaches zero, when the perturbation leaves
the region of the real atoms. The behaviour is different for the reduced system, as
can be seen in the left panel of figure 3.3. The energy of the real atoms is constant
in time, since there is no possibility for energy exchange. The red line is thereby the
kinetic, the blue one the potential and the green line the total energy.

In the right panel of figures 3.2 and 3.3, the displacement of the 40th atom
from its equilibrium position is given over time. In the fully atomistic simulation,
the perturbation passes this atom only once, and afterwards the displacement is
fluctuating around a constant value, whereas in the reduced system, the perturbation
is reflected at the boundary of the real atoms and the displacement of the atom is
increased whenever the perturbation passes.

Numerical example 2 In the second numerical example, we consider again a
chain of 151 atoms with 51 real atoms. Again, all initial displacements are zero, but
the initial momenta are sampled from a Gaussian distribution with mean zero, i.e.

pi ∼ N (0, 2kBTm) , i ∈ {1, . . . , n}

with temperature T = 1019.
We consider again the energy over time for the 51 real atoms and compare the

mean values over 50 samples for the different approximations. In figure 3.4, it can
be seen that for a fully atomistic simulation the mean value of the energy of the
real atoms is nearly constant over time, since we have energy exchange between the
first 51 and the other atoms. This example serves as a test if a given temperature
can be kept constant in the approximation. For this example, there would be nearly
no difference between the simulation of the full and the reduced system. Also the
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Figure 3.2: atomistic energy (left) and displacement of 40th atom (right) for fully
atomistic system

Figure 3.3: atomistic energy (left) and displacement of 40th atom (right) for reduced
system



3.1. HARMONIC CHAIN OF ATOMS 37

Figure 3.4: atomistic energy for fully atomistic system in numerical example 2

reduced system is a Hamiltonian system, i.e. the initial energy is constant over time.
The only difference to the fully atomistic simulation is, that we do not have small
fluctuations, since we have no energy exchange with other than the 51 real atoms.

3.1.1 Concurrent coupling of length scales method

To use the concurrent coupling of length scales approximation, we first have to define
the appropriate Hamiltonian. For the one dimensional model problem, we have to
determine the elasticity constant C and the mass density ρ for the finite element
region. If we use piecewise linear hat functions for the finite elements, the non-zero
coefficients in (2.8) for an element k, which is the interval [xi, xi+1], are

Mk
i,i = Mk

i+1,i+1 =
ρ(xi+1 − xi)

3
,

Mk
i,i+1 = Mk

i+1,i =
ρ(xi+1 − xi)

6
,

Kk
i,i = Kk

i+1,i+1 =
C

xi+1 − xi
,

Kk
i,i+1 = Kk

i+1,i = − C

xi+1 − xi
.

Thereby denotes xi the position of the finite element node i. If the lumped mass
approximation is used, we get

Mii = ρ(xi+1 − xi−1)/2, Mij = 0, i 6= j

and the finite element Hamiltonian is

HFE =
1

2

∑

i∈I

ρ

2
(xi+1 − xi−1)u̇

2
i +

1

2

∑

i∈I

C(ui − ui+1)
2

(xi+1 − xi)
. (3.2)
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Figure 3.5: stress with concurrent coupling of length scales approximation for nu-
merical example 1

The computation of the constant C from the atomistic model can be done according
to [16]. This leads to a derivation of the elasticity constant similar to the derivation
of the coarse scale force in the bridging scales approach (cf. section 3.1.2). However,
for the model problem, we can get this constants directly, since the force calculation
is linear not only in the finite elements but also in the atomistic region. We just
have to consider the case that the distance of two nodes is the same as the atomic
equilibrium distance xi+1 − xi = a0. If we choose the constants as

C = ka0, ρ = m/a0, (3.3)

the atomistic Hamiltonian (3.1) and the finite element Hamiltonian (3.2) are iden-
tical.

Numerical example 1 The first numerical example is now computed with this
approximation, using the same time step for atoms and nodes. In the transition
region the distances of atoms and nodes are identical, in the finite element region
the distances are increased stepwise from the atomic equilibrium distance a0 to
10a0. In figure 3.5, we see that whenever the distances of the nodes change, we get
reflections back into the atomistic region. This can also be seen in the atomistic
energy in figure 3.6. Whereas in the fully atomistic simulation all energy is leaving
the real atoms, when the perturbation is travelling to the right, we can see here
that not all energy is leaving this region and after a while the energy is increasing
again, since part of the perturbation is reflected at the nodes. In the right panel
of figure 3.6, the displacement changes not only once but every time the atom is
reached by a reflected part of the perturbation. Concerning the velocity in the finite
element region, we see in figure 3.5, that the velocity changes at the interface and
the perturbation is slower in the finite element region. To be consistent with the
stress calculation in the atomistic region, the stress in the finite element region was
computed from linear interpolated values at the atomic positions.
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Figure 3.6: energy of the real atoms (left) and displacement of 40th atom (right)
with concurrent coupling of length scales approximation

Both spurious effects, the reflection and the wrong velocity, can be explained
by considering the different dispersion relations in the system. They are computed
according to chapter 2.3 from the harmonic solutions uj = exp(i(ωt+jκ∆x)) in case
of the continuous and un

j = exp(i(ωn∆t+jκ∆x)) in case of the time discretised evo-
lution equations in the finite element region with node distance ∆x. As mentioned
before, the atomistic and the finite element description for the model problem are
in principle the same, only the space discretisation is different. Therefore, we get
also the same dispersion relation, depending only on the space discretisation ∆x:

ω2 = 4
C

ρ∆x2
sin2

(

κ∆x

2

)

, (3.4)

sin2

(

ω∆t

2

)

=
∆t2

∆x2

C

ρ
sin2

(

κ∆x

2

)

. (3.5)

The first is the dispersion relation for the continuous system, the second that for
the time discretised system with time step ∆t and

ü(t) ≈ 1

∆t2
(u(t + ∆t) − 2u(t) + u(t − ∆t)).

The space discretisation is ∆x = a0 for the atomistic equations. In the left panel of
figure 3.7, the scaled velocity according to (2.7) is given for different values of the
space discretisation, all multiples of the atomistic equilibrium distance a0.

The smaller the wave number, the smaller is the difference in the velocities of
the different discretisations. In the limit κ → 0 the velocity is the same for all
discretisations. If we have a wave with wave number κ = π/(2a0), it is faster in
a simulation with atomic distance ∆x = a0 than in one with ∆x = 2a0. In a
simulation with ∆x = 3a0, we cannot even represent this wave, since we need at
least two discretisation points per wave length. Therefore, the space discretisation
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Figure 3.7: dispersion relation for different values of ∆x (left) and for a coupling
node (right) for first numerical example with coupling of length scales approximation

used for the finite elements determines the dispersion relation and the maximum
wave vector in the approximate system. This is the reason why we get reflections
at the interface and in the finite element region, everywhere the space discretisation
is changing and why the speed of the perturbation in the finite element region is
wrong. In fact, we get a different dispersion relation for every different discretisation,
and the velocity of the perturbation does not only change once at the interface but
everywhere the discretisation changes.

However, the reflected part of the perturbation consists not only of the waves
with large wave numbers that cannot be resolved on a coarser grid. Even if the
perturbation would consist only of waves with sufficiently small wave numbers, we
would get some reflections at the nodes where the discretisation changes. In addition,
we also get dissipation of energy there, since the frequencies ω are complex for
different space discretisations on both sides of the node.

In the right panel of figure 3.7, we see the real part (green) and the absolute
value of the imaginary part (red) of the velocity at a node where the discretisation
changes from ∆x = a0 to ∆x = 2a0, compared again with the dispersion relation
of the fully atomistic system (black). The dissipation, as well as the reflection, is
decreasing for smaller wave numbers and is zero in the limit κ → 0.

If we consider the Taylor expansion of the dispersion relation (3.4) around κ = 0,

ω2 =
C

ρ

(

κ2 − κ4∆x2

12
+

κ6∆x4

360
+ O(κ8)

)

,

and compare it with that of the atomistic dispersion relation

ω2 = 4
k

m
sin2

(κa0

2

)

=
ka2

0

m

(

κ2 − κ4a2
0

12
+

κ6a4
0

360
+ O(κ8)

)

,

we can see that the choice of the parameters C and ρ according to (3.3) is necessary to
get the same velocity in the limit κ → 0. Therefore, the problem of wrong dispersion
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Figure 3.8: dispersion relation for the atomistic system (blue) and finite elements
with ∆x = 10a0 for different time discretisations, ∆t = ∆tmd (green) and ∆t ac-
cording to (3.6) (red)

relation in the finite element region and as a consequence also the reflection of small
wave numbers, cannot be solved by choosing better parameters, since we have no
free parameters left.

The situation changes if we do no longer consider the semi-discrete but the
corresponding time discretised system, with the dispersion relation (3.5). In this
system, we have one more degree of freedom, the time step ∆t. If we define c as the
limit of the velocity, i.e.

c := lim
κ→0

ω(κ)

κ
,

we get as Taylor expansion of ω in (3.5)

ω = cκ +
1

24

(

c3∆t2 − c∆x2
)

κ3 + O(κ5).

As before, the first coefficient is independent of the discretisation. With ∆tmd de-
noting the atomistic time step, we get the identical coefficient for κ3 for atomistic
and coarse space discretisation,

c3∆t2md − ca2
0 = c3∆t2 − c∆x2,

for

∆t =

√

∆t2md +
1

c2
(∆x2 − a2

0). (3.6)

In figure 3.8, the dispersion relation for the atomistic system (blue) is shown
together with that of the finite element nodes with ∆x = 10a0 for the same time
step (green) and for the time discretisation according to (3.6) (red). The error in the
dispersion relation for the larger time step is much smaller than for the atomistic
time step, only for large wave numbers we can observe a difference. Therefore, using
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a larger time step in the finite element region can solve the problem of the wrong
dispersion relation there. Nevertheless, it does not solve the problem that large
wave numbers cannot be resolved in the finite element region and therefore will be
reflected at the interface.

The larger the distance of the finite element nodes ∆x is, the smaller is the dif-
ference between the optimal finite element time step ∆t =

√

∆t2md + (∆x2 − a2
0)/c

2

and the maximum possible time step ∆tmax = ∆x/c for that the numerical scheme

1

∆t2
(un+1

j − 2un
j + un−1

j ) =
c2

∆x2
(un

j+1 − 2un
j + un

j−1) (3.7)

is stable. This maximum time step is known as the CFL (Courant-Friedrichs-Lewy)
stability criteria. For the time step ∆tmax, we get for all wave numbers the same
wave speed c.

All waves travelling with the same velocity is exactly the behaviour of the solution
of the linear one dimensional wave equation,

∂2u

∂x2
− ∂2u

∂t2
= 0,

that can also be solved numerically using scheme (3.7). The only difference is the
time step used for the solution. The reason is, that the dispersion relations for
the linear, time and space continuous, wave equation and the only time continuous
molecular dynamics system are different. Since the dispersion relations of both
discretised systems should not differ much from the continuous ones, different time
steps are necessary for the solution.

For large ∆x, the solution of the linear wave equation is a better approximation
for waves with small wave numbers than the solution of the coarse equations in the
finite element region. Using a larger time step reduces then not only the computation
time but also the error in the dispersion relation.

For the analysis of finite difference schemes with asymptotic methods cf. e.g [41].

Numerical example 2 To compute the second numerical example with this ap-
proximation, we sample first an initial momentum only for the 51 real atoms. In
the left panel of figure 3.9, we see that the energy of the real atoms is decreasing
at the beginning of the simulation. It is the energy of waves with large wave length
that are not reflected at the interface and therefore can pass to the finite element
region. They are reflected at the end of the finite element region and return to the
atomistic region after a while.

The result changes if we sample also an initial momentum for the finite element
nodes (figure 3.9, right). Again, waves with large wave length can pass the interface
in both directions. But since all waves from the finite element region can enter the
atomistic region, whereas the fine scale waves from the left are reflected, the energy
is increasing at the beginning of the simulation. After a while, the energy of the
waves with large wave length is again distributed equally over the whole domain. If
we would run the simulation for a longer time interval, we would notice also some
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Figure 3.9: energy of the real atoms for numerical example 2 in case of initial
momentum only for the atoms (left) and initial momentum for atoms and nodes
(right) in concurrent coupling of length scales approximation

small decay in the energy due to numerical diffusion at the nodes where the space
discretisation is changing.

If we want to compute only the total energy in the system, the overall kinetic and
potential energy can be corrected by an offset, depending on the missing degrees of
freedom in the finite element region [16]. However, it is then not possible to model
an energy transfer between both regions.

3.1.2 Bridging scales approximation

Now, we consider the bridging scales approximation for the model problem. For
the one dimensional harmonic nearest neighbour interaction, the potential energy
in (2.12) is

Φ(u) =
1

2
uTKu,

with the tridiagonal matrix

K = k















1 −1 . . . 0 0
−1 2 . . . 0 0

...
. . .

...
0 0 . . . 2 −1
0 0 . . . −1 1















,

i.e.
Φ(Nd + Qu) = (Nd + Qu)T K(Nd + Qu).

To neglect the fine scale information for one part of the domain, we have to compute
the memory kernel (2.18) and the coarse scale force (2.20) outside of the atomistic
region.
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The memory kernel can be computed according to [71] as follows. To obtain
θ(t), we need the inverse Laplace transformation of the inverse of the matrix A =
[s2I + M−1

2 K22]. Since all atomic masses are identical, M = mI, the matrix is
tridiagonal, with entries a = s2 + 2k/m on the main diagonal and b = −k/m on the
secondary diagonals. Fortunately, we do not need the whole matrix of the inverse
Laplace transformation but only the first entry, since the matrix is multiplied from
the left with K12 and from the right with K21. These are the sub-matrices of K
for the interaction of the real atoms and the atoms in the pure coarse scale region.
Both matrices have only one non-zero entry, K12 in the lower left and K21 in the
upper right corner. Taking the inverse Ã = A−1 for n → ∞ leads to the following
representation of the first column

Ã1,1 = −Z

b
,

Ã1,N = −ZÃ1,N−1 = −1

b
ZN , N > 1,

with Z the continued fraction

Z = − b

a − b2

a − b2

a − . . .

,

which is equivalent to

Z = − b

a + bZ
⇒ Z = − 1

2b
(a −

√
a2 − 4b2).

The inverse Laplace transformation of this value is

L−1{Ã1,1} = −1

b
L−1

{

− 1

2b

(

a −
√

a2 − 4b2
)

}

=
m

k
L−1

{

m

2k

(

s2 + 2
k

m
− s

√

4k

m
+ s2

)

}

=
2m

k

J2(2
√

k/m t)

t
,

where Jk denotes the kth order Bessel function of the first kind.
Since this derivation is valid only in the limit n → ∞, with n the number of

atoms, the obtained memory kernel is the same as for the interaction of a long chain
of atoms with one heavy particle [31]. An alternative derivation of the memory
kernel, which can be used also for longer ranging harmonic potentials, is given in
section 3.2.

We also have to compute the forces in the pure coarse scale region. According
to section 2.5, we need the derivative of the energy density Wα with respect to the
deformation gradient F̄α. For linear finite element hat functions as interpolation
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functions, this deformation gradient is defined only between two coarse scale nodes,
not at the nodes themselves. But since the energy density of all atoms between two
nodes is the same for a harmonic potential, we use this value also for the atoms that
are nodes. With

F̄α = 1 +
1

ña0

(

dj+1 − dj

)

, for qeq,α ∈ (xj, xj+1),

we can determine the distance of two atoms for this deformation, the energy density
and its derivative as

rα(α+1) = (F̄α − 1)a0 =
1

ñ

(

dj+1 − dj

)

,

Wα =
k

4a0

[

(uα − uα−1)
2 + (uα+1 − uα)2

]

=
k

4a0

[

(r(α−1)α)2 + (rα(α+1))
2
]

=
k

2a0

1

ñ2

(

dj+1 − dj

)2

=
ka0

2

(

F̄α − 1
)2

,

∂Wα

∂F̄α

= ka0

(

F̄α − 1
)

=
k

ñ

(

dj+1 − dj

)

,

and obtain finally the coarse scale forces for the nodes according to (2.20)

−(NT Φ′(u))j =
k

ñ
(dj+1 − 2dj + dj−1).

Here, ñ denotes again the number of atoms from one node to the next. For higher
order hat functions as interpolation functions, the deformation gradient F̄α depends
on more than two nodal displacements, but this is the only difference in the deriva-
tion. Therefore, in case of a harmonic potential, the coarse scale force derived in
this way is the same than just neglecting the term Qu in the force calculation in
(2.13),

NT MNd̈ = −NT KNd − NT KQu ≈ −NT KNd, (3.8)

since the matrix NT KN has the same entries than K, divided by ñ. Because of
[K, Q] = KQ−QK 6= 0, this is only an approximation. Since the coarse scale force
computed in this way is for this example the same than neglecting the fine scale
influence, it does not solve the problem of wrong dispersion relation. This is shown
in the following.

Numerical example 1 The first example is computed with linear interpolation
functions and ñ = 10. In figure 3.11, we see the local stress for this approximation.
In the coarse scale region, it is computed from the interpolated coarse scale values
at the atomic positions.

Again, we have the same problem as with the concurrent coupling of length scales
approximation, the velocity of the perturbation in the coarse scale region is not
correct. Now, it is faster than in the fully atomistic simulation. But the problem of
wave reflections at the interface is solved quite well with the reflectionless boundary
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Figure 3.10: stress in bridging scales approximation

Figure 3.11: energy of real atoms (left) and displacement of 40th atom (right) in
bridging scales approximation

condition. We computed the memory integral with the trapezoidal rule over 40
time steps. For this example, we do not have to take care of the term R(t) in (2.19).
Since all initial values are zero, only the first atom has a non-zero initial momentum,
especially all initial conditions for the atoms in the coarse scale region are zero.

If we take a look at the energy of the real atoms in the left panel of figure 3.11, it
looks similar to that of the fully atomistic system in the left panel of figure 3.2. Only
when the perturbation reaches the interface, i.e. when the energy starts to decrease,
the energy differs a bit from that of the fully atomistic simulation. The energy
increase at the end of the simulation results from the fact that the perturbation is
too fast in the coarse scale region and reaches the first 51 atoms again during the
simulation time. The better behaviour of the solution at the interface can also be
seen in figure 3.10, where we see only little reflection of waves. But, instead of wave
reflections, we get some deviation from the fully atomistic stress, even before the
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Figure 3.12: left: dispersion relation for C1 (green) and C2 (red) hat functions
in bridging scales approximation, compared to atomistic dispersion relation (blue),
right: stress for C2 hat functions

perturbation reaches the interface. The reason for this is the fact that the derivation
of the reflectionless boundary condition for the bridging scales approximation leads
to a system that is not energy conserving. We will discuss this in detail in section 4.1.

We consider the dispersion relation of the approximation, to explain the wrong
speed of the perturbation in the coarse scale region. It is computed from the har-
monic solutions dj = exp(i(ωt + jκña0)) of (3.8). In figure 3.12 (left), we compare
the dispersion relation of the atomistic system (blue) with that of the bridging scales
approximation in the coarse scale region (green). As already observed in the stress
plot, the wave speed for large wave numbers on the coarse grid is larger than in
the atomistic system. Since the coarse scale mass matrix is not diagonal for this
approximation, the dispersion relations differ not only due to the different space
discretisations. We get

ω2 =
4k

ñ

sin2(κña0

2
)

2m1 cos(κña0) + m2
,

with

m1 =
(ñ2 − 1)m

6ñ
and m2 =

(2ñ2 + 1)m

3ñ

denoting the entries of the coarse scale mass matrix on the main and the secondary
diagonals. Unfortunately, we cannot get a better dispersion relation here by taking
a larger time step on the coarse scale for the time discretised system.

One possibility to improve the dispersion relation is to use interpolation functions
of higher order. If we use quadratic instead of linear interpolation (red line in the
left panel of figure 3.12), the error in the dispersion relation is already much smaller
than for linear interpolation (green). However, if we increase the interpolation order
by one, we get two additional non-zero off-diagonals in the coarse scale mass matrix
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Figure 3.13: energy of real atoms in numerical example 2 for bridging scales approx-
imation

NT MN , and in the coarse scale force matrix NT KN . Solving the system numeri-
cally gets computationally more expensive, but the error of the dispersion relation
in the coarse scale region is reduced.

Other possibilities for getting better dispersion relations will be discussed in
sections 3.1.2.1 and 4.6.

Numerical example 2 For the computation of the second numerical example, we
sample initial momenta for all 151 atoms and compute the initial coarse scale veloci-
ties from the projection of the corresponding atomistic values. Displacements on the
coarse scale can pass the interface in both directions. Since fine scale displacements
can leave the atomistic region due to the reflectionless boundary condition, and we
have no fine scale displacements that pass the interface from right to left, the energy
during the simulation decreases.

The fine scale influences from the coarse scale region to the atomistic region
are given by the term R(t) in the boundary condition (2.19). To be able to run
simulations with constant temperature in the bridging scales approximation, it is
therefore necessary to consider the term R(t). However, since the bridging scales
approximation leads to an approximate system that is not energy conserving (cf.
section 4.1), even the exact computation of R(t) from the initial conditions cannot
lead to a completely energy conserving system. We will explain in section 4.4 how
we can sample initial conditions in the coarse scale region and compute R(t) for an
energy conserving approximation.

3.1.2.1 Wave speed correction with combined mass matrix

In the dispersion analysis of the concurrent coupling of length scales approximation
scheme, we found that using a larger time step for a coarser space discretisation
reduces the difference in the dispersion relation compared to a fully atomistic system.
In the bridging scales approximation, the situation is different. Since the coarse
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scale mass matrix is NT MN , it is a diagonal matrix only for piecewise constant
interpolation functions. If they are piecewise linear or of higher order, we get a
band matrix, a so called distributed mass matrix.

We compute the dispersion relation for the time discretised evolution equations
in the pure coarse scale region,

1

∆t2
NT MN(dn+1 − 2dn + dn−1) = NT KNdn,

from the harmonic solutions dn
j = exp(i(ωn∆t + jκña0)) and get

ω =
2

∆t
arcsin





√

∆t2k

ñ

sin2(κña0

2
)

2m1 cos(κña0) + m2



 . (3.9)

There is no time step that gives the exact solution of the wave equation, and the
maximal possible time step to get a stable, energy conserving system, i.e. ω is not
complex, is

∆tmax =

√

m(ñ2 + 2)

3k
.

One possibility to overcome this problem in the pure coarse scale region, is to
change the mass matrix by mass lumping to a diagonal matrix Ml, like in the
concurrent coupling of length scales approximation. If we use the optimal time
step (3.6), we can get a very small error in the dispersion relation. Since we have
already a separation of fine and coarse scale evolution equations in the bridging scales
approximation, a simulation with different time steps for the two different scales is
even easier than in the concurrent coupling of length scales approximation, where
the time step has to be changed every time the space discretisation is changing.
The problem here is, that the mass matrix cannot be changed everywhere, since
the distributed mass matrix is necessary in the atomistic region. There, we do not
have the dispersion relation (3.9) but get the correct wave speed already from the
influence of the fine scale displacements on the coarse scale forces. Therefore, we
get again the problem of coupling different regions with different time steps.

If we want to avoid using the optimal time step on the coarse scale, we can use a
combination of the lumped mass Ml, and the distributed mass matrix Md = NT MN ,
to get a combined mass matrix Mc (cf. [8]),

Mc = λMl + (1 − λ)Md, λ ∈ (0, 1).

Since the wave speed is too slow if we use the lumped mass matrix, with a time
step smaller than the optimal one, and too fast with a distributed mass matrix, a
combination of both can reduce the error for an arbitrary time step. If we consider
the Taylor expansion of the dispersion relation for the combined mass matrix,

ω =
2

∆t
arcsin





√

∆t2k

ñ

sin2
(

κña0

2

)

λm + (1 − λ)(2m1 cos(κña0) + m2)





=

√

k

m
a0κ +

a3
0

24

√

k

m

(

∆t2k

m
− 2 + 2λ + (1 − 2λ)ñ2

)

κ3 + O(κ5),
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Figure 3.14: dispersion relation for combined mass matrix with λ = 0.5, ∆T = ∆t

we get the same coefficient of κ3 than in the atomistic case if

λ =
k/m(∆t2md − ∆t2) + 1 − ñ2

2 − 2ñ2
.

If we use the same time step for the atomistic and the coarse scale system, we
get λ = 0.5. An example of the different dispersion relations for ñ = 10 is shown in
figure 3.14. Choosing the mass matrix to get the correct dispersion relation in two
dimensional simulations is considered e.g. in [51, 39, 20].

Another idea is to derive the coarse scale Hamiltonian from the energy of the
atomistic system, averaged over all fine scale displacements and momenta, con-
sistent with the coarse scale values [58, 60, 21]. Interpolation and projection are
defined as in the bridging scales approximation and we get the same coarse scale
mass matrix NT MN . But we get a different coarse scale force matrix, K̃ =
((NT N)−1NT K−1N(NT N)−1)−1, instead of NT KN , leading to a better dispersion
relation than in the concurrent coupling of length scales or in the bridging scales
approximation [58, 60]. Since we average over the fine scale values, we get no evolu-
tion equations for them to derive a reflectionless boundary condition. In this case,
we get reflection of waves with small wave length that cannot be resolved in coarser
regions and reflections and diffusion due to changing and complex dispersion rela-
tions whenever the space discretisation changes. However, this approach can also
be used for non-uniform coarse scale grids.

3.2 Longer ranging harmonic and anharmonic po-

tentials

We want to discuss now, how the results of the two approximations change if the
atomic interaction gets more complicated. The first case that we want to consider
is still a harmonic potential but now with interaction to the nearest and second
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Figure 3.15: stress and energy of real atoms for fully atomistic system with longer
ranging harmonic potential

nearest neighbours,

H1 =
1

2

n
∑

i=1

p2
i

m
+

1

2

n
∑

i=2

k1(qi − qi−1 − a0)
2 +

1

2

n
∑

i=3

k2(qi − qi−2 − 2a0)
2.

As second case, we consider an anharmonic nearest neighbour interaction,

H2 =
1

2

n
∑

i=1

p2
i

m
+

n
∑

i=2

(

k1

2
(qi − qi−1 − a0)

2 +
k2

4
(qi − qi−1 − a0)

4

)

.

As numerical example we choose k1 = 0.1 and k2 = 1 for the harmonic Hamil-
tonian H1. The local stress and the energy of the real atoms for this example are
shown in figure 3.15. The difference to the harmonic potential with only nearest
neighbour interaction in section 3.1 is, that we get more dispersion of the different
wave length and that the decay of the energy of the real atoms is slower. For realistic
examples, the interaction with the second nearest neighbours would not be stronger
than the nearest neighbour interaction, but since everything is linear for harmonic
potentials and our main interest is to find out how the different approximations deal
with longer ranging interactions, we choose a setting like this.

The initial conditions are the same as for the model problem in section 3.1, and
we use the time step ∆t = 1/10

√
k1 + 4k2 for the numerical solution of the evolution

equations.
As an example for the anharmonic potential, we take k1 = 1, k2 = 10 and

p1(0) = 0.3 as initial momentum of the first atom. All other values are again initially
zero. The momentum of the first atom is larger than for the harmonic examples,
since the influence of the anharmonic term gets stronger for larger values. The local
stress and the energy of the real atoms for this example are shown in figure 3.16.
The stress plot looks similar to that of the harmonic nearest neighbour interaction
in section 3.1, but the energy decays a little bit faster.
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Figure 3.16: stress and energy of real atoms for fully atomistic system with anhar-
monic potential

3.2.1 Concurrent coupling of length scales

In this approximation, the only thing we have to do, is to compute the appropriate
coarse scale elasticity constant C, according to the atomic interaction. For the case
of a harmonic potential, we can compute it again from the limit κ → 0 of the velocity
c(κ) of the atomistic model. Using the dispersion relation of the atomistic system,

ω2 = κ2a2
0

(

k1

m
sinc2

(κa0

2

)

+ 4
k2

m
sinc2(κa0)

)

, sinc(x) =
sin(x)

x
,

we get

c = lim
κ→0

ω(κ)

κ
=

√

a2
0

m
(k1 + 4k2).

Since only the potential energy is changed, the density ρ = ma0 is the same as
before, and we get the new elasticity constant

C = a0 (k1 + 4k2) .

This elasticity constant is again identic with that calculated by the Cauchy-Born
rule. The dispersion relation on the coarse scale is the same as for nearest neighbour
interaction (3.4) with a new elasticity constant. If we normalize again the wave speed
with the inverse of its limit κ → 0,

c̃(κ) =

√

m

a2
0(k1 + 4k2)

c(κ),

the coarse scale dispersion relation is independent of the parameters ki. In fig-
ure 3.17, we compare it with the atomistic dispersion relation, which is not indepen-
dent of the parameters, for k1 = 1, k2 = 0 (blue) and k1 = 0, k2 = 1 (green). If we
choose both values non zero, we end up with a dispersion relation in between. The
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Figure 3.17: dispersion relation for longer ranging harmonic potential in coupling of
length scales approximation

larger the value of k2, the smaller the error between atomistic and coarse scale ve-
locity. The error in the dispersion relation is therefore not increased by considering
longer ranging harmonic interactions.

The error in the dispersion relation on the coarse scale is smaller for the numerical
example with k1 = 0.1 and k2 = 1 than for the harmonic potential with only nearest
neighbour interaction. But we get more wave reflection at the interface, as can
be seen both on the stress and on the energy plot in figure 3.18. The reason is,
that even if we choose the node distances at the interface as the atomic equilibrium
distances, atomistic and finite element forces are not the same there, since the finite
element forces range only over one element and the molecular forces range over
two. The forces of the last three atoms, which are included in the atomistic energy
calculation, are already mixed atomistic and finite element forces, since the interface
region includes now more than two atoms due to longer ranging atomic interaction.

For the example with anharmonic potential, the coarse scale force is computed
according to the Cauchy-Born rule. For an atom with equilibrium position between
the finite element nodes j and j + 1 with node distance ∆xj, we get for the energy
density, with a calculation similar to that in section 3.1.2,

F̄α = 1 +
1

∆xj
(dj+1 − dj) ,

rα(α+1) =
a0

∆xj

(dj+1 − dj) ,

Wα =
k1

2
a0(F̄α − 1)2 +

k2

4
a3

0(F̄α − 1)4,

∂Wα

∂F̄α

=
k1a0

∆xj

(dj+1 − dj) +
k2a

3
0

∆x3
j

(dj+1 − dj)
3 .

From the energy density and equation (2.20), we can compute the force on node j,
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Figure 3.18: stress and energy of real atoms for longer ranging harmonic potential
in coupling of length scales approximation

Figure 3.19: stress and energy of real atoms for anharmonic potential for coupling
of length scales approximation
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fj, and the potential energy Epot in the finite element region,

fj = k1a0

(

dj+1 − dj

∆xj
+

dj−1 − dj

∆xj−1

)

+ k2a
3
0

(

(dj+1 − dj)
3

∆x3
j

+
(dj−1 − dj)

3

∆x3
j−1

)

,

Epot =
∑

j

(

k1

2

a0

∆xj
(dj+1 − dj)

2 +
k2

4

a3
0

∆x3
j

(dj+1 − dj)
4

)

,

where, in contrast to the bridging scales approximation, the node distances ∆xj−1

and ∆xj can be different. If a linear elasticity model is used in the finite element
region, only the quadratic terms in the potential energy are taken into account, i.e.
the linear terms in the force calculation. However, also the non-linear forces can be
used.

In the right panel of figure 3.19, we see that nearly two third of the energy can
first leave the atomistic region, but a lot is reflected at the nodes where the space
discretisation changes. Due to the anharmonic term in the force calculation, we have
more reflections than for the example with harmonic nearest neighbour interaction.
This can also be seen in the stress plot in the left panel of the figure.

3.2.2 Bridging scales approximation

For the bridging scales approximation, we have to compute again the memory kernel
θ(t) and the coarse scale forces.
To get the memory kernel, we have to determine

θ(t) = K12L
−1{[s2I + M−1

2 K22]
−1}

for a matrix K with two secondary diagonals. This can be done using the follow-
ing lemma, which gives the inverse Laplace transformation for an arbitrary matrix
M−1

2 K22.

Lemma 3.1 The inverse Laplace transformation of

(s2I + M)−1,

with M a positive definite matrix and I the identity matrix, is given by

L−1{(s2I + M)−1} = M−1/2 sin(M1/2t).

Proof: If P is the orthogonal projection matrix of M ,

M = PΛP−1,

the square root of the matrix is defined as

M1/2 = PΛ1/2P−1.
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Λ1/2 denotes the matrix obtained from the diagonal matrix Λ by taking the square
root of each entry. We can write the Laplace transformation of the right hand side
with this projection,

L{M−1/2 sin(M1/2t)} = L{(PΛ1/2P−1)−1 sin(PΛ1/2P−1t)}

= (PΛ−1/2P−1)

∫ ∞

0

e−st sin(PΛ1/2P−1t)dt,

and remove the projection from the integral,

= (PΛ−1/2P−1)

∫ ∞

0

e−st
∞

∑

i=0

(−1)i 1

(2i + 1)!
(PΛ1/2P−1t)(2i+1)dt

= (PΛ−1/2P−1)

∫ ∞

0

e−st
∞

∑

i=0

(−1)i t2i+1

(2i + 1)!
P (Λ1/2)(2i+1)P−1dt

= PΛ−1/2

∫ ∞

0

e−st sin(Λ1/2t)P−1dt.

Since the matrix Λ is diagonal, we can compute the Laplace transformation of each
entry separately and get the left hand side of the equation

= PΛ−1/2

∫ ∞

0

e−st(sin(
√

λi t))i=1:n P−1dt

= PΛ−1/2

(
∫ ∞

0

e−st sin(
√

λi t)dt

)

i=1:n

P−1

= PΛ−1/2

(
√

λi

s2 + λi

)

i=1:n

P−1

= P

(

1

s2 + λi

)

i=1:n

P−1

= P (s2I + Λ)−1P−1 = (P (s2I + Λ)P−1)−1

= (s2I + PΛP−1)−1 = (s2I + M)−1,

where (ai)i=1:n denotes a diagonal n × n matrix with the entries ai. �

If the coarse scale force, for interpolation with linear hat functions, is computed
according to the Cauchy-Born rule, we get the same coarse scale force as in the
concurrent coupling of length scales approximation, now with identical node distance
everywhere,

−(NT Φ′(u))j = C(dj+1 − 2dj + dj−1), C = a0(k1 + 4k2).

For more than nearest neighbour interaction, this is no longer the same than just
neglecting the term Qu in the force calculation (3.8), since NT KN has now more
than three non-zero diagonals.

We get again a different dispersion relation than for the concurrent coupling of
length scales approximation, since the mass matrix of the bridging scales approxi-
mation is tridiagonal. The wave speed on the coarse scale is again larger than in
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Figure 3.20: dispersion relation for longer ranging harmonic potential in bridging
scales approximation

the atomistic region and, if normalized with its limit for κ → 0, the same as for a
harmonic potential with nearest neighbour interaction.

If we compute the coarse scale forces with the matrix NT KN , we get also on
the coarse scale an interaction of the second nearest neighbours, and the error in
the dispersion relation is reduced.

In figure 3.20, the dispersion relations for the two possible force calculations in
the coarse scale region are shown, together with the relation for the atomistic model
with k1 = 0, k2 = 1 and k1 = 1, k2 = 0. For both force calculations, the error in
the dispersion relation gets larger if we increase the value of k2.

In figures 3.21 and 3.22, we can see that in the atomistic region the reflection of
waves and the energy is nearly the same for both force calculations, but the error
in the coarse scale region is larger if we use the force calculation according to the
Cauchy-Born rule.

For the example with anharmonic potential, the force can be computed only
according to the Cauchy-Born rule. We get again the same force calculation as for
the concurrent coupling of length scales approximation, now for equidistant nodes,

−(NT Φ′(u))j =
k1

ñ
(dj+1 − 2dj + dj−1) +

k2

ñ3

(

(dj+1 − dj)
3 + (dj−1 − dj)

3
)

.

Results of the numerical example are shown in figure 3.23. The coarse scale force is
no longer linear and has the same structure as the atomistic force calculation with
scaled parameters. However, since the coefficient of the cubic term is much smaller
than in the atomistic region and has hardly an influence on the coarse scale wave
speed, it can also be neglected here.

We showed in this section, that the essential effects of the approximations are
still the same if we consider more complicated interatomic interaction. Especially,
the behaviour on the coarse scale is not changed significantly, but the reflections
of waves at the interface get larger for longer ranging harmonic or anharmonic
interaction. In the concurrent coupling of lengths scales approximation, this is due
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Figure 3.21: stress and energy of real atoms for longer ranging harmonic potential
with NT KN in bridging scales approximation

to the fact that force calculations at the interface are different in the atomistic and
finite element description. In the next chapter, we show that the problem in the
bridging scales approximation is, that it leads to an approximate system that is
not energy conserving. Therefore, it is not possible to neglect the reflections at
the interface completely by reducing the numerical error in the integration of the
memory integral. We will derive a similar, but energy conserving approximation
that reduces this reflections at the interface and therefore gives better results also
for longer ranging harmonic interaction in the next chapter.



3.2. MORE COMPLICATED POTENTIALS 59

Figure 3.22: stress and energy of real atoms for longer ranging harmonic potential
with Cauchy-Born rule in bridging scales approximation

Figure 3.23: stress and energy of real atoms for anharmonic potential in bridging
scales approximation
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Chapter 4

Hamiltonian formulation,

boundary conditions and

interpolation functions

Since the evolution equations for the atoms are derived from a Hamiltonian and
therefore are energy conserving, this should also hold for the approximation. In
the concurrent coupling of length scales approximation, the coarse scale equations
are derived from a continuum Hamiltonian, whereas the coupling conditions are not
derived from the transition from atomistic to coarse scale. In the bridging scales
approximation, we get the coupling directly from the displacement splitting, but we
cannot derive the approximated equations together with the reflectionless boundary
condition from a Hamiltonian. Therefore, this approximation leads to a system of
equations that is not energy conserving. In section 4.1, we explain why this is the
case and present in section 4.2 an idea how to overcome this difficulty using vari-
ables with interpolation weights in orthogonal subspaces. Some technical problems
are discussed, and the choice of the subspaces for the coupling of an atomistic and a
coarse scale region are presented in section 4.3. In section 4.4, we show, how we can
use this Hamiltonian formulation for simulating systems at non-zero temperature.
We give an alternative derivation of the equations based on the Mori-Zwanzig pro-
jection operator formalism in section 4.5 and show in section 4.6, how we can choose
the interpolation weights from coarse to fine scale, to solve the problem of wrong
dispersion relation in the coarse scale region. The new system of equations is then
not only energy conserving but solves also the problems of wave reflection at the
interface and wrong dispersion relation in the coarse scale region. Approximations
in the Hamiltonian and numerical approximations in the solution of the system will
be discussed in chapter 5.

61
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Figure 4.1: splitting of the hat functions for the real atoms (solid lines on the left)
and for the coarse scale region (dash-dotted lines on the right)

4.1 Bridging scales approximation not energy con-

serving

To show that the bridging scales method cannot be derived directly from a Hamilto-
nian or Lagrangian, we consider first the case that the atoms are split in two parts.
In one part we keep the fine scale information and in the other part we calculate only
the movement of the coarse scale nodes, without reflectionless boundary condition at
the interface. The problem is, that the matrix Q = I−P = I−N(NT MN)−1NT M ,
which defines the projection on the fine scale (cf. section 2.5) is a fully occupied ma-
trix, so we cannot split the matrix into two parts, according to the partitioning of
atoms.

Without reflectionless boundary condition, we can overcome this problem by
calculating the projection matrix Q only from the interpolation weights of the real
atoms, i = 1, . . . , n1. With the corresponding projection matrix N1, consisting of
the values on the thick black lines in figure 4.1, we can write the fine scale projection
Q1 as Q1 = I1 − P1 = I1 − N1(N

T MN)−1NT
1 M , with

N1,ij =

{

Nij, i = 1, . . . , n1

0, i = n1 + 1, . . . , n
, I1,ij =

{

1, i = j, i = 1, . . . , n1

0, i 6= j or i > n1
.

Since the projection matrix P1 has only non-zero entries on the upper left sub-
matrix of size n1 × n1, the same holds for Q1. If we use the approximation Q ≈ Q1

for the Lagrangian,

L1 ≈
1

2
ḋTNT MNḋ +

1

2
q̇T QT

1 MQ1q̇ −
1

2
(Nd + Q1q)

T K(Nd + Q1q),

according to (2.12), we get the evolution equations

NT MNd̈ = −NT K(Nd + Q1q),

QT
1 MQ1q̈ = −QT

1 K(Nd + Q1q).

Since the entries of the matrix Q1 of the atoms in the coarse scale region are zero,
the corresponding fine scale values do not appear in the equations at all.

If we formulate the approximation in this way, we have to face two problems.
First, Pq + Q1q = Nd + Q1q 6= q, even for the real atoms, since the projection
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matrix P = N(NT MN)−1NT M is derived from the values of all interpolation func-
tions, in contrast to Q1. The second problem is, that with this representation we
cannot directly get the Hamiltonian from the Lagrangian description with Legendre
transformation. We would have to compute the momenta

p =
∂L
∂q̇

= QT
1 MQ1q̇, P =

∂L
∂ḋ

= NT MNḋ,

where the matrix QT
1 MQ1 is singular and the inverse can be determined only in the

subspace {q|Nd = 0}.
The situation gets even worse if additionally we want to add the reflectionless

boundary condition. It is computed according to section 2.5 with Laplace transfor-
mation from the evolution equations of the fine scale displacements of the atoms in
the coarse scale region. In the derivation of the boundary condition, it was assumed,
that the coarse and fine scale displacements decouple, i.e. the coarse scale evolution
equations do not depend on the fine scale displacements. If we use this approxi-
mation in the Lagrangian, we get a system of decoupled evolution equations. We
loose not only the coupling between the two scales but also end up with the wrong
evolution equations in the atomistic region. However, without this approximation
in the Lagrangian, we cannot derive the boundary condition, therefore the bridging
scales approximation cannot be energy conserving.

If the approximated system of equations is not energy conserving, simulations
with constant temperature are not possible by sampling the term R(t) in the reflec-
tionless boundary condition (2.19) with the correct autocorrelation.

The forces in the coarse scale region and the reflectionless boundary condition are
derived from different approximations. If we solve the fine scale system of equations,
according to section 2.5, by computing the fully atomistic solution of the real atoms,
the corresponding coarse scale part evolves according to another evolution equation
than the coarse scale equations. It is therefore unavoidable to update the total
displacements of the real atoms after several time steps with the solution of the
coarse scale equations. Otherwise, the difference between the solution of the coarse
scale equations and the projection to the coarse scale from the atomistic values
would grow in every time step. This was observed in [71].

4.2 Orthogonal displacement splitting

We present now a method to split the displacements by projection in several orthog-
onal subspaces. This displacement splitting allows the derivation of a reflectionless
boundary condition directly from the Lagrangian, as well as the derivation of energy
conserving approximations. We derive the system of equations for displacements in
an arbitrary space dimension m̃ and for an arbitrary number of different subspaces
k. Two examples for k = 3 and k = 2 in one dimension will be presented in the
next section.

Starting from the atomistic Lagrangian,

L =
1

2
u̇T Mu̇ − Φ(u), u̇, u ∈ R

m̃n, (4.1)
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with n the number of atoms, we split the displacements u into k different kinds of
variables, a1, . . . , ak, with the corresponding projection matrices A1, . . . , Ak, i.e.

u = A1a1 + . . . + Akak, (4.2)

according to the conditions:

1. The vector of variables al has nl entries, l ∈ {1, . . . , k}, al ∈ R
m̃nl, with

n1 + · · · + nk = n.

2. The corresponding projection matrices Al : R
m̃nl 7→ R

m̃n, l ∈ {1, . . . , k}, are
orthogonal with respect to the atomistic mass matrix M ,

(Al, Aj)M = AT
l MAj = 0, for l 6= j, l, j ∈ {1, . . . , k}. (4.3)

We need this condition to get decoupling of the kinetic energy in the La-
grangian.

The first condition allows to change from the Lagrangian to the Hamiltonian for-
mulation with Legendre transformation, since the matrices AT

l MAl, l ∈ {1, . . . , k},
are invertible.

In the following, we show that we can derive the evolution equations for the
different variables and a boundary condition from one of the subspaces directly
from this Lagrangian or the corresponding Hamiltonian if this two conditions are
fulfilled.

We can write the Lagrangian (4.1) using (4.2) as

L =
1

2
(ȧT

1 AT
1 MA1ȧ1 + . . . + ȧT

k AT
k MAkȧk) − Φ(A1a1 + . . . + Akak), (4.4)

and we derive the evolution equations

AT
l MAläl = −∂Φ

∂al
= −AT

l

∂Φ

∂u
, l ∈ {1, . . . , k}. (4.5)

We obtain the corresponding Hamiltonian formulation from Legendre transforma-
tion of the Lagrangian, with the momenta defined as

Al :=
∂L
∂ȧl

= (AT
l MAl)ȧl, l ∈ {1, . . . , k}.

From the Hamiltonian,

H = ȧT
1 A1 + · · ·+ ȧT

k Ak − L(ȧ1(A1), . . . , ȧk(Ak), a1, . . . , ak)

=
1

2
(AT

1 (AT
1 MA1)

−1A1 + · · · + AT
k (AT

k MAk)
−1Ak) + Φ(A1a1 + · · · + Akak),

the Hamiltonian system of equations can be derived,

ȧl =
∂H
∂Al

= (AT
l MAl)

−1Al, l ∈ {1, . . . , k}

Ȧl = −∂H
∂al

= −AT
l

∂Φ

∂u
, l ∈ {1, . . . , k}.



4.2. ORTHOGONAL DISPLACEMENT SPLITTING 65

The values of the variables a1, . . . , ak, corresponding to a given value of u, are
calculated again as the least square fit,

(u − Alal)
T M(u − Alal) 7→ min, l ∈ {1, . . . , k},

leading to the following relation

Alal = Plu = Al(A
T
l MAl)

−1AT
l Mu.

Since
P 2

l = PlPl = Al(A
T
l MAl)

−1AT
l MAl(A

T
l MAl)

−1AT
l M = Pl

holds, Pl are linear projections.
To solve the system of equations, without explicitly solving the evolution equa-

tions of the variables ak of the Lagrangian system (4.5), a first approximation in
the Lagrangian function (4.1) is necessary. We expand the potential energy Φ with
respect to the variables ak and neglect the terms of higher than second order. With
K the matrix of the corresponding coefficients for the second order terms, the last
equation of the Lagrangian system is then

AT
k MAkäk = −AT

k K(A1a1 + · · · + Akak).

With Laplace transformation, we can calculate from this equation

ak(t) =

∫ t

0

θ(τ)AT
k K(A1a1 + · · ·+ Ak−1ak−1)(t − τ)dτ + R(t), (4.6)

with

θ(t) = L−1{[AT
k MAks

2 + AT
k KAk]

−1}, (4.7)

R(t) = θ̇(t)AT
k MAkak(0) + θ(t)AT

k MAkȧk(0). (4.8)

If we use equation (4.6) for the other equations of (4.5), which are now all linear
in ak, the system can be solved without explicit computation of ak. In the next
section, we use this for the derivation of a reflectionless boundary condition. The
memory kernel θ(t) in (4.7) can be written using lemma 3.1 as

θ(t) = L−1{[AT
k MAks

2 + AT
k KAk]

−1}

=
∞

∑

l=0

(−1)l

(2l + 1)!
[(AT

k MAk)
−1(AT

k KAk)]
lt2l+1(AT

k MAk)
−1.

We should keep in mind, that if the potential energy function is already quadratic
in ak, we need no approximation to derive (4.6) and even if the system of equations
(4.5) looks complicated, we still get the correct atomistic solution.

The advantage is, that we can think now of different approximations in the La-
grangian (4.4) and derive an approximating system of equations which is always
energy conserving. The approximation error compared to the fully atomistic system
can be determined directly by comparing the Lagrangian or Hamiltonian functions.
Like this, it is possible to distinguish between errors due to approximations in the
Lagrangian and numerical errors in solving the approximated system. We will dis-
cuss this in detail in chapter 5.
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4.3 Coupling of atomistic and coarse scale region

atomistic part coarse scale part

PSfrag replacements

atomistic region
coarse scale region

Figure 4.2: coupling of an atomistic and a coarse scale region

We use now the method presented in the previous section for the coupling of an
atomistic and a coarse scale region [66, 67]. Like in the bridging scales approxima-
tion, we choose a coarse scale node at the equilibrium position of every ñth atom
and split the total atomistic displacements u into the contribution from the coarse
scale uc, and the remaining fine scale displacements uf . The coarse scale part is
given by the interpolation of the displacements of the coarse scale nodes, which we
denote again by d, N is again the matrix of the interpolation weights, i.e. uc = Nd.
How to choose this interpolation weights is discussed in section 4.6. We can use
e.g. linear finite element hat functions on the coarse scale and evaluate them at the
atomistic equilibrium positions, like in the bridging scales approximation.

In the m̃ dimensional case with n atoms, the total displacement has nm̃ degrees
of freedom. If we have nc coarse scale nodes, m̃(n−nc) additional degrees of freedom
are necessary to represent the fine scale displacements uf . We denote them by the
vector b and have to determine the interpolation weights B for the atoms to get the
total displacements as

u = Nd + Bb.

According to (4.3), the interpolation matrices N and B have to be orthogonal with
respect to the mass matrix, that is

NT MB = 0.

Since we want to keep the fine scale information only in one part of the domain,
we have to split the variables b into two parts, b1 and b2, according to the fine scale
degrees of freedom which we want to keep and those that we want to neglect. The
two corresponding interpolation matrices B1 and B2 have also to be orthogonal, i.e.

BT
1 MB2 = 0.

In terms of the previous section, we have now three orthogonal subspaces (k = 3),
and the total atomistic displacement can be written as

u = Nd + B1b1 + B2b2.

Before we explain the splitting of the matrix B, we have to choose the entries of
this matrix. We do this in such a way that B has only few non-zero entries to make
the numerical solution of the corresponding system of equations easier. In order to
simplify things, we consider the computation of interpolation weights for the one
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Figure 4.3: one dimensional example: piecewise constant interpolation functions
from the coarse scale nodes (red) and corresponding fine scale interpolation functions
(green) for ñ = 3

dimensional case and M = mI. However, the general procedure is similar for higher
dimensions or different atomic masses.

We start with the easiest possible interpolation from the coarse scale values to
the atoms: constant interpolation between two nodes (marked red in figure 4.3). If
we have a coarse scale node at the equilibrium position of every ñth atom, we need
ñ − 1 variables bl at the atoms in between. Since the corresponding interpolation
weights have to be orthogonal to the one column of N with non-zero entries for this
element, we get the ñ − 1 vectors as solution of the equation

b1 + b2 + . . . + bñ = 0.

An example is shown in figure 4.3. Each of the two orthogonal vectors corresponding
to the two green lines has two non-zero entries. Both together have non-zero entries
at the left node of the element and at the atoms between the nodes. In this case, it
is easy to split the matrix B in two parts, since the non-zero entries in each element
do not overlap.

The situation gets more complicated if we have l coarse scale interpolation func-
tions in each element. Then, the linear system of equations that defines the inter-
polation weights B needs ñ − 1 + l unknowns to have a ñ − 1 dimensional solution.
E.g. for linear finite element hat functions as interpolation functions, we have two
non-zero weights of N at each atom. Therefore, we need ñ + 1 non-zero entries of
B in each element to construct ñ − 1 vectors orthogonal to both vectors of N . The
system of equations to solve in every element is

b0 + ñ−1
ñ

b1 + . . . + 1
ñ
bñ−1 = 0

1
ñ
b1 + . . . + ñ−1

ñ
bñ−1 + bñ = 0.

The vectors of adjacent elements will now overlap, since the variables b0 and bñ will
appear also in the corresponding system of equations for the neighbouring elements.
Setting one or both of them to zero is not possible, since we should not only fulfil
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PSfrag replacements

splitting of B
orthogonalization of B2

orthogonalization of last block of B1

Figure 4.4: splitting the matrix B in two orthogonal parts

both equations, but the solution should also have dimension ñ − 1. Splitting the
matrix B in such a way that B1 represents the fine scale part of the real atoms and
B2 the fine scale part which we want to neglect, is therefore not a problem, but the
two matrices will not be orthogonal.

One possibility to solve this problem is, to split the matrix B = B1 + B2 in such
a way that the entries correspond to the geometrical separation of the atoms and
to orthogonalize the matrix B2. If we finally orthogonalize the last block of B1,
that is the entries of B1 corresponding to the element next to the interface, with
respect to the orthogonal entries of B2, BT

1 B2 = 0 holds. This procedure is shown in
figure 4.4. Green lines in the first picture indicate the support of the vectors given
by the columns of B1, blue lines that of the columns of B2 for an example with 6
nodes and ñ = 5. The vertical distances of the lines in the picture are only to show
that the supports of the entries of different blocks overlap at the node in between.
Only the entries of the last block of B1 are not orthogonal to the entries of B2 at
the beginning, due to overlapping supports.

In the first step, the entries of B2 are orthogonalized, by orthogonalizing the
entries of the first block of B2 with respect to that of the second block. Thereby, the
red line indicates the new support of the entries of the first block of B2. Then, the
entries of the last block of B1 are orthogonalized with respect to B2, again the red
line indicates the change in the support. The entries of the last block of B1 are not
local any more after the orthogonalization but they are now non-zero everywhere
in the coarse scale region. Since they decrease very fast away from the interface,
this does not matter much, and, for the numerical solution, it is enough to consider
only the entries of the first elements after the interface. We will see in the next
section, that we can even perform this orthogonalization only for the first two or
three elements after the interface, leading to still satisfactory results.

If we have different atomic masses, i.e. M 6= mI, we have to orthogonalize the
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vectors with respect to the mass matrix M in order to fulfil (4.3).
In the following, we give the Lagrangian together with the corresponding evolu-

tion equations and the reflectionless boundary condition for the coupling of atomistic
and coarse scale region with harmonic potential.

Lagrangian:

L =
1

2
(ḋT NT MNḋ + ḃT

1 BT
1 MB1ḃ1 + ḃT

2 BT
2 MB2ḃ2) −

− 1

2
(Nd + B1b1 + B2b2)

T K(Nd + B1b1 + B2b2), (4.9)

evolution equations:

NT MNd̈ = −NT K(Nd + B1b1 + B2b2), (4.10)

BT
1 MB1b̈1 = −BT

1 K(Nd + B1b1 + B2b2), (4.11)

boundary condition:

b2(t) =

∫ t

0

θ(τ)BT
2 K(Nd + B1b1)(t − τ)dτ + R(t), (4.12)

θ(t) = L−1{[BT
2 MB2s

2 + BT
2 KB2]

−1}

=
∞

∑

l=0

(−1)l

(2l + 1)!
[(BT

2 MB2)
−1(BT

2 KB2)]
lt2l+1(BT

2 MB2)
−1, (4.13)

R(t) = θ̇(t)BT
2 MB2b2(0) + θ(t)BT

2 MB2ḃ2(0). (4.14)

We consider again the first numerical example from chapter 3. In figure 4.5, we
show the stress of the fully atomistic system, the stress calculated with the bridging
scales approximation and of the system with the orthogonal displacement splitting,
together with a plot of the energy of the first 50 atoms for the three simulations.

In contrast to the bridging scales approximation, an error in the solution does
not occur, before the perturbation reaches the interface between atomistic and pure
coarse scale region. Then, we see a slightly different behaviour compared to the fully
atomistic system, since a small part of the perturbation is reflected due to numerical
errors in the calculation of the memory kernel.

Another difference to the bridging scales approximation is, that the dispersion
relation is correct if we keep the reflectionless boundary condition in the equations
for d. However, keeping the boundary condition also in the coarse scale equations is
not exactly what we want, since computing the boundary condition everywhere is not
cheaper than a fully atomistic simulation. Choosing the interpolation functions in
such a way that we do not need the boundary condition in (4.10) will be discussed
in section 4.6, numerical approximations in the memory kernel and the memory
integral in chapter 5.

To compute the exact memory kernel θ(t), we use the orthogonal transformation
of the matrix (BT

2 MB2)
−1(BT

2 KB2) to a diagonal matrix. With the transformation
matrix P̂ and the diagonal matrix

Λ = P̂ T (BT
2 MB2)

−1(BT
2 KB2)P̂ ,
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Figure 4.5: stress and energy with fully atomistic system, bridging scales approxi-
mation and orthogonal displacement splitting
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we can write the memory kernel as

θ(t) = L−1{[BT
2 MB2s

2 + BT
2 KB2]

−1}

=
∞

∑

l=0

(−1)l

(2l + 1)!
[(BT

2 MB2)
−1(BT

2 KB2)]
lt2l+1(BT

2 MB2)
−1

= P̂
∞

∑

l=0

(−1)l

(2l + 1)!
Λlt2l+1P̂ T (BT

2 MB2)
−1 (4.15)

= P̂Λ−1/2 sin(Λ1/2t)P̂ T (BT
2 MB2)

−1. (4.16)

Since the matrix (BT
2 MB2)

−1(BT
2 KB2) is positive definite, all entries of Λ are pos-

itive. We can compute now the sine function of every entry of the diagonal matrix
separately.

If we use the orthogonal displacement splitting for two subspaces on the same
scale, we can derive a reflectionless boundary condition for a small atomistic region,
without the coupling to a coarse scale region,

u = B1b1 + B2b2.

E.g. for a one dimensional splitting of atoms in two parts, we get the matrices

B1 =

(

I1 0
0 0

)

, B2 =

(

0 0
0 I2

)

,

with the identity matrices I1 and I2 for the two kinds of atoms.
The splitting of the matrix B is now no problem, since all vectors have only

one non-zero entry and are therefore all pairwise orthogonal. Such a coupling of an
atomistic and a continuum region is considered e.g. in [3, 57, 75].

4.4 Calculation of the random force

In the second numerical example in chapter 3, we studied the behaviour of the bridg-
ing scales approximation for initial conditions sampled from a normal distribution
according to a given temperature T . Neglecting the term R(t) in the reflection-
less boundary condition of the bridging scales approximation leads to an energy
decrease of the real atoms. To be able to run simulations for non-zero temperature,
we therefore need R(t). But, since the bridging scales approximation is not energy
conserving, even with the exact function R(t) we would not get the correct energy
in the real atoms. However, with the modified approach of the orthogonal displace-
ment splitting, this is no problem anymore, since the system is derived, together
with the boundary condition, from the Lagrangian (4.9).

We use a method similar to that proposed in [75] to compute

R(t) = θ̇(t)(BT
2 MB2)b2(0) + θ(t)(BT

2 MB2)ḃ2(0)

as a random force by sampling the initial conditions and calculating R(t) from this
initial conditions in every time step. Since we do not know the distribution of the
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initial conditions in the variables b2, we make a coordinate transformation of b2 to
the corresponding normal modes for the interaction of this degrees of freedom,

x := P̂ T b2,

bT
2 BT

2 KB2b2 = bT
2 P̂ΛP̂ T b2 = xT Λx,

with Λ the diagonal matrix of eigenvalues of BT
2 KB2 and P̂ consisting of the corre-

sponding eigenvectors. Furthermore, we use the fact that the entries of the matrix
B2 can be chosen orthonormal with respect to the mass matrix M ,

BT
2 MB2 = I, ẋ = P̂ T ḃ2 ⇒ ḃT

2 BT
2 MB2ḃ2 = ḃT

2 P̂ P̂ T ḃ2 = ẋT ẋ.

In this new coordinates, the part of the Hamiltonian of the interaction of b2 is given
by

ḃT
2 BT

2 MB2ḃ2 + bT
2 BT

2 KB2b2 =
1

2
ẋT ẋ +

1

2
xT Λx.

The normal mode coordinates x are now independent from each other. The
coordinates ẋi and xi can therefore be sampled from a Gaussian distribution,

ẋi ∼ N (0, kBT ) , xi ∼ N

(

0,
kBT

λi

)

, i ∈ {1, . . . , n}.

If we sample initial displacements and velocities independently, we can compute
the random force directly from the transformation above as

R(t) = θ(t)ḃ2(0) + θ̇(t)b2(0)

= P̂Λ−1/2 sin
(

Λ1/2t
)

P̂ T ḃ2(0) + P̂ cos
(

Λ1/2t
)

P̂ T b2(0)

= P̂Λ−1/2 sin
(

Λ1/2t
)

ẋ(0) + P̂ cos
(

Λ1/2t
)

x(0) (4.17)

if we use the representation of the memory kernel in equation (4.16).
If the memory integral and the random force (4.17) are computed exactly, the

solution of (4.10) and (4.11) is the same than for a fully atomistic simulation. But,
since the computation of the memory integral is very time consuming, we have to
approximate the memory kernel. We show in chapter 5, that for simulations at zero
temperature, we can cut the memory kernel in time and reduce the simulation time
drastically, without creating a too large numerical error. The situation is different
for non-zero temperature simulations, i.e. if we consider also R(t). This random force
gives a periodic excitation of the normal modes of the missing degrees of freedom
b2 that are damped by the memory integral. If we cut the memory kernel in time
and/or in space, the damping of some normal modes can be changed, and the energy
of this normal modes can grow exponentially. To avoid this, we can use the method
proposed in [75]. With integration by parts, we can rewrite

b2(t) =

∫ t

0

θ(τ)BT
2 K(Nd + B1b1)(t − τ)dτ

= Θ(t)BT
2 K(Nd + B1b1)(0) −

∫ t

0

Θ(τ)BT
2 K(Nḋ + B1ḃ1)(t − τ)dτ,
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where

Θ(t) :=

∫ t

0

θ(τ)dτ.

With
d = (NT MN)−1NT Mu, b1 = (BT

1 MB1)
−1BT

1 Mu (4.18)

and the harmonic solutions of u,

u = u0 exp(−iωt),

we can rewrite the memory integral

−
∫ t

0

Θ(τ)BT
2 K

(

N(NT MN)−1NT Mu̇ + B1(B
T
1 MB1)

−1BT
1 Mu̇

)

(t − τ)dτ

= −
∫ t

0

Θ(τ)BT
2 K

(

I − B2(B
T
2 MB2)

−1BT
2 M

)

u̇(t − τ)dτ

= iω

∫ t

0

Θ(τ)BT
2 K

(

I − B2(B
T
2 MB2)

−1BT
2 M

)

u0 exp(−iω(t − τ))dτ

= iω exp(−iωt)

∫ t

0

Θ(τ)BT
2 K

(

I − B2(B
T
2 MB2)

−1BT
2 M

)

exp(iωτ)dτ u0

= iω exp(−iωt)

∫ t

0

Θ(τ)BT
2 K(I − B2(B

T
2 MB2)

−1BT
2 M)(cos(ωτ) + i sin(ωτ))dτu0.

Since
Θ(t) = P̂ (I − cos(Λ1/2t))P̂ T , (4.19)

the term with the sine function is zero. If we rewrite the left hand side of equations
(4.10) and (4.11) also with (4.18) and consider only the terms with the memory
integral on the right hand side, we get

(

NT MNd̈

BT
1 MB1b̈1

)

=

(

NT

BT
1

)

ü(t)

= −
(

NT

BT
1

)

KB2

∫ t

0

Θ(τ)BT
2 K(I − B2(B

T
2 MB2)

−1BT
2 M) cos(ωτ)dτ iωe(−iωt)u0

=

(

NT

BT
1

)
∫ t

0

KB2Θ(τ)BT
2 K(I − B2(B

T
2 MB2)

−1BT
2 M) cos(ωτ)dτ u̇(t)

=

(

NT

BT
1

)

γ(ω)u̇(t).

To get a damping in the memory integral, the matrix γ(ω) has to be negative semi-
definite. This is the case if we compute Θ(t) according to (4.19). But, if we cut
the function after time T , or we cut the matrix B2 in space, the negative semi-
definiteness can no longer be guaranteed.

One possibility to overcome this problem, is to compute the function

KB2Θ(t)BT
2 K

(

I − B2(B
T
2 MB2)

−1BT
2 M

)

(4.20)
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over the time interval [0, T ], with T long enough that the entries of the matrix have
decayed, diagonalize the matrix, compute the real part of its Fourier transformation
and set the positive values to zero. With inverse Fourier transformation, we can
compute an update of (4.20). Possibly, the entries of the matrix do now not decay
in the given time interval [0, T ] and in space. The procedure is therefore repeated till
the matrix entries decay and the matrix has the required negative semi-definiteness.
This method was tested in [75] for the coupling of a small atomistic to a continuum
region.

To reduce the computation time effectively, without reducing the number of
degrees of freedom in b2, we would have to take R(t) into account only in some
probabilistic way as a random force in every time step. Since the values of R(t) in
different points in time are related to each other, it is not enough to sample R(t) with
the correct mean value 〈R(t)〉 and the correct variance 〈R(t)T R(t)〉, but we need
also the correct autocorrelation 〈R(0)TR(t)〉. As described in [4] for the coupling of
an atomistic and a continuum region, we can compute the autocorrelation function
of the random force by taking the time derivative of R(t) and multiplying with ḃ2

which leads to

Ṙ(t)ḃT
2 (0) = θ̇(t)BT

2 MB2b2(0)ḃT
2 (0) + θ̈(t)BT

2 MB2ḃ2(0)ḃT
2 (0).

Taking the ensemble average, we get

〈Ṙ(t)ḃT
2 (0)〉 = 〈θ̈(t)BT

2 MB2b2(0)ḃT
2 (0)〉 + 〈θ̇(t)BT

2 MB2ḃ2(0)ḃT
2 (0)〉

= 〈θ̇(t)BT
2 MB2ḃ2(0)ḃT

2 (0)〉
= θ̇(t)BT

2 MB2〈ḃ2(0)ḃT
2 (0)〉

= kBT θ̇(t).

If we solve for the derivative of the memory kernel,

θ̇(t) =
1

kBT
〈Ṙ(t)ḃT

2 (0)〉,

and integrate with respect to t, we get

θ(t) =
1

kBT
〈R(t)ḃT

2 (0)〉

= − 1

kBT
〈Ṙ(t)bT

2 (0)〉,

where the second equality is valid because the process R(t) is stationary. With
another integration with respect to t, we finally get

∫ ∞

t

θ(τ)dτ =
1

kBT
〈R(t)bT

2 (0)〉 =
1

kBT
〈R(t)RT (0)〉,

where we get the last equation with R(0) according to (4.17). However, the sampling
of this autocorrelation function, without the projection to normal mode coordinates,
is still an open problem.
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4.5 Mori-Zwanzig projection operator formalism

The Mori-Zwanzig projection operator formalism (cf. e.g. [31, 19]), developed about
40 years ago by H. Mori and R. Zwanzig, is a theoretical framework for the derivation
of evolution equations for a subset of observables of a Hamiltonian system. In the
following, we want to show, how we can obtain the evolution equations, the reflec-
tionless boundary condition and the random force of the orthogonal displacement
splitting for a harmonic system, as derived in section 4.2, also from this formalism.
If we once have derived these equations for the special case of observables that are
linear combinations of the atomic displacements or momenta, it is much easier to
determine the appropriate evolution equations for special linear combinations (like
the displacement splitting u = Nd + B1b1 + B2b2) than deriving the equations for
every setting from the Mori-Zwanzig equations. Since they are designed for a more
general setting, using them for a special choice of the variables is not straightforward.

We first give a short overview of the Mori-Zwanzig projection operator formal-
ism, following the representation in [31], but since we are dealing only with classical
mechanics systems, we will use the notation for classical instead of quantum me-
chanical Hamiltonians. Then, we derive the reflectionless boundary condition and
the random force for the case of two orthogonal subspaces in this formalism, follow-
ing the example 16.1 in [31], where the equations are derived for a heavy particle in
an elastic chain.

First, we have to choose a set of observables A = {Al}l∈{1,...,k} for the Hamiltonian
system under consideration. This observables should be linearly independent and
depend on time only through the time dependence of the momenta p and positions
q. Their evolution for the dynamic with the Liouville operator L̂ is given according
to section 1.2 by

A(t) = eiL̂tA(0). (4.21)

Furthermore, we need the projector P for the projection of atomistic values on
the set of variables A,

P :=
∑

µν

|Aµ)aµν(Aν|, (4.22)

with aµν the inverse of the symmetric matrix (Aµ|Aν) defined by
∑

α

aµα(Aα|Aν) = δµν .

The chosen projection P depends therefore not only on the set of observables
A, but also on the choice of the scalar product ( · | · ). Usually, the used scalar
product is the Mori scalar product. If the chosen operators A are a subset of the
coordinates, this scalar product is the correlation of the coordinates with respect to
the probability distribution of the given ensemble (cf. section 1.3). The operator Q,
orthogonal to P , is given by

Q := I − P.

From the equations of motion for the observables Al,

Ȧl(t) = eiL̂tȦl(0) = eiL̂tPȦl(0) + eiL̂tQȦl(0), l ∈ {1, . . . , k},
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together with the identity

eiL̂t = i

∫ t

0

eiL̂(t−τ)PL̂eiQL̂τdτ + eiQL̂t,

we obtain

Ȧl(t) = eiL̂tPȦl(0) + i

∫ t

0

eiL̂(t−τ)PL̂eiQL̂τQȦl(0)dτ + eiQL̂tQȦl(0).

With the definition of P in (4.22) and Al(t) = eiL̂tAl, we derive

Ȧ(t) = iΩA(t) −
∫ t

0

γ(τ)A(t − τ)dτ + f(t),

with the following definitions:

iΩ := (A|A)−1(A|iL̂A), (4.23)

f(t) := ieiQL̂tQL̂A, (4.24)

γ(t) := (A|A)−1(f(0)|f(t)).

Now we want to proof, that the memory integral and the random force of sec-
tion 4.2 can be derived alternatively with the Mori-Zwanzig projection operator
formalism if we choose a special subset of observables with the corresponding scalar
product. Since an approximation is neither in the derivation in section 4.2 nor in
the Mori-Zwanzig formalism necessary, both methods are exact and should there-
fore lead to the same equations. If the observables are a subset of the atomistic
momenta, such a derivation is carried out e.g. in [57] and [75].

As the subset of observables, we choose here nd arbitrary linear combinations of
the atomistic momenta,

P := NT p, Pi =

n
∑

j=1

Njipj, i ∈ {1, . . . , nd},

with n the total number of atoms, and we use the same matrix notation as in
section 4.2. This definition of the coarse scale momenta P corresponds to that of
the space discretised version of the local momenta in section 2.2, with the only
difference, that we have now a non differentiable and not time dependent weight
function. The projection matrix P is defined as the canonical ensemble average,

P :=
|P)(P|
(P|P)

=
|NT p)(NT p|
(NT p|NT p)

=
|NT p)(NT p|
NT (p|p)N

=
|NT p)(NT p|
kBTNT MN

,

and the displacements corresponding to this momenta are

d = (NT MN)−1NT Mu.

With b we denote once more the displacements in the subspace orthogonal to the
space spanned by d, with the corresponding momenta B and interpolation matrix B
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orthogonal to N , NT MB = 0. The Hamiltonian for the whole system with harmonic
interaction is given by

H =
1

2

(

PT (NT MN)−1P + BT (BT MB)−1B + (Nd + Bb)T K(Nd + Bb)
)

.

With the following identities

P = (NT MN)iL̂d,

(F|L̂G) = ikBT 〈{FT ,G}〉, (4.25)

(P|P) = kBT (NT MN),

QL̂F = L̂F − PL̂F = L̂F − PT (P|L̂F)

(P|P)

=
1

i
{F ,H}− iPT (NT MN)−1〈{P,F}〉

= −1

i
{H,F} +

1

i

{

1

2
PT (NT MN)−1P,F

}

(4.26)

= −1

i
{H̃,F} = L̃F ,

taken from [31], a Hamiltonian H̃ for the evolution in the space orthogonal to the
variables P can be derived:

H̃ =
1

2

(

BT (BT MB)−1B + (Bb + Nd)T K(Bb + Nd)
)

,

where the equality (4.26) holds only if the observable F is a linear combination of
the atomic displacements and momenta. The Poisson brackets {·, ·} in the preceding
equations are defined as

{F ,G} :=

n
∑

i=1

∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi

.

According to (4.24), we can derive the residual force

f(t) = eiQL̂tQiL̂P = eiL̃tiLP = −eiL̃tNT Ku = −eiL̃tNT K(Nd + Bb). (4.27)

The projected Hamiltonian H̃ leads to the following evolution equations

ḋ = 0,

Ḃ = BT MBb̈ = −BT K(Nd + Bb). (4.28)

The dynamic of the residual force is therefore determined by the evolution of the
orthogonal variables b, when the displacements d are fixed. As before, we can solve
(4.28) with a Laplace transformation to obtain

b(t) =

∫ t

0

θ(τ)BT KNd0dτ + θ(t)BT MBḃ(0) + θ̇(t)BT MBb(0),
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with
θ(t) = L−1{[BT MBs2 + BT KB]−1}.

We use the notation d0 to indicate that d does not change in time. Therefore,
we can evaluate the integral with

Θ(t) :=

∫ t

0

θ(τ)dτ.

From (4.27), we derive the following representation for the residual force

f(t) = −NT KNd0 − NT KBΘ(t)BT KNd0 −
−NT KBθ(t)BT MBḃ(0) − NT KBθ̇(t)BT MBb(0),

and with the Kubo identity (4.25), we can obtain the memory kernel

γ(t) =
1

(P|P)
(f(0)|f(t)) =

1

(P|P)
(iLP|f(t))

= (NT MN)−1〈{P, f(t)}〉

= (NT MN)−1 ∂P
∂P

∂f(t)

∂d
= −(NT MN)−1(NT KN + NT KBΘ(t)BT KN).

Finally, we can determine the memory integral

∫ t

0

γ(τ)P(t − τ)dτ =

∫ t

0

γ(τ)(NT MN)ḋ(t − τ)dτ

= (−NT KN − NT KBΘ(t)BT KN)d0 + NT KNd(t)

+

∫ t

0

NT KBθ(τ)BT KNd(t − τ)dτ,

using integration by parts.
Since the function iΩ, defined in (4.23), is zero for our definition of the observ-

ables, we finally end up with the evolution equations

Ṗ = (NT MN)d̈ = −
∫ t

0

γ(τ)P(t − τ)dτ + f(t)

= −NT KNd −
∫ t

0

NT KBθ(τ)BT KNd(t − τ)dτ (4.29)

−NT KBθ(t)BT MBḃ(0) − NT KBθ̇(t)BT MBb(0),

which is exactly the same as in equations (4.10) - (4.14) if we do not split the
displacement b into two parts.

Note, that the use of the term memory integral in the Mori-Zwanzig formalism
differs from that used in previous subsections. There we used the expression only
for the integral given by (4.29).
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The derivation above is valid only for the case of a harmonic potential, since
equation (4.26) is only valid if F is a linear combination of positions and momenta.
In the derivation in subsection 4.2, it was only necessary that the Hamiltonian is
harmonic in the variables for which we want to derive the reflectionless boundary
condition but not for the others. Furthermore, the derivation in section 4.2 is in-
dependent, whether we are in a equilibrium situation or not. In contrast to this,
for the derivation with the Mori-Zwanzig projection operator formalism, we use the
Mori scalar product which is only defined in equilibrium situations.

For the derivation of equations (4.10) - (4.14) in case of harmonic interaction from
the Mori-Zwanzig formalism, define P = (NT p, BT

1 p) and the orthogonal variables
as b2.

4.6 Choosing the interpolation functions

So far, a coupling scheme was defined from a displacement splitting that allows to
derive evolution equations together with reflectionless boundary conditions from the
Lagrangian formulation. If it is used for the coupling of an atomistic and a coarse
scale region, we get no reflections at the interface and the correct dispersion relation
in the coarse scale region. However, solving the whole system (4.10) and (4.11),
with exact calculation of the reflectionless boundary condition (4.12), is not cheaper
than solving the whole atomistic system. Therefore, some approximations in the
computation of the boundary condition are necessary.

For the evolution equations of the fine scale variables b1, the influence of the
reflectionless boundary condition is strong only near the interface, since the matrix
BT

1 KB2 has only a few non-zero entries in the atomistic region, due to the local
support of the interpolation functions. The boundary condition in this equations is
necessary to suppress the reflection of waves with small wave length. Due to the
local interaction, we can approximate the memory integral comparatively easy by
integrating only over a small time interval or by neglecting the fine scale variables
b2 with support more than a few nodes away from the interface. We study the error
for such approximations together with the numerical error in chapter 5.

The situation becomes more complicated for the evolution equations of the coarse
scale variables (4.10). The interaction between d and the fine scale variables b2 is the
same everywhere in the coarse scale region. Approximations by neglecting most of
the fine scale variables b2 are therefore not possible. Additionally, the decay of the
corresponding entries in the memory kernel depends on the distance of the support
of the interpolation function of a node from the support of the interpolation of a
fine scale variable. The larger this distance, the later the memory kernel reaches its
maximum value before decaying.

In the evolution equations of the coarse scale nodes, the reflectionless boundary
condition is responsible for keeping the correct dispersion relation. Figure 4.6 shows
on the left panel an example of the stress for ñ = 5 (other parameters according to
numerical example 1 in section 3.1) if the boundary condition is taken into account
for both the fine scale (4.11), and the coarse scale evolution equations (4.10). The
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Figure 4.6: stress with and without boundary condition for equation (4.10) and
interpolation with linear hat functions

dispersion relation in the coarse scale region is correct and we have nearly no reflec-
tion at the interface. On the right panel, the same example with boundary condition
only for the fine scale part is shown. Now, the wave speed in the coarse scale region
differs, since we get the wrong dispersion relation if we neglect the variables b2 in
the equations. Additionally, we get reflections at each node. Since the total mass
of the nodes in the coarse scale region is the same than the total mass of all atoms
in this region whereas the wave speed is higher, we get a higher momentum. Due
to the conservation of the overall momentum in a Hamiltonian system, part of the
perturbation has to be reflected at the interface.

Of course, we cannot approximate the equations in the coarse scale region, keep-
ing all the atomistic information, but the correct dispersion relation is what we
require on the coarse scale. Therefore, we have to think of another possibility for
conserving the dispersion relation, without the need of the reflectionless boundary
condition. In section 3.1.2.1, we discussed already one possibility to correct the dis-
persion relation in the coarse scale region by changing the mass matrix. However,
the resulting evolution equations cannot be derived from the Lagrangian. The only
option that we still have in our coupling model, is a tuning of the interpolation
functions from coarse to fine scale.

We explain now, how to choose the interpolation functions from coarse to fine
scale in such a way that they provide already the correct dispersion relation, thus
making the information in the boundary condition redundant for our application.

The new interpolation functions should fulfil the following conditions:

1. For M = mI, the interpolation function from each coarse scale node to the
atoms should be symmetric to this node.

2. Partition of unity: the sum of all coarse scale interpolation weights at each
atom should be one.
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Figure 4.7: new interpolation function (red) compared to linear hat function (green)
and stress with the new interpolation

3. The error in the dispersion relation of the coarse scale evolution equations,
compared to the atomistic dispersion relation, should be as small as possible.

4. The interpolation from each coarse scale node to the atoms should be local,
i.e. the interpolation weights are non-zero only in a small neighbourhood of
each node.

Whereas the first and the second condition are general requirements, the third
and the forth condition are contradictory. To obtain the exact dispersion relation on
the coarse scale, the projection from fine to coarse scale should provide a separation
in fine and coarse scale wave length. However, such an interpolation would not be
local anymore, hence leading to fully occupied matrices for the mass and the force
calculation on both scales. This allows indeed a separation of fine and coarse scale
displacements but no separation of the fine scale degrees of freedom in the atomistic
and in the coarse scale region.

For linear finite element hat functions as interpolation functions, the error in
the dispersion relation, between coarse scale and atomistic equations for a harmonic
potential, was large for the largest wave vectors that can be represented on the
coarse grid, (cf. figure 3.12). If we compute the Taylor expansion of both dispersion
relations around κ = 0, the first term of both expansions is the same, since the limits
κ → 0 are the same. We can start now with arbitrary interpolation weights that
fulfil the first and second condition stated above and choose the weights in such a
way that not only the first term is the same, but as many terms of the expansion as
possible are the same. How many terms we can fit depends of course on the number
of non-zero weights. We will show in chapter 5, that we get already quite good
results, if the first two or three terms in the dispersion relation match. Of course,
we can think of other criteria for better interpolation functions, e.g. the error for a
special wave number can be reduced if this wave number is of special importance in
the calculation.
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In figure 4.7, we show an example for a new interpolation function (red) compared
to the linear hat function (green) and the stress for the computation with this
new interpolation. In the coarse scale region no reflectionless boundary condition
was used. In contrast to the computation with linear hat functions in figure 4.6,
the reflection at the interface is reduced, and also the wave speed in the coarse
scale region is almost correct. The computation for this and other one dimensional
new interpolation functions will be explained in chapter 5, and the corresponding
dispersion relations are calculated. Two dimensional examples will be considered in
chapter 6.



Chapter 5

Approximations and numerical

results for one dimensional

harmonic potentials

We concentrate in this chapter on the orthogonal displacement splitting for the cou-
pling of an atomistic and a coarse scale region in one dimension in case of harmonic
interaction with the same mass m and spring constant k for all atoms. In section 5.1,
we construct a general procedure for computing interpolation weights with correct
dispersion relation in the coarse scale region and give examples for this. One of the
advantages of deriving the evolution equations for coarse and fine scale degrees of
freedom from an orthogonal displacement splitting is, that we can make approxima-
tions directly in the Lagrangian and derive evolution equations that are still energy
conserving. We will give some examples of such approximations in section 5.2. In
section 5.3, we discuss numerical approximations for solving the system of equations
by approximating the memory integral or using different time steps for the update of
coarse and fine scale values. For the approximations of the memory kernel, we focus
especially on the advantage of using coarse scale interpolation weights with correct
dispersion relation. We show also results for the anharmonic example of section 3.2,
computed with the orthogonal displacement splitting.

5.1 Computation of better interpolation weights

In section 4.6, we discussed the advantage of choosing the interpolation from the
coarse scale in such a way that the error in the dispersion relation, compared to
the fully atomistic system, is small. By choosing suitable coarse scale variables we
get like this coarse scale equations that capture the essential atomistic features for
our simulation and can therefore be used without the fine scale variables [66, 67].
Choosing the interpolation weights in such a way that some fine scale property is
preserved is also used e.g. in multigrid simulations (e.g. cf. [13, 14, 15]).

We explain now for some examples, how we can compute interpolation weights
that fulfil the requirements of section 4.6.

83
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For linear finite element hat functions, the interpolation weights of each node are
non-zero for the atom with equilibrium position at this node, as well as for the atoms
in the two neighbouring elements. If we use a coarse scale node at the equilibrium
position of every ñth atom, we have 2ñ − 1 non-zero weights, and the evaluation of
the linear hat functions at the equilibrium positions of the atoms gives already the
best choice of the interpolation weights.

Lemma 5.1 For an interpolation with 2ñ− 1 non-zero weights, we cannot fit more
than the first term in the coarse scale dispersion relation. This term is only the same
as the corresponding atomistic value for interpolation with linear hat functions.

Proof: With the requirement of symmetry to the weight in the center, we have ñ
different weights which reduce to d ñ−1

2
e independent weights with the partition of

unity, according to section 4.6. In the following, we show for odd ñ that the best
choice of these interpolation weights is according to linear hat functions, for even ñ
the computation is similar. With the symmetry and the partition of unity, we get a
vector of interpolation weights

Ni = [0, 1 − w2, 1 − w3, . . . , w3, w2, 1, w2, w3, . . . , 1 − w3, 1 − w2, 0]

for every node, from which we can compute the entries of the coarse scale mass
matrix NT MN and the coarse scale force matrix NT KN . Both matrices are tridi-
agonal, and we denote the entries on the main diagonal with m1 and k1 respectively
and that on the secondary diagonal with m2 and k2. The values are related, since
the sum of every row of the force matrix is zero, and the sum of every row of the
mass matrix corresponds to the sum of all atomic masses in one element, i.e.

k1 + 2k2 = 0, m1 + 2m2 = ñm. (5.1)

For the dispersion relation, we obtain for a0 = 1

ω(κ) =

√

2k2 cos(κñ) + k1

2m2 cos(κñ) + m1

=
1

2

√

−2k1ñ κ +
1

48

√

−2k1ñ ñ (5ñ − 6m1) κ3 + O(κ5),

where we used (5.1) and a Taylor expansion for the second equality. We show now,
that choosing the weights according to linear hat functions is the only possibility to
match the first term of the dispersion relation, i.e. that these are the only weights
which fulfil

1

2

√

−2k1ñ − 1 = 3 − 1

ñ
− 4w2 − 4w(ñ+1)/2 − 4w2w3 − 4w3w4 − . . .

. . . − 4w(ñ−1)/2w(ñ+1)/2 + 4w2
2 + · · ·+ 4w2

(ñ−1)/2 + 6w2
(ñ+1)/2 = 0. (5.2)

We show that for

w2 =
1

ñ
, w3 =

2

ñ
, . . . , w(ñ+1)/2 =

ñ − 1

2ñ
, (5.3)
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the function

f(w2, . . . , w(ñ+1)/2) = 3 − 1

ñ
− 4w2 − 4w(ñ+1)/2 − 4w2w3 − 4w3w4 − . . .

. . . − 4w(ñ−1)/2w(ñ+1)/2 + 4w2
2 + · · ·+ 4w2

(ñ−1)/2 + 6w2
(ñ+1)/2

has a global minimum. The only point where the gradient

∇f(w2, . . . , w(ñ+1)/2) =



















−4 − 4w3 + 8w2

−4w2 − 4w4 + 8w3

−4w3 − 4w5 + 8w4
...

−4w(ñ−3)/2 − 4w(ñ+1)/2 + 8w(ñ−1)/2

−4 − 4w(ñ−1)/2 + 12w(ñ+1)/2



















vanishes is given by (5.3). The Hessian H of this function,

H =



























8 −4 0 . . . . . . 0 0
−4 8 −4 0 0 0

0 −4 8 −4
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0
. . . −4 8 −4 0

0 0
. . .

. . . −4 8 −4
0 0 . . . . . . 0 −4 12



























.

is constant and positive definite. To prove the positive definiteness of H, we show
that the determinant of every sub-matrix Hn = H(1 : n, 1 : n) is positive. This is
true for n = 1. For n = 2, . . . , k − 1, with k × k the size of H and |H0| := 1, the
determinant can be computed as

|Hn| = −16 |Hn−2| + 8 |Hn−1|.

This identity can be used recursively, to show that |Hn| is positive.

|Hn−1| > 2 |Hn−2| =: xn−2 |Hn−2|, (5.4)

if |Hn−2| >
16

8 − 2
|Hn−3| =: xn−3 |Hn−3|,

if |Hn−3| > xn−4 |Hn−4| . . .

with

xn−2 := 2, xk :=
16

8 − xk+1

, k ∈ {1, . . . , n − 3}.

The limit of this series is x1 = 4 for n → ∞, and we have always xk > xk+1.
Since |H2| = 6|H1|, the inequality (5.4) holds for all n. Due to |H| = |Hk| =
−16|Hk−2| + 12|Hk−1| > −16|Hk−2| + 8|Hk−1| > 0, also the determinant of the
whole matrix is positive.
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Since the point given by (5.3) is the only minimum, it is a global one, and since
f = 0 in this point holds, choosing the interpolation weights on the linear hat
functions is the only possibility to fulfil equation (5.2). �

Therefore, if we want to use an interpolation with better coarse scale dispersion
relation, we need at least one more non-zero weight in each direction from the weight
in the center. The easiest possibility to get such an interpolation, is to change the
zero weights at the neighbouring nodes to a non-zero value. Due to the requirement
of the partition of unity, we have to change also the weight 1 at the node itself.
Instead of the interpolation weights of linear hat functions for each node,

Nold =

[

0,
1

ñ
,
2

ñ
, . . . ,

ñ − 1

ñ
, 1,

ñ − 1

ñ
, . . . ,

2

ñ
,
1

ñ
, 0

]

,

we use

Nnew =

[

x̃,
1

ñ
,
2

ñ
, . . . ,

ñ − 1

ñ
, x,

ñ − 1

ñ
, . . . ,

2

ñ
,
1

ñ
, x̃

]

, with 2x̃ + x = 1,

where we have to find a better value than 1 for the parameter x. For an arbitrary
value of x, we obtain the entries of the coarse scale mass matrix,

m1(x) =
3

2
x2 − x − 1

2
+

2ñ

3
+

1

3ñ
,

m2(x) = x − x2 +
ñ

6
− 1

6ñ
,

m3(x) =
1

4
− 1

2
x +

1

4
x2,

and of the coarse scale force matrix,

k1(x) = −3x2 + 6x − 6x

ñ
− 3 +

4

ñ
,

k2(x) = 2x2 − 4x +
4x

ñ
+ 2 − 3

ñ
,

k3(x) = −x2

2
+ x − x

ñ
+

1

ñ
− 1

2
,

where m1 and k1 denote the values of the main diagonal of the matrices, the other
values that of the secondary diagonals. For the coarse scale dispersion relation for
a0 = 1 it follows

ω(κ) =

(

− 2k3 cos(2κñ) + 2k2 cos(κñ) + k1

2m3 cos(2κñ) + 2m2 cos(κñ) + m1

)1/2

= κ +

((

1

4
x2 − 1

2
x +

1

4

)

ñ3 +

(

1

2
x − 11

24

)

ñ2 +

(

1

2
− 1

2
x

)

ñ − 1

12

)

κ3

+O(κ5).

The first term in the expansion does not depend on x. To find x with the least
square error in the second term of the dispersion relation, we compare it with the
corresponding term of the Taylor expansion of the atomistic dispersion relation,

ω(κ) = κ − 1

24
κ3 + O(κ5).
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We minimize the squared error, i.e.
(

1

4
ñ3x2 − 1

2
ñ3x +

1

2
ñ2x − 11

24
ñ2 +

1

4
ñ3 − 1

2
xñ +

1

2
ñ − 1

24

)2

7→ min

and obtain

x = 1 − 1

ñ
+

1

ñ2
.

In this case, the quadratic error for the second coefficient is given by
(

1

24
ñ2 − 1

4
ñ +

11

24
− 1

4ñ

)2

,

compared to
(

1

24
ñ2 − 1

24

)2

for the linear hat function, i.e. for x = 1. Since
(

1

24
ñ2 − 1

4
ñ +

11

24
− 1

4ñ

)2

−
(

1

24
ñ2 − 1

24

)2

= −3(ñ − 1)3(ñ2 − 2ñ + 3) ≤ 0,

where the upper bound 0 is reached only for ñ = 1, the error is always reduced,
although the second term of the dispersion relation is correct only for ñ ≤ 3. How-
ever, this gives us the possibility to obtain a better interpolation, just by changing
the interpolation weights at the coarse scale nodes.

We give now two examples, how to compute interpolation weights, which match
the second term or higher order terms in the dispersion relation for an arbitrary
value of ñ.

First, we consider the case ñ = 5 and two additional non-zero weights in every
direction compared to linear hat functions [66]. On the left panel of figure 5.1,
the linear hat function is shown for this example (green) with 9 non-zero weights
and the new interpolation function with 13 non-zero weights (red). Due to the
required symmetry, we have to determine 7 different weights. We denote them by
wi, i = 1, . . . , 7, with w1 the value of the interpolation function in the center, i.e.
the maximum in figure 5.1.

From the requirement that the sum of all weights for each atom should be unity,
we get the following linear system of equations,

w1 = 1 − 2w6,

w2 = 1 − w5 − w7,

w3 = 1 − w4.

The four free parameters left, w4 − w7, are now calculated from the dispersion
relation of the coarse scale equations, using this new interpolation weights. The first
term of the expansion of the coarse scale dispersion relation is

√

30w2
4 + 20w2

5 + 20w2
7 − 20w4 − 20w4w5 + 20w4w7 − 40w5w7 + 5 κ.



88 CHAPTER 5. 1D APPROXIMATIONS AND NUMERICAL RESULTS

To match the first term of the atomistic dispersion relation, this coefficient should
be one. Additionally, the weights should all be real, which implies

w4 =
2

5
, w5 =

1

5
+ w7.

Taking this results into account for the calculation of the second term of the Taylor
expansion of the coarse scale dispersion relation, this term simplifies to

(

125w2
6 + 250w2

7 − 270w6w7 − 20w6 + 10w7 +
23

24

)

κ3.

If we require that this term matches also the atomistic dispersion relation and that
again all weights are real, we finally get

w6 =
3

25
, w7 =

1

25
,

i.e. the new vector of interpolation weights

N1 =
1

25

[

0, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 0
]

. (5.5)

If we take again two additional interpolation weights in each direction, we can
choose weights which match also the third term in the dispersion relation, this leads
to

N2 =
1

125

[

0, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 0
]

. (5.6)

Both new interpolation functions are shown on the left panel of figure 5.1, where N1

is marked in red and N2 in blue. On the right panel of the figure, the corresponding
dispersion relations are shown together with that of the atomistic system (black)
and that of the linear hat functions (green). The error is drastically reduced with
the new interpolation functions, from maximum 17.60% to maximum 6.49% with
N1 and 3.22% with N2 respectively, and we get the maximum error always for the
second largest wave number. We used Maple 10 for the computation of dispersion
relations and interpolation weights above.

Thus, the computation of new interpolation weights divides into the following
steps:

1. Determine the number of independent weights from the requirements of sym-
metry and partition of unity.

2. Compute the entries of the coarse scale mass NT MN and force matrix NT KN .

3. Compute the dispersion relation from the entries of the mass and force matrix.

4. Expand the dispersion relation around κ = 0 and compare the coefficients with
that of the fully atomistic case.
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Figure 5.1: new interpolation weights (a) and dispersion relation (b)

Figure 5.2: new interpolation functions (green) and atoms with non-zero entries of
the fine scale interpolation (red) for fine scale variables in the element in the middle

Of course, we can think of other criteria to compare the atomistic and coarse scale
dispersion relation. We can e.g. minimize the error with respect to a special wave
number if this one is of special importance in the simulation.

Since the new interpolation functions do not end at a node, the interpolation
weights at the boundary of the domain have to be changed, to guarantee the par-
tition of unity everywhere. This can be done by changing only the values of the
interpolation weights of the nodes directly at the boundary in such a way that the
sum of all weights of each atom in the last elements is one.

If new interpolation functions are used, we also need appropriate interpolation
weights for the fine scale variables b. The first question is, how many non-zero entries
of the matrix B are necessary for the fine scale variables between two coarse scale
nodes. This number depends on the number of non-zero coarse scale interpolation
functions in each element. We denote this number by m̂. Figure 5.2 shows an
example with m̂ = 4 for the interpolation weights N1 from (5.5). To get ñ − 1
vectors of interpolation weights from the fine scale variables that are orthogonal
to the m̂ non-zero vectors of N we need ñ − 1 + m̂ entries. For the example in
figure 5.2, we choose the entries of the atoms marked red for the fine scale variables
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of the element in the middle. We can choose them e.g. as

B =

























−1/6 0 0 0
0 1/3 0 0
1 −1 0 0

−4/3 1 −1/3 1/2
1/2 −1/3 1 −4/3

0 0 −1 1
0 0 1/3 0
0 0 0 −1/6

























or every arbitrary linear combination of this vectors.

Discretisation in time So far, we considered the computation of new interpola-
tion weights for the time continuous system. If the first l terms of the coarse scale
dispersion relation are correct, this is also true for the time discretised system with
the same time step for coarse and atomistic system.

In the coupling of length scales approximation, the dispersion relation in the
coarse scale region could be improved by choosing another time step. Therefore, the
question arises, if we can use the coarse scale time discretisation ∆T as an extra
parameter to get better interpolation weights, i.e. if we can obtain a better dispersion
relation with the same number of non-zero weights, by choosing an appropriate time
step. Or if we can choose the interpolation weights in such a way that the dispersion
relation is correct for large ∆T compared to the atomistic time step.

Unfortunately, first attempts for the given examples showed that the extra pa-
rameter ∆T cannot be used, since the interpolation weights depend on the atomistic
time step, and we obtain real values only for ∆T = ∆t. In that case the values are
equivalent to the weights for the time continuous case. To get interpolation weights
that can be used for larger time steps in the coarse scale region, the requirement of
fitting the first terms in the expansion of the dispersion relation should therefore be
changed.

Nevertheless, if we use the interpolation weights optimized for the time contin-
uous case and use a larger time step in the coarse scale region, the error compared
to linear hat functions is reduced anyway, as shown in figure 5.3. It is therefore
reasonable to use the new interpolation functions also for ∆T > ∆t, even if we still
have some error in the dispersion relation.

5.2 Approximations in the Lagrangian for har-

monic potential

In this section, we analyse the effect of several approximations in the Lagrangian
for the coupling example with harmonic interaction which lead always to energy
conserving evolution equations. We compare again the stress and energy for a fully
atomistic simulation of the first numerical example of chapter 3 with that of the
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Figure 5.3: dispersion relation for time discretised system (∆T = 10∆t) for linear
hat functions (blue) and new interpolation weights N1 (green) compared to N1 for
the time continuous case (red)

approximations. The only difference to chapter 3 is, that we use here ñ = 5 and
compute always the energy of the first 50 atoms. Like in the previous chapters, the
red line in the energy plots is the kinetic energy, the blue line the potential energy
and the green line the sum of both.

1. Omit fine scale degrees of freedom in one part of the domain The first
approximation we can make, is to omit one part of the fine scale variables, i.e. for
our coupling example, we omit the variables b2. We get the Lagrangian

L =
1

2
(ḋTNT MNḋ + ḃT

1 BT
1 MB1ḃ1) −

1

2
(Nd + B1b1)

T K(Nd + B1b1)

and the evolution equations

NT MNd̈ = −NT K(Nd + B1b1),

BT
1 MB1b̈1 = −BT

1 K(Nd + B1b1).

Without reflectionless boundary condition, the fine scale part of the perturbation
is of course reflected at the interface, but the energy of the variables d and b1 is
constant over time. Whether the wave speed in the coarse scale region is correct,
depends on the choice of the interpolation function. For the interpolation weights
(5.5), stress and energy of the variables d and b1 are shown in figure 5.4. Again,
we have no visible error compared to the fully atomistic solution (cf. left panel of
figure 3.1) before the perturbation reaches the interface. The situation differs in the
bridging scales approximation. As can be seen in figure 5.5, we have also reflection
of one part of the perturbation, however the system is not energy conserving, and
we have an error in the stress already before the perturbation reaches the interface.
Additionally, we get a modified perturbation in the real atoms after the reflection,
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Figure 5.4: first approximation, omitting the variables b2 for orthogonal displace-
ment splitting, stress (left) and energy of the variables d and b1 (right)

and the velocity of the perturbation is wrong in the coarse scale region, since we use
linear hat functions for the interpolation.

In figure 5.6, we compare for both methods the energy of the first 50 real atoms
with the fully atomistic simulation (blue). For the orthogonal displacement splitting
(red), the energy is correct till the perturbation reaches the interface, whereas in the
bridging scales approximation (green) we observe some earlier deviations. Contrary
to this, the amount of energy that cannot pass the interface is a bit larger for the
orthogonal displacement splitting.

2. Omit coupling of coarse scale degrees of freedom d and fine scale

variables b2 Another approximation in the Lagrangian is to omit the interaction
between the fine scale variables b2 and d. This interaction is the same for the whole
coarse scale region. In contrast to this, the coupling of b1 and b2 gets weaker if we
go away from the interface, and we can therefore approximate the memory integral
by integrating not over the whole but a small time interval, thereby reducing the
computational effort drastically. We study this numerical approximation in the
next section. Here, we show the importance of interpolation weights with correct
dispersion relation for this approximation. The Lagrangian is

L =
1

2
(ḋT NT MNḋ + ḃT

1 BT
1 MB1ḃ1 + ḃT

2 BT
2 MB2ḃ2)

−1

2
(Nd + B1b1)

T K(Nd + B1b1) −
1

2
(B2b2)

T K(B2b2) − (B1b1)
T K(B2b2),

and the evolution equations are

NT MNd̈ = −NT K(Nd + B1b1),

BT
1 MB1b̈1 = −BT

1 K(Nd + B1b1 + B2b2).
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Figure 5.5: first approximation, omitting the variables b2 for the bridging scales
approximation

Figure 5.6: first approximation: energy in atomistic region for fully atomistic sim-
ulation (blue), orthogonal displacement splitting (red) and bridging scales approxi-
mation (green)
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In the memory integral for the reflectionless boundary condition (4.12), we just
have to omit the term Nd(t− τ). In figure 5.7, we see the stress and energy for this
approximation for interpolation with linear hat functions (a) and the interpolation
weights N1 (b). The difference in the error of the energy of the real atoms (c)
at the end of the simulation is reduced from 6.42% to 2.03% by using the new
interpolation. However, more important is, that the error in the wave speed in the
coarse scale region is reduced. And, in contrast to using the whole Lagrangian (4.9)
and neglecting the reflectionless boundary condition in the coarse scale evolution
equations (4.10), this approximation is energy conserving.

(a) (b) (c)

Figure 5.7: second approximation: stress for old (a) and new (b) interpolation
function and energy compared to fully atomistic simulation (c)

3. Truncation of matrix B2 The last approximation in the Lagrangian which
we want to consider, is neglecting not all fine scale variables b2 but only those
with support of the interpolation function more than a few nodes away from the
interface. For the remaining variables b̃2, we keep the interaction with d and b1.
The corresponding interpolation matrix B̃2 is zero for the neglected variables. With
the Lagrangian

L =
1

2
(ḋT NT MNḋ + ḃT

1 BT
1 MB1ḃ1 + ˙̃bT

2 B̃T
2 MB̃2

˙̃b2)

−1

2
(Nd + B1b1 + B̃2b̃2)

T K(Nd + B1b1 + B̃2b̃2)

and the evolution equations

NT MNd̈ = −NT K(Nd + B1b1 + B̃2b̃2),

BT
1 MB1b̈1 = −BT

1 K(Nd + B1b1 + B̃2b̃2),

B̃T
2 MB̃2

¨̃
b2 = −B̃T

2 K(Nd + B1b1 + B̃2b̃2),

we obtain an energy conserving system if we ensure that BT
1 MB̃2 = 0 and B̃T

2 M(B2−
B̃2) = 0. In figure 5.8, we show an example for which we kept only the fine scale
variables of the first five elements after the interface. In this case we do not get
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Figure 5.8: third approximation: stress (left) and energy of the real atoms compared
to that of the fully atomistic system (right)

reflections directly at the interface, but at the end of the fine scale variables b̃2, as
can be seen on the left panel. On the right panel, we see the energy of the real
atoms for this approximation (red) compared to that of a fully atomistic simula-
tion (blue). Before we get reflections, both energies are nearly the same, but then
the error increases strongly. In the next section, we show that combining the third
approximation with a numerical approximation of the memory integral, we can use
this approximation to reduce the simulation time significantly by increasing the error
only slightly compared to a simulation with all variables b2.

5.3 Numerical computation of memory integral

and other numerical errors

The evolution equations of the coarse and fine scale variables, (4.10) and (4.11), are
exact for harmonic potentials. However, we cannot solve the whole system of equa-
tions numerically, since the computational effort would be higher than solving the
whole atomistic system, due to the necessary evaluation of the integral for the reflec-
tionless boundary condition. In the previous section, we discussed some examples of
possible approximations in the Lagrangian and the importance of the choice of the
interpolation weights for this approximations. E.g. in the second approximation, we
neglect the coupling between the variables d and b2. This is only reasonable if we
can also approximate the memory integral,

∫ t

0

θ(τ)BT
2 KB1b1(t − τ)dτ, (5.7)

by an integral over a small time interval [0, tI]. Like this, after the time tI all
necessary entries of θ(t) are known, and no further evaluation of the function
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Figure 5.9: relative error in percent for different integration times of the memory
integral, for reflectionless boundary condition for b1 and d (left) and for b1 (right)

is required. Otherwise, this approximation does not reduce the computational
costs, since the computation of the memory integral makes the reflectionless bound-
ary condition very time consuming. If we integrate over θ(τ)BT

2 KB1b1(t − τ) or
θ(τ)BT

2 K(Nd + B1b1)(t− τ) is not that important in terms of computational costs.

In figure 5.9, we compare the relative error for different integration times tI . On
the left panel, we consider the system with reflectionless boundary condition for d
and b1 and on the right panel the system with boundary condition only for b1 and
the memory integral (5.7), both for ñ = 5. Parameters and initial conditions are
chosen like in the first numerical example of chapter 3. We define the relative error
by

εr :=
Eend − Eref,end

E0
,

with Eend denoting the energy of the real atoms at the end of the simulation, Eref,end

the energy of the real atoms at the end of a fully atomistic simulation and E0 the
initial energy. The figures in this chapter show this relative error in percent for a
simulation over 1500 time steps ∆t = 0.1.

In both panels of figure 5.9, we see that the error, compared to a simulation
without boundary condition (tI = 0), is already drastically reduced for tI = 5, i.e.
for taking always the information of the last 50 time steps into account. If we keep
the coupling between d and b2 (left panel), the error is first reduced, increases again,
before decaying to less than 1% as the integration time increases. The reason can
be seen in figure 5.10. The perturbation is now not reflected at the interface but
at the first nodes that do not get the information of the fine scale displacements if
we cut the integration time, since the dispersion relation of the system is changing
there. This explains also the error reduction for longer integration. In this case,
reflection occurs at nodes farer away from the interface, and the reflected perturba-
tion does not reach the region of the real atoms again within our simulation time.
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Figure 5.10: stress and energy for integration of the memory integral with tI = 40
using linear hat functions for interpolation

Therefore, the integration should be carried out for at least half of the time from the
moment the perturbation reaches the interface till the end of the simulation. The
general behaviour is the same for interpolation with linear hat functions and the
new interpolation weights N1, given by (5.5), and N2 according to (5.6). However,
the maximum error gets smaller the better the new interpolation function is, since
the change in the dispersion relation gets smaller.

For the second approximation, with boundary condition for b1, the error reduc-
tion for integration over 50 time steps is nearly the same as with the boundary
condition for d and b1. The error is reduced further by longer integration and is
nearly constant for tI > 30. This is due to the fact that for this approximation
the dispersion relation does not change in the coarse scale region. It changes at the
interface, since without boundary condition for d we do not get the correct wave
speed in the coarse scale region, but this reflection is not affected by the integration
time. The fact that this reflection is much smaller for the new interpolation func-
tions (≈ 2.07% for N1, ≈ 1.65% for N2) as for linear hat functions (≈ 6.42%) shows
that it depends indeed on the correctness of the dispersion relation. Therefore,
choosing better interpolation functions is very important for this approximation.
This behaviour of the error can also be seen for the simulation without reflection-
less boundary condition. The difference in the error between linear hat functions
and interpolation weights N1 for tI = 0 is 4.52%, compared to 4.35% for longer
integration times. This shows also that this error does not depend on the memory
integral but only on the dispersion relation in the coarse scale region. However, the
large error reduction by integrating over a small time interval, instead of using no
boundary condition at all, is due to the strong interaction between b1 and b2 near
the interface, the corresponding entries of the memory kernel decay very fast.

In figure 5.11, we show the first entries of the memory kernel θ(t) for interpolation
with linear hat functions (left panel) and the interpolation weight N1 (right panel).
The decay of the kernel depends on the interpolation, but both have in common,
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Figure 5.11: first entry of the memory kernel matrix over time for linear hat functions
(left) and new interpolation function (right) for ñ = 5

that they oscillate around some constant value after a while.
The integrals above were computed numerically with the trapezoidal rule
∫ tI

0

f(x) ≈ ∆t
(y0

2
+ y1 + y2 + · · ·+ yn−1 +

yn

2

)

, yi = f(ti), ti = i∆t,

with quadratic error O(∆t2). Since the memory integral is used in the force calcu-
lation, i.e. for the acceleration update, which is only second order accurate in the
velocity Verlet algorithm (cf. section 1.4), a higher accuracy in the integration does
not pay off. However the absolute error can be smaller for a higher order integration
rule.

For the third approximation approach in the previous chapter, with only some
of the fine scale degrees of freedom b2, we found, that the very accurate solution
at the beginning gets worse the longer we run the simulation. The perturbation
is reflected at the node where we cut the fine scale variables b2, since again the
dispersion relation is changing there. We can correct this error, by integrating the
memory integral again not over the whole but only a small time interval. This should
be long enough, that the perturbation can leave the atomistic region, but not long
enough, that it is reflected at the end of the fine scale variables and reaches the
atomistic region again. The error for this approximation depends therefore strongly
on the integration time tI , as can be seen in figure 5.12. We used again the entries of
b2 of the five elements directly on the right of the interface. If the integration interval
is too long, we get huge errors. Nearly the whole perturbation is then reflected back
into the atomistic region. The reflection depends on the interpolation, but the error
for a long integration is nearly the same for all interpolation functions, since for this
approximation we compute the memory integral from b1 and d.

Next, we want to consider, if the error behaviour for the second approximation
depends on the initial perturbation. So far, only the first atom got a high initial
momentum, now we compare this results with that for two to five atoms with initial
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Figure 5.12: relative error for different integration times of the memory integral for
third approximation approach given in section 5.2

b.c. for d and b1 b.c. for b1 approx. in B2 tI CPU time rel. error
x x - 150 730 0.44%
x x - 60 377 0.59%
- x - 20 143 2.50%
x - x 20 19 4.21%
- x x 20 19 2.33%
- - - 0 9 63.83%

Table 5.1: CPU times for different boundary conditions and different integration
times in the memory integral

momentum pi(0) = 0.01. The results are shown in figure 5.13. The behaviour is in
principle the same for all initial perturbations, but the error gets smaller the more
atoms with initial momentum we have, since we have then initially more energy in
the coarse scale degrees of freedom. Without boundary condition, i.e. for tI = 0,
the reflection at the interface is therefore reduced. Also with reflectionless boundary
condition the error is smaller, since the boundary condition has to deal only with
the, now smaller, fine scale part of the perturbation. Since the general behaviour
of the error is the same, we can use the second approximation also for other initial
conditions, and it is always enough to integrate over tI between 20 or 30. If we
consider systems with different atomic mass m and spring constant k, we get always
a minimal error if we integrate the memory integral for the second approximation
over tI between 20

√

m/k and 30
√

m/k.

We compare now the computation times for computing the boundary condition
for b1 and d over the whole simulation time, only over 600 time steps (i.e. tI = 60)
and for the second and third approximation with integration over 200 time steps (i.e.
tI = 20) in table 5.1. We see that we can reduce the effort significantly if we allow
a little error in the energy at the end of the simulation. However, the CPU-time for
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Figure 5.13: comparison of relative error for different number of atoms with ini-
tial momentum and different integration time, with second approximation approach
given in section 5.2

the third approximation is only twice of that without boundary condition, thereby
reducing the error from 63.83% to 2.33%. The computations were run on an Intel
Xeon processor with 2.80 GHz with Matlab 6.5.

To be useful for the simulation of real systems, the computation of the projection
matrices, the memory kernel, the memory integral and the solution of the whole
system should be faster than solving the corresponding atomistic system. This
depends especially on the numerical effort to compute the interatomic forces, which
depends on the dimension of the system, the potential energy function and the
number of interacting neighbours. For a one dimensional harmonic potential with
interaction only between nearest neighbours, the force computation is as cheap as
possible for an interacting system of atoms. Therefore, it is difficult to achieve lower
computation time for a coupled system. However, potential energy functions of
real systems are much more complicated, and the force calculation is usually the
bottleneck in molecular dynamics simulations.

Since we are using a different space discretisation in the coarse scale and the
atomistic region, it would save even more computation time if we could use also a
coarser time step for the update of the coarse scale node values. In section 5.1, we
discussed already the problem of finding interpolation weights with good dispersion
relation for larger coarse scale time steps. Now, we use again the new interpolation
weights N1 for ñ = 5 and compute the coarse scale update not in each but only
in every lth atomistic time step, for the full simulation and the second and third
approximation. For the second approximation, the memory integral was computed
over tI = 60, for the third approximation over tI = 20. The results are shown in
figure 5.14. There is nearly no difference in the error, for l between 1 and 5 and even
for l = 10 it becomes only a little bit larger, no matter if we use the full simulation
or an approximation. Since for l = 20 it increases significantly, such a large time
step should not be used for small values of ñ like 5. But choosing l = ñ for an
atomistic time step ∆t = 1

10

√

m
k

leads to good results and reduces the computation
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Figure 5.14: relative error for different coarse scale time steps

time significantly.
In section 3.2, we considered an anharmonic example with nearest neighbour

interaction,

H2 =
1

2

n
∑

i=1

p2
i

m
+

n
∑

i=2

(

k1

2
(qi − qi−1 − a0)

2 +
k2

4
(qi − qi−1 − a0)

4

)

,

with k1 = 1 and k2 = 10 and initial condition p1(0) = 0.3. For the coupling of length
scales approximation, we got a large error in the stress and the energy of the real
atoms (cf. figure 3.19). The reflection of the perturbation was reduced significantly
by using the bridging scales approximation, but due to the wrong wave speed in the
coarse scale region, the energy at the end of the simulation was not correct. If we
rerun the computation with the orthogonal displacement splitting for ñ = 5, with
the interpolation weights N1, we get nearly no reflection at the interface (left panel
of figure 5.15) and only a small error in the energy of the real atoms at the end of the
simulation (right panel of the figure), compared to the fully atomistic simulation.
This small error at the end is caused by the small error left in the dispersion relation
even with the new interpolation weights. But apart from that and a little energy
increase before the perturbation reaches the interface, we have no deviations from
the energy of the fully atomistic simulation.

Another question, that arises if we consider numerical aspects of the orthogonal
displacement splitting, is how large the distance between the coarse scale nodes
should be. So far, the node distance was always chosen as five or ten times the atomic
equilibrium distance. If the distance is smaller, the part of the perturbation that is
given by the coarse scale variables is larger and can pass the interface independent
if we have a boundary condition or not. However, the reduction in the degrees of
freedom is larger for a large node distance.

A problem with small node distances is, that for interpolation with linear hat
functions, the energy in the atomistic region is not constant if we use the time step
∆t of the simulations above. We can overcome this problem only with a much
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Figure 5.15: stress and energy for the anharmonic example computed with orthog-
onal displacement splitting and new interpolation function

Figure 5.16: approximation with ñ=3 for linear hat function (blue) and interpolation
with correct dispersion relation (green)

smaller time step that increases the computation time drastically. The problem
cannot be solved by using other interpolation functions from the fine scale variables
to the atomic positions or by increasing the accuracy in the computation of the fine
scale accelerations from the fine scale forces,

b̈1 = (BT
1 MB1)

−1BT
1 K(Nd + B1b1 + B2b2).

It does also not depend on whether we use the boundary condition or not. It seems,
that the problem depends on the subspaces spanned by the coarse and fine scale
variables or rather by the corresponding interpolation matrices N and B, since it
does not occur for the new interpolation function, as can be seen in figure 5.16.
However, the problem can also be solved by computing the fully atomistic solution
in the atomistic region, like in the bridging scales method, and using the projec-
tions only to compute the coarse scale part of the displacement and the boundary
condition.



Chapter 6

Two dimensional examples

Although all examples in the previous chapters were one dimensional ones, the evo-
lution equations of the orthogonal displacement splitting were derived in chapter 4
for arbitrary dimensions. In section 6.1, we discuss the general aspects of two dimen-
sional simulations like the computation of the boundary condition. The computation
of new interpolation functions for various two dimensional atomic interactions is pre-
sented in section 6.2. In the last two sections, numerical results for two dimensional
examples are given, in section 6.3 for the boundary condition in two dimensions and
an approximation of the memory integral, in section 6.4 for the comparison of the
different interpolations and a simple model of the sputtering process.

6.1 Two dimensional simulations

In two dimensions, we have to decide not only in which distance the coarse scale
nodes should be chosen, but also how the regular grid of the nodes should look
like. We can think e.g. of a coarse scale discretisation of triangles or squares. The
best choice depends in general on the atomistic lattice structure. E.g. for atoms
on a lattice like in the left panel of figure 6.1, a coarse scale discretisation using
triangles matches the atomistic structure, whereas for atomic equilibrium positions
on a quadratic grid, the choice of an also quadratic coarse grid seems more natural
(right panel of figure 6.1). In the following, we concentrate on quadratic grids,
however, the computation of boundary conditions, interpolation weights, etc. is in
general feasible for other coarse scale discretisations.

The computation of the reflectionless boundary condition works in general like
for the one dimensional case. If the force is linear in the fine scale variables b2, and
we write the displacements of the variables in x- and y-direction in one vector

u =

(

ux

uy

)

, b1 =

(

b1,x

b1,y

)

, b2 =

(

b2,x

b2,y

)

,

we obtain for the memory kernel θ(t) the same expression as in the one dimensional

103
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Figure 6.1: different atomistic equilibrium positions with coupling to a coarse scale
region

case:

θ(t) = L−1{[BT
2 MB2s

2 − BT
2 KB2]

−1}

=

∞
∑

l=0

1

(2l + 1)!
[(BT

2 MB2)
−1(BT

2 KB2)]
lt2l+1(BT

2 MB2)
−1. (6.1)

If the atomistic forces in x- and y-direction depend only on the displacements in
x- and y-direction respectively, the force matrix K has the following structure

K =

[

Kx 0
0 Ky

]

,

i.e. the force calculations in both directions are independent from each other. We
can compute the memory kernel e.g. from Kx as

θx(t) =
∞

∑

l=0

1

(2l + 1)!
[(BT

2,xMB2,x)
−1(BT

2,xKxB2,x)
−1]lt2l+1(BT

2,xMB2,x)
−1,

and use it to compute the forces from the reflectionless boundary condition in x-
and y-direction, for Kx = Ky,

fx =

∫ t

0

θx(t)B
T
2,xKx(Nxdx + B1,xb1,x)(t − τ)dτ,

fy =

∫ t

0

θx(t)B
T
2,yKy(Nydy + B1,yb1,y)(t − τ)dτ.

If the force calculations in both directions are not independent from each other,
we have to compute the memory kernel from the whole force matrix K that is now
not a block matrix anymore.

If we consider an atomistic region embedded in a coarse scale region, every entry
of the memory integral depends on all fine scale displacements b1 and coarse scale
displacements d. Already for small systems, this can get very time consuming.
We can reduce the computational effort significantly, by computing the boundary
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Figure 6.2: computation of boundary condition for the whole boundary (left) and
for each side separately (right)

condition seperately for each boundary of the atomistic domain. We neglect thereby
the influence of the variables on one side of the domain on the memory integral of
atoms on the other side of the domain. Instead of taking all fine scale variables b2 in
the coarse scale region into account for the computation of the boundary condition,
we consider only those in the stripe neighbouring the boundary. An example is given
in figure 6.2. The white square in the middle marks the region of the atoms, the
grey regions the support of the fine scale variables b2, used for the computation of
the boundary condition. Since here the geometry is symmetric, we can use the same
matrix B2 for the computation of all four memory integrals, thereby reducing the
number of variables drastically. Numerical results for this approximation are given
in section 6.3.

With the interpolation matrix N from coarse to fine scale, the atomistic interac-
tion, given by the matrix K, is transferred directly to the interaction of the coarse
scale nodes by NT KN . If the atomistic forces in x-direction depend only on the dis-
placements of the neighbours in x-direction, this holds also for the nodes. Since the
interaction of the nodes is the same everywhere in the interior of the domain, the in-
teraction can be computed in a small part of the domain, to avoid the multiplication
of large matrices.

6.2 New interpolation functions in two dimen-

sions

In this section, we want to discuss, how we can compute interpolation weights in
two dimensions with small error in the dispersion relation compared to the atomistic
one. Like in the one dimensional case, the dispersion relation depends on the atomic
interaction. The interpolation weights depend therefore on the potential energy and
in two dimensions also on the atomic lattice structure.
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Figure 6.3: harmonic interaction with the four nearest neighbours

For the simplest two dimensional interaction, a harmonic potential with inter-
action to the four next nearest neighbours (cf. figure 6.3), we show now, how to
compute interpolation weights with better dispersion relation than using linear hat
functions. They are defined in two dimensions as

fj(x, y) = fj,x(x)fj,y(y), (6.2)

with fj,x(x) =

{

1 − d̃j,x−x

∆X
, x ∈ (d̃j,x − ∆X, d̃j,x]

1 +
d̃j,x−x

∆X
, x ∈ (d̃j,x, d̃j,x + ∆X]

,

fj,y(y) =

{

1 − d̃j,y−y

∆Y
, y ∈ (d̃j,y − ∆Y, d̃j,y]

1 +
d̃j,y−y

∆Y
, y ∈ (d̃j,y, d̃j,y + ∆Y ]

,

where ∆X and ∆Y denote the distance of the coarse scale nodes in x- and y-direction
and (d̃j,x, d̃j,y) the equilibrium position of node j.

According to [18], the time continuous harmonic solution for the atomistic system
with this interaction is given by

u = (ux, uy) = A exp(i(ωt − κx∆x − κy∆y)), (6.3)

with the amplitude A = (Ax, Ay), the wave vector κ = (κx, κy) and the wave
frequency ω. For our example, the equilibrium distances of the atoms in x- and
y-direction are the same,

∆x = ∆y = a0,

and we can write the harmonic solution for every atom as

uk,l = (ux,k,l, uy,k,l) = A exp(i(ωt − κxka0 − κyla0)).

If the force in every coordinate direction depends only on the displacements of
the atoms in this direction,

müx,k,l = k(ux,k+1,l + ux,k,l+1 + ux,k−1,l + ux,k,l−1 − 4ux,k,l),

müy,k,l = k(uy,k+1,l + uy,k,l+1 + uy,k−1,l + uy,k,l−1 − 4uy,k,l),

the dispersion relation for both coordinates is the same,

ω2 =
4k

m

(

sin2
(κxa0

2

)

+ sin2
(κya0

2

))

. (6.4)
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The evolution equations on the coarse scale, and therefore also the corresponding
dispersion relations, depend on the number of non-zero entries in the coarse scale
mass NT MN , and force matrix NT KN .

If we have the same distance of the nodes in x- and y- direction, i.e. ∆X =
∆Y = ña0, with linear hat functions (6.2) as interpolation functions, we get non-
zero entries in the coarse scale mass and force matrix on the main diagonal and
for the entries corresponding to the next nodes in vertical, horizontal and diagonal
direction. The evolution equations are given by

m1d̈k,l + m2

(

d̈k+1,l + d̈k,l+1 + d̈k−1,l + d̈k,l−1

)

+ m3

(

d̈k+1,l+1 + d̈k−1,l+1 + d̈k+1,l−1 + d̈k−1,l−1

)

= k1dk,l + k2 (dk+1,l + dk,l+1 + dk−1,l + dk,l−1)

+ k3 (dk−1,l−1 + dk−1,l+1 + dk+1,l−1 + dk+1,l+1) ,

with

m2 = − 1

18
+

ñ2

9
+

1

9ñ2
,

m3 =
ñ2

36
+

1

36ñ2
− 1

18
,

m1 = ñ2 − 4m2 − 4m3 =
4ñ2

9
+

4

9
+

1

9ñ2
,

k2 =
1

3
− 1

3ñ2
,

k3 =
1

3
+

2

3ñ2
,

k1 = −4k2 − 4k3 = −8

3
+

4

3ñ2
.

In case of ∆X = ∆Y = 2a0, we derive the dispersion relation from the harmonic
solution dx,j,k = Ã exp(i(ωt − κxj∆X − κyk∆Y )) as

ω2(κx, κy) =
4(3 − cos(κx∆X) − cos(κy∆X) − cos(κx∆X) cos(κy∆X))

3 cos(κx∆X) + 3 cos(κy∆X) + 9 + cos(κy∆X) cos(κx∆X)
.

In figure 6.4, we compare this dispersion relation (b) with the atomistic one (a),
given by (6.4), for different wave numbers (κx, κy) in x- and y- direction. The color
indicates the corresponding wave speed. As in the one dimensional case, the limiting
wave speed for small wave numbers is the same for both equations, but for large
wave numbers the waves are again too fast on the coarse scale. For κx = κy = π/3
we observe the largest deviation of 9.5%. If we increase the number of non-zero
weights and change the interpolation from

Nhat =
1

4













0 0 0 0 0
0 1 2 1 0
0 2 4 2 0
0 1 2 1 0
0 0 0 0 0













to Nnew =
1

64













1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1













,
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(a) (b) (c)

Figure 6.4: two dimensional dispersion relation for fully atomistic system (a), linear
interpolation (b) and new interpolation (c)

we observe again the largest deviation for κx = κy = π/3, but it is now only 1.2%
(cf. figure 6.4 (c)).

Like in the one dimensional case, the new weights were computed by choosing
first a matrix of (2ñ+1)×(2ñ+1) arbitrary non-zero weights. With the requirement
of symmetry with respect to the maximum weight in the center and the partition of
unity, we end up with 3 degrees of freedom, w1, w2 and w5,













w5 w4 w6 w4 w5

w4 w3 w2 w3 w4

w6 w2 w1 w2 w6

w4 w3 w2 w3 w4

w5 w4 w6 w4 w5













,
w3 = 1/4
w4 = 1/4 − w2/2
w6 = 1/4 − w5 − w1/4

.

With this degrees of freedom, we compute the entries of the coarse scale mass
and force matrix, NT MN and NT KN , that have now more non-zero entries than
for linear hat functions. The coarse scale dispersion relation is calculated from this
values as

ω2 =
−(k1 + 2k2(cos(κx∆X) + cos(κy∆X)) + 4k3 cos(κx∆X) cos(κy∆X) + . . .

m1 + 2m2(cos(κx∆X) + cos(κy∆X)) + 4m3 cos(κx∆X) cos(κy∆X) + . . .

+2k4(cos(2κx∆X) + cos(2κy∆X)) + 4k5 cos(2κx∆X) cos(2κy∆X) + . . .

+2m4(cos(2κx∆X) + cos(2κy∆X)) + 4m5 cos(2κx∆X) cos(2κy∆X) + . . .

+4k6(cos(2κx∆X) cos(κy∆X) + cos(κx∆X) cos(2κy∆X))

+4m6(cos(2κx∆X) cos(κy∆X) + cos(κx∆X) cos(2κy∆X))
, (6.5)
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Figure 6.5: interpolation functions Nhat (left) and Nnew (right) for ñ = 2

with ∆X = 2a0,

m1 =
5

4
w2

1 + 6w2
2 + 8w2

5 + 2w1w5 −
1

2
w1 − 2w2 − 2w5 + 1,

m2 = −1

2
w2

1 −
1

2
w2

2 − 4w2
5 − 3w1w5 +

1

2
w1 +

1

2
w2 + w5 +

1

4
,

m3 =
1

8
w2

1 − 2w2
2 + 2w2

5 + 3w1w5 −
1

4
w1 + w2 − w5 +

3

16
,

m4 =
1

16
w2

1 +
1

2
w2

2 + 3w2
5 +

1

2
w1w5 −

1

8
w1 −

1

2
w2 −

1

2
w5 +

3

16
,

m5 = w2
5,

m6 =
1

4
w2

2 − 2w2
5 −

1

2
w1w5 −

1

4
w2 +

1

2
w5,

k1 = −5w2
1 − 24w2

2 − 32w2
5 + 8w1w2 − 8w1w5 − 8w2w5 + w1 + 10w2 + 8w5 + 2,

k2 = 2w2
1 + 2w2

2 + 16w2
5 − w1w2 + 12w1w5 − 4w2w5 −

3

2
w1 −

1

2
w2 − 4w5 +

1

4
,

k3 = −1

2
w2

1 + 8w2
2 − 8w2

5 − 2w1w2 − 12w1w5 + 8w2w5 +
3

2
w1 − 4w2 + 2w5 +

1

4
,

k4 = −1

4
w2

1 − 2w2
2 − 12w2

5 − 2w1w5 − 4w2w5 +
1

4
w1 +

3

2
w2 + 3w5 −

1

4
,

k5 = −4w2
5 − 2w2w5 + w5,

k6 = −w2
2 + 8w2

5 +
1

2
w1w2 + 2w1w5 + 2w2w5 −

1

4
w1 +

1

4
w2 − 2w5 +

1

8
.

We expand the dispersion relation (6.5) around κx = κy = 0 and require that the
terms up to power three match that of the expansion of the atomistic dispersion
relation (6.4), to obtain the new interpolation weights. A comparison of the two
interpolation functions is shown in figure 6.5.

At the boundary elements of the coarse scale region, we have to change the
weights in such a way that the partition of unity is still fulfilled. The interpolation
weights from the neighbouring elements are no longer zero, and therefore, some
weights are missing at the boundary.

Like in the one dimensional case, the interpolation matrix B from the fine scale
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variables b to the atoms should be chosen in such a way that the support of the
interpolation for each fine scale variable is as small as possible. This depends on
the distance of the coarse scale nodes and the support of the interpolation from the
nodes.

If the force in x-direction depends not only on the displacement in x-direction
of the neighbouring atoms, the dispersion relation gets more complicated. We can
now have longitudinal and shear waves, with different wave speed. I.e. we get two
equations for the dispersion relation [18]. If the atomistic interaction is for example

müx,k,l = k

(

ux,k+1,l + ux,k−1,l + ux,k,l+1 + ux,k,l−1 +
1

2
ux,k+1,l+1 +

1

2
ux,k−1,l+1

+
1

2
ux,k+1,l−1 +

1

2
ux,k−1,l−1 +

1

2
uy,k+1,l+1 +

1

2
uy,k−1,l+1 +

1

2
uy,k+1,l−1

+
1

2
uy,k−1,l−1 − 6ux,k,l − 2uy,k,l

)

,

we derive again the dispersion relation from (6.3). It depends now on Ax and Ay,

−ω2mAx = kAx(2 cos(κxa0) + 2 cos(κya0) + cos(κxa0 + κya0) + cos(κxa0 − κya0))

+ kAy(cos(κxa0 + κya0) + cos(κxa0 − κya0)) − 6kAx − 2kAy

=: Axa + Ayb. (6.6)

The same holds for the dispersion relation computed from the evolution equation in
y-direction, only Ax and Ay are changed,

−ω2mAy = Axb + Aya. (6.7)

If we determine ω in such a way that the system of equations (6.6) and (6.7)
has a unique solution, we obtain two different equations that correspond to the
longitudinal and shear waves,

ω2
L = −2k

m
(−2 + cos(κya0) + cos(κxa0)),

ω2
S = −2k

m
(−4 + cos(κya0) + cos(κxa0) + 2 cos(κxa0) cos(κya0)).

On the coarse scale, we get also two different dispersion relations, and we have to
choose now the interpolation weights in such a way that the error in both terms is
reduced.

6.3 Reflectionless boundary condition in two di-

mensions

To test the boundary condition in two dimensions and the approximation of com-
puting the boundary condition on each boundary separately (cf. section 6.1), we
consider the test case given in [42]. We take a quadratic lattice of N̂ × N̂ atoms,
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with each atom interacting with its four nearest neighbours (cf. figure 6.3), and forces
depending linearly on the atomic displacements in x- and y-direction, with spring
constant k = 1 and mass m = 1. In section 6.3.1, we consider this square embedded
in a larger atomistic region, in section 6.3.2 in a coarse scale region. All velocities
are initially zero and the initial displacements are taken according to a Gaussian
pulse of maximum one in the center of the lattice with width σ = 1.25 times the
atomic equilibrium distance. To measure the wave reflection at the boundary of the
square, we compute the relative error in the energy,

εr :=
ET − Ebm

T

E0
,

with ET the energy in the system after time T , Ebm
T a benchmark value computed

from a larger atomistic simulation and E0 the initial energy.

6.3.1 Small atomistic system

First, we consider only an atomistic region together with the reflectionless boundary
condition but without the coupling to a coarse scale. I.e. we do not split the dis-
placements into fine and coarse scale part but only in two parts, the displacements
of the atoms in the small atomistic region and the surrounding atoms, which are
only necessary to compute the boundary condition. Such a splitting was explained
at the end of section 4.3. In this case, the bridging scales approximation and the
orthogonal displacement splitting are the same.

The boundary condition is computed from a layer of N̂ − 1 atoms around the
atomistic region of N̂×N̂ atoms, using an integration time of tI = 3 for the values E1

and tI = 3.5 for the values of E2 in the table 6.1. The time step for the integration
is ∆t = 0.1. To avoid the computation of the projection matrix P̂ , necessary for the
computation of the memory kernel function θ(t) according to (4.16), we compute
the memory kernel function θ(t) from the first 20 terms of the expansion of the
sine function (6.1) for the integration time tI = 3 and from the first 30 terms for
the integration time tI = 3.5. According to the approximation in section 6.1, the
boundary condition is applied separately on each boundary. The energy is computed
once directly after the pulse passes the boundary of the N̂ × N̂ atoms and once for
T = 50 for all different system sizes. The results are shown in table 6.1 for the
relative error in the energy, which depends on the integration time of the memory
integral, i.e. on the accuracy of the boundary condition and on the point in time
where we compare the energies.
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N̂ T E1,T E2,T Ebm
T εr,1 εr,2

8 14 6.19 e-02 5.77e-02 1.28e-02 1.84% 1.68%
8 50 2.10e-02 3.13e-04 4.43e-05 0.78% 0.01%
16 20 1.02e-01 9.27e-02 6.35e-02 1.45% 1.09%
16 50 1.32e-02 9.2e-03 8.00e-04 0.46% 0.31%
24 30 9.82e-02 8.68e-02 6.37e-02 1.20% 0.86%
24 50 2.76e-02 2.49e-02 4.3e-03 0.87% 0.77%
32 40 9.15e-02 8.28e-02 6.06e-02 1.16% 0.83%
32 50 4.33e-02 3.84e-02 3.90e-02 0.16% -0.02%

Table 6.1: wave reflection with reflectionless boundary condition

The reason for this can be seen in figure 6.6, where we compare the small system
with reflectionless boundary condition for N̂ = 8 with a fully atomistic simulation.
For the small system with boundary condition, the energy leaves the system a little
bit slower. If we compute the relative error after a long simulation time, it is
therefore smaller than directly after the pulse passes the boundary. However, it is
always smaller than 2%, which shows that the approximation is quite good.

Figure 6.6: energy of the inner 8 × 8 atoms for fully atomistic simulation (green)
and for small system of 8 × 8 atoms with reflectionless boundary condition (blue)

6.3.2 Coupling of atomistic and coarse scale

Next, we study the reflectionless boundary condition for a coupled system of atoms
and nodes and the difference between the bridging scales approximation and the
orthogonal displacement splitting for such a coupling in two dimensions. We consider
an initial setting similar to that in the previous subsection. All velocities are initially
zero. The initial displacements are taken from a Gaussian pulse of maximum one in
the center of the lattice and width σ = 1.25. We choose 11 atoms in each coordinate
direction for the atomistic region. The center of the lattice is located now at the
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equilibrium position of the atom in the middle. The equilibrium position of every
fifth atom in each direction is chosen as a coarse scale node, i.e. ñ = 5, and the
matrix B2 is taken into account for the layer of elements next to the atomistic
region. For a fully atomistic simulation, to compare the results with, we used 41
atoms in each coordinate direction.

Again, the memory kernel is computed as an approximation of the sine function.
First, we analyse the influence of the integration time of the memory integral on the
error in the approximation. For the orthogonal displacement splitting with linear hat
functions and the bridging scales approximation, we compare in figure 6.7 the decay
of the energy in the system for different numbers of time steps for this integration.
The system with the orthogonal displacement splitting was run twice, once with
the boundary condition computed for each boundary separately (left), like for the
bridging scales method (right), and once with reflectionless boundary condition for
all four boundaries together (middle). We compare the integration of the memory
integral over 15 (blue), 25 (green) and 35 (red) atomistic time steps ∆t = 0.1.

For the orthogonal displacement splitting with boundary condition computed for
all four boundaries together (panel in the middle of figure 6.7), the behaviour is the
same as in one dimension. A longer integration time, i.e. a more exact computation
of the memory integral, reduces the reflection at the interface. But, if the memory
integral is computed only from a few fine scale variables b2, integrating too long
leads to reflections at the end of the support of this fine scale variables. Therefore,
the red line decreases faster after the pulse passes the interface, but, at the end of
the simulation, we get the least energy for the green line, i.e. for tI = 2.5.

If we approximate the boundary condition by computing it separately for each
boundary, we get the best result at the end of the simulation already for the shortest
integration time.

For the bridging scales approximation, a longer integration reduces the energy in
the atomistic region at the end of the simulation, however, the difference between the
red and the green line is quite small. The boundary condition is here also computed
separately for each boundary.
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Figure 6.7: energy for different integration times in the memory integral for orthog-
onal displacement splitting with (left) and without (middle) approximation in the
boundary condition and for bridging scales approximation (right)
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Figure 6.8: energy for fully atomistic simulation (black), bridging scales approxi-
mation (red) and orthogonal displacement splitting without (blue) and with (green)
approximation in the boundary condition

Next, we compare the best result of all three simulations with the result of a fully
atomistic simulation (figure 6.8). There is no visible difference in the error at the end
of the simulation for the different approximations, but the deviation of the energy
during the simulation is quite large with the bridging scales approximation. In the
following tabular, we compare the resulting relative error of the three simulations
above and that of the same simulation for a small system with boundary condition
without coupling to a coarse scale region, according to section 6.3.1. The initial
energy is E0 = 2.6955 and the reference energy after 300 time steps of a fully
atomistic simulation Eref = 6.1e − 03.

orth. splitting orth. splitting bridging scales
tI coupled sys. coupled sys. coupled sys. atomistic atomistic

approx. b.c. approx. b.c. approx. b.c.
1.5 1.57% 2.06% 3.55% 1.53% 1.84%
2.5 2.12% 1.00% 1.81% 2.16% 0.77%
3.5 2.79% 1.88% 1.34% 2.57% 1.64%

The error with coupling to a coarse scale region is nearly the same as for the
computation of atomistic boundary condition, the latter giving slightly better re-
sults. The reason is that, for the simulations in this chapter, linear interpolation
from the coarse scale to the atoms is used. This leads to an error in the coarse scale
dispersion relation compared to the atomistic dispersion relation. We cannot avoid
the resulting reflections at the interface if we use only few variables to compute the
reflectionless boundary condition.

The computation of the reflectionless boundary condition on each boundary sep-
arately is much cheaper than the computation for the whole boundary. However,
the resulting error is small, compared to the computation on the whole boundary,
and the result is even better for small integration time.
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Figure 6.9: geometry for test case 1

6.4 Test cases, comparison of interpolation func-

tions

In the following, we consider now several test cases to compare the orthogonal dis-
placement splitting for different interpolations and the bridging scales approxima-
tion in two dimensions. For this examples, we consider once more the simplest two
dimensional interaction to the four next nearest neighbours (cf. figure 6.3). The
distance of the coarse scale nodes is for all examples twice the atomic equilibrium
distance, ∆X = ∆Y = 2a0.

Test case 1 The first example is a symmetric domain with an atomistic region
in the middle, to test the reflectionless boundary condition. The atomistic region
consists of 21 atoms in each direction, and the atom in the middle gets an initial
displacement in x- and y- direction (ux(0) = uy(0) = 0.8). The atomistic parameters
are k = m = 1, ∆t = 0.1, and we keep the fine scale degrees of freedom b2 till the
second node after the interface in each direction. The simulation was run for the
bridging scales approximation and the orthogonal displacement splitting, once using
interpolation with linear hat functions and once using the interpolation weights
computed in section 6.2. We compare the energy of the inner 15 × 15 atoms. The
reason why the energy is computed only for the inner atoms is a technical one. Due
to the small overlap of the support of the variables b1 and b2 in the orthogonal
displacement splitting, we need also the variables b2 and ḃ2 to compute the total
displacements and velocities at the boundary, whereas this is not necessary for the
inner atoms.

The results are shown in figure 6.10. For all three approximations, the reflec-
tionless boundary condition gives good results. Only for the bridging scales approx-
imation, there is a little bit more energy left in the system after a simulation of 600
time steps.

Because of the small distance of the nodes (ñ = 2), there is nearly no difference
between the energy in the bridging scales approximation and the orthogonal dis-
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Figure 6.10: comparison of energies for different simulations using an initial dis-
placement of the atom in the center, ux = uy = 0.8

placement splitting when the perturbation reaches the interface. Since the fine scale
part is smaller for a small distance of the coarse scale nodes, also the error due to
the approximations in the derivation of the boundary condition is smaller.

The memory kernel was computed from the first 20 terms of the series expansion
of the sine function, and the memory integral was integrated over 25 time steps.
Without reflectionless boundary condition, the energy is also decreasing first, since
we are computing only the energy of the inner atoms. The fine scale part of the per-
turbation is then reflected at the interface, and the energy is increasing again. Only
the coarse scale part of the perturbation can leave the atomistic region completely.

The simulation without boundary condition was carried out with orthogonal
displacement splitting and the new interpolation weights. However, for the other
two approximations results are similar. For the energy in the atomistic region there
is thus no big difference which interpolation we use, especially if the number of
degrees of freedom for the computation of the boundary condition is small and the
integration time is short. In the third example, we show that the situation is different
if we consider the perturbation not only in the atomistic but also in the coarse scale
region.

In figure 6.11, we compare the displacements of the inner atoms at the end of the
simulation, using orthogonal displacement splitting with (left) and without (right)
reflectionless boundary condition. The values are scaled with a factor 3. A large
difference between the simulations with and without boundary condition can be
observed, although we have an initial displacement only for one of the atoms, which
is distributed over the 21× 21 atoms in the atomistic region during the simulation.

As another comparison, we show in figure 6.12 the two dimensional stress tensor
for both simulations in different time steps. The panels on the left show the sim-
ulation with, that on the right panel the simulation without boundary condition.
The figures visualize the eigenvectors of the stress tensor, and the color indicates
the corresponding eigenvalues. Red colors mark positive values, blue colors nega-
tive ones, and the opacity of the vectors scales with the absolute value. The plots
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Figure 6.11: displacement of the inner atoms after 600 time steps with (left) and
without (right) reflectionless boundary condition

were made with Data Explorer Version -4.2.0. Since the absolute values are high
at the beginning and decrease during the simulation, due to the distribution of
the initial displacement, we used a piecewise linear colormap between the values
[−0.25, −0.056, 0.056, 0.25]. The figures in the first row are for the initial setting,
which is of coarse the same for both simulations. The second row shows the stress
after 100 time steps, i.e. T = 10. There is still no difference between both simula-
tions. Also for the energy, we can observe no difference at T = 10 in figure 6.10. For
the stress after 490 time steps (T = 49) we see, like in the energy plots, a difference
between the simulation with and without boundary condition. The difference is
better visible in the energy plots, although a piecewise linear colormap is used for
the stress plots, since the energy scales quadratically with the displacements and
velocities of the atoms, whereas the stress is only linear with respect to this values.

Test case 2, simple model of the sputtering The second example is a sim-
plified model of the sputtering process, discussed in section 1.1. The interaction is
again harmonic to the four nearest neighbours, but the geometry (cf. figure 6.13) is
chosen according to the sputtering process. We have an atomistic region of 11× 21
atoms with one free boundary, surrounded by a coarse scale region on the three
other sides. The atom in the middle of the left boundary of the atomistic region
gets an initial displacement in x-direction, all other initial values are zero. Like
in the previous example, the fine scale degrees of freedom till the first two nodes
after the interface are used for the computation of the boundary condition. The
computation was performed with orthogonal displacement splitting with the new
interpolation weights computed in section 6.2. Figure 6.14 shows the energy of the
inner 9 × 17 atoms for the simulation with (green) and without (blue) boundary
condition. Again, the use of a few extra variables for the computation of the mem-
ory integral leads to an evident improvement in the simulation. We compare in
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Figure 6.12: stress for test case 2 for T = 0, 10 and 49 for a simulation with (left
column) and without (right column) boundary condition
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Figure 6.13: geometry for test case 2

figure 6.15 the initial displacements of the inner atoms with the displacements after
600 time steps. The difference between a simulation with and without boundary
condition is again obvious. The values of the panels on the right and in the middle
were scaled with the factor 3.

Test case 3, coarse scale initial displacement As a last example, we consider
a geometry similar to that of the sputtering example, but using now more atoms
in x- than in y-direction. This time, the initial displacement is given in the coarse
scale nodes. To all nodes on the left side an initial displacement of 0.8 in y-direction
is applied. We run the simulation with the orthogonal displacement splitting, once
with interpolation with linear hat functions and once with the new interpolation
weights. The displacements of atoms and nodes for T = 0, 40, 60 and 72 are shown
in figure 6.17 for interpolation with the new interpolation weights and in figure 6.18
for interpolation with linear hat functions. Large red dots mark the positions of the
nodes, small red dots the positions of the atoms and blue stars the corresponding
equilibrium positions. All displacements are scaled by a factor of 2. Whereas with
the new interpolation, the velocity of the perturbation is nearly the same for the
parts of the perturbation travelling through the atomistic and the coarse scale region,
in case of the linear interpolation the difference is clearly visible. In figure 6.19, we
compare the region of the last nodes in x-direction for both interpolations. Whereas
in the left panel all nodes in the last column have nearly the same displacements,
the difference in the right panel is obvious. Due to the different dispersion relations
in the atomistic and the coarse scale region, the perturbation is travelling faster in
the coarse scale region. This results in different displacements of the nodes on top
and on the bottom of the column compared to the nodes in the middle.

If we consider non-zero initial conditions in the coarse scale region, we get in
principle the same problem as for non-zero temperature simulations, discussed in
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Figure 6.14: energy for sputtering example (test case 2) with (green) and without
(blue) reflectionless boundary condition

Figure 6.15: initial displacement for the sputtering example (left), displacements
after 600 time steps without (middle) and with (right) reflectionless boundary con-
dition, values of middle and right panel three times magnified
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Figure 6.16: geometry for test case 3

section 4.4. The damping character of the boundary condition can be changed by
cutting the memory kernel. Since we do not have a periodic excitation of every
normal mode, like in the non-zero temperature simulations, the problem is not that
serious here. But it should be taken into account, especially if the perturbation
passes the interface several times.
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Figure 6.17: test case 3 with linear hat functions for T = 0, 40, 60, 72.
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Figure 6.18: test case 3 with new interpolation for T = 0, 40, 60, 72
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Figure 6.19: displacement of the last nodes for T = 72 for linear hat functions (left)
and new interpolation (right)



Summary

An investigation of concurrent coupling methods in molecular dynamics simulations
for the coupling of an atomistic with a coarse scale region in the special setting
for the simulation of a surface coating process by sputtering was presented. It was
shown, that the concurrent coupling of length scales method leads to an energy
conserving system but also to reflections of fine scale waves at the interface between
atomistic and coarse scale region. In the bridging scales method this reflections are
suppressed by a reflectionless boundary condition, but the resulting approximated
system is not energy conserving. Therefore, a method was presented to derive the
coupling of an atomistic and a coarse scale region together with a reflectionless
boundary condition directly from the atomistic Lagrangian. The only necessary
assumption to derive the boundary condition is, that the forces are linear in the
fine scale degrees of freedom in the coarse scale region. Especially, there is no need
for harmonic interaction of the coarse scale variables. The method can therefore
be used for non-harmonic potentials as long as the linearization in the fine scale
variables provides a sufficiently good approximation for the force calculation in the
coarse scale region. For harmonic interaction, the force calculation is not very time
consuming. But for realistic potentials it is the bottleneck in molecular dynamics
simulations. The advantage of an approximation by coupling an atomistic and a
coarse scale region in this case is even larger.

A method to determine interpolation functions with the correct dispersion re-
lation on the coarse scale without the fine scale variables was given that allows to
solve only the coarse scale equations in the coarse scale region, thereby keeping the
correct dispersion.

Extensions of the method are possible in several directions. It can be easily ex-
tended to the case of atoms or particles with different masses, however the behaviour
of the memory kernel and possible approximations in the memory integral need a
careful investigation.

Another possibility is the use of more than one coarse scale. Since the com-
putation of new interpolation functions is straightforward if the coarse scale node
distance is small (i.e. ñ < 10), it leads to a quadratic system with many unknowns
that requires under certain conditions a numerical optimization for larger values.
The use of more than one coarse scale with increasing node distances can therefore
be helpful. Next to the atomistic region we can use a region in which we neglect
only the degrees of freedom of the finest scale till a region where only the variables
of the coarsest scale are kept, with a reflectionless boundary condition everywhere
in between. If the ratio of two succeeding grids is constant, the same interpolation
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and projection and therefore also the same memory kernel can be used for every
transition between two scales. Such a multigrid simulation seems also more natural,
since the appropriate grid size is not changed abruptly but step by step. Addition-
ally, the size of the domain, which can be covered by such a multigrid simulation,
can be much larger than for a simulation using only two different scales.

For the simulation of non-zero temperature systems, the simulation of constant
temperature outside of the atomistic region by sampling the normal mode coor-
dinates gets more complicated if several different scales are used. One can think
therefore of other methods for sampling the random force in a multigrid simulation.
However, it is not enough to sample the random force with the correct distribution.
Also the autocorrelation has to be correct to guarantee a constant temperature in
simulations with the orthogonal displacement splitting.

The method can also be extended in the direction of the interpretation of the
resulting coarse scale equations as discretization of continuum equations and finding
faster methods to solve this equations on the coarse grid.

Since the interpolation weights are constant, the method is so far basically suited
for the simulation of solids. To extend it for the simulation of liquids, the interpo-
lation weights should not depend on the equilibrium positions, but on the actual
positions of the atoms, like in the definition of the local stress tensor, and have to
be updated in every time step for the numerical solution.

For the examples considered in this thesis, we used always small systems to focus
on the behaviour of the system at the interface between atomistic and coarse scale
region and in the coarse scale region. However, it is clear that the advantage of such
a coupling pays off only for large systems and for long simulation times.

As shown in the second test case in the last chapter, the method of the ortho-
gonal displacement splitting seems promising in the simulation of surface coating by
sputtering. If the forces are not linear, the use of a splitting of the variables into
the contributions on different scales seems even more reasonable. If we assume, that
the excitation of every normal mode is approximately the same when an atoms hits
the surface of the crystal, the amplitudes of the small wave length will decay and
that of the long wave length will increase during the simulation. This is due to the
equipartition theorem, which states, that in equilibrium the energy of every normal
mode is the same and the fact that the energy is proportional to the squared wave
frequency.
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