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Abstract

In this work a novel interactive multiobjective optimisation method is intro-
duced. Distinct features of the method are the use of very few parameters to
steer the exploration and the explicit manipulation of the underlying partial
order during decision making to control the partial tradeoffs.

The thesis starts with an extensive introduction of the topic that sketches
the main results of the work.

Then, a framework for reference point based scalarisation functions com-
patible with a partial order given by an ordering cone is introduced. The
framework is then analysed, so that valuable properties of the resulting
scalarisation function are linked to properties of the so called cone scalar-
ising function. Among others, efficiency of the outcomes, reachability of
efficient points, convexity of the scalarisation function and semi-continuity
with respect to the reference point are investigated.

Then, Pareto navigation the novel interactive multiobjective optimisation
method is proposed and analysed. It features three mechanisms that ma-
nipulate the upper bounds, the current solution and the bounds on the
partial tradeoffs, respectively. The first two mechanisms just need one ob-
jective and one parameter and the third mechanism just two objectives and
one parameter as input.

Mathematical models for the different mechanisms are introduced and dis-
cussed in detail. It is shown that among the set of possible solutions — which
depends on the chosen cone scalarising function — every efficient outcome
can be reached in a fixed number of steps and that the change of the current
solution is upper semicontinuous with respect to the reference point. The
potential non-efficiency of the outcomes is analysed and demonstrated on a
critical example.

Furthermore, the application of the method as a second phase in a two
phase approach is described. Here, the focus is on the efficient use of the
pre-computed data, so as to turn the mechanisms into real-time procedures.
Finally, the extension of the method to nonconvex cases is presented.



The last major topic of the thesis is the application of Pareto navigation to
intensity modulated radiotherapy (IMRT). First, the IMRT planning prob-
lem and its inherent multiobjective character are described. Then, some
modelling options are presented and algorithms and heuristic approaches to
the calculation of the phase one approximation discussed. Finally, the clin-
ical prototype is presented and its graphical user interface visualising the
solution and outcome set information and offering direct, graphical access
to the mechanisms is described.

The thesis ends with a outlook that lists interesting aspects or possible
extensions that would deserve further attention.
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Chapter 1

Introduction

Multiobjective optimisation is the art of detecting and making good compro-
mises. It bases upon the fact that most real-world decisions are compromises
between partially conflicting objectives that cannot easily be offset against
each other. Thus, one is forced to look for possible compromises and finally
decide which one to implement. So, the final decision in multiobjective
optimisation is always with a person — the decision maker.

This lack of commitment through the optimisation routines has its roots in
the lack of a suitable total order in the so-called decision space — the space
where each alternative has its objective values as coordinates. In absence
of a total order there is no definite way to decide for two alternatives which
of the them is the better choice. Therefore, there are pairs of alternatives,
where one neither is better nor worse than the other.

The first notion of optimality in this setting goes back to Edgeworth in
1881 ([34]) and Pareto in 1896 ([90]) and is still the most widely used. In
(Edgeworth-)Pareto optimality every feasible alternative that is not domi-
nated by any other in terms of the componentwise partial order is considered
to be optimal. Hence each solution is considered optimal that is not defi-
nitely worse than another. Thus, multiobjective optimisation does not yield
a single or a set of equally good answers, but rather suggests a range of
potentially very different answers.

Our initial definition of multiobjective optimisation addresses two main ac-
tivities — detecting and making compromises. Although the progress in the
former is impressive over the last half of a century the focus of this work is
on supporting the making of a compromise.

The speed of dissemination of multiobjective optimisation to the different
fields of application seems to still increase ([123]). Thus, multiobjective
optimisation is considered for problems that previously were processed with
scalar optimisation at best.
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Due to the increasing computing power available and the improved algo-
rithms, problems that were considered not to be tractable for multiobjec-
tive optimisation are now within reach. So, large-scale problems as well as
problems with a large number of objectives are realistic challenges for mul-
tiobjective optimisation nowadays. Moreover, the improved graphical capa-
bilities together with the modern interaction devices allow for new forms of
communicating the decision maker’s input to the computer system and the
system’s responses to the decision maker.

Dealing with a large number of objectives clearly has an influence on the
decision process. While it is relatively easy to control a decision process
and specify the input parameters for two and three objectives, the set of pa-
rameters becomes increasingly unhandy, if the dimension grows. Moreover,
the input parameters usually all influence the outcome, so that it gets more
and more complicated to estimate the influence of the input on the outcome.
Therefore, for multiobjective optimisation problems with a high-dimensional
decision space a direct control on the outcome and simple interactions are
highly important for a successful decision process.

Besides, high-dimensional multiobjective problems usually also have a large
set of alternatives. So, it is unlikely that a decision maker comes past some
solution by chance. Therefore, the complementary information needs to
convey the set of efficient alternatives as good as possible to the decision
maker. (S)he will then be able to enjoy the options the efficient alternatives
offer, instead of getting lost in them. Good complementary information
also offers the opportunity to break new grounds instead of sticking to the
conventional choice.

The decision maker should be able to organise the decision process as freely
as possible to avoid unnecessary restrictions as to how the (s)he has to work.
Instead of enforcing a strict workflow the system should invite the decision
maker to experiment and develop his or her own style of making a decision.
This most likely also increases the confidence in the result.

A last important point is the speed of interaction. If the response times
are lengthy, the decision maker will try to cut the decision process as early
as possible. This deprives him or her of the chance of detecting a much
more suitable compromise. Furthermore, the intuitive connection between
the last result, the decision maker’s action and the reaction of the system
to it is not as clearly perceived, if the response times get too long.

In this work we introduce a new interactive multiobjective optimisation
method. It tries to meet the described properties needed to do successful
decision making for high-dimensional multiobjective problems.

It offers three mechanisms to manipulate the current solution and to change
the set of feasible outcomes. The three mechanisms can be applied in arbi-



trary order and every decision can be reversed, if the decision maker changes
his or her mind. In particular, the system does not expect or even enforce
consistent input from the decision maker, but willingly executes the re-
quested changes. So, the decision maker can organise the decision process
to his or her own liking.

The three mechanisms restriction, selection and discounting are designed to
be as simple as possible. With the restriction mechanism the upper bound
for a chosen objective is changed to a new admissible value. The selection
mechanism is the main tool to change the current solution. Here again,
the input is just the selected objective and the feasible new value it should
attain. The discounting mechanism allows the introduction of bounds on
the so-called partial tradeoffs. Thereby, the decision maker can specify a
maximum price (s)he is willing to pay in terms of one objective for a unit gain
in the other objective. Thus, for the discounting two objectives and a value
need to be specified. Overall, the number of parameters for the mechanisms
is small and in particular independent of the number of objectives. Besides,
with the possible exception of the input for the discounting, the parameters
needed by the mechanisms are directly related to the model and easy to
understand.

The complementary information provided to the decision maker includes
estimates for the ideal and nadir point — the points composed of the indi-
vidual minima and maxima for the different objectives — for the currently
set bounds with and without considering the bounds on the partial trade-
offs. This information is updated, whenever there is a change in the upper
bounds for the objectives due to the restriction mechanism or a change in
the bounds for the partial tradeoffs due to the discounting mechanism. So,
the decision maker always has an up-to-date view on the ranges still ac-
cessible. (S)he will in particular see whether there are still very promising
alternatives available that substantially differ from the current solution or
if further exploration will not yield significantly different results. The es-
timates give a kind of global picture of the set of efficient solutions that
helps to range in the current solution. Nevertheless, more complementary
information especially more ‘global” information would presumably lead to
a faster and more straight decision process.

The approach regarding control is somewhat different to the existent meth-
ods. First, the control of the partial tradeoffs is a new feature for methods
that primarily work with reference points. Second, the way the selection
mechanism works differs from the typical approach. Usually, in reference
point based methods input is given regarding the desired or accepted change
in every objective. The methods then try to achieve a solution that is overall
close to these goals. In contrast to this, the solution produced by the selec-
tion mechanism attains one value exactly, while the control of the change in
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the other objectives is second to the achievement of the specified value in
the chosen objective.

Thus, the decision maker’s wish regarding the chosen objective is command
to the system and the decision maker has to care for the consequences of this
wish him-/herself. Nevertheless, the system tries to keep the consequences at
a minimum, i.e. it tries to find the solution with the most favourable distance
to the previous solution given the constraint that the chosen objective is
fixed to the specified value. Combined with the manipulation of the upper
bounds by the restriction mechanism and the adjustment of the bounds
on the partial tradeoffs this in our opinion offers very good control on the
outcome of the decision process.

Achievement scalarising functions introduced by Wierzbicki ([124, 125]) are
a popular choice for reference point based interactive optimisation methods
([65], [69], [71], [86], [124]), because they likewise work with feasible and in-
feasible reference points. We pursue this direction, but we need to generalise
the concept to be able to include the control on the partial tradeoffs.

The corresponding mathematical theory is developed in chapter 2. The
bounds on the partial tradeoffs are included through the choice of a so-called
ordering cone, that defines the partial order in the outcome space. Thus,
we build up a framework for scalarising functions similar to the achievement
scalarising functions, that directly incorporate ordering cones.

The cone scalarising functions — the functions belonging to that framework
— are then analysed and found to behave very similar to the achievement
scalarising functions ([125]):

One can either choose to use a cone scalarising function that is able to reach
all efficient points for the given ordering, but only guarantees weak efficiency
for its outcomes or a function that yields efficient solutions, but is not able
to reach them all.

The result that each outcome is associated to infinitely many reference
points, proven in the original paper ([125]) for a specific achievement scalar-
ising function is generalised to certain classes of functions.

Additionally, the continuous dependence of the outcomes on the reference
points is investigated and the well-known Pascoletti-Serafini scalarisation
approach ([91]) is shown to belong to the framework.

Chapter 3 introduces Pareto navigation and analyses it. Here, the conse-
quences of the two distinct features of Pareto navigation become apparent.

On the one hand side, the enforced achievement of the specified value of
the chosen objective results in problem formulations that can in certain
cases yield dominated solutions. Fortunately, the decision maker can be
made aware of this. On the other hand, the combination of restriction



and selection mechanism enables the decision maker to reach any efficient
solution that can be reached in at most K selection steps, where K is the
dimension of the decision space.

Thus, there is a kind of tradeoff between improved control and guaranteed
efficiency. This cannot easily by circumvented. A critical example demon-
strates that the problem of finding the efficient point of most favourable
distance under the equality constraint on the chosen objective has global
character, i.e. distinct and separated local optima. So, the selection mech-
anism essentially would have to choose between a priori equally good but
distinct alternatives.

Aside from the above mentioned problems the selection mechanism performs
its work smoothly. The optimal value of the selection mechanism problems
is Lipschitz-continuous and the optimal set mapping upper semicontinuous
and closed for values in the interior of the range of admissible values. Nev-
ertheless, the result can jump at the start of a selection step. This happens,
e.g. when the previous solution was not efficient and will in any case always
improve the objective values.

The inclusion of the bounds on the partial tradeoffs is similarly two-edged.
While it offers an improved control for the decision maker on the set of con-
sidered alternatives, it increases the complexity of the update mechanisms
for the ideal and nadir point estimates. In particular, the estimate for the
ideal point of the efficient set with regard to the ordering cone becomes much
more difficult compared to the case for the Pareto cone.

The execution of the discounting mechanism in turn poses no particular
difficulties. We demonstrate that some specific homogeneous inequalities on
the elements of the dual ordering cone imply the bounds on the tradeoffs.
Every such inequality restricting the dual ordering cone corresponds to one
generator for the ordering cone. More specifically, the ordering cone is a
positive linear combination of the rows of the constraint matrix for the dual
ordering cone. Thus, we have a polyhedral ordering cone that can easily be
numerically represented. Moreover, the number of generators is limited to
at most K2 — a relatively moderate number. A further nice property is that
we can easily check the compatibility of the imposed constraints and we can
precompute the admissible range prior to a change, so that we can enforce
the compatibility.

Large scale problems represent a problem for interactive multiobjective op-
timisation. Lengthy computations lead to long response times and if the
response times become too long, the advantage of incorporating the deci-
sion maker in the solution process diminishes more and more. First of all
the decision maker might become frustrated by the slow progress and stop
the search prematurely. Second, the intuitive feeling for action and reaction
is lost.
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Therefore, we demonstrate how Pareto navigation can be used as a second
phase of a two-phase approach. Here, the first phase creates an approxima-
tion to the efficient set without interacting with the decision maker. Then,
the decision maker uses Pareto navigation to find a good alternative among
the convex hull of the precomputed solutions. This solution can then be
projected to the efficient set of the original problem by one more scalar op-
timisation problem. The advantage of primarily working in the convex hull
of the pre-computed solutions only is that for appropriate choices of the cone
scalarising function — say the function of the Pascoletti-Serafini approach —
the mechanisms can be implemented by small to moderate sized linear pro-
grams that can be executed in real-time. Hence, the decision maker gets an
approximate answer immediately and only for a few promising alternatives
the original problem needs to be solved again.

The results described so far for the Pareto navigation all assume convexity of
the original problem. This is a necessary requirement, since for nonconvex
situations it is a priori unknown whether the efficient set is connected or
not. Thus, there could be gaps in the ranges of the objective functions for
the efficient solutions. Therefore, Pareto navigation needs to be adapted for
nonconvex problems by slightly changing the selection mechanism.

The equality constraint is relaxed so that the control is not as good as
in the convex case. The compensation is that the resulting solutions are
(weakly) efficient. The relaxation of the equality constraint enables the
selection mechanism to jump over the gaps, but then its results will clearly
not (always) depend continuously on the change to the parameters inflicted
by the decision maker.

Chapter 4 describes the application of Pareto navigation to intensity mod-
ulated radiotherapy (IMRT) planning.

According to Bortfeld ([12]) “IMRT is a radiation treatment technique with
multiple beams in which at least some of the beams are intensity-modulated
and intentionally deliver a non-uniform intensity to the target. The desired
dose distribution in the target is achieved after superimposing such beams
from different directions. The additional degrees of freedom are utilised to
achieve a better target dose conformality and / or better sparing of critical
structures.”

The IMRT planning problem is the determination of the directions from
which the patient is irradiated, i.e. the ‘beams’ and the non-uniform inten-
sities for the different beams. The full planning problem is a global opti-
misation problem that is immensely difficult to tackle, which is mainly due
to the beam directions. If one considers the optimisation of the intensities
only, there are good convex models for the planning problem. So, we are
considering the beam directions as given and only consider the optimisation
of the intensities.



The objectives of the planning are to simultaneously deliver a high dose to
the tumour (target) and to spare the surrounding organs (critical structures)
and the body tissue. Since the X-ray used for the treatment inevitably passes
through the part of the body in front of and behind the tumour, these
different objectives are conflicting — a classical multiobjective optimisation
situation.

When the first of our multiobjective radiotherapy planning projects started
many people thought the multiobjective modelling of the problem to be com-
putationally intractable, since the single objective IMRT planning problem
already is a large-scale problem. Since then much progress has been achieved
in speeding up the scalar problem (e.g. [105, 106]), so that multiobjective
IMRT planning is tractable now, even though it still is very computation-
ally involved. This is now mainly due to the high dimension of the decision
space and the resulting high-dimensional set of efficient solutions. Dimen-
sions of 6-8 are not uncommon and as usually the curse of dimension applies
to approximations in high dimensions ([89]).

In these dimensions the creation and especially storage of the auxiliary
data for deterministic methods becomes troublesome. Therefore, we dis-
cuss a heuristic — the so-called extreme compromises — that is constructed
to fathom the variety of solutions the efficient set offers. The approxima-
tion is then improved by intermediate points computed using stochastically
chosen scalarisation parameters.

An alternative to this approach is the use of bilevel optimisation. Here, part
of the description of the feasible domain for an optimisation problem — the
so-called upper level problem — is given as the set of optima for a second opti-
misation problem — the so-called lower level problem. Leyffer ([78]) recently
proposed to formulate the detection of the next point to insert into the ap-
proximation of the efficient set as a bilevel problem. Thereby, the auxiliary
data is only implicitly present in the lower level problem. Although this
seems promising, so far no numerical experience exists on how the approach
practically works.

Independent from the way it is created the approximation is then fed into
the navigator, where the decision making takes place.

The navigator’s user interface is split in two halves. The right half is used to
display the current treatment plan using standard dose visualisations. The
left half is used to display the variety of treatment plans at hand and em-
bedded into the visualisation the controls used to communicate the decision
maker’s actions.

The main element is the navigation star — an interactive spider web diagram,
where the ranges of the approximation, the currently accessible part of the
ranges and the current solution is visualised. Its values on the different axes
are connected by lines and there are sliders, where these lines meet the axes.
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The decision maker can now grab a slider with the mouse and drag it and
thereby change the value of the current objective. The navigator solves
selection mechanism problems for the different values and updates the values
for the current solution and the visualisations on the right-hand side several
times a second. Thus, the feedback to a move of the decision maker is
(almost) immediate and (s)he can adapt the change based on that feedback.

The navigation star furthermore features some brackets at the upper end of
the spider web’s axes. Grabbing a bracket and moving it towards the inner
part of the spider web activates the restriction mechanism and initiates an
update of the ranges on the axes. The part of the approximation’s range
behind the bracket is now out of bounds for the selection mechanism.

The discounting mechanism is not yet implemented and so are features like
the post-optimisation. The latter will most likely be combined with the
so-called sequencing — the decomposition of the optimal intensities into a
sequence of hardware configurations ([120]).

The two-phase multiobjective optimisation approach for IMRT planning is
currently clinically evaluated ([115]) and will become part of the radiother-
apy planning system of Siemens Oncology Care Systems. Since IMRT plan-
ning is currently done using trial and error approaches, we think that Pareto
navigation will simultaneously make treatment planning more systematic
and easier.

Chapter 5 presents some of the questions whose answers would have impact
on the presented work or seem promising. For some of them potential lines
of attack are described.



Chapter 2

Achievement scalarising with
cones

A multiobjective optimisation problem is considered to be solved, when the
decision maker has found his or her preferred compromise among the variety
of efficient solutions. This is either done by computing a few efficient solu-
tions and choosing among them, approximating the set of efficient solutions
(more on that in chapter 4) and choosing within this approximation, or by
directly computing one or several points according to the decision maker’s
preferences.

FEither way, the most commonly used technique for carrying out the compu-
tations is scalarisation. Scalarisation turns the multiobjective optimisation
problem into a parametrised family of scalar optimisation problems. Thus,
the set of efficient, properly efficient, or weakly efficient solutions or reason-
able subsets thereof are parametrised.

Executing an effective approximation of the efficient solutions, computing
some representative solutions or executing an interactive search is trans-
formed into the problem of choosing appropriate parameters. The huge
advantage of scalarising multiobjective problems is that the numerical meth-
ods for processing the scalar optimisation problems are well developed and
a sound theory is available for them.

Only very few methods do not use scalarisation at all. The most well known
such methods are probably the ones developed by Dellnitz et al. ([32, 108])
and Hillermeier ([57, 58]).

Most scalarisation methods are contained in one or more of the following
classes

1. weighted sum based methods
2. weighted metric based methods

3. directional search methods

11
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4. e-constraint based methods
5. achievement scalarising functions

Weighted sum based methods minimise a linear functional (w, -), where the
nontrivial weight is chosen from an appropriate set. The weighted metric
based methods minimise the distance to an utopia point and thereby scale
the underlying metric with different positive scaling or weight vectors. Di-
rectional search methods push a given point as long into one direction as
the result stays feasible. The e-constraint method on the other hand, sets
upper bounds for all but one objective and determines an efficient point in
the remaining outcome set with the best possible value in the unrestricted
objective. Achievement scalarising functions assign a quality value to all
the points in the outcome space relative to a given reference point. Then, a
point of the outcome space with optimal quality value is found.

The basic versions and most common derivations of these methods can be
found in the book of Miettinen [83] that also contains a large list of references
for further reading.

Most methods are devised for the case, where the componentwise partial
order is used to decide domination. The efficient solutions in this case are
usually called (Edgeworth-)Pareto optimal solutions.

For partial orders that are reflexive, transitive and antisymmetric there is a
convex, closed and pointed cone that can be used to decide dominance: if
one point lies in the convex cone attached to the other point, it is dominated
by that point.

Using more general partial orders has the advantage that one can incorpo-
rate bounds on the partial tradeoffs or prices (see [56, 66, 67]). Hence, being
able to work with ordering cones allows to incorporate more preference in-
formation into the method and thus narrows down the set of alternatives to
consider.

The incorporation of a more general partial order varies in difficulty for
the different classes of methods mentioned above. For the weighted sum
based methods it is very easy, because the main parameters are the prices.
Therefore, the price bounds directly translate into bounds on the weights
being used in the method.

For weighted metric based approaches Jahn ([64]) describes how the metric
can be chosen to reflect the partial order.

The approach of Pascoletti and Serafini ([91]) is a very general directional
search method that generalises different other approaches (see [51] and ref-
erences therein) and allows the direct incorporation of ordering cones.

For the e-constraint based methods no article incorporating bounds on the
partial tradeoffs is known to the author.
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Some specific achievement scalarisation functions ([125]) allow the integra-
tion of ordering cones — the Pascoletti-Serafini approach fits into this frame-
work — but no general theory for their incorporation exists.

While most of the above classes are composed of some standard methods
and their derivations the achievement scalarising approach formulates prop-
erties that scalarising functions need to have in order to be an achievement
scalarising function. We will follow this approach and formulate a general
framework of scalarising functions that directly incorporates ordering cones.

In section 2.1 we will introduce the basic definitions and terminology and
state the abstract multiobjective optimisation problem under consideration.
Then we will have a closer look at ordering cones and order intervals in
section 2.2.

In section 2.3 we will state the reference point based cone scalarising problem
with a not yet specified cone scalarising function. We will define the distance
evaluation function associated to the cone scalarising function and will study
how certain properties of the cone scalarising function yield corresponding
properties of the distance evaluation function.

After that we will relate properties of the scalarising with properties of the
resulting minima in section 2.4. Within the section we will also investigate
the range of reachable efficient solutions and state an incompatibility re-
sult. Furthermore, we will see that under reasonable assumptions the set of
optima, for the different reference points is connected.

Section 2.5 is used to analyse the dependency of the minimisation results on
the reference points and to formulate conditions under which the optimum
is unique.

Then we will identify situations where optima of the scalarising can be
reached from infinitely many reference points in section 2.6.

In section 2.7 we will demonstrate that the Pascoletti-Serafini scalarisation
approach is contained in our framework and conclude the chapter with a
summary of the results in section 2.8.

2.1 The multiobjective optimisation problem

In this section we will state the abstract multiobjective problem that is
considered in the remainder of the thesis. We will not try for the most
general results, but use a setting that fits for the mathematical application
of the framework described later. For more general approaches see e.g. Jahn
([64]), Tammer and Gopfert ([114]) or Tammer and Weidner ([46]).

For the ease of reading we use specific fonts to express the affiliation to
certain categories. Vector spaces and predefined number sets are expressed
in capital black board bold letters, e.g. R,N and Y. Sets and set-valued
mappings are denoted in calligraphic capital letters, e.g. ), Oy 5. Matrices
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are denoted by capital bold font letters, whereas vectors and vector-valued
mappings use bold lower case letters. Specifically, we denote by 0 and 1
the vectors composed of only zeros, respectively only ones. Furthermore, e
denotes the k" Cartesian unit vector. Mappings that operate on sets like
bd, cl are written as a series of lower case letters.

Usually members of a set are denoted by the same letter than the sets
themselves, e.g. y € Y C Y. Differences between elements of a space or
directions in a space are denoted by A followed by a letter suitable for that
space, e.g. Ay := y —y’. The asterisk “+” as a superscript marks something
as being dual to the same object without it.

In the following we consider the decision space X to be the m-dimensional
Euclidean space R™ and denote the set of feasible decisions by X. X is
assumed to be nonempty, closed and convex. The outcome space Y is the K-
dimensional Euclidean space R . We will use || - ||2 to denote the Euclidean
norm and (-,-) for the inner product. If one side of the inner product is
fixed, we sometimes speak of a linear functional.

The vector f : X — Y of objective functions f := (fy, k € K), K :={1,..., K}
is assumed to be continuous over the set X. The feasible outcomes are
denoted by Y := f(X'). We will use the terms solution, outcome and point
in the outcome set interchangeably.

By PB(S) we denote the power set of a given set S and by argmin the set
of minimisers and analogously by argmax the set of maximisers. These sets
are empty, if the minimum or maximum is not attained. lexmin states that
we will minimise a list of objectives lexicographically, i.e. we will first min-
imise the first objective, fix it to the optimal value and then minimise the
second objective subject to that constraint and so on. The symbol mo-min
signals that the abstract problem of solving a multiobjective problem is con-
sidered. Throughout the text we will interchange ‘minimal’ with ‘optimal’
or ‘maximal” with ‘optimal’, where the meaning is unambiguous.

The characteristic making multiobjective optimisation different from scalar
optimisation is the lack of a canonical total order in Y. So, there is no
standard way to judge which of two arbitrary points in Y is smaller or
bigger than the other. There are total orders on Y like the lexicographic
order for example, but there is no numerically stable one ([41]). Hence, one
usually works with a partial order. Let us now formally define partial orders

([36]).

Definition 2.1.1 A partial order is a binary relation <, on R™ that is
(i) reflexive: x <, X
(ii) transitive: X<,y,y<o2Z — x<,%Z

(iii) antisymmetric: x <,y andy <,Xx = X =Yy
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for arbitrary x,y,z € R™.
The partial order is called compatible with scalar multiplication if

X<y, >0 = ax <, ay
and compatible with addition if
WX y<$,zZ2 —= wWHy <, x+2z

for arbitrary w, ...,z € R™.

If for two arbitrary points y,y’ € R™ either y <, y’ or y’ <, y then the
order “<,” is a total order.

The abstract multiobjective or multicriteria or vector optimisation problem
we will consider is the minimisation of the vector-valued objective function
f over the set X

mo-min {f(x) | x € X'}, (2.1)

where the partial order <, is used to compare different outcomes. For ease
of exposition we often work exclusively in the objective space Y, i.e. we are
considering the problem of minimising the points in the outcome set )

mo-min{y |y € V}, (2.2)

where the partial order <, is used to compare different elements of ).

In the next section we will show that the partial order can be represented
by a domination or ordering cone and investigate some of its geometrical
properties.

2.2 Ordering cones

As we will see in this section one can associate to a reflexive, antisymmetric
and transitive partial order relation compatible with scalar multiplication
and addition a convex pointed and closed cone, the so-called ordering cone.
Since ordering cones play an important role in the remainder of the work
we devote this section to their derivation and analysis.

Let us start with the definition of the Minkowski sum of two sets. For two
nonempty subsets S1, Sy C R"™ of the Euclidean space, we denote by St + So
the algebraic or Minkowski sum of &; and S,

Sl“‘SQ:{SERn’3:31+32731681732682}.

If S; = {s1} is a singleton, we write s; + Sz to represent {s1} + S. The
following proposition collects some of the properties of the Minkowski sum
(see [95]) for convex sets.
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Proposition 2.2.1 For convex sets S1,S2,S3 and real numbers A1, Ao € R
the following equalities hold:

S1+ 8 = S+ 86
(S1 + ) +S = & + (S + 83)
AM(AS1) = (M) St
A1 (81 + 82) = MS1 + M S
For arbitrary S C R™ we will denote by cl(S), int(S), bd(S), and ri(S), the

closure, the interior, the boundary, and the relative interior of S, respectively
(see [95]). We will now define the notion of a cone.

Definition 2.2.2 A cone C C Y is a set with the property that
ac€C, forallceC and all 0 < o € R.

The cone C is called convex, if it is conver as a subset of Y. It is called
closed, if cl(C) = C. The cone is called pointed, if it does not contain any
linear subspaces of Y, i.e. if —CNC C {0}.

Note that by this definition the interior of a cone is a cone as well. In the
case of a pointed and closed cone C the intersection —C N C = {0} contains
just the origin.

Throughout the work we will use a antisymmetric partial order in the out-
come space Y. The following theorem (see [36], [40], [64]) relates properties
of the partial order with properties of the ordering cone C.

Theorem 2.2.3 LetC C Y be a set and let the binary relation <¢ be defined

by
y<cy <=1y —yecl.

If <¢ is a partial order and compatible with scalar multiplication and addi-
tion, the set C is a cone. Furthermore, the following statements hold:

1. 0 € C if and only if <¢ is reflexive.
2. C+C CC if and only if <c is transitive.
3. C contains no lines, i.e. is pointed if and only if <c¢ is antisymmetric.

Note that C + C C C holds for a cone if and only if it is convex. Hence,
working with a partial antisymmetric order implies that the corresponding
ordering cone is pointed and convex.

For convenience we introduce the following derived order relations. For
arbitrary x and y € R” let

e xscy <= x<cyandy Zcx <= x<p\(o} ¥
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e x<cy = X0y

e Xx>cy <= Yy <¢x and analogously for ‘>¢’ and ‘>¢’

The order relations can now be used to define the notion of dominance. A
point y € Y is called

e weakly dominated by y’ € Y, iff y’ <¢y.
e dominated by y' € Y, iff y’ <¢ y.

e strictly dominated by y’ € Y, iff y’ <¢ y.

For a given cone C the dual cone C* is defined as
C*:={yeY|Vy eC:(y,y) >0}

as the set of vectors that has nonnegative inner product with all elements
of C.

The cone that corresponds to the componentwise order < on Y is the positive
orthant and is sometimes called the Pareto cone. Working with a cone C
that is not closed is problematic with respect to numerical algorithms ([41]).
Furthermore, we will only need supersets of the Pareto cone for Pareto
navigation. Thus, unless stated otherwise, we will use cones C that fulfil the
following assumption.

Assumption 2.2.4 The cone C is closed, pointed and convexr and contains
COY, = RE .= {yeRF |y >0}
the Pareto cone.

Thus, the dual cone C* C Y is closed, convex, pointed and a subset of the
Pareto cone.

As the partial order used does in general not allow for a single best solution,
we are interested in solutions being best possible.

Definition 2.2.5 Let Y C Y and let C fulfil 2.2.4. Then a pointy € Y s

o cfficient, if there is no other pointy’ € Y withy’ <cy, i.e. (y—C)N
Y={y}

e weakly efficient, if there is mo other pointy' € Y withy' <c'y, i.e.
(y —int(C))NY =0.
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A, N

y1> Y y1>

Figure 2.1: (a) (b)

Points inside the green area are Points where the interior of the at-

strictly dominated by the tip of the tached cone does not intersect )

cone, points on the grey lines are are weakly efficient, points where

dominated except the tip itself. just the tip intersects are efficient
and points where just the tip of a
slightly larger cone intersects are
proper efficient.

e proper efficient in the sense of Henig ([54, 55]), if there exists a cone
C' with C C int(C') such that there is no point'y' € Y withy’ <c¢''y,
ie. (y—-C)nY={y}

We denote by effc(V), eff,—c(Y), and eff, c(Y) the set of efficient,
weakly efficient and properly efficient solutions in ) with respect to the
ordering cone C.

We assume that the problem to be solved is nontrivial and thus there is more
than just one (weakly / properly) C-efficient point in ). Hence, solving
the multiobjective optimisation problem (2.2) means finding the decision
maker’s most preferred solution among the efficient ones. The non-efficient
solutions can be ruled out since they leave room for improvement in some
objectives without compromising the others.

Since we are interested in the different efficiency sets only, we can change the
set ) without changing the multiobjective problem as long as the efficiency
sets stay the same.

Proposition 2.2.6 Let C be an ordering cone that fulfils 2.2.4 and let Y C
Y be a nonempty set. Then

(i) effe(Y) =effe(Y+C)
(i) ef fi—c(V) =effy_cY+C)NY
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(iir) ef fpc(Y) = effpc(Y+C)

Proof:
For (i) and (ii) see e.g. lemmata 4.7 and 4.13 in the book of Jahn ([64]).
We will prove (iii). For an arbitrary ¢ € C\ {0} and any y € ) the sum of
the two

y <gy+t+c

is strictly C-dominated for any closed, convex and pointed cone C with its

interior int(C) 2 C containing C. Thus,

and hence

effp—C(y+C) - y
So take any y € effp_c(y +C). Asy € Y by the previous arqgument, the
following inclusions hold:

yE-0OnYcy-0n@+e) = {y}

where we used the efficiency definition in the last step. Therefore, y €
effp—c(Y) and consequently

effp—C(y+C) - effp—C(y)'

Now lety & eff,_c(Y +C). Hence, for every cone C with int(C) D C the
intersection (y —C) N'Y 2 {y} contains more than one element. So let
y #¥ € Y+C be such an element. Consequentially, there ezists a ¢ € C\{0}
withy =y —=¢. Sincey € Y+C there existy € Y and ¢ € C withy =y +¢.
Putting the two equalities together, we can represent

y=y+c+c
ec\{o}

by a point of the outcome set Y plus a nonzero element of the ordering cone.
Therefore, y & ef f,_c(Y) and thus

effpcV+C) 2 effpecV)
g

Since the sets of efficient and properly efficient outcomes do not change
when we add the ordering cone to the outcome set, scalarisations that yield
(properly) C-efficient outcomes, cannot discriminate between ) and Y + C.
If one represents the elements of the sum ) + C canonically, then the ‘Y-
portion’ of any weakly efficient element of V + C is weakly efficient in ).
Thus, Y itself does not need to be convex or closed as long as ) +C is closed
Or convex.
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Definition 2.2.7 A nonempty set Y C Y is called
(i) C-convex, if Y + C is convex
(ii) C-closed, if Y + C is closed

For outcome sets with these properties, there is an alternative description
available for the different types of efficiency. We will bundle the correspond-
ing results in the book of Jahn ([64]) in the following proposition. Here, we
exploit the fact that the definitions of properly efficient points of Jahn and
Henig ([54]) coincide for the considered situation.

Proposition 2.2.8 Let the set of outcomes ) be C-closed and C-convex.
Then

i) A pointy € Y is weakly C-efficient if and only if there exists a nonzero
element of the dual cone c* € C*\ {0} such that

(cy) < (") forall y' €,
i.e. 'y minimises the linear functional (c*,-).

it) A point'y € Y is properly C-efficient if and only if there exists a
element in the interior of the dual cone c* € int(C*) such that

(cy) < (cy) fordl y' €,
i.e. y minimises the linear functional (c*,-).

i) A point 'y € )Y is C-efficient, if it is properly C-efficient or if there
exists a nonzero element of the dual cone c* € C*\ {0} such that

(cy) < (YY) fordl y € Y\{y},
i.e. y is the unique minimum of the linear functional (c*,-).

With the preceding proposition we have a full characterisation of weakly
and properly C-efficient points for C-closed and C-convex outcome sets ).
For C-efficient points, however, we do not have a sufficient condition, which
was the original reason to introduce the notion of proper efficiency ([44]).

We will now have a closer look at a construction frequently used in the
remainder of the chapter.

Definition 2.2.9 For a pair of points y,y' € Y withy <cy’ the set
(y+¢)n(y'=¢)

is called order interval ([64]).
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The properties that we imposed on the ordering cone C imply useful prop-
erties for the order intervals.

Proposition 2.2.10 For a convez, closed, and pointed ordering cone C the
interior int(C) # 0 of which is nonempty, the order interval for two points
y <cy' €Y is convexr and compact.

Proof:

By lemma 1.22 in the book of Jahn ([64]) the order interval is convex, closed
and bounded. Thus, being subset of the Fuclidean space Y the order interval
is convex and compact.

O

Next, we will see how to construct an order interval containing two arbitrary
given points. For a given Ay € Y let us consider the problem

min {||c*+c7||, | Ay=c"—c7, ¢, ¢ eC}. (2.3)

Proposition 2.2.11 The solution of (2.3) is uniquely determined.
Proof:

For cones C with nonempty interior every element y' € Y can be written
as the difference of two elements from C (see e.g. [64, Lemma 1.13 plus
Lemma 1.32]), a property that is called reproducing. Hence, the feasible set
of problem 2.3 is nonempty.

Assume there is a second solution €™ # ¢, ¢~ # ¢~ withc™— ¢~ = Ay and
the same value for ||[c*+ €~ ||2. Clearly, for all X € [0,1]

Ay = (1—-))Ay+ Ay
= (1-XN)(ct—c)+A(ct—c)
= (=Nec+reh) - (1-Ne+re).

If the differences and the sums of the two pairs c™, ¢~ and ¢+, ¢~ would both
be equal, then we would have equality for ¢© = c* and ¢~ = ¢~. Thus, the
assumption implies that the sums

ct+c #ct+e (2.4)

of the pairs are different. As the cone C is convezr ci = (1 — X) ct+ Ac*
and ¢y = (1= X)c™+ ¢ arein C for all X € [0,1]. But for A € (0,1)

letterle = [A-Ne+ret +1-Ne+re,
~ - nEte) et e,
D e e et e

= H ¢+ C_Hz
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due to the strict convezity of || - ||2. But this is a contradiction to the mini-
mality of c*, c™.
[l
The functions
c?:Y—-C and c®:Y—=C (2.5)

mapping a Ay € Y to the optimal argument of (2.3) are therefore well
defined. Let us define the projection onto the positive part

| B yi for yr >0
()+:Y - Y4, (Y)-&-'_gc{o for ykSO}ek‘

We will show now that the norm of the minimal result is bounded by the
norm of the argument.

min {||ct+c||, | Ay=ct—c", ¢, ¢ eC}

Y. CC

< min{Hc‘*‘—i—c_H2 ‘ Ay =ct—c, ct, ¢ EY+}

= H(AY)JF_'_ (_AY)-‘FHQa
because the decomposition into positive and negative entries is optimal for
the ordering cone Y., since any other decomposition simultaneously in-

creases the corresponding components in ¢ and ¢~ . We continue the ar-
gument with the square of the norm.

[(Ay)+ + (~Ay)4 |2

= ((Ay)+ + (—Ay)4, (Ay)+ + (—Ay)y)

1Ay« 5 + 2((Ay)+, (-Ay)+) + [[(-Ay)+[;
[(AY)1]ls = 2((Ay)+, —(—Ay)1) + || = (~Ay)+|;
= [(Aay)+ - (-ay)+];

= |ayll,

where we exploit that the positive (Ay), and negative part (—Ay)+ of a
vector Ay are perpendicular and consequentially their inner product is zero.
Thus, the norm of the sum of ¢® and c®

|c®(Ay) + c(Ay)|, < |Ay], (2.6)

is bounded by the norm of the argument. With a little extra effort we can
derive the Lipschitz-continuity of ¢® and ¢® from this result.
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Proposition 2.2.12 The functions c® and c® are Lipschitz-continuous with
a Lipschitz constant of 1.

Proof:
Note that by their definition

c?(Ay) = c®(-Ay) and c(Ay) = c¥(-Ay).

Therefore, we just need to prove Lipschitz-continuity for one of the functions.
So

le®@yll, = 2 (c*(Ay) + e (AY)) 5 (c7(Ay) — “(Ay)]l,

< 3| <c®ay) + Ay, + aHC (Ay) = c©(Ay)|,-

Now, using (2.6) the first part

QHC (Ay) + c®(Ay) Hz > QHAsz

can be bounded by half the norm of the argument. Applying the defining
equality ¢®(Ay) — c®(Ay) = Ay to the second part we get the overall
nequality

le(ay)ll, < z[le®(Ay) + (A, + 3 [[®(Ay) - cZ(Ay)],
< zllayll, + zllayl,
= [lay |l
proving the claim.
O
y+C
Ce(yl-)/) \ ~
y-¢ (y’-y) y+¢
; A
y-¢

Figure 2.2: The points y and y define the order interval for y and y’ — the
inner white part.
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The importance of the functions ¢® and ¢© lies in the fact that they can
be used to construct an order interval containing the two points. The two
interval anchor points are a common upper and lower element in the lattice
(Y, <c ) for the two given points.

Suppose we have two arbitrary elements y,y’ € Y. Setting

cti=c(y —y) and ¢ :=c"(y' —v)

the difference between the two chosen points can be expressed as

y —y=ct—c".

Therefore, a common maximum element for the chosen points is given by
y <c y4+e = y+ct >y
and a common minimum element by

+:

y >c y —c y—-c¢ <¢c vy

Hence, the two points y,y’ are contained
.Y €Ely—c+C)n(y+ct=0C),

in the order interval for y — ¢~ and y + ct. By the definition of ¢® and
c® the norm H ct+c™ H2 is minimal and therefore the construction produces
the order interval of minimal length.
Let

By(y) ={y € Y|y —¥l2 < p}
be the ball of radius p around the point y. We will now extend the above

construction to include not just two points, but a ball of a given radius
around a given centre.

Proposition 2.2.13 For a ball B,(y) with radius p around the centre’y and
the ordering cone C

B,(y) € (y-p1+C)n(y+p1-C).

Proof:

Since the ball is contained in a cube having the diameter of the ball as side
length,

B(y) € (y—p1+Y )N (y+p1-Yy)

-
C (y-pl+C)n(y+p1-20C)

it is also contained in the potentially larger order interval.
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For ordering cones C with int(C) O Y4 the anchor points could be chosen
lying closer to each other, but the anchor points used in the proposition
suffice for our purposes. Using the fact that

By(y) + Bs(¥) = Bpis(¥y +¥)

the above result can easily be extended to a finite number of balls.

r‘

X

Figure 2.3: The ball can be packed into an order interval of appropriate size.

We will use the representation of arbitrary elements by differences of cone
elements to formulate our scalarisation framework.

2.3 Cone scalarising functions

In this section we will express the difference between the reference point y**
and the point y € )Y to be optimised by the difference of two elements of
the ordering cone. We will then apply achievement scalarising-like functions
called cone scalarising functions to these cone elements.

The cone scalarising functions will then be translated into so-called distance
evaluation functions. They operate on distances between elements of Y and
are thus much easier to grasp. They are a main tool for the forthcoming the-
ory and therefore we use this section to derive relations between properties
of the cone scalarising functions and their corresponding distance evaluation
functions.

We will start by imposing conditions that ensure a well defined distance
evaluation function. These properties suffice to show continuity and different
degrees of monotonicity as well. We will then see that Lipschitz-continuity
transfers from a cone scalarising function to its distance evaluation function.
The same holds true for quasiconvexity and strict quasiconvexity. Finally,
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we will prove that convexity and strict convexity of the cone scalarising
function transfers to the distance evaluation too.

The problem that we will consider in the remainder of the chapter — called
the cone scalarising problem — reads as follows:

inf {s(c+, c_) ‘ y—ylt=ct—c,ye), ¢t c GC}, (2.7)
where the function s
s:CxC—R

maps a pair of ordering cone elements to the real line. We will assume
henceforth that the function s is defined for all (¢, ¢7) € C x C.

Since our ordering cone C has nonempty interior and is thus reproducing,
the difference y — y® of an arbitrary pair y € ), y® € Y can be expressed
by the difference of some c¢*, ¢~ € C ([64]). The following proposition gives
an explicit description of the domain of minimisation in (2.7).

Proposition 2.3.1 For any Ay € Y
CH(Ay):={ctecC ‘ Ay=c'—c, c eC}=(Ay+C)NnC.
Proof:
Ct(Ay) = {cteC| Ay=c'—c,c e}

= {cfeC| Ay+c =ct ceC}

= {Ay+c | cecC}ncC

= (Ay+cC)nc.

O

The set CT(Ay) can be written as the intersection of two convex sets and
is therefore convex itself. Besides, it can be written as the algebraic sum of
its efficient set and the ordering cone.

Proposition 2.3.2 For any Ay € Y
Ct(Ay) = effe(CH(Ay)) +C.

Proof:

The “C7” inclusion is given by the definition of C-efficiency. Thus, only
the “27 inclusion remains to be shown. Let ¢t € CT(Ay). Then, for an
arbitrary c € C

ct+c € c+CH(Ay)
C c+ (Ay+C)
= Ay+(c+C)
C Ay+C.
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With an analogous argument the sum ¢t 4 ¢ C C is also contained in the
cone. Since the choice of ¢ was arbitrary

c"+C C CNn(Ay+C) = C*(Ay) forevery c*eCt(Ay).
Consequently, the efficient set plus the ordering cone
eff(C+(Ay)) +C C Cf(Ay)

form a subset of the original set.

The set
C™ (Ay) = {c_e C ‘ Ay =ct—c7, ct e C}

by definition fulfils
C™(Ay) =C"(-Ay)
and thus is convex as well.

For the special cases of Ay <¢ 0 and 0 <¢ Ay the result of (Ay + C) NnC
reduces to C and Ay + C respectively.

A main tool in the remainder of the chapter will be the distance evaluation
function associated with the cone scalarising function. For a given distance
between two points of Y it finds the s-minimal representation for this dis-
tance in terms of a pair of elements from C.

Definition 2.3.3 For a cone scalarising function s the function
ts : Y —R
ts(Ay) := inf {s(c+, c_) ‘ Ay =ct—c7, ¢t c € C}
is called distance evaluation function.
It can be equivalently expressed as
ts(Ay) = inf {s(c+, c_) ‘ c =ct— Ay, ct e CT(Ay) }
= inf {s(c’, c*— Ay) | c"eCt(Ay)}.

Now we can decompose the cone scalarising problem (2.7) into the search
for the y € Y with t,-minimal distance to the reference point y %

inf {t;(y —y") | y €V}, (2:8)

while by its definition ts searches for the s-minimal representation of the
distance.

Thus, choosing s such that ¢4 is suitable for solving (2.8) implies the ap-
propriateness of s for solving (2.7). The following two properties of s are
important for this purpose.
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Definition 2.3.4 A function s : C x C — R is called C-centred, if for every
(cT, ™) €C xC and for every c € C

s(c+, c_) < s(c+—i— c, ¢ + c).

The centredness of s ensures that we cannot improve the infimum in the
definition of t5 by adding the same cone element to both sides of the differ-
ence.

y

Figure 2.4: The point y represented by two different pairs of cone elements.

The second property that we need is consistency.

Definition 2.3.5 A continuous cone scalarising function s : C x C — R is
called C-consistent, if for every (c+, c_) € C x C and for everyc € C

s(ct,c) <s(ct+c,c7) and s(ct c¢) >s(c c+c).

It is called strictly C-consistent, if for every (c+, c_) € C x C and for every
c €iint(C)

s(c+, c_) < s(c++ c, c_) and s(c+, c_) > s(c+, c + c).

It is called strongly C-consistent, if for every (c+, c_) € C xC and for every
ceC\ {0}

s(ct,c7) <s(ct+ec,c7) and s(ct c¢) >s(ct c+c).

We will now verify that the infimum in the definition of s is finite for
continuous, C-centred and C-consistent cone scalarising functions s.

Lemma 2.3.6 Suppose s is a C-consistent C-centred and continuous cone
scalarising function. Then the infimum in the definition of the function t4
is finite for all Ay € Y.
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Proof:
For every ¢t € CT(Ay)

s(ct,et— Ay) = s(ct, e+ c®(Ay) — c?(Ay))

C-consistent

(
= (
= s
c —ce:ztred (

Thus, we have a lower bound for

ts(Ay) = inf{s(c+, c— Ay) ‘ cte C+(Ay)}
s(0,¢c(Ay)) (2.10)

—0Q,

VAR

which is finite, because s is continuous and defined on the whole of C x C.
O

Note that we so far only know that the infimum is bounded. This does not
imply that the infimum is attained for some pair ¢*, ¢~ € C. Therefore, we
will work with the following assumption.

Assumption 2.3.7 The cone scalarising function s is chosen such that for
every Ay € Y a pair ct, ¢~ € C exists such that

s(ct, ¢7) = inf{s(ct, c"— Ay) | cTeCt(Ay)}
the infimum is attained.

This allows us to write ‘min’ instead of ‘inf’ in (2.3.3). A pair of cone
elements c*, ¢~ € C will be called minimal or optimal representation for
Ay €Y, if t;(Ay) = s(ct, ¢7).

We will therefore establish a sufficient condition for the assumption (2.3.7)
to be fulfilled. For that, we will first derive a reduction result.

Proposition 2.3.8 Let s be a continuous, C-consistent and C-centred cone
scalarising function and let Ay € Y be given. Then for every pairc™, ¢~ € C
with ¢t — ¢~ = Ay there exists ac™ € ef fo(CT(Ay)) such that

s(é+,é+—Ay) < s(c+,c_).

Proof:

The assumptions imply that ¢ € CT(Ay). By proposition 2.3.2 for every
c™ € CT(Ay) there exist c™ € ef fo(CT(Ay)) and ¢ € C with ¢ = ¢+ c.
Consequentially,

¢ = c'—Ay = ¢ +c—Ay.
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Putting this representation into the cone scalarising function s and using its
C-centredness we get

S (c+, c_)

s(é++ c,ct+c —Ay)
> s ((_:+, cr— Ay)

O

Thus, the set of pairs with minimal ¢ values always intersects with the set
of C-efficient elements of C*(Ay). Therefore, a sufficient condition for the
existence of a t;-minimal pair is the boundedness of ef f. (C+ (Ay)).

Lemma 2.3.9 For a polyhedral cone C, i.e. a cone

C = {Zn:aiv(i) | a; € R+}
i=1

given by the positive linear combination of a finite number of generators the
set ef fo(CT(Ay)) is bounded.

Proof:

CT(Ay) is polyhedral as an intersection of two polyhedral sets. Thus, it can
be written as the algebraic sum

k
cH(Ay) = conv{yW |j=1,..,m} + { Zaiwm | a; € R+} = S+C
i=1

of a polytope and a polyhedral cone ([95, 19.1.1]). We first show that the
representation cone C coincides with the ordering cone C.

In proposition 2.3.2 we have seen that
CH(Ay)+C = CT(Ay).

Therefore, the ordering cone C C C is contained in the representation cone.
Now assume ¢ € C\C to be an element of the representation cone that is not
contained in the ordering cone. Since C is reproducing there exist ¢, c™ € C
with

i=1
Some of the ozf — «a; < 0 must be smaller than zero, because the element
c € C would otherwise be contained in the ordering cone. Now we take an

arbitrary element y € S from the polytope. By the definition of the set S
the element y is contained in the ordering cone. Hence, it can be written as

y = zn:@iv(i)
i=1
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for a; € Ry. Due to the representation of C*(Ay)

n

y+pc = Z(d+ﬁ(a;”— ai_))v(i) € Ct(Ay) (2.11)
i=1

is contained in the set for arbitrary 8 € Ry.. But however the representations
of y and c are chosen, one of the coefficients in (2.11) will become negative
for an appropriately large 3. Hence, the resulting point

y+pBc ¢ C 2 CH(Ay)

18 not contained in the set. Therefgre, the cone difference é\C = () is empty
and thus the representation cone C C C contained in the ordering cone.

Lety € CT(Ay) be an arbitrary element of the set. By the above arguments
it can be represented as

y = s+c¢, se€8,cel.

But s dominates y whenever the cone element ¢ # 0 is nonzero. Thus, the
efficient set

effe(CT(Ay)) € S

is a subset of the polytope and therefore bounded.
O

Hence, for a polyhedral ordering cone C the assumptions of lemma 2.3.6 are
sufficient for the infimum in (2.3.3) to be attained. But polyhedral ordering
cones are exactly the class that we will consider in chapter 3.

As a next step we will derive that the C-consistency of s in its different
occurrences implies the corresponding C-monotonicity of ¢,.

Definition 2.3.10 A function f :Y — R is called C-monotone, if
f(Ay) < f(Ay +c¢) for everyc € C.
It is called strictly C-monotone, if
f(Ay) < f(Ay +c) for every c € int(C).
It is called strongly C-monotone, if
f(Ay) < f(Ay +c) for every c € C\ {0}.

Note that continuous, strongly C-monotone functions f are also strictly C-
monotone. Analogously, continuous, strictly C-monotone functions are also
C-monotone.
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Lemma 2.3.11 For a continuous, C-consistent, and C-centred s the func-
tion ts is C-monotone. If s is even strictly or strongly C-consistent, the
function tg is strictly or strongly C-monotone respectively.

Proof:
Let Ay, Ay € Y and ¢ € C such that Ay = Ay + c. Then

ts(Ay) = min{s(ct, ct—Ay) | cteCT(Ay)}
= min {s(c+, ct— Ay — 6) ’ ctect(Ay) }
> min{s(c, cT™—Ay—¢c+¢) | cteCt(Ay)}. (212

So far we exploited the C-consistency of s. Now we will use the representa-
tion of CY(Ay) to continue the chain of inequalities.

ts(Ay) > min{s(c’, c"—Ay) | cte (Ay+C)nC}
= mm{ (c+, T AN) ’ cte (ASf+6+C)ﬂC}
> min{s(ct, ¢ Ay) | cte (Ay+C)ncC}
= ts(Ay),

because Ay +¢+C C Ay +C.

Note that for strictly C-consistent s and ¢ € int(C) the inequality (2.12)
is strict and ts therefore strictly C-monotone. For strongly C-consistent s
and ¢ € C\ {0} the inequality (2.12) is again strict and thus ts is strongly
C-monotone in that case.

O

C-monotonicity is an essential property for the function tg, since ¢4 is con-
sistent with the partial order in this case, i.e. dominated points have larger
values than the ones dominating them.

We can now combine the C-monotonicity with the order interval construc-
tion (2.5) to construct lower and upper bounds. Applying a C-monotone
function to the anchor points of an order interval for two given points, we
get a common lower and upper bound for the function values of the original
points. We will utilise this construction in the subsequent lemma to prove
the continuity of t.

Lemma 2.3.12 For a continuous, C-consistent and C-centred s the distance
evaluation function ts is continuous.

Proof:
Let (Ay(i)) be a sequence with lim Ay®) = Ay and let

1—00

Ay = Ay — c® (Ay — Ay(i)) = Ay —¢® (Ay — Ay(i)) eY
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and
Ay® = Ay + c®(Ay — AyD) = Ay 1 (Ay — AyD) e Y

be the upper and lower anchor point of the order interval enclosing Ay and
Ay(’). The anchor points form a common upper and lower bound

AyD < Ay <¢ AyY  and
Ay <o AyD <o Ay,

for the original points in the lattice (Y, <c ) By the C-monotonicity of ts
it follows that their ts-values

ts(AFD) < t(Ay) < t(AyY) and
t(Ay7) < t(ay®) < 6 (ay?)

are an upper and lower bound for the ts-values of the two given points.
Choosing some minimal representation ¢t (i),&™ (i) € C for the lower anchor
point

Ay =¢et(i) —e¢ (i) and s(€T(), e (1)) = ts(AFD).
and abbreviating the c¢® and c® function values by
et (i) == c®(Ay — Ay") and € (i) := c®(Ay — Ay?)
we can write the upper anchor point as
AyD = AyD 4 &t (@) + & (4).
The minimality of ts(AyW) now yields the following inequality:
ts(AyD) = min{s(ch, ct—Ay"Y) | cTect(ay?)}
< s(et(i) + et (@) + e (), € (4)).
Thus, ts(Ay) and ts(Ay™) are bounded by
s(e*(d), € (1)) < min{t,(Ay).t;(Ay")} (2.13)
from below and by
max {ts(Ay), ts(Ay®)} < s(et(i) +eF (@) +e (i), € (1)  (2.14)

from above. Just the first argument differs for the bounds s(é+(i), ¢~ (z))
and (€T (i) + €™ (i) + ¢ (i), € (i)). This difference is bounded

ety +ct(@)+e (i) —ct(@), = |ct@)+c @),

(2.6) )
< [lay —ay@,.
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by the distance of the i" member of the sequence to its limit. Thus, ts (Ay)
and ts (Ay(i)) are bounded by s-values for two points, the distance of which
is 0 in one component and smaller than or equal to HAy — Ay(i)H2 in the

other component. Because the function s is continuous in both arguments
and lim HAy — Ay® H2 = 0 the upper and lower bound in (2.13) and (2.14)

71— 00
converge to the same value and thus

lim ¢ (Ay(i)) = ts(Ay).
]

For Lipschitz-continuous s we can directly extend the above result. Here,
the arguments will be similar, because the above reasoning is already centred
around distances.

Lemma 2.3.13 For a Lipschitz-continuous, C-consistent and C-centred s
the function tg is Lipschitz-continuous.

Proof:
Let two distances Ay, Ay € Y be given. Then set
ct:=c® (Ay — Ay) and ¢ :=c° (Ay — Ay).
Furthermore, let ¢*, ¢~ € C be an optimal representation
s(ef,e7) =ts(et—¢7) and ¢T—e¢ =Ay-ct=Ay-c

for the lower end of the order interval. From the proof of lemma 2.3.12 we
know that the two values can be bounded from both sides

ts(Ay —¢*) < min{t,(Ay),t;(Ay)}
< max {t,(Ay), t:(Ay)} < t(Ay +¢”)

by the ts values of the order interval anchor points. Thus, we can rewrite
their difference as

’ ts(AY) - ts(Ay) ‘
= max {ts(Ay), ts(A}_’)} — min {ts(AY)7 ts(A}_’)}

< ts(Ay+c) —ts,(Ay —ct)

= min {s(c+,c_) ‘ Ay +¢c¢ =ct—c7, clc € C} — s(6+,é_)

= min {s(c+,c_) ‘ ¢t—é +ct+c=ct—c,, ch,c € C}
_s(@t,e)

The s-value of any specific realisation of the upper anchor point
min {s(c+,c_) ’ ¢t—¢ +ct+c=ct—c, ch,c ¢ C}

< s(et+ct+ec, ¢)
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is bigger than or equal to the minimal one. Hence, for Lg being the Lipschitz
constant of the function s we can estimate the difference by

[ts(Ay) —ts(Ay)| < s(@+et+e, ¢7) —s(et, &)
< Ljete ],
2.6
§ Ls‘}Ay—Af’“Q»

where we use the bound on the sum of ¢® and c® in the last step.
O

The next step in our investigation deals with the transfer of different variants
of convexity from s to ts. So let us first recall the definition of quasiconvexity.

Definition 2.3.14 A function f: Y CR"™ — R is called quasiconvez, if for
y.y ey
F(L=NF+29) < max{f(F), fF)} forall e (0,1)

or equivalently, if the lower level sets

yeV|fly) <7}

are convex for every T € R (see [5]). The function is called strictly quasi-
convex, when the inequality is strict for all X € (0,1).

Note that for continuous functions strict quasiconvexity implies quasiconvex-
ity. Quasiconvexity or strict quasiconvexity of the cone scalarising function
s devolves to the distance evaluation function ¢,.

Proposition 2.3.15 For a continuous, C-consistent, C-centred and quasi-
convex s the function ts is quasiconvez. If, additionally, s is strictly quasi-
convez, the distance evaluation function ts is strictly quasiconvez, too.

Proof:

The requirements on the cone scalarising function s imply the continuity
and C-monotonicity of the distance evaluation function ts. Take two points
y,y € Y in the outcome space and a A € (0,1). Let us denote the convex
combination of two elements by convy(z,z) := (1 — \) z+ Az. Furthermore,
let €Y,&~ and é*,&~ be s minimal representations of the points y and ¥,
respectively. Then

ts (convA(y, y))

= min{s(c ) ‘convA( y) =ct—c7, ct, c” EC}
= min{s(c , ) ‘ conv,\( c ) —conv,\( ,é_) =ct—c,
ch, ¢ GC}

< s(com))\( + +), convA(é_, é_))
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Due to the quasiconvexity of s, we can continue the inequality with

ts(com))\(y, y)) < max{ ( é_), s(é+, é_)} (2.15)

= max (1), 1.(9)).

Thus, ts is quasiconvex. For a strictly quasiconvex s the inequality (2.15) is
strict, if the points are different. Hence, ts s strictly quasiconvex.

Note that the continuity of ts rules out the possibility that ts is strictly qua-
siconvez, but not quasiconvex ([5]).

O

The last two properties we are going to look into in this section are convexity
and strict convexity. We will show that (strict) convexity of s implies (strict)
convexity of ts.

Lemma 2.3.16 If s is continuous, C-consistent, C-centred and convex, then
ts is convex as well. If s is even strictly convex, then tg is strictly convex as
well.

Proof:

For two arbitrary points Ay, Ay € Y let Ayy := convy(Ay, Ay). Then

ts(Ay)\) = min{s(c ) ’Ay)\—c—c,chc_GC}

= min{s(c ) ‘ convy(Ay,Ay) =ct—c c+,c_€C}
&) conuy (& ¢)) |
convy(Ay, Ay) = conv,\( [ ) — convy, (é_, é_),
¢t ch e, e eC}

= min{ (com))\(

Here, we use the convexity of the ordering cone, that implies the equality
C =C+C. Thus, the effective domain of minimisation is unchanged by the
splitting of variables. If we now split the equation in the minimisation into
two

Ay=¢t—¢ and Ay =ct—c~

= convy(Ay,Ay) = conv,\( - +) - convA(é_, 6_)

the two equations imply the single one, but not vice versa. Thus, we are re-
ducing the feasible area by this split. Therefore, we can continue the estimate
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with
ts (Ay)\) < min{ s(conv,\ (é+, (‘:+),conv,\ (é_, (_:_)) ’
Ay=¢t—¢", Ay=ct—c,
et et e, e eC}

»

cConvexr

< min{convA(s(é‘*', é_),s(é+, é_)) ‘ Ay =¢t—¢7,
Ay=ct—c, &t cf ¢, c e}

= (1-Mmin{s(eh,e)| Ay=¢t—¢7, ¢, e eC)

¢)| Ay=ct—c, ct e e}

+ A min {s((‘:+, c
= (1_)‘)t5(AS’)+)‘ts(AS’)7

using in essence the converity of s and the independence of the minima after
the split of the equation.

For strictly convex s the second inequality in the last estimate is strict for
either ¢ # ¢t or e~ # ¢ and X € (0,1). But if Ay # Ay the two repre-
sentations by cone elements have to differ, too. Thus, the second inequality
is strict, if Ay # Ay and X € (0,1). Therefore, ts is strictly conver.

O

We have investigated how properties of the cone scalarising function s trans-
fer to the distance evaluation function t;. Even though the distance evalua-
tion function is the tool that is employed in most of the forthcoming proofs
there is a benefit of defining the cone scalarising problem as the minimum
of s: If s is defined such that the definition works for all closed, convex and
pointed ordering cones C O Y, then changing the cone most likely changes
ts, whereas s remains stable.

The next section analyses the outcomes of the optimisation problems (2.7)
and (2.8). Here, we will build upon the foundation laid in the current section.

2.4 Cone scalarising outcomes

The aim of setting up the cone scalarising function framework is to have
a class of functions for calculating (weakly / properly) C-efficient solutions.
Therefore, we will analyse the results of the cone scalarising problem and
investigate the potential range of outcomes.

We will show that for appropriate choices of s the cone scalarising problem

(2.7) yields weakly C-efficient solutions.

Theorem 2.4.1 Let s be a continuous, strongly (strictly) C-consistent, and
C-centred function. If y is a minimum of

inf {s(c+, c_) ‘ y—yR=ct—c, ye), ct, C_GC},
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then it is (weakly) C-efficient.
Proof:
We will first prove the strictly C-consistent case. Recall that

inf{s(c+, c_) ’ y—yli=ct—c,ye) ¢t c e C}
= inf {t;(y -y") | y € ¥V}
Assume that there is ay € Y and a ¢ € int(C) with y + ¢ =y. Since ts is
strictly C-monotone,
ts(¥) =ts(y +¢) > ts(y)
contradicting the minimality of ¥.

Substituting int(C) by C \ {0} and using strong C-monotonicity yields the
proof for the strongly C-consistent case.
O

For the efficiency proof we neither need convexity of s or t5 nor the convexity
of the outcome set ). So to guarantee (weak) efficiency, strict or strong C-
monotonicity is the key ingredient. However, to ensure that we can reach
the different (weakly) C-efficient outcomes we need stronger requirements.
Let us denote the level sets of the function ¢4 for the given order relation by

Lo(ts,7) :={y €Y |ts(y) o 7} for o€ {<,< =}

We will now define two classes of cone scalarising functions the level sets of
which (locally) approximate or represent the ordering cone. By this they
(approximately) encode it into a function. In analogy to Wierzbicki ([125])
we will call them C-representing and C-approxzimating functions.

Definition 2.4.2 The function s is called strictly C-representing at'y € Y
and T € R, if it is strictly C-consistent, C-centred, continuous, and

y—mnt(C) = L(ts, 7).

s is called strictly C-approximating at'y € Y and 7 € R, if it is strongly
C-consistent, C-centred, continuous, and

y — (C \ {O}) C Lo(ts,7) € y-— int(C(c*,e))
for 0 <e <1 and c* € int(C*), where
C : int(C) xRy — P(Y)
C(c*e) = {c eY ‘ c=c'—c7, for some ct, ¢ €C,
with (c*,ect—c7) >0}.

If we want to stress that the representation or approrimation property is
only guaranteed for one point we add the attribute locally.
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The definition ensures that at least one level set of the distance evaluation
function ts looks like the shifted negative ordering cone or a similar cone.
We will see soon that by shifting the reference point such that the level set
touches the feasible region in a certain point, we can make that point the
optimum of the optimisation for the shifted reference point.

Note that by the continuity of 5 in Y the interior of the level set for the
weak inequality int(L<(ts, 7)) = L<(ts,T) equals the level set for the strict
inequality. Furthermore, the closure of the level set for the strict inequality
c(L<(ts, 7)) = L<(ts,T) equals the level set for the weak inequality if in
addition t4 is convex.

Before we use the definition to establish the reachability results, we will first
show that the set C(c*,¢) is a closed, convex and pointed cone.

Proposition 2.4.3 The set C(c*,¢e) is a closed, conver and pointed cone,
with C C C(c*,¢), if 0 <e < 1.

Proof:

Note that forc €Y and ¢ =c™— ¢~

(cf,ect—c) >0 <= (c,eact—ac)>0

for every o € Ry. Since C is a cone, the positive multiples ac™, ac™ € C are
contained in the cone, so that we have a representation of ac as a difference
of two elements of C. By the above considerations, this representation fulfils
the inequality. Thus, for every element ¢ € C(c*,¢) all the positive multiples
ac € C(c*, e) are contained in the set and it is therefore a cone.

Because the ordering cone C is convezx, the sum of two of its elements is again
contained in the cone. Therefore, the sum of two elements c,c € C(c*,¢)
can be represented by the sum of their individual representations

c+cCc= (c++ é+) — (c_—i— é_).

Since adding up the two inequalities for ¢ and ¢ yields the necessary in-
equality, the sum of two elements of C(c*,e) lies in C(c*,e). Hence, the
cone C(c*, ) is conver.

Let (c(7))ien be a convergent sequence of elements in C(c*, ) represented by
ct(4), ¢ (i), i € N. From the equality c(i) = ¢t (i) —c~ (i) and the defining
constraint

(cect(i)—c (i) >0 = ¢e{c"c(i)) > (c",(1—e)c (i) >0

we can derive a bound for the negative component. Taking the mazimum
of the inner products 0 < max;en{(c*,c(i))} =1 M < oo, we can restrict
(c™(7))ien to the bounded and closed set

(€™ (M))ien © CN{y[(c", (1 —¢c)y) <eM}.
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Thus, there exist convergent subsequences €¥ (i), ¢ (i),7 € N. AsC is closed,
the limits of the sequences lie in C and fulfil the defining inequality. There-
fore, the limit of their difference

lim c(i) = lime(i) = lim (e*(i) —c (i)
= lim¢* (i) — lim ¢ (i) € C(c*,¢)

can be represented by the difference of their limits and is by the above argu-
ments contained in C(c*,e). Hence, C(c*, ¢) is closed.

Let c € —C(c*,e)NC(c*, &) be in the intersection of the cone and its negative.
Then, by definition there exist representations ¢*, ¢~ € C for the negative
and ¢t, ¢~ € C for the positive cone

t—em = ¢

c = ¢
which fulfil
(ctee —¢e") >0 and (ceec—c ) >0.

Now we can rewrite the second arguments of the inner products as

ce—¢t=—(1—-¢)et—ec and ect—c =—(1—¢)c +ec,
where the representation of ¢ by the respective pair was used. Applying this
reformulation and adding the above inequalities we get

—(1—¢){c*,et+c) >0.

eC

But by the choice of c* the inmer product is greater than zero for every second
argument taken from C \ {0}. Thus, for 0 < & < 1 the second argument
¢t ¢ = 0 and since C is pointed ¢ = ¢~ = 0. Substituting this into the
representation equalities yields

Hence, ¢ € —C NC = {0} and since ¢ was arbitrary, the intersection
—C(c*,e) NC(c*,e) = {0} contains just the zero element.
O

The cone C(c*,¢) is an enlarged version of the ordering cone C. One may
think of it as a mapping from [0, 1] to the powerset of Y, where ¢ is mapped
to C(c*,e). Then it describes a homotopy of the ordering cone C to the
halfspace with inner normal vector c¢* as € goes from 0 to 1.

By their definition strictly C-representing and strictly C-approximating cone
scalarising functions s are strictly respectively strongly C-consistent. The
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consequential strict or strong C-monotonicity of the distance evaluation func-
tion t, implies that the minimisations (2.7) or (2.8) yield weakly C-efficient,
respectively C-efficient solutions as shown in theorem (2.4.1). We will now
work out the range of solutions obtained by locally strictly C-representing
and strictly C-approximating functions.

Let C denote C in case of the C-representing and C(c*,¢) in case of the
C-approximating functions.

Theorem 2.4.4 Every weakly C-efficient point ¥ € Y is an optimum of
the cone scalarising problem for some reference point y with a function t,
that is strictly C-representing respectively C-approzimating at y* and br =
ts(y™).
Proof:

Choose y& = § — y4. The strict C-representation or C-approzimation en-
sures that —int(C) D —y? + L (ts, 7). By the weak C-efficiency of y the

attached cone —int(C) has empty intersection with ). Combining both yields
the follow equalities:

0

(y —int(C))NY
(5 —y* + Lo(tsm)) NY
(¥ —y* +{Ay € Y | t,(Ay) < 7}) N V.

U

Now we can employ the definition of the Minkowski sum to continue the
chain of equations.

0 = {S’—yA+Ay‘AyEY,ts(Ay)<7‘}ﬂy
= {y-y'+AyeV|AyeY, t,(Ay) <7}
{veVltdy-y+y*) <7}
= {yelltly-y" <}

Hence, there is no point that improves upon y and thus y is an optimum for

the cone scalarising problem and the chosen reference point.
O

The choice of the reference point above is sometimes called tautological,
because one has to know a weakly C-efficient point to choose a fitting refer-
ence point so that the optimisation yields the known optimal point again.
Nonetheless, the result shows that the strict C-representation and strict C-
approximation property for a single point is enough to potentially reach all
weakly C-efficient solutions.

The next step is to establish a simple sufficient condition for s that renders
ts strictly C-representing at y = 0 and 7 = 0.
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Lemma 2.4.5 If the cone scalarising function s is C-centred, strictly C-
consistent, continuous and if

5(0,¢7) =0 for allc” € bd(C),

then tg is strictly C-representing at y = 0 and 7 = 0.
Proof:

The properties of s imply that ts is continuous and strictly C-monotone. Due
to the C-centredness of s the inequality

S(O,é_) < s(c+, c_) for all c¢t,c” €C with ct—c =¢&"
holds for arbitrary representations of ¢~. Thus,
ts(é_) = min{s(c+, c_) ’ ct—c =¢, cfc ¢ C} = 3(0, é_) =0

is equal to 0 at the boundary of the negative ordering cone. Every element
c € —int(C) is strictly dominated by O and thus

ts(c) < ts(0) =0,

because tg is strictly C-monotone. Therefore, the interior of the negative
cone —int(C) C L(ts,0) is completely contained in the level set.

For an arbitrary element y € Y\ (—C) let €*,&¢~ € C be a minimal represen-
tation. The strict C-consistency of s then implies

ts(y) = s((_:+, (_:_) > 3(0, é_) =0

the nonnegativity of ts. Therefore, no element of Y \ (—C) is contained in
L(ts,0). Asts is nonnegative for —bd(C) and Y \ (—C) and

—int(C)U —bd(C)UY\ —C = Y

the three sets partition the space Y, the level set L-(ts,0) = —int(C) equals
the interior of the negative cone.
O

We will now derive a sufficient condition for ¢5; so that it is strictly C-
approximating at y = 0 and 7 = 0.

Lemma 2.4.6 Let the cone scalarising function s be C-centred, strongly C-
consistent, continuous and s(0,0) = 0 and let for all c*, ¢~ € C

s(c+,c_) > (c*,ct—ec),

where c* € int(C*). Then tg is strictly C-approximating aty =0 and 7 =0
for the outer cone C(c*,¢).
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Proof:

Under the given conditions the distance evaluation function ts is continuous
and strongly C-monotone. The strong consistency of s implies for arbitrary
c eCc\{o0}

ts(c™) < s(0,¢7) < 5(0,0) = 0.

Therefore, the negative cone C\ {0} C L (ts,0) is contained in the level set
fory =0 and 7 = 0.

It remains to be shown that there are no nonpositive ts; values outside the
negative enlarged cone —C(c*,¢). So lety € Y\ (—C(c*,€)) be outside the
negative enlarged cone. —y thus violates the inequality in the definition of
the enlarged cone

C(c*e):={ceY|c=ct—c, (cecT—c7) >0, ct, c €},

which is exactly the case if (c*,e c™—c™) < 0 the restriction in the definition
is violated for all ct,c™ € C satisfying —y = cT— c¢~. Changing the sign of
—y and thus changing the roles of ¢ and c™, the above is equivalent to

(c*,ecT—cT) <0 <= (c*,ct—cc)>0

for all ct,c™ € C satisfyingy = c™—c™.
For any element y & —C(c*,¢) the distance evaluation function can hence
be estimated by

ts(y) = s(é+,é_) > (c*,et—ec™) > 0,

where ct,¢~ € C are a ts-minimal pair. Sots(y) > 0 for everyy & —C(c*,¢)
and due to the continuity of ts the distance evaluation function has nonneg-
ative values ts(y) > 0 for everyy € —bd(C(c*,e)). Hence, the level set
L(ts,0) C —int(C(c*,€)) is contained in the interior of the negative cone.
O

The condition that s has to be larger than the linear functional ensures that
the value of s increases appropriately faster in ¢T-direction than it decreases
in c”-direction.

The results obtained so far suggest that a strongly C-consistent, strictly
locally C-representing and continuous s would be the perfect cone scalarising
function. It would yield C-efficient solutions due to the strong C-consistency
and would allow any C-efficient solution to be reached, because of the exact
representation of the negative ordering cone —C. Unfortunately, there is no
such cone scalarising function.

Theorem 2.4.7 There exists no function s : C X C — R that is simultane-
ously continuous, strongly C-consistent with its distance evaluation function
being strictly C-representing at yA € Y and T = t4 (yA).
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Proof:

Under the given conditions the distance evaluation function tg is continuous
and strongly C-monotone. By the strict C-representation ts(y') < 0 if and
only if y' € yA* —int(C). Due to its continuity the value of ts on y* — bd(C)
is 0. Thus,

ts(y*—c7) =0 forall ¢ €bd(C).

But this contradicts the strong C-monotonicity.
O

Therefore, we can either opt for C-efficient solutions, knowing that we are
not able to reach every such solution or we go for weakly C-efficient solutions
and reach them all. A combination of both is not possible in one step in
the framework of cone scalarising. However, the next result shows that it is
possible with a two step procedure.

Lemma 2.4.8 Let Y be compact. Then every C-efficient point y € Y is a
minimum of

lexmin {s(c+, c_)7 —(c7, w) ’ y—ylf=ct—c,ye), ctc € C}

for a strictly C-consistent, C-centred and continuous function s, some w €
int(C*) and a suitably chosen reference point y't.
Proof:

In the first minimisation can be substituted with s(ct, c™) ts(y —y®). Due
to the compactness of YV and the continuity of ts the minimisation attains
its minimum. Theorem 2.4.1 showed that any optimum y of the first step is
a weakly C-efficient solution. Thus, fixing the value of s in the second step,
we are left with a domain

L<(tsts(y =yN)NY C effucY)
that only consists of weakly C-efficient solutions.

Let ¢™— &~ = y be a representation of the optimum of the second step.
Assume that there is a 'y € Y that dominates y. Then, there exists a € €
C\ {0} with y + ¢ =y. Due to the minimality of y for the first step the
ts-value
ts(y —y") = min{t,(y —y") |y eV}
< ts (5’ - yR)

for § — y* cannot be smaller than the one for y — y®. Employing strict
C-monotonicity of ts we can continue the chain of inequalities by

ts(y —y") = ts(y+e—y")
< ts(y_yR)‘
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Thus, the function values for the two points are equal. Therefore, ¥y 1is
contained in the feasible set for the second step. But decomposing y

y=y—¢=¢—¢ —¢
according to the assumption, we see that'y
_<é_+ éa 'LU> = _<é_a w> - <éa w> < _<é_7 w>

has smaller objective value than y. But since y is feasible for the second
optimisation step, this contradicts the lexicographic minimality of y.
O

The preceding lemma shows that we can make a weakly C-efficient solution
C-efficient by applying a ‘post-optimisation’ step. Combining this with a
distance evaluation function s that is strictly C-representing at some point
and for some level, we can construct a two step method, that is able to reach
every C-efficient solution and only yields C-efficient solutions.

The last property that we will address is the connectivity of the set of optimal
outcomes for a chosen cone scalarising function s. We will use a theorem of
Warburton ([118]) that he used to show the connectivity of the set of Pareto
optimal outcomes for convex multiobjective problems.

Theorem 2.4.9 (Warburton) Let V C R* W C R™, and assume that
V is compact and W is connected. Furthermore, let g : V x W — R be
continuous. Denote by Y(w) = argmin{g(v,w) | v € V}. If Y(w) is
connected for all w € W then | Jy,cyy V(W) is connected.

Let us now precisely define, what we mean by the set of optimal outcomes
for a chosen cone scalarising function s.

Definition 2.4.10 Let

Oy Y — PB(Y)
Oy s (yR) = argmin{ts(y — yR) ly eV}
map a reference point yR to the set of optimal points for that reference point
and the chosen scalarising s over the domain ).

We denote the set of optima for all possible reference points for the chosen
cone scalarising function s over the outcome set Y by

effs(V) = | Oys(y").
yieY

This set is connected, if we add the quasiconvexity of the function s and the
compactness and convexity of the outcome set ) to our standard require-
ments.
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Theorem 2.4.11 Let ) be conver and compact. Moreover, let the cone
scalarising function s be continuous, C-centred, strictly C-consistent and qua-
siconvex. Then, the set of optimal outcomes ef f ()) is connected.

Proof:

The conditions on s imply that the corresponding distance evaluation func-
tion ts is continuous, strictly C-monotone and quasiconvex. Defining the
function g of Warburton’s theorem

g:YxY =R, g(y,y") =ty —y5)

to be the distance evaluation function for the difference of arguments, the
minimal sets of the theorem are given by

V(™) = argmin{g(y,y") |y € ¥}.

Since changing the reference point is just a translation, g(y,yR) 1§ contin-
uous and quasiconver in'y for a fized y®. The minimum is attained and
so the sets y(yR) are closed and convex for all y® € Y. This implies that
they are connected. Therefore, theorem 2.4.9 can be applied stating that the
union of the sets Y(w) is connected.

U Y6 = U argmin{g(y.y") |y € ¥}

yiey yReY

= U argmin{ts(y — YR) |y €V}

yERey

= U O)J,s (yR)

yEReY

= effd)
O

We have shown that the set of optimal outcomes for suitable cone scalarising
functions s is connected, when the set of outcomes ) is convex and compact.
The next step is to ensure, that the optima can be changed in a controllable
way, i.e. that a small change in the reference point does not cause arbitrarily
large changes in the solution.

2.5 Dependence on reference point

Having (weakly) C-efficient outcomes and being able to reach the different
(weakly) C-efficient outcomes is important for a scalarisation. But for an
effective workflow a further property is necessary: continuous dependence
of the outcome on the control parameters, because otherwise the control of
the outcome by manipulating input parameters is poor.
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This section elaborates the dependence of the optimisation result on the
reference point — the input parameter used for cone scalarising. We will
show the continuity and under suitable conditions the Lipschitz-continuity
of the minimal s-value function p. Furthermore, we will show that the
optimal set function Oy , is upper semicontinuous.

Let us start with the definition of the minimal value function u.

Definition 2.5.1 For a C-centred, continuous and C-consistent cone scalar-
ising function s let

7% Y —R
M(YR) = min{5(0+70_) ’y—yR:c+—C_, y e, c+,c_EC}.

The function p is called minimal value function.

The minimal value function pu depends continuously on the reference point,
if the outcome set ) is compact.

Theorem 2.5.2 Let s be a continuous, C-centred and C-consistent cone
scalarising function and let the outcome set Y be compact. Then, the mini-
mal value function p depends continuously on the reference point y**.

Proof:

We will demonstrate that the minimal value function p preserves the con-
vergence of sequences.

Let (yR(z’))ieN be a sequence that converges to the point lim;_, yT(i) = y*.
Now let ¢ (i) := c®(yf(i) — yT) and ¢ (i) := c®(y®(i) — y®) so that

y(@) =y + et (i) — e (0)

is an order interval representation of the distance y®(i) —y®. For conve-
nience we define the functions

AR Y—-R
) = ty -y () and
9*y) = t(y-y")

and denote by (y(i)) and y optima of the cone scalarising problems

€N
min {g(i)(y) ’ y €Y} and min{g™(y) ‘ y €V}
Using this notation the claim s transformed to the convergence of

lim | g (y) — g>(3)| =0

71— 00
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to zero. We will start by showing that ‘g(i) (y) —g>™(y) ’ vanishes for arbi-
trary y and i — o0.

Due to the convergence of y¥(i) there exists for every 6 > 0 an i(§) € N
such that the tail of the reference point sequence yf(i) € Bs (yR),z' > ()
is contained in a ball of radius & around the limit. Thus, the difference
¢t (i) — ¢ (i) € Bs(0) is inside the corresponding ball around the origin. By
the Lipschitz-continuity of ¢® and c® it follows that the norms of the repre-
senting cone elements || ¢ (i) |2, ||c™ (i) ||2 < & are smaller than or equal to

J.

Y is compact and g™ is continuous. Therefore, there exists for every e > 0
independently of the pointy € Y, a 0(g) > 0 such that for everyy € Y with
ly =¥ ll2 < d(e) the difference in function value is | g™ (y) — ¢*°(¥)| < e.
So, for any i > 2(6(%)) the distances

Iy =™ @) =yl [ +e @) =yll, <3(5)

are small enough so that the differences in function value

| 9%y — (i) —9>(y) |,

(2.16)

N | ™

Xy +e (@) —9¥(y)| <

are bounded by 5.

The functions ¢ and ¢ are C-monotone which allows us to construct an
upper and lower bound for the two function values. For an arbitrary point
yeyY

y=y¥+ct(i) ¢ y-y? ¢ y-yT-c ()

y =y +ct(i) ¢ y-y*i) 2 y-yT-c ()
we can construct an order interval containing the differences y — yf* and
y — yf(i). The C-monotonicity of g and g then yields

g (y—c (i) < min{g™(y),g"(v)}
max {g"o(y),g(i) (y)}

<
< ¢®(y+ct(@).

upper and lower bounds on the function values. Combining this with the
continuity estimates (2.16) we can estimate the difference in function value

by

[9°(v) — ¢V (y)| < max{g™(y),9"” (v)} — min{g™(y).9" (y)}
Xy +ct(@) g™ (y —c ()

3

VAN VANIVAN

for all i > z(é(%)) and arbitrary y € Y.
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The above estimate is independent from the point y and therefore we can
apply it to all the different optima y(i) and y. This yields the upper bounds

1) 9@ | = ¢9F) -9°F) < e and
|9°x (@) — gV (y(@)| = ¢°F@0) gV (y({) < e

for the difference in function value. Here, we could drop the absolute value
signs, because the sign of the differences is known. Adding the two inequali-
ties results

9 (i) —9=(3) +¢" () — gV (y(i)) < 2¢

>0 >0

in a lower bound of 0 and an upper bound of 2¢ for the two differences.
Therefore, for every i > 1(5(3)) the difference in function value for the
respective optima

| 9°F) = g>(y() | + | 9™ (v(0) — gD (y (i) |
2e +¢ = 3¢

is bounded by 3e. Hence, the sequence of minimal values
lim t,(y(i) - y"()) = lmgO(y(i)) = ¢*@F) = t(y-v")

converges as the reference points converge.

In the proof the compactness of ) plays an important role because it allows
for a common bound §(¢) that is independent of the currently considered
point. But compactness is a strong requirement and we will see later how we
can relax it a bit. For Lipschitz-continuous functions s we do not need the
compactness, as we get the common bound from the Lipschitz-continuity.

Theorem 2.5.3 Suppose s is a Lipschitz-continuous, C-consistent and C-
centred cone scalarising function. Then, the minimum value function u s
Lipschitz-continuous.

Proof:

For the given requirements the function ts is Lipschitz-continuous and C-
monotone. Now let y®, 5% € Y be two different reference points. Then let
ct = c®(yf — 7)) and ¢ = c®(y® — y®) be the representation of the
difference by cone elements. The two anchor points of the order interval
that we can construct using ¢t and ¢~

yEi—ct(i) <c y&, 9% <c y®+c (i)
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form a lower and upper bound for the two points. Thus, for an arbitrary
y € Y the C-monotonicity of ts implies that

ts(y—y"—c) min {t;(y —y"),t:(y —5")
max {t;(y —y"), ts(y — ")
ts(y — y + ch)
the function values corresponding to the upper and lower anchor point of
the order interval yield a lower and upper bound for the function value. As

the inequalities are valid for an arbitrary point y they imply the following
inequalities for the minimum value function w:

p(y®+e7) < min{p(y™) u(3%)}
< max{u(y®),u(¥%)} < wEt-ch).

Therefore, we can estimate the difference in function value for the two ref-
erence points

| u(y™) = u(3") | = max{p(y™),n(y")} —min {u(y™), (")}
p(y —ct) =y +c)
= min{ts(y —yR+c+) ‘ y € y}

—min{ts(y —yf —c_) ’ y € 3)}

by the difference of u for the anchor points. The Lipschitz-continuity of ts
enables us to limit the change in function value by the change in argument
times the Lipschitz constant Ly, = Ls. Therefore, the upper bound can be
estimated by

min{ts(y—yR+c+) |yey} < min{ts(y—yR)‘ y €V}
+Ls || <"

INIA A

IA

and the lower bound by
min {t,(y —y" —¢7) |y eV}

v

min {ts(y —y") | y € ¥}
—Ls [ e,

Assembling the different estimates we get an upper bound of
[p(y™) =u@F") | < min{ty —y") [y € V}+ L[|,
—min {ts(y —y") | y € Y} + Lo | <7,

= Lo(fletl+ lle]y)

(2.2.12) 5 R
S 2Ls H y =Yy HQ’
for the difference in function value. Thus, w is Lipschitz-continuous with

the Lipschitz constant 2 L.
O
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Under the given conditions the value obtained in the minimisations (2.7) and
(2.8) is continuously dependent on the reference point. But this does not
mean that the resulting optima depend continuously on the reference point.
Therefore, we will look into the behaviour of the set of optimal points for
changing reference points. Since the mapping Oy s is set-valued, we need a
set-valued continuity definition. We will work with the definitions of Aubin
and Frankowska ([3]).

Definition 2.5.4 Let X,Y be metric spaces and let
F: X — B(Y)
be a set-valued mapping. Then

a) The graph G(F) of the set-valued map is defined by G(F) := {(x,y) €
XxY|yeFx)}.

b) The domain D(F) of the set-valued map F is the set of x € X, where
the image F(x) # () is nonempty.

c) The set-valued map F is called closed, if its graph G(F) is closed.

d) The set-valued map F is called upper semicontinuous at x € D(F), if
and only if for any neighbourhood U of F(x), there exists § > 0 such
that for each X € Bs(x) the image F(X) C U of X is contained in the
neighbourhood U. F is said to be upper semicontinuous if and only if
it is upper semicontinuous at any point x € D(F).

e) The set-valued map F is called lower semicontinuous at x € D(F), if
and only if for anyy € F(x) and for any sequence (X(i))ieN converging
to x, there exists a sequence of elements (Y(i))z’eN with y(i) € F(x(i))
converging to'y. F is said to be lower semicontinuous if and only if it
is lower semicontinuous at any point x € D(F).

So, for an F with compact graph upper semicontinuity is equivalent to the
g-d-continuity-criterion. Meanwhile, lower semicontinuity ensures that con-
vergent sequences will be mapped to convergent sequences. Unfortunately,
the two criteria do not in general coincide for set-valued maps ([3]).

As a next step we will derive the upper semicontinuity of the optimal set
mapping with respect to the reference point. Shifting the reference point
slightly will not move the new set of optima out of an open neighbourhood
of the old set of optima.

Theorem 2.5.5 Let s be a continuous, C-centred and C-monotone cone
scalarising function and let the set of outcomes Y be compact. Then, the
optimal set mapping Oy s is upper semicontinuous.
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Proof:

LetU O Oy (yR) be an open neighbourhood of the optimal set for a given
reference point y. Due to compactness of Y there exists a radius € > 0 for
which Oy s(y1) 4+ B2.(0) CU. Now consider the family of open sets

{int(B:(y)) | y € ¥},

which constitutes a covering of Y. As Y is compact we can pick a finite
number of points y(i) € Y, i = 1,...,n such that

n

y c | int(B(3())).

i=1
Let (yR(z’))ieN be a sequence of reference points converging to y' and let

(1) e € Ov.s(¥"(2))

be optimal for the corresponding reference points. Since we have a finite
covering of ) there must be sets int (Bs(y(z))) with infinitely many points
of (y(i))ieN in them.

Choose an arbitrary setV := int (Ba(y(i’))) with infinitely many points of the
sequence in it. Then the subsequence of (y(i))ieN with elements just in V is

bounded and thus has a convergent subsequence (y(z))ieN. Lety := limy(1)
71— 00

be its limit and (yR(i))i cn be the corresponding sequence of reference points.
The continuity of u

lim p (7)) = p( lim y7()
= u(¥")

ensures that the convergence is preserved. Astg is continuous as well we get
the following result:

Jim #,(3() - 7)) = t( lim 3() - lim 37°())
= t(y - 3").
Putting the two equations together,
p(y") = lim p(30)
= lm t,(5() - ()
= t(y—3"),

we see that the limit of the sequence y € Oy (yR) is in the set of optima
for the limit 1 of the reference points.
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Therefore, the set cl(V) contains at least one point of Oy s (&R). Since the
choice of V was arbitrary among the sets containing infinitely many points
of (y(i))ieN the closures of all these sets intersect with Oy g (yR). As the
diameters of the sets int (BE (y(z))) forming the coverage is 2 € there are only
finitely many points of (Y(i))z’eN that lie outside

Oy s (¥7) + B22(0) C U.

Hence, choosing ig € N such that all these points are excluded, the remaining
outcomes y(i) € U,i > ig are contained in the neighbourhood. Thus, the
optimal sets for a convergent sequence of reference points are eventually
contained in an open neighbourhood of the optimal set for the limit of the

reference points.
O

Besides the compactness of ) the assumptions for the preceding theorem
are only just enough to make the distance evaluation function well-defined
and C-monotone. Thus, if we want to relax the condition of compactness of
Y we will have to place some restrictions on the cone scalarising function s
and the distance evaluation function ¢,.

Definition 2.5.6 If for a continuous, C-centred and strictly C-consistent
cone scalarising function s there exist continuous p: R — R andy? : R — Y
with tg (yA(T)) =7 for every T € R such that

yA(r) —int€) C Lo(ts,7) S By(y*r) —8/p(r) 1) —int(C)
and the level sets are convex for every T € R, the function is called C-

representing.

If for a continuous, C-centred and strongly C-consistent cone scalarising
function s there exist ¢* € int(C*) and an 0 < € < 1 such that the cor-
responding distance evaluation function ts fulfils

y—(C\{0}) < Lc(tem) S Byn(y*(r) -N/p(r) 1) —C(c,e)
and the level sets are convex for every T € R, the function is called C-
approrimating.

If the radius is p = 0, the cone scalarising function s is called strictly C-
approzimating and strictly C-representing.

Before we move on with the dependence of optimisation outcomes on the
reference point we have a closer look on some aspects of the previous defi-
nition.
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Figure 2.5: The level set is approximated from the outside by a cone plus a
ball of appropriate radius.

Remark 2.5.7

o The definition 2.5.6 extends the previous definition 2.4.2, since strictly
C-representing or strictly C-approzimating functions are strictly locally
C-representing or strictly locally C-approximating at every yA(T) and
T eR.

e The choice of € is independent from the level 7 whereas the anchor
point y* and the radius p explicitely depend on the level T.

o The convexity condition for the level sets directly implies that the dis-
tance evaluation function ts is quasiconver.

o Working with the composition g o s of a strictly monotone function
g: R — R with the cone scalarising function s does not affect the
properties required in the above definition.

o A strictly C-approximating or C-representing function cannot be con-
tinuously differentiable at the anchor point yA(r) for any T € R. Oth-
erwise the level sets would not have the appropriate kink to fit into
a cone. This 1s the reason why the non-strict concepts allow a cer-
tain rounding of the level sets at the anchor point so that continuously
differentiable functions ts fit into the discussed framework.

The C-representation or C-approximation property is a strong enough reg-
ularity condition to enable us to drop the compactness of ) for a much
weaker condition. This weaker condition together with the C-representation
or C-approximation property allows us to concentrate on a compact subset
of the original domain.

Theorem 2.5.8 Suppose there exists an a € Y with Y C a + C for the
C-closed outcome set Y and let s be a C-representing or C-approximating
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function. Then there exists for every converging sequence (yR(i))Z.eN of ref-

erence points an i’ € N such that the set of optima Oy s (yR(i)) 18 contained
in a fized order interval for i > 1i'.

Proof:

Let C denote C in case of the C-representing and C(c*,¢) in case of the C-
approzimating functions. Furthermore, let ¥ = lim;_ .o y(i) be the limit
of the reference points and let y € Oy 4 (yR) be optimal for it.

Since tg is continuous, there exists for every e > 0 a & > 0 such that for
vy € Y with sufficiently small distance

1=y = =39, = I¥"=3"], = o

the difference in function value is smaller than ‘ ts (Sf—yR) —ts (y—yR) ’ <e.

Due to the convergence of the sequence, there is for every 6 > 0 an i(0) such
that the remainder of the sequence

|y = 9%, <6 de yR(@i)eBs(y™) forall i>i()

is contained in a d-ball around the limit. We can therefore apply the above
continuity bound and estimate the biggest occurring minimal function value

max {u(y™(@)} < max {t.(v - y"()}

ts(y -3 +e = 7

IN

by the one for the limit reference point plus €. Therefore, the set of optima

Oys(y®(@) € §7+L<(ts,?)
C By (Y 4y H) Vo)1) —C

is contained in the level set for 7 for i > (). By proposition 2.2.13 the ball

By (37 + y*(7) —¥/p(7) 1)
¢ (" +35() = (o) + /o) 1) +C)
N (57 +94G) + (o(7) - V() 1) - €)
C (yR +34(F) + (p(7) = V/p(7)) 1) -C

can be embedded into an appropriate negative cone.
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If we combine the inclusion derived so far we get

Oys(y™@) € Y n (5% + L<(ts,7))
cyn (Bp(+) (y*(#) =¥/p(7) 1) —é)
c yn(b-c-c),

which holds for all i > i(5). The convexity of C implies that the difference
—C —C = —C is the negative cone itself. Using the assumed lower bound and
the fact that C C C the outcome sety C a+C C a+C and thus

yn((b-¢)-¢) c (a+¢) n (b-0).

Since C is by proposition 2.4.3 convez, closed and pointed and has non-empty

interior, the order interval is compact by proposition 2.2.10. Thus, the set of

optima Oy s(y7(i)) is contained in a compact set for every i > i’ :=i(6).
O

O

yRG) °
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Figure 2.6: If the outcome set is contained in a translated cone, we can
restrict the convergence considerations to an order interval.

The theorem now allows us to narrow the situation to a compact subset,
if a lower bound a exists. The following corollary uses this localisation to
extend the continuity result for the minimal value function p to the new
situation.

Corollary 2.5.9 If there exists an a € Y with Y C a+ C for the C-closed
outcome set Y then for a C-representing or C-approzimating cone scalarising
function s, the minimal value function u is continuous.
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Proof:
Let (yR(i))ieN be an arbitrary sequence that converges to lim y®(i) = y¥.
1— 00

By theorem 2.5.8 it suffices for every i > i’ € N to consider a compact
order interval to find the minimum. In this order interval we can follow the
reasoning of theorem 2.5.2 to prove the continuous dependence of p on the
reference point.

O

The same localisation argument enables us to drop the compactness of the
outcome set ) in the proof of the upper semicontinuity of the optimal set
mapping Oy .

Corollary 2.5.10 If there exists an a € Y with Y C a+ C for the C-closed
outcome set Y then for a C-representing or C-approzimating function s, the
optimal set mapping Oy s is upper semicontinuous.

Proof:

Let (yR(i))ieN be an arbitrary sequence that converges to lim yf(i) =: y&.
71— 00

By theorem 2.5.8 it suffices to consider a compact order interval that con-

tains Oy s (yR(i)) for every i > 1" € N. In this order interval we can follow

the argumentation of theorem 2.5.5 to prove the upper semicontinuity.
O

We will now use the following proposition from the book of Aubin and
Frankowska ([3]) to derive the closedness of Oy .

Proposition 2.5.11 The graph of an upper semicontinuous set-valued map
F:X— ‘,]3(3)) with closed domain and closed values is closed.

Since we have all the necessary prerequisites, we can directly derive the
closedness.

Corollary 2.5.12 The optimal set mapping Oy s is closed.
Proof:

The sets of minimisers of u are closed sets due to the closedness of Y and
the continuity of ts. Furthermore, the set of reference points Y is closed
and therefore the set-valued mapping Oy s is closed, whenever it is upper
S$eMiLCONtINUOUS.

(Il

Lower semicontinuity is not as easy to achieve, since it states that the opti-
mal set cannot suddenly become larger when the limit of a sequence of ref-
erence points is reached. So, it clearly does not hold for nonconvex outcome
sets, where touching a new part of the outcome set can suddenly happen
(figure 2.7). But even for convex cases, there can be a ‘sudden’ meeting of
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common faces of the optimal level set with the outcome set, thus suddenly
enlarging the optimal set. But there is a way to ensure lower semicontinuity
in our case: if the optimal set is always a singleton.

Afz

>

1

Figure 2.7: The red points depict the optimal set in this case. Thus, unique-
ness is not given for general ).

Therefore, we will dedicate the remainder of the section to the question of
uniqueness of the optimum. For that we need a few more concepts from
convex analysis ([95]).

Definition 2.5.13

a) A wvector y* is said to be normal to a convex set S at the point y, if
for every y’ € S the inner product (y*, y' —y) < 0 is nonpositive.

b) A wvector y* is said to be a subgradient of a convex function f: X — Y
at a point x if f(x') > f(x)+ (x*, x' —x) for all X' € X. The set of all
subgradients of f at x is called subdifferential of f at x and is denoted
by Of (x).

¢) A face of a convexr set S is a conver subset S' of S such that every
(closed) line segment in S with a relative interior point in 8" has both
endpoints in S'.

The definition of a normal vector ensures that it does not have a acute angle
with any straight line contained in the set. The subgradient inequality is
a linear approximation of the function f and thus the subdifferential is a
generalisation of the gradient. In particular, the gradient is the unique
subgradient at a given point, if the function f is continuously differentiable
at that point. The definition of a face formalises the concept of a flat part of
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the boundary. Note that faces can have arbitrary dimension. In particular,
the extreme points of a convex set are faces.

Additionally, we will need the following two theorems from the book of
Rockafellar ([95]). The first is a separation theorem.

Theorem 2.5.14 Let ) # S1,S2 C R"™ be convex. There is a x* € R" such
that

inf (x,x*) > sup (x,x*) and sup(x,x*) > inf (x,x")
X€S1 xES5 xS, XES

if and only if ri(S1) Nri(Se) = 0.

The second one describes the relation between normal vectors to the feasible
set and the subdifferential of the function to be minimised over that set.

Theorem 2.5.15 Let h be a proper convex function and let S be a nonempty
convez set. In order that x be a point where the infimum of h relative to S
is attained, it is sufficient that there is a vector x* € Oh(x) such that —x*
is normal to S at x. This condition is necessary, as well as sufficient, if
ri(dom(h)) intersects ri(S), where dom(h) := {x € X | h(x) < 00} denotes
the domain of definition.

As can be seen in figure 2.7 uniqueness cannot be expected in general cases.
Convexity of s and ) is enough to infer the connectedness of the set of
optima, but for the uniqueness of the optima we need further assumptions.

Lemma 2.5.16 If the set of outcomes Y is C-convez, the cone scalarising
function s continuous, C-centred, strictly C-consistent and convex and if no
level set of ts has a face of dimension 1 and higher parallel to a face of
dimension 1 and higher of ef f,,_c()), then the set of optima Oy s (yR) is
a singleton for every reference point y® € Y.

Proof:

Since y is optimal for ty(- — y) and the domain of t,(- — y*t) is the whole
space Y, there is a subgradient y* € Ots(y — y®) the negative of which is
normal to Y. By the definition of subgradient and normal it follows that the
hyperplane

yeY| .y =" 9t=H

properly separates the level set L< (ts,ts(y)) from Y. But the optimal set

Oys(y®) = (4 L<(ts,ts(¥))NY

is the intersection of the two sets. Thus, Oy s (yR) C H. If the optimal
set would mot be a singleton, the intersections of the level set as well as
the outcome set with the hyperplane would contain more than one point and

hence the two sets would have a common face of dimension 1 and higher.
O
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The lemma is quite general, but unfortunately the conditions cannot be
verified in practise, since they involve (almost) full knowledge about the
outcome set. Therefore, we will look at some special cases, where we can
derive the conditions from structural knowledge about the problem. The
simplest such condition is strict convexity.

Proposition 2.5.17 If the cone scalarising function s is continuous, C-
centred, strictly C-consistent and conver and )Y is strictly C-conver with
respect to ef f (), i.e. for two arbitrary points'y £y’ € ef f4())

1-Ny + Ay € z'nt(y—i—C) for all X €(0,1),

then the optimal set Oy g (yR) is a singleton for all reference points yf* € Y.
Proof:

By its definition ef f()) is the union of optimal sets Oy s (yR) for all ref-
erence points y € Y. But the above strict convezity condition ensures that
these sets do not contain any faces of dimension 1 and higher. Applying

lemma 2.5.16 proves the claim.
O

In the preceding proposition an appropriate part of the outcome set was
strictly convex. But the condition of lemma 2.5.16 also applies, if the func-
tion t; is strictly convex in an appropriate part of its domain.

Proposition 2.5.18 Suppose s is a continuous, C-centred and strictly C-
consistent cone scalarising function. Lety,y’ be two arbitrary points in the
level set

y,Y € effu(—c)(L<(ts, 7))
that are efficient for the multiobjective mazximisation problem over the level

set for a given 7 € R. If for the distance evaluation function ts associated
with s the condition

ts(1=Ny + Ay) <1 =N ts(y) + Ats(y') forall e (0,1)

holds and the set Y is C-convex, then the optimal set Oy g (yR) s a singleton
for all reference points y® € Y.

Proof:

By the conditions on the cone scalarising function s the associated tg is
continuous and strictly C-monotone. Hence, the optimal set Oy,s(yR) -
ef fu_c(Y) is contained in the set of weakly C-efficient solutions for all ref-
erence points y'* € Y. Therefore, any face contained in Oy s (yR) lies in a
hyperplane with a normal vector contained in C*\ {0}. The points from that
face would be weakly (—C)-efficient in L<(ts,T). But by the strict convezity
condition for ts the face can just contain one minimal point. Thus, we can
again apply the lemma 2.5.16.

O
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This proposition applies in particular to the case, where the function s and
therefore ¢, is strictly convex.

The conditions used in the different uniqueness results also imply upper
semicontinuity and closedness of Oy 4, so that Oy , is an ordinary continuous
function in these cases. Changing the reference point thus continuously
changes the optimal solution — a very favourable property.

2.6 Reachability of outcomes

In section 2.4 we have shown that strictly locally C-representing and strictly
locally C-approximating cone scalarising functions s can reach every C-
efficient point, where C is the cone containing the level set — C for the strictly
locally C-representing and C(c*,¢) for the strictly locally C-approximating
functions.

Nonetheless, the results were unsatisfactory, since one had to know the posi-
tion of the optimum to place the reference point correspondingly only to get
the optimum back. Wierzbicki has called such results “tautological” ([125]).

Thus, we want to show stronger reachability results now using ‘globally’
C-representing and C-approximating cone scalarising functions as defined
in 2.5.6. We will start with the easiest case — the strictly C-representing
functions.

Theorem 2.6.1 For a strictly C-representing cone scalarising function s
and for each of its optimal outcomes'y € ef f (V) there is a continuous path
of reference points yf'(t), 7 € R for which y is optimal.

Proof:

Assume that the reference point corresponding to ¥ is y& and denote the
optimal value by # = t,(y —y®). By the optimality of the point y we know
that the difference between the point and the reference point

y-y% e Lo(t,7)NY

is contained in the intersection of the equality level set L_(ts,T) with the set
of outcomes Y. The strict C-representation enables us to rewrite the level
set as

Lo(ts,7) = y*(7) =bd(C) = (y*(r) +y*(7) —y"(r)) — bd(C).

Here, we used the fact that the distance evaluation function ts is — due to its
continuity and strict C-monotonicity — equal to T exactly on the boundary
of the megative cone attached to the corresponding anchor point yA(T) for
every T € R.
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If we now define y®(1) to move in the opposite direction of the anchor points
yi(r) = 3" -y () + ¥4 (5),
then the distance between ¥ and the reference point y=(7)
y—yir) = y -3 +yi(r) - yi(7)

can be expressed by a term that only depends on the position of the anchor
point for the level set of level T. The representation of the level set derived
above transforms into the following equality:

y € (N +Lo(ts, ) NY
= (¥®+yH#) —bd(C)) N Y.

Inserting the definition of yf(7) into it, we can continue with

y e (YO +y'r) -y @) +yF) —bdC) N Y
= (Y1) +y'(r) —bd(C)) N Y
= (yR(T) + L_(ts,7)) N V.

The difference between the optimal point y and the reference point y7(7)
is contained in the intersection of the level set L_(ts,T) with the set of
outcomes. Hence, the point ¥ is optimal for the reference point (7). The
claim follows from the definition of y1(T) as an offset to the negative of the

continuous path of anchor points y(T).
]

Here, the explicit description of the level sets for the different levels enables
us to directly place the reference point so that the minimum is still optimal
for a given new value of the difference evaluation function ¢5. Note that the
same construction works whenever the distance evaluation function ¢, has
congruent level sets.

In the slightly more general case of strictly C-approximating cone scalarising
functions the argument is very similar, but it is guaranteed to work for
the C(c*,e)-efficient points only. This is due to the fact, that for the C-
approximating functions, we only know the shape of the level set sufficiently
well at the anchor point.

Theorem 2.6.2 For a strictly C-approrimating cone scalarising function s
there is for each C(c*,¢e)-efficient outcome y a continuous path of reference
points y2(7), 7 € R for which ¥ is optimal.

Proof:

Define the path of reference points
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to be the optimal point minus the current anchor point of the level set. The
C(c*,e)-efficiency of y guarantees that the cone —C(c*,¢) attached to the
point y

(¥ —Clc9))nY = {3}

intersects the outcome set Y with its tip only. The cone scalarising function
s being strictly C-approzimating each level set

L<(ts, ) D yi(7)—C

contains the appropriately shifted negative ordering cone. Hence the shifted
level set
y e y'r) +yi(r)—C C y(r) + L<(ts,T)

contains the point y. Furthermore, each level set
L<(ts, ) C y(r) —C(c*,e)

is known to be contained in the appropriately shifted negative enlarged cone.
But this cone

(YE(r) + L<(tem) NY C (yE(r) +y2(r) - C(c*e) N Y
= (y-C(ce) NY = {3}

intersects the outcome set with its tip only. Combining the results, we get
the following inclusions:

v € (i) +L<(ts, 7)) NY C {3}

Thus, there is no other point in the intersection of the shifted level set with
the outcome set. Hence, y is optimal for the cone scalarising problem for
all reference points y&(r).

O

Although the result for the C-approximating and the C-representing, but not
strictly C-representing cone scalarising functions is not as simple and explicit,
the flavour stays the same: we show that we can change the reference point
such that we get a new reference point for each level 7 with the old minimal
point still being optimal. But since we do not have an explicit description
of the level sets for the considered cone scalarising functions, the result will
be more of a qualitative nature.

Before we can derive the wanted result, we first need some more convex
analysis. So, let us recall some definitions (see e.g. [95]).

Definition 2.6.3 The recession cone of a convexr set Y

R(Y) = {AyeY|y+ XAy €Y forall A\>0 andy € YV}
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is the cone of directions for which the set extends to infinity in every point.

The barrier cone of a conver set Y
R°(Y) = {y* eY ‘ (y*,y) < B, forally €Y and some (€ R}

is the set of directions for which a finite maximum point to the corresponding
linear functional exists.

For a nonempty conver cone C CY
C°={y*eY|(y",y) <0 foral yecC}
is called the polar cone of C.

We will summerise the properties of the three defined objects in the follow-
ing proposition the content of which is mostly extracted from the book of
Rockafellar ([95]).

Proposition 2.6.4 For all following claims, we will assume the set Y to be
nonempty and convex.

o The recession cone R()) is a conver cone containing the origin. It is
the same as the set of vectors Ay € Y such that Ay +Y C ).

o [f there is one point' y € Y for which the direction Ay € Y extends to
infinity, i.e. y+ XAy € Y for all A > 0, then the direction Ay € R())
belongs to the recession cone and hence extends to infinity from every
point in Y.

e For closed Y the recession cone R()) is the polar of the barrier cone
R°(Y) and vice versa.

e The polar of a cone C is the negative C° = —C* of the dual cone.

e The polar of a cone C C C being included in another cone, is the
superset C° 2 C° of the other cone’s polar.

Equipped with the above definitions and relations, we are now able to show
the existence of infinitely many reference points for each optimal point,
specifically one for each level of the distance evaluation function.

For ease of exposition we will denote by C the cone used in the outer approx-
imation of the level sets, i.e. it will stand for C in case of the C-representing
functions and for C(c*,¢) in case of the C-approximating functions.

Theorem 2.6.5 If the cone scalarising function s is C-approrimating or
C-representing and the outcome set Y is C-convex, there is for each weakly
C-efficient outcome y € ef f,,_e(Y) and for each level T € R a reference
point yI(1) for which ¥ is optimal.
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Proof:

Due to the restrictions on the structure of the level sets the recession cone
of an arbitrary level set

R(L<(ts,T)) € —C

is a subset of the cone —C for all T € R. Therefore, the barrier cone as the
polar cone of the recession cone is a superset

Re(Le(ter)) 2 (~C)° = C*

of the dual cone C*. Thus, by the definition of the barrier cone there exists
for every ¢ € C* a point y € L<(ts,T)

(c*y) < (c"y) forall y € L<(ts,T)
which mazximises the linear functional associated with c*. This is true for
every level set L<(ts,7), T € R.

Suppose we are given a minimum 'y of the cone scalarising problem for some
reference point . Then we know that § is weakly C-efficient. For convex
Y + C it therefore minimises a linear functional (¢*,-) with the nontrivial
direction &* € C* \ {0} taken from the dual cone (2.2.8).

By the above discussion there exists a point y(1) € L<(ts,7),7 € R in
every level set that maximises the linear functional (¢*,-) for which y is a
minimum over ). Defining the reference points by

yi(r) =y —3(7),

the original optimal point y

y = yir) +3(r) € y(7) + L (ts,7)

is contained in the level set translated by the newly defined reference point.
Consider the mazximisation of the linear functional over the translated level
set:
max { (¢*,y + y" (7)) | y € L<(ts,7)}
= max{(&"y) |y € L<(ts,7)} + (€*,y" (7))

= (&, y(7)) + (€, y"(r))
= (€. 3(m) +y"()
= (&)

But at the same time y minimises the functional over the set ). Since the
negative direction —¢* € R(L<(ts,T) is contained in the recession cone, the
infimum

inf{(c*,y) |y € L<(ts,7)} = —¢
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is unbounded. By the separation theorem 2.5.14 the relative interiors of the
two sets

m’(yR(T) + L<(ts,7)) N ri(Y+C) = 0
have empty intersection. So there is no point of Y + C in the interior
0 = (int(yR(T) —|—£§(ts,7))) n(Y+c)
= () +L<(ts,7)) N (V+0)

of the translated level set. Thus, there is no point in Y +C that has a smaller
distance evaluation function value than y

to(y —y"™(7)) = min{t,(y —y"*(n) | y € ¥}

for the specified reference point y®(r).
O

The convexity assumption is necessary since the radius of the “rounding
ball” in the definition 2.5.6 can change, which might render a point un-
reachable due to a larger radius in nonconvex cases (see figure 2.8).

Ay

y1>

Figure 2.8: The red point cannot be reached even though it is efficient.

Note that this is in analogy to the situation in weighted metric scalarisation
for the Pareto cone. For nonconvex outcome sets one needs to use the
Chebycheff norm to be able to reach every efficient point, since smoother
norms might not be able to reach ‘hidden’ efficient points ([83]).

2.7 Example — the Pascoletti-Serafini approach

In this section we will show that the well-known scalarisation approach of
Pascoletti and Serafini is contained in our framework. Consider the following
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cone scalarising function:
s(ct,c”):=min{z€eR|cT—c+c=21,ceC}. (2.17)

Note that the distance evaluation function ¢, corresponding to s is constant
for every given Ay € Y. Therefore, assumption 2.3.7 is fulfilled for every
ordering cone under consideration.

We will first prove the C-centredness and the strict C-consistency of this
function.

Proposition 2.7.1 The cone scalarising function (2.17) is C-centred and
strictly C-consistent.

Proof:

The C-centredness is trivial as for all ¢™, ¢~ and ¢’ € C the function values
s(ct, c7) =s(ct+ ¢, e+ )

agree. For the strict C-consistency, we will first show that the optimal result
is always associated with a ¢ € bd(C).

Let us assume that the ¢ € int(C) for the optimum lies in the interior of
the cone. Hence, for an arbitrary direction Ac € Y there is an € > 0 such
that c+eAc € C for all 0 < e < &. Choose Ac to be —1 and let € be the
corresponding bound. Then for the optimal Z

21l=c—c+¢ <— 21—-cl=c—c+é—=¢1

for all 0 < ¢ < €. But this contradicts the optimality of Z, because the
right hand side is feasible for (2.17). Therefore, the optimal ¢ € bd(C) is
contained in the boundary of the cone.

Now let € € int(C). This implies that (¢ + C) Nbd(C) = 0. The optimal
elements lie on the boundary of the cone and are therefore not contained in
¢+ C. Hence, adding ¢ to c™

s(c™+¢,c”) = min{zeR|c"—c+c+c=2z21, ce(}
= min{zeR|[c"™—c +c=z21, cec+C(}
> min{zeR|ct—c+c=21,cel}
= s(c+,c_).

increases the value of s. For the chosen function adding a cone element to
the positive part
s(c+—i— é,c_) = s(c+,c_— é),
is equivalent to subtracting it from the negative part. Thus, the preceding in-
equality also applies for s(ch7 c— é) and hence the cone scalarising function
(2.17) is strictly C-consistent.
O
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The function is not strongly C-consistent. Assume the optimal ¢ € C \ {0}
to be nonzero. Then the function value for the parameter pair c™+ ¢, ¢~

s(c+, c_) = s(c+—i— é,c_)
yields the same optimal function value. Thus, s is not strongly C-consistent.
Inserting the function (2.17) into the cone scalarising problem (2.7) yields
min{ s(c+, c_) ’ y—yli=ct—c,ye) ctc e C}
:min{min{z ER|ct—c+c=21,ceC} ‘
y—yli=ct—c,ye¥ ct c e C}
=min{z€R|y—y®+c=21ceC ye )}
So, for the function (2.17) the cone scalarising problem amounts to the
Pascoletti-Serafini scalarisation. In the function definition (2.17) we have
used the search direction 1, but we could have used any other q € int(C)
as well. We will show now, that the Pascoletti-Serafini scalarisation is C-

representing. Here we use again 1 as search direction, but the transfer to a
general q is fairly obvious.

Proposition 2.7.2 The cone scalarising function (2.17) associated to the
Pascoletti-Serafini approach is strictly C-representing for y*(r) == yf411.

Proof:

Let an arbitrary level T € R be given. Clearly, the function value for a pair
ct, ¢ € C with ct— c = yA(r) is

s(c+,c_) min{zGR ‘ yA(T)—yR+c:z1, celC, yey}
min{zeR‘Tl—l—c:zL c e, yey}

T,

with the optimal cone element ¢ = 0 being trivial. Due to the strict C-
consistency of s, the corresponding distance evaluation function tg is strictly
C-monotone. Hence, for every element ¢ € int(C) the value of

ts(yH(r) =) < ts(y*(r))

becomes smaller. Thus, the interior of the negative ordering cone attached
to the anchor point y (1) — int(C) C L-(ts,T) is part of the level set.

Now take an offset ¢ € bd(C) from the boundary of the ordering cone. As
2z =1 and ¢ = € is a feasible representation of yA (1) — ¢

yir)—e—yPf+e =r1-c4+c =11
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the minimal value for the cone scalarising problem is bounded by 7. Suppose
the minimal representation for y* (1) — ¢ would have a Z < T for some cone
element ¢ € C. Then, the difference of the cone elements

c—¢ =yl +e—yir)—¢ = (z—2)1 € int(C)
would lie in the interior of the cone. But then the original cone element
c=c+(z—2)1 € int(C)

would be in the interior of the cone, which contradicts the assumption. Thus,
the boundary of the negative cone attached to the anchor point

yA(r) —bd(C) C L(ts,7)

is part of the equality level set.

It remains to show that ts is positive outside y* (1) — C. But with the strict
C-monotonicity of ts every point ct—c~ =y € Y with ¢t € int(C) and ¢~ €
—yA(7) + bd(C) evaluates to a positive distance evaluation function value,
because it is strictly dominated by a point lying on the megative boundary
attached to the anchor point. Thus, the distance evaluation function

ts(y) >0 forall ye€ (yA(T) — bd(C)) + int(C)

has positive values for all elements composed of the anchor point plus a inner
cone element minus a boundary element.

We will now show that all configurations can be reduced to the discussed
cases. For the chosen s the values s(c++ c,c + c) = s(c+, c_) agree for
any c € C.

If the considered distance y — y? (1) =: Ay = c¢t— ¢~ € —C between point
and anchor point would lie in the negative cone, we could reduce ¢ to 0
without changing the value of the cone scalarising function s. Fory ¢ —C
the corresponding ¢t # 0 obviously needs to be nonzero. Hence, we can
reduce ¢ to 0 if and only if the considered distance Ay € —C lies in the
negative cone.

If ¢ € int(C) is in the interior of the ordering cone for a Ay ¢ —C, there
is by definition a mazimum amount £ > 0 of —c™ for which ¢ —éc™ € C
is still in the cone. For this mazimum amount ¢~ — &ct € bd(C). Thus, we
can change the representation to

¢t = (1-&)ct and e = c —éct,

so that ¢~ € bd(C) lies on he boundary of the ordering cone. Note, that
¢t cannot become 0 in this construction, since this would imply that the
distance Ay € —C lies in the negative cone.
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If after the above reduction ¢t € bd(C) is a boundary element, a small
amount Ac € int(C) can be added to both cone elements. Then the above
reduction is repeated. Since ¢ is just rescaled, it will stay in the interior of
the cone.

Therefore, for an arbitrary distance Ay one of the three discussed scenarios
applies. Consequentially, the level sets of the distance evaluation function

Lo(ts,7) = yA(r)—int(C)

equal the interior of the negative cube attached to the anchor points.
O

We have seen that the Pascoletti-Serafini scalarisation approach fits into
our framework and translates to a strictly C-representing cone scalarising
function with anchor points that spread along the search direction.

2.8 Summary

In this chapter we have build a framework for scalarising functions that
directly incorporate partial orders specified through closed convex order-
ing cones. The so-called cone scalarising functions have the property that
they yield — depending whether they are strictly or strongly C-consistent —
weakly C-efficient or C-efficient solutions independent of the reference point’s
position. So, the reference point can be feasible or infeasible without impair-
ing the result in contrast to the situation for weighted metric scalarisation,
where we need an utopia point to ensure (weak) efficiency.

Furthermore, we showed that, when level sets of the distance evaluation
function corresponding to a cone scalarising function have a certain geometry
we are able to reach all weakly C-efficient or a certain subset of the C-efficient
solutions. To be able to reach these solutions just one of the level sets
needs to fulfil the requirements. But if a certain subset of the level sets or
every level set fulfils them, we are able to get to a reachable solution from
infinitely many reference points. This is important, as the reference points
are specified without knowing how they should be chosen. If a solution can
be reached from just one reference point the probability to really reach it
therefore is practically 0.

Then we have demonstrated that strongly C-consistent cone scalarising func-
tions cannot be simultaneously strictly C-representing, thus ruling out the
possibility of a cone scalarising function that produces only C-efficient solu-
tions and reaches all of them in one step. We have then described a two-
step lexicographic optimisation problem that combines the two properties.
Unfortunately, lexicographic optimisation involves constraints that are trou-
blesome in nonlinear optimisation, so this approach seems most appropriate
for linear optimisation.
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For a convex and compact outcome set we have proven that the solutions
resulting from cone scalarising problems with the union of all potential ref-
erence points form a connected subset of the set of outcomes. We have then
proceeded to investigate the dependence of the minima of cone scalarising
problems on the chosen reference points. Here, we demonstrated that the
optimal value depends continuously on the reference point for compact out-
come sets. We have then proven the upper semicontinuity and closedness
of the set of optimal solutions as a set-valued mapping from the reference
points to the powerset of the outcome set. Again we needed a compact out-
come set to derive the upper semicontinuity. Since compactness is a strong
requirement, we have shown that the existence of a certain lower bound for
the outcome set combined with a C-representing or C-approximating func-
tion is enough to restore the compact situation. This criterion was then
used to prove the two continuity results without the requirement that the
outcome set is compact. As a last property we have shown the uniqueness
of the solutions to the cone scalarising problem for suitable strict convexity
assumptions.

The last section of this chapter showed that the well-known Pascoletti-
Serafini approach fits into the framework. Moreover, we demonstrated that
it is a strictly C-representing cone scalarising function.

In the next chapter we will exploit the assembled framework to construct a
new interactive multiobjective optimisation method — Pareto navigation.
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Chapter 3

Pareto navigation

In this chapter we will propose a new interactive multiobjective optimisa-
tion method called Pareto navigation. In section 3.1 we will embed Pareto
navigation into the existing interactive multiobjective optimisation meth-
ods. As a basis for this embedding we use the overview provided by [83]. In
section 3.2 we will then present the mechanisms being available to the de-
cision maker. Here, we will also discuss the information provided by Pareto
navigation to ease the decision making. This is followed by a in-depth dis-
cussion of the functioning and mathematical properties of the restriction
mechanism in section 3.3, of the selection mechanism in section 3.4 and the
discounting mechanism in section 3.5. We will then demonstrate how Pareto
navigation can be sped up to turn it into a real-time procedure in section
3.6. In section 3.7 we will adapt Pareto navigation to the case of nonconvex
outcome sets. The chapter will be concluded by a summary in section 3.8.

3.1 Interactive multiobjective optimisation

According to the classification presented by Hwang and Masud ([62]) and
adopted by Miettinen ([83]) there are four types of multiobjective methods.
Methods that do not use any articulation of preference (no preference meth-
ods), methods where a posteriori articulation of preference is used (a posteri-
ori methods), methods where a priori articulation of preference information
is used (a priori methods), and methods where progressive articulation of
preference information is used (interactive methods).

The basic work cycle for interactive multiobjective optimisation methods
consists of finding an initial solution, asking the decision maker for prefer-
ence information and presenting one (or several) new solution in response.
The latter two steps are repeated until the solution is satisfactory, some
convergence criterion is met or the decision maker runs out of time.

The different interactive multiobjective optimisation methods differ in the
way they generate new solutions, in the interpretation of the decision maker’s
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input and in the type of input used to express preference. Usually, some of
the following information needs to be specified by the decision maker to
guide the chosen interactive multiobjective optimisation method:

e marginal rates of substitution or tradeoffs ([20, 45, 100])

e classification of objective values ([6, 85, 84])

e reference points or aspiration levels ([16, 65, 69, 71, 84, 85, 86, 124])
e reservation levels or upper bounds ([6, 16, 20, 84])

Besides the inspection of a solution in the normal workflow, some of the
methods use the comparison of solutions to find some step size ([20, 69, 71,
84, 124]) or use it to guide the method ([65, 86, 112]).

The early methods often tried to approximate a so-called value-function — a
function implicitly used by the decision maker to judge preference ([20, 45,
100]) or just tried to find some satisfactory result ([6]).

In recent years the reference point or aspiration level based methods possibly
combined with some classification have become more and more popular ([16,
65, 69, 71, 84, 85, 86, 124]). This is due to the fact, that information that
is directly related to the objective function values is easier to specify than
information that is meant to reveal the structure of some unknown function.

We are in line with that and present here another approach based on ref-
erence points, upper bounds and bounds on the partial tradeoffs. Since
our construction is along the lines of Wierzbicki’s achievement scalarising
function approach ([124, 125]), they are naturally similar. From the above
mentioned approaches the Pareto Race of Korhonen et al. and its predeces-
sors ([69, 71]) is close to our approach too and inspired the name for our
method.

In chapter 1 we already discussed the advantages and drawbacks of our
approach, so that we now concentrate on discussing its difference to existing
methods with regard to the interaction and the mathematical properties. For
that we will contrast our method against its closest relatives — the Reference
Point Method and the Pareto Race.

Our method deviates from them in two distinct ways: it allows the intro-
duction of bounds on the partial tradeoffs. Furthermore, for changing the
current solution, it expects just one feasible value and a chosen objective as
an input and guarantees to achieve this value for the objective.

The additional feature of being able to enforce restrictions on the partial
tradeoffs is reflected in the cone scalarising framework that we needed to
setup in chapter 2 to be able to implement the bounds on the partial trade-
offs (see section 3.5). It allows to rule out solutions, whose quality in one
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objective is too dearly bought in terms of another objective. Even though
this feature will most likely not be extensively used, it helps avoiding situa-
tions that cannot easily be avoided with reference points and upper bounds
only.

Enforcing the achievement of the specified value for the chosen objective
also changes the nature of the mathematical setting as we will see in section
3.4. On the one hand, this might render the result dominated — a drawback
that the two methods do not suffer from. On the other hand, it offers the
possibility to reach a pre-specified solution in K algorithmically given steps,
where K is the dimension of the decision space. This also sets our method
apart from the above methods.

Furthermore, the number of parameters to be specified for the other meth-
ods is equal to the dimension of the decision space. In contrast to this,
our method takes only two parameters for changing the current solution —
the objective to be changed and the new value — and the same number of
parameters for changing the upper bounds. For modifying the bounds on
the partial tradeoffs two objectives and the new value must be specified.
Thus, generally the number of parameters is independent from the number
of objectives for our method.

Altogether, our method shares some properties with the methods that influ-
enced its development, but deviated from them in some important points.
Specifically, our method differs in the way it generates new solutions, inter-
prets the decision maker’s input and to some extent in the type of input used
to express preference and thus constitutes a new interactive multiobjective
optimisation method.

3.2 Mechanisms of Pareto navigation

An interactive multiobjective optimisation method is determined by the sup-
ported mechanisms that can be used for decision making, the input needed
from the decision maker, the information the method returns in response
to the input and the internal workings of the method. In this section we
will present the supported mechanisms, the input needed for them and the
information generated in response from the perspective of the user.

Pareto navigation offers two mechanisms to change the feasible set. The
restriction mechanism allows the introduction, removal or change of feasible
upper bounds on individual objectives. So the decision maker can introduce
constraints that (s)he would have imposed, if (s)he had known possible out-
comes. Furthermore, they can be used as temporary bounds to guide the
change of the current solution. Therefore, it is important that they can be
changed any time and even be completely removed.
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The second mechanism that influences the feasible domain is the discounting.
Here, the decision maker can specify bounds on pairwise prices. (S)he can
for example state, that improving objective k by one unit should not worsen
objective k' by more than three units. This allows to focus the investigation
to the set of alternatives with reasonable tradeoffs. However, the discounting
does not just influence the set of feasible alternatives, but adapts the current
solution, if it does not meet the new restrictions.

In response to changes through any of the two mechanisms the so called
planning horizon is updated. It is an estimate of the intervals covered by
the remaining set of efficient points for the different objectives. Therefore,
it is the multidimensional interval between the ideal point — the vector of
minimal values for the different objectives — and the nadir point — the vector
of maximal values for the different objectives — over the remaining set of
efficient solutions. This interval is important information for the decision
maker, since ”(t)he ideal criterion values are the most optimistic aspiration
levels which are possible to set for criteria, and the nadir criterion values
are the most pessimistic reservation values that are necessary to accept for
the criteria” (see [70]).

Due to the response the decision maker can get a feeling for the impact a
certain constraint has on the variety of the solutions at hand. In particular,
(s)he can observe strong changes for the interval in one objective, when a
certain bound was introduced for another one and deduce from it that the
two objectives strongly influence each other. Note that the restriction is not
allowed to exclude the current solution.

Changing the current solution is done using the selection mechanism. The
decision maker sets a value in one of the objective and the Pareto navigation
determines a solution with that value, that has the most favourable distance
to the previous solution with regard to the other objectives. Thus, it keeps
the distance as small as possible, if the value of an objective has to be
worsened and tries to improve it as much as possible, if it can be improved.
Again infeasible decisions are not supported in the selection mechanism, so
the decision maker cannot choose an objective value that contradicts the
chosen bounds on the objective values.

The objective vector of the current solution is embedded into the planning
horizon so that the decision maker has an impression of the possibilities
the current problem offers and the limitations it underlies. Along with the
embedding one will usually have a visualisation of the current solution in a
format familiar to the decision maker.

A typical session could look like the following. The system starts by present-
ing the decision maker the ranges for the different objectives and a starting
solution that was computed by a no preference or an a priori multiobjective
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method. The decision maker then starts by setting some bounds on objec-
tives (s)he thinks are necessary for a reasonable solution. Then (s)he changes
a crucial objective until the effect on the others becomes too strong. (S)he
might now want to limit the tradeoff price between the currently changed
objective and several of the others.

Then (s)he might continue to change the crucial objective. (S)he could
introduce a bound on that objective, so that the achieved level is not lost in
the forthcoming navigation steps. Then (s)he could start to manipulate the
next objective, or to narrow down the solution set by introducing tighter
constraints on the objectives or their tradeoffs. (S)he could store several
different promising settings for a later in-depth analysis or directly decide
on the preferred solution.

The specific strength of Pareto navigation is that it requires very little knowl-
edge on decision making and the underlying model to enable someone to use
it. In particular, neither the specification of marginal rates of substitution
nor the direct specification of a reference point or similar information is
needed to change the current solution.

On the other hand, it consequently does not offer a wide variety of param-
eters to manipulate and direct the decision process, but we believe that its
interaction options are wide enough to enable a fast and successful decision
making.

Pareto navigation is designed to work for convex, bounded multiobjective
optimisation problems. Therefore, we will make the following assumptions:

Assumption 3.2.1

e The functions fi,,k € K are assumed to be conver with the explicit
exception of section 3.7.

o We will assume that the outcome set is contained
Y C (a+Yy)n(b+Y.)

i a suitably chosen cuboid, i.e. that Y is compact. We do not assume
the bounds to be given, though.

o We assume the problem to be nontrivial, so the set of efficient solutions
eff(Y) is supposed to contain more than one alternative

The assumptions of upper and lower bounds is not a severe restriction from
the viewpoint of applications, because in most real-world models unbounded
values are unrealistic anyway and thus due to shortcomings in the model.
The convexity assumption is a definite restriction of the applicability of
Pareto navigation and therefore we devote section 3.7 to elaborate on the
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nonconvex case. The third assumption is a regularity assumption that is
met in virtually all applications.

We will now have a closer look at each of the three mechanisms in turn and
and see how the described black box behaviour is implemented.

3.3 The restriction mechanism

The restriction mechanism allows the decision maker to change the upper
bounds b of the multiobjective optimisation problem. Thus, it restricts the
further considerations to

YD) =Y n (b-Y,),

where the components of b could have the symbolic value of oo to indicate
that no restriction is set for the objective by the decision maker.

One could argue that if good bounds exist, they should be included in the
description of the problem’s feasibility domain. But this only accounts for
the situation where the bounds are known exactly. There is often a certain
uncertainty about the exact value the decision maker should enforce with
the bound (s)he sets. If ineptly chosen it could even render the problem
infeasible.

Thus, the restriction mechanism allows the decision maker to enforce or
loosen bounds after (s)he has examined feasible solutions and gained some
insight on the effect of choosing a certain bound. Besides, it can be used
to temporarily set a bound that has no specific meaning in terms of the
modelling, but serves as a means of steering the selection mechanism (see
section 3.4). The restriction mechanism is not allowed to exclude the cur-
rent solution, so the upper bounds set by it can never render the problem
infeasible. At most, the current solution is the only feasible solution left.

An important tool to judge the effects of a certain choice of bounds is the
so-called planning horizon — the multidimensional interval between the ideal
and nadir point estimate. Changing one of the bounds triggers an update of
the planning horizon and thus provides the decision maker with feedback on
the effect of his or her decision. If sharpening a certain upper bound hardly
has an effect on the remaining objectives, one could make it even tighter
than originally intended. If on the other hand the effect is more dramatic
than expected, one could directly revert the change partially.

The planning horizon will later even be divided into two parts for the case

of an ordering cone C that is a proper superset of the Pareto cone Y .

Even though the use of the restriction mechanism is fairly straight forward,
the mathematical implementation of the planning horizon update is not.
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Therefore, we will have a closer look at it. We will start with the estimate
of the ideal point and then consider the nadir point estimate.

3.3.1 Estimating the ideal point

Determining the ideal point is a relatively simple problem as long as the or-
dering cone is the Pareto cone Y. One solves the K optimisation problems

yi(b) := min{y, |y € Y(b)} for k€ K, (3.1)

each yielding one component of the ideal point. The situation changes, if
we include the pairwise bounds on the tradeoffs into the consideration.

Each of the minimisation problems (3.1) can be seen as a weighted scalarisa-
tion problem with weight vector eg. If the ordering cone C 2 Y, is a proper
superset of the Pareto cone, the dual ordering cone C* C Y, is a proper
subset of the dual Pareto cone — again the positive orthant. But then some
or all of the unit vectors e are no longer in the dual cone and therefore
minimising the corresponding functional does not necessarily yield a weakly
C-efficient solution. Moreover, weakly C-efficient and C-efficient solutions can
now severely differ in their minimal yg-value, so it is no longer irrelevant
whether we are dealing with weakly C-efficient or C-efficient solutions.

Thus, we have to explicitly restrict the minimisation to the C-efficient out-
comes in Y(b). In other words, we have to solve

min {yk ly € effc(y(b))} (3.2)

Unfortunately, problem (3.2) is nonconvex because the domain of minimi-
sation is nonconvex in general. One approach to model this problem is the
formulation of a bilevel programming problem or Stackelberg game.

Bilevel programming problems incorporate an optimisation problem in the
description of their feasible domain. So, the set of points considered for the
optimisation itself is optimal for the so-called lower level problem. The lower
level problem shares some variables with the upper level problem thus mak-
ing the two problems interdependent. Bilevel problems belong to the larger
class of problems called mathematical programs with equilibrium constraints
— an area of very active research (see e.g. [33], [80], [111] and references
therein).

In our case we will encode the y € effe(Y(b)) efficiency condition into
the lower level problem and minimise the k** component of the remaining
points. So, we solve

min {yk ‘ y® €Y, min {s(c+, c) ’ y—yl=ct—c,ye), chc e C}}
(3.3)
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for every k € K to get the K components of the ideal point. We have chosen
to use a cone scalarising problem in the lower level, but any problem that
can assure (near) C-efficient outcomes is suitable. The lower level problem
optimises the cone scalarising function for the given reference point to ensure
the C-efficiency. The y%? variables are used by the upper level to manipulate
the optimum of the lower level in search for the minimum. If the global
optimum for the problem is found, it will consequentially be reached at a
C-efficient point with minimal &*” component.

Unfortunately, bilevel problems are global optimisation problems and guar-
antee global optimality of their results only in very special cases. Besides,
they are computationally complex and might therefore require an effort that
is not justified by their use for Pareto navigation.

Thus, we will work with some estimates for the ideal point that are compu-
tationally much easier to obtain. Let ¢(*) be the projection of the &k unit
vector e onto the dual ordering cone C*. This projection is uniquely defined
and is nonzero, if the dual ordering cone has nonempty interior. Then we
solve the K minimisation problems

min{(c(k),y> |y €Y(b)} for ke (3.4)

that yield the corresponding components of the ideal point estimate. For
the Pareto cone this problem equals problem (3.1). Hence, it is exact in this
case. For all other cases it needs some further modifications. The optima
are so far weakly C-efficient and thus the value of the estimate can be smaller
than the true value. On the other hand, it is not guaranteed to produce the
solution of minimal yg-value. So the value could be too large.

To get a reliable estimate, we have to make the outcome of problem (3.4)
C-efficient. For that purpose we can either add a small amount of a vector
c* € int(C*) from the interior of the dual ordering cone to the weight vector
or we can lexicographically optimise a second objective like in lemma 2.4.8.
Either way we will obtain a C-efficient solution yé ,(b) whose k' component
is an upper bound for the true minimum value.

By the optimality of yék(b) and the convexity of V + Y ([64][theorem
2.11]) the inequality

(W, ytrb) < (®.y)

holds for all y € ). Thus, we can construct a lower bound for the minimum
value by calculating the minimum value of & € R

(€ vy (b)) < (P, b+aey),

which is given by

(™), b~ yék(b»

o

a = —
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The lower bound on the minimal value is then given by

min {y; | y € effc(V(b))} > max{yi(b), by +a}

the maximum of the minimal value for the Pareto cone and the newly derived
estimate. The latter is probably fairly good, when the ordering cone is not
too different from the Pareto cone, but can be rather pessimistic, if the two
cones differ significantly.

3.3.2 Estimating the nadir point

The problem of finding the components of the nadir point

max {yx(x) | y € ef fe(V(b))} (3.5)

is even more involved. Even in the case of the Pareto ordering cone it is a
convex mazimisation problem over the nonconvex domain ef f-()Y (b)) and
thus a global optimisation problem, which is difficult to solve in three or
more dimensions (see e.g. the abstract of [10]).

In [127] an overview of methods for optimisation over the efficient set is
given — a class of algorithms that is more general, but can be used for the
nadir point detection. More such algorithms are proposed in [30, 60, 61, 79],
that all involve global optimisation subroutines and at best converge in
finitely many iterations, but are inappropriate for an interactive method.
An exception is the algorithm proposed in [37] that is less computationally
involved, but since it heavily relies on two dimensional subproblems it only
works for up to three objectives. Most of these algorithms could also be
used to compute the ideal point coordinates for general ordering cones, but
their computation time is unacceptable in that case as well.

Since exact methods are intractable, heuristic estimates for the nadir point
have to be used. Estimates using the so called payoff table (see e.g. [83]) are
problematic, because they can be too large or too small and arbitrarily far
away from the true value (see [63]). But in [37], small algorithmic changes
to the payoff table heuristic are proposed that make it either a lower or
upper bound for the true value. In essence the algorithmic changes for the
lower estimate ensure that the obtained solution is efficient. Applying these
small changes to the problems solved when looking for the ideal point (3.1)
and (3.4), the improved payoff table entries can be computed with almost
no additional effort.

The points gained in the computation should be stored, so that when the
bounds b are modified, the stored points are checked for feasibility and
only the problems corresponding to infeasible points are computed anew.
Depending on the chosen optimisation algorithm the infeasible points could
even be used as starting points.
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In [70], a heuristic to approximate the nadir point for linear multiobjective
optimisation based on the simplex algorithm is proposed. It uses its objec-
tive function to enforce efficiency and successively changes the right hand
side to maximise the currently considered objective. Furthermore, a cutting
plane is used to cut off the part of the polyhedron that contains smaller
values than the most current estimate. The heuristic yields a lower bound
for the true nadir value, since in general it only detects local maxima. It
involves no global optimisation subroutines and is thus adequate for our
purposes. Additionally, it can be stopped at any time still yielding a lower
bound for the nadir point, although the estimate is less accurate then. Even
though the original method was proposed for the Pareto ordering cone, it
can easily be adapted to the more general situation of polyhedral ordering
cones, since it is based on the Pascoletti-Serafini scalarisation.

In case of a linear multiobjective problem one can either evaluate the payoff
tables in conjunction with the ideal point detection or use the more sophis-
ticated nadir point heuristic above depending on the time restrictions and
the problem complexity. In nonlinear multiobjective optimisation problems
payoff tables are the only feasible options for interactive methods.

Again, a more rigorous way of determining the nadir point components is
the use of bilevel programming. The model is essentially the same as for the
ideal point components

max {yk ’ yiey, min{s(c*, c) ’ y—yli=ct—c,yec) ctce C}},
(3.6)

but naturally we are now maximising the objective function. In fact the
above heuristic for the case of linear multiobjective problems ([70]) can be
seen as a heuristic to solve the bilevel problem: It uses its ‘explicit’ objective
function to ensure efficiency and has some outer routine — the counterpart of
the upper level problem — that tries to enlarge the objective value by changes
to the reference point in the underlying Pascoletti-Serafini approach.

We will estimate the bound for the Pareto cone y™(b) as well as y2(b) — the
one for the ordering cone C and split the planning horizon into an inner part
— the estimated interval [y} (b), y2(b)] for the currently used ordering cone
~ and an outer part — the estimated interval [y’ (b), y"(b)] for the Pareto
cone. For the outer interval the ideal point is accurate while the nadir point
estimate is heuristic, for the inner interval both bounds are heuristic.

Working with two intervals has the additional advantage that we can see the
(approximate) effect of the pairwise price bounds on the size of the set of
alternatives. Thus, we see the effect that the restriction mechanism has itself
and the cumulative effect of the restriction and discounting mechanism.
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3.4 The selection mechanism

The selection mechanism is the main tool of Pareto navigation to change
the current solution. The decision maker chooses one objective and changes
it to any feasible value that (s)he finds desirable. The solution given back
in response to this action attains the specified value in the chosen objective
and has the most favourable distance to the remaining objectives. In par-
ticular, it tries to improve beyond the previous level when this is possible.
Furthermore, it observes the upper bounds on the objectives introduced by
the restriction mechanism and mostly observes the bounds on the pairwise
prices introduced by the discounting mechanism.

Internally, the selection mechanism executes a cone scalarising problem that
incorporates the upper bounds directly and the price bounds by its choice
of the ordering cone (see section 3.5). The choice of the cone scalarising
function thereby expresses, what is considered to be the most favourable
distance in a specific application context. The reference point is determined
internally and strongly depends on the previous solution, thus trying to keep
the changes small in the remaining objectives.

An individual selection step is determined by the choice of the objective
function and its new value only, so the number of parameters is very small.
So, there is not an overwhelming number of controls one has to twiddle to
trigger a certain change. Besides, whenever the objective functions have a di-
rect interpretation the control parameters have one as well. Consequentially,
the decision maker does not need to be familiar with the internal working
of the mechanism to be able to specify appropriate control parameters.

The approach taken here differs from the approaches taken by known in-
teractive multiobjective methods in some important aspects. Therefore, we
will thoroughly investigate its behaviour.

We will present the mathematical model of the selection mechanism in sub-
section 3.4.1. In particular, we will discuss the effect of fixing the function
value in the chosen objective.

In subsection 3.4.2 we will present a critical example of an outcome set that
is used throughout the remainder of the chapter to demonstrate undesirable
behaviour of the selection mechanism. This behaviour can be seen as the
downside of the improved control on the current solution.

The subsection 3.4.3 investigates the properties of the solutions returned by
the selection mechanism. This comprises the efficiency of the outcomes, the
connectedness of the set of outcomes, the reachability of specific outcomes,
the continuous dependence on the control parameter and uniqueness of the
optimal outcome.
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3.4.1 Modelling the selection mechanism

The most obvious distinctiveness of the selection mechanism is that the
specified value 7 for the chosen objective k' is guaranteed to be attained.
For that we introduce a temporary equality constraint. Geometrically we
are looking for the solution with the best possible distance to the values of
the remaining objectives on the intersection of the set of outcomes Y with
the hyperplane

Hp(r) ={y €Y|yw =1} (3.7)
Thus, the dimension of the problem considered for an individual selection
step is one less than the dimension of the original problem.

The upper bounds b from the restriction mechanism are directly put into
the problem. In contrast, the bounds on the pairwise prices are incorporated
using an ordering cone C that reflects these bounds (see section 3.5).

The distance is optimised by the cone scalarising problem

min {s(ct,c7) |y —y*=ct—c ,ywv =7, y<b,y€), cfceC},
(3.8)

where 7 € [y}, (b),yp (b)] =: Zi/(b) is taken from the interval given by the
k’-th component of the estimated ideal and nadir point.

Here, we have two choices for the interval. On the one hand side, we can take
the estimates for the Pareto cone to be sure not to exclude solutions with
good yys values due to an inexact estimate of yé w(b). Thereby, we allow
the navigation to violate the bounds on the pair\;vise prices for the chosen
objective, if the parameter 7 is chosen to be larger than the exact k’-th nadir
point component for the current ordering cone C and upper bounds b.

On the other hand, we could work with the estimates of the ideal and nadir
point for the current ordering cone C. Thus, we would enforce the price
restrictions, but could potentially exclude some of the best solutions for
individual objectives due to the lack of accuracy in the lower bound estimate.

Hence, if the estimates y/ ,,(b) and y2,,(b) were reliable, we would use
them. Otherwise, it is a tradeoff between excluding some efficient solutions
against a violation of the bounds on the prices. We will use Zy(b) for
both possible choices and make the choice explicit, if there is a difference in
behaviour due to it.

The reference point in (3.8) is equal to the previous solution y*

r__ [ yr for k#F
Y 511 for k=F

except for the k’-th component which is set to 7. Thus, we try to find a solu-
tion in Y N Hy(7) that has the most favourable distance to the projection of
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the previous solution onto Hy/ (7). Thereby, the distances are evaluated by
the distance evaluation function ts. Thus, the chosen cone scalarising func-
tion reflects what is considered the most favourable reaction to the change

in Yk -

We benefit from working with cone scalarising functions in at least two
ways here. First, the bounds on the pairwise prices can be incorporated
seamlessly. Second, the position of the reference point can be arbitrary
relative to the feasible set J N Hy/(7) without compromising the quality
of the outcome. In particular, the selection mechanism will improve the
objective values beyond the reference point, if the objective value for the
chosen objective is worsened.

In order to work in conjunction with the discounting mechanism there is one
further restriction regarding the choice of the cone scalarising function s. It
needs to be able to work with changing ordering cones, i.e. its definition must
make sense for every ordering cone C that is constructed by the discounting
mechanism. In particular, it should therefore not exploit the structure of one
specific ordering cone. We assume to be working with such a cone scalarising
function s henceforth.

We will call optimal solutions to the cone scalarising problem s-efficient
to avoid having to distinguish between the different efficiency notions for
the different types of cone scalarising functions. To more clearly express
the dependency on the chosen ordering cone, we will slightly modify the
notation for the set of all optima for the cone scalarising function s over the
set S
effoclS) = |J Os.a(y™)
yRey

and include the ordering cone in the subscript. If no cone or cone scalaris-

ing function is mentioned, we are considering efficiency with respect to the
Pareto ordering cone.

Before we investigate the mathematical properties of the selection mecha-
nisms, we will introduce an example outcome set that is frequently used in
the remainder of the chapter. Therefore, we will present it upfront to bundle
the corresponding explanations.

3.4.2 Critical example

In this subsection we introduce a simple three objective example, whose
variations suffice to illustrate undesirable, but somewhat unavoidable be-
haviour of the selection mechanism. The construction has a nontrivial set of
efficient solutions that is sub-dimensional, i.e. the set of efficient outcomes
has no ‘inner’ part. We have chosen to construct it for the Pareto cone,
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but the basic idea can be transferred to other ordering cones in a straight
forward way.

The set of outcomes Y* (figure 3.1) is the convex combination
yeaz -— conv {yexl ’ yexg ’ yexg ’ yex4} ,

of the objective vectors

2 1 2 0.8
yr=| 2 |,y = 1 |,y*®: = 08 |, y*™ = 2
0 4 4.8 4.8

5. %

ex.
Y&

Figure 3.1: Simple yet critical example.

The greenish side areas in figure 3.1 are weakly dominated by the upright red
line and the bluish upper area is dominated by the two upper red lines. Thus,
just the red lines are efficient. By just slightly changing the y;-coordinate of
y*4 or the ys-coordinate of y®*3 the side areas can either be made efficient or
strictly dominated. Furthermore, by making the upper right line marginally
shorter an arbitrarily small slope between y®*3 and y®** regarding the ys-
coordinate can be realised.

Now let us look at intersections of Y** with hyperplanes normal to an axis.
Due to the symmetry of the example, we only need to consider the hyper-
plane perpendicular to the second and third objective axis.

Looking at the result of the vertical intersection - the greenish area - we see
that the parts that were weakly dominated in the three-dimensional setting
are now efficient - properly efficient even. Note that the slope of this part
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Figure 3.2: The intersection of the hyperplanes with the 3D polyhedron.

of the boundary can be made arbitrarily small by moving y“*? and y®*3
along the yi-coordinate. The red point is the single 3D-efficient point on
the intersection.

The middle part of the boundary of the bluish area - the result of the
horizontal intersection - is properly efficient in the two-dimensional setting
while it is strictly dominated in the three-dimensional. The weakly efficient
outer parts of the boundary can either be made efficient or strictly dominated
by slightly modifying y**3 or y®*+. If the intersecting hyperplane is moved
towards the lower y3 values, the (two dimensional) efficient middle part will
eventually become just a point. Here again the red points are the 3D-efficient
points on the intersection.

3.4.3 Results of the selection mechanism

In this subsection we will analyse the properties of the selection mechanism.
We will describe the set of selection outcomes and the properties of these
outcomes. We will see that there are non-s-efficient outcomes and we will
discuss the inevitability of their existence. Then we will demonstrate the
connectedness of the set of selection outcomes and formulate an algorithm
to reach any given efficient outcome in ef f; -(3(b)). Within the algorithm
we will use a combination of the selection and restriction mechanism that
can be regarded as a possible workflow for using Pareto navigation. We
will then investigate the continuity of the selection mechanism and consider
uniqueness of the solutions to the selection mechanism problem (3.8).

The solutions to (3.8) are contained in the set ef f, o (Y(b) N Hy(n)) of
optimal solutions of the intersection of the outcome set with the hyperplane
defined in (3.7). But they are not necessarily s-efficient with respect to the
full-dimensional outcome set ) (b). Looking at the critical example (figure
3.1), we see that any 2D-efficient point on the blue line (figure 3.2(b)) except
the corners is dominated in 3D.
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Thus, we need to have a closer look at the set of potential navigation out-
comes. The set

VY (b) :=U( U effs,c(y(b)ﬂHk(ﬁ))> (3.9)

kek ™ BeZi(b) =Yk (b,0)

is the domain of outcomes for problem (3.8), if we allow arbitrary refer-
ence points y® € Y. In the selection mechanism the reference point is not
arbitrary but determined by the previous solution y®°. Therefore, we will
in general not be able to reach every point in yéV “(b). We are neverthe-
less able to reach the points which we are most interested in reaching: the
efficient points in Y3'*(b).

First note that changing the bounds with the aid of the restriction mecha-
nism

effoc(Y N (b=Yy)) =effoe(P) N (b-Y,)

does not effectively change the set of s-efficient outcomes, but rather deter-
mines which part of it is still considered. So we can freely interchange the
restriction and the selection mechanism. Since the restriction mechanism
is not allowed to exclude the current solution, the problem will never be
infeasible.

Suppose that we start the navigation at a point y(© ¢ yéV 2 (b) and want
to reach the C-efficient point y € ef f, (¥ (b)). To arrive at the point we
execute the following algorithm:

Algorithm 3.4.1
1. Leti=0 and b® :=b.

- (1)
2. Set Ji=dkek|y? >y b+ — ) by forke i |
et J; { € ’ Yi yk} an S ke T

3. If J; =0, stop.

4. Take an arbitrary index k' € J; and solve the cone scalarising problem
(3.8) for 7 =y, b=b0*Y and yO as the starting point. Let y(+1
be the result.

5. Seti=1+1 and goto 2.

The algorithm sets the entries of the target point as upper bounds for the
selection mechanism, if the current solution fulfils them. The components
with too large values are successively chosen for the next selection step. This
step changes the chosen component to the wanted value and tightens the
bounds where possible. Thus, the changed component is now bound to not
exceed the value of the corresponding target point component. This process
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is continued until the target point is reached — which we will verify in the
next theorem.

Theorem 3.4.2 Let s be a C-centred, strictly C-consistent and continuous
cone scalarising function. Then, starting from an arbitrary point y° €
YNav(b) we can reach every Y -efficient point § € effsc (y(b)) using the
algorithm 3.4.1.

Proof:

Since the bounds b® and T are chosen such that y is feasible for these
restrictions, the cone scalarising problem in step 4 of the algorithm always
has a nonempty feasible domain.

The starting set of indices Joy, where y©) exceeds § clearly is a subset of
K. In each iteration solving the cone scalarising problem (3.8) yields a
solution that fulfils the previous constraints y(t1) < b+D) and additionally
the constraint y,(:,H) < yr. Hence, the set of exceeding indices Jiy1 C
TJi\{K'} is reduced by at least the currently chosen index k'. So the stopping

criterion of the algorithm in step 3 is met after i < K steps.

The bound vector b¥*Y = § equals the target point when the algorithm
terminates. By the definition of Y -efficiency

U v, ) n (Yb)+C) = {5}

only the target point y remains feasible. But the current solution is always
feasible and therefore the final solution of the algorithm is the target point.
O

So, we can ezactly reach every Y -efficient point in ef f, - (Y (b)). But the
algorithm 3.4.1 is useful for more general situations.

Corollary 3.4.3 Let s be a C-centred, strictly C-consistent and continu-
ous cone scalarising function. Then, starting from an arbitrary point y° €
yéVM(b) we can find a point y <y that is smaller or equal to an arbitrary
pointy €effsc (y(b)) using the algorithm 3.4.1.

Proof:

The proof of the theorem remains valid except the last argument. The inter-
section

(b —y,) n (¥(b)+C) 2 {§}

can be larger than just the target point singleton. But every other point in
the intersection is smaller or equal to the target point.
O
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Figure 3.3: The problem that results, when the decision maker moves from
the centre point in positive y3 direction.

As C-efficiency implies efficiency for the Pareto cone, the set of C-efficient
solutions is contained in the set of efficient solutions. Thus, theorem 3.4.2
and corollary 3.4.3 also apply to C-efficient and weakly C-efficient solutions.

But even when we use the specific reference points for the selection mech-
anism problem (3.8) the outcomes can be weakly or strictly dominated. If
we start at the centre point in the critical example and increase the y3 com-
ponent of the current solution (see figure 3.3(a)) the optimum for the 2D
situation (see figure 3.3(b)) — the orange point — is strictly dominated in 3D.

Moreover, the situation cannot easily be changed, because the next efficient
point is not uniquely determined in the situation, i.e. the two red points in
figure 3.3(b) have the same distance to the reference point. Such ties can be
constructed for an arbitrary distance evaluation function, so this situation
cannot easily be avoided.

Using lexicographic optimisation to enforce efficiency on the 2D section does
not solve the problem either. Assume the upper right point in the critical
example is closer to the centre point than the upper left point (see figure
3.4(a)). Furthermore, assume that we decided to lexicographically optimise
the ys-component first and the y;-component second. Thus, the lexico-
graphic optimisation will always push the solution to the right-most point
on the 2D section in our example (see figure 3.4(b)). If we increase the
yz-component beyond the level of y§*® — an admissible level, since there are
still efficient points with such a ys-component, the right-most point will no
longer be efficient (see figure 3.4(a)).

So this potential non-efficiency seems to be inherently linked to the equality
constraint used in the selection mechanism. Thus, it is the ‘price’ for the im-
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2

v

Figure 3.4: The result of using lexicographic optimisation on the 2D section

proved control one has due to the equality constraint. Put in multiobjective
terms we are trading improved control for guaranteed efficiency.

Nevertheless, we can display the efficient solution with most favourable dis-
tance to the current point by solving one cone scalarising problem without
the equality constraint and the current point as starting point. If the current
point is efficient for the full dimensional problem as well, the two points will
be equal and if that is not the case it can directly be detected.

Note that the critical character of the example becomes even more pro-
nounced, if we consider the behaviour of other interactive multiobjective
optimisation methods. Assume the centre point to be the current solution
and the decision maker decided to increase the ys-component of the cur-
rent solution to gain some improvement in the remaining objectives. If the
method is working with marginal rates of substitution, decreasing the value
for the ys-component will not change the current solution. So the decision
maker has to decide explicitely which component (s)he wants to improve to
inflict a change. In other words, the strategy has to be changed.

Similar effects occur when the method works with distance based methods.
To move from the centre point to any of the two upper points one of them
most be favoured explicitely, otherwise the method is stuck at the centre
point. Again, this asks for a change in strategy. Besides, the decision maker
might give up, if (s)he does not know that the upper two points exist — say
through the planning horizon information — and think that the centre point
is the point of largest y3-value among the efficient points.

Being able to set a chosen component to a feasible, specified value is a very
controlled way of changing a solution. Nevertheless, the feeling of control
is not given if the whole procedure is discontinuous. Therefore, we will
investigate the continuity of the selection mechanism. If 7 just ranges over
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the true inner planning horizon 7 € [y.(b), y2 (b)], the navigation outcomes

form a connected set.

As a preparation for the proof, we first cite a lemma ([36]) stating a connec-
tivity criterion.

Lemma 3.4.4 If {Aj | j € J} is a family of connected sets with
Njeg Aj # 0, then ;e 7 Aj is connected.

We will now apply this lemma to show the connectedness of yé\’ av,

The following theorem first shows that the efficient set for the full dimen-
sional problem intersects the efficient sets for the problems on the different
intersections. Thus, the union of efficient set of some intersection with the
efficient set for the full dimensional problem is a connected set. But all these
unions share a common ‘central’ set, so that their intersection is non-empty,
too. Lemma 3.4.4 then yields the claim.

Theorem 3.4.5 Let s be continuous, C-centred, strictly C-consistent and
convex. Moreover, let the intervals

Iy = [min{yy | y € ef fe(V(b)}, max{yy | y € ef fe(V(b)}]

in the definition of yéVav(b) represent the true inner planning horizon. Then
Y®(b) is connected and contains ef f, (Y (b)).

Proof:

We show the second statement first. Let y € ef fo-(Y(b)) be an arbitrary
s-efficient point and let y' be a reference point for which ¥ is minimal.
Its k™ component yj, € Zi(b) is contained in the corresponding interval of
the inner planning horizon. Placing the intersecting hyperplane at just this
level the point'y € Vi(b,yi) is contained in the intersection. Therefore, the
intersection Yi(b,¥i) is nonempty.

Hence, the minimisation over the intersection is well-defined and the follow-
ing inequality holds:

ts(y —y") < min{t,(y —y") | y e Y(b)} (3.10)
< min{t;(y —y") | y € Vu(b,31)}
< t(y—y").

Thus, y is an optimum for the given reference point and therefore s-efficient
on the intersection

V€ effoc(Vi(b,3k) € V™ (b).

Since y € ef fsc(YV(b)) was chosen arbitrarily from the set of s-efficient
points, every s-efficient solution ef f, (Y (b)) € Y (b) is contained in
the set of navigation outcomes.
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Using the argument (3.10) again, we see that for every T € Z(b) the inter-
section

effs,c (y(b)) N effs,c (yk(b7 T)) 7é q)
of the two efficiency sets is nonempty.

Now define the family of sets

A‘(rk) = effs,C (yk(ba T)) U effs,C (y(b))
for all k € K and 7 € I}, as the union of the ‘central’ set ef f (Y (b))
and the set of C-efficient solution on the section. Then, the sets AS’“) are

unions of connected sets with nonempty intersection and thus by lemma

3.4.4 connected sets. Furthermore, the elements of the family A(Tk) have a
nonempty intersection, because every set contains ef f,c(Y(b)). Thus,

JlU ¥ > = VY™ (b) U eff,c(¥(b)) = V¥ (b)
kek TELy (effs,c(y(b)))

is connected by lemma 3.4.4.
O

The preceding connectedness result holds for the real inner planning horizon
and hence for the conservative estimates we use as well. Unfortunately, the
proof cannot be easily adapted for the case of the outer planning horizon,
since there is no corresponding ‘central’ set.

The next step in our analysis concerns the continuity of the optimal distance
value. We will show that the optimal distance value changes continuously
with the changes of the parameter 7. Here, the result holds for all 7-values
in the outer planning horizon. For the proof we will use another result from
convex analysis ([95]). We will slightly reformulate the theorem to avoid the
definition of further concepts of convex analysis.

Consider the problem of minimising a proper convex function f
min{ f(x) | g(x) < 0,h(x) =0,x € S} (3.11)

over a convex domain S, subject to convex inequality constraints g(x) < 0
and some affine linear equality constraints h(x) = 0. If we now look at
disturbed right hand sides u, v for the inequality and equality constraints
respectively, the following theorem holds.

Theorem 3.4.6 For the problem (3.11), the infimum function
inf{f(x) | g(x) < u, h(x) =v, x € S}
is convex as a function of (u,v) and has the effective domain

{(wv) [ {x €8 gkx) <u, h(x) = v} # 0}.
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The effective domain is the part of the pre-image space, where the convex
function has finite values.

The convex set in our case is Y(b) x C x C and the convex function is s(-
We have just affine equality constraints, namely y, = 7 and y — y®(r

ct— ¢, where
S /
R _Jyg for k#£k
ym) ‘_{r for k =k

).
) =

for a fixed starting point y°. Thus, g is not present in our case and hy(y) =
y — y®(1) —ct+ ¢ and hy(y) = y — 7. Applying the above theorem we
get the following corollary.

Corollary 3.4.7 Let s be a continuous, C-centred, strictly C-consistent and
convex cone scalarising function. Then, the optimal value of

p(r) =
min {s(c+, c_) ‘ y — yR(T) =ct—c,yr=7,yc YD), cc € C}

is continuous as a function of T for T € int(Zy(b)).
Proof:

By theorem 8.4.6 the minimum is a convex function for all values of T for
which the feasible set is nonempty — by definition at least the interval Zy(b).
But convex functions are continuous in the interior of their effective do-
main. Moreover, they are Lipschitz-continuous relative to every bounded
subset of the relative interior of their effective domain. Hence, p is Lipschitz-

continuous for every closed subset of Ty,.
O

Thus, we have continuous behaviour of the optimal cone scalarising value,
possibly except for 7 € {y’(b), y¥(b)}. But as the boundary values can
cause numerical difficulties one should slightly shorten the interval anyway.
For the slightly shortened interval the function is then Lipschitz-continuous.

The next thing we will investigate is the upper semicontinuity of the set of
optima for a selection step. So the set-valued mapping we will investigate is

O(k,7) = argmin{ts (y — yR(T)) ‘ Ye=T,y € y(b)}.

The proof is almost a replica of the proof of upper semicontinuity for the
optimal set map in theorem 2.5.5.

Theorem 3.4.8 Let s be a continuous, C-centred, C-monotone and convex
cone scalarising function. Then, the corresponding optimal set mapping O
1S upper semicontinuous.
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Proof:

LetU D O(k,T) be an open neighbourhood of the optimal set for a given 7.
Due to compactness of Y(b) there exists a radius € > 0 for which O(k,7) +
B2:(0) CU. Now consider the family of open sets

{int(B:(y)) | y € Y},

which constitutes a covering of Y(b). As Y(b) is compact we can pick a
finite number of points y(i) € Y, i = 1,...,n such that

Yb) < | int(B(3(i))).
=1

Let (7(i))ien be a sequence of values converging to 7 and let

(¥(i));eny € Ok, (1))

be optimal for the corresponding T-value. Since we have a finite cover-
ing of Y(b) there must be sets int(B:(y(i))) with infinitely many points
of (Y(i))ieN in them.

Choose an arbitrary setV := int (Ba(y(i’))) with infinitely many points of the
sequence in it. Then the subsequence of (y(i))ieN with elements just in V is
bounded and thus has a convergent subsequence (y(i))ieN. Lety := limy(i)

71— 00

be its limit and (?(i))ieN be the corresponding sequence of T-values. The
continuity of u

lim (7)) = p( lim 7()

= n(7)

ensures that the convergence of (?(i))ieN is preserved. As ts is continuous
as well we get the following result:

Jim t,(y() —y* (7)) = t( Jim 3() — lim y*(7()))
= ts(y —y"(7))-
Putting the two equations together,
p(7) = lim p(7(1)
)= ¥R (@)
= t(y —y"(®),

we see that the limit of the sequence'y € O(k,T) is in the set of optima for
the limit T-value.

= lim ¢,(y(d
1— 00
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Therefore, the set cl(V) contains at least one point of O(k, 7). Since the
choice of V was arbitrary among the sets containing infinitely many points
of (y(i))ieN the closures of all these sets intersect with O(k,7). As the
diameters of the sets int(l’j’a(y(i))) forming the coverage is 2¢ there are
only finitely many points of (Y(i))z’eN that lie outside

Ok, #) + B2(0) C U.

Hence, choosing 19 € N such that all these points are excluded, the remaining
outcomes y(i) € U,i > ig are contained in the neighbourhood. Thus, the
optimal sets for a convergent sequence of T-values are eventually contained
in an open neighbourhood of the optimal set for the limit 7.

O

In contrast to the upper semicontinuity proof for the optimal set map in
chapter 2 we require the convexity of s and Y (b) here to be able to use the
continuity of the minimal value function p. Again, we can use the closedness
criterion of proposition 2.5.11 to prove the closedness of O.

Corollary 3.4.9 The optimal set mapping O is closed.
Proof:

The sets of minimisers of ts are closed sets due to Yi(b, T) being closed and t
being continuous. Furthermore, the interval Zy(b) is closed. Therefore, the

upper semicontinuity of the set-valued mapping O implies that it is closed.
O

The uniqueness results of section 2.5 can directly be transferred to the case
of the selection mechanism. If the set of outcomes ) does not have a face
of dimension 1 or higher in common with the level sets of t;, its restriction
Y(b) clearly does not have one either. Moreover, the intersection of the
restricted set of outcomes with a hyperplane Hy(7) cannot have a face of
dimension 1 or higher in common with the level sets of ¢4 either. Thus, if the
conditions hold for the unrestricted and full dimensional set of outcomes,
they also hold for the case of the selection mechanism problem (3.8).

Note, that the combination of upper semicontinuity and uniqueness yields
continuity. So, for a continuous C-centred, strictly C-consistent and convex
cone scalarising function s and a outcome set ) that either fulfil the condi-
tions of proposition 2.5.17 or proposition 2.5.18 the optima for a selection
step form a path parametrised by 7.

Note that the continuity of the optima of the selection mechanism does
neither mean that the set of navigation outcomes is connected nor that there
are no jumps in the selection. It just means that during one selection step
there is no jump. But there can be one at the beginning — for the parameter
T = y;g when the k" objective was chosen for manipulation. Consider the
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Figure 3.5: With a strictly dominated starting point a jump can happen at
the start of the next selection step.

situation depicted in figure 3.5(a) for a selection step that yields a dominated
solution. If now the second objective is chosen for the next movement, we
start with the orange point in figure 3.5(b) that will directly be improved,
leading to a jump at the start of a selection step.

We now turn our attention to the third and last mechanism, which allows
the introduction of restrictions regarding the relative solution quality — the
discounting.

3.5 The discounting mechanism

Cone scalarising is constructed to work with more general ordering cones
than the Pareto cone. We will now use this feature to control the partial
tradeoffs (see [20], [83]). The original definition is made in terms of pre-
images and the objective functions. We will reformulate it with points of
the outcome set instead.

Definition 3.5.1 Lety #y' € Y be two feasible outcomes. Then the slope
Yk — Yk
yi— Y,

of the k™" objective relative to the I objective is called partial tradeoff, if

all remaining objectives yy =y, k' € K\ {k,1} for the two outcomes are
equal.
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Naturally, we are not interested in the partial tradeoff for any two outcomes,
but are interested in the partial tradeoffs for the efficient solutions. Here, the
partial tradeoffs are always negative, since we cannot gain in both objectives
due to the definition of efficiency. One can see the partial tradeoffs as the
price one has to pay — therefore the negative sign — in the k** objective for
an unit gain in the I** objective. Therefore, we will sometimes use prices as
a synonym for partial tradeoff.

We will derive in this section a method to translate bounds on the partial
tradeoffs into an ordering cone C. The ordering cone C is constructed such
that the C-efficient solutions always fulfil the given bounds on the partial
tradeoffs.

Assume we do not want to deteriorate the k™ objective by more than T 1
the amount we gain in the I** objective while the other objectives are fixed at
their current values. So, for any two efficient solutions y # y € ef f(Y(b))
with yi =y for all & € K\ {k,1} the following inequality is supposed to
hold: - .

Y — Yk

yi— Vi
Since the points are efficient, the difference in the two components is nonzero.
Besides we assume, that y; < y; and that we want to control the price for
that gain. Therefore, the inequalities

< Ty

Vi — Yk L L
T = <T = ~Ve+¥<Tix(¥1—¥1)
Yi—Yi

— 0 < Tip(y1—y1)+ ¥k — Y

— (Tirei+e, y—y) >0 (3.12)

are equivalent. Note that in case of y; > ¥; the sign of the denominator
Vi — ¥ < 0 is negative due to the efficiency of the points y,y. Thus, we
can just exchange the roles of the two points, so that either way the price
in the k*" objective for the gain in the I*" objective is bounded.

We will use the last formulation, because we do not need a strict inequality
y; < y; and it allows the combination of several such inequalities into a
matrix. Note that T;; < 0 are infeasible for efficient points. Therefore, we
will only consider nonnegative T .

We will now couple the above tradeoff restriction (3.12) with a restriction
on the elements of the dual ordering cone.

Theorem 3.5.2 The inequality (3.12) is met for all C-efficient points, if
every element c* € C* of the dual ordering cone fulfils the inequality

C? S T“C C]:.
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Proof:

Assume the inequality for the elements of the dual cone holds, but there are
two C-efficient points y,y that violate the tradeoff restriction (3.12), i.e.

<Tl7kel+ek, S’—y> < 0.

Without loss of generality assume that ¥, > ¥ and hence ¥; < §yj.

For a C-efficient point y in a convex multiobjective optimisation problem
there exists a ¢* € C*\ {0}

(¢*,y) =min {(c",y) | y € Y(b)}

for which it minimises the corresponding linear functional (see proposition
2.2.8). We will choose c* such that ¢ > 0. Thus, we have the following
equivalent formulations

<Tl7kel+ek, S’—y> < 0 <= ézk <Tl7kel+ek, S’—y> <0
<~ <6?Tl,kel+é?ek7 y—y> < 0.

Now using the restriction c¢; < Ty ¢y of the marginal rates of substitution
and the assumed negativity of the difference ¥ — yr < 0, we can proceed
with

(¢ Tirer+clep, y—y) < 0
— (¢ Tirer+c;Tirer, y—y) < 0
Tl,k>0

(cfe;+cCrer, y—y) < 0.
By assumption the difference y —y of the two points is nonzero in the com-
ponents 1, k only. Therefore, the two inner products
(Ge+cien,y-y) = (¢, y-¥)
coincide. Hence, we can continue the equivalences with
(cfej+cCrep, y—y) <0 < (¢, y-y) <0
= (€y) < (7)),

which contradicts the minimality of y. The constraint on the elements of

the dual ordering cone therefore implies the bound on the partial tradeoff.
O

We can thus control the tradeoffs by imposing restrictions on the elements
of the dual ordering cone. Assume we are looking for efficient solutions and
want to impose a set of tradeoff restrictions. Let 7 C K x K be the set of
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pairs for which we want to limit the tradeoffs and let 7 (j) be the j* pair
in the set. To control the tradeoffs we impose the restrictions

* *

761 < T16) 1)
on the elements of the dual ordering cone. The dual cone for the Pareto
ordering cone Y, is Y, so the dual ordering cone

= {C* €Y ’ C’}:'(jh = TT(j) C’}i'(j)z’ c z 0}

incorporates the tradeoff restrictions. If we rewrite the nonnegativity con-
straints as
c">0 <« c"<2c,

we can integrate them into the tradeoff restrictions by setting T}, = 2 for
all k € K. Thus, we get a pair set

T =T U {(k,k) | ke K}
that is always nonempty. Using the equivalence
<ron < T16) 1y, = (T7) er(). — €1 ) =2 0

we can combine the different vectors Tr(;) er(;), —er(j),, j = 1,...,|7| into
a matrix C with entries

1 for T(j)1=1="7T(j)2

C — -1 for T(])l :Z#T(])Q

"7 Tr(j) for TG #i=T(j)
0 for T(j)1,7(j)2 #i

Note that due to the nonnegativity constraints 7 2 {(k,k,) | k € K}.
Therefore, the matrix contains the identity matrix as a submatrix. The
matrix notation now allows us to rewrite the full set of restrictions as CL¢c* >
0. Hence, the dual ordering cone is given by

Cr = {c* cY ‘ CTer > 0}.

From this we will derive a similarly easy explicit representation of the or-
dering cone. To derive one of the inclusions we will use the strong duality
theorem of linear programming (see e.g. [25]). This correspondence is a
special case of results in [95, section 14].

Lemma 3.5.3 The ordering cone implying the above tradeoff restrictions is
given by
C={Cw|w>0}.
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Proof:

In the setting considered here it suffices to show that the given cone equals
the dual {Cw | w > 0} = (C*)* of the dual ordering cone C* (see [64]).
C:

For any given w > 0 and any c* € C*
(Cw,c*) = (w,CTc)y > o

Therefore, every element of {Cw | w > 0} is dual to every element of C*
and hence contained in the bidual. This implies {Cw | w > 0} C (C*)*.

2
We will show that every Ay € Y\ {Cw | w > 0} outside the given cone is
not contained in (C*)* either. Since C contains the identity matriz, Ay can

be written as a linear combination Ay = Cw for a suitable w € RIT!. For
every Ay ¢ {Cw | w > 0} the optimal value

i | Ay =C <0 3.13
maxogr?glﬂ{wj | Ay w} ( )

is negative. The problem (3.13) can be reformulated as the linear program
max{z € R|w>1z, Cw= Ay},
whose dual can be simplified to
min {AyTu ’ CTu>o, (lT CT) u=1}. (3.14)

Because the primal problem (3.13) is bounded and has feasible points, its
optimum is attained. Duality theory of linear programming thus yields that
the optimal value of (3.14) is negative as well. Looking at the constraints of
(3.14) we see that its feasible set is contained in C*\{0}. But for the optimal
u the scalar product with Ay is negative. Hence, the chosen point Ay ¢
(C*)* is not contained in the bidual. Since Ay is an arbitrary point outside
{Cw | w >0}, no such point can be contained in the bidual. Therefore, the
proposed cone {Cw |w > 0} D (C*)* is a superset of the bidual.

O

So the ordering cone is the positive linear combination of the columns of
C. If we have no user defined tradeoff restrictions then C is just the iden-
tity matrix and hence the ordering cone is just the Pareto cone Y . Any
nontrivial tradeoff restriction will add a generator for the ordering cone and
consequentially the new cone is a superset of the old one.

The tradeoff restrictions should leave enough ‘room’ so that the dual order-
ing cone still has nonempty interior. For that the combination of inequalities
must neither become sharp nor incommensurate with positive c;. Since the
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restrictions are onesided, only a chain of inequalities having the same ele-
ment as starting and end point combined with the nonnegativity constraints
can cause such a situation. So assume there is a closed path P = (ky, ..., k)
with (k;, kip1) € T for all i = 1,...,n — 1 and (ky, k1) € 7. Hence, we have
the set of inequalities

* * * * * *
Chy < Thika €y s o5 €y < Thy ik, €y s Ch,y < Ty by Cy -

Setting k,+1 = k1 and combining all the inequalities we can derive the
following condition on ¢y, :

n
* *
Cp, = H Tkmkiﬂ Ck,

i=1

Thus, for allowing positive c;, the product

n
1< [ Thibos- (3.15)
i=1

needs to be greater than or equal to 1. We capture this in the following
definition.

Definition 3.5.4 Assume the tradeoff bounds are given by T and T. Then
i) they are called compatible, if the product [[;_, Tk, k,,, > 1 and

141

i) strictly compatible, iof T[T Th, 5,y > 1

i+1
for every existing chain of inequalities in T. If some chain exists with a

product T]i ) Th, r,., <1 smaller than 1, we call the bounds incompatible.

For incompatible bounds, the objectives whose corresponding components
in the dual ordering cone are restricted to 0 do not play a role in the optimi-
sation any longer. Thus, if all of the components of the dual ordering cone
are involved in incompatible inequality cycles, the problem is turned into a
pure feasibility problem.

For compatible but tight bounds the relative values of the elements of the
dual cone are fixed for the involved components. Hence, the dual ordering
cone has empty interior, and therefore there are no properly C-efficient so-
lutions (see proposition 2.2.8). Moreover, we have fixed marginal rates of
substitution for the corresponding objectives, which means that we are effec-
tively considering their weighted sum as one objective in the multiobjective
problem. So, tightening the tradeoff constraints results in an increasingly
strong coupling of the corresponding objective functions.

If all tradeoff rates are fixed we effectively have a halfspace as an ordering
cone, so that the optimisation result can equivalently be gained by minimis-
ing the weighted sum with one of the elements of the half-ray C* used as
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weight vector. Note that the C-approximating functions are C-representing
in this case, because they are nonnegative in C and nonpositive in —C
and —CUC =Y. So independently from the chosen C-representing or C-
approximating function the cone scalarising problem will yield the weighted
sum solution in this case.

To check the compatibility of the constraint combination we need to ensure
that the restriction (3.15) holds for all closed circles in the directed graph
given by the vertices k € KC and the edges 7.

Proposition 3.5.5 If the shortest path problem on the directed graph given
by the vertices k € K and the edges T with edge weights In (Tk,k/) detects
no negative cycle for the paths from each vertex k to itself, the constraints
C7 ¢* > 0 are compatible.

Proof:

If no closed path ezists, the claim holds trivially. So let (ki,...,kn, knt1 = k1)
be a closed path with minimal length. Due to the monotonicity of the natural
logarithm

n n n
Z In (Tkivkwl) =In (H Tki,ki+1) = ln(l) >0 — H Tki,ki+1 > 1.
=1 =1 =1

Therefore, the nonnegativity of the sum of logarithms is equivalent to the
product being bigger than or equal to 1. Since we test each vertex in turn,

we will detect negative cycles, if they exist.
O

Detecting negative cycles in shortest path problems is easy ([2]) and for the
typical number of vertices (= K) and edges (< K?) present in our specific
network its runtime is negligible.

The situation is even simpler when the tradeoff bounds are introduced one
at a time. Here, we restrict the edge length of the new constraint such
that system of constraints stays compatible — which it is for the Pareto
cone. If a decision maker wants to introduce a bound on the deterioration
of objective k per unit gain in objective [, we can detect the shortest path
from [ to k, if such a path exists. If it does not exist, the decision maker
can introduce a bound with an arbitrary T;; > 0. If such a path exists we
get the path length p of the shortest path. Now choosing T;; > e we
ensure that the cycle composed from the shortest path and the new edge
has nonnegative length. Thus, the corresponding chain of inequalities is
compatible. If we want to enforce strict compatibility the inequality must
be strict, i.e. Tjj > e™”.

To avoid numerical difficulties, one should set a minimum distance § > 0 and
ensure by the above procedure, that there is always a slack of at least § in
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every chain of inequalities. This can easily be incorporated into the methods.
So not just negative cycles imply incompatibility in this stronger sense, but
also detecting a shortest cyclic path of length smaller than In(1 + J) is then
judged to be incompatible.

So far we just analysed the effects the discounting mechanism has on the
forthcoming selection steps and thus on the choice of the subsequent solu-
tions. We will now have a closer look on the effects it has on the current
solution.

The current solution is modified to conform to the newly introduced price
bounds. For that we solve a cone scalarising problem on the full feasibility
domain Y(b)

min {s(c*, ¢7) |y — y'=ct—c, ye (D), ctc ¢ c} (3.16)

with the previous solution y* as a reference point. If the point is s-efficient
for the old cone and remains so for the new cone, i.e. it already fulfils the new
pairwise bounds on the prices, it will not be changed. If it is not s-efficient
with respect to the old ordering cone or does not fulfil the new price bound
it will be changed.

This change does in general not happen continuously, as it is very similar
to changing the weights in a weighted sum scalarisation. In particular,
polyhedral outcome sets Y(b) are likely to exhibit discontinuous behaviour.
A small enlargement of the previous ordering cone C’ could ‘remove’ a whole
facet of the corresponding efficient set ef fo()(b)) and thus force the cone
scalarising problem to jump. For continuous behaviour the condition that
the set of efficient points has just on point with each facet of Y + Y, in
common is needed, to rule out the described situation (see [41]).

3.6 Two-phase approach to Pareto navigation

Interactive multiobjective optimisation methods are especially useful when
the response times of the system to user input are short. If the decision
maker has to wait noticeable fractions of a minute for the system to an-
swer the interactivity is somewhat lost and the decision process becomes
awkward. Therefore, large-scale multiobjective optimisation problems are a
challenge for interactive methods.

Sometimes one is able to improve the speed of the individual calculation to
overcome the problem, but if no special structure in the scalar problems can
be exploited this approach is not feasible.

A more general technique is the use of a two phase approach. Here, one
combines a method that generates an approximation to the set of efficient
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solutions with an interactive approach. The approximation method is re-
ferred to as phase I and will usually involve lengthy computations for high-
dimensional and large-scale multiobjective optimisation problems. This part
can be done offline, so after the computations are started the first phase does
not require any further interaction.

The approximation gained in phase I is then used for decision making in the
interactive phase — phase II. Here, optimisation problems are solved in the
given approximation ([40]).

We will describe a two-phase approach to Pareto navigation meant to be
real-time compatible. Thus, we consider the evaluation of the objective
function to be potentially time-critical. We will discuss at several points
possibilities to improve the current estimate by some computationally more
involved method. The implicit assumption is that the time intervals between
individual decisions will vary. The corrections are meant to be executed
while the system is idle, e.g. when the decision maker closely inspects the
current solution or rethinks his or her strategy.

In the remainder of this section we will assume the approximation from the
first phase to be given. For most of the ideas and methods put forward in
this section an approximation of the efficient set by a set of efficient solutions
is enough. They do not need to be ordered or linked to some parameters.
Although, at times we discuss refined or auxiliary methods that include the
use of normal vectors to the efficient set or equivalently subgradients of the
scalarisation function at the given points.

This information is readily available for some of the approximation methods,
e.g. the methods based on weighted sum scalarisation. For other methods it
needs to be generated, but the basic information for its generation will most
likely be present during the calculation of the efficient points. But it can
sometimes even be generated afterwards (see [56]), if one judges the effort
to be worthwhile.

We will not elaborate the question of how to construct the approximation
here. The article of Ruzika and Wiecek ([99]) contains an overview of avail-
able methods. The exact choice depends to some extent on the characteris-
tics of the multiobjective problem under consideration. Therefore, we will
discuss this issue in more detail in conjunction with the intensity modulated
radiotherapy planning problem in chapter 4.

3.6.1 Simplifying the problem formulations

We will use the precomputed solutions to considerably simplify the problem
formulation. Solving the simplified problems will be amenable to fast execu-
tion. Naturally, the solutions gained by solving the reformulation will only
be approximations to solutions of the original problem. If the precomputed
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solutions form a good approximation of the efficient set, the results of the
simplified problems will give a fairly accurate picture though.

Assume we are given a number of pre-computed Y, -efficient decision vectors
xW .. x(M and their objective vectors y(l), ...,y(m) . For convenience we
group the vectors into matrices

X = (x(l) | oo ] X(m)) and Y := (y(l) | oo ] y(m)) .

This information allows us to formulate two simplified versions of our mul-
tiobjective optimisation problem. The first reformulation substitutes the
potentially complex and implicitly given feasible domain by the convex hull
of the precomputed solutions and thus by an explicit representation. So we
consider the multiobjective optimisation problem

mo-min {y |y € f(XP)} , (3.17)

where X7 := conv {x(l), ...,x(m)} is the convex hull of the precomputed
solutions.

The second approximation goes one step further and substitutes the outcome
set by the convex hull of the precomputed objective vectors

Y = conv {y(l), ...,y(m)} :
The corresponding multiobjective optimisation problem is
mo-min {y |y € Y'}. (3.18)

In both cases the convex hull is spanned by a finite number of given extreme
points. Hence, it can be expressed in a constructive way by

X ={Xv|veVv,} and YW ={Yv|veV,
respectively, where
Vim = {v eRY [ (1,v) = 1}

is the simplex of convex combination coefficients in m dimensions. Substi-
tuting these representations into the problem formulations, we get

mo-min {f(Xv) | v € V,} (3.19)
for the problem (3.17) and
mo-min{Yv |v €V, } (3.20)

for the problem (3.18).
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So the first approximation replaces the potentially complicated feasibility
domain X by the simplex V,, and a linear mapping and the second approxi-
mation turns the original problem (2.2) into a linear multiobjective problem
with the simplex V), as feasible domain. Thereby, the linear model (3.20)
can be seen as a linearisation of the partially simplified model (3.19). The
relation of the original, the partially simplified and the fully simplified model
are depicted in figure 3.6.

%A

Y;

1

Figure 3.6: The green line is the approximation to the set of efficient points
given by problem (3.20) and the blue curve the one given by problem (3.19).
For the same convex combination coefficients v, the blue point f(Xv) is by
convexity contained in the darker area (Yv = Y+) N Y given by the feasible
outcomes contained in the negative Pareto cone attached to the green point
Yv.

3.6.2 Update of the planning horizon

The simplified structure of the approximate problems allows a simplification
of the optimisation problems related to the navigation mechanisms. We will
start with the update routines for the lower end of the planning horizon.

The range of solutions present in decision making is now just the set of
outcomes for the partially simplified problem. Thus, we try to estimate
the ideal and nadir point for this problem. The quality of the estimate
with respect to the original problem can be quite bad, if the approximation
computed in the first phase only covers some portion of the efficient set.
Therefore, the ability of the a posteriori method used in the first phase to
cover the set of efficient solutions is an important quality marker.

To determine the minima of the different objective functions K convex min-
imisation problems have to be solved.

min {f;(Xv) | f(Xv) < b, v €V, } (3.21)
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yields the minimum value for the k" objective function. If solving the par-
tially simplified problem K times is too time consuming, the fully simplified
problem can be used to gain some estimates.

min {(Yv), | Yv < b, veV,} (3.22)

yields an approximation of the minimum value for the k& dimension. The
linearisation overestimates the convex functions f. Therefore, the upper
bounds are more restrictive and thus the feasible region is at most as large
as the one for the partially simplified model. Moreover, linearisation over-
estimates the value of the objective function, so that the overall estimate is
an upper bound. To improve the estimate, fk(XV(k)) can be evaluated for
the optimal v(¥) of the fully simplified problem giving a sharper estimate of
the minimum.

If an outer approximation of the original problem by supporting hyperplanes
is given, we can solve another set of linear programs to get lower bounds on
the minima:

min{yk ‘ Ny >1,y < b} (3.23)

The intersection of the halfspaces N7y > 1 corresponding to the support-
ing hyperplanes is a superset of ). Hence, the resulting objective values
underestimate the ideal point’s corresponding coordinate.

The linear programs (3.22) and (3.23) are very moderately sized and there-
fore usually can be solved in some fraction of a second. The linear program
implementing (3.22) has m variables — the number of precomputed solutions
—and K restrictions. The linear program for problem (3.23) has K variables
and K + m restrictions.

The interval given by the objective values for two linear programs (3.22) and
(3.23) contains the true value and thus the interval length is a worst-case
bound for the linearisation error. Since the same is true if we use fj, (Xv(k))
instead of Yv(*) and the former is smaller or equal to the latter, evaluating
the function improves the error estimate.

If solving K problems of type (3.21) is real-time feasible, then this formula-
tion should be used for the navigation. Otherwise, the linearisation (3.22),
combined, if possible, with function evaluation should be used. (3.23) should
be used to determine the interval of uncertainty for the estimates, if the tan-
gent information is present. If (3.21) is fast, but not real-time feasible, a
hybrid strategy can be employed: While the bound is changed the lineari-
sation is used and when the system is idle again, (3.21) is used to determine
the true minima and correct the visualisation.

The determination of the individual minima of the objectives under tradeoff
restrictions remains difficult. The exact formulations for the approximate
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problems still are bilevel problems, whose application does not seem appro-
priate in a real-time environment.

Thus, we will work with the simplified version of the heuristic (3.4). So we
will either solve the K minimisation problems

min {(c™, f(Xv)) | f(Xv) < b, vEV,} for keK (3.24)
or their linear counterparts
min {(c(k),Yv> |Yv < b, veV,} for kek. (3.25)

Here, we cannot improve the estimate of the linear program (3.25) by com-
puting fi,(Xv*¥)) unless we are able to check that the resulting outcome
fulfils the tradeoff restrictions.

The objective function of the linear program (3.25) should be transformed
to
(c® Yv) = (YT v).

The right-hand side Y7Z¢®) in the inner product can be precomputed and
only needs to be updated, when the bounds on the partial tradeoffs change.
The linear program (3.25) then has K constraints and m variables.

The estimates for the upper end of the planning horizon remain a difficult
task. We can use the payoff-table heuristic on the results gained during the
lower bound computations. Another possibility is the use of the simplex
based heuristic for the nadir point approximation presented in [70]. Since it
works for linear multiobjective optimisation problems and can be adapted
to work with ordering cones (see 3.3.2), we could apply it for the estimate
of the upper end of the inner and outer planning horizon.

To make the estimate a lower bound for the true maximum, one can simply
evaluate fk(XV(k)) for the optimum v(*) on the linear approximation. So,
depending on the time restrictions we could work with the payoff table
estimates or the results of the heuristic. If we choose the payoff tables, we
can still apply the heuristic for corrections when the system is idle.

3.6.3 Selection and discounting mechanism

Making the selection mechanism faster is maybe the most important of the
described speedups. Changing the current solution is very likely the mecha-
nism that is most often used. Besides, being able to (approximately) execute
the selection in real-time allows the decision maker to directly react to the
side-effects of his or her changes. The ability to modify the current solution
in real-time raises the appeal to move away from standard solutions and to
really explore the variety of solutions multiobjective optimisation offers.
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The reformulation of the selection problem (3.8) is straight forward:

min {s(ct,c”) | £(Xv)- ylt=ct—c, f,(Xv) =7, (3.26)
f(Xv)<b, veV,, chc el }

This problem is somewhat simpler compared to the original problem (3.8),
but as a convex minimisation problem it will most likely not be fast enough
for a real-time execution. Thus, we reformulate the selection mechanism
problem using the fully simplified problem.

min {s(ct,c”) | Yv-— yit=ct—c7, (YV)i =7, (3.27)
Yv<b, veV,, chc el }

The equality constraint is certainly much easier to implement in the lin-
earised case, as it restricts the variables v to an affine linear subspace. So,
one can enforce it by only allowing changes, for which the variables stay in
this subspace. But the equality constraint is only an approximate. If we
reevaluate the optimal convex combination v with the original convex func-
tions f(Xv), the convexity of fy, ensures that 7 is an upper bound for the
convex function value. In general it will be smaller than 7. Nevertheless, the
deviation is bounded by the distance of the approximation to the original
problem, so that for a good approximation the deviation is small.

The simplified problems can be incorporated into the solution modification
problem (3.16) for the discounting in a very similar way. Evaluating the
optimal convex combination in case of the fully simplified problem again
improves the approximation. Since a change of the bounds on the pairwise
prices is very likely not used as often as the selection mechanism, we consider
it to be less critical in terms of time. Hence, using the partially simplified
problem to adapt the solution to changing price bounds can be considered.

In both cases one could employ the fastest implementation while a change is
induced by the decision maker and use the more complex problem formula-
tion to correct the outcomes of the coarser approximation, when the system
is idle.

The convex combinations of precomputed solutions are in general subop-
timal even for a good approximation — a slightly unsatisfactory situation.
Fortunately, we can estimate the degree to which the current solution is
suboptimal. There are different ways to estimate the distance, but all ap-
proaches exploit the fact that we have an inner and outer approximation to
the efficient set.

So one simply has to choose a sensible direction and do a line search from the
current solution and compute the intersection point with the outer approx-
imation. The distance between the current solution and the point on the
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outer approximation gives an upper bound for the distance to the efficient
set. To compute the intersection point one just has to solve

max {a | N7 (y* + aq) > 1},

for the search direction q. The distance of the current solution from the set
of efficient outcomes is then bounded by «|| q ||2-

The direction for this search process can be chosen in many different ways.
We propose four different heuristics to choose it here:

1. Choose a fixed q € —int(C*).
2. Take —Nv.

3. Choose y° — b.

4. Take y'(b) — y*°.

The four different ways of choosing the search direction correspond to heuris-
tics used to build up approximations of the set of efficient points ([17], [28],
[91]), where the second choice tries to approximate the normal vector of the
chosen point.

If the distance is large in an area that is of interest to the decision maker,
(s)he could decide to invest some time into improving the approximation.
Then the line search would be executed on the real problem yielding another
efficient point. This point can be added to the simplified problems and
greatly improves the local approximation. This process can be seen as a
column generation for the simplified problems. After the point is added, the
planning horizon is updated and the newly computed point is set to be the
current solution.

The decision making process could thus start with a relatively coarse ap-
proximation and be refined in regions of interest to the decision maker. This
strikes a balance between executing Pareto navigation on the original prob-
lem and just working with the approximation. Again it is a tradeoff: if we
choose to work with a coarse approximation, phase I will be shorter, but we
need additional time in phase II.

The possibility of locally refining the approximation influences the percep-
tion of the quality measures for the approximation. Coverage now is the
most important, since we cannot correct for lack of it later on, whereas
too large distances can be compensated. Still, an approximation with small
distances is an advantage, since the simplified problems then convey the
problem characteristics correctly to the decision maker.

The simplified problem description can be used to speedup the selection and
parts of the discounting mechanism through the simpler description of the
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feasible domain and the simpler structure of the constraints. But to really
profit from the simplification we have to choose a cone scalarising function
that can be implemented by a linear program. One such function is the
Pascoletti-Serafini scalarisation approach.

3.6.4 An implementation with Pascoletti-Serafini

We have shown in section 2.7 that the Pascoletti-Serafini scalarisation ap-

proach can be transformed into the cone scalarising function (2.17),
s(c+,c_) = min{z ER|cT—c +c=1z21,cc C}.

If we insert this function into the selection mechanism problem (3.8)

+

min{s(c+,c_) ‘y—yR:c —c,yw=7,y<b,yel chc e C},

we get the following linear optimisation problem:
min {min{z e R|cT—c+c=21, ceC}|
y—yi(r)=ct—c,yp =7, y<b, ye Y ctcec},
= min{z eR ’ Yv—yRr)+c=21, (Yv)y =7, Yv<b,
vV EVn, ceC} (3.28)
The problem for the discounting mechanism is very similar to (3.28), but
with y* instead of y(7) and without the equality constraint (Yv) = 7.

Because of their similarity we will only describe the implementation of the
selection mechanism in detail.

The first step is to introduce the constructive definition of the ordering cone
and to replace the multiple occurrences of the matrix vector multiplication
Yv by a set of variables to make the matrix of the linear program sparser.

min{z‘ y=Yv, yw =7, y<b, 1Tv=1, (3.29)
Vi —YR(T)+ (Cw), =2, ke K\ {k'}
v>0, w>0, z€R, yEY}

From the standpoint of implementation it is beneficial to use one linear
program that can be adapted to realise the different selection mechanisms
instead of setting up one for each request. Thus, we modify the linear
program (3.29) so that changing 7 as well as changing the chosen objective
can be realised by a change of the right-hand side. The —oo constraints
express that the corresponding variables are unbounded from below.

min{z | Yv-Ay=yl(r), Ay + (Cw), =12, 17v =1, (3.30)
Ay <Y (br —yfi(7)) er, Ay > —o0 (1 —ep)
KAk

VZO,WZO,ZER,YEY}
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Here, the difference Ay of the convex combination of the precomputed solu-
tions YV to the reference point y(7) is the main set of variables. The first
part of second line of the linear program represents the y < b constraint,
but the first equality of the first line was used to substitute y by Ay. Ad-
ditionally, the constraint y;, < 7 was incorporated into the inequalities by
Ay < 0, which substitutes the weaker y,r < by,. The second set of in-
equalities in the second line is trivial except for the &’-th component, which
ensures that Ay > 0.

Thus, the change of 7 as well as the change in the chosen objective func-
tion can be implemented by changing just the right hand side of the linear
program. In particular, the solution of several problems (3.30) for the same
starting point but different values of 7 becomes a parametric linear pro-
gramming problem, which we solve with the simplex method ([25]).

If we view the Pascoletti-Serafini approach as a line search from the reference
point along a pre-specified direction, we see that the optimal solution is
on the boundary of Y¥. Since ¥ is the convex hull of the precomputed
solutions, its boundary is given by convex hulls of subsets of the points. If
no K + 1 points lie on a common hyperplane, the boundary is composed of
simplices. The linear program (3.30) chooses the simplex with the optimal
point automatically, which can be seen as an implicit triangulation of the
surface.

If 7 changes slightly and the new optimum lies on the same boundary sim-
plex, the simplex method does not even need to pivot, but can directly
compute the new point from the new right-hand side. The inverse basis
matrix is continuous as a linear mapping and therefore the change in the
point is continuous until the next basis change. Then we topple over to the
next boundary simplex and so on. Thus, if the change in 7 is not too large,
the linear program for the previous 7 value or selection step can be used to
almost instantly get a response.

When employing the simplex method to solve the linear program, at most
K +1 components of the v vector are nonzero. This is due to a theorem due
to Caratheodory (see [95]) and the property of the simplex method to use
minimal representations. Thus, independent from the number of precom-
puted solutions the number of convex combination partners only depends
on the number of objectives.

Changing the restrictions to the partial tradeoffs cannot be incorporated as
easily. Here, a part of the constraint matrix of the linear program changes.
This is uncritical, if the corresponding variable is not contained in the basis
matrix, but otherwise requires some updating of the solution. This corre-
sponds to the situation that the changed bound played a role in determining
the optimal solution. Newly introduced bounds are uncritical though, since
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their introduction can be viewed as a new column being added to the sys-
tem. Thus, the previously optimal solution stays at least feasible for the
dual problem.

3.7 Pareto navigation for nonconvex problems

So far we only considered the case of convex multiobjective optimisation
problems. If the nonconvexity can be remedied by strictly monotone co-
ordinate transformations say, the method could work on the transformed
outcome set and the results could be transformed back to the original out-
come set. Ideally, the transformation would be applied twice, so that the
input of the decision maker is given for the original outcome set, is then
transformed and applied on the transformed set and the transformed back
to the original set. In essence this is just a nonlinear deformation of scales.

The more interesting case is the case where even the set of weakly efficient
outcomes is no longer connected. Here, a selection step that moves into
one of these ‘holes’ is bound to give a result that could be improved in all
objectives. Therefore, such a move should be avoided.

By slightly reformulating the selection problem (3.8)

min {s(c+, c_) ‘ y—yli=ct—c yp +cp=r, (3.31)
y<b,ye), cfc,ceC},

we can avoid the strictly dominated parts at the price of a reduced control
on the manipulated objective. The only change compared to the original
problem is the changed left-hand side of the equality constraint. Due to
the change we are no longer searching for the point of best distance to
the reference point in the intersection of the outcome set Y(b) N Hy (7)
with a hyperplane. Instead we search on the intersection of the hyperplane
(Y(b) +C) N Hys (1) with the Minkowski sum of the outcome set and the
ordering cone.

The weakly C-efficient solutions of this set are again connected and the Y (b)
portion of the Minkowski sum is weakly C-efficient.

Theorem 3.7.1 Let the cone scalarising function s be C-centred, strictly
C-consistent and continuous. Then optimal results to the problem (3.31) are
weakly C-efficient.

Proof:

Let ¥ be optimal for the problem (3.81) and a given reference point y't.
Furthermore, let ¢*,&é~ € C be an s-optimal representation of y. Now assume
that ¥ is not weakly C-efficient. Then the interior of the negative ordering
cone

(y —int(C)) N Y(b) # 0
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Figure 3.7: Due to the redefinition of the equality constraint we are able to
bridge potential gaps in nonconvex problems.

has nontrivial intersection with the set of outcomes. Let y+¢ = ¥y be a
representation of the optimum with a feasible outcome y € Y(b) and an
element of the ordering cone’s interior € € int(C).

But since y fulfils the constraints

Viw+Cw+cy =7 and y—y¥ = &¢t—(¢7+¢),

it is feasible for problem (3.31).

Now the minimality of ¥ implies the following inequalities:

s@he) = minfs(ehe) |y—yT= et ey tomr
y €Y, ctc eC}

< s(efe+e)
Fee s(ef,e™+¢—c¢)
= s(é+, é_).

This contradicts the assumed minimality. Hence, the interior of the negative
ordering cone

(¥ —int(C)) N Y(b) = 0

has empty intersection with the set of outcomes and therefore ¥ is weakly
C-efficient.
O

A further nice property of the resulting weakly C-efficient solution is that it
fulfils the price bounds by the construction of the ordering cone.
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Modifications to problem (3.31) analogous to the ones in lemma 2.4.8 can
be used to yield even C-efficient outcomes. Mind though that the equality
constraint necessary in the lexicographic optimisation can be troublesome
for nonlinear problems.

The result of theorem (3.7.1) is further weakened by the fact that it is in gen-
eral unclear how to obtain a global optimum of the cone scalarising function
over the intersection Y(b) +C N Hy(7) for a given reference point y**. This
crucially depends on the structure of the underlying scalar problems and
thus on the structure of the individual multiobjective optimisation problem
at hand.

The negative side effect of the problem modification is the loss in control
on the value of the manipulated objective. Looking at figure 3.7 we see,
that the )(b) portion of the Minkowski sum constantly remains the same
until the other connectivity component of the weakly C-efficient set can be
reached. Then a jump to the new connectivity component takes place.

One could in principle use the problem (3.31) for the convex case as well,
but one would give up the ultimate control on the value of the manipulated
objective, which is one of the key features of Pareto navigation.

With the above changes the selection and discounting mechanisms can be
applied to nonconvex cases. The restriction mechanism can directly be trans-
ferred as well. By contrast, the updates of the planning horizon, which were
already difficult to implement for the convex case cannot easily be imple-
mented for the nonconvex case. Here, the intervals could consist of several
disconnected parts, where these parts can consist of single points or be open.
Thus, in the nonconvex case the planning horizon cannot be determined with
the methods at hand.

3.8 Summary

In this chapter we have introduced a new interactive multiobjective opti-
misation method named “Pareto navigation”. We have argued why we see
a need for a new method and posited our main goals for the new method:
control, simplicity and overview. We have then presented the three mecha-
nisms that are at the decision maker’s command — restriction, selection and
discounting — and the complementary information provided to the decision
maker — the planning horizon — from a user’s perspective.

After that we started the in depth analysis of the mathematical realisation of
the mechanisms with the restriction mechanism and the related updates of
the planning horizon. We have seen that the incorporation of the bounds on
the objectives set or changed by the restriction mechanism into the model
is easy, but estimating their consequences is difficult. In particular, the
upper end of the inner and the outer planning horizon — the estimate for the
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nadir point considering respectively not considering the ordering cone — can
only be exactly determined by global optimisation techniques. The same
holds true for the lower end of the inner planning horizon — the estimate for
the ideal point considering the ordering cone. Therefore, we proposed some
heuristics to gain approximate values that are used instead of the intractable
exact ones.

Then, we presented the selection mechanism arguably the most important
of the three mechanisms Pareto navigation offers. We have presented the
mathematical model for the selection mechanism and a critical example used
to demonstrate potential problems. We then examined the set of potential
results and specified an algorithm to reach every efficient point among that
set. The set of results was then shown to be connected, if the objectives
are allowed to change in the inner planning horizon only. For objectives
that range of the full planning horizon the set of optima for an individual
selection step was shown to be upper semicontinuous. Together with the
uniqueness results proved in section 2.5 of chapter 2 the results of the selec-
tion mechanism are continuous, if the corresponding conditions on the set
of outcomes or the distance evaluation function are met.

The last mechanism to be presented was the discounting. Here, we derived
the constraints on the dual ordering cone from the restrictions on the partial
tradeoffs. It was then proved that the restrictions on the dual ordering
cone imply the restrictions on the partial tradeoffs. The next step was to
derive a representation of the ordering cone from the representation of the
dual ordering cone. Then, we defined the notion of compatible and strictly
compatible tradeoff restrictions and demonstrated how the compatibility
can be checked with some simple network flow problems. The discussion
was completed by an examination of border cases of compatibility.

We then looked at ways to approximate the original problem formulation by
simpler models employing precomputed solutions as a basis for this refor-
mulation. The loss of accuracy and methods to keep it small and estimate
it were discussed. In particular, the update of the planning horizon and the
selection and discounting mechanism were considered. Finally, the imple-
mentation of the selection mechanism for the Pascoletti-Serafini scalarisation
by linear programs and different formulations of it are presented.

The chapter finishes with an examination of an adapted Pareto navigation
for nonconvex outcome sets. Here, we showed that dropping the equality
constraint in the selection mechanism, which leads to a loss in control, en-
ables the method to cope with the nonconvex situation. Furthermore, it
is proved that the resulting outcomes are weakly efficient with respect to
the given ordering cone. Thus, the discounting mechanism can be smoothly
applied to that case, but we saw that the planning horizon update cannot
directly transferred to that situation, so that the posited goal ‘overview’ is
not achieved in this more general situation.
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Chapter 4

Multiobjective IMRT
Planning

In this chapter we will present the application of Pareto navigation to in-
tensity modulated radiotherapy planning. Section 4.1 introduces intensity
modulated radiotherapy (IMRT) an important cancer treatment technique.
In section 4.2 the inherent multiobjective nature of the IMRT planning prob-
lem is identified. Then typical approaches to modelling the IMRT planning
problem are introduced and feasible ones are identified in section 4.3.

Section 4.4 addresses the problem of computing approximations to the effi-
cient set, which is nontrivial for the number of dimensions under consider-
ation. We will discuss why known deterministic methods of approximation
can only be used up to a certain dimension of the outcome space and pro-
pose the heuristic of the extreme compromises to treat the cases where the
dimension is too large.

Then, the current prototype implementing Pareto navigation is introduced
in section 4.5. Here, we will see that the user interface allows for very
intuitive means of manipulating the current solution and the feasible ranges.

The chapter ends with the summary in section 4.6, where we highlight the
most important points in the chapter and assess the impact of Pareto navi-
gation on IMRT planning.

4.1 Intensity-modulated radiotherapy

Radiotherapy is, besides surgery and chemotherapy, the most important
treatment option in clinical oncology. It is used with both curative and pal-
liative intention, either solely or in combination with surgery and chemother-
apy. The vast majority of all radiotherapy patients is treated with high
energetic photon beams. Hereby, the radiation is produced by a linear ac-

119
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celerator and delivered to the patient by several beams coming from different
directions (see figure 4.1).

Figure 4.1: The gantry moves around the couch on which the patient lies
(picture from [73]).

The goal in radiotherapy is to destroy the tumour without side effects in
the surrounding critical organs or the normal tissue. Unfortunately, it is
physically impossible to totally spare the surrounding body, since the photon
beam deposits parts of its energy in front of and behind the tumour. To have
a high enough dose in the tumour one therefore applies beams from different
directions, so that the dose concentrates in the tumour and is distributed
among the surrounding critical structures and normal tissue.

Using multi-leaf collimators (see figure 4.2), the intensity of a beam is mod-
ulated. This happens by uncovering specific parts of the beam and blocking
the remainder of the beam opening by the collimator leafs. This setting is
applied for a predetermined time. For every beam several such apertures
are superimposed and add up to a two-dimensional step function for each
beam.

The levels of this step function called intensities offer many degrees of free-
dom, so that many different dose distributions in the body can be achieved.
Thus, there are a lot of options for designing an IMRT treatment plan for a
specific tumour.

An IMRT treatment plan is fully determined by the directions from which
the body is irradiated and the number of these directions along with the
intensities for each direction. Although the beam geometry — the set of
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Figure 4.2: A multi-leaf collimator. The square opening in the centre of
the machine is partially covered by leafs, each of which can be individually
moved (picture from [107]).

chosen directions — plays an important role in the planning, it lies outside
the scope of this work and we consider the number of the beams and their
position as given.

The reason for this is that finding good beam geometries is a hard global
optimisation problem, that has not satisfactorily been solved so far ([12])
even though there have been some attempts (see [82, 92, 93] and the refer-
ences therein). Solving the full planning problem usually results in methods
that are either heuristic in nature ([14, 47, 48, 93, 110]) or have potentially
very long running times ([18, 77]). Practically, the beam geometry is cho-
sen based on the experience of the planner and used as fixed input to the
optimisation routines.

Thus, for our purposes the treatment planning problem is the detection of
optimal intensities for a given number of beams irradiating from given direc-
tions. Besides, the large number of degrees of freedom allows to compensate
to some extend for the beam geometry. Hence, the results will be quite
similar, if the (suboptimal) choice of the beam geometry is reasonable.

4.2 The multiobjective character of IMRT treat-
ment planning

The general goal of destroying the tumour without impairing the remaining
body splits into several goals at closer inspection. To be able to destroy the
tumour, first of all the dose inflicted on the tumour needs to be high enough.
Moreover, there is the requirement that the dose peaks in the tumour should
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not be too high. Thus, we would like to have a high and preferably uniform
or homogeneous dose in the tumour.

Opposed to this, we would like to have low doses in the surrounding body
tissue. In particular the organs lying close by should preferably not be im-
paired by the treatment. In case that this general goal cannot be met, the
planners usually search for a good compromise of distributing the inevitable
dose among the organs. Hence, in this case the sparing of each organ rep-
resents an individual goal.

Moreover, the tumour volume is usually split into several nested volumes, so
that the region that definitely contains tumour volume, can be distinguished
from the part that is likely to contain microscopic tumour. This is in turn
contained in a larger volume that tries to a priori compensate for potential
movement.

The multiobjective problem for the treatment planning problem naturally
arises from these goals. So, a typical setting involves one or two objectives
for a set of 2-3 nested target volumes and one objective for each organ — at
least for the ones close to the tumour.

In a prostate case the number of nested target volumes is typically three and
at least the bladder and the rectum that directly abut the tumour have to
be considered. If we use constraints to ensure a curative dose in the nested
target volumes and introduce an objective for the homogeneity for each of
the target volumes we are left with five objectives. Additionally, the femoral
heads and the unclassified normal tissue could contribute another objective
each.

Rectum

Bladder

Target (PTV)

Figure 4.3: Exemplary prostate case where the target volume is situated
between two critical structures (picture from [73]).
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The prostate case nicely demonstrates that the objectives for the organs at
risk can be opponents and cannot, therefore, be combined a priori. The
rectum and the bladder abut the prostate at different ends (see figure 4.3).
To achieve a high and homogeneous tumour dose the dose has to build
up somewhat outside the tumour. Usually, the build up can be moved
more towards the rectum or more towards the bladder, but the two organs
cannot be spared simultaneously without impairing the quality of the dose
distribution in the target volumes. Similar situations arise for other tumour
sites.

Moreover, the patients differ in age, fitness and might already suffer from
impairment of one of the organs under consideration. So, the treatment does
not only depend on the tumour site, but is to differing degrees individually
designed for the patient. Therefore, there is no prefixed model of how to
distribute dose effects between organs at risk. The problem thus is inherently
a multiobjective optimisation problem and should hence be treated as such.

The multiobjective character of the problem is present in almost all planning
approaches as the treatment goals for the target volumes and the different
critical structures are usually specified separately. However, it is currently
only implicitly present in the optimisation. In recent years there have been
some efforts to address the problem as multiobjective problem, though.

Yu ([128]) proposed a scheme for a systematic parameter choice based on
multiobjective decision theory to substitute the trial and error process used
for finding suitable parameters. Haas et al. ([47, 48]) applied multiobjec-
tive genetic algorithms to simultaneously find the beam geometry and the
intensities.

The activities then shifted to deterministic approaches for the approxima-
tion of the efficient set. Linear models ([13, 49, 59, 72, 74]) as well as
nonlinear ones ([23, 74, 76]) were under consideration. The two last men-
tioned works also included the splitting into an approximation phase and a
decision making phase. However, in both articles the decision making phase
only considered the precomputed solutions as discrete points in the objective
space. So, no convex combination of plans was considered.

4.3 Modelling the IMRT planning problem

So far there is no commonly accepted model for the exact biological impact
the irradiated dose has on the different organs and the tumour. Thus, there
are many different models to capture the quality of the dose distribution in
one (or a few) number(s) for each volume. Typically, the individual planner
uses the model (s)he thinks appropriate for the setting encountered in the
treatment or the model (s)he is most experienced in.
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Many models are based on the dose volume histogram (DVH). It depicts
the volume percentage that receives at least a certain dose as a function of
the dose (see figure 4.4) for each of the considered organs and the different
target volumes. Thus, there is a curve for each considered volume, which
represents the dose distribution in that volume devoid of its geometrical
information. So, the planner can directly read off the portion of an organ
that is currently overdosed or the portion of the tumour that is underdosed.

Figure 4.4: Exemplary DVH curve with a light blue tumour curve and curves
for several organs at risk.

A popular choice for specifying treatment goals are so-called DVH con-
straints. A DVH constraint enforces one of the curves to pass above or
below a specified dose volume point. So, either the percentage of volume
that receives less than the specified dose or the volume that receives more
than a specified dose is restricted for the chosen volume. DVH constraints
are widely used, in particular some clinical protocols are formulated using
DVH constraints.

Unfortunately, incorporating DVH constraints into the optimisation results
in a nonconvex feasible region and thus a global optimisation problem.
Hence, given a local optimum of the problem there is no guarantee for global
optimality. Therefore, either an enormous computational effort has to be
spent for finding all local optima or a suboptimal solution, whose deficiency
in quality compared to the global optimum is unknown, has to be accepted.

Therefore, convex evaluation functions of the dose distribution in a volume
have been devised that try to control the DVH. We will have a closer look
at them, since they are the functions we use for the modelling.

For a numerical treatment of the planning problem, the relevant part of the
patient’s body is partitioned into small cubes called vozxels V;. The dose dis-
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tribution can then be expressed as a vector of values d := (d(V1), ..., d(Vn))
with one dose value per voxel.

Using this notation, one such evaluation function is

fo(d) ;= Y (max{d(V;) — U, 0})?, g€ [1,00), (4.1)

V;CRy

where Ry, is some organ at risk. This function penalises the parts of the vol-
ume where the dose distribution exceeds a specified threshold Ug. In terms

of the DVH-curve this function penalises nonzero volume-values beyond the
threshold of Uy.

In [96] Romeijn et al. propose a different type of dose-volume constraint
approximation, that yields a piece-wise linear convex model analogous to
the well-known conditional Value-at-Risk measure in financial engineering.

Another approach to quantify the quality of a dose distribution in a volume
considers the biological impact. The biological impact is assessed using
statistical data on the tumour control probability (TCP) and the normal
tissue complication probability (NTCP) [119, Chapter 5|. These statistics
are gained from experiences with thousands of treated patients, see e.g. [39].

The concept of equivalent uniform dose (EUD) was first introduced by
Brahme in [15]. The EUD is the uniform dose that is supposed to have
the same biological impact in a volume than a given non-uniform dose dis-
tribution and depends on the type of the volume.

The most well-known is Niemierko’s EUD concept [88] that uses the L,-norm
to compute the EUD:

f(d) = ( {vcm} S A ) a € (—o0,~1)U(1,00). (4.2)

V;CR

Figure 4.5 illustrates EUD evaluations of a given DVH for two different a-
parameters. The dotted and the dashed lines are EUD measures with a
about 1 and a close to oo, respectively. Organs that work in parallel, i.e.
organs such as lungs or kidneys that are viable even after a part of them
is impaired, are evaluated with an a close to 1, whereas serial organs, i.e.
structures that depend on working as an entity like the spinal cord, are
evaluated with high a values.

Romeijn et al. [98] show that for multiobjective optimisation many common
evaluation functions can be expressed by convex functions yielding the same
set of efficient preimages.

In our prototype we mainly employ the EUD concept of Niemierko and
derivatives of it for the organs at risk. We use tail penalties or an EUD
derivative as functions for the tumour volume. Here, the function that cares
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Figure 4.5: Exemplary DVH curve with the resulting EUDs for a parallel
and a serial organ. (picture from [73])

for a high enough tumour dose can just be bounded and thus contributes as
a convex constraint or be used as a ‘real’ objective. Alternatively, the mean
value of the tumour can be fixed and the standard deviation is used as an
objective.

We always have some upper bounds for the different functions, since in
the clinical setting arbitrary values for any of the considered volumes are
infeasible. The outcome set is thus compact, because natural lower bounds
for all the objectives exist. For the organs this is the no-dose-plan and
for the tumour it is the perfectly homogenous plan that exactly realises
the prescribed dose. Moreover, the model is also convex due to the chosen
functions.

Even the scalarised IMRT planning problem is a large-scale problem, so
that the response times for any Pareto navigation action is to long for true
interactivity. Therefore, we will use the two-phase approach to Pareto nav-
igation. In the first phase the efficient set is approximated by a certain
number of efficient points and in the second phase the interactive real-time
decision making takes place.

4.4 Computing the approximation — phase I

A specific feature of the multiobjective setting in radiotherapy planning is its
normally high dimension — usually greater than or equal to five. Therefore,
computing the approximation to the efficient set in the first phase of our
two phase approach is nontrivial.

Hence, we will review the different methods to approximate the efficient set
listed in [99] and discuss their applicability to the IMRT planning problem.
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We will see that even the deterministic approaches that work best for our
case cannot currently cope with the high number of dimension in a satisfac-
tory way. So from a certain number of dimension on alternatives are needed.
We propose such an alternative — the heuristic of the extreme compromises.

4.4.1 Known approximation approaches

In our discussion of the different approximation methods we will follow the
classification developed in [99] that distinguishes point-based approxima-
tions of ef f()) and ef f(X) and outer, inner and sandwich approximations

to ef ().

The methods for point-based approximations of ef f()) usually fall into one
of the following categories:

1. They use fixed grids for the scalarisation parameters [17, 94, 113],

2. derive relations between approximation quality and distance of scalar-
isation parameters for arbitrary grids [1, 87] or

3. try to create an fine grid directly on the efficient set [42, 103].

The method of Dellnitz et al. ([32, 108]) does not approximate the efficient
set with points but cubes. Still, for our purposes it falls into the third
category.

The methods in (1) cover the scalarisation parameter set whose dimension
is at least |KC| — 1 with regular grids of maximum distance €. The methods
in (2) and (3) in turn cover the efficient set — which is in general a || — 1
dimensional manifold — with grids of maximum distance €. In any case, the
number of points needed is of order

o (/M)

Such a number of points is not tractable for the dimensionality of our prob-
lem. But due to the continuous approximation by convex combinations used
in the decision making phase we do not need such a number of points for a
good approximation.

For point-based approximations of ef f(X) the situation is potentially even
worse. “Since the dimension of ef f())) is often significantly smaller than
the dimension of ef f(X), and since the structure of ef f()) is often much
simpler than the structure of ef f(X')”, a search for solutions in the outcome
space ef f()) is more promising than in ef f(X) [11].

In essence the quality measure that underlies the point-based approxima-
tions namely having an approximation point close to every efficient point
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does not match with the continuous approximation scheme used in the de-
cision making phase. Therefore, the large number of points computed by
point-based approximations is a waste of effort.

The quality measures that match with our decision making scheme are cov-
erage of the efficient set and distance to it (see 3.6.3). Thus distance based
methods for approximating the efficient set are the natural choice for the
first phase of our two-phase approach. According to [99] there are three
types of distance based methods:

e outer approximation methods
e inner approximation methods and
e sandwich approximation methods.

Outer approximation methods successively find new supporting hyperplanes
and approximate the efficient set by the intersection of the corresponding
halfspaces. The methods of Benson [8] and Voinalovich [116] for linear mul-
tiobjective problems are not directly applicable to our nonlinear case, al-
though some of the ideas can be combined with inner approximation meth-
ods to form sandwich approximation schemes.

Inner approximation methods [22, 26, 104] create successively more efficient
points and approximate the efficient set with the close-by facets of the convex
hull of the computed points. Sandwich approximation methods [68, 109, 24]
determine supporting hyperplanes for every computed efficient point and use
the corresponding halfspaces to simultaneously update the outer approxima-
tion. Having an inner and outer approximation the sandwich approximation
schemes are able to give worst case estimates for the approximation error.

All methods mentioned above try to choose the scalar subproblems such
that the maximal distance between the efficient set and the approximation
is systematically reduced. The construction of the inner approximation is
conducted in all five methods by variations of the same basic idea:

1. create some starting approximation, that consists of one facet, i.e. a
|| — 1 dimensional face

2. find the efficient point that is farthest from the chosen facet by solving
a weighted scalarisation problem with a weight vector that is perpen-
dicular to the facet

3. add the point to the inner approximation and update the convex hull

4. if the approximation is not yet satisfactory, choose a facet from the
inner approximation and goto 2, otherwise stop
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So, all of them use convex hull computations as a subroutine in step 3. But
convex hull computations are known to have lengthy computation times and
huge memory needs in higher dimensions. The best available algorithms for
convex hull computations usually work for dimensions up to 9 [4, 22]. But
the trade-off between computational and memory expense for the convex
hull subroutine on the one hand and computational savings due to well-
chosen scalar problems on the other hand reaches its breakeven point much
earlier.

Moreover, the approximation methods use the output of the convex hull
computation to construct their next problem formulation. The description
of the problem thus grows with the complexity of the convex hull generated
by the subroutine. Hence, not only the subroutine becomes lengthier in
higher dimensions, but the problems solved to get new points are much
more complex, too. That may be the reason why [24] is the only method
for which numerical test for dimensions higher than three are reported.

A solution for that could be the application of bilevel programming pro-
posed recently by Leyffer ([78]) to solve the problem of finding the next
set of scalarisation parameters. Here, instead of building an explicit repre-
sentation of the inner approximation by convex hull algorithms, the inner
approximation is implicitly represented by the lower level problem. Thus,
there is no need for time consuming convex hull computations and the up-
dated representation after a new point has been calculated essentially only
increases by that point.

On the one hand, the method has the potential to smoothly work for high
dimensions, since it avoids all the problems mentioned earlier. On the other
hand, bilevel programming is a global optimisation technique with poten-
tially long running times and the problem of getting stuck in local minima.
The latter is not very troublesome in this context, as local minima with
similar distance values as the global optimum constitute points, that would
eventually be added to the approximation anyway. Still, the lack of numer-
ical experience with the method suggests to wait for its validation before
employing it in an application context.

Therefore, the (currently) most promising scheme is the use of [24] for the
comparatively low dimensional cases (up to four or maybe five) and the use
of heuristic or stochastic methods for higher dimensions.

The covered range plays a crucial role in the interactive selection process
and there is no guarantee that a reasonable range is achieved with a purely
stochastic procedures. Hence, we propose to use a heuristic to supply the
appropriate ranges and a stochastic procedure to improve the approximation
with further points.
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4.4.2 Extreme compromises — a heuristic approach

We will introduce the heuristic of the extreme compromises as a means
to ensure reasonable ranges for the objectives. The extreme compromises
probe the potential for different compromises. Therefore, it takes subsets of
the objectives and finds the best compromise for them observing the upper
bounds for the remaining objectives, but otherwise (almost) disregarding
them completely. Thus, it employs an extreme way of compromising — the
reason for its name.

The extreme compromises successively minimise the maximum values oc-
curring in subsets of the objectives. They partition the set of objectives into
the subsets of active and inactive ones. Then, the successive maxima in the
active objective functions are considered (oder taken care of) first and the
inactive objective functions are thereafter treated likewise.

Let ) # M C K be the set of indices of the active objectives. Define
TM:YXK—K
such that it sorts the objectives

Y (y.k) > Yy k) for k,k, e M, k< K
y”M(Yvk) > y”M(Yvk/) for k,k, % M,k < K
Tmy, k) <mm(y, k') for ke MK & M.

first according to whether they belong to the active or inactive subset and
second according to their current value. In analogy to [35, Chapter 6.3] let

sortpm(y) = (yﬂ'M(}ﬁk))ke]C
denote the sorted vector.

Consider the three vectors (1,4,6,8), (5,2,4,3), (2,6,3,4) and the set of
active indices M = {1,3}. Then the sorted vectors are

sortapm((1,4,6,8)) = (6,1,8,4),
sorta((5,2,4,3)) = (5,4,3,2) and
sorta((2,6,3,4)) = (3,2,6,4).

So, the sorting first sorts the components contained in M in decreasing order
into the first | M| components of the result vector followed by the remaining
components of the original vector in decreasing order.

The solution of
lexmin{sortm(y) | y € Y} (4.3)

is called extreme compromise for the active objectives M. The resulting
objective vector y™ will consist of several groups of indices with decreasing
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function value. Here, the groups lying in M make up the first | M| entries
and the ones in I\ M the remaining K — | M| components. The values for
each of the parts form independent scales by construction.

Note that (4.3) is just a formal way of writing the definition of an extreme
compromise. Since the sorting is supposed to change during the optimisation
process whenever the definition of ma((y, k) demands a change, we cannot
calculate the extreme compromises with lexicographic minimisation.

We will show, that the extreme compromises are efficient for every nonempty
set M # (). This is mainly due to the consistency of sorty, with the com-
ponentwise partial order.

/

Lemma 4.4.1 For every nonempty set () # M C K and two vectorsy,y’ €
Y, where one dominates 'y <y’ the other, the sorted vectors sortp(y) <
sortpm(y') have the same dominance relation.

Proof:

Let us first look at the case M = K. The claim is equivalent to the largest
remaining element of y' being greater than or equal to the largest remaining
element of y.

If the permutations i (y,k) = m(y’, k) agree for the k-th step, we just
remove the index. The domination relation then ensures that the claim holds
for the remaining components.

So assume that the permutations mic(y, k') # wxc(y', k') do not agree for
the k-th index. The indices given by the permutations are by definition the
mazimum of the remaining components for the respective vectors. Therefore,
the following chain of inequalities holds

!
Yy k) = Yacly k) = Yy k)

Here, the centre inequality is due to the dominance relation. Thus, the
counterpart Y.y k) n the dominating vector y for the mazimum of the
remaining entries in the dominated vector y' is bounded from above by the
entry y’. cydn of y' — the counterpart to the mazimum of the remaining
entries in 'y. Hence, if we consider them as a pair now, we can iteratively

continue the argument.

In other words, if we remove two components differing in index, their coun-
terparts in the other vector have the right order relation. Therefore, the
mazimum in the dominated vector for the remaining components is larger
than the one for the dominating vector.

To prove the claim for general M we observe, that sort g sorts the indices in
M and the ones in K\ M separately and puts the result of the former in the
first | M| components of the resulting vector and the latter in the remaining
components. So, applying sortag is like applying the unpartitioned sorting
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to the projections on the components belonging to M and to the remaining
components separately. The sorting within the projections respects the partial
order and thus the overall sorting as the collocation of the two respects it as
well.

O

Now the proof for the efficiency of the extreme compromises combines the
preceding result with the properties of the lexicographic order.

Theorem 4.4.2 For a nonempty subset ) # M C K of the objective func-
tions the corresponding extreme compromise is efficient.

Proof:

Let y,y' € Y be two vectors, where one dominates y <y’ the other. By
proposition 4.4.1 the sorted vectors sortyp(y) < sortam(y’) have the same
relation. But by the definition of the relation < and the lexicographic order-
ing it follows that

sort m(y) <iex sortapm(y').

Thus, no dominated point can be the minimum with respect to the lexico-
graphic ordering applied on vectors sorted by sortpq. Hence, the extreme
compromises are efficient.

O

The extreme compromise with all objectives active, i.e. M = I, is known as
lexicographic maz-ordering problem [35], variant lexicographic optimisation
problem [101] or as nucleolar solution [81] and nucleolus in game theory
(see references in [81, 101]). The latter articles also describe methods for
computing it. Sankaran ([101]) is able to compute it solving |K| optimisation
problems using |X| additional variables and constraints.

The number of |K| optimisation problems sounds alarming, but looking at
the algorithm, we see that in every step the |K| additional constraints are
tightened, but leave the current optimum feasible. The other change done
in each step is the adaption of the objective function, which does not hurt
feasibility as well. Thus, the current optimum is not optimal for the new
setting only, if the change in the objective function impairs its optimality.
Typically, that is not the case for more than 2-3 steps at most. So the |K]
optimisation problems is a worst case bound that is not met in practise.

General extreme compromises can be calculated by using Sankaran’s method
lexicographically for the two subsets. Alternatively, if upper bounds and
lower bounds for the objective functions are known, the objectives can be
scaled and shifted such that the largest value in the inactive objectives is
always smaller than the smallest value in the active objectives. Sankaran’s
algorithm will then directly yield the corresponding extreme compromise.
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The rationale behind the definition of the extreme compromises is to fathom
the possibilities to simultaneously minimise a group of objectives for all
possible such groups (see figure 4.6(a)). Therefore, we build up our initial
range by computing the extreme compromises for all nonempty subsets () #
M C K of the objectives.

Note that the solutions minimising individual objective functions, the so-
called individual minima are contained in the extreme compromises. Thus,
the convex hull of individual minima (CHIM) — the starting point for the
inner approximation in [26, 109] and a possible starting point in [68, 104]
— is also contained in the convex hull of the extreme compromises. Figure
4.6(a) shows that the extreme compromises cover substantially more than
the CHIM, which is in this case even sub-dimensional. This is due to the
fact that two of the three objectives share a common minimum.

g

{1} A
{1}

3}
{13} {1,3}

h

2.8 {2} 2,3}
2,31

0 °F, 0

(a) (b)

>
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Figure 4.6: Extreme compromises in 3 dimensions. The integer sets state
the active set for the corresponding extreme compromise. The squares are
individual minima.

Figure 4.6(b) shows the position of the extreme compromises for ) being a
bent open cube. Again the squares depict the individual minima. As one
can see, we need the full number of extreme compromises to cover the set
of efficient points for this case. In the general case the “grid” given by the
extreme compromises is distorted, with occasional degeneracies (see figure

4.6(a)).

The extreme compromises typically are not of high clinical relevance as the
inactive objectives frequently reach their upper bounds and are thus close
to the plans that were a priori characterised as clinically irrelevant.
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The number of extreme compromises (4.3) to be calculated is exponential.
It is equal to the number of nonempty subsets of K which is 2Kl — 1. One
can think of this number as resulting from two points for each interval in a
Cartesian product.

One method to reduce the number of computations is to group related organs
and treat them as one component. They are turned active or inactive as a
group and hence only count as one objective in the exponential complexity
term. This is necessary in cases, where the number of objectives would
otherwise be more than ten. In a head and neck case — where such numbers
can occur — one could for example group the eyes with their respective optical
nerve since it is meaningless to spare one while applying critical doses to the
other.

To improve the approximation of the efficient set we add further points to
the approximation using a stochastic procedure. These points will most
likely not change the range of the approximation but improve the distance
between the approximation and the efficient set. This allows us to better
convey the shape of the efficient set to the planner in the navigation process.

For the stochastic procedure we again use the property that cone scalarising
functions can work with feasible and infeasible reference points alike. Thus,
we propose two approaches to generate random reference points.

The computation of the extreme compromises included the computation of
the individual minima and therefore we know the ideal point. Moreover, we
can use the extreme compromises for a payoff table estimate of the nadir
point. Thus, we have a bounding box, whose weakly efficient surface parts
can be sampled randomly. Alternatively, we could randomly create convex
combinations of the extreme compromises. On the one hand, the first ap-
proach might still enlarge the range, whereas the second will not. On the
other hand, we have good starting points for the optimisation in the second
approach, so that typically the running times for the corresponding scalar
problems are shorter.

The number of computations to be performed in the approximation phase
should be some reasonable compromise between accuracy and computational
effort. The approximation should be good enough to convey the interdepen-
dencies of the objectives correctly to the decision maker, but since we can
correct approximation errors by post-optimisation, the approximation phase
should not be prolonged until the approximation is perfect. Typically we
choose to compute roughly as many intermediate solutions as there are ex-
treme compromises.

The computation of the extreme compromises and intermediate points are
technical and done without any human interaction, so the calculations could
for example run over night. So, unless the decision maker has to wait for
the computation to be finished, it does not consume any of his or her time.
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4.5 Interactive decision making — phase II

The real work of the planner starts after the approximation to the efficient
set is computed. (S)he has to find a plan among the variety offered by the
precomputed solutions. Naturally, our decision support tool — the navigator
— uses Pareto navigation to support this search.

Since the mechanisms and internal workings were already presented in de-
tail, we will use this section to present the user interface and graphical
presentation of Pareto navigation for the case of IMRT planning. We will
only present the mechanisms that are already implemented in the current
prototype, i.e. selection and restriction.

The user interface of the navigator is composed of typical elements of an
IMRT planning system plus the interface elements that are linked to the
Pareto navigation functionality (figure 4.7).
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D& e e e EumMs=T7 Addrn=tiet+ArveN
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Figure 4.7: The navigation screen. The spider web chart on the left hand
side shows the active and inactive planning horizon and the current solution.
On the right the dose visualisation and the dose volume histogram for the
current solution are shown.

The user interface is divided into two parts. The left hand side visualises
the variety of plans available as a whole and embeds the current solution
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into this variety. The right hand side displays dose volume histogram of the
current plan and the corresponding dose distribution on transversal, frontal
and sagittal slices.

The spider web diagram on the left hand side is composed of axes for the
different objective functions associated to critical structures. The objectives
associated with tumour volumes are shown as separate axes beneath the
spider web diagram. The interval on the axes corresponds to the range
of values for the respective objective function covered by the precomputed
solutions. The white polygon marks the objective function values for the
currently selected plan.

The shaded area in the spider web chart and the tumour axes are used to
represent the planning horizon. The shaded part is divided into the (active)
planning horizon and the part that is out of reach for the current bound
called the inactive planning horizon. The former is visualised by a darker
shade of grey in the spider web chart and the coloured parts of the tumour
axes. Note that in absence of the discounting mechanism the inner and outer
planning horizon are the same.

So, the decision maker can see how the current solution embeds into the po-
tentially and the still accessible ranges for the different objectives. Moreover,
(s)he can see how the imposed restrictions limit the range for the different
objectives.

However, the axes are not just used to display the current situation, but also
carry the controls that are used for the manipulation. The line representing
the currently selected plan has handles called selector at each intersection
with an axis and triangles in case of the tumour related axes. Furthermore,
each axis carries restrictors represented by brackets.

The planner can now grab any of the controls with the mouse and move it
to any feasible value. Meanwhile, the corresponding mechanism is executed
and its result is displayed several times a second. In case of the restrictors
just the spider web diagram and the tumour axes need to be updated. More
time critical are selector movements, since they change the current solution
and thus trigger an update of the dose visualisations, too.

Typically, the linear programs executed for estimating the upper and lower
bounds in case of the restriction mechanism or the linear programs detect-
ing the convex combination coefficients in case of the selection mechanism
execute in some 10 microseconds each. The more time critical part is the
execution of the convex combination and the evaluation of the objective func-
tions. For the selection mechanism the update of the visualisation takes up
further time. The time needed for the execution of the convex combination
followed by the evaluation of the objective functions and the computations
for the visualisation usually ranges between 100-200 microseconds. Thus,
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currently the bottleneck is not the execution of the problems for the fully
simplified model, but rather the surrounding technical computations. Thus,
employing better visualisation algorithms, we could gain some time that we
could invest in more complex approximations of the original problem.

Figure 4.8: A sequence of navigation steps on the tumour axes visualised
along with the corresponding changes on the spider web chart.

Figure 4.8 visualises a sequence of two navigation steps — one selector and
one restrictor movement on the tumour axis — along with the corresponding
reactions on the navigation star. We see that the improvement of the stan-
dard deviation in the tumour affects the organs differently. The spinal cord
(the blue upright axis) that is surround by the tumour in the considered case
reacts strongest and the right lung (the golden axis at the lower left) that is
close by worsens too, while the oesophagus (the red axis at the upper left)
is indifferent to the change and the left lung (the lilac axis at the lower left)
and the unclassified tissue the (violet axes at the upper right) even improve
slightly.

Then we restrict the standard deviation in the tumour and see that the loss
in range is most noticeable in the organs that reacted strongest to the prior
change. Note that for the unclassified tissue and the right lung the range is
cut at both ends. Now that the tumour dose distribution is satisfactory the
planner would probably start using the controls on the axes of the critical
structures in the spider web chart.

4.6 Summary
In this chapter we described the application of Pareto navigation and in

particular of the two-phase approach to Pareto navigation to the problem
of intensity modulated radiotherapy planning.
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We started by describing intensity modulated radiotherapy and discussed
the need for a multiobjective approach to IMRT planning. Then, we intro-
duced possible models for the IMRT planning problem and described the
modelling options currently available in our prototype.

We continued by surveying different ways to implement the approximation of
the efficient set, the first phase of the two-phase approach. In particular, we
reviewed the different existing algorithms with respect to their ability to cope
with the high-dimensional situation. It became apparent that established
methods can only be used for up to 4-5 dimensional cases. Thus, we proposed
a combination of the heuristic of the extreme compromises with stochastic
sampling to create the approximation in higher dimensions. Our numerical
experience with this approach suggests that the rationale of fathoming the
possibilities put into the heuristic works for the clinical cases considered.

The next section presented the user interface implementing Pareto naviga-
tion for IMRT planning. The different elements and the mouse based input
of the parameters for the Pareto navigation mechanisms were introduced.
Finally, a short example for an interaction was presented.

The proposed method offers a level of interactivity that is so far unknown
in radiation therapy planning. At best IMRT planning so far is an iterative
search for good scalarisation parameters and at worst “it’s not a science, it’s
an art” ([75]).

The real-time response to any changes regarding the current solution and
planning horizon enables the user to get a feeling for the shape of the efficient
set. Observing the changes in the objective function values implied by a
modification of one of the objectives gives the planner an impression for the
sensitivity and thus for the local interrelation. Observing the changes in the
active planning horizon reveals the global connection between the objectives
complementing the planner’s mental picture of the efficient set.

The concurrent update of the visualisations of the current dose distribution
on the right hand side of the navigation screen allows the planner to ap-
ply quality measures on the solutions during the navigation that were not
modelled into the optimisation problem. The system thus acknowledges the
existence of further clinical criteria that are relevant for the planner’s final
decision.

The realisation of the mechanisms in the user interface highlights, why spec-
ifying one value for one objective is also useful for realising the mechanism
by a user interface: the choice and the change in value can be specified by a
mouse movement, which offers a very natural way of communicating some
change to the system.

We are still in search of a similarly easy way to represent the discounting
information and to offer corresponding manipulation options. This is a
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challenge, since it involves the development of an intuitive representation of
dual problem information.

Our prototype is currently used in first comparative clinical studies. Al-
though it lacks proper integration into the remaining clinical workflow and
features a rather difficult user interface for specifying the model, the feed-
back is encouraging. Thus, we expect the forthcoming product to have a
considerable impact on future IMRT planning.

In summary, the decision-making process for the treatment planning prob-
lem described in this thesis is a distinct improvement over the processes
currently in action. Furthermore, its application is not limited to IMRT
planning and could be used for other large scale and high-dimensional mul-
tiobjective problems as well.



140 CHAPTER 4. MULTIOBJECTIVE IMRT PLANNING



Chapter 5

Outlook

The work presented some general theory regarding multiobjective optimi-
sation, the interactive multiobjective optimisation method “Pareto naviga-
tion” and its application in radiotherapy planning. Although we have tried
to investigate all major questions in the context, there are open questions
remaining. In this chapter we will focus on the questions we think most
relevant.

We have several points in the different algorithms where a very natural
formulation of the problem under consideration is a bilevel programming
problem. If we could solve these bilevel problems in reasonable time to (near)
optimality, we would be able to have a controlled approximation without the
overhead of creating, maintaining and storing convex hull data to guide the
process. Furthermore, the upper end of the outer planning horizon could be
detected and the upper and lower end of the inner planning horizon could be
correctly determined. This would eliminate the need to work with the outer
planning horizon in the selection just for lack of confidence in the estimates
of the inner planning horizon.

As such bilevel problems are global problems and there are instances of hard
global problems that can be formulated as bilevel problems ([111]), which
indicates that they are generally hard to tackle. The advantage for the
bilevel problems we have come across is, that they carry special structure
that could help to make them tractable, if properly exploited.

Moreover, in all these problems we are satisfied, if the result represents a
local optimum as long as the objective value is close to the one for the
global optimum. For building up the approximation the insertion of a point
that is located at an almost worst case distance between inner and outer
approximation improves the approximation almost as much as inserting the
true worst case point. For the estimates of ideal and nadir point the optimum
as such is not of much interest anyway, so that it suffices, if the associated
value is close to the optimum value.

141
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The most promising start point for employing bilevel programming for the
nadir and ideal point estimates would be the fully simplified model. Here,
we could in particular experiment with the formulation of the lower level
program, since there are many ways to enforce efficiency.

Along the way we could potentially gain insight on how to construct good
heuristics to approximate the bilevel problem and thus good heuristics to
estimate the ideal and nadir point components when the time restrictions
do not allow for a more thorough search. The bilevel programs could then
be used to correct the estimated values during idle time of the system, if we
can make them fast enough.

A second complex that deserves a deeper investigation centres around the
extreme compromises. First, the coverage properties should be empirically
compared against deterministic methods of approximation for a suitable
class of artificial examples. The second interesting point is whether payoff
tables based on the extreme compromises are improvements upon the payoff
tables created during ideal point component computation. For that a slight
modification of the successive balancing idea could be used to avoid that the
component in question is included in the balancing.

The third question around the extreme compromises asks whether any con-
clusions on the shape of the efficient set can be drawn from them. In high-
dimensional multiobjective optimisation problems it is likely that not all
objectives play an equally important role. The question is now whether the
extreme compromises offer enough problem information, to tell the main
players from the followers or even detect correlation that is strong enough
so that one or more of the objectives could be dropped.

Many of the statements especially in chapter 2 are true in significantly more
general situations. We could move to more general spaces ([64], [114]) or
use more general dominance sets ([46]).

A topic that is closer to IMRT planning is the development of a better tu-
mour objective function. So far, if we consider the function used to measure
the achievement of an appropriately high tumour dose as an objective, only
a comparatively small part of the resulting range of values contains clini-
cally relevant plans. Thus, the function does not adequately represent the
relaxation of the original goal a clinician would like to see.

A question that is more related to decision making is how to devise a graph-
ical user interface to easily and intuitively set the bounds on the partial
tradeoffs. The lack of such a way to express them similar to the way the
other decisions are communicated is the main obstacle to incorporate them
in the existing system.
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