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ACE   Angiotensin Converting Enzyme 

A.d   Aqua Distillata 

Amp   Ampicillin 

APS   Ammonium Persulphate 

ATP   Adenosine Triphosphate 

AUDs   Amplifiable Units of DNA 

bp   Base Pair 

B.C.   Before Christ 

BSA   Bovine Serum Albumin 

ca.   Circa 

ccc   “Covalently Closed Circular” 

CIAP   Calf intestinal alkaline phosphatase 

DFP   DIisopropylfluorophosphate 

DMF   N, N-Dimethylformamide 

DMSO   Dimethylsulphoxide 

dNTP   Deoxyribonucleotide Triphosphate 

DTT   1,4-Dithiotheritol 

E.coli   Escherchia coli 

EDTA   Ethylene Diamine Tetra-Acetic Acid 

EIA   Enzyme Immunoassay 

EP-PCR   Error Prone PCR 

EtBr   Ethidium Bromide 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

His   Histidine 

HMMER  Hidden Markov Model, software for protein sequence analysis 

HSL   Hormone Sensitive Lipase 

IPTG   Isopropylthio-β-D-galactoside 

IS   Insertion Sequence 

IUBMB   International Union of Biochemistry and Molecular Biology 

IUPAC   International Union of Pure and Applied Chemistry 

NSAIDs   Non Steroidal Anti-Inflammatory Drugs  

kb   Kilobase (1000bp) 
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KDa   kilodalton 

KV   Kilovolt 

LB   Luria Broth 

Mb   Megabase  

MBP   maltose binding protein 

NBT   4-nitro blue tetrazolium chloride 

NSAIDS  Non-steroidal antiinflammatory drugs 

NusA   N-utilizing substance A 

OD   Optical Denisty 

PAGE   Polyacrylamid Gel Electrophoresis 

PCR   Polymerase Chain Reaction 

PDB   Protein Data Bank 

PFGE   Pulsed Field Gel Electrophoresis 

RAPD   Random Amplification of Polymorphic DNA 

RFLP   Restriction Fragment Length Polymorphism 

TIRs   Terminal Inverted repeats 

RNase   Ribonucliease 

RT   Room Temperature 

SDS   Sodium Dodecyl Sulphate 

Sol   Solution 

Tab   Table 

TAE   Tris-acetate- EDTA buffer 

TEMED  N,N,N`,N`-tetramethyl-ethylenediamine 

X-Gal  5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

YEME  Yeast Extract Malt Extract 

Ω   Ohm 
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1. Introduction 

1.1. Enzymes 

The German physiologist Wilhelm Kühne was the first to use the term “Enzymes” in 1876 to 

describe the molecules responsible for fermentation of sugars to alcohols. The word enzyme 

comes from Greek “in leaven” (Friedmann 1997). An enzyme is a protein that speeds up 

(catalyzes) a chemical reaction. Some RNA molecules also have catalytic activity, and they 

are referred to as RNA enzymes or ribozymes. The first enzyme was obtained in pure form in 

1926 by James Sumner. He was able to isolate and crystallize a urease enzyme from the jack 

beans and he postulated that all enzymes are proteins. He earned the 1947 Nobel Prize for that 

work (Sumner 1946; Nelson and Cox 2005). 

1.1.1. Why are enzymes of interest? 

Enzymes are central to every biochemical process within living cells. They are responsible for 

nutrient degradation, synthesis of biological macromolecules from simple precursors, DNA 

repair and replication etc. Simply, enzymes catalyze nearly all the metabolic reactions and in 

their absence the reactions will proceed at very slow rate, incompatible with living dynamics 

i.e. their activities are necessary to sustain life (Whitford 2005). Enzymes are interesting not 

only because of the aforementioned physiological roles, but also for their use in several other 

commercial applications. Enzymes have extraordinary catalytic power, often greater than that 

of synthetic or inorganic catalysts. They have a high degree of specificity for their substrates. 

They accelerate chemical reactions tremendously, and they function in aqueous solutions 

under very mild conditions of temperature and pH. All of the previous had encouraged the 

employment of enzymes in various commercial applications such as therapeutic, diagnostic 

and analytical reagents and as catalysts in different industries e.g. dairy, paper, cosmetics, etc 

(Schmid et al., 2001).  

Various enzymes have been used as diagnostic tools for many years ago (e.g. alkaline 

phosphatase and peroxidase). They are used for the detection and quantification of some 

medically significant metabolites in biological samples. Enzymes are also largely used as 

labels in enzyme immunoassay (EIA). Enzymatic preparations are ideal diagnostic reagents, 

because they are highly selective and it possesses catalytic efficiency. 
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Although enzymes were first recognized scientifically only 130 years ago, humans have used 

the enzymes commercially since thousands of years. Enzymes have been used in ancient 

societies for preparing dairy products e.g. cheese, bread and meat tenderizing. In these cases 

people unknowingly used microorganisms as a source of the enzymes required for 

fermentation. Currently a large group of enzymes is used for catalysis in industry, they are 

called industrial enzymes or bulk enzymes. This group includes amylases, cellulases, 

cyclodextrin glycosyltransferase, esterases, lipases, lignocellulose degrading enzymes, 

pectinases, pencillin acylases, phytases and proteases (Copeland 2000; Walsh 2004). 

Genetic engineering has had a great influence on the industrial enzyme sector. Production of 

industrial enzymes by recombinant technology is more favourable than the traditional 

approaches for the following reasons: recombinant proteins can be expressed in high levels, 

the products are of higher relative purity, recombinant enzymes are economically attractive, 

heterlogous expression allows commercial production of enzymes normally produced by 

pathogenic strains and the most important reason is that recombinant technology facilitates 

the alteration of enzyme’s characters through protein engineering. Protein engineering may be 

used to tailor selected enzymes in order to make them more suitable for industrial applications 

(e.g. enhance thermal stability, alteration of substrate specificity, enhanced stability in the 

presence of detergents and organic solvents, etc (Walsh 2004). 

In late 1990s the annual worldwide sales value of industrial enzymes was US $ 1.5 billion. 

The market value is expected to exceed US $ 2.4 billions in 2009 (source bcc research, 

Enzymes for industrial applications, Dec. 2004). The continual growth of enzymes’ market 

can be attributed to the technical advances; the impact of genetic engineering on enzyme 

production and the development of new enzyme applications. 

1.1.2. Enzyme mechanism 

Many common reactions in the biochemistry require chemical events that are unfavourable in 

the cellular environment, such as the transient formation of unstably charged intermediate or 

the collision of two molecules in a precise orientation required for the reaction. An enzyme 

solves these problems through providing a special environment within which a reaction can 

occur more rapidly. Enzymes are usually specific as to the reaction they catalyze and the 

substrate they act upon. Shape, charge complementarities and hydrophilic/hydrophobic 

characters of the enzymes and substrates are responsible for this specificity (Nelson and Cox 

2005). 
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Enzymes show different levels of specificity: absolute specificity where the enzyme catalyzes 

only one reaction, group specificity where the enzyme acts on specific functional groups e.g. 

amino groups, phosphate groups, etc, linkage specificity where the enzyme acts on particular 

chemical bond regardless of the rest of the molecule structure and stereochemical specificity 

when the enzyme acts on a particular optical isomer. The enzyme-specificity led to the 

development of “lock and key theory” in 1894 by Emil Fischer. Fischer suggested that the 

enzymes are very specific because both of the enzyme and the substrate possess specific 

complementary geometric shapes that fit exactly into one another. An enzyme fits to its 

substrates to form a short lived complex. This model explains the enzyme specificity, but it 

fails to explain the transition state stabilisation. In 1958 Daniel Koshland suggested a 

modification of the lock and key model, “Induced fit theory”. Enzymes have flexible 

structures rather than a rigid geometry. The active site of an enzyme can be modified as the 

substrate interacts with the enzyme. The amino acids side chains which make up the active 

site are moulded into a precise shape which enables the enzyme to perform its catalytic 

function. In some cases the substrate molecule changes the shape slightly as it enters the 

active site. This model, in contrast to the lock and key theory, explains the occurrence of 

enzyme specificity and stabilisation of the transition state e.g. reaction of hexokinase with D-

glucose (Fig 1.1) (Koshland 1994).  

 

Fig. 1.1. Induced fit in hexokinase. (1) Hexokinase has a U-shaped structure (PDB ID 2YHX). (2) 
The ends pinch toward each other in a conformational change induced by binding of D-
glucose (red) (derived from PDB ID 1HKG and PDB ID 1GLK). (Nelson and Cox 2005) 
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1.2. Esterases/lipases 

The enzymes (EC 3.1.1.x), according to the NC-IUBMB/IUPAC classification and 

nomenaclature system, represent a group of hydrolases acting specifically on carboxylic 

esters. The major two subclasses within this group of enzymes are esterases (EC 3.1.1.1 

carboxylester hydrolases) and lipases (E.C. 3.1.1.3 triacylglycerol hydrolases) (Bornscheuer 

2002). 

1.2.1. Structure of esterases and lipases 

All of the known esterases and lipases are proteins. The polypeptide chains with any post-

translational modification constitute the primary structure of the protein. The local 

conformation that the polypeptide chain attains to keep itself unstrained is called the 

secondary structure. α-helices and the β-sheets are the two common secondary structural 

compenents for all the lipolytic enzymes. The polypeptide chain folds in a particular fashion 

to produce a three-dimensional product with a tertiary structure. Individual protein chains 

may sometimes group together to form a complex of two or more monomers, which are the 

quaternary structure (Nelson and Cox 2005), e.g. an extracellular carboxylesterase from the 

basidiomycete Pleurotus sapidus is composed of eight identical subunits (Zorn et al., 2005). 

The determination of the 3D structure of both esterases and lipases indicates that the bacterial 

esterases/lipases contain the characteristic α/β hydrolase fold. The α/β hydrolase fold is 

characteristic for the largest group of structurally related enzymes (esterases, lipases, 

hydrolases, proteases, etc) with diverse catalytic functions (the α/β hydrolase fold family). 

The central enzyme core is formed by β-sheets of eight strands (Fig 1.2). 

An enzyme catalyzed reaction is distinguished from other reactions by taking place within a 

definite pocket on the enzyme called the active site, which is a very small portion of the 

enzyme around 10 amino acid residues. The catalytic site of esterases/lipases is a serine 

protease-like catalytic triad consisting of the amino acids serine (nucleophile), histidine and 

aspartate or glutamate (acid); the nucleophilic serine is located in a highly conserved 

pentapeptide Gly-X-Ser-X-Gly and the aspartate or the glutamate residue is bounded through 

a hydrogen bond to the histidine (Fig 1.2).  
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Fig. 1.2. Secondary structure diagram of the ‘canonical’ α/β hydrolase fold. α Helices and β 
strands are represented by white cylinders and grey arrows, respectively. The location of 
the catalytic triad is indicated by black dots. Dashed lines indicate the location of possible 
insertions. (Nardini and Dijkstra 1999) 

1.2.2. Catalytic activity of lipolytic enzymes 

Esterases and lipases show various catalytic activities with different specificties. Some lipases 

show different rates against mono-, di- and triglycerides. Some esters act against either 

primary or secondary esters while others act nonspesifically. Some lipolytic enzymes show 

stereospecificity and/or regioselectivity (Jensen et al., 1983).   

Some lipolytic enzymes require other substances called cofactors to exert catalytic activity. 

Cofactors may be essential inorganic metal ions (e.g. Fe2+, Mg2+, Ca2+, Cu2+, etc) or 

coenzymes, which are complex organic or metallo-organic molecule (e.g. coenzyme A). The 

metal ion or the coenzyme is called prosthetic group, when it bounds tightly or covalently to 

the enzyme protein (Whitford 2005). There are several reports about dependence of esterases 

and lipases on metal ions e.g the activity of nine lipases from six different Staphylococcus 

species are Ca2+ dependent (Rosenstein and Gotz 2000). 

Also some esterases/lipases have binding sites for small molecules, which are often direct or 

indirect products or substrates of the reaction catalyzed. This binding can serve to increase or 

decrease the enzyme’s activity (depending on the molecule and enzyme), providing a means 

for feedback regulation, e.g. long chain acyl coenzyme A has an inhibitory effect on the 

activity of HSL in adipocytes (Hu et al., 2005). 
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1.2.3. Thermodynamics of Esterases and lipases  

Esterases and lipases are catalysts; they increase the speed of a chemical reaction without 

themselves undergoing any permanent chemical changes. In order that most chemical 

reactions to proceed, they need some amount of energy as a driving force, which is called 

activation energy. As a catalyst an esterase or lipase lowers the activation energy of a 

reaction. The catalyst increases the reaction rate without affecting the equilibrium state; the 

forward and reverse reactions are affected to the same degree by the catalyst. The chemical 

reaction rate is depending on the rate of formation of the transition state complex, hence 

lowering the activation energy leads to an increase in the reaction rate. An esterase or lipase 

lowers the activation energy and increase the reaction rate mostly through stabilisation of the 

transition state (Fig 1.3) (Marangoni 2003).  

 

Fig. 1.3. Diagram of a catalytic reaction, showing the energy niveau at each stage of the reaction. 
The substrates usually need a large amount of energy to reach the transition state, which 
then decays into the end product. The enzyme stabilizes the transition state, reducing the 
energy needed to form this species and thus reducing the energy required to form 
products. (Voet and Voet 1995) 

A simple enzymatic reaction can be considered as a two step process: substrate (S) binding to 

enzyme (E) and formation of an enzyme-substrate complex (ES), followed by irreversible 

breakdown of the enzyme-substrate complex into free enzyme and product (P). 
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A key factor influencing an enzymatic reaction is the substrate concentration. Michaelis and 

Menten postulated that the dissociation of the ES complex is the rate limiting step for the 

enzymatic reactions and defined two parameters characterizing enzyme kinetics: Vmax and the 

Michaelis’ constant “Km”. Vmax is the maximum velocity of the reaction rate and Km is a 

constant represent the substrate affinity towards the enzyme, Km is measured as the substrate 

concentration which drives the reaction at a rate equal to ½ Vmax. The Michaelis-Menten 

equation can be applied for a large number of enzymes (all such enzymes exhibit a hyperbolic 

dependence of V0 on [S]). Generally the esterases follow Michaelis-Menten kinetics, whereas 

lipases do not follow this law (see 1.2.5).  

1.2.4. Inhibition of esterases and lipases 

Some molecular agents interfere with the enzymatic catalysis; either they slow down the 

catalysis rate or they prevent the catalytic activity completely. Thus enzyme inhibitors have 

been used extensively as pharmaceutical drugs or as toxic agents e.g. Aspirin 

“Acetylsalicylate” inhibits the Cox-1 and Cox-2 enzymes which are involved in synthesis of 

inflammation messengers “prostaglandins”, and hence aspirin is used as anti-inflammatory 

agent. The toxicity of organophosphate DFP, wich is used in nerve gases e.g. Soman and 

Sarin, occurs due to irreversible inhibition of cholinesterases with DFP, the formed enzyme-

phosphate ester bond is stable and does not hydrolyse spontaneously however reactivation of 

the enzyme can be accomplished by a strong nucleophile such as hydroxylamine 

[organophsphate toxicity can be treated with hydroxylamine analogues pralidoxime, 

obidoxime or scopolamine plus donpezil (Janowsky et al., 2005)]. 

Esterases/lipases inhibitors are either reversible or irreversible inhibitors. Irreversible 

inhibitors modify the enzymes covalently e.g. the reaction of the potent serine active site 

inhibitors PMSF (by sulphonation) and DFP (by phsophorylation) of the serine residue 

(Banerjee et al., 1991) (Fig 1.4).  
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Fig. 1.4. Reaction of the irreversible inhibitor diisopropylfluorophosphate (DFP) with an esterase 
enzyme. 

There are three types of reversible inhibition; competitive, uncompetitive and mixed 

inhibition (noncompetitive).  

A competitive inhibitor is usually a compound that resembles the substrate in geometry. It 

competes with the substrate for the active site of an enzyme; it binds preferably to the active 

site and prevents the substrate binding (Fig 1.5a) e.g esterastin, ebelactone A and B are 

competitive inhibitors for esterases and lipases (Umezawa 1982), HEPES is a competitive 

inhibitor of the esterase EST2 from Alicyclobacillus acidocaldarius (Manco et al., 2001) and 

the 6-chloro-2-pyrones is a competitive inhibitior of yeast lipase (CRL1) (Stoddard-Hatch et 

al., 2002).  

An uncompetitive inhibitor binds to a site other than the active site of an enzyme; it binds 

only to the enzyme-substrate complex. Binding of such inhibitors alters the conformation of 

the enzyme, thus it can not turnover its substrate anymore (Fig 1.5b) e.g. ATP is an 

uncompetitive inhibitor of bile salt dependent lipase (BSDL) (Pasqualini et al., 1997).  

A noncompetitive inhibitor binds to a site other than the active site and it can bind either to 

the enzyme or the enzyme-substrate complex (Fig 1.5c) e.g heparin acted as noncompetitive 

inhibitor for esterase and lipase activities of the bovine milk lipoprotein lipase (Posner and 

Desanctis 1987). 

Kinact →
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Fig. 1.5. Diagram shows the different types of enzyme inhibitors. Substrate (S) and inhibitor (I). a) 
A competitive inhibitor binds reversibly to the enzyme, preventing the binding of 
substrate. On the other hand, binding of substrate prevents binding of the inhibitor. 
Substrate and inhibitor compete for the enzyme. b) Uncompetitive inhibitors do not bind 
at the same site as the substrate. Substrate and inhibitor do not compete. c) Non-
competitive inhibitor (mixed inhibitor) binds at separate site but may bind to either E or 
ES. (Nelson and Cox 2005) 

1.2.5. Differences between esterases and lipases 

Esterases can be distinguished from lipases by the phenomenon of “Interfacial activation”. 

Lipases act at the interface generated by a hydrophobic substrate in a hydrophilic aqueous 

medium, a sharp increase in lipase activity observed, when the substrate starts to form an 

emulsion thereby presenting to the enzyme an interfacial area (i.e. minimum substrate 

concentration is required for lipases to achieve high level of activity) (Fig 1.6).  
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Fig. 1.6.  Binding of lipase to the lipid-aqueous interface promotes a conformational change in 
enzyme which makes the active site accessible to the substrate. (Walsh 2004) 

As a consequence the kinetics of a lipase reaction do not follow the classical Michaelis-

Menten model, whereas esterases exhibit Michaelis-Menten kinetics. Structure elucidation 

revealed that the active site in the case of lipases is covered by a lid-like α-helical structure, 

which moves away upon contact of the lipase with its substrate exposing a hydrophobic 

residue at the surface of the protein, and mediates the contact between the protein and the 

substrate; this movable lid-like α-helix explains at a molecular level the lipase specific 

phenomena of interfacial activation. Furthermore lipases prefer water insoluble substrates e.g. 

triglycerides of long chain fatty acids whereas esterases prefer simple esters with short to 

moderate chain fatty acids (with C2-C8) (Tab 1.1) (Jäger et al., 1992; jaeger et al., 1999; 

Bornscheuer 2002). 

Table 1.1 differences between esterases and lipases. (Bornscheuer 2002) 

Property Esterases Lipases 

Substrate 

 

Interfacial activation/lid 

Kinetics 

Solvent stability 

Enantioselectivity 

Simple esters and 

Trigylcerides (short chain) 

No 

Obey Michaelis-Menten 

High to low 

High to low to zero 

Trigylcerides (long chain) 

 

Yes 

Don’t obey Michael-Menten 

High 

Usually high 
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1.2.6. Classification of esterases and lipases 

In 1999 Arpigny and Jaeger have compared 53 sequences of esterases and lipases and 

classified them into 8 different families according to the conserved sequence motifs and the 

biological properties of the enzymes (Tabl 1.2).  

Table 2.1: Classification of esterases and lipases (Arpigny and Jaeger 1999) 

Family Subfamily Enzyme producing strain Accession 
number 

I 
 
 
 
 
 

II (GDSL)
III 

IV (HSL) 
V 
VI 
VII 
VIII 

1 
2 
3 
4 
5 
6 

Pseudomonas aeruginosa 
Burkholderia glumae 

Pseudomonas fluorescens 
Bacillus subtilis 

Bacillus stearothermophilus 
Propionibacterium acnes 
Aeromonas hydrophila 
Streptomyces exfoliatus 

Alicyclobacillus acidocaldarius 
Pseudomonas oleovorans 

Synechocystis sp. 
Arthrobacter oxydans 

Arthrobacter globiformis 

D50587 
X70354 
D11455 
M74010 
U78785 
X99255 
P10480 
M86351 
X62835 
M58445 
D90904 
Q01470 

AAA99492 

Family I (originally Pseudomonas lipases) is divided into 6 subfamilies. Subfamily I.1 

showed molecular weights around 30kD whereas subfamily I.2 is slightly larger 33kD. Both 

depend on chaperon proteins called lipase-specific foldases “Lif”. Subfamilies I.1 and I.2 

possess two conserved cystein residues forming a disulphide bridge and two aspartate 

residues involved in a Ca2+ binding site. The subfamily I.3 is of higher molecular weight (50-

65kDa). The secretion of these enzymes occur in one step through a three-component ATP 

binding cassette transporter system. Subfamilies I.4 and I.5 are Bacillus lipases, which are 

characterized by an alanine residue replacing the first glycine in the conserved pentapeptide 

(A-X-S-X-G). Subfamily I.4 are the smallest known true lipases (20kDa), whereas subfamily 

I.5 are around 45kDa and have optimal temperatures of around 65°C. Subfamily I.6 

(originally Staphylococcal lipases) are large enzymes 75kDa. They are secreted into the 

medium and cleaved with a specific protease. The propeptide may act as interamolecular 

chaperone.  

The GDSL family is characterized with a GDS(L) motif instead of the traditional 

pentapeptide GXSXG. The serine residue lies much closer to the N-terminal than the other 
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lipolytic enzymes. Family III possess a typical triad and shows 20% identity with the human 

PAF-AH.  

The HSL family contains the bacterial esterases and lipases which show striking homology to 

the human HSL. The family members are widely spreaded within prokaryotes (psychrophilic, 

mesophylic and thermophilic organisms). Family V shows around 20-25% sequence 

similarity to non-lipolytic enzymes e.g. epoxide hydrolase. Family VI represents small 

esterases 23-26kDa and has a classical triad, whereas family VII is larger esterases around 

55kDa and shows 40% similarity to eukaryotic choline esterases. Family VIII is esterases 

with striking sequence similarity to β-lactamases. 

1.2.7. Applications of esterases and lipases 

Esterases and lipases are widely used as industrial enzymes, the industrial demand for both 

increased constantly over the last 20 years. In 2000 the market value of lipoyltic enzymes was 

US $ 90 millions which represent around 7% of the whole enzymes market value (Walsh 

2004). Esterases are employed in reactions where chemo- or regioselectivity is required. 

Ferulic, sinapic, caffeic and coumaric acids, which are widely used in food, beverage and 

perfume industries, are produced from their esters with the help of esterases. Esterases are 

used in dairies and for production of fruit juices, wine, beer and alcohol. Polyurethanases and 

cholesterol esterases are widely used for the degradation of some man made pollutants, 

plastics, polyurethane, polyesters, etc (Bornscheuer 2002; Panda and Gowrishankar 2005). 

Lipases are used in fat hydrolysis or as a catalyst in synthetic organic chemistry where their 

regioselectivity and enantioselectivity are desired characteristics (Philip et al., 2002). Lipases 

can be widely used in organic chemicals processing, detergent formulations, synthesis of 

biosurfactants, the oleochemical industry, the dairy industry, the agrochemical industry, paper 

and pulp manufacture, nutrition, cosmetics and pharmaceutical processing. The major 

commercial application for hydrolytic lipases is their use in laundry detergents. In 1913 was 

the first trial to add a pancreatic extract to a detergent preparation, but the surfactants 

inactivated the pancreatic enzymes. Later in the 1970s suitable lipases for incorporation in 

detergents were identified. Detergent enzymes make about 32% of the total lipase sales. An 

estimated 1000 tons of lipases are added to approximately 13 billion tons of detergents 

produced each year (Sharma et al., 2001; Walsh 2004; Lorenz and Eck 2005). 
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1.2.8. Esterases/ lipases and chiral drugs 

The world market for chiral fine chemicals and pharmaceuticals is expanding rapidly. In the 

year 2000 the world sales of chiral drugs exceeded the US $ 130 billion barrier and the 

average anuual growth rate was 13%. It is expected that the figure will hit US $ 200 billions 

in 2008. 40% of all sold dosage-form drug sales in 2000 were of single enantiomer, however 

in 1999 the share was 33% only, and this ratio is expected to reach 60% in 2010 (Stinson 

2001; Lorenz and Eck 2005). The high demand for chiral drugs is caused by the fact that the 

cell surface receptors are biological molecules, which are chiral themselves, hence the 

effective drug molecule must match the asymmetry of the receptors. One of the most famous 

tragedies caused due to the admistration of a racemic drug was that of thalidomide which had 

been used as an anti-emetic for pregnant women in the 1950s and 1960s. Around 10000 

childern were born with malformations and later research revealed that one enantiomer had 

the desired pharmacological properties while the other isomer is a teratogen. 

Esterases and lipase are widely used for the production of various important chiral drugs. A 

carboxylesterase from Bacillus subtilis is used for the production of naproxen, and an esterase 

from Trichosporon brassicae has been used extensively for synthesis of ketoprofen (both are 

NSAIDs). Esterases from Pseudomonas sp. produce commercially anti-inflammatory drugs 

(NSAIDs) such as ibuprofen. A novel carboxyl esterase from Burkholderia gladeria is 

capable of hydrolysis of bulky esters of tertiary alcohols and has been used industrially for the 

production of semi-synthetic cephalosporin derivatives. Other stereospecific conversions in 

the production of pharmaceutical intermediates were reported e.g. taxol synthesis, 

throumboxane-A2-antagonist, acetylcholine esterase inhibitors, anti-cholesterol drugs, anti-

infective drugs, Ca channel blocker drugs, K channel blocking drugs, anti-arrhythmic agents 

and antiviral agents (Bornscheuer 2002; Panda and Gowrishankar 2005). A lipase from 

Serratia marcescens catalyzes the synthesis of a key intermediate for “Diltiazem”, a major 

coronary vasodilator. Lipases are used in synthesis of anti-hypertensive agents such as 

angiotensin converting enzyme (ACE) inhibitors (e.g. captopril, enalapril, ceranopril, 

zofenopril and lisinopril (Sharma et al., 2001; Jaeger and Eggert 2002).  
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1.2.9. Directed evolution of esterases and lipases 

Enzymes have been used successfully for many industrial purposes over the last two decades 

and biocatalysis has been the method of choice for the synthesis of different valuable 

chemicals, which increased the demand for new enzymes with special characteristics to be 

employed in other industrial applications. Often naturally occurring enzymes are not optimal 

for the applications of interest. Three main different but complementary approaches have been 

used to develop new enzymes of the desired optimal catalytic performance:  

• Rational design 

• Directed evolution 

• Bioprospecting 

However, directed evolution is considered as the most effective method in filling the gap 

between naturally occurring enzymes and the commercially required enzymes in terms of cost 

and time. 

Directed evolution involves repeated cycles of random mutagenesis and/or DNA shuffling to 

develop a library of mutants, followed by high-throughput screening or selection of the 

improved mutants (Cherry and Fidantsef 2003; Rubin-Pitel and Zhao 2006). The major tasks 

of directed evolution in esterases and lipases was to improve the enantioselectivity, and 

alteration of substrate specificity, in addition comes also the improvement of thermostability 

and stability in the presence of organic solvents. There are several reports of successful 

directed evolution by esterases and lipases. An example of successful directed evolution 

within lipolytic enzymes is the directed evolution of an esterase from B. subtilis. The directed 

evolution improved the stability and activity of the esterase from B. subtilis, which can cleave 

the p-nitrobenzyl ester of Loracarbef (cephalosporin antibiotic). The wild type enzyme 

showed only weak activity in the presence of DMF which must be added to dissolve the 

substrate. Directed evolution through combination of EP-PCR and DNA shuffling produced a 

mutant with 150 times higher activity than the wild type in the presence of 15% DMF. The 

directed evolution also increased the thermostability by 14ºC (Bornscheuer 2002).  
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1.2.10. Esterases and lipases within Streptomyces 

Streptomyces are characterized by their rich secondary metabolism. Therefore, Streptomyces 

species offer a relatively untapped source of interesting enzymes like esterases, lipases, 

hydrolases, etc. Over the last two decades few studies were carried out to investigate the 

esterase/lipase activity within Streptomyces. Sztajer et al. (1988) tested 15 Streptomyces 

strains and showed that three had a high extracellular lipase activity on tributyrin and olive 

oil. Bormann et al., 1993 reported that 51% out of 243 Streptomycetes screened through a 

plate and well method showed lipolytic activity. Gandolfi et al. (2000) screened 420 newly 

isolated Streptomyces strains using agar plates with three different substrates and showed that 

44% of them possessed a lipolytic activity. Among the positive strains, 81% were only active 

on a single substrate and very few strains (2%) acted on all three substrates. In addition to 

these in vivo studies over the last few years the genome projects of S. coelicolor A3(2) 

(Bentley et al., 2002) and S. avermitilis (Ikeda et al., 2003) were completed and in silico 

analysis of both genomes confirmed the fact that Streptomyces are rich in lipolytic enzymes, 

as the genomes annotation revealed that S. coelicolor and S. avermitilis possess 31 and 20 

putative esterases and lipases respectively in addition to the other genes annotated as 

cholesterol esterases, phospholipases and the genes annotated as hypothetical proteins that 

may exhibit esterase or lipase activity. 

However, all the above evidences that Streptomyces are rich in esterases and lipases, there are 

only few reports about the lipolytic genes in Streptomyces. An esterase gene from 

Streptomyces scabies was cloned and sequenced in 1990 (Raymer et al.) An extracellular 

lipase from Streptomyces sp. M11 was cloned characterized and expressed in Streptomyces 

Lividans (Pérez et al., 1993). Cruz et al have sequenced a gene coding for a lipase from 

Streptomyces albus G in 1994. In 1996 an extracellular esterase from Streptomyces 

diastatochromogenes was characterized (Tesch et al.). Sommer et al (1997) have 

characterized a lipase from Streptomyces cinnamomeus both genetically and biochemically. 

An operon (lipAR), which encodes for an extracellular lipase and its transcriptional regulator, 

was found in Streptomyces coelicolor (Valdez et al., 1999). In 1999 Abramić et al have 

isolated an extracellular lipase from Streptomyces rimosus and completed its biochemical 

characterization, and later on Vujaklija et al (2002) have cloned and sequenced this gene. 
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1.3. Characteristics of Streptomyces  

1.3.1. Morphology and taxonomy 

The Streptomycetes are filamentous, aerobic, spore forming, multicellular and Gram-positive 

soil bacteria which belong to the order Actinomycetales (Paradkar et al., 2003). The soil 

habitat is very challenging for micoorganisms, and Streptomyces as an important member of 

this ecosystem has evolved complex morphological and physiological adaptations to survive 

in this environment (Claessen et al., 2006).  

The numerical classification of 475 different strains of Streptomyces based on examination of 

139 unit characters under standard growth conditions, classified the examined strains into 19 

major, 40 minor and 18 single member clusters (Williams et al., 1983). These taxonomic 

studies were based on the morphological characters (e.g. shape, spore form, colony form or 

colony surface). Several studies tried to reduce the subjectivity in examining the strains by 

using serological, physiological, biochemical methods, etc (Christova et al., 1995). More 

recent classification used molecular biological methods and phylogenetic analysis based on 

16S rRNA e.g. RFLP and RAPD (Patel et al., 2004; Pathom-aree et al., 2006; Zhang et al., 

2006) 

Streptomycetes are characterised by a complex life cycle (Fig 1.7). Under favourable 

conditions one or two germ tubes emerge from the spore and grow by tip extension and 

branch formation to give rise to a feeding substrate mycelium. As the colony grows and the 

nutrients become limited, further changes take place and Streptomycetes produce a second 

filamentous cell type. The changes are at least of five general types; increased production of 

some extra-cellular proteins, onset of secondary metabolites synthesis, initiation of lysis in 

some compartments of the substrate mycelia, onset of metabolite storage in the substrate 

hyphae and initiation of aerial hyphal growth. The apical compartment of an individual aerial 

hypha forms a spiral syncitium that contains many tens of genomes. When the aerial growth 

stops, multiple septa subdivide the apical compartment into unigenomic pre-spore 

compartments (Fig 1.8) (Ryding et al., 1998; Chater 2001; Claessen et al., 2006; Willey et al., 

2006). 
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Fig. 1.7. The life cycle of Streptomyces coelicolor A3(2). Modified from Kieser et al (2000). 

 

Fig. 1.8. Steps of Streptomycetes growth and sporulation. Scanning electron micrographs showing 
four stages in colony development in S. lividans. a) young substrate mycelium b) mature 
substrate mycelium producing aerial branches c) aerial hyphae developing into pre-spore 
compartment d) chain of mature spores (Hopwood 2006) 
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Streptomyces coelicolor A3(2) has been considered as the model organism for Streptomycetes 

genetics for its early development as genetic system (Hopwood 1999). 

Actinomycetales produce 45% of the known bioactive microbial compounds (more than 

10000 compounds) Streptomyces alone produces 34% (74% of all actinomycetales, 7500 

compounds). Streptomycetes produce a large number of secondary metabolites like 

antibiotics, hydrolytic enzymes, enzyme inhibitors, herbicides and antitumour medicaments 

(Berdy 2005). One of the secondary metabolites produced by Streptomyces is geosmin, which 

is the etheric gas gives the characterstic smell of soil (Cane and Watt 2002). Examples of 

Streptomyces antibiotics are streptomycin (S. griseus), tetracycline (S. aureofaciens), 

chloramphenicol (S. venezuelae), oxytetracycline (S. rimosus), daunorubicin (S. peucetius), 

tetracenomycine (S. glaucescens) (Berdy 2005). The antibiotic synthesis occurs at a certain 

step of life cycle, which concides with the formation of the aerial mycelium i.e. the 

morphological differentiation and biosynthetic factor of the secondary metabolites are 

genetically coupled. The synthesis of an antibiotic substance requires a resistance mechanism 

against the antibiotic in the producing organism, the resistance encoding gene exists usually 

inside the gene cluster for the antibiotic synthesis (Hutchinson and Fujii 1995).  

1.3.2. Genomic organisation of Streptomyces  

DNA of Streptomyces is marked by its high G+C content of about 72%, where, the G+C 

content is ranging between 61% and 79% in each gene (Bibb et al., 1984). It was believed for 

long time that the classical circular structure of chromosomal DNA applied for all 

prokaryotes, but after introduction of PFGE (Schwarz and Cantor 1984) and the possibility of 

physical mapping, it was discovered that some bacteria have linear chromosome e.g. 

Rhodococcus fascians, Borellia burgdorferi and Agrobacterium tumefaciens  (Crespi et al., 

1992; Davidson et al., 1992; Allardet-Servant et al., 1993). All investigated Streptomyces 

species also have linear chromosomes, e.g. S. coelicolor A3(2), S. lividans , S. griseus , S. 

ambofaciens and S. rimosus (Kieser et al., 1992; Lin et al., 1993; Lezhava et al., 1995; 

Leblond et al., 1996; Pandaza et al., 1998). 

The extraordinary character of the Streptomyces genome is its large size, the size of different 

streptomyces genomes were detrmined through their sequencing genome projects; 

Streptomyces coelicolor A3(2) was determined to be 8.66 Mb (Bentley et al., 2002), 

Streptomyces avermitilis was 9Mb (Ikeda et al., 2003) and Streptomyces scabies 10.148Mb 

(Sanger institute, incomplete). 
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These linear chromosomes are characterised by presence of terminal inverted repeats (TIRs) 

at the ends, which may be over 6 Mb in size. The longest recorded TIR was 6.5Mb in a 

variant of Streptomyces ambofaciens (Hopwood 2006). Many short palindromic repeats are 

present between the last few hundred base pairs of the TIRs. At the 5´ end of the chromosome 

there is a covalently attached protein (Bao and Cohen 2003; Yamasaki and Kinashi 2004). 

Streptomyces also possess linear plasmids. The size of such plasmids ranges between 12 kb 

and several hundreds of kilo-bases These plasmids show the same genetic structure as the 

linear chromosome (Bentley et al., 2004) with terminal inverted repeats, which range between 

614 bp in the case of PSLA2 in S. rochei (Sakaguchi et al., 1985) and 95 kb in case of 

pPZG101in S. rimosus (Gravius et al., 1994). At the 5´ end of the plasmids there are 

covalently attached terminal proteins (Sakaguchi 1990). The first linear plasmid to be isolated 

from Streptomyces rochei was pSLA2 (Hayakawa et al., 1979). In addition to the linear 

plasmids Streptomyces has a large number of circular plasmids, which are either high-copy 

number plasmids e.g. pIJ101 (Kieser et al., 1982; Kendall and Cohen 1988) or low-copy 

number plasmids e.g. SCP2 (Schrempf et al., 1975; Freemann et al., 1977). In addition to the 

plasmids there are other extrachromosomal elements “phages” e.g. SF8 or SF9 from S. 

fradiae (Chung 1982) and the 42 kb phage φC31 in S. lividans (Lomovaskaya et al., 1972). 

Transposable elements, insertion sequences (IS) and transposons, have also been found in 

Streptomyces e.g. IS 466 plays a role in integration of the plasmid SCP1 into the chromosome 

of S. coelicolor A3(2) (Kendall and Cullum 1986). 

Streptomyces linear plasmids and chromosomes start the replication at the central replication 

origin (oriC), and propagate bidirectionally towards the termini. Replication in the leading 

strand is completed at the 3´ end, but the lagging strand does not reach the 5´ end and leaves a 

280bp gap, there are several suggested mechanisms involving a DNA polymerase and 

terminal protein through which this gap can be filled (Chen 1996; Chen et al., 2002; 

Hopwood 2006). 
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1.4. Objectives 

Esterases and lipases are widely used in industrial applications. They are used in organic 

chemicals processing, detergent formulations, synthesis of biosurfactants, the oleochemical 

industry, the dairy industry, the agrochemical industry, paper and pulp manufacture, nutrition, 

cosmetics and pharmaceutical processing. One of the most important applications of esterases 

and lipases is their use for the production of chiral drugs. In 2000 the market value of these 

enzymes was US $ 90 millions. The demand for esterases and lipases for industrial 

applications is increasing; therefore we need to find new enzymes with interesting catalytic 

properties.  

In many cases micro-organisms possess different enzymes having similar function and the 

presence of several enzymes in one pool may mask the interesting properties of some of them. 

Also the interesting enzymes may only be expressed under certain growth conditions or 

during certain growth phases of the micro-organism and hence may not be expressed under 

the laboratory cultural conditions used. Therefore, the traditional method of enzyme screening 

may miss many interesting enzymes. An alternative strategy is to identify potential genes in 

the available data bases. Cloning and overexpression will allow characterisation of the 

enzyme properties. This project was an initial survey of two Streptomyces genomes to see if 

this approach can identify interesting enzymes and to define strategies for a comprehensive 

use of genome data. 

Despite the fact that Streptomyces strains are very rich in esterases and lipases, only a few 

lipolytic enzymes from Streptomyces have been studied in detail; esterases and lipases from 

Streptomyces scabies (Raymer et al., 1990), Streptomyces exfoliatus M11 (Pérez et al., 1993), 

Streptomyces albus G (Cruz et al., 1994), Streptomyces diastatochromogenes (Tesch et al., 

1996), Streptomyces cinnamomeus (Sommer et al., 1997), Streptomyces coelicolor (Valdez et 

al., 1999) and Streptomyces rimosus (Vujaklija et al., 2002).  

The analysis of the Streptomyces coelicolor genome revealed that from 7769 protein coding 

regions there are 31 different ORFs (0.4%) annotated as putative lipolytic enzymes. 19 are 

possible carboxylesterases, 10 are putative lipases and two are annotated as esterase/lipase. 

Ther Streptomyces avermitilis genome contains 20 putative lipolytic enzymes out of 7577 

protein coding regions (0.26%). 12 are esterases, five are lipases and three are 

esterases/lipases.  
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Genes were selected that were amenable to a simple common cloning strategy, with the aim 

of cloning and overexpressing them in E. coli. The enzymatic properties of the expressed 

proteins were examined and one gene was selected for studies of using site-directed 

mutagenesis and random mutagenesis.  
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2. Materials and Methods 

2.1. Bacterial strains  

2.1.1. Escherichia coli 

XL-1-Blue: endA1, lacIq , F’ , lacZΔM15, recA1, tetr , hdsR- , hsdM+ (Bullock et al., 1987). 

BL21: (DE3) F-, ompT , r-
B m-

B       (Weiner et al., 1994). 

Topo10 : F-, mcrA Δ(mrr-hsdRMS-mcrBC), Φ80lacZΔM15, ΔlacX74, recA1, deoR, 

araD139, Δ(ara-leu)7697, galU, galK, rpsL, (Strr), endA1, nupG  (Invitogen). 

2.1.2. Streptomyces 

S. coelicolor A3(2) strain 1147       (Kieser et al., 2000). 

S. avermitilis strani ATCC 31267           (Burg et al., 1979) 

2.2. Vectors  

2.2.1. PCR® 4-TOPO  

The plasmid vector PCR® 4-TOPO (Shuman 1994) is a pUC18 derivative lacZ α-ccdB Plac 

kanr ampr 3957bp. The plasmid is supplied linearized with 

• Single 3´ thymidine (T) overhangs for TA cloning 

• Topoisomerase covalently bound to the vector (activated vector) 

2.2.2. pET-16b  

The pET-16b (Weiner et al., 1994) vector carries an N-terminal His• Tag sequence, which is 

followed by a factor Xa site, and three cloning sites. Its size is 5711bp, the cloning/expression 

region of the coding strand is transcribed by T7 RNA polymerase. pET-16b is derived from 

the plasmid pBR322 

2.2.3. pET-23b 

It is similar to pET-16b, but it carries C-terminal His• Tag sequence, and N-terminal T7• Tag. 
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2.3. Reagents and Media 

2.3.1. Buffers and other general solutions  

Unless otherwise indicated, solutions were prepared as described in (Sambrook et al., 1989) 

and (Kieser et al., 2000).  

2.3.2. Chemicals 

The chemicals of general use mentioned in methods were supplied by either Sigma or Roth 

(Germany) PA quality. 

2.3.3. Antibiotics  

Table 2.1. List of the antibiotics used in this study 

Stock solution Preparation Concentration of stock End concentration 

Ampicillin -sterile filtration 

-in aliquots of 1ml 

- stored at –20°C 

100mg/ml A.d. 50μg/ml LB 

Tetracycline -sterile filtration 

-in aliquots of 1ml 

- stored at –20°C 

50mg/ml A.d. 50μg/ml LB 

Kanamycin -sterile filtration 

-in aliquots of 1ml 

- stored at –20°C 

50mg/ml A.d. 50μg/ml LB 

2.3.4. Other materials and kits 

Agarose (Biozyme). 

Restriction enzymes and DNA ladder mix marker (Fermentas) 

Nucleobond AX-100 for plasmid isolation (Machery-Nagel). 

GFX plasmid isolation kit (Amersham). 

PCR purification kit (Qiagen). 

Topo cloning kit (Invitrogen). 
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Protino Ni-resin for protein purification (Machery-Nagel). 

Ni-NTA spin kit for protein purification (Qiagen). 

Factor Xa (Novagen). 

High fidelity Taq polymerase (Amersham).  

protein molecular weight marker (Fermentas) 

Prestained protein molecular weight marker (Fermentas) 

2.4. Media and growth conditions 

All the used media were autoclaved at 120°C for 20min. Also the solutions, which were 

added to the media after autoclaving, were autoclaved before addition to media. 

2.4.1. Streptomyces strains  

2.4.1.1. Liquid medium  

YEME medium (Kieser et al., 2000) 

Yeast extract 3g, Bacto-peptone 5g, Malt extract 3g, Glucose10g, Sucrose 340g and to 1l A.d. 

After autoclaving add: MgCl2 5mM, 2ml MgCl2 2.5M and Glycine 20% 25ml. One cell 

colony or 100ul spore suspension was added to 100ml YEME media in a flask with spiral, 

and incubated for 3-4 days in a shaker at 30°C.  

2.4.1.2. Solid medium  

Soja media (sporulation media) (Kieser et al., 2000) 

Soja flour10g, Mannitol10g, Bactoagar 8g and to 500ml A.d. One cell colony was picked 

from the plate or a diluted spore suspension was used to streak the soja plate, and then 

incubated at 30°C for 3-4 days. 

2.4.2. E.coli strains  

2.4.2.1. Liquid Medium  

LB medium (Sambrook et al., 1989): NaCl 10g, Yeast extract 5g, Trypton 10g and to 1l A.d. 

One cell colony was picked in 5ml LB medium in test tube or 25-50 ml in Erlenmeyer flask, 
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and then incubated in a shaker at 37°C. The liquid culture can be used for isolation of 

plasmid. 

2.4.2.2. Solid Medium  

LB solid medium was used. Along with the ingredients of LB broth mentioned above, 16g/L 

Bacto-agar was added. The plate was streaked to get one cell colony on the LB plate, then 

incubated overnight at 37°C. 

2.5. Strains preservation  

0.765 ml of E. coli overnight culture was mixed with 0.325ml of 86% glycerol solution, and 

stored at –70°C (Sambrook et al., 1989). 

2.6. DNA Isolation  

2.6.1. Isolation of total Streptomyces DNA  

A culture volume 50ml was used for maxi preparations. A four days YEME culture was 

centrifuged for 10min, 5000rpm, at RT. The mycelium was resuspended in 5ml SucTE buffer. 

100ul lysozyme stock solution [→2mg/ml] was added, and the mycelium suspension 

incubated 60min at 30°C. 5ml TE buffer were added, followed by addition of 10ml phenol. 

After vortex mixing 15 sec the phases were separated by centrifugation 10min, 5000rpm at 

RT. The upper phase was removed by a cut tip micropipette into a new tube, and 10ml 

phenol/chloroform were added, followed by vortex mixing and centrifugation (as in the 

previous step). The upper layer was removed again in a new tube, and 1 volume 

chloroform/isoamyl alcohol was added, vortex mixed 15sec and centrifugation as before. The 

upper layer was taken into a new tube and used for precipitation of DNA. 1 volume 

isopropanol was added at RT and the aggregated DNA ball was removed using a Pasteur 

pipette to a new tube. 70% ethanol was used for washing the pellet, followed by 

centrifugation. The pellet was dissolved in 500-1000ul TE (Kieser et al., 2000). 

2.6.2. Isolation of cosmid/plasmid DNA (alkali lyses)  

The principle of this isolation method is the separation of cccDNA plasmids from 

chromosomal DNA, which consists of linear molecules due to shearing during isolation. By 

raising the pH to a suitable value, the linear becomes ssDNA, whereas the cccDNA remains 
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as dsDNA. On a rapid reduction of pH, much of ssDNA forms an aggregate that can be 

separated by centrifugation. Plasmids and cosmids can be separated either as maxiprep 

(culture volume is 50ml) or miniprep (culture volume is 5ml). 

50ml -(1.5ml)- of overnight culture were centrifuged for 2min -(10sec), 10000 -(13000)-rpm 

at RT, the supernatant was discarded, and the pellet was resuspended in 5ml -(100μl)- Sol I 

(50mM glucose, 10mM EDTA, pH8 and 25mM Tris pH8). The solution was vortex mixed for 

a few seconds, and was incubated for 5min at RT. 250μl lysozyme stock solution [→5mg/ml] 

were added, then vortex mixed and incubate 10min at RT (this step is optional in case of 

miniprep). 10ml -(200μl)- Sol II (0.2N NaOH and 1%SDS) was added and the tube inverted 

to mix and after10min -(5min)- incubation on ice, 7.5ml -(150μl)- Sol III (100ml contain 

11.5ml acetic acid, 28.5ml A.d. and 60ml potassium acetate) was added. After mixing and 

incubation 10min on ice, a white precipitate of protein, cell debris, chromosomal DNA and 

SDS was formed, which may sediment by centrifugation for  10min, 13000rpm at 4°C (5min , 

13000rpm at RT). The supernatant contains the plasmid, and the DNA was precipitated as in 

2.10. The pellet was redissolved in 500μl - (20-50μl) TE buffer (Sambrook et al., 1989). 

2.6.3. Purification of cosmid -/plasmid DNA  

2.6.3.1. Purification using nucleobond®AX, Macherey-Nagel 

The purification of plasmids and cosmids from maxi-preparations was done with a “plasmid 

purification kit” which uses anion exchange columns made of kieselgel. DNA binds to the 

macroporous anion exchange column, in the presence of low salt concentrations, and the salt 

concentration is increased during washing and elution. Impurities are removed during 

washing, and the bound DNA is finally eluted from the column with the help of 1M KCl. 

DNA was purified according to the protocol provided by the manufacturer. 

2.6.3.2. Purification of DNA using GFXTM microplasmid prep kit, Instructions, 

Amersham Pharmacia Biotech Inc 

Purification of plasmid and cosmid DNA from minipreps was done using “GFX™ 

microplasmid prep kit” from Amersham Pharmacia Biotech. This kit uses an ion exchange 

column, which is formed of a glass fiber matrix. At high salt concentrations the DNA binds 

selectively to the column at the glass matrix, while the proteins are denatured. The denatured 
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proteins are removed during washing and the purified plasmid or cosmid is eluted using TE 

buffer pH8. 

DNA was purified according to the protocol provided by the manufacturer. 

2.7. DNA gel electrophoresis  

2.7.1. Agarose gel electrophoresis  

Agarose gel electrophoresis is the standard method for separation and purification of a 

mixture of DNA fragments. It depends on the migration of the negatively charged DNA 

molecule in a constant field. The velocity of migration is proportional to the electric voltage, 

also the DNA migration depends on its size, conformation, the buffer composition (1xTAE or 

0.5xTBE) and the nature of gel matrix. 

The choice of agarose concentration (0.4%-1.2%) enables the separation of fragments in the 

range from 0.2-50kb, larger fragments can be separated with the help of PFGE. The DNA can 

be coloured on the gel using a fluorescent colouring agent like ethidium bromide. The bands 

can be visualized on the gel through exposure to UV light of wave length 302nm. 

The agarose (0.8-1%), Seakem® GTGLE from FMC Biozyme, was added to 1x TAE buffer 

(1L 50x TAE contains 242g Tris, 57.1ml acetic acid and 100ml EDTA 0.5M, pH8), and 

boiled until the solution was clear. When the solution had cooled, it was poured inside the gel 

chamber, and the comb was inserted to produce suitable slots. When the gel had solidified, 

this comb was removed (Sambrook et al., 1989). 

Loading dye GEB was added to the sample, and then the sample was loaded into the gel slots. 

The running buffer is 1x TAE. The gel loading dye GEB is composed of 0.2% bromophenol 

blue, 0.2M EDTA and 50% glycerol. 

2.7.2. Colouring and evaluation of the gel 

The gel was left after electrophoresis for 15-30 min in an ethidium bromide bath (stock 

solution of EtBr 10mg/ml, the colouring bath concentration 0.5μg/ml; i.e. 50μl stock solution 

/1l A.d.). After washing in a water bath for 20-30 min. the bands were detected with a 
transilluminator (Bachhofer l- 305M, 302nm), and photographed through an orange filter. A 

Polaroid instant photo camera, a single lens reflex camera or an INTAS gel documentation 

system (Göttingen) was used. 
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2.8. DNA manipulation  

2.8.1. Phenol/Chloroform extraction  

This method is used for purification of DNA e.g. removal of enzymes after restriction digest, 

the proteins accumulate during centrifugation at the interphase and DNA goes inside the 

aqueous phase. Finally the remaining phenol was removed by shaking with chloroform 

/isoamyl alcohol (24:1). 

One volume phenol/chloroform/isoamyl alcohol (25:24:1) was added to DNA solution, vortex 

mixed for a few seconds and centrifuged for 5min, 5000rpm at RT. The upper aqueous layer 

was removed into new Eppendorf tube, this step was repeated until the upper layer was clear. 

1volume chloroform/isoamyl alcohol (24:1) was added, with vortex mixing and centrifugation 

as described before. DNA was precipitated (see 2.8.2) form the upper aqueous layer 

(Sambrook et al., 1989). 

2.8.2. DNA precipitation  

DNA precipitation is required either for purification or concentration of DNA solutions. 

Precipitation is achieved by ethanol or isopropanol and the DNA is usually resuspended in a 

suitable amount of TE or A.d.  

Either 100% ethanol or isopropanol was used, when isopropanol was used, 0.1 volume 3M 

sodium acetate and 0.6 volume isopropanol were added and left for 20min at RT. When 100% 

ethanol was used, 1 volume 100% ethanol was added, and then left at least 30min at –70°C. 

Centrifugation was carried out for 30 min, 13000rpm at RT. After centrifugation the 

supernatant was discarded and the pellet was washed with 70% ethanol, centrifuged as before 

then allowed to dry in a dissector or heating block. At the end the pellet was dissolved in 

suitable amount of water or TE (Sambrook et al., 1989). 

2.8.3. DNA restriction  

The digestion of DNA with restriction enzymes was according to the provider  

2.8.4. Determination of DNA concentration  

DNA concentration was determined using the nanodrop technique, The NanoDrop® ND-1000 

Spectrophotometer, developed by NanoDrop Technologies (www. nanodrop.com), fills this 
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need by requiring only 1 μL of sample to generate a full wavelength spectrum without the use 

of cuvettes or capillaries. The sample is pipetted directly onto the measurement surface where 

it is retained between two optical fibers by surface tension. This retention system utilizes two 

different path lengths (1 mm and 0.2 mm) during each measurement cycle to achieve an 

extensive dynamic range that eliminates the need to perform dilutions for RNA/DNA or 

proteins. 

2.8.5. RNase treatment  

The treatment of DNA solution with RNase to remove the RNA. 

RNase (stock solution concentration 10mg/ml containing 10mM Tris HCl, pH7.5 and 15mM 

NaCl) was added  to an end concentration of 40μg/ml, then the DNA solution was incubated 

30min at 37°C. Phenol/chloroform extraction was carried out as in 2.9, and finally DNA was 

precipitated, washed as in 2.10 and dissolved in TE (Sambrook et al., 1989). 

It is also possible to remove the RNA during mini- and maxipreparation, through addition of 

RNase directly into SolI to an end concentration of 40μg/ml. After isolation 

phenol/chloroform extraction was carried out. 

2.8.6. Ligation  

Ligation (Revie et al ., 1988; Sambrook et al., 1989) is carried out  using T4 DNA ligase 

(Fermentas), which catalyzes the ligation between the two adjacent 3` OH end and 5` 

phosphate end of double stranded DNA, ATP is required in this reaction. One of the 

important characters of T4 ligase is its ability to ligate not only cohesive ends but also blunt 

ends. 

The efficiency of ligation depends on incubation time, temperature and concentration and the 

length of DNA fragments.  At constant DNA concentration the smaller the DNA size, the 

more is the intramolecular reaction i.e. circularization, however at constant DNA length the 

circularization tendency increases with lower concentration.  

2.8.6.1. Ligation of cohesive ends   

To ligate fragments of cohesive ends, the proportion of insert to vector should be 1:1 to 2:1. 
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DNA was used in the ratio of 1:1 to 2:1 insert : vector, and 5U T4 ligase (Fermentas MBI) 

and 2μl ATP (5mM) in 15-20μl total volume containing 1x ligation buffer, followed by 

incubation at 14°C for 12-16h. 

DNA was precipitated using 0.1volume LiCl 4M and 2.5 volume ethanol 100% and the pellet 

were redissolved in distilled water. 

2.9. “TOPO TA-cloning” 

Taq polymerase has a non template-dependent terminal transferase activity, which adds a 

single dATP to the 3´ ends of PCR products. Therefore ligation in a linearized vector with 3´ 

T overhang occurs easily. 

Topoisomerase I from Vaccinia virus binds to dsDNA at specific sites and cleaves the 

phosphodiester backbone after 5´ CCCTT in one strand. The energy from the broken 

phosphodiester backbone is converted by formation of a covalent bond between the 3´ 

phosphate of the cleaved strand and the (Tyr-274) residue of Topoisomerase I. the phospho-

tyrosyl bond between the DNA and enzyme can subsequently be attacked by the 5´ hydroxyl 

of a PCR product and releasing the Topoisomerase (Shuman 1994).   

 

Cloning was performed according to the protocol provided by the manufacturer. 

2.10. Transformation  

2.10.1. Production of electrocompetent cells  

All the steps were carried out on ice and in sterile conditions. 
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2ml of  E. coli [Xl-1-blue and BL21(DE3)] overnight culture were added to 200 ml LB 

medium, and incubated at 37°C till OD600 0.6-0.8. Then the culture was incubated on ice 15-

30min, followed by centrifugation 15min, 5000upm at 4°C. The pellet was washed first with 

200ml ice-cold distilled water and centrifuged as before, the washing step was repeated with 

100ml ice-cold water, and then the pellet was washed with 30ml 10% ice-cold glycerol, 

centrifuged as before. The glycerol was decanted and the pellet was resuspended in 500μl 

10% ice-cold glycerol, and then divided into aliquots of 40ul, finally shock freezing was 

carried out in liquid nitrogen and stored at –70°C (Sambrook et al., 1989). 

2.10.2. Transformation through electroporation  

A high membrane potential is produced through an electric pulse, which increases the cellular 

membrane permeability. This produces “electropores” which are big enough for DNA and 

RNA molecules to diffuse through. A high efficiency of transporation can be achieved 

through optimizing different parameters like the strength of the electric field, electroporation 

buffer and regeneration medium. 

2-5μl DNA was added to 40μl competent cells, and was incubated on ice for 1min, the whole 

volume was removed into a cold pulse cuvette. A Biorad E.coli Pulser™  was used for 

transformation, the conditions of transformation were 200Ω, 2.5KV and 25μF. 200μl LB 

medium were added after pulsing to the cuvette, and all transferred into a glass tube 

containing 800μl LB, and incubated 1h at 37°C in a shaker. At the end plates were streaked, 

and incubated at 37°C for 16h (Dower et al., 1988). 

2.11. PCR 

The PCR (Polymerase Chain Reaction) is an invitro method for the synthesis of defined 

sequences of DNA with an enzyme (Scharf et al., 1986). The reaction uses two 

oligonucleotide primers that hybridize to opposite strands and flank the target DNA sequence 

that is to be amplified. A heat-stable polymerase, such as Taq polymerase, catalyses the 

elongation of primers. A repetitive series of cycles involving template denaturation, primer 

annealing and extension of the annealed primers by the polymerase results in the exponential 

accumulation of the specific DNA fragment.  

The primers were designed by eye from the sequence of S. coelicolor and evaluated with the 

primer primer 5 (primer Biosoft company) software. The primers were synthesized by the 
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ROTH Company, Germany.  In a total reaction mixture of 50μl add 0.05-1 μg template DNA, 

1pM of each primer, 1x PCR buffer, 2.5mM MgCl2 , 5% DMSO, 200μM of each dNTP and 

5U Taq DNA polymerase (Fermentas). 18μl of mineral oil overlayed on the reaction mixture. 

PCR was performed in an Eppendorf Thermo Cycler under the following conditions: 5min at 

96°C, followed by 30 cycles of denaturation at 96°C for 30sec, annealing at 50°C for 70sec, 

extension at 72°C for 2min and at the end final incubation at 72°C for 10min followed by 

hold at 4°C.  

2.11.1. Site directed mutagenesis PCR 

The primers were designed by eye from the sequence of SCO 7131 in pET-16b and evaluated 

with the “primer primer 5” (primer Biosoft company) software. The primers were synthesized 

by the MWG Company, Germany. In a total reaction mixture of 50μl add 50-60ng template 

DNA (plasmid SCO7131 in pET-16b), 1pM of each primer, 1x PCR buffer, 2.5mM MgCl2, 

5% DMSO, 200μM of each dNTP and 5U high fidelity DNA polymerase (Amersham). PCR 

was performed in an Eppendorf Thermo Cycler using the following PCR program: 5min at 

96°C, followed by 30 cycles of denaturation at 96°C for 1min, annealing at 60°C for 1min, 

extension at 72°C for 8min and at the end final incubation at 72°C for 10min followed by 

hold at 4°C.  

2.11.2. Random mutagenesis 

The random mutagenesis was carried out through error prone PCR. 

2.11.2.1. Error-Prone PCR 

The primers were designed by eye from the sequence of SCO 7131 in pET-16b and evaluated 

with the primer primer 5 (primer Biosoft company) software. The primers were synthesized 

by the MWG Company, Germany.  In a total reaction mixture of 50μl add 5-60ng template 

DNA (plasmid SCO 7131 in pET-16b), 1pM of each primer, 1x PCR buffer, 7mM MgCl2, 5% 

DMSO, 200μM of each dNTP, 1mM d(C/T)TP, 0.2mM d(A/G)TP, 0.5mM MnCl2 and 5U 

Taq DNA polymerase (Fermentas). PCR was performed in an Eppendorf Thermo Cycler 

using the SCO7131 PCR program. 
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2.11.3. Purification of PCR products  

PCR products were purified using High pure PCR purification kit, which is based on the 

specific binding of nucleic acids, to the surface of glass fibers or silica materials in the 

presence of chaotropic salts. Since the binding process is specific for nucleic acids, the bound 

DNA can be separated and purified from impurities, like salts, free nucleotides, and proteins 

by a washing step. 

PCR fragments were purified according to the protocol provided by manufacturer. 

2.12. DNA Sequencing 

DNA sequencing depends on the synthesis of a new strand of DNA starting at a specific 

priming site and ending with the incorporation of a chain terminating nucleotide such as 2`,3`-

dideoxynucleoside triphosphate (Sanger et al ., 1977), due the absence of a 3` hydroxyl group, 

it is impossible to form a phosphodiester bond, hence the reaction is terminated. The relative 

concentrations of dNTPs and ddNTPs are balanced to produce an appropriate average chain 

length.  The resulting DNA fragments differ in their length one from the other only one base, 

that they can be separated on polyacrylamide gel.  

2.12.1. Sequencing reaction  

Sequencing was carried out using Thermo Sequenase fluorescent labeled primer cycle 

sequencing kit with 7-deaza-dGTP (Amersham LIFE SCIENCE). 

Sequencing was done in the Center for Nanotsructure Technology and Biomolecular 

Technology University of Kaiserslautern, http://www.nbz.uni-kl.de/. 

2.12.2. Documentation and evaluation of the data  

Documentation and evaluation of the data were done automatically through the “BioEdit” 

program (Tom Hall, Ibis Therapeutics, A division of Isis Pharmaceuticals, 1891 Rutherford 

Road Carlsbad, CA  92008 http://www.mbio.ncsu.edu/BioEdit/bioedit.html). 

2.13. Primers  

The sequences for the primers used during this study either for gene amplification, 

mutagenesis or sequencing is presented in Table 2.1 
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Table 2.2. The primers used during this study 

Name Primer 

Genes amplification primers 

SAV469-For  

SAV469-Rev 

SAV1549-For 

SAV1549-Rev 

SAV3461-For 

SAV3461-Rev 

SAV7089-For    

SAV7089-Rev 

SCO1265-For 

SCO1265-Rev 

SCO1735-For 

SCO1735-Rev  

SCO2123-For 

SCO2123-Rev 

SCO 3219-For 

SCO 3219-Rev 

SCO3644-For 

SCO3644-Rev 

SCO4368-For 

SCO4368-Rev 

SCO4746-For 

SCO4746-Rev 

SCO4799-For 

SCO4799-Rev 

SCO6966-For 

SCO6966-Rev 

SCO7131-For 

SCO7131-Rev 

SCO 7513-For 

SCO 7513-Rev 

 

5´ GGGAGGGCATATGACCACCACG 3`     

5` CTCGAGAAAACGCGGTGCTGC 3` 

5` CTCGAGTACGGTAGTCGGCCG 3` 

5` GGAGCGCAACATATGATCTTCAGG 3` 

5` AGGTCGCATATGAAGGTCACC 3` 

5` CCCTCG AGCGTCAGGAGGATG 3` 

5` GGATCCGCATTGTCCCCCGTAC 3` 

5` TTTCAGGAGGCCATATGCAACGC 3` 

5` CTCGAGTCCCGATGAACGACGA 3` 

5` GAAAGGGAGAAGCATATGAGTTTCCTCA 3` 

5` CTCGAGTGACGTGCGCCGG 3` 

5` GGAGATCACCATATGCTGCCCTG 3` 

5` GAGACCGACATATGTCGGTCCTGCC 3` 

5` CTCGAGGTCCTCGCGGTCGG 3` 

5` CGGGATCCTACTGAGACCGTCTTTCC 3`  

5` CGTTCGGCATATGCGCTCACTTC 3` 

5` CTCGAGCTCACCTGCGGGGTAG 3` 

5` AGAGGTTGCATATGCCGGACGC 3` 

5` CTCGAGGAGCGGTTGGAGTGA 3` 

5` CGTCCTCCATATGACCGGCAG 3` 

5` CGAAGAGGACATATGCACGTGAGCG 3` 

5` CTCGAGGTGATCTCGACGTCGGC 3` 

5` GCGGATCCAATTGTTCGAGTCCGAACG 3`  

5` GCTGCCGTGGTGACCTTCATATGCCG 3` 

5` CTCGAGGACAAACGCCCGGC 3`                 

5` CGGAGGACATATGGCCGAGGC 3`              

5` CGCAAGGAGCGCATATGAGCG 3`            

5` CTCGAGAGTGGCCCTTCCGGAT 3`               

5` CG GGA TCC TGT CGT GAA GAC CTG CGC 3` 

5` CGG AAG AGA GAG CAT ATG CCG AAG CCT GC 3`    
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Continue table 2-1: The primers used during this study 

Name Primer 

Walking primers  

SAV469_For_2       

SAV469_Rev_2      

SAV1549_For_2      

SAV1549_Rev_2  

SAV7089_For_2       

SAV7089_Rev_2      

SCO1265_For_2     

SCO1265_Rev_2    

SCO1735_For_2    

SCO1735_Rev_2   

SCO3644_For_2    

SCO3644_Rev_2   

SCO4368_For_2    

SCO4368_Rev_2    

SCO4746_For_2     

SCO4746_Rev_2    

SCO7131_For_2     

SCO7131_Rev_2    

SCO6966_For_2      

SCO6966_Rev_2     

Site directed mutagenesis primers 

SCO7131M162LF 

SCO7131M162LR  

SCO7131S163AF 

SCO7131S163AR 

SCO7131W87FF 

SCO7131W87FR 

Error prone PCR primers 

SCO7131EPPCRF  

SCO7131EPPCRR 

Standard primers for sequencing 

M13-For 

M13-Rev 

T7 

 

5´ TGGATACGCGGCTGTGACGG 3`   

5` GTGGAGCGGGACGGCTATCC   3 

5` CGATCCGGGTTTTCAGCAGC  3` 

5` CGTGTTCCTGACGCCGAAGC  3`      

5` GGGAGGTCAGGAACGAGCTTC 3` 

5` GCCACCGAGGTCAGGAGCG 3` 

5` CCGACGAAGTTGTGCACCTTG 3` 

5` GCCGCGCTACTACCTCAACG 3` 

5` GGCGCTATGCCGACCAGGG 3` 

5`  CAAGTTCCTCGGCGGAGCC 3` 

5` GGTCGGTCAGCCACGGGG 3` 

5` GCGCGTGGTGCTCACCGG 3` 

5` CCCGTCCAGGTTGACCCCC 3` 

5` CACGCACGCGCAGGCCGAC 3` 

5` AGGACTCCTGGCACTTCCAGCG 3` 

5` CGCTCCACCAGCTCGGCC 3` 

5` ACTCCGTCGGCGGCAACATG 3`  

5` GGTGTCCTGCCCGGCGTCG 3`     

5` GGGAGAGCGAGGCCGGGC 3`       

5` TGATCGCCTCCCGCTACGCC 3 

 

5` CC GTC GGC GGC AAC TTG AGC GCC GCC  3`             

5` GGC GGC GCT CAA GTT GCC GCC GAC GG  3`              

5` GGC GGC AAC ATG GCC GCC GCC CTC ACC 3`             

5` GGT GAG GGC GGC GGC CAT GTT GCC GCC  3`           

5` G CAC GGC GGC GGC TTT ATC CTC GGG AAC G 3`     

5` C GTT CCC GAG GAT AAA GCC GCC GCC GTG C 3`    

 

5` GTTATGCTAGTTATTGCTCAGCGGTGG 3`   

5` GATCTTCCCCATCGGTGATGTCG 3`               

 

5'-GTAAAACGACGGCCAGT-3' 

5'-CAGGAAACAGCTATGAC-3' 

5'-GTAATACGACTCACTATAGGGC-3' 
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2.14. Protein manipulations 

2.14.1. Protein expression  

Induction of the cloned lipase gene was carried out according to the Novagen pET manual 

2002. A single colony was picked in 5ml LB medium, exponential phase cultures (OD600 0.6-

1.0) were induced by adding 0.25mM IPTG and harvested after 4h induction at 30°C 

(Novagen pET system manual, 2002). 

2.14.2. Protein isolation  

Lysis buffer 

                                              50mM NaH2PO4                          7.8g 

                                             300mM NaCl                              17.5g 

                                             → 1L A.d. pH was adjusted with NaOH to 8 

The cells were harvested by centrifugation and 100 ml of culture was resuspended in 4 ml of 

buffer (0.05M sodium phosphate/0.3M NaCl) and treated with lysozyme (1mg/ml) on ice for 

30'. The lysate was centrifuged for 40min at 12000 rpm at 4°C in an Eppendorf centrifuge and 

the supernatant was filtered through at 0.45µ filter.  

2.14.3. Protein purification 

The protein was expressed as His-Tagged protein which facilitates the purification using 

affinity Ni columns. For small amounts we have used Ni-NTA spin kit (Qiagen) and for large 

amounts we have used PROTINO resin (Macherey-Nagel). Purification was done according 

to the protocol provided by manufacturer. 

The samples were desalted, concentrated and the buffer was changed to Tris-HCl 0.02M pH 8 

by ultra-filtration using ultra-flirtation spin column CO 10000 (Amicon, Germany). 

2.14.4. Determination of protein concentration  

The protein was determined using the Bradford method (Bradford 1976) using bovine serum 

albumin as a standard. 
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2.14.5. SDS-PAGE (polyacrylamide gel electrophoresis)  

              1M Tris HCl , pH8.8                    Tris HCl                               121.1g/1l A.d. 

                                                                    pH was adjusted with HCl 37% 

              Acrylamide Mix                            30% acrylamide                    30g acrylamide                   

                                                                    0.8% Bisacryamide                8g  Bisacryamide 

                                                                    →100ml A.d. 

               Stacking gel mix                           155mM Tris HCl , pH 6.8    155ml 1M Tris pH 6.8           

                                                                   0.12% SDS                           12ml SDS 10%      

                                                                     →1l A.d. 

               Resolving gel mix                         562mM Tris HCl pH8.8       562ml1M Tris pH8.8 

                                                                     0.15% SDS                           15ml SDS10% 

                                                                     25% glycerol                         250g100% glycerol                   

                                                                    → 1l A.d. 

            10% Ammonium persulphate       Ammonium persulphate          100mg/1ml  A.d.                                 

                  (APS)                          (Must be freshly prepared)       

                Stacking gel                                  Acrylamide mix                       830μl 

                                                                      stacking gel mix                      4.12ml 

                                                                      10%APS l                                40μ 

                                                                      TEMED                                   5μl 

              Resolving gel    10%                      Acrylamide mix                      5ml 

                                                                     resolving mix                          10ml           

                                                                     10% APS                                 60μl 

                                                                     TEMED                                   5μl 

             10x SDS-PAGE running buffer      250mM Tris HCl                   250ml 1M Tris HCl   

                                                                     1.92M glycin                         144g glycin    

                                                                     1% SDS                                 100ml SDS 10% 

                                                                     adjust pH 8.3 with 37% HCl 

                                                                     → 1l A.d.                                                 
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              SDS-loading buffer                      125mM TrisHCl pH 6.8         2.5ml 1M Tris pH 6.8 

                                                                   4%SDS                                    8ml SDS10% 

                                                                   150mM DTT                           462.75mg                                            

                                                                   20% glycerol                           8ml glycerol 50%            

                                                                   0.01% Bromophenol blue       2mg 

The acrylamide mix and the resolving mix were mixed, then APS and TEMED were added as 

polymerizing agent, the solution was poured between two glass plates, (air bubbles must be 

avoided), and the surface was overlaid with isopropanol, the gel  polymerizes in 10-30min. 

After polymerisation, the isopropanol overlay was removed and washed with distilled water. 

The stacking gel was prepared and poured over the resolving gel, then insert the comb 

immediately into the stacking gel, avoiding the air bubbles. The comb was removed carefully 

after polymerisation, and the gel was placed in the running buffer. The slots were washed 

with the buffer to remove any gel debris, then the gel was loaded with sample and the marker 

.The gel was run using voltage for 30min at 8V/cm and then 1h at 12V/cm (Laemmli 1970). 

The marker was Protein “Molecular Weight Marker” from Fermentas; it is a mixture of 7 

purified proteins supplied in gel loading buffer for direct application to an SDS-PAGE, it 

resolves into tight bands in the range of 14.4kDa-116kDa and is easily stained by Coomassie 

Brilliant Blue.        

2.14.6. Detection of protein bands   

                          Fixing solution        25% isopropanol                         250ml 100% isopropanol 
                                                          10% acetic acid                           100ml acetic acid  
                                                         → 1l A.d. 

                          Rapid Coomassie    10% acetic acid                          100ml acetic acid 
                                  Blue                 0.006% coomassie blue             60mg coomassie blue 
                                                          → 1l A.d.   

                          Bleaching solution 10% acetic acid                           100ml acetic acid   
                                                          → 1l A.d. 

The gel was incubated for 15 min in the fixing solution on shaker, and then incubated in rapid 

coomassie blue for 2h. Finally it was incubated at least 2h in bleaching solution to remove the 

non-bound pigment. 
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2.14.7. Native Gel  

Native PAGE was prepared as the SDS-PAGE without SDS. The native gel was stained for 

activity according to (Wang et al., 2000). The gels were run under native conditions and 

stained with 50µg α-naphthylacetate and 10mg fast blue RR salt in 100ml HEPES 0,02M pH 

7 and incubation at 37°C 30-60` until the bands were developed. 

2.14.8. Western blot  

For the protein transfer on nitrocellulose membranes a Tanque blot apparatus (Bio-Rad) was 

used. After SDS-PAGE, the gel and a nitrocellulose membrane of the same size of the gel 

were equilibrated for 5 minutes in a transfer buffer (20% methanol, 1x SDS). Four pieces of 

filter paper were also soaked in the same buffer, and two of them were put on the bottom of 

the instrument, corresponding to the anode. The membrane was then laid on these two first 

layers, then the gel and at the end the other two filter papers, always without air bubbles. The 

apparatus was closed with the cover corresponding to the cathode. 350mA for 1h were then 

applied at 4ºC, in order to let the bounded proteins to the SDS, move to the anode, which 

means to the membrane. The membrane was in shaking 5% skimmed milk (blocking reagent) 

for 1h at RT. At the end of the blotting, the membrane was saturated three times for 10 

minutes in TBS; 1% (m/v) (0.85% NaCl, 10 mM Tris-HCl pH 7.5). The reaction of the 

specific proteins with the antihistidine-tag antibody against the enzyme occurred over night at 

4 °C, followed by washing of the membrane three times with TBS for 10 minutes. The 

membrane was then incubated with 1 U of the secondary antibody (anti-mous IgG) 

conjugated to a peroxidase in 1% albumin/TS for 1h at RT, remove the solution and dry as 

much as possible The proteins which bound specifically to the antibody were evident as black 

spots when developed on a Roentgen film (Towbin et al., 1979). 

2.14.9. Removal of the His-tag 

The expression vector pET-16b used in this study has a recognition site for factor Xa after the 

His-tag, which allows to removal of the His-tag and retrieval of the protein in its native form. 

Protein digestion with factor Xa was accomplished according to the provider instructions. 
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2.15. Detection of enzyme activity  

2.15.1. Spectrophotometric assay 

2.15.1.1. Using p-nitrophenylesters  

The standard esterase assay used p-nitrophenylacetate as a substrate at 37°C with a pH of 7.0 

slightly modified from (Tesch et al., 1996; Hotta et al., 2002). 1mM p-nitrophenylacetate was 

added to buffer (0.02M HEPES buffer pH 7.0, 1% acetonitrile). 1ml of the substrate solution 

was pre-incubated for 1min at 37ºC, 2-3µl esterase (0,003mg) preparation was added and the 

reaction mixture incubated for 10min. The release of nitrophenyl was measured at 410nm 

using a model 4054 UV/visible spectrophotometer (LKB, Pharmacia). Controls without 

enzyme showed no significant non-enzymatic hydrolysis. One unit of lipase activity was 

defined as the amount of activity releases 1µM p-nitrophenol per minute. The standard assay 

was modified to test the effect of different parameters on enzyme activity. 

2.15.1.2. Using naphthylesters  

Comparison of the activity on α-naphthylacetate and β-naphthylacetate was carried out using 

a method modified from (Barbier et al., 2000) 10µl of a 100mM solution of each substrate in 

DMSO was added to 985µl dye solution fast blue RR salt 1mg/ml in HEPES 0.02M pH 7.0 

and 5µl enzyme was added. After incubation for 15´ at 37°C the concentration of the coupling 

compound was measured by absorption at 505nm; standard curves were generated using α-

naphthol and β-naphthol. 

2.15.2. Qualitative detection of activity (plate and well method) 

The modified method of (Lawrence et al., 1967) was followed. The proteins diffuse through 

agar gel as through a solvent when the concentration of agar is below 1.5% (W/V) and 

liberated free fatty acids from triglycerides are being detected as clearance zones on the agar 

after a suitable incubation time. 

5ml emulsion 0.2% (V/V) triglycerides and 0.02% Tween 80 are added to 95ml hot solution 

of 1.2% agar in suitable buffer. The emulsion was poured in Petri dish and allowed to 

solidify, and then holes of 5mm were bored with a borer. 20-50µl of the sample was loaded 

per well. The plates were incubated 1-2h at 37ºC till the clearance zones appear. 
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2.16. Determination of enantioselectivity 

The determination of enantioselectivity was done by our collaborators in CSIR Jammu. 

2.17. Soft wares and web sites 

2.17.1. Web sites 

http://www.ncbi.nlm.nih.gov/ National Center for Biotechnology Information; genome search 
and, BLAST tool. 
http://www.ebi.ac.uk/ European Bioinformatics Institute; alignment and ClustalW multiple 

alignment.  

http://www.biotech.ou.edu/ University of Oklahoma; recombinant protein solubility 

prediction. 

http://www.expasy.org/tools/ ExPASy proteomics tools; protein primary structure analysis. 

http://swissmodel.expasy.org/ Swiss model; homology modelling 

2.17.2. Software  

“Primer Primer5” was used for assessing possible primers.  

“GenDoc” was used for alignment of DNA and protein sequences; it is available on 

http://www.psc.edu/biomed/genedoc/. 

“Clone manger” was used to blot restriction maps of the produced clones 

http://www.scied.com/seshome.htm. 

“BioEdit” was used for sequence results evaluation and alignment purposes; it is available on 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html 

“Swiss pdb viewer” was used for viewing and manipulation of the pdb files; spdbv is 

available on http://www.expasy.org/spdbv/ 

“UCSF Chimera” was used for pdb files viewing and manipulation and for structural 

alignment; chimera is available on http://www.cgl.ucsf.edu/chimera/ 

“HMMER” for creation of a protein profile for HSL family http://hmmer.janelia.org/ 
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3. Results 

3.1. Cloning of putative esterase and lipase genes  

3.1.1. Overview 

In silico screening revealed that S. coelicolor genome has 31 different ORFs annotated as 

putative esterases and/or lipases and the genome of S. avermitilis has 20 ORFs. Two criteria 

were used to choose the genes to be used in this study. Firstly; all the genes should be 

compatible with one cloning strategy (described below 3.1.2). Secondly; comparison of the 

two genomes showed that 88% of the genes in S. coelicolor are conserved in S. avermitilis 

(Borodina et al., 2005), so ORFs from S. avermitilis which have homology in S. coelicolor 

were excluded because it is likely that the homologous proteins will show similar properties. I 

decided to clone 11 ORFs from S. coelicolor, and four ORFs from S. avermitilis.  

3.1.2. General cloning strategy  

The DNA sequences were obtained from the data bank and I have designed suitable PCR 

primers (see 2.13). During the PCR a mismatch primer was used to introduce an NdeI site into 

the start codon of the gene. This required that the gene had an ATG start codon and did not 

contain an NdeI site. The down stream primer contained either a BamHI or an XhoI site, so 

that genes containing both these sites were unsuitable for this cloning strategy (table 3.1). 

The genes were amplified and cloned in the TOPO-PCR4 vector. Then they were sequenced 

to detect if any mutation occurred during the amplification. The correct inserts were 

subcloned in the expression vectors (pET-16b and pET-23b) as NdeI/BamHI or NdeI/XhoI 

cassettes. The positive clones in the expression vectors were confirmed through restriction 

analysis and sequencing, finally the constructs were expressed in E. coli when possible and 

the enzymes were characterized (Fig 3.1). 
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Table 3.1. The size of the putative gene and the restriction site introduced at the 3` end of 

each gene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Putative gene Size in bp Sites created downstream 

SAV 469 

SAV 1549 

SAV 3461 

SAV 7089 

SCO 1265 

SCO 1735  

SCO 2123 

SCO 3644 

SCO 4368 

SCO 4746 

SCO 6966 

SCO 7131 

SCO 4799  

SCO 3219  

SCO 7513  

1243 

1181 

861 

785 

949 

922 

843 

978 

1228 

1332 

874 

986 

1038 

1239 

1028 

XhoI 

XhoI 

XhoI 

BamHI 

XhoI 

XhoI 

XhoI 

XhoI 

XhoI 

XhoI 

XhoI 

XhoI 

BamHI 

BamHI 

BamHI 
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Fig. 3.1. Diagram illustrates the strategy used for the cloning of the different genes 
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3.1.3. Amplification of the putative esterase/lipase genes 

I could amplify fragments of the expected size for all genes except one (SCO 2123). Fig 3.2 

shows the obtained PCR products and their sizes. 

For the putative gene SCO 2123 instead of the expected fragment size 843pb I got a fragment 

around 920bp. After sequencing the PCR product we found it is a fragment coding for a 

putative β-glucosidase (locus SCO 6604) from S. coelicolor, which means that the primers 

used made false priming on the S. coelicolor genome. I decided not to construct new primers 

for SCO2123 and continue the cloning of the other correct products. The cloning of the gene 

SAV 3461 was done by Zhang, Qi during his “Diplomarbeit” in the Genetics Department 

(May 2005). 

 

Fig. 3.2. PCR products and the size of the amplified genes. M, marker ladder mix; lane 1, SAV 
469; lane 2, SAV 1549; lane 3, SAV 7089; lane 4, SCO 1265; lane 5, SCO 1735; lane 6, 
SCO 2123; lane 7, SCO3644; lane 8, SCO 4368; lane 9, SCO 4647; lane10, SCO 6966; 
lane 11, SCO 7131; lane 12, SCO 4799; lane 13, SCO 3219; lane 14, SCO 7513.  
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3.1.4. Cloning 

All the cloning steps were the same for the 14 different esterase/lipase genes. As a 

representative example for the cloning is the cloning of the gene SCO 7131. 

3.1.4.1. Cloning in TA vector 

The DNA fragments were amplified using Taq polymerase and a characteristic property of 

Taq polymerase is that the enzyme introduces one or two extra deoxynucleotides on to the 3´ 

end of blunt double stranded DNA. In a template independent manner any nucleotide of the 

four deoxynucleotides can be added, but when a mixture of all deoxynucleotide triphosphates 

present in the reaction, a strong preference is given to incorporation of dATP. The PCR 

products were cloned into T-vector pCR4-TOPO, using a cloning system based on vaccinia 

virus DNA topoisomerase (Shuman 1994). The cloning mixtures were transformed into E. 

coli strain TOPO10 and the transformation mixtures were plated onto agar containing X-gal 

and kanamycin for selection. The white colonies were subjected to restriction analysis; first 

EcoRI was used to detect wether the insert was of the correct size as there are EcoRI sites on 

each side of the cloning site, second restriction analysis was carried out using the appropriate 

enzymes for each insert.  

For SCO 7131 more than 40 white colonies were obtained. 40 clones were subjected to EcoRI 

digestion (Fig 3.3), and then the 36 positive clones were double digested with NdeI/ XhoI (Fig 

3.4). In the end I found 34 clones out of 40 having the right insert. I have called the plasmid 

pUKG951. 

 

Fig. 3.3. 40 clones EcoRI digested, 34 clones of them have an insert of the correct size (1005bp). 
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Fig. 3.4. 36 clones double NdeI/XhoI digested. Only clones 17and 18 did not have the right insert 
(971bp).  

3.1.4.2. Sequencing  

The putative esterase/lipase genes were amplified using Taq DNA polymerase, so it was 

necessary to sequence the cloned fragments to be sure that there were no point mutations 

arised during the PCR. Each insert was sequenced on both strands using M13 forward and 

reverse primers and the walking primers (see 2.13) the sequencing was repeated for each gene 

4-5 times to exclude sequencing errors. 

For SCO 7131 clone 2 was initially chosen for sequencing, but there were 3 point mutations 

in the sequence. However the sequence of clone 28 was 100% identical with the sequence in 

the database (Fig 3.5 & 3.6). In clone 2 the 3 point mutations lead to 3 substitutions in amino 

acids R100W, L243P and F286S.  

SCO 1735 clone 1 showed 2 point mutations and Clone 2 was 100% identical to the data base 

entery, whereas for all the other genes only one clone was sequenced and was 100% identical 

to the data base entery. 
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Fig. 3.5. : A comparison between the sequences obtained for C2 and C28 of SCO 7131 and the 
sequence in database. C28 is identical 100% with the database entery however C2 shows 
3 point mutations (↓) C301T, T731C and T860C. 

↓ 

↓

↓ 
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Fig. 3.6. : Clone 28 is 100% identical and Clone 2 has 3 point mutations (●) R100W, L243P and 
F286S. 

3.1.4.3. Subcloning in the expression vector 

The fragments, which were successfully cloned in the TOPO vector, were used for further 

subcloning in the expression vector.  

In this work, pET-16b was used for the expression. In the multiple cloning site it has three 

restriction sites NdeI, XhoI and BamHI. The fragments were cut and purified from the 

corresponding plasmid in TOPO vector as NdeI/BamHI or NdeI/XhoI. From previous work I 

know that agarose gel elution may affect the fragment’s ends or the vector’s ends and hence 

decrease the cloning efficiency. Instead of an elution strategy to purify the fragments before 

the subcloning a “shotgun cloning” technique was used. TOPO-pCR4 has three DraI sites 

whereas the high G+C content esterase/lipase fragments have no DraI cutting sites. After 

treatment of the recombinant plasmids with either NdeI/BamHI or NdeI/XhoI to cut the genes, 

●

●

● 
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a digest with DraI was carried out and finally the DNA was purified with phenol/chloroform 

extraction and no CIAP treatment was carried out. The pET-16b was also treated the same 

with either NdeI/BamHI or NdeI/XhoI followed with phenol/chloroform extraction and no 

CIAP treatment. The ligation mixtures were transformed into E.coli strain XL-1-blue. The 

obtained clones were screened with a double digest either NdeI/BamHI or NdeI/XhoI then the 

positive clones were confirmed with suitable restriction analysis followed by sequencing 

using the walking primers and T7 primer. 

The SCO 7131 gene was purified as an NdeI/XhoI fragment from pUKG951 and ligated into 

the expression vector pET-16b. Large number of clones was obtained. 48 clones were 

screened through NdeI/XhoI double digestion. The positive clone should produce two bands 

5704bp (vector) and 971bp (insert). Only clone one clone out of 48 screened clones possessed 

the correct sizes. To confirm the insert the positive was further analyzed through BamHI and 

PvuI digestion. BamHI produces two bands 5962bp and 713bp and the PvuI digestion 

produces two bands 5657bp and 1018bp (Fig 3.7). The final confirmation was carried out 

through sequencing using T7 primer and the walking primers SCO 7131-For-2 and SCO 

7131-Rev-2. The plasmid was called pUKG 952.  

 

Fig. 3.7. The restriction analysis of pUKG952. M, marker ladder mix; lane 1, NdeI/XhoI double 
digest; lane 2, BamHI digest; lane 3, PvuI digest 

I have also subcloned the genes in another expression vector pET-23b. Constructs in the pET-

23b were designed to produce native protein: pET-23b has a C-terminal His-tag but I have 

cloned my genes with its natural stop codons, which means expression of my genes in this 
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vector will stop at the end of the gene before adding the His-tag to the C-terminal and hence 

the produced protein will be in native form. 

The cassettes were subcloned in the expression vector pET-23b following the same strategy 

used for the subcloning in pET-16b. 

All the cloning results in the vectors TOPO pCR4, pET-16b and pET-23b are shown in table 

3.2. 
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Table 3.2. Summary of the cloning results and shows the plasmids created through the 

cloning in TOPO pCR4 and in the expression vectors pET-16b/pET-23b and 

their sizes.  

a. SCO 1735 clone 1 which has two point mutations. 
b. SCO 1735 Clone 2 which is 100% identical with the database. 
c. SCO 7131 Clone 28 which is 100% identical with the database. 
d. SCO 7131 Clone 2 which has three point mutations. 

Cloning in TOPO 

pCR4 

Cloning in 

pET-16b 

Cloning in  

pET-23b 

Putative gene Size 

in bp 

Plasmid 

name 

Size 

in bp 

Plasmid 

name 

Size 

in bp 

Plasmid 

name 

Size 

in bp 

SAV 469 

SAV 1549 

SAV3461 

SAV 7089 

SCO 1265 

SCO 1735-C 1 a 

SCO 1735-C2 b 

SCO 3644 

SCO 4368 

SCO 4746 

SCO 6966 

SCO 7131-C28 c 

SCO7131-C2 d 

SCO 4799  

SCO 3219  

SCO 7513  

1243 

1181 

861 

785 

949 

922 

922 

978 

1228 

1332 

874 

986 

986 

1038 

1239 

1028 

pSHS1240 

pSHS1180 

pSQ891 

pSHS780 

pSHS940 

pSHS920 

pSHS923 

pSHS970 

pSHS1220 

pSHS1330 

pSHS810 

pUKG951 

pUKG954 

pSHS1030 

pSHS1200 

pSHS1020 

5196 

5129 

4846 

4739 

4903 

4876 

4876 

4932 

5182 

5286 

4828 

4941 

4941 

4996 

5194 

4972 

pSHS1241 

pSHS1181 

pSQ893 

pSHS781 

pSHS941 

pSHS921 

pSHS924 

pSHS971 

pSHS1221 

pSHS1331 

pSHS811 

pUKG952 

pUKG955 

pSHS1031 

pSHS12001

pSHS1021 

6934 

6871 

6594 

6471 

6636 

6612 

6612 

6669 

6902 

7022 

6566 

6674 

6674 

6731 

6929 

6715 

pSHS1242 

pSHS1182 

pSQ892 

pSHS782 

pSHS942 

pSHS922 

pSHS925 

pSHS9712 

pSHS1222 

pSHS1332 

pSHS812 

pUKG953 

pUKG956 

pSHS1032 

pSHS12002 

pSHS1022 

4816 

4753 

4476 

4398 

4518 

4494 

4494 

4551 

4784 

4904 

4448 

4557 

4557 

4658 

4856 

4642 
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3.2. Protein expression 

The pET system is one of the most commonly used systems for the cloning and expression of 

recombinant proteins in E. coli. The target genes in pET plasmids are under the control of the 

strong bacteriophage T7 transcription signal. The expression occurs when a source of T7 

RNA polymerase exists within the host cells. The T7 RNA polymerase promoter is a strong 

one, when it is fully induced, it will use most of the host resources to synthesize the target 

protein. At the same time the expression level can be controlled through controlling the used 

amount of inducer.  

The target protein expression can be initiated either by infecting the host cells with λCE6, a 

phage carrying the T7 RNA polymerase gene, or by transferring the plasmid into an 

expression host which carries a chromosomal copy of the T7 RNA polymerase gene under the 

control of lacUV5, in this case IPTG is required as inducer. The promoter in pET-16b is 

called T7 lac promoter. In this case a lac operator sequence exists just downstream of the T7 

promoter on the plasmid, which carries the natural promoter and lacI (lac repressor). The T7 

RNA polymerase gene and lacI are diverging. The lac repressor acts at the lacUV5 promoter 

in the host chromosome to repress the T7 RNA polymerase gene, and at the T7lac promoter 

in the vector to prevent the transcription of the target gene by any made T7 RNA polymerase. 

This controls the basal expression of the gene (Novagen manual, 2002) Fig 3.8. 

All the intial constructs of the esterase/lipase genes were in the E. coli strain XL-1-blue which 

is a cloning strain but not an expression strain. The plasmids must be retransferred into 

expression strain before the expression. We have used for this purpose the E. coli strain BL21 

(DE3). BL21 (DE3) in addition to the production of T7 RNA polymerase is characterized by 

deficiency in the proteases lon protease and ompT outer membrane protease, which makes 

several target proteins more stable in BL21 (DE3) than in other strains which possess these 

proteases. 
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Fig. 3.8. The expression of target gene under the control of T7 lac promoter (pET system manual, 
Novagen 2002) 

The 14 different putative esterase/lipase genes were cloned in pET-16b in addition to the SCO 

7131 and SCO 1735 mutants. To collect more information about the expected overexpressed 

proteins, the protein sequences were analyzed in silico using the proteomics and sequence 

analysis tools on the ExPASy web site (http://www.expasy.org/tools/). The analysis of the 

primary protein structures enabled me to predict the theoretical molecular weight and the 

isoelectric point for each protein. Another useful tool is provided on the web site of Oklahoma 

University (http://www.biotech.ou.edu/). This tool predicts the solubility probability of a 

protein assuming it is overexpressed in E. coli. The determination of solubility probability 

was a key step for the decision which construct should be expressed first, taking in 

consideration that the solubility of the overexpressed proteins in E. coli is a bottle neck for 

heterologous expression. The data collected from the analysis of these sequences were 

gathered in table 3.3. 
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Table 3.3. The solubility, molecular weight and isoelectric point as obtained from the sequences and the primary structure analysis 

Gene locus Protein 
Acc. No 

Mwt 
in kDa

Mwt with  
the His tag 

Solubility 
probability 

PI PI With  
the His Tag

SAV 469 

SAV 1549 

SAV 7089 

SAV 3461 

SCO 1265 

SCO 1735 (C2) 

SCO 1735 (C1) 

SCO 3644 

SCO 4368 

SCO 4746 

SCO 6966 

SCO 7131 (C28)

SCO 7131 (C2) 

SCO 4799 

SCO 3219 

SCO 7513 

NP_821644

NP_822725

NP_828265

NP_824638

NP_625552

NP_626008

 

NP_627838

NP_628538

NP_628904

NP_631032

NP_631192

 

NP_628956

NP_627433

CAC42140

42.97 

42.07 

24.45 

30.72 

31.47 

30.50 

30.49 

31.08 

40.52 

44.03 

28.92 

34.10 

34.05 

35.14 

41.49 

30.49 

45.52 

44.71 

26.98 

33.26 

34.00 

33.03 

33.02 

33.61 

43.07 

46.56 

31.46 

36.62 

36.57 

37.69 

44.04 

33.03 

67%   Insol 

66%   Insol 

52%   Insol 

74%   Insol 

59%      Sol 

65%    Insol 

69%    Insol 

74%      Sol 

90%    Insol 

57%    Insol 

52%      Sol 

73%      Sol 

73%      Sol 

90%   Insol 

83%   Insol 

50%   Insol 

6.48 

7.31 

4.69 

7.73 

5.25 

5.75 

5.76 

4.76 

9.89 

5.75 

5.69 

4.84 

4.79 

9.29 

11.08

5.28 

6.74 

7.10 

5.87 

7.82 

5.90 

6.31 

6.32 

5.50 

9.89 

6.26 

6.18 

5.55 

5.50 

9.29 

11.07 

6.05 
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3.2.1. Expression, characterization and directed evolution of a novel 

(HSL) acetylesterase from Streptomyces coelicolor A3(2) “gene 

locus SCO 7131” 

3.2.1.1. Est A expression and purification 

The plasmid pUKG952 contains the gene SCO 7131, which we called estA with product 

esterase A (Est A). The plasmid was transformed into the expression strain BL21 (DE3). The 

clone was induced using IPTG. A preliminary experiment showed that p- nitrophenylacetate 

was hydrolysed by the clone and this substrate was used to monitor the induction. The 

induction was carried out in several conditions; different induction temperatures (15ºC -37ºC), 

induction periods (1h-24h) and different IPTG concentrations (0.1-1mM IPTG). It was found 

that the best result was obtained when the culture was induced for 4hrs at 30ºC using 0.5mM 

IPTG (data not shown). After the establishment of the proper induction condition the enzyme 

was induced in 1l culture. The extracted total cell protein was purified by affinity 

chromatography on Ni-agarose gel. The purification procedure gave a 10-fold increase in 

enzyme specific activity with a total yield of 79% (table 3.4). Part of the purified enzyme was 

treated with factor Xa to remove the His-Tag. 12% SDS PAGE was run to estimate the 

relative molecular weight of both forms the tagged and non-tagged. The SDS PAGE gave 

bands of the expected Mr 38.5 kDa for the protein with the His-tag (calculated was 36.62 

kDa) and 35.4 kDa after removal of the His-tag (the calculated was 34.10 kDa) Fig 3.9. 

A western blot was made for Est A using anti-His tag antibody as primary antibody. In 

addition to the SDS PAGE a native PAGE was run, it produced strong bands after the activity 

staining (Fig 3.10).  

Table 3.4. Purification of Est A from recombinant E. coli 

Step Total protein 
(mg) 

Activity U Specific 
activity 
U/mg 

Yield (%) Purification 
factor 

Crude 
extract 

128.5 13112 102 100 1 

affinity 
column 

10 10204 1020 79 10 
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Fig. 3.9. SDS PAGE of Est A. M: protein molecular weight marker, lane 1: Est A purified on Ni 
column and cut with factor Xa, lane 2: Est A purified on Ni column. 
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A     B 

 

C 

 

Fig. 3.10. Native PAGE of Est A, and Western Blot using anti-His tag antibody. Lane 1: The 
molecular weight marker, lane 2: cell extract, lane 3: affinity column purified protein, 
lane 4: protein after factor Xa digestion. (a) Gel stained with Coomassie brilliant blue. 
The molecular weights of the marker (in kDa) are indicated (b) Gel after activity staining 
(c) Western blot (original gel not shown).  
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3.2.1.2. Characterization of Est A  

All the experiments were done on the His-tagged enzyme. A single replicate of the non His-

tagged protein was done for substrate specificity, effect of temperature and pH on the activity 

and to test effect of inhibitors, they all gave results with in the SD. 

3.2.1.2.1. Substrate specificity of Est A  

The enzyme activity was investigated against several triglycerides using the agarose diffusion 

test and synthetic esters (p-nitrophenyl esters). Est A did not show activity against any of the 

tested triglycerides (tributryin, trioctanoate, tristearin, triolein, tripalmitin) or against olive oil. 

When Est A was tested against synthetic p-nitrophenyl esters, I observed activity only against 

C2 acyl ester (p-nitrophenyl acetate), even the activity observed against C4 and C6 acyl esters 

(p-nitrophenyl butyrate and p-nitrophenyl caproate) was less than 2% of the activity recorded 

towards the p-nitrophenyl acetate. 

To learn more about the activity of this enzyme, it was necessary to check if it will act against 

other acetate esters. Est A acted on both α- and β-naphthyl acetates, and interestingly the 

activity towards β-naphthyl acetate was only 27% of the activity observed with α-naphthyl 

acetate. 

3.2.1.2.2. Effect of temperature on Est A activity and stability 

The effect of temperature on enzyme activity and stability was measured 

spectrophotometerically using p-nitrophenyl acetate as substrate and HEPES pH 7 as a buffer 

at temperatures range 20-80ºC. The Est A activity increased with temperature reaching a 

plateau at 55ºC (Fig 3.11). 

In order to assess the thermostability the enzyme was preincubated for 1h at temperatures 

range 20-80ºC before assaying the residual activity. The enzyme was fairly stable at 

temperatures up to 55ºC. At 55ºC Est A retained 73% of its activity after 1h incubation, 

whereas incubation at 60ºC or higher temperature for the same period leaded to sharp 

decrease in activity (Fig 3.12). 

Time courses for thermostability at 37ºC and 50ºC were done up to 4.5h. The decrease in 

activity was gradual at both temperatures, it did not show any abrupt change at any time. At 

37ºC Est A retained 67% of its activity after 270 min incubation whereas at 50ºC it had a t 1/2 

4.5h (Fig 3.13). 
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Fig. 3.11. The effect of temperature on enzyme activity. Activity is represented as percentage of the 
maximum activity. Standard deviations are derived from four replicates. 
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Fig. 3.12. The effect of temperature on enzyme stability. Stability was measured by incubation for 1 
h at the stated temperature with determination of the residual activity at 37°C. Standard 
deviations are derived from four replicates 
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Fig. 3.13. Est A stability at 37ºC and 50ºC. Stability was measured with determination of the 
residual activity at 37°C. 

 

3.2.1.2.3. Effect of pH on enzyme activity and stability 

The activity and stability were measured at 37ºC at a range of pH values. The enzyme 

preferred slightly alkaline conditions with an optimum activity at pH 7.5 (Fig 3.14) and very 

little activity (21% of the maximum activity) at pH 6.5. At a pH lower than 6.5 the activity 

almost disappeared (less than 2% of the maximum activity). At pH 8.5 the activity decreased 

to 37% of the maximum activity. The enzyme was stable on storage at pH values between 5.5 

and 10 for 24h at 20ºC. It retained more than 98% of its activity at pH range 6.5-8.5, at pH 9 it 

showed 90% of its activity and retained >86%  at pH 6 and pH 9.5 (Fig 3.15). 

When the buffer composition was tested, HEPES pH 7.5 and Tris-HCl pH 7.5 gave almost the 

same activity, whereas phosphate buffer pH 7.5 gave around 20% less activity (Fig 3.16). 

[Min] 
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Fig. 3.14. Effect of pH on activity of Est A. Activities were shown as percentages of the maximum 
activity. Standard deviations were derived from four replicates. SD were indicated as 
error bars. The absence of an error bar indicated a deviation less than the symbol size. 
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Fig. 3.15. Effect of pH on Est A stability. Stability was measured after 24h incubation in different 
buffers at 20˚C. Standard deviations were derived from four replicates. SD are indicated 
as error bars. The absence of an error bar indicates a deviation less than the symbol size. 
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Effect of buffer composition
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Fig. 3.16. Effect of different buffers on activity. The buffers were HEPES 20mM pH 7.5 (▲), Tris-
HCl 20mM pH 7.5 (■) and Phosphate 20mM pH 7.5 (♦). 

3.2.1.2.4. Effect of metal ions and inhibitors 

The effect of preincubation with different metal ions and inhibitors on the activity of the 

enzyme was tested. The enzyme was preincubated with either 1mM or 10mM of each 

substance for 1h at 20ºC, then the activity was measured at 37ºC and the relative activity to 

the activity of untreated enzyme was calculated. There was little effect of any of the metals 

and chemicals at a concentration of 1mM after 1h incubation; in all cases the enzyme had 

more than 85% activity except PMSF decreased the activity to 82%. However, preincubation 

in 10mM PMSF, Cu2+ and Hg2+ decreased the activity greatly; PMSF decreased the activity to 

63%, Cu2+ showed only 45% and Hg2+ 49%. Preincubation in 10mM K+ lead to a significant 

increase in activity (138%), whereas 10mM Na+ lead to only a small increase (118%). There 

was a small increase of activity (125% and 117%) in the presence of DTT and EDTA 10mM 

respectively (Figure 3.16).  
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Fig. 3.17. Effects of metal ions and inhibitors on activity of the enzyme. All reagents were tested 
using 1 mM (blue bars) and 10 mM (red bars). The final concentration in reactions was 
always ≤2%. Standard deviations were derived from four replicates.  

Est A was incubated with 10mm PMSF over a time course of 150min; the enzyme activity 

was measured at 30 min intervals. There was gradual decrease in the activity with the 

incubation time during the first 90min. after 90 min there was no significant change in the 

activity, the activity remain around 50% for 1h more (Fig 3.18) 
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Fig. 3.18. Effect of 10mM PMSF over time course 150min 

The effect of different Na+ and K+ concentrations in the reaction buffer was also investigated 

(Table 3.5) This showed optimal concentrations of about 1mM and 10mM respectively.  
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Table 3.5. Effect of Na+ and K+ on enzyme activity. Activities were percentages relative to 

the activity in the absence of either Na+ or K+. The standard deviations (SD) 

were derived from three replicates 

Concentration Na+ 

activity (%±SD) 

K+ 

activity (%±SD) 

0.5 mM 

1 mM 

10 mM 

50 mM 

100 mM 

113±4 

116±4 

98±10 

100±2 

106±2 

115±2 

123±1 

129±4 

119±8 

107±4 

3.2.1.2.5. Effect of water miscible organic solvents 

All water-miscible organic solvents tested showed a significant reduction in enzyme activity, 

when used at a concentration of 50%. However, whereas alcohols still inhibited at a 

concentration of 10%, dimethylformamide and DMSO retained more than 75% of the activity 

(Table 3.6). 

Table 3.6. Effects of water-miscible organic solvents on enzyme activity. The activities 

were percentages relative to the activity without organic solvents. The standard 

deviations (SD) were derived from three replicates. 

Organic solvent 10% concentration

activity (%±SD) 

50% concentration 

activity (%±SD) 

Acetone 

Acetonitrile 

Dimethylformamide 

DMSO 

Ethanol 

Methanol 

2-propanol 

74±1 

38±7 

77±2 

74±2 

11±1 

19±2 

13±5 

3±4 

0.3±0 

3±9 

26±8 

2±9 

7±5 

0.7±5 
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The enzyme was preincubated 1h at 20ºC in different concentrations of the organic solvent 

(10%, 20% and 30%) and the residual activity was measured. The enzyme can moderately 

withstand 10% concentration of the tested organic solvents; in acetone, DMSO and 

dimethylformamide 10% the enzyme had more than 70% residual activity, in 10% 

acetonitrile, ethanol and methanol the residual activity was around 60%, whereas 10% 

isopropanol decreased the activity to 50%. The effect of 25% organic solvents did not differ 

extensively from the concentration 10%, except in case of isopropanol which decreased the 

activity to 18%. The maximum reduction in activity was observed after incubation in 50% 

isopropanol and acetonitrile (less than 15%) whereas ethanol lowered the activity to 25%. Est 

A has fairly good tolerance of 50% acetone, dimethylformamide and DMSO, it retained more 

than 50% of its activity after 1h incubation (Fig 3.19). 
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Fig. 3.19. Effect of organic solvents on stability of the enzyme. Stability was measured by 
incubation for 1 h at 20˚C. Different concentrations of organic solvents were used; 10% 
(red bars), 25% (blue bars) and 50% (solid bars). The final concentration in the reaction 
was always ≤1%. Standard deviations were derived from four replicates. 

3.2.1.2.6. Kinetic parameters of Est A. 

The Km and Vmax of the esterase were estimated using the activity assay with p-

nitrophenylacetate, α-naphthylacetate and β-naphthylacetate as substrates, the Lineweaver 

Burk plots were plotted Figures 3.20, 3.21 and 3.22 respectively.  
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Fig. 3.20. Lineweaver Burk plot for Est A using p-nitrophenylacetate 

 

0

50

100

150

200

250

300

350

400

450

-4 -2 0 2 4 6 8 10 12

1/S (1/mM)

1/
V

 (m
in

/m
M

)

 

Fig. 3.21. Lineweaver Burk plot for Est A using α-naphthylacetate.  
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Fig. 3.22. Lineweaver Burk plot for Est A using β -naphthylacetate.  

Km and Vmax were estimated from the plots (Table 3.7). The enzyme had the highest affinity 

towards α-naphthylacetate which is 10-fold its affinity towards β-naphthylacetate. This result 

correlates with the substrate specificity (3.2.1.2.1) where the activity towards β-

naphthylacetate was only 27% of the activity towards α-naphthylacetate.  

Table 3.7. Kinetic parameters on different substrates. Standard deviations (SD) were 

derived from three separate experiments. 

Substrate Km±SD (mM) Vmax±SD (mM/min) 

p-nitrophenylacetate 

α-naphthylacetate 

β-naphthylacetate 

1.71±0.0217 

0.5373±0.045 

5.433±0.38 

0.0094±0.00019 

0.0168±0.0017 

0.019±0.00035 

 

3.2.1.2.7. Enantioselectivity profile of Est A 

Evaluation of the enantioselectivity of Est A was carried out on a number of chiral substrates 

of commercial interest (enantioselectivity screening was done by our collaborators in CSIR 

regional research institute, Jammu, India) which included acyl esters of 1-(3,4-

methylenedioxyphenyl)-ethanol, 1-(3,4-methylenedioxyphenyl)-propan-1-ol, 1–(p-

chlorophenyl)-benzylalcohol, 1-(3,4-methylenedioxy-5-yl)-benzylalcohol, bisnapthol, ethyl 3-

hydroxy-3-phenyl-propanoate, 1-(6-methoxy-2-naphthyl)-ethanol, 2-(6-methoxy-2-naphthyl)-

propan-1-ol and alkyl esters of 2-(6-methoxy-2-naphthyl)-propanoic acid, 2-(p-(2-methyl 
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propyl)-2-phenyl)–propanoic acid, Ethyl- 2-hydroxy-4-phenyl butanoate, 2-bromo propanoic 

acid and ethyl (indol-2-yl) formate  

Est A proved to be poor in stereo-selectivity as low enantiomeric excess (ee) of the 

hydrolysed products/starting materials was observed. Low hydrolytic activity was observed 

for substrates (viii, ix) and high activity for substrates (vii). ‘R’ alcohol was obtained as the 

hydrolysed product from acetyloxy and propanoyloxy esters of substrate viii and ‘S’ alcohol 

from its butyl ester. In case of alkyl esters of acids the enzyme preferred ‘S’ enantiomer to 

give enriched’R’ ester and ‘S’ acid. (Appendix A) 

3.2.1.2.8. Classification of Est A. 

In 1999 Arpigny and Jaeger (Arpigny and Jaeger 1999) classified the bacterial esterases and 

lipases according to conserved motifs into 8 different families. Analyzing the sequence of Est 

A revealed that it contains all the conserved motifs of group IV (Fig 3.23) Group IV is also 

called the HSL family (hormone sensitive lipase), this family is a group of enzymes of 

bacterial origin which show a striking similarity with human HSL, all these enzymes are 

lipolytic enzymes from distantly related prokaryotes. Despite the marked sequence similarity 

they are very varied in properities; some are psychrophilic (e.g. Moxarella sp), some are 

mesophilic (e.g. Alcaligenes eutrophus) and other are thermophilic (e.g. Alicyclobacillus 

acidocaldarius).  

 

Fig. 3.23. Alignment of the predicted Est A amino acid sequence with members of the hHSL family 
(family IV) of esterases and lipases (Arpigny and Jaeger 1999). The three critical amino 
acids in the active centre are shown (↓). The totally conserved amino acids are indicated 
(*). The four blocks characteristic of family IV correspond to amino acids 83-87, 155-
163, 245-272 and 284-287 of EstA respectively. The other enzymes are from Alcaligenes 
eutrophus(Ae), Alicyclobacillus acidocaldarius (Aa), Pseudomonas sp. B11-1 (Ps), 
Archaeoglobus fulgidus (Af) and  Moraxella sp. (Ms). 

The alignment of Est A with the other known (HSL) enzymes not only showed that Est A 

belonged to the HSL family but also some residues were conserved throughout the family 

except in Est A. In the first block a phenylalanine was conserved except in Est A and in an 



Results 

 70

esterase from Alicyclobacillus acidocaldarius where it was substituted with a larger residue 

(tryptophan). The alanine next to the serine active site was substituted with a larger valine in 

Est A. Another conserved leucine and alanine near the serine active site were substituted with 

methionine and serine respectively. This classification of esterases/ lipases was done in 1999, 

when the sequence data base was much smaller than now and the motifs are based on a very 

small number of sequences. I decided to look for further family members in the protein data 

base. Prof. Dr. Cullum kindly made a profile for the (HSL) family according to the data of 

Arpigny and Jaeger 1999, and then we ran HMMER against the protein data base (release 153 

of genbank). The 10 best hits (Fig 3.24) were used to build a new family profile. We ran 

HMMER again using the new profile, it resulted in 119 significant hits (data not shown).     

 

Fig. 3.24. Alignment of the best 10 hits the highly conserved residues are highlighted black and the 
less conserved residues are grey. 

In addition to the four conserved motifs (Figure 3.23) mentioned by Arpigny and Jaeger 

(1999) I have found another two conserved motifs within the HSL family. There were also 
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some modifications of some residues in the four conserved motifs (Table 3.9). The first 

conserved block in the HSL family had a consensus sequence HGGG(F/W)V-G, where the H 

residue was 100% conserved and GGG---G were conserved more than 90% throughout the 

119 sequences. The F/W were also highly conserved, both residues appeared almost equally. 

The conserved motif (YRLAPE--FP) was not described in 1999. The first proline residue was 

100% conserved and the residues Y, E and P were highly conserved, whereas the R, L and A 

were moderately conserved. The serine active site conserved motif (V-GDSAGGNLA) was a 

little bit modified. The A residue was usually conserved. However, when the A was 

substituted, it was nearly always substituted with V. The motif Q-L-YP was not mentioned by 

Arpigny and Jaeger, the P was 100% conserved and the other three residues appeared >85%. 

In the HGF block the histadine active site was 100% conserved. The G residue was 26% 

substituted with D and the F residue was 10% substituted with Y. 

Table 3.8. Shows the conserved motifs within (HSL) family and the degree of conservation 

for each residue. * indicate the residues belong to the catalytic triad. 

Conserved motifs 

HGGG(W/F)V-

G 

YRLAP

E---P 

V-GDS(A/V)GGN

(L/M)(A/S) 

Q-L-YP 

 

D-LRDEG-- 

YA--L--AG 

H(G/D) 

(F/Y) 

H 100% 

G1 98% 

G2 91% 

G3 96% 

W43%-F 45% 

V 73% 

G4 91% 

Y 98% 

R 75% 

L 75% 

A 75% 

P1 100% 

E 92% 

P2 94% 

V 80% 

G1 100% 

D 85% 

S* 100% 

A 72%-V 25% 

G2 100% 

G3 94% 

N 73% 

L 66%-M 21% 

A 75%-S 19% 

Q 96% 

L 94% 

Y 85% 

P 100% 

 

D*1 100% 

L1 93% 

R 70% 

D2 94% 

E 75% 

G 90% 

Y 90% 

A1 79% 

L 95% 

A 81% 

G 98% 

H* 100% 

G 62%-D 26%

F 80%-Y 10%
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3.2.1.2.9. Homology modeling of Est A. 

The protein data base is expanding and the number of the proteins with the determined crystal 

structures is continually increasing. Now it is possible to develop a 3D model of a protein if it 

shows good structure alignment to a known 3D structure. I have used the service provided by 

expasy server, http://swissmodel.expasy.org/ “an automated comparative protein modeling 

server” (Peitsch 1995; Guex and Peitsch 1997; Schwede et al., 2003). Searching the Known 

3D structures for appropriate model templates produced good hits with PDB files 2c7b (a 

thermophilic and thermostable carboxylesterase from metagenome library), 1jji (AFEST 

thermophilic carboxylesterase from the archeon Archaeoglobus fulgidus), 1evq (the 

thermophilic carboxylestrase EST2 from Alicyclobacillus acidocaldarius) and 1 jkm (the 

carboxylesterase from Bacillus subtilis), all of them are members of HSL family. A swiss 

model was produced using the previous PDBs as templates. The produced model represents 

the residues 35-316 of Est A sequence Fig 3.25 and 3.26 represents the alignment and the 3D 

model of Est A from S. coelicolor superimposed with the other HSL esterases. The 3D model 

of Est A showed the typical α/β hydrolase fold (Fig 3.27). 
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EST2            ---MPLDPVIQQVLDQLNRMPAPDYKHLSAQQFRSQQSLFPPVKKEPVAEVREFDXDLPG 57 

AFEST           MLDMPIDPVYYQLAEYFDSLPKFD-QFSSAREYREAINRIYEERNRQLSQHERVER-VED 58 

SCESTA          MSDIVLEPAAQDFADATAKPPLLY-----ELGVEGARKLLDDVQSGPVEKPDVDEKWITV 55 

                   : ::*.  :. :     *            .   . :   :.  : :    :  :   

 

EST2            RTLKVRX----YRPEGVEPPYPALVYYHGGGWVVGDLETHDPVCRVLAKDGRAVVFSVDY 113 

AFEST           RTIKGRNGDIRVRVYQQKPDSPVLVYYHGGGFVICSIESHDALCRRIARLSNSTVVSVDY 118 

SCESTA          PVEVGDVRVRIVKPAGTTGVLPVVLYVHGGGWILGNAGTHDRLVRELAVGAEAAVVFVEY 115 

                 .          :        *.::* ****::: .  :** : * :*  ..:.*. *:* 

 

EST2            RLAPEHKFPAAVEDAYDALQWIAERAADFHLDPARIAVGGDSAGGNLAAVTSILAKERGG 173 

AFEST           RLAPEHKFPAAVYDCYDATKWVAENAEELRIDPSKIFVGGDSAGGNLAAAVSIMARDSGE 178 

SCESTA          DRSPEAKYPVAIEQAYATAQWVTTKGAEEGLDGSRMVVAGDSVGGNMSAALTHMAKRRGD 175 

                  :** *:*.*: :.* : :*:: .. :  :* ::: *.***.***::*. : :*:  *  

 

EST2            PALAFQLLIYPSTGYDPAHPPASIEENAEG-YLLTGGXXLWFRDQYLNS--LEELTHPWF 230 

AFEST           DFIKHQILIYPVVNFVAPTP--SLLEFGEGLWILDQKIMSWFSEQYFSR--EEDKFNPLA 234 

SCESTA          VTFLHQSLYYPVTDAGQDTESYRLFAHGPH---LTAKAMEWFWNAYAPDPAERDQITASP 232 

                  : .* * ** ..         :   .     *      ** : *      .:   .   

 

EST2            SPVLYPDLSGLPPAYIATAQYDPLRDVGKLYAEALNKAGVKVEIENFEDLIHGFAQFYSL 290 

AFEST           S-VIFADLENLPPALIITAEYDPLRDEGEVFGQMLRRAGVEASIVRYRGVLHGFINYYPV 293 

SCESTA          LRATPEDLQGLPPAFVVVDENDVLRDEGEAYARKLIQAGVPTTSVRYNASLHDFMMLNPV 292 

                  .   **..**** : . : * *** *: :.. * :*** .   .:.  :*.*    .: 

 

EST2            S--PGATKALVRIAEKLRDALA-- 310 

AFEST           L--KAARDAINQIAALLVFD---- 311 

SCESTA          RGTQASTAAIEQAIHVLRSALGTD 316 

Fig. 3.25. Structural alignment of S. coelicolor EstA, Alicyclobacillus acidocaldarius EST2 and 
Archaeogolobus fulgidus. 
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Fig. 3.26. Superimposition of the backbone traces (shown as ribbon) of the 3D model of Est A from 
S. coelicolor (green) and the known 3D structures of HSL family members EST2 of 
Alicyclobacillus acidocaldarius (magenta) and AFEST of Archaeogolobus fulgidus 
(cyan). The catalytic triad is colored red. 

S 
H

D 
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Fig. 3.27. The 3D model of Est A. The conserved motifs of HSL are indicated as follow; HGGGWI 
is black, YDRSPEAKYP is grey, GDSVGGNMS is red, QSLYYP is yellow, 
DVLRDEGEAYARRK is green and the HDF is gold. The putative oxyanion hole 
(VLYVHG) is represented as blue, the 2 residues HG are incorporate in both the oyanion 
hole and in the conserved motif (HGGGWI) is colored spring green. The catalytic triad is 
indicated as purple with its side chains S157, D254 and H 284. Strands are colored violet 
red and labeled β1– β8 pertain to the prototypic α/β hydrolase fold. α helices are colored 
cyan and numbered 2-12. I assumed that the missing first 34 residue will constitute α1 
and the rest of α2. 
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The residues S157, D254 and H284 are the catalytic triad. The distances between the side 

chains are suitable for H bond formation (Fig 3.28) 

 

Fig. 3.28. The spatial arrangement of the catalytic triad. S157 (red), D254 (magenta) and H284 
(green). The possible H bonds are indicated as blue line. 
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3.2.2. Est A directed evolution through site directed mutagenesis 

The characterized HSL carboxylesterases act against short and middle chain esters C2-C12 

with best activity against C6 as the HSL carboxylesterases from Alicyclobacillus 

acidocaldarius, Archaeoglobus fulgidus and the thermophilic HSL esterase from a 

metagenomic library (Rhee et al., 2005), whereas Est A acts only against the C2 esters. When 

Est A was compared with the characterized HSL family, some differences were noticed. The 

W87 was substituted with F except that of Alicyclobacillus acidocaldarius and V158 was 

substituted with A. The M162 and S163 were L and A respectively. To verify whether these 

differences play a role in the substrate specificity observed in Est A or not, we changed these 

residues to the consensus sequences. These should enable us to understand something of the 

structure activity relationship and also may lead to improvement of the characters observed 

for Est A. Changing the residues to the consensus sequence was accomplished through site 

directed mutagenesis. 

3.2.2.1. Site directed mutagenesis PCR  

Site specific mutagenesis is an important method for directed evolution (2.11.1), analysis of 

gene functions and many other applications. Several approaches to this technique have been 

published, but these methods generally require ssDNA as a template and are labor intensive or 

technically difficult. So I decided to use another strategy depending on PCR amplification of 

the whole construct using long mismatch primers and high fidelity polymerase to avoid 

introducing undesired mutations. The template was removed through digestion with DpnI 

(DpnI cuts only methylated and hemimethylated DNA, so it will cut any DNA containing an 

original tempelate strand). The mutagenised plasmid DNA was purified and transformed into 

E. coli. This was an efficient, inexpensive and rapid method for site directed mutagenesis with 

no need for further cloning of the PCR product (Fig 3.29). 
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Step 1.
Mutant strand synthesis
perform thermal cycling to:

A. Denaturate DNA template

B. Anneal mutagenic primers containing
the desired mutation
C. Extend and incorporate the primers
with high f edlity DNA polymerase

**

**

**

Step 2.
DpnI digestion of template
Digest the parental methylated and
hemimethylated DNA with DpnI

Step 3.
Purify the plasmid
DNA and elctroporate

 

Fig. 3.29. Schematic diagram shows the strategy used for the site directed mutagenesis 

Suitable long mismatch primers of around 30bp were constructed (see table 2.2). The plasmid 

pUKG952 was used as a template and the amplification reaction of the whole plasmid was 

carried out using a high fidelity Taq. The PCR product was treated with DpnI then the 

mutagenised plasmids were transformed in E.coli. In case of the W87F mutant the clones 

were screened through BamHI digest (mutagenesis removes one of two BamHI sites), the 

other mutants through sequencing and the positive clones were sequenced on both strands to 

ensure that there was no other mutation except the required one. Five different mutants were 

produced in this way; W87F, V158A, M162L, S163A and W87F/V158A (Fig 3.30-3.31). The 

double mutant was produced from the W87F single mutant by a second round of mutagenesis.  
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Fig. 3.30. The sequencing results of the site directed mutagenesis; the mutant W87F AA/CC, the 
mutant V158A G/A, the mutant M162L A/T, the mutant S163A GC/TC and the mutant 
W87F/V158A G/A and AA/CC. 

 

 

Fig. 3.31. Shows the alterations in amino acids sequence resulted from the mutagenesis (•); W87F, 
V158A, M162L, S163A and W87F/V158A. 
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3.2.2.2. Characterization of Est A mutants 

3.2.2.2.1. Substrate specificity 

The Est A mutants’ activity against p-nitrophenyl esters was tested, all the mutants still 

showing the maximum activity against p-nitrophenyl acetate. However the mutants behaved 

differently against the other p-nitrophenyl esters. The mutants W87F, M162L and S163A did 

not show significant changes from the wild type, whereas the mutants V158A and 

W87F/V158A showed more activity than the wild type against both p-nitrophenyl butyrate 

and p-nitrophenyl caproate; the activity against the butyrate ester increased to 3% and 6% and 

to 9% and 9.5% against the p-nitrophenyl caproate respectively (Fig 3.32).  
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Fig. 3.32. Activity of wild type, single mutants and double mutant enzymes on esters of C4 
(butyrate) and C6 (caproate). p-nitrophenyl esters were used with acetate ester as 100% 
activity. SD were derived from 2 separate experiments each with 4 replicates. 

 

The Est A mutants were tested for activity against triglycerides and olive oil, which are not 

substrates for the wild type enzyme. V158A show activity towards tributryin but not the 

longer substrates. W87F/V158A showed a very faint activity also against the tributryin, 

whereas the other mutants were similar to the wild type (Fig 3.33).   

 

Substrate specificity of the different mutants 
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  A.         B.       C.  

 
     D.           E.       G.  

Fig. 3.33. Activity against tributyrate. Using plate and well method (A) Wild type, (B) W87F, (C) 
V158A, (D) W87F/V158A, (E) M162L and (F) S163A. No activity was observed except 
in case of V158A indicated by clearing zone around the well and very weak activity in 
case of W87F/V158A indicated with a very small clearing ring around the well. The 
clearing zones were indicated by arrows. 

3.2.2.2.2. Effect of temperature on activity and stability 

The mutant W87F did not show a temperature activity profile different from that produced by 

the wild type. The mutant V158A exhibited better activity at high temperature than the wild 

type and than the other mutants; it showed around 75% activity at 80ºC and 60% of its 

activity at 85ºC and retained more than 25% of its activity at 90ºC, and the optimum 

temperature was 60ºC. The double mutant W87F/V158A also showed an improvement in 

activity at high temperature but to a lesser extent than V158A; at 70ºC it showed 76% activity 

and around 40% activity at 85ºC (Fig 3.34). All the mutants except V158A showed lower 

temperature stability than the wild type (Fig 3.35), however V158A possessed improved 

temperature stability. V158A after 1h preincubation at temperatures up to 50ºC it retained 

more than 98% of the activity. It showed around 50% of the activity after 1h preincubation at 

65ºC, whereas it had only 12% activity after 1h preincubation at 70ºC. The half life of V158A 

at 50ºC was measured to be 24h, which is much more stable than the wild type (half life 4.5h). 
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Effect of temperature on mutants activity
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Fig. 3.34. Effect of temperature on activity for the wild type and the mutants. Activity is represented 
as % of the maximum activity. SD derived from 2 separate experiments each with 4 
replicates. 
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Fig. 3.35. Effect of temperature on stability for the wild type and the mutants. Stability was 
measured by incubation for 1 h at the stated temperature with determination of the 
residual activity at 37°C. SD derived from 2 separate experiments each with 4 replicates. 
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3.2.2.2.3. Effect of pH on activity 

All the mutants showed higher activity in alkaline pH, their optimum pH was shifted to pH 8 

except in M162L the optimum pH was shifted to pH 8.5. All the mutants showed in low pH 5-

6.5 higher activity than the wild type; their activity at pH 6.5 was double the activity of the 

wild type, at pH 6 the activity ranged between 12-19% instead of 2% showed by the wild type 

(Fig 3.36). 
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Fig. 3.36. Effect of pH on activity of Est A. Activities were shown as percentages of the maximum 
activity. SD were derived from 2 separate experiments each with 4 replicates. 
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3.2.2.2.4. Kinetic parameters  

The kinetic parameters were derived from Lineweaver-Burk plots using p-nitrophenyl acetate 

as substrate. Table 3.10 presents the Km for the wild type and the mutants. The affinity of 

M162L, S163A and W87F/V158A did not altered significantly from the wild type. However 

V158A possessed an affinity 6-fold the affinity of the wild type, and the W87F affinity 

decreased 4-fold. 

Table 3.9. Effect of mutagenesis on Km. SD were derived from 2 separate experiments.  

 Km 

Wild type 

W87F 

V158A 

M162L 

S163A 

W87F/V158A 

1.71±0.02mM 

7.42±0,30mM 

0.28±0.05mM 

1.76±0.13 mM 

1.60±0.13mM 

1.40±0.29mM 

 

3.2.2.2.5. Effect of inhibitors  

The effect of the potent inhibitors of the wild type was investigated in the mutants. PMSF did 

not show different effect on S163A, however W87F, V158A, W87F/V158A and M162L 

showed higher resistance to PMSF they retained more than 94% of their activities. M162L 

resistance to HgCl2 did not change, whereas V158A, W87F/V158A and S163A showed 

higher resistance, the same time W87F activity reduced significantly with 10mM HgCl2. The 

sensitivity of all the mutants to CuSO4 increased markedly, they showed activity less than 

10% (Fig 3.37). 
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Fig. 3.37. Effect of PMSF, HgCl2 and CuSO4 on the mutants’ stability. The residual activity was 
measured after incubating the enzyme for 1h with 10mM of the inhibitors at 20ºC. SD 
were derived from two experiments each with 4 replicates. 

3.2.2.2.6. Directed evolution through random mutagenesis of Est A 

The method of choice to produce random mutagenesis is to perform EP-PCR, which is a PCR 

reaction with high error rates. This can be achieved through using non proof reading Taq and 

changing the normal PCR conditions in various ways e.g. using unequal dNTP 

concentrations, adding Mn2+ ions 0.05-0.5mM and/or high Mg2+ ions concentration up to 

10mM 

The random mutagenesis was carried out using EP-PCR. I have cloned several genes within 

pET-16b, so standard primers were constructed that I can use it for the amplification of any of 

my genes cloned in pET-16b. EP-PCR was done as described in section 2.11.2. The PCR 

fragment (Fig 3.38) was digested with BglII/XhoI and the BglII/XhoI cassette was cloned 

again in pET-16b. A library of 6336 clones was constructed. 
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Fig. 3.38. EP-PCR. M; marker ladder mix, lane 1; DNA template 10ng, lane 2; DNA template 30ng 
and lane 3; DNA template 60ng. 

1056 mutants were screened for activity against p-nitrophenyl esters, only 4% showed 

activity. All the active mutants had an activity pattern similar to the wild type except only one 

mutant (XXVF7) showed alteration of substrate specificity (Table 3.11). The mutant XXVF7 

exerted activity against the tributyrin, when the activity against triglycerides was tested using 

plate and well method (Fig 3.39). The thermostability curve of XXVF7 was almost identical 

to that of the wild type (Fig 3.40). The mutant XXVF7 was sequenced to determine the 

mutation(s) occurred. The sequencing revealed that 5 point mutations were induced which 

leaded to 5 amino acid changes; L76R, L146P, S196G, W213R and L267R (Fig 3.41). 
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Table 3.10. Substrate specificity of the random mutant XXVF7. SD were derived from two 

different experiments each with four replicates. 

 

 

 

 

 

 

 

 

 

  

 

Fig. 3.39. Activity of XXVF7 against tributyrin. A zone of clearing was produced (indicated with 
the white arrow). 

 

Substrate %Activity ±SD 

PNP-Acetate C2 

PNP-Butyrate C4 

PNP-Caproate C6 

PNP-Caprylate C8 

PNP-Caprate C10 

100±4 

46±4 

28±6 

14±2 

10±2 
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Temp. stability of the mutant XXVF7
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Fig. 3.40. The thermostability of the mutant XXVF7 compared to the wild type. 

 

Fig. 3.41. Five point mutations (•) have been detected within the XXVF7, L76R, L146P, S196G, 
W213R and L267R. 
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3.2.3. Overexpression and biochemical characterization of a cold active 

esterase from Streptomyces coelicolor A3(2) “Gene locus SCO 

6966” 

3.2.3.1. Est B expression and purification  

The SCO 6966 gene was called est B and the protein called esterase B (Est B), The plasmid 

pSHS811 was transferred into BL21 (DE3) and the expression conditions were adjusted (the 

culture was induced 0.5mM IPTG for 4h at 30ºC using) and the protein was purified by 

affinity chromatography on Ni-agarose as in case of Est A. The enzyme preparation was 

analyzed by SDS-PAGE (Fig 3.42) and native PAGE with activity staining (Fig 3.42). The 

theoretical Mr of the recombinant protein including the His-tag was 31.443kD whereas the 

analysis of the esterase SDS-PAGE has shown this Mr was 31.9 kDa. Removing the His-tag 

using factor Xa digestion did not work (Fig 3.42). 

 

 

Fig. 3.42. SDS PAGE of Est B. Lane 1, Est B total cell protein; lane 2, Est B purified on Ni column; 
Lane 3, Est B purified on Ni column and treated with factor Xa; lane 4, protein molecular 
weight Marker. 
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A.   B.  

 

Fig. 3.43. Native PAGE of Est B. Lane 1, cell extract; lane 2, affinity column purified protein. (A) 
Gel stained with Coomassie brilliant blue. (B) Gel after activity staining.  

 

3.2.3.2. Est B characterization 

3.2.3.2.1. Substrate specificity  

Substrate specificity of esterase B was investigated using p-nitrophenyl esters of different 

alkyl chain length. The enzyme was active against short and medium chain esters and showed 

a high activity towards short chain fatty acids (C2-C6), it exerted the maximum activity 

against p-nitrophenyl acetate, and showed also high activity towards p-nitrophenyl butyrate 

and caproate 90% and 75% respectively (Fig 3.44). Est B did not show any activity towards 

triglycerides or olive oil.  
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Fig. 3.44. Substrate specificity. SD was derived from two different experiments each with four 
replicates.  

3.2.3.2.2. Effect of Temperature on the activity and stability of Est B  

The enzymatic activity was measured at different temperatures (Fig 3.45) using a 5 minute 

assay and phosphate buffer pH 8. The activity increased with temperature reaching its 

maximum at 30ºC. The enzyme retained more than 25% of the activity at 4ºC and more than 

70% at 15ºC, whereas it showed little activity at high temperature (at 50ºC it had 28%). In 

order to assess its thermostability, the enzyme was pre-incubated at different temperatures for 

1h before assaying the residual activity. Fig 3.46 showed that there was little loss of activity 

with 58% retention of activity after one hour at 45°C, followed by abrupt decrease in activity 

by incubation for one hour at more than 50°C. The enzyme was quite stable at temperatures 

up to 30ºC where it retained more than 90% of its activity. 
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Fig. 3.45. Effect of temperature on activity. Activity is represented as percentage of the maximum 
activity. Standard deviations were derived from two different experiments each with four 
replicates.  
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Fig. 3.46. Effect of temperature on stability. Stability was measured by incubation for 1 h at the 
stated temperature with determination of the residual activity at 37°C. Standard 
deviations were derived from two different experiments each with four replicates.  
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3.2.3.2.3. Effect of pH on the activity and stability of Est B  

The esterase enzyme was assayed on the substrate p-nitrophenyl acetate for 2 minutes at 25°C 

at a range of pH values. The enzyme preferred alkaline conditions with an optimum activity at 

pH8-8.5 (Fig 3.47) and very little activity (< 20%) at a pH lower than 6.5. The enzyme 

retained substantial activity at pH values up to 9. The enzyme was stable on storage at pH 

values between 7.5 and 11 for 24h at 15°C, Est B showed low stability in acidic pH; less than 

50% activity at pH range 3.5-5 was retained (Fig 3.48).  
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Fig. 3.47. Effect of pH on activity. Activities are shown as percentages of the maximum activity. 
Standard deviations were derived from two different experiments each with four 
replicates. SD were indicated as error bars. The absence of an error bar indicated a 
deviation less than the symbol size.  
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Effect of pH on enzyme stability
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Fig. 3.48. Effect of pH on stability. Stability was measured after 24h incubation in different buffers 
at 15˚C. Standard deviations were derived from two different experiments each with four 
replicates. SD were indicated as error bars. The absence of an error bar indicated a 
deviation less than the symbol size.  

3.2.3.2.4. Effect of metal ions and inhibitors of Est B  

The effect of pre-incubation with different metal ions and inhibitors on the enzymatic activity 

was tested (Fig 3.49). There was no obvious effect of any of the used metals and inhibitors at 

concentration 1mM after 1h incubation except the Hg+2 and PMSF, they produced a marked 

decrease in the activity (39% and 46% respectively), however preincubation in 10mM PMSF, 

mono- and divalent ions decreased the activity greatly. CuSO4 decreased the activity to 31% 

and the HgCl2 to only 7%. PMSF 10mM decreased the activity to 29%. There was a small 

increase of activity in the presence of DTT. 
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Fig. 3.49. Effects of metal ions and inhibitors on activity of esterase B. All reagents were tested 
using 1 mM (blue bars) and 10 mM (red bars).  The final concentration in reactions was 
always ≤2%. Standard deviations were derived from two different experiments each with 
four replicates.  

3.2.3.2.5. Effect of organic solvents on the activity and stability of Est B  

Reaction mixtures contain 10% of water miscible organic solvents had reduced the enzyme 

activity significantly (Table 3.12). The effect of organic solvents on stability was as shown in 

(Table 3.13). The enzyme was quiet stable for 1h at 15°C in 20% organic solvent solutions 

except isopropanol, which reduced the activity around 50%, however the enzyme was 

unstable in 50% organic solutions, where it retained 7-18% only of its activity. 
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Table 3.11. Activity in different organic solvents at concentration 10%; SD were derived 

from two different experiments each with four replicates 

Organic solvent 

Activity±SD  

In 10% organic solvent 

acetonitrile 14±4 

acetone 16±3 

DMF 15±4 

DMSO 37±1 

isopropanol 11±1 

ethanol 19±3 

methanol 12±1 

 

Table 3.12. Stability in different organic solvents; SD were derived from two different 

experiments each with four replicates 

Stability±SD 

Organic solvent 20%a 50%a 

acetonitrile 86±2 7±2 

acetone 98±1 13±2 

DMF 94±2 18±1 

DMSO 96±6 17±5 

isopropanol 54±4 7±2 

ethanol 100±1 13±1 

methanol 90±4 10±1 

  athe concentration of the organic solvents in the reaction mixture was <1% 
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3.2.3.2.6. Kinetic parameters  

The Km and Vmax were estimated using p-nitrophenyl acetate, butyrate, caproate and caprylate 

as substrates. Table 3.14 confirmed that Est B has a higher affinity towards the short chain 

esters than towards the middle chain. 

Table 3.13. Km and Vmax. SD was derived from two different experiments each with four 

replicates.  

Substrate  Km±SD mM 
Vmax±SD 
mM/min 

Acetate (C2) 0.90±0.06 0.008±0.00004 

Butyrate (C4) 0.93±0.011 0.005±0.00028 

Caproate (C6) 2.53±0.51 0.011±0.00033 

Caprylate (C8) 3.00±0.28 0.003±0.00212 

 

3.2.3.2.7. Enantioselectivity profile of Est B 

Est B was tested for the enantioselectivity against the same chiral compounds as used for Est 

A (the enantioselectivity screening was done by our collaborators in CSIR regional research 

institute Jammu, India). Est B did not show a significant enantioselectivity as the 
enantiomeric excess (ee) value of the hydrolysed products/starting materials was low. For 

secondary alcohols enzyme Est B showed preference for acyl esters of ‘R’ enantiomer to give 

‘R’ alcohol. In case of alkyl esters of acids the enzyme preferred ‘S’ enantiomer to give 

enriched’R’ ester and ‘S’ acid (Appendix B). 
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3.2.3.2.8. Classification of Est B 

Analyzing the sequence of Est.B revealed that it contains all the conserved motifs of group V 

according to the Arpigny and Jaeger classification (Fig 3.50) these enzymes originate from 

bacteria occupying various habitats. Some are mesophilic (e.g. H. influenza), cold adapted 

bacteria (e.g. Psy. immobilis) and heat adapted bacteria (Sulfolobus acidocaldarius).                 

 

Fig. 3.50. Alignment of the predicted Est B amino acid sequence with members of the family V of 
esterases and lipases (Arpigny et al., 1999). The three critical amino acids in the active 
centre are shown (•). The conserved amino acids are highlighted in black. The enzymes 
are from Streptomyces coelicolor (Est B), Pseudomonas oleovorans, Sulfobus 
acidocaldarius, Moraxella sp L11, Haemophilus influenzae, Acetobacter pasteurianus.  
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3.2.4. Other Enzymes from S. coelicolor and S. avermitilis 

3.2.4.1. Overexpression and biochemical characterization of an esterase from 

Streptomyces coelicolor A3(2) “Gene locus SCO 3644” 

The plasmid pSHS971 was transferred into BL21 (DE3) and the expression conditions were 

adjusted and the protein was purified by affinity chromatography on Ni-agarose as in case of 

Est A and Est B.  

The enzyme did not show any activity against the triglycerides and the olive oil, however 

activity was observed against the synthetic p-nitrophenyl esters. The maximum activity was 

measured against the acetate ester, whereas the butyrate and caproate showed respectively 

only 23% and 6% of the maximum activity. The Km for p-nitrophenyl acetate was estimated 

to be 0.32mM and that for butyrate ester 0.76mM. 

The enzyme behaved at 35ºC as optimum temperature, and it retained more than 30% of its 

activity at 5ºC. The enzyme proved to be highly unstable with temperature the activity 

decreased to 16% after 1h preincubation at 25ºC and to only 9% at 30ºC. However the 

preincubation 30min showed activity 65% and 56% and the preincubation 15 min showed 

activity 78% and 73% at 25ºC and 30ºC respectively. 

The enzyme showed its optimum activity at pH 8. It was not possible to measure the pH 

stability for 24h because of the high instability of the enzyme, so stability was measured after 

only 1h preincubation at different pH. The enzyme was highly stable over pH range 6.5-10. 

3.2.4.2. Overexpression of an enzyme from Streptomyces coelicolor A3(2) “Gene locus 

SCO 1265” 

A trial for expression and characterization of the product of SCO 1265 was done by Rao Ren 

during his “Diplomarbeit”. The gene SCO 1265 was overexpressed in pET-16b. The enzyme 

produced from this gene was soluble protein and showed activity against some short to middle 

chain p-nitrophenyl esters when the crude cell extract was tested. However he failed to purify 

the enzyme using the Ni affinity columns as the enzyme lost the activity after purification. 
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3.2.4.3.  Some insoluble lipolytic enzymes from Streptomyces coelicolor and 

Streptomyces avermitilis 

The genes SAV 469, SAV 1549 (by Rao Ren during his “Diplomarbeit”), SAV 7089, SAV 

3461 (by Qi Zhang during his “Diplomarbeit”), SCO 4799 and SCO 3219 were expressed in 

pET-16b, and I could observe an extra band corresponding to the expected molecular weight 

in the induced total cell protein and not in the control, whereas there was no extra band in the 

clear lysate. Which means I could overexpress these genes but the produced proteins either 

form inclusion bodies or highly insoluble proteins. This correlates with the calculated 

theortical solubility (see Table 3.3). Several attempts were made to increase the solubility 

through changing the induction conditions and adding some solubility enhencers like Triton-

x100, betaine and sorbitol but we could not achive marked increase in the solubility (data not 

shown). 

3.2.4.4.  Expression of some genes using the expression vector pET-23b 

I have tried to express some genes; SAV 1549, SAV 3461 (done by Qi Zhang), SAV 7089 

SCO 3644 and SCO 7131 in pET-23b to obtain the protein in native form. There was no sign 

for successful expression, as I could not find any extra band compared to the control in the 

induced total cell protein in any of the tested genes. It seems this vector was not suitable for 

expression of the target genes, so I stoped using this vector and continued to work with the 

pET-16b which produces His-tagged protein. 
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4. Discussion 

Enzymes play an important role physiologically, as they direct all the biochemical reactions in 

living organisms. Enzymes work normally under mild conditions, and this property made 

them good candidates for replacing the classical catalysts in industry. As enzymes’ 

employment in several applications is expanding, the demand for new enzymes is increasing. 

Esterases and lipases can be widely used in organic chemical processing, detergent 

formulations, synthesis of biosurfactants, oleochemical industry, dairy industry, cosmetics, 

pharmaceuticals production, fine chiral compounds synthesis, etc. 

Streptomyces are rich in secondary metabolites production, therefore they represent untapped 

source of interesting esterases and lipases. The two Streptomyces strains; S. coelicolor and S. 

avermitilis, which genome projects were completed, possess 31 and 20 putative esterases 

and/or lipases genes respectively. Among these 51 genes only one, which codes for S. 

coelicolor lipA, had been studied (Valdez et al., 1999).  

This study is the first step to uncover this hidden pool of lipolytic enzymes. We have 

managed to clone 14 different putative lipolytic genes from both strains in an expression 

vector, expression and product characterization of three of these genes was finished and 

furthermore the directed evolution of one of these enzymes, which we thought it might have 

interesting catalytic activity, was started. 

4.1. Biochemical characterisation of Est A 

Although the gene (locus SCO 7131) was annotated as a putative lipase, the biochemical 

characterization showed it is an esterase. The enzyme was assigned as esterase and not lipase, 

because it did not exhibit the “interfacial activation” phenomena and it was active exclusively 

against C2 esters and not the longer ones. 

4.1.1. Substrate specificity and Est A kinetics  

A number of lipolytic enzymes belonging to HSL family were extensively studied during the 

last few years. Although the family members show homology with human HSL, all the so far 

characterized bacterial enzymes were esterases and not lipases (Chahinian et al., 2005). 

Moreover the bacterial HSL carboxylesterases are exerting their best activity against C6 esters 

e.g lipP from Pseudomonas sp strain B11-1 showed best activity towards C4 and C6 (Choo et 
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al., 1998), EST2 from Alicyclobacillus acidocaldarius had the maximum activity against C6 

esters (Manco et al., 1998), AFEST from Archaeoglobus fulgidus used C6 esters as best 

substrate (Manco et al., 2000), also the recently isolated thermostable HSL from 

metagenomic library showed best catalysis towards C6 esters (Rhee et al., 2005). My Est A 

was different from the aforementioned HSL enzymes and has shown unique substrate 

specificity, it was active only against C2 esters. Also the affinity of Est A towards α-

naphthylacetate was 10-fold its activity towards β-naphthylacetate and 3-fold its activity 

towards p-nitrophenylacetate i.e. Est A possesses not only unique high substrate specificity 

but also regioselectivity. In 2005 Mandrich et al. have highlighted the possible role of the N 

terminus on enzyme specificity in the HSL EST2 from Alicyclobacillus acidocaldarius for the 

first time. The 3D structure of EST2 is known as well as the HSL lipase from Burkholderia 

cepacia. When the Mandrich group superimposed both structures they realized that the active 

site in the case of the Burkholderia cepacia lipase is freely accessible, whereas the EST2 

active site is covered with the N terminal (α1 and α2 strands). They produced a truncated 

mutant lacking the N terminal, and it did act on longer chain esters and triglycerides. They 

also investigated an HSL esterase from Sulfolobus solfataricus, which is a homologue of 

EST2 with natural deletion of the N terminal, and it exhibited the same pattern of substrate 

specificity as the truncated EST2. Moreover EST2 wild type exhibited regiospecificity against 

the preacetylated monosacchrides, a property which is not shown by the truncated mutant. 

The previous results emphasize the role of the N terminal on the specificity of EST2 and may 

be applied for the other HSL family members. Taking in consideration that the N terminal of 

S. coelicolor is not homologue to Alicyclobacillus acidocaldarius EST2 or any other known 

HSL enzyme, we can speculate that the N terminal of S. coelicolor Est A plays a role of its 

unique high specificity towards the C2 esters and the observed regioselectivity. The N 

terminal of Est A may produce steric hindrance around the enzyme pocket more than that 

produced by EST2, allowing only the small substrates to access the active site and favour one 

orientation on the others. This could be investigated by constructing deletion derivatives. 

4.1.2. Effects of temperature on Est A activity and stability 

Est A has shown interesting behaviour with temperature. The optimum temperature was 55ºC 

and the enzyme retains more than 70% of its activity after preincubation 1h at 55ºC. The half 

life of the enzyme at 50ºC was 4.5h. The previous observation seems to be interesting when 

we remember that Est A is obtained from a mesophilic bacteria which has optimum growth 

temperature 30ºC and maximum growth temperature 40ºC. 
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It is thought that amino acids composition has an influence on the protein thermal adaptation. 

Amino acids composition analysis of the HSL family pointed out some amino acids changes 

going from psychrophilic to hyperthermophilic enzymes; more specifically a decrease in the 

Cys, Asn and Thr, as well as an increase in Glu and Pro content (Mandrich et al., 2004). 

Table 4.1 shows a comparison of amino acid composition between Est A and EST2 of 

Alicyclobacillus acidocaldarius as a thermophilic member of HSL family and the esterase 

Aes of E. coli as a mesophilic member. We can easily observe that the content of the amino 

acids thought to play a role on thermal stability in Est A is not identical with any of the 

thermophilic or the mesophilic counterpart, however it is a mixture between both of them; 

Asn and Cys resemble the thermophilic enzyme and the rest are similar to the mesophilic 

enzyme. 

 

Table 4.1. A comparison of amino acids composition between Est A and EST2 of 

Alicyclobacillus acidocaldarius as thermophilic member of HSL family and 

esterase Aes of E. coli as a mesophilic member.  

 

Residue Est A 316aa 
No              Mol% 

EST2 310aa 
No              Mol% 

Aes 319aa 
No                  Mol% 

Ala 
Arg 
Asn 
Asp 
Cys 
Gln 
Glu 
Gly 
His 
Ile 
Leu 
Lys 
Met 
Phe 
Pro 
Ser 
Thr 
Trp 
Tyr 
Val 

41  13.0% 
17   5.4% 
6   1.9% 
23   7.3% 
0   0.0% 
11   3.5% 
21   6.6% 
26   8.2% 
8   2.5% 
9   2.8% 
26   8.2% 
10   3.2% 
7   2.2% 
7   2.2% 
20   6.3% 
13   4.1% 
20   6.3% 
5   1.6% 
11   3.5% 
35  11.1% 

37  11.9% 
16   5.2% 
6   1.9% 
21   6.8% 
1   0.3% 
12   3.9% 
20   6.5% 
22   7.1% 
8   2.6% 
10   3.2% 
35  11.3% 
12   3.9% 
2   0.6% 
12   3.9% 
28   9.0% 
13   4.2% 
8   2.6% 
4   1.3% 
16   5.2% 
23   7.4% 

     32       10.30% 
     18              5.64% 

 8    2.51% 
     21              6.58% 

 9    2.82% 
     18         5.64% 
     17         5.33% 

 21     6.58% 
  6     1.88% 
 12    3.76% 

      37        11.60% 
  8     2.51% 
 10    3.13% 
 15    4.70% 
  20     6.27% 
 13    4.08% 
  19     5.96% 
  5    1.57% 
  17     5.33% 
  13     4.08% 
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In addition to the amino acid composition (Mandrich et al., 2004) have identified six possible 

amino acids replacements playing a role in protein thermostabilization Gln-Arg, Gly-Ala, 

Gly-Arg, Ser-Ala, Thr-Arg and Asp-Glu. They found 9 of these replacements which favour 

the thermostability within the alignment of EST2 and brefeldin A. Placing EstA in this 

alignment revealed that 5 replacements out of 9 were conserved in Est A (Fig 4.1). From the 

previous observation concerning the amino acids composition and the amino acids 

replacements, which improve thermostability, we can conclude that Est A is a transition stage 

between mesophilic and thermophilic enzymes within HSL family, and this can account for 

the recognized pattern of Est A stability and activity with temperature. 

EST2            --------------------------------------------MPLDPVIQQVLDQLNR 16 
brefeldin       MTVTPERSTYTPPGRLGDESSGPRTDPRFSPAMVEALATFGLDEVAAAPPVSASDDLPTV 60 
SCESTA          -----------------------------------------MSDIVLEPAAQDFADATAK 19 
                                                            :   *  .   *     
 
EST2            MPAPDYKHLSAQQFRSQQSLFPPVKKEPVAEVREFDXDLPGRTLKVRXYRPEGVEPPYPA 76 
brefeldin       LAAVGASHDGFQAVYDSIALDLPTDRDDVETSTETILGVDGNEITLHVFRPAGVEGVLPG 120 
SCESTA          PPLLYELGVEGARKLLDDVQSGPVEKPDVDEKWITVPVEVG-DVRVRIVKPAGTTGVLPV 78 
                 .              .     *..:  *           *  : ::  :* *.    *  
 
EST2            LVYYHGGGWVVG-DLETHDPVCRVLAKDGRAVVFSVDYR----LAPEHKFPAAVEDAYD 130 
brefeldin       LVYTHGGGMTILTTDNRVHRRWCTDLAAAGSVVVMVDFRNAWTAEGHHPFPSGVEDCLA 179 
SCESTA          VLYVHGGGWILG-NAGTHDRLVRELAVGAEAAVVFVEYD----RSPEAKYPVAIEQAYA 132 
                ::* ****  :   :  .*      **  . :.*. *::        .  :* .:*:.   
 
EST2            ALQWIAERAADFHLDPARIAVGGDSAGGNLAAVTSILAKERG---GPALAFQLLIYPSTG 187 
brefeldin       AVLWVDEHRESLGLS--GVVVQGESGGGNLAIATTLLAKRRGRLDAIDGVYASIPYISGG 237 
SCESTA          TAQWVTTKGAEEGLDGSRMVVAGDSVGGNMSAALTHMAKRRG---DVTFLHQSLYYPVTD 189 
                :  *:  :  .  *.   :.* *:* ***:: . : :**.**        .  : *   . 
 
EST2            YDPAHPPASIEEN----AEGYLLTGGXXLWFRDQYLNSLEELTHPWFSPVLYP--DLSGL 241 
brefeldin       YAWDHERRLTELPSLVENDGYFIENGGMALLVRAYDPTGEHAEDPIAWPYFASEDELRGL 297 
SCESTA          AGQDTESYRLFAH------GPHLTAKAMEWFWNAYAPDPAERDQITASPLRATPEDLQGL 243 
                                   *  :       :   *     .  .    *   .  :* ** 
 
EST2            PPAYIATAQYDPLRDVGKLYAEALNKAGVKVEIENFEDLIHGFAQFY-SLSPGATKALVR 300 
brefeldin       PPFVVAVNELDPLRDEGIAFARRLARAGVDVAARVNIGLVHGADVIFRHWLPAALESTVR 357 
SCESTA          PPAFVVVDENDVLRDEGEAYARKLIQAGVPTTSVRYNASLHDFMMLNPVRGTQASTAAIE 303 
                **  :.. : * *** *  :*. * :*** .        :*.   :     . *  : :. 
 
EST2            IAEKLRDALA----- 310 
brefeldin       DVAGFAADRARLRRP 372 
SCESTA          QAIHVLRSALGTD-- 316 
                 .  .           

 

Fig. 4.1. Structural alignment of Est A, EST2 and brefeldin A. the replacement positions which 
improve thermostability are marked red  
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4.1.3. Effects of pH on Est A 

The optimum pH of Est A was pH 7.5, and it showed high stability in the pH range 5.5-10 

when stored for 24h at 20ºC. In these aspects Est A did not differ greatly from other esterases 

and lipases either these belonging to HSL family or those which do not. e.g. the esterase lipP 

from Pseudomonas sp showed optimum pH 8 and stability over pH range 6-9 (Choo et al., 

1998). The (GDSL) family lipase from S. rimosus had optimum pH 9.5 and was stable over 

pH range 4-10 (Abramic et al., 1999). 

4.1.4. Effect of metal ions and inhibitors 

The serine protease inhibitor PMSF 10mM decreased the activity to 63% after 1h 

preincubation. Although all the esterases and lipases have a serine in their active site, they 

behave differently to the potent serine active site inhibitor PMSF. Some are resistant to PMSF 

e.g. the extracellular lipase of Pseudomonas sp strain ATCC 21808 was unaffected by PMSF 

(Kordel et al., 1991), others are very sensitive; the extracellular lipase from B. subtilis 168 

was strongly inhibited with 0.1mM PMSF preincubation for only 10min (Lesuisse et al., 

1993). 

Preincubation in 10mM K+ lead to a significant increase in activity (138%), whereas 10mM 

Na+ lead to only a small increase (118%). The optimum concentration of K+ in the reaction 

mixture was 10mM, which leaded to increase the activity to 129%. The effect of K+ can be 

argued as inorganic ions may bind to some of the ionic side chains of a protein. This kind of 

interaction, although not affecting the three dimensional shape of the enzyme in a substantial 

manner could make it easier for a substrate molecule to locate or bind to the active site of the 

enzyme. Thus the presence of the ion in optimum concentrations could alter the rate of the 

reaction. 

4.1.5. Enantioselectivity profile of Est A 

Est A did not show marked enantioselectivity against the so far tested compounds. Est A was 

tested against 43 chiral compounds, and was active against only 16 compounds, but the levels 

of stereo-selectivity were low for all the 16 substrates and even their conversion rates were 

low. We have proved before that Est A has high substrate specificity and it acts only against 

acetate esters as synthetic substrates. This means Est A activity scope is limited to the small 

sized esters, and this may account for Est A being active against only a small number of the 
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tested substrates with low conversion rates. None of the screened substrates was an ideal 

substrate for Est A, and we need to focus our enantioselectivity screening on the small sized 

chiral ester compounds to find the proper substrates.  

Despite the observed enantioselectivity being low, it is also possible to improve such low 

enantioselectivity through directed evolution. Reetz and Jaeger (2000) have reported 

increasing the enantioselectivity of a lipase from 2% ee (E = 1) to >90% ee (E = 25) through 

several rounds of random mutagenesis and screening. 

4.1.6. HSL family conserved motifs 

According to the known sequences and the available data in 1999 Arpigny and Jaeger have 

determined 4 conserved motifs in the HSL family. 3 of them are containing the catalytic triad 

(S, D and H), and their role in catalysis is well known. The 4th motif which is HGGG where 

HG is a part of the oxyanion hole involved in the stabilization of the transition state, 

mutagenesis of the G residue resulted in drastic decrease in enzymatic activity (Manco et al., 

1999). Our analysis of the protein data base revealed the presence of another 2 conserved 

motifs within HSL family (YRLAPE---P) and (Q-L-YP), whose residues are highly conserved 

75-100% and 85-100% respectively (Table 3.9). As we have mentioned previously the role of 

the catalytic triad and the oxyanion hole is known, here a question arises what is the role of 

these conserved motifs and in particular the P residues P1 in the 1st motif as well as the P 

residue in 2nd motif, which are 100% conserved in the 119 enzymes from the HSL family. 

Proline is the most rigid amino acid, usually proline acts as a structural disruptor in the middle 

of regular secondary structure elements such as alpha helices and beta sheets.The P1 residue 

of the conserved motif (YRLAPE---P) lies away from the enzyme pocket between strand β4 

and the helix α4 either in the homology model of Est A or in the EST2 3D structure. The P 

residue in the conserved motif (Q-L-YP) in both Est A and EST2 exists inside the enzyme 

pocket between the strand β6 and the helix α6 (Fig 4.2). Probably these P residues are 

essential for the correct folding of this group of enzymes. It is interesting question to answer 

if these residues also share directly or indirectly in the catalysis or in the transition state 

stabilization. 
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Fig. 4.2. The spatial arrangement of enzyme pocket and the two conserved motifs (YRLAP) and (Q-
L-YP). A. Est A S. coelicolor and B. EST2 Alicyclobacillus acidocaldarius. The catalytic 
triad is red, the proline residues are blue and the oxyanion hole G is green. The proline in 
the motif (YRLAP) is P117/119 and in the motif (Q-L-YP) is P184 

A. 

B. 
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4.2. Site directed mutagenesis 

I have produced 5 different site directed mutants; W87F, V158A, W87F/V158A, M162L and 

S163A. We can classify these mutants into 2 groups; the first group leaded to minor or 

insignificant changes in the substrate spectrum and enzyme kinetics and the second group 

which showed marked alterations in the substrate specificity and kinetics. I have compared 

the mutagenesis sites with their homologues in the known 3D structure of EST2 

Alicyclobacillus acidocaldarius and AFEST Archaeoglobus fulgidus (Fig 4.3).The 2 mutants 

M162L and S163A are belonging to the first group. However M or S is a larger than L or A 

respectively and lying near S active site, the mutagenesis L162M or A163S did not lead to a 

significant change in substrate spectrum or enzyme kinetics. I think that the reason was the 

orientation of LA/MS; these residues are oriented away from the enzyme pocket, and hence 

are not involved directly in the catalysis, or interfering with the substrate movement or the 

transition state stabilization. 

 

Fig. 4.3. Superimposition of enzymes’ pocket; EST2 Alicyclobacillus acidocaldarius (grey), ESTA 
Streptomyces coelicolor (Magenta) and AFEST Archaeoglobus fulgidus (cyan), showing 
the mutated residues in Est A. The catalytic triad S/D/H are red, the oxyanion hole G is 
orange, the A active site is yellow/ V is blue, F is pink/W is black and the LA are sienna/ 
MS are green. 
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The mutants W87F, V158A and the double mutant W87F/V158A belong to the 2nd group. 

The mutant W87F reduced the affinity 4-fold with no change in substrate spectrum, in 

contrast to the double mutant W87F/V158A which widened the substrate spectrum with no 

change in kinetics, whereas the mutant V158A increased both the affinity and the substrate 

spectrum. By studying the position of V/A (Fig 4.4) we can realize that 2 side chains in valine 

are protruding inside the enzyme pocket; one towards the oxyanion hole glycerine and both 

just above the serine active site. Substitution of valine with alanine which did not possess 

these side chains may produce more space around the active site and hence allow the mutant 

V158A to act against larger substrates like p-nitrophenylbutyrate and p-nitrophenylcaproate. 

Another possible explanation concerns the role of the oxyanion hole and especially the G 

residue. Maybe the presence of the valine side chain in the space between the S active site and 

the G of the oxyanion hole interferes with this stabilization process allowing only the 

stabilization of the acetate esters and not the larger substrates, whereas in the V158A mutant 

such interference was absent and hence the enzyme acted on larger substrates. 

 

Fig. 4.4. Close up on the enzymes’ pocket EST2 Alicyclobacillus acidocaldarius (grey), Est A 
Streptomyces coelicolor (Magenta) and AFEST Archaeoglobus fulgidus (cyan), showing 
the position and orientation of the V/A residues (blue/yellow) from the S active site (red) 
and the G oxyanion hole (orange) within the 3 enzymes. 
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The residues W/F are lying to some extent away from the enzyme pocket (Fig 4.3); maybe 

that is why the mutant W87F did not show any change in substrate spectrum. Combining both 

mutations (W87F/V158A) resulted also in increase in substrate spectrum, due to the effect of 

the A instead of the V.  

The mutant V158A shows a 6-fold increase in the affinity whereas the mutant W87F shows 4-

fold decrease in the affinity. It is possible that the hydrophobicity of the amino acids accounts 

for these effects. In both cases, the more hydrophobic amino acid (F or V respectively) 

showed a lower affinity. 

All the mutants showed a lower thermostability than the wild type except the mutant V158A, 

which exhibited better thermostability. V158A retained almost all its activity after 1h 

incubation at 50ºC and had a half life 24h at the same temperature compared to 4.5h for the 

wild type enzyme. Interestingly, the presence of A at this position instead of L was associated 

with thermostability as shown earlier fig 4.1 (Mandrich et al., 2004).    

4.3. Random mutagenesis 

We have managed to construct library mutants of Est A. After screening 1056 mutants of the 

library, less than 4% of the screened mutants had activity. Only one mutant (XXVF7) showed 

a marked change in the substrate spectrum without affecting its thermostability. Sequencing 

the mutant XXVF7 showed five mutated residues (L76R, L146P, S196G, W213R and 

L267R). The protocol used resulted in a high mutation rate around 5 mutations per 1000 base 

pairs, this accounts for the high knockout rate we have observed within the library.  

To optimize yield of mutants, the random mutagenesis should be done using a less drastic 

protocol aiming to decrease the knock out rate from 96% to around 37%, in other words to 

produce a mutation rate of 1-2 substitutions per 1000bp. 

It is most probably one or more of the five mutations caused conformational changes in the 

enzyme active site, leading the enzyme to act on larger substrates.  

The mutated residue L76R exists near the oxyanion hole (residues 79-84). The oxyanion hole 

is responsible for the stabilization of the transition state, so it is possible that a nearby 

mutation in the residue 76 from the less hydrophobic amino acid L to the most hydrophobic 
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amino acid R helped in stabilization of the transation state of the longer esters which possess a 

more hydrophobic side chain. 

The mutated residue L146P is located 11 residues away from the serine active site (S157), in 

the turn connecting the strand β5 (which contains the S157) and the helix α5. It is known that 

the P is a rigid amino acid and its presence causes significant conformational changes. Maybe 

the P in position 146 leaded to a conformational change affected the β5 strand and hence the 

S157 was accessed easier by longer substrates. 

The mutated residue L267R is a part of the helix α10 which is a conserved motif and contains 

the active site aspartate (D254). So again is the most hydrophilic amino acid R in this position 

responsible or at least share in increasing the spectrum of Est A. 

In 2001 Manco et al. have reported the production of a mutant from EST2 Alicyclobacillus 

acidocaldarius which is able to use substrates with acyl side chain longer than the wild type. 

This mutant was produced by site directed mutagenesis based on the known 3D structure of 

EST2 and a snapshot of the enzyme sulphonate complex which mimics the second stage of 

the enzyme catalytic reaction. The EST2 double mutation was M211S/R215L. When we 

compared the residues in the reported EST2 mutation and the mutated residues in our Est A, 

interestingly we found that one of the five mutated residues in ESTA (W213R) is lying in the 

same region where the double mutation (M211S/R215L) of EST2 occurred. Moreover the 

position of Est A mutation is central to the position of the EST2 double mutation (Fig 4.5) 

(notice that the largest amino acid W was replaced with a smaller one R, which means the 

steric hindrance in the mutant was reduced). If the mutation W213R alone was responsible for 

the alteration of the substrate specificity of Est A, then we can speculate that this helix, where 

the residues 211,213 and 215 are existing, is very important for the determination of substrate 

specificity of HSL family and not only in EST2. Consequently we can predict that the 

catalytic reaction of Est A will be somehow similar to that of EST2. However all these 

conclusions still require experimental evidence, which can be achieved through production of 

W213R as single mutant. It would be worthwhile also to carry out saturation mutagenesis at 

the residues 211,213 and 215 to confirm their role in substrate specificity determination. 
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Fig. 4.5. Superimposition of Est A S. coelicolor (green) and EST2 Alicyclobacillus acidocaldrius 
(yellow). Showing the relative positions of EST2 double mutation residues (211 and 215) 
and ESTA W213. 
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4.4. Biochemical characterisation of Est B 

Substrate specificity of Est B was investigated using p-nitrophenyl esters of different alkyl 

chain length. The enzyme showed a high activity towards short chain fatty acids (C2-C6), it 

exerted the maximum activity against the acetate ester. A similar specificity was found for the 

cold adapted lipase of Pseudomonas sp strain B11-1 (Choo et al., 1998). The Km and Vmax 

were also estimated on different substrates and showed a pattern concedes to that observed 

with activity measurements. 

Est B retained more than 25% of the activity at 4ºC and more than 70% at 15ºC it is not 

surperising that the optimum temperature for Est B was 30°C, which is the optimum growth 

temperature of Streptomyces coelicolor A3(2). There was little loss of activity with 58% 

retention of activity after one hour at 45°C. The enzyme was quite stable at temperatures up to 

30ºC where it retained more than 90% of its activity; again it is the optimum growth 

temperature of Streptomyces. The enzyme not only showed a good activity at low 

temperatures, but also had good thermostability compared with other cold-adapted enzymes 

e.g. the low-temperature lipase from psychotropic Pseudomonas sp. strain KB700A, which 

loses 70% of its activity if incubated only 5 min at 60ºC (Rashid et al., 2001). Although high 

catalytic activity at low temperature is usually associated with thermosenstivity (Narinx et al., 

1997). However, directed evolution studies to improve the thermostability of cold adapted 

enzymes revealed that there did not exist a strict correlation between the two (Wintrode et al., 

2000; Mavromatis et al., 2002). 

The effect of pre-incubation with different metal ions and other chemicals on the enzymatic 

activity was tested. None of the metal ions tested stimulated enzyme activity and the 

insensitivity to EDTA suggested that no divalent cations are needed for enzyme activity. The 

enzyme was sensitive to Hg2+ and there was a slight stimulation of activity with DTT, which 

suggests that one or more thiol groups is important for the activity. The enzyme was 

inactivated by PMSF, which is explained by the fact that Est B, like other lipolytic enzymes, 

has a serine residue in the active site in a conserved pentapeptide G-X-S-X-G (Brady et al., 

1990; jaeger et al., 1999). A 10% concentration of water-miscible organic solvents reduced 

the enzyme activity significantly. However, the enzyme was fairly stable in 20% solutions of 

the most of the solvents tested compared to a large loss of activity observed with 50% 

solutions. This is in contrast to some lipolytic enzymes, which were activated by pre-

incubation in organic solvents (Shimada et al., 1993; Choo et al., 1998). 
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An important application of lipolytic enzymes is to produce chiral precursors for the synthesis 

of pharmaceutical products. Est B was tested for its ability to hydrolyse some interesting 

substrates for this purpose. The levels of stereo-selectivity are low for all the substrates. An 

enantiomeric excess (ee) of more than 90% would be necessary for a useful enzyme for chiral 

synthesis. However it is possible to improve the (ee) through the directed mutagenesis (Reetz 

and Jaeger 2000). 

4.5. Other enzymes 

4.5.1. Activity of the esterase from the gene locus SCO 3644 

This esterase had also high activity at low temperatures, it retained more than 30% of its 

activity at 5ºC, and this was even more than Est B. However it differed from Est B in 

thermostability. SCO 3644 esterase was thermosenstive, its activity decreased to 9% after 1h 

incubation at 30ºC, its thermosenstivity was comparable to that of typical pscyorphilic 

enzymes e.g. the low-temperature lipase from psychotropic Pseudomonas sp. strain KB700A 

(Rashid et al., 2001). Whereas Est B showed activity similar to psychrophilic enzymes and 

stability similar to mesophilic enzymes, SCO 3644 esterase was typical psychrophilic enzyme 

in activity and stability. 

4.5.2. The enzyme produced from the gene locus SCO 1265 

The over-expressed protein from this gene did not suffer a solubility problem and it showed 

esterase activity in its crude extract, but it was not possible to continue the characterization as 

the protein lost the activity completely after the purification. There is no degradation 

happened for the protein during the purification procedure as the PAGE and Western blot 

showed a unique band after purification on Ni column of ≈35kDa (theortical Mwt of the His-

tagged protein is 34kDa). There may be several reasons for loss of activity: maybe the protein 

needs a co-factor (either metal ions or co-enzyme) which exists in the crude extract but is lost 

during the purification on the Ni column and the ultrafiltration processes; it could also be a 

problem caused by one of the components of the buffers used for purification or the enzyme is 

unstable in the storage buffer used. 
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4.5.3. The insoluble enzymes 

Low solubility is one of the most frequently encountered problems when using E. coli as a 

host for production of recombinant proteins. According to recent data more than 50% of the 

recombinant proteins aggregate in insoluble inclusion bodies, when they are over-expressed in 

E. coli (Waugh 2005). We encountred this problem with the genes SAV 469, SAV 1549, 

SAV 7089, SAV 3461, SCO 4799 and SCO 3219, they produced highly insoluble proteins, 

which were resistant to the traditional manipulations used to increase the solubility (e.g. 

changing the expression conditions and adding solubility enhancers). It was also reported that 

these manipulations are not sufficient to enhance the solubility of many proteins (Schein 

1989). 

It is valuable to try to increase the solubility through the unconvenatial methods like co-

expression of chaperone molecules in the host e.g. DnaK, ClpB, GroEL ,lbpA or lbpB 

(Sorensen and Mortensen 2005). Another approach may it worth to go through is the 

subcloning of these genes in a solubility fusion expression vector e.g. NusA, MBP, etc 

(Waugh 2005). It is worth noting that not every protein can be rendered soluble by fusion to a 

solubility enhancing tag. Also some proteins still form insoluble aggregates after splitting off 

the solubility enhancing partner. 

4.6. Future prespectives 

Streptomyces coelicolor and Streptomyces avermitilis have 51 genes (31 and 20 genes 

respectively) annotated as esterases and/or lipases. In this study after excluding the genes 

from S. avermitilis which have a homologoue in Streptomyces coelicolor, the number was 

reduced to 35 genes. Then the number of the genes was reduced again to 15 genes due to 

removing the genes which did not fit the planned work strategy (the start codon could be 

incorporated in an NdeI recognition site with a mismatch primer, and the gene sequence does 

not have a BamHI or XhoI recognition site). One of these 15 genes did not produce a correct 

PCR fragment so only 14 out of the 51 genes were cloned from both strains. Four out of these 

14 produced soluble protein (ca. 29%), and one of them had stability problem so it ends up 

that only three genes (ca. 21%) of the cloned genes were characterized taking in consideration 

that four genes were not checked yet (ca. 29%). Around 40% of the cloned genes produced 

insoluble proteins and, as mentioned in 4.5.3, using a suitable fusion vector may solve that 

problem for some but not all of the genes. In such cloning and heterologous protein 
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expression experiments protein solubility is a critical factor. It is possible to predict the 

solubility of the overexpressed protein in E. coli using the service provided by 

http://www.biotech.ou.edu/ University of Oklahoma. If we go back to Tab 3.3 we find that all 

the genes, which were predicted to be soluble (SCO 7133, SCO 6966, SCO3644 and 

SCO1265), have indeed produced soluble proteins. Whereas other genes e.g. SAV1549, 

SAV3461 and SCO4799 were highly insoluble and all attempts to solublize their 

overexpressed protein failed. So in future work it would be sensible to use solubility 

prediction as the primary criterion when selecting genes for cloning. Then we should develop 

further criteria to select genes, which are likely to possess interesting enzyme activities. We 

can use bioinformatic tools to find genes which are different from the known ones (e.g. Est A 

on the sequence level was different from other characterised members of its family HSL and 

it showed a unique substrate specificity which is not exhibited by other members of the 

family). It would also be interesting to clone genes which are likely to be involved in the 

production of secondary metabolites; these can be identified by software designed to identify 

secondary metabolite clusters, which contain characteristic combinations of genes. When 

microarray data are available, it will be possible to look for enzymes with interesting 

expression profiles. The availability of a wide range of cloning vectors means that selection 

on the basis of cloning strategy will play at most a minor role. This approach should produce 

a good yield of interesting enzymes and the huge expansion in sequencing data together with 

improved bioinformatics may well make this a strategy of choice in the future. 
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5. Summary 

Esterases and lipases are widely used as industrial enzymes and for the synthesis of chiral 

drugs. Because of their rich secondary metabolism, Streptomyces species offer a relatively 

untapped source of interesting esterases and lipases. S. coelicolor and S. avermitilis contain 

51 genes annotated as esterases and/or lipases. In this study I have cloned 14 different genes 

encoding for lipolytic enzymes from S. coelicolor (11 genes) and S. avermitilis (four genes). 

Some of these genes were over-expressed in E. coli. Three of the produced enzymes, which 

were produced by the genes SCO 7131, SCO6966 and SCO3644, were characterized 

biochemically and one of them was subjected for directed evolution. 

The gene estA (locus SCO 7131) was annotated as a putative lipase/esterase in the genome 

sequence of S. coelicolor A3(2), but does not have a homologue in the genome sequence of S. 

avermitilis or in other known Streptomyces sequences. estA was cloned and expressed in E. 

coli as a His-tagged protein. The protein was purified and could be recovered in its non-

tagged form after digestion with factor Xa. The relative molecular weight was estimated to be 

35.5kDa. The enzyme was only active towards acetate esters and not on larger substrates. It 

had a stereospecificity towards α-naphathylacetate. It was thermostable, with a half-life at 

50°C of 4.5 hours. Est A showed stability over pH range 5.5-10, and had optimum pH of 7.5. 

Its activity was drastically decreased when it was pre-incubated in 10mM PMSF, Cu+2 and 

Hg+2. It was not very stable in most organic solvents and had only slight enantioselectivity. 

Est A belongs to the HSL family whose founder member is the human hormone-sensitive 

lipase. I have developed a protein profile for the HSL family modifying the conserved motifs 

found by Arpigny and Jaeger (1999). Due to the presence of several HSL members with 

known 3D structure and good homology to Est A, I was able to make a homology model of 

Est A. 

Five different mutants of Est A were produced through site directed mutagenesis: W87F, 

V158A, W87F/V158A, M162L and S163A. The mutants M162L and S163A did not produce 

a significant change either in substrate specificity or enzyme kinetics. The mutants V158A 

and W87F/V158A could act on the larger substrates p-nitrophenylbutyrate and caproate and 

tributyrin. The mutant V158A had improved thermostability and its t1/2 at 50ºC increased to 

24h. The affinity of V158A towards p-nitrophenyacetate increased 6-fold when compared 

with the wild type, whereas the affinity of W87F decreased 4-fold.  
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Directed evolution of Est A was done through random mutagenesis and ER-PCR. A library of 

6336 mutants was constructed and screened for mutants with a broader spectrum of substrate 

specificity. The mutant XXVF7 did show alteration in the substrate specificity of Est A. The 

mutant XXVF7 had 5 amino acids changes L76R, L146P, S196G, W213R and L267R. 

The gene locus SCO 6966 (estB gene) was cloned and expressed in E. coli as a His-tagged 

protein. It was not possible to remove the His-tag using factor Xa. The tagged protein had a 

molecular weight 31.9kDa. Est B was active against short chain fatty acid esters (C2-C6). Its 

optimum temperature was 30ºC and was stable for 1h at temperatures up to 37ºC. The enzyme 

had maximum activity at pH 8-8.5 and was stable over pH range 7.5-11 for 24h. It was highly 

sensitive for PMSF, Cu+2 and Hg+2. The enzymatic activity deceased in presence of organic 

solvents, however it was fairly stable for 1h in 20% organic solvents solutions. 

A third esterase was produced from the gene locus SCO 3644. This esterase was a 

thermosensitive one with optimum temperature of 35ºC. 

The three characterized enzymes included a thermophilic, mesophilic and psychrophilic ones. 

This indicates the high variation in the characters of Streptomyces lipolytic enzymes and 

highlighting Streptomyces as a source for esterases and lipases of interesting catalytic activity. 

This study was an initial trial to provide a strategy for a comprehensive use of genome data. 
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7. Appendix 

A: The hydrolysis of some chiral compounds using Est A 

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Cofiguration 

O

O

OCOR

 
I- Acyl ester of 1-(3,4- methylenedioxyphenyl)-
ethanol. 

CH3 

C2H5 

C3H7 

 

18 

13 

9 

21 

12 

6 

R 

R 

R 

 

O

O

OCOR

 
II- 1-(3,4- methylenedioxyphenyl)-propan-1-ol 

CH3 

C2H5 

C3H7 

 

18 

13 

9 

21 

12 

6 

R 

R 

R 

 

O

O

OCOR

 
III- Acyl esters of 1-(3,4-methylenedioxy-5-yl ) 
benzylalcohol 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

  

OH

COOEt

                         
IV- Ethyl- 2-hydroxy-4-phenyl butanoate 

 64 16 R ester 

COOEt

OH

 
V- Ethyl 3-hydroxy-3-phenyl-propanoate 

  

No 
hydrolysis 

  

COOEt

OCOR

R =  CH3, C2H5, C3H7  
VI- Ethyl 3-(acyl)hydroxy-3-phenyl-propanoate 

CH3 

C2H5 

C3H7 

 

No 
hydrolysis 
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Continue Appendix A: The hydrolysis of some chiral compounds using Est A 

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Cofiguration 

COOMe,Et,Butyl

Br

         
VII- Acyl esters of 2-bromo propanoic acid 

CH3 

C2H5 

C4H9

15 

25 

32 

11.3 

15.7 

21.8 

S( acid ) 

S (acid) 

S( acid) 

 
VIII- Acyl esters of 2-(6-methoxy-2-naphthyl)-
propan-1-ol 

CH3    

C2H5  

C3H7

9 

8 

3 

9 

7 

ND 

R 

R 

ND 

MeO

OCOR

R = CH3, CH2CH3, CH2CH2CH3  
IX- Acyl esters of 1-(6-methoxy-2-naphthyl) - 
ethanol. 

CH3 

C2H5 

C3H7

8 

6 

6 

2 

5 

7 

R 

R 

S 

COOR

MeO  
X- alkyl esters of 2-(6-methoxy-2-naphthyl)-
propanoic acid 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

 

  

OCOR

Cl    
XI- Acyl ester of 1 – ( p-chlorophenyl)-
benzylalcohol. 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

 

 

  

OCOR

OCOR

R= CH3,C2H5,C3H7  
XII- Acyl esters of bisnapthol 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 
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Continue Appendix A: The hydrolysis of some chiral compounds using Est A 

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Cofiguration 

COOR

 
XIII- 2-(p-(2-methyl propyl)-2-phenyl) – 
propanoic acid 

CH3 

C2H5 

C3H7

No 
hydrolysis 

  

N

CH2OH

F

Me

                       

N

CH2OCOR

F

Me

R=CH3,C2H5,C3H7

 
XIV- n-methyl 4-(p-flurophenyl)-3-
acyloxymethylcyclohexamide 

 

 

 

 

CH3 

C2H5 

C3H7

No 
esterification

 

 

 

No 
hydrolysis 

 

  

COOR

Cl  
XV- 1-(p-chloro phenyl)–2-methyl propanoic 
acid. 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

 

  

N
H

COOEt
 

XVI- Ethyl (indol-2-yl) formate 

 No 
hydrolysis 
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B: The hydrolysis of some chiral compounds using Est B.  

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Configuration 

 

O

O

OCOR

        
I- Acyl ester of 1-(3,4- 
methylenedioxyphenyl)-ethanol. 

CH3 

C2H5 

C3H7 

 

21 

25 

27 

 

16 

22 

27 

 

R 

R 

R 

 

O

O

OCOR

 
II- 1-(3,4- methylenedioxyphenyl)-propan-1-ol

CH3 

C2H5 

C3H7

28 

24 

23 

17 

13 

19 

R 

R 

R 

O

O

OCOR

 
III- Acyl esters of 1-(3,4-methylenedioxy-5-yl 
) benzylalcohol 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

  

OH

COOEt

                         
IV- Ethyl- 2-hydroxy-4-phenyl butanoate 

 60 11 R ester 

COOEt

OH

 
V- Ethyl 3-hydroxy-3-phenyl-propanoate 

  

No 
hydrolysis 

  

COOEt

OCOR

R =  CH3, C2H5, C3H7  
VI- Ethyl 3-(acyl)hydroxy-3-phenyl-
propanoate 

CH3 

C2H5 

C3H7 

 

 

No 
hydrolysis 
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Continue Appendix B: The hydrolysis of some chiral compounds using Est B 

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Configuration 

 

COOMe,Et,Butyl

Br

   
VII- Acyl esters of 2-bromo propanoic acid 

CH3 

C2H5 

C4H9

45 

42 

37 

1.8 

3.8 

3.8 

S( acid ) 

S (acid) 

S( acid) 

 
VIII- Acyl esters of 2-(6-methoxy-2-
naphthyl)-propan-1-ol 

CH3    

C2H5  

C3H7

7 

5 

5 

12 

8 

6 

R 

R 

R 

MeO

OCOR

R = CH3, CH2CH3, CH2CH2CH3  
IX- Acyl esters of 1-(6-methoxy-2-naphthyl) - 
ethanol. 

CH3 

C2H5 

C3H7

6 

5 

3 

8 

5 

6 

R 

R 

R 

COOR

MeO  
X- alkyl esters of 2-(6-methoxy-2-naphthyl)-
propanoic acid 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

 

  

OCOR

Cl    
XI- Acyl ester of 1 – ( p-chlorophenyl)-
benzylalcohol. 

CH3 

C2H5 

C3H7 

 

 

No 
hydrolysis 

 

 

  

COOR

 
XII- 2- ( p-(2-methyl propyl-2-phenyl) – 
propanoic acid 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 
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Continue Appendix B: The hydrolysis of some chiral compounds using Est B 

Substrate R Conv. 

(%) 

ee (%) 

of the 
product 

Configuration 

 

OCOR

OCOR

R= CH3,C2H5,C3H7  
XIII- Acyl esters of bisnapthol 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

  

N

CH2OH

F

Me

                    

N

CH2OCOR

F

Me

R=CH3,C2H5,C3H7

 
XIV- n-methyl 4-(p-flurophenyl)-3- 
acylmethylcyclohexamide 

 

 

 

CH3 

C2H5 

C3H7

No 
esterification

 

 

No 
hydrolysis 

  

COOR

Cl  
XV- 1- ( p-chloro phenyl) –2- methyl 
propanoic acid. 

CH3 

C2H5 

C3H7

 

No 
hydrolysis 

 

  

N
H

COOEt
 

XVI- Ethyl (indol-2-yl) formate 

  

No 
hydrolysis 
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