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Chapter 1

Introduction

1.1 Hub Location Problems

The task of a logistics network is to ship goods from supply to demand nodes
using certain transportation paths. Generally, when constructing such a network,
the central aim is to reduce the overall costs for transportation. If the distance
between the nodes is seen as only determinant of the transportation costs, one
would try to establish a logistics network with goods being shipped on the shortest
distance paths — a solution which results in a high number of supply-demand
pairs that are directly connected (non—stop connection). However, besides the
travelled distance on a path from supply to demand node, we often also have to
consider fixed costs such as investments for establishing certain node-connections,
the payment of the employees, the maintenance of a fleet of vehicles, etc. Now, in
a network with lots of different non-stop connections between the nodes, certain
connections might be travelled through with only small flow value; this results
in high fixed costs compared to the number of items transported. Consequently,
such ”linear networks” [3] do not yield optimal overall transportation costs for a

logistics problem of the type described above.

In modern logistics, the concept of hub networks has been introduced as a com-
promise between fast connection of supply and demand nodes and low investment
costs [15]. The idea is to establish certain centralized nodes, called hubs, which

collect flow from the supply nodes (origin nodes), sort it, eventually transfer it to
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another hub, and finally distribute it to the demand nodes (destination nodes)!.
Hence, we are dealing with a two-level network (see [10], [8]): The first level is a
distributed backbone network consisting of hubs that are fully interconnected (hub
level), the second level consists of centralized local access networks for each hub,
where each non-hub node (spoke node) is connected to a hub. Throughout this
thesis, a strict hubbing policy will be assumed, meaning that each flow between
two nodes is forced to pass either one or two hub nodes?. Note that, if there
exist flows from one spoke to itself, strict hubbing even enforces this flow to pass

through a hub node; for an example of such flows occurring see subsection 1.2.3.

An example for a hub network?® with three hubs is given in figure 1.1. Square nodes
correspond to hub locations, circle nodes to spokes. The doubled lines represent
inter-hub connections, whereas single lines stand for spoke arcs. Note that in this
example, every spoke is assigned to a single hub, whereas there are models in

which a spoke can be assigned to more than just one hub (see section 2.2.2).

Figure 1.1: Example of a hub network with three hubs

At the hub nodes, we can centralize operations [3]: On inter-hub connections, we
are now able to transport huge amounts of flow together. Consequently, we can
use larger, faster and more efficient means of transport on these arcs; as a result,

the transportation time reduces and the cost per item decreases compared to

LA pair of origin and destination node will in the following be denoted by o-d pair.
2In our model, transportation paths with more than two hub-stops are inefficient; see re-

mark 2.1.1.
3Note that real-world examples, in contrast to the examples presented in this introductory

part, often consist of several hundred nodes to be considered. Hence, any heuristic or exact

solution approach to the problem has to face high computational challenges.
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other node connections. Furthermore, since only few node connections are used
compared to a linear network, a smaller fleet of vehicles and fewer employees are

needed, which again makes transportation via hubs more attractive.

Having a closer look at the establishment of a hub network, one can distinguish
between two subproblems: Hub location usually refers to the determination of the
location of the hub sites among a set of graphs, whereas the spoke allocation sub-
problem is the problem of assigning the spoke nodes to the hub nodes. Though
spoke allocation can be seen as an independent subproblem (once hub locations
are fixed), the hub location problem cannot be solved to optimality without in-
cluding the spoke allocation part. For the types of hub location problems that
are considered in this thesis, both hub location and spoke allocation are known

to be hard computational problems [16] [17].

1.2 Real-World Applications

Hub networking has been elected as one of the best ideas in the ” American Mar-
keting Association series of 'Great Ideas in the Decade of Marketing’” (Marketing
News, June 20, 1986; see [29]); this hints at the fact that hub networks play a cen-
tral role in many fields of modern logistics. Important applications of the theory
can be found in airline traffic systems, telecommunications and postal delivery

services. In the following, we will have a closer look at each of these fields.

1.2.1 Airline Networks

When in 1978 the Airline Deregulation Act? took effect in the United States,
passenger and cargo airlines were, for the first time, allowed to make their own
decisions on flight routes to cover and fares for their service. Many passenger
airlines figured out that they could take advantage of economies of scale when
introducing certain hub airports as traversal point for airline passengers: Firstly,

passengers departing from one city, though having different destinations, could

4A similar law for bus traffic, the "Bus Regulatory Reform Act”, took effect in 1982, thus

enabling the development of bus hub networks as well (see [4]).
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be grouped on a flight to a hub. Secondly, once arrived at the hub airport,
these passengers could be recombined with passengers from other cities to fly to
a second hub, or directly to common destinations. This hubbing concept among
airline services has become especially popular for international traffic, where an
airline might introduce hubs for any larger region to be covered by its flights
(e.g. a certain country or even continent); these hubs then serve as key entrance
from international (hub-to-hub) flights to local (hub-to-spoke) flights and vice

versa.

For more information on airline hub networks, see [4] and [8].

1.2.2 Telecommunication Networks

As another field of application, hubs are widely used within telecommunication
systems. Since communication via computers and voice has increased rapidly in
the last years, the need for efficient networks to handle these data transactions
became an urgent question. Similar to airline networks, the idea in this field
is to design backbone networks, i.e. to locate certain facilities to concentrate
communication flow [10]. Economies of scale between these established hub nodes
might result from the usage of high-capacity fiber optic links between hubs. The
notion of a hub in this context is often used for a special hardware product for
computer networks, namely a device which connects several personal computers.
However, there are a lot more fields in data transaction where hub networks are
used. One special case is telecommunication via satellites, where the satellites

themselves can be considered as hubs.

1.2.3 Postal Delivery Networks

In postal transportation, it has been the express parcel delivery sector which
pushed forward new networking ideas. The challenge consisted of establishing—
with a limited budget— a transportation network that could give a guarantee that
parcels are delivered within a given time. One of the earliest companies to in-
troduce a hub network approach was Federal Express. Realizing the benefits of

shipping their freight in larger aircrafts between several hub nodes, they started
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running their business in the 1970s including one hub airport. Due to the growth
of the company’s transportation network on the one hand and increased mathe-
matical understanding of hub location concepts on the other hand, the Federal
Express hub network has been revised several times since then. Recently, the
network possesses a hierarchical hub structure with a ”super-hub” in Memphis

75 Additionally, several ”linear elements”

and several additional ”overlay hubs
have been introduced, including the use of stopover points during a transporta-
tion path to a hub node [23]. Altogether, the success of Federal Express has been

highly linked to the use of hub networks [24] [23].

Stepping back from the special case of Federal Express, where most transportation
paths are exclusively operated via airplanes, we can generally identify a hub node
of a postal delivery network with a mail sorting center; those centers are meant to
collect, sort and distribute incoming mail [19]. Note that in such a postal delivery
network, it might be possible that there are flows from one postcode district to
itself; as long as sorting is only possible in hub facilities, such mail, too, has to
be sent to a hub and back.

A related issue to postal hub networks is the general use of hub networks among
shipping agencies. In this context, savings by flow concentration between hub
nodes are especially important for so-called less-than-truckload trucking, where a

transporting vehicle carries less than actually possible; see [8].

1.3 Chapter Outline

This diploma thesis will deal with hub center problems, that is, hub location
problems with a min max objective function. The rest of this thesis is divided

into two main parts:

Part I will provide an overview on the field of hub location theory and introduce
the main problem this thesis will focus on: In chapter 2, some basic notions
are introduced and different problem types are listed. Finally, an overview on

existing literature concerning hub location problems is given. Chapter 3 focuses

5For this concept of hierarchical hub networks, refer to chapter 7.
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on the hub center problem and summarizes known formulations for the wunca-
pacitated single allocation p-hub center problem, which will be dealt with in the
following chapters, and which is known to be an N"P-hard problem. A compari-
son between the different formulations will be given, and the recently developed

radius formulation will turn out to be suitable for further analysis.

The following part II focuses on the polyhedron defined by the radius formulation
above: Chapter 4 determines the dimension of this polyhedron and examines its
relationship to a special kind of uncapacitated facility location polyhedron. All
given constraints will be evaluated concerning the dimension of the induced faces;
finally, as core part of this thesis, three new classes of facet-defining inequalities
will be derived. In chapter 5, the corresponding separation problems of the new
facet-classes will be discussed. Based on these results, a branch-and-cut algorithm

is suggested, and first numerical experiments are described in chapter 6.

The final chapter 7 summarizes the main results of this thesis and lists some

further research topics in the field of hub location theory.



Part 1

Basic Definitions and Problem

Formulations






Chapter 2
Basic Definitions

This chapter is meant to introduce the mathematical background for hub location
theory. Section 2.1 will give a general mathematical description of a hub location
problem instance. Section 2.2 provides an overview on different problem types
occurring in the context of hub location; finally, section 2.3 presents a summary

on recent research concerning hub networks.

2.1 A Hub Location Problem Instance

Given an undirected graph G = (V, ), where V is the set of demand nodes and
potential hub sites, |V| = n, and &£ is the set of inter-node connections. Denote
an edge connecting nodes 7 and j by e; ;. Imagine that a flow of unit volume one

has to be shipped between any pair of nodes in V' along edges in £.

Assume that a cost factor d; ; is associated with every pair 7,5 € V, satisfying

the following conditions [21]:

di,; > 0Yi,j €V (non-negativity)

di,j:() ~ Z:]

di,j = dj ; Vi,j €V (symmetry)

di,j <dik+dy ; Vi,jk eV (triangle inequality holds)

9
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Furthermore, assume that d; ; is set to a large positive number if ¢, ; € £. In
general, the factors d; ; represent the travel distance or travel time on the direct

connection between two nodes.

Definition:

e A hub node is a centralized facility among the nodes in V that is used to
collect, transfer and distribute flow within the network. Every flow between
a pair of nodes has to pass by one or two hub nodes. An arc connecting

two hub nodes is called a hub arc.

e A node in V that is not chosen as hub is called a spoke node. Every spoke
node has to be assigned to (at least) one hub node, and all flow leaving a
spoke node has to pass through this (these) particular hub(s). A spoke

arc is an arc connecting a spoke node to a hub node.

e The discount factor is a factor 0 < a < 1 that represents the percentile

cost savings on inter-hub connections, resulting from economies of scale.

O

If the cost coefficients d; ; are interpreted as travel time, the factor o might reflect
time savings due to the usage of faster means of transportation on the hub arcs.
The smaller the discount factor «, the more efficient a hub network becomes

compared to a linear network.

Once the discount factor is defined, we can calculate the transportation cost
¢;, j between origin ¢ and destination j as follows: If ¢ is assigned to hub k and
j is assigned to hub [, the cost for shipping one unit of goods from i to j is

Ci,j = di,k +C¥dk’l +dl,j-

Now, the following special cases might occur:

e k= (allocation to the same hub). Then, ¢; ; = d; » + di, j, and no hub

arc is used.

e i = k. Then, the origin node of the flow is itself a hub, that is, node 7 is

”assigned to itself”. Consequently, ¢; ; = ad; ; + d;, ; (similar if j = ).
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e ; = j. If there occurs flow from a spoke node to itself, it also has to be
shipped via a hub node': ¢, i = d;  + dj, ;. If the considered node ¢ is a

hub node itself (i = k), no costs occur: ¢; ; = 0.

Remark 2.1.1

Note that, due to the triangle inequality for the d; ;, a connection of an o-d pair

i\ js
via more than two nodes is not taken into account in the above: Assume that
origin ¢ and destination j are linked by three hubs k, [, m, inducing a transporta-
tion cost of ¢; j = d; \ + ady, | + ady, p, + dpy,, j, By triangle inequality, this cost is
larger than d; j + adj, m + dp, 4, i.e. the transportation cost when linking ¢ and

7 only by hubs k& and m.

Definition: Given the graph G with cost coefficients d; ; as defined above, the
discrete hub location problem consists of choosing a set of hubs among the
nodes in )V and allocating all non-hub nodes to those hub nodes such that a given
function based on the arc costs d;, ; is minimized. The subproblem of allocating
the non-hub nodes to given hub nodes is referred to as the hub allocation

subproblem. O

In literature on hub networks, the term ”hub location problem” sometimes refers
to a problem where the number of hubs to be located is not given a priori, but
has to be determined as part of the solution (see [8], for instance). In this thesis,
however, a ”hub location problem” will denote both the case that the number
of hubs is given a priori and the case that it is not; if needed, it will be stated

separately which special kind of problem is referred to.

2.2 Hub Location Problem Types

When dealing with hub location problems, one will soon figure out that there
does not exist anything like the hub location problem, but that the notion of
"hub location” summarizes a huge amount of different problem types. Here, a

main outline on the most important distinctions concerning hub location will be

'"We obviously choose k = [, since d;,  + ady, ; + d;, i > 2min{d; k,d; 1}
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given; chapter 3 will then introduce the main problem type that will be dealt
with throughout this thesis.

2.2.1 Median and Center Problems

The definition of a discrete hub location problem in section 2.1 left quite unclear
which objective function is considered. There are actually two main objective
functions dealt with in the literature of hub networks. The straightforward one

is the median problem:

Definition: The hub median problem consists of solving a hub location
problem with median objective function; that is, the objective of the optimiza-
tion problem is to minimize the sum of the transportation costs for all origin-

destination pairs. 0

However, it may make sense to consider different objective functions as well.
Imagine a postal delivery network, where arc costs represent transportation times,
and parcels should be delivered within a certain time. In order not to exceed this
time limit, one might be interested in the maximum transportation time for an
o-d pair, rather than in the sum of all transportation times. Consequently, we

define the center problem:

Definition: In a hub center problem, the optimization aim is to locate the
hub facilities such that the maximum transportation cost for the o-d pairs is

minimized. O

The notions of hub median and hub center problems are directly lent from location
theory, where a p—median problem, for instance, consists of locating p facilities
in the plane or among a set of sites, such that the sum of distances of some
given demand nodes to the nearest facility is minimized. Clearly, hub location
represents a similar problem. But since we have interaction between the located
facilities as well, the problem gets more complex; a greedy approach to allocate
each demand point simply to the nearest hub, for instance, does in general not
solve the problem to optimality (see e. g. [26]). Nevertheless, if, in the hub location

problem, we are only asked to locate a single hub, no interaction between several
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hubs has to be taken into account, and the hub location problem consequently

reduces to the 1-median (resp. 1-center) problem in location theory.

Figure 2.1: Comparison of median and center objective function

Example: Given a graph with 4 nodes A, B, C, D, where node A is only
connected to node B, and dag = 1, dpc = dep = 2, dgp = 3. Assume that we
are given o = % and that we have to locate two hubs in this graph. Figure 2.1
shows two possible ways of locating the hubs and allocating the spokes:

In part (a), nodes B and C have been chosen as hubs; node A is allocated to hub B
and node D to hub C. The path from node A to D is of maximum length in the
network, that is, the center objective function value is dyp + adpc + dep = 4 %
If we add up the lengths of all node connections in the hub network, we obtain
a median objective function value of 20% (recall that we also have to take into
account the connection of a node to itself).

Now, consider the hub network given in part (b), where nodes B and D are chosen
as hub nodes and both spokes are allocated to hub B. Here, the center objective
function value is dop +adpp = 4 < 4 % But the median objective function value

in this case is 21 > 20 é

2.2.2 Single and Multiple Allocation

Regarding the allocation of spokes to hubs, up to now we only stated that each
spoke has to be allocated ”in some way”. Now, a second main field to distinguish
between hub location problems is the way the spokes are allowed to be allocated.

One possible idea is to allow allocation of a spoke node to only one hub:
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Definition: In a single allocation hub location problem, each spoke node has
to be allocated to a single hub facility. That is, all flow with a particular node as
origin has to be shipped through the same hub node, and all flow with that node

as destination has to be transferred to it via the same hub node. O

Intuitively, the single allocation variation makes spoke allocation a hard problem:
A spoke allocation that produces little costs for the flow of one particular o-d
pair might result in high costs for transporting items between another origin
and destination. In fact, the spoke allocation subproblem with single allocation
restriction is A'P- hard [16] [17].

Considering the single allocation restriction, one might argue that there are real-
world problems where this constraint does not hold: In an airline hub network
with several hubs, for instance, it might be quite sensible to connect a non-hub
airport to several hub airports to achieve overall transportation costs that are as

low as possible. This variation is called multiple allocation:

Definition: In the multiple allocation hub location problem, spokes are
allowed to be allocated to several hub facilities. Consequently, for each origin-

destination pair, the cheapest hub allocations can be chosen. O

In the airline example, a multiple allocation assumption makes it possible for flight
passengers with different final destinations to travel to different hub airports.
When looking at the postal delivery example, multiple allocation allows mail to
be routed via different sorting centers according to its destination. Note that in
the postal delivery case, multiple allocation requires that mail can be pre-sorted

at every node, such that a distribution to different hubs is possible (see [19]).

It is quite obvious that, leaving the single allocation restriction out of considera-

tion, the general hub allocation problem becomes easier:

If we are allowed to choose new allocations for each o-d pair, the problem simply
reduces to a shortest paths problem and can therefore be solved in polynomial
time [16]. Note that, once the single allocation restriction is skipped, the opti-
mal objective function value decreases; this, as well, is due to the fact that the

shortest-path connection via hubs can be chosen for any o-d pair.



2.2. HUB LOCATION PROBLEM TYPES 15

To summarize, single allocation hub networking is a special case of multiple allo-
cation, just including one more restriction. Thus, an optimal multiple allocation
solution will always have an objective value at least as good as the corresponding
single allocation optimal solution. Furthermore, if each spoke is connected to
only one hub in the optimal multiple allocation solution, then the solution is also

optimal for the single allocation case.

2.2.3 Fixed and Variable Number of Hubs

When we assume that a certain number of hubs has to be established in a hub
location problem, this often does not reflect the whole real-world problem: It is
more likely that the number of hubs to be located is not known a priori. Now, if
we are free to choose the number of hubs, it would be the best choice to establish
a hub at every single node: Then, every arc could be used, and, if o < 1, all arc
costs would additionally be reduced?.

However, this again would not be an appropriate solution to the real-world prob-
lem. To mirror the situation of variable number of hubs correctly, we have to
introduce some sort of ”punishment” for opening hubs: On the one hand, an ad-
ditional hub enables us to use more arcs and eventually reduces the costs on some
arcs, but on the other hand, establishing a hub should result in paying some fixed

establishing costs. These costs can vary depending on the potential hub location.

2.2.4 Capacitated and Uncapacitated Hub Location

In section 2.2.2, we claimed that the multiple allocation variant of the hub allo-
cation problem can be solved by simply calculating the shortest paths between
all o—d pairs. Here, we made use of the fact that the arcs of our network had no
capacity restriction. Now, in an airline hub network, flights between certain cities
might be overbooked, such that some passengers have to travel on an alternative,
more expensive path from origin to destination. In our model, this can be re-

flected by imposing capacities on the arcs of the network. Similarly, in the postal

2Remember that the arc costs are supposed to be nonnegative.
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delivery example, a mail sorting center can only handle a limited amount of mail

per day, such that we have to include capacities on the nodes of the network.

2.2.5 Summary of Problem Types

minimize overall trans-
median .
.. . portation costs
objective function —— _
minimize maximum
center .
transportation costs
. capacity restrictions on
capacitated
overall nodes or arcs
restrictions unbounded capacity on
uncapacitated
nodes and arcs
number of hubs given a
) p fixed o
. hub location priori
constraints o —
restrictions determining the number
p variable of hubs is part of the
problem
single only one hub per spoke
spoke allocation || allocation allowed
restrictions multiple several hubs per spoke al-
allocation lowed

Table 2.1: Hub location problem types

In the subsections above, four main design decisions for a hub location problem
have been presented. While the terms median and center problem (section 2.2.1)
refer to the choice of the objective function, the other three design decisions (sec-
tions 2.2.2, 2.2.3, and 2.2.4) are related with the problem constraints: They either
describe special problem restrictions regarding hub location (fized and variable
number of hubs), spoke allocation (single and multiple allocation) or they give

overall restrictions on the design of the hub network (capacitated and uncapaci-
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tated problems). The different design decisions are represented schematically in
table 2.1.

2.3 Overview on Hub Location Literature

There exists a vast variety of literature on hub median location problems. The hub
center problem, however, has only been considered in recent years. Concerning
polyhedral analysis, Sonneborn [32] presented several facet classes for the multiple
allocation hub median problem, which were derived by lifting valid inequalities
of the two-level uncapacitated facility location problem. However, the polyhedral
properties of hub center problems have —to the best of our knowledge— not been

analyzed before.

A thorough review on hub location research was given by Campbell, Ernst and
Krishnamoorthy in [8]; the authors covered problem formulations, variations and
solution approaches and provided a detailed overview on the application of hub

networks for both transportation and telecommunication backgrounds.

2.3.1 Literature on Hub Median Problems
Single Allocation Hub Median Problems

One of the first to deal with a mathematical formulation of hub median location
was O’Kelly in 1987 [26]. He introduced a quadratic integer program formulation
for the uncapacitated single allocation hub median problem with fixed number of
hubs. Furthermore, O’Kelly examined two greedy heuristics to tackle the prob-
lem, where each spoke node is assigned to either the nearest or the second nearest
hub node. A transfer of O’Kelly’s formulation to the problem with fixed hub costs
and variable number of hubs was given by Chung, Myung and Tcha [10] in 1992;
in this context, an exact solution algorithm based on branch-and-cut was consid-
ered.

Skorin-Kapov and Skorin-Kapov [30] presented a tabu-search heuristic for the
uncapacitated single allocation hub median problem in 1994. In 1998, Abdinnour-

Helm and Venkataramanan ([1], [2]) combined the tabu-search algorithm of Skorin-
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Kapov and Skorin-Kapov with a genetic algorithm to a new hybrid heuristic for
solving single allocation hub median problems. Furthermore, they presented a
special branch-and-bound strategy as exact solution algorithm.

O’Kelly, Skorin-Kapov and Skorin-Kapov [27] were able to derive lower bounds
on the optimal objective function value of a single allocation hub median problem
in 1995, and thus provided a means of checking the goodness of existing heuristic
solutions.

In 1998, Pirkul and Schilling [29] presented a skilful Lagrangian Relaxation ap-
proach to solve single allocation hub median problems. Their procedure allowed
them to split the problem into two subproblems that were easily solved. In the
course of their solution algorithm, the authors then made use of subgradient op-
timization to improve the solution they found.

Ernst and Krishnamoorthy [18] considered the capacitated version of single al-
location hub median location in 1999. They introduced a simulated annealing
and a random descent heuristic and provided several preprocessing steps for the

problem.

Multiple Allocation Hub Median Problems

Campbell [7] was among the first researchers to consider the multiple allocation
hub median problem in 1995. He proposed a four-index formulation for the
uncapacitated multiple allocation hub median problem with fixed number of hubs
and investigated a greedy-interchange heuristic for this problem. In addition,
Campbell examined possibilities of using multiple allocation solutions to generate
solutions to the single allocation case. In 1996, Skorin-Kapov, Skorin-Kapov and
O’Kelly [31] were able to tighten the multiple allocation formulation given by
Campbell; furthermore, they discussed the general idea of applying a branch-
and-cut procedure for solving both single and multiple allocation hub location
problems.

A variation of the multiple allocation problem, assuming capacities for the hub
nodes, was considered by Aykin [3] in 1994. Aykin applied Lagrangian Relaxation
and arrived at a greedy-interchange heuristic and a branch-and-bound algorithm

that uses a subgradient subroutine. Another variation of multiple allocation hub
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problems was given by Aykin in 1995 [4]: Here, the author considered nonstrict
hubbing policies, where it is allowed to establish nonstop connections between
spoke nodes under certain conditions. Furthermore, Aykin discussed the impact
of variable flow volumes that depend on the type of service offered between origin
and destination.

Ernst and Krishnamoorthy [19] gave a multicommodity-flow formulation of the
multiple allocation hub median problem. Besides a branch-and-cut approach for
exact solving, they also considered two heuristics, based on explicit enumeration

and the construction of shortest paths, respectively.

2.3.2 Literature on Hub Center Problems

The hub location problem with center objective was not considered unless, in
1994, Campbell [6] presented a quadratic formulation for single allocation hub
center problems. Campbell also gave a straightforward linearization of his formu-
lation, but with the grave disadvantage of creating a huge amount of additional
variables. In 2000, Kara and Tansel [21] were able to provide a linearization
to Campbell’s quadratic formulation that does not need any additional variables;
the performance of the new formulation with respect to exact solution approaches
was shown to improve substantially with this step.

Ernst, Hamacher, Jiang, Krishnamoorthy and Woeginger ([16], [17]) concentrated
both on single and multiple allocation hub center problems. Concerning multiple
allocation, they introduced a new three-index formulation that needed clearly
less variables than the four-index formulation, which can be transferred from the
median case in a straightforward manner. With regard to the single allocation
problem, the authors presented a substantially new formulation, based on the
concept, of a ”hub radius”: This new formulation exploited the special properties
of a center objective function, instead of just transferring results from the median
case. Besides a branch-and-bound approach for exact solving, several heuristic
methods have been considered by the authors, among those special heuristics for
solving the allocational subproblem in the single allocation case [15].

Another recent heuristic approach to hub center problems was given by Pamuk

and Sepil [28]; the authors examined a 1-exchange heuristic featuring tabu search
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and several possible spoke allocation strategies. Kozlova [22] gave a summary on

known heuristic solution algorithms for hub center problems.

The hub center problem formulations of Campbell, Kara and Tansel and Ernst

et al. will be presented in detail in chapter 3.



Chapter 3

Hub Center Problem

Formulations

As stated in section 2.2, there is a huge amount of different problem types all
summarized under the notion of "hub location problems”. This thesis will deal
with hub location problems that are equipped with a center objective function.
Now, the concept of fixed costs for establishing hubs represents some kind of global
approach on hub location: Establishing any hub is penalized. In comparison,
center location can be seen as a local approach: Only one origin-destination
pair determines the objective function value). Consequently, the introduction of
fixed costs does not make sense for center hub location. This enforces us to fix
the number of hubs to be located a priori: If not, the optimal solution would
always consist of opening a hub in every single node (see the argumentation of
section 2.2.3).

Since we want to derive results for a basic problem in hub location theory, we
restrict ourselves to the uncapacitated case. Finally, the allocation type dealt
with throughout this thesis will be single allocation, since recently, promising
advances have been made in formulating single allocation hub center problems

(see section 3.3).

So, the hub location problem type dealt with in this thesis is the uncapacitated
single-allocation p-hub center problem, where the parameter p reflects the (fixed)

number of hubs to be located. Ernst et al. [16] have proven that this problem is

21



22 CHAPTER 3. HUB CENTER PROBLEM FORMULATIONS

NP-hard. They use the notation of USApHCP, which will be adopted in the

following.

Note that if p = 1, we are dealing with the 1-center problem, which can be solved
in polynomial time, e.g. by complete enumeration of the possible center nodes.
Similarly, p = n — 1 can be solved polynomially by complete enumeration, and
p = n is the trivial case where all nodes are opened as hubs. In the following, it

will thus be assumed that p € {2,...,n — 2} (which implies that n > 4).

However, there will be facet proofs in chapter 4 where it is stated explicitly that

p < 5] is required. Note that for most real-world problems, the number of
hubs is very small compared to the number of nodes, such that this additional

requirement does not restrict the problem too much.

The following three sections give an overview on known formulations of the
USApHCP: Section 3.1 presents Campbell’s quadratic integer problem for-
mulation. Several linearizations are dealt with in section 3.2, and the recently

developed radius formulation of Ernst et al. is given in 3.3.

3.1 Quadratic Formulation

A straightforward formulation for USApHCP was given in 1994 by Campbell [6],
who used the original median formulation of O’Kelly [26] and equipped it with a

center objective function:

Let n be the number of nodes in the problem instance and p the number of hubs

to be located among them. For i,k € {1,...,n}, define the variables X, ; as

follows:
For i = k:
1 , mnode k is chosen as hub
X,k = .
0 , node k is a spoke
For ¢ # k:

{ 1 , mnode ¢ is allocated to hub k
ik =

0 , else

With the help of the X; ;, the USApHCP is then formulated as follows:
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(HCP — Q)
min max Z di,kXi,k+adk,mXi,ka,m+dm,ij,m
irj,k,m=1
st > Xy = 1 Vi=1,...,n (3.1)
k=1
Xi,k S Xk,k Vi,kzl,...,n (32)
> Xpk = p (3.3)
k=1
X, € {0,1} Vi k=1,...,n (3.4)

Constraint 3.1 guarantees that each spoke node is allocated to a hub node. With
3.2, we make sure that node 7 can only be allocated to k if £ is a hub node.
The number of hubs to be located is fixed to p by constraint 3.3, and finally, all

variables are assumed to be binary (3.4).

Now, the objective function of the above formulation contains the quadratic terms
a di, mXi, kX;, m, Which are not suitable if we want to apply techniques of lin-
ear programming. The next section deals with two approaches to reformulate

(HCP — Q) as an integer linear program.

3.2 Linearizations

One first approach to linearize the quadratic formulation from section 3.1 above
was given by Campbell himself [6]: In order to avoid the quadratic terms
ady, m X, X, m, he introduced new variables Yj;,, which represent the product
X, kX, m. If additionally, the min max objective function is resolved by apply-
ing a standard procedure for center problems, the problem formulation looks like

follows:!

'In his linearization, Campbell worked with different flow values for different o-d pairs; Ernst
et al. [16] simplified this to the above form where a flow of one unit each is assumed for any

pair of nodes.
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(HCP - Linl)

min z
n n
st. z > ZZ(di,k—Fadk,m—i‘dm,j)Y;jkm Vi, g =1,
k=1 m=1
n n
SO Vi = 1 Vij=1....n
k=1 m=1
n n n
7j=1 m=1 7=1

Xz',k: S Xk:,k ‘v’i,kzl,...,n

n
ZXk,k =P
k=1

Xz',k;Yvijkm € {0, 1} Vi,j,k,mzl,...

cen

(3.5)

(3.6)

(3.7)

Note that constraints 3.5 have been summarized in comparison to the original

constraints given in [6].

It is easy to deduce from 3.7 that Yjzm =1 < X, = X, = 1 (which is

equivalent to Yk, = X; r Xj », since all variables are binary):?

Lemma 3.2.1
}/;jkm = Xi,ka,m ‘v’i,j,k,m € {1,,71}

Proof:

1. Assume X;  X; ,, =0. W.Lo.g., X; , = 0. Then, by constraint 3.7:
0=2 5, X = 5, S Vi + V).
From 3.10, we know that Yj;z, > 0 and Y}, > 0,

and thus Yrijkm = Yjimk = 0.

2Pay attention to the fact that the summing index at the right hand side of 3.7 is j.
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2. Now, assume X; , X, ,, = 1.

From X; , =1, we can deduce

2n = 2ZXlk_ZZ zgkm zmk:)

]lml

Z ijkm + Z Z Jirnk

=1 m=1 j=1 m=1
—_——— —_———
<1 <1

=1V je{l,...,n},
hence especially ) . Yk = 1.

n

and consequently, > Y, .
Analogously, X ,, =1 leads to > ; Y, ik = 1

To conclude, >, Yijkm = D Vi, = Land 323 >, Y = 1 (constraint
3.6) imply that Yiitm = 0 Vk # k and Yijpm = 0 Vm # m, such that

Yijkm = 1 follows.
[l

Thus, the new constraints 3.6 can substitute constraints 3.1 of the quadratic

formulation.

Obviously, the main disadvantage of Campbell’s linearization is the high number

of new variables that have been introduced.

In 2000, Kara and Tansel [21] were able to show that it is possible to resolve the
quadratic term in the objective function without adding any new variables to the
formulation. The new linearization suggested by Kara and Tansel is:
(HCP — Lin2)

min z

n

st. 2z > Z(di,k+adk7m)Xi7k+dm,ij,m Vi,jym=1,...,n

k=1
(3.11)
ZXM = 1 Vi=1,...,n (3.12)
Xz',k: S X]%k ‘v’i,kzl,...,n (313)
> Xpr = p (3.14)
k=1
Xip € {0,1} Vik=1,...,n (3.15)
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The central point in the argumentation of Kara and Tansel is that the addend

ady, mX;, 1 Xj m can be replaced by ady, X i:

Lemma 3.2.2 (Kara and Tansel, 2000 [21])
The constraint z > p_ (d; p + @ dg,m)Xi g + dm, ; Xjm Vi,jym=1....n
15 valid for the quadratic problem formulation and satisfies to describe the objective

function value z.

The Kara and Tansel linearization requires only few variables and has been shown

to be more efficient in CPU time than the Campbell linearization [21].

3.3 Radius Formulation

So far, the approaches to give formulations for the USApHCP were a straight-
forward extension from known formulations of the median case: The standard
hub median constraints were equipped with a center objective function, and the
formulation was rewritten with a linear objective function and additional con-

straints.

Recently, Ernst et al. [16] came up with a new formulation for the
USApPHCP that, in contrast to all formulations given so far, exploits the special
structure of center problems. Their central idea was to introduce the notion of a

hub radius:

Example: Consider the hub network given in figure 3.1 a), where nodes 1 and
2 are hub nodes, and three spoke nodes are assigned to each hub. Imagine the
arc distances d; ; are proportional to their lengths and we want to determine the
maximum travel costs between two nodes in the graph.

Now, it is easy to see that the path from node 8 to 5, for instance, cannot have
maximum cost, since spoke 7 is even further away from hub 2 than spoke 8 is,
and consequently, the path from node 7 to 5 is more expensive. But once again,
this is not the maximum cost path, since the travel cost can be increased by
substituting node 5 by node 3.

Consequently, to determine the maximum travel cost of an o-d pair using two
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a) Sample hub network b) Network with hub radii

Figure 3.1: Introduction of hub radii

fixed hubs, we only have to consider the spokes with maximum distance from the

corresponding hubs.

Definition: The radius r; of a hub node k is the maximum distance to node k
of all spoke nodes that are allocated to hub k. O

Now, the idea for the radius formulation of USApHCP is the following: Firstly,
given a pair of hubs, determine (via the hub radii) the path with maximum
length that uses these hubs. Secondly, compare those maximum path lengths for

all given pairs of hubs.

If M > maxy,,, (max; d; , + max; d; ,, + ady ) is a large positive number?, the

radius formulation of USApHCRP is given as follows:

3For the determination of the lower bound on M, see section 4.2.
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(HCP — Rad)
min z
st. 2z > rp+rptade, Vem=1,...,n (3.16)
TL Z di’kXi,kVZ.,k:L...,n (317)
(rk < MXk,ka:L...,n) (3.18)
 Xip = 1Vi=1,...,n (3.19)
k
Xi,k S Xk,kVi,kzl,...,n (320)
> Xer = p (3.21)
k
Xir € {0,1}Vik=1,...,n (3.22)
. > 0VEk=1,...,n (3.23)

Constraints 3.17 set the radius variable 7 to (at least) the maximum distance to

k of a spoke node that is allocated to k.

Note that the constraints 3.18 are not included in the formulation given in [16];
however, since they only restrict the radius of a non-hub node to zero (and there
is always an optimal solution with r, = 0 if X , = 0), they do not change
the optimal objective function value. Constraints 3.18 have been included in the
formulation since they will be of help when examining the facets of the radius

formulation polyhedron (see chapter 4).

Inequalities 3.16 define the objective function value 2z as the maximum path length
between any two hub nodes by using the respective hub radii. Ernst et al. [16]
shortly stated that these inequalities 3.16 stay valid for all possible values of X; j
and X p:

Lemma 3.3.1
The inequalities z > 1, +1p +dp, m ¥V k,m = 1,...,n for the objective function

value z of USApHCRP stay valid even if k and/or m are non-hub nodes.

Proof: 1f Xy =0, then r, = 0 due to 3.18. Thus

triangle ineq
Tk+Tm+Oédk,m = rm"‘adk,m < rm+a(dkaik+dikam)
def. radius; a < 1
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where ij, is chosen such that Xj ;, = 1. An analogous procedure can be used if

X, m =0, and a similar one if both X}, , and X,, ,, are zero. O

At first sight, the radius formulation for USApHCP has the disadvantage that
it requires more variables than the Kara and Tansel linearization. However, the
radius formulation considers only those spokes which are at maximum distance
from their hubs; hence, a lot of origin-destination pairs can be neglected when
determining the overall maximum transportation cost. This fact is mirrored in
a fewer number of constraints compared to Kara and Tansel, a first hint that
the radius formulation might behave computationally better. Indeed, Ernst et
al. could show that for the standard test sets of hub location theory (see chap-
ter 6), the radius formulation is on average ten times more efficient in CPU time

than the Kara and Tansel linearization.
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Part 11

Polyhedral Analysis
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Chapter 4

Facet Derivation

As shortly stated in section 2.3, various approaches have been made to try and
solve hub location problems to optimality. The corresponding algorithms included
several branch-and-bound and branch-and-cut techniques. But, due to the com-
plexity of the problem, so far, for hub center problems, only instances with up to

100 nodes could be solved to optimality within a reasonable amount of time'.

One way to improve those exact solution procedures is to concentrate on the prob-
lem formulation the algorithms are based on: If one is able to derive more valid
inequalities for the polyhedron induced by the problem formulation, this new
knowledge can be exploited to design better branch-and-cut algorithms, where a
cut consists of introducing one or more of those further valid inequalities. Cer-
tainly, we are especially interested in facet-defining inequalities, since these pro-

vide a tight description of the integer polyhedron.

In the research on hub location problems, polyhedral analysis has played a minor
role so far. The only results in this field that have been achieved so far are
those of Sonneborn [32] and Hamacher et al. [20], concerning the median case.
The authors gave a multi-commodity problem formulation for the uncapacitated
multiple allocation hub median problem and showed that this formulation can be

considered as a relaxation of the uncapacitated facility location problem (UFL).

!See [17] for a variety of numerical experiments based on the Kara and Tansel and radius

formulation.

33
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They presented a method to lift facet defining inequalities from UFL to the hub

location problem and applied this to derive facets for the hub location problem?.

Now, at first sight, the only difference between hub median and hub center prob-
lems is a change in the objective function of the problem. Consequently, the
results in [32] and [20] could be directly applied to the center case. However, in
the problem that is dealt with by Sonneborn and Hamacher et al., it is assumed
that the number of hubs to be located is not given a priori; but, as already stated
in chapter 3, this does not make sense for hub center problems. Thus, to investi-
gate the polyhedral properties of the hub center case, we either have to transform
given approaches to the case that p = fiz, or proceed in a different way to derive
facets. Since with the radius formulation of Ernst et al. [16] (see section 3.3),
a promising new approach has been made for hub center problems, the second
alternative will be chosen in this thesis, i.e. the polyhedral analysis will be based

on this new problem formulation.

The following section 4.1 will provide a summary of basic terms and results that
are needed throughout this chapter. A connection between USApHCP and a
special kind of uncapacitated facility location problem is presented in section
4.2 and used to derive the dimension of the radius formulation polyhedron in
section 4.3. In section 4.4, the faces that are induced by the problem constraints
are examined. The final section 4.5, which represents the core of the polyhedral
analysis, provides three new groups of facet-defining inequalities for the radius

formulation polyhedron.

4.1 Basic Definitions of Polyhedral Theory

This section is meant to shortly introduce main definitions and results of polyhe-
dral theory that will be used throughout this chapter. A thorough introduction
to polyhedral theory can be found in [25].

2Furthermore, a projection theorem was given to proceed the other way round and derive
facets for the UFL problem from facets of the uncapacitated multiple allocation hub median

problem.
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Definition: A polyhedron P in R" is a set of points in R” that satisfy a finite
number of linear inequalities: P = {z € R* : Az < b}, where A is an m X n

matrix and b an m-dimensional vector. O

Definition:

e A set of points z',..., 2 € R” is said to be affinely independent if the
following is valid: If Y. c; 2’ = 0 and Y, o; = 0, then a; = 0V 4.

e Let P C R” be a polyhedron. The dimension of P is equal to k
(dimP = k) if and only if there are exactly k£ + 1 affinely independent
points in P.

Proposition 4.1.1
Let P be a k-dimensional polyhedron in R™, and let m be the mazimum number
of linear independent equations that are satisfied by all points in P.

Then, k + m = n.

Consequently, one way to determine the dimension of a polyhedron is to consider
the equations that are satisfied by all points in P. Every such equation, if lin-
ear independent from the ones considered so far, reduces the dimension of the

polyhedron by one.

Definition: Let P C R" be a polyhedron.

e If the inequality mxz < my is satisfied by all z € P, it is called a valid
inequality of P.

e Let mx < my be a valid inequality of P. The set
F:={zx € P:mx=mp} is called the corresponding face of P.

O

It can be shown that a face of a polyhedron is once again a polyhedron. Conse-
quently, the term ”dimension” can be applied to a face, and we can define a facet

of the polyhedron:
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Definition: Let P C R" be a polyhedron and F C P a face. F is called facet
of Pif dimF =dimP — 1. O

Hence, a facet of a polyhedron is a face of maximum dimension. There are two
main approaches to show that a given valid inequality 7 < 7, of a polyhedron P

defines a facet:

1. Identify dim P affinely independent points in F := {z € P : wz = my} that

satisfy mx < my with equality.

2. Let a2 = by, ..., amx = by, be the equations that are satisfied for all
points in P. Assume that there exists a further equation that is valid for
all points in F, show that it has to be a linear combination of the equations

a1x=by, ..., a,x=>0b, and T x = m.

In mixed integer programming, we deal with optimization problems where the
set, of feasible solutions is of the following form:

X :={z R} : Az <b} N (ZF xR**)

It is known that the convex hull of X, conv(X), is a polyhedron;

hence, it can be decribed by a finite number of linear inequalities. Furthermore, a
well-known result from polyhedral theory states that it suffices to restrict oneself
to facet-defining inequalities. If one was able to derive all those facet-defining
inequalities for the description of conv(X), the original mixed integer problem
would reduce to a linear problem, and standard linear techniques could be ap-
plied. However, the complete derivation of all facets of a polyhedron is very
unlikely if the corresponding mixed integer problem is AP-hard. Nevertheless, if
one can obtain at least some facets, the polyhedron can be approximized, which
hopefully results in time savings when applying mixed integer programming so-

lution approaches.
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4.2 (pUHL) and (pUFL) Problems

Recall the radius formulation of USApHCP given in [16]:

(pUHL)3

min z (4.1)
st. 2z > rp+rmtade, YEkme{l ... ,n} (4.2)
T > di,kXi,k Vi,kE{l,...,n} (43)
e < MX]C7]€ VkE{l,,n} (44)
Y Xip =1 Vie{l,...,n} (4.5)

k=1
Xz',k: < ch,lc Vi,kE{l,...,’n} (46)

k
ZXk,k = p (47)

k=1
r.. > 0 Vke{l,...n} (4.8)
X,r € {0,1} Vike{l,...n} (4.9)

For the following analysis, we define the integer polyhedron P,y 1, of the problem:

Definition:

o Xyymr:={P=(X11,...,Xpn n) € R . P feasible for (pUHL)}
is the set of feasible solutions to (pUHL).

[ ] pUHL = XpUHL N ({0, 1}“2 X Rn+1)
is the set of feasible solutions to (pUHL) with binary X .

® FpuHL ‘= CONv (ZpUHL)
is the polyhedron defined by the integer solutions to (pUHL).

O

Throughout this chapter, let XZ{D i denote the value of variable X, , for the

point P; analogously for r]” and 2.

3In chapter 4 and 5, USApHCP will be the only hub location problem to be consid-
ered. To underline the parallels to the UFL problem (see below), the radius formulation of
USApHCP will henceforth be referred to by (pUHL) (uncapacitated p-hub location) rather
than (HCP — Rad).
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As already stated in section 3.3, in contrast to the formulation of Ernst et al. [16]
we included another constraint 4.4 ensuring that, whenever a hub is not opened,
the radius of the corresponding node is set to zero. Though this is not a valid
inequality for the original radius formulation, Ernst et al. [16] state that there
always exists an optimal solution to their problem with 7, = 0 whenever X}, , = 0.
In the following, constraint 4.4 will be included since it makes no restriction on
the optimal solution (see construction of M below), but nevertheless restricts the

set of solutions to be considered.

To ensure that constraint 4.4 does not give any other restriction apart from
"1 = 0 whenever X, , = 07, we choose M large enough; a convenient choice for

the following constructions® is

M > max (maxd; , + maxd;, , + adg, m). (4.10)
j j

k,m

Inequalities 4.2, 4.3 and 4.4 reflect the radius idea, as described in section 3.3. All
other inequalities only include X; ;- variables. Going even further, inequalities
4.5 - 4.7 and 4.9 can be seen as the constraints of a special kind of uncapacitated
facility location problem (see [12] for a general discussion of this problem and its

polyhedron):

In the uncapacitated facility location problem, the demand of a given set of
customers has to be met by locating one or more facilities. Now, assume the set
K = {1,...,n} of customers is equal to the set H of possible facilities, that is:
Every customer can become a facility himself. If so for customer k, this customer
is seen as allocated to himself, which means that & must not be allocated to any
other facility. Furthermore, different to the general notion of the uncapacitated
facility location problem, we assume that the number of facilities to be opened
is fixed to a number p, and we impose a center objective function rather than a
median one. Then, this variation of the uncapacitated facility location problem

can be formulated as follows:

“e.g. needed in the proof of theorem 4.3.5
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(pPUFL)

min max di, ke Ti, k (4.11)
2

st.Y mp = 1 Vie{l,... n} (4.12)

k=1

Ti, k < Tk, k Vi,kE{l,...,n} (413)
k
> wr = p (4.14)
k=1

Tip € {0,1} VZ,kE{l,n} (415)

Similar to (pUHL), let X,;r. denote the set of feasible solutions to (pUFL),
Z

ourr be the set of feasible solutions with all z; , integer, and P,y rz, the poly-

hedron obtained by the convex hull of these integer solutions.
Analogously® to (pUHL), (pUFL) will only be considered for p € {2,...,n—2}.

In the next subsections, (pUFL) will be used to derive the dimension of P,yxy,

and to facilitate the search for facets of P,ygy that involve only X; ,-variables.

4.3 Dimension of the Polyhedron

The formulation of (pUFL) above is nothing else than constraints 4.5 - 4.7 and
4.9, but equipped with the center objective function for (pUFL)®. However, as
we are now looking at the polyhedron, the difference in the objective functions

can be neglected.
Obviously, the following result holds:

Proposition 4.3.1

Let P = (1,1, 1,2, - -+, Tn,n) € Ppurr be a feasible solution to (pUFL).
Then, P* := (X1, 1, X1,2, .-, Xn ns 71, -« -, Tn, 2) With

Xik =z, Vi k,

T = MaX; di’ sz',k Y k,

Ssee introductory remarks in chapter 3

6Remember that in the hub location case, interaction between the hub nodes has to be taken

into account, but that the facility nodes of (pUHL) do not interact.
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2= MAT gy Tk + Ty + 0 dy i,

is a feasible solution to (pUHL), and thus, P* € Pyypy-

Furthermore, if we have affinely independent points P,..., P, € Pyrr, they

obviously correspond to affinely independent points Py, ..., P; € Py

Proposition 4.3.2
Let Py, ..., P, € Pyrr be affinely independent points in Ppyrr,.
Then, P, ..., P, € Pyur are affinely independent points in Ppymr,

where P} is constructed out of P; as shown in Proposition 4.5.1.

Corollary 4.3.3

dim PpUHL 2 dim PpUFL-

Next, the dimension of P,y will be derived. For this sake, we first compute

the dimension of the polyhedron Py py:

Lemma 4.3.4

. 2
dimPyypr =n*—n—1.

Proof:

!
o dimP,yrr < n?>—n-—1:

There are n? variables and n + 1 equations in the formulation of (pUFL).
Furthermore, it is easy to see that these equations are linearly independent.

Thus, dim Py, < n? —n—1.

!
o dimPyypr > n?—n—1:

We show: Any equation that is satisfied by all points in P,ypy is a linear

combination of equations 4.12 and 4.14.

For this sake, let
ZZai,kxi,k =d (416)
ik

be an equation that is met by all P € Pyypr. We will proceed in two

substeps:

1. For all j: aj = aj,m=:0; Yk,m#j.
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2. For all k, l: Ak, k — A ; ap | — a =:a.

Once steps 1 and 2 have been proven, we can conclude
d = g E i, k& Ti k
ik
step 1, %mi, =1
d=Y a; = > (a;;—a))z;,

J J

tep2, Y xj ;=
step <:£l’]] p d—zaj—ap _ 0,
J

which shows that equation 4.16 is a linear combination of the given inequal-
ities.

Steps 1 and 2 can be proven by constructing points in P,y and inserting
them into 4.16:

ad 1: For all j: a; = aj,m(=:a;) Vk,m#j:
W.lo.g., k,m € {1,...,p} and j > p+1 (eventually relabel the nodes).

Consider the following two points:

P12 1'1’1:.1'2’2:...:.1'17’1,:1,
rip=1 Yie{p+1,...,n},
all other values = 0.

Py: all values as in Py, except z; 1 = 0 and z; , = 1.

Obviously, both P, and P, are feasible for (pUFL). Now, inserting
the values of P; into equation 4.16 yields

p
E az,z-i-E a; p+aj=d
=1

iZ_p«ljl
17

Analogously, we obtain from Ps:

p

g ap, | + E a;, + aj m =d
=1 i>p+1

i#]

Thus, a; r = a;, m-
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ad 2: Forall k, I: ay,  — ax - ap,; — a =: a

We have shown above that, once step 1 has been proven, 4.16 can be

reformulated as

d— Z a; = Z aj,j — aj) T (4.17)
J J

W.lo.g., k=p, | =p+1 (eventually relabel the nodes). Consider the

following two points:

PIZ 1'1’1:1'2’2:...:.7)1,’1):1,
T =1 VlE{p—!—l,,n},
all other values = 0.

P,: all values as in P;, except

Lp,p = 0, Tp+1,p+l = 1, Tp 1= 1, Tpt1,1 = 0.

It is easy to see that both P; and P, are feasible for (pUFL). Inserting
the values of P; into equation 4.17 yields

p—1
d— E :a] E : (j,j = G3) + Api1, a1 — Gpi1
J=1
Thus, a, , — ap = Gpi1, pr1 — Qpy1, 1€ ap p — ap = a,; — aq.

Now, we can determine the dimension of Py

Theorem 4.3.5

: — 2
dlmPpUHL =n-.

Remark 4.3.6
To prove that dim(Pyrzz) = n?, one can of course proceed in a straightforward

manner as in lemma 4.3.4:
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Py is a polyhedron in n?+n+1 variables. There are n+1 equations fulfilled by
all points in the polyhedron (see constraints 4.5 and 4.7), and it can be shown,
similar to the proof of lemma 4.3.4, that any further equation satisfied by all
points has to be a linear combination of the given equations.

Nevertheless, the dimension of P,y g, will be derived in a more complicated way
below: Starting from known affinely independent points in P,ypr, new points
in Pz, will be constructed to obtain a final set of n? + 1 affinely independent
points in Ppypr. The reason for this proceeding is that, by starting from the
Pyurr, polyhedron, we can show the interdependencies between the (pUFL) and
(pUHL) problem. This will be made use of when deriving facets of P,ypy that

only contain the variables X; j, (see proposition 4.4.1).

Proof: [of theorem 4.3.5] The radius formulation of (pUHL) contains n? +n + 1
variables and n + 1 equations (constraints 4.5 and 4.7), which, as already seen
in the proof of 4.3.4, are linearly independent. Consequently, dim P,z < n?.
It remains to show that there exist n* + 1 affinely independent points in Pyypr,

(and thus dim Py, > n?). This will be proven in two steps:

1. By lemma 4.3.4, we know that there exist n? —n affinely independent points

Py, ..., Py, € Pyyrr. Thus, by proposition 4.3.2, we can construct n* —n

*

affinely independent points in Ppy . Construct those points Py, ..., P,

as proposed in proposition 4.3.1, but set z := 2 maxy 1 + 7 + v dy, , for
each P’ (obviously, the points stay feasible and affinely independent).

2. Now, we use the constructed points Pf,..., P, to construct another
n + 1 points, such that the set of all constructed points is still affinely

independent:

First, note that for every k € {1,...,n} there is i € {1,...,n? —n} such
that 7",1:; > 0. To see this, assume that r, = 0 for all points Py, ..., P*

n2-n"
Then, by construction of the P, we have that X,, , = 0 for all m # k
(recall that d; ; = 0 < ¢ = j). But then, these n — 1 additional equations,
which are linearly independent from constraints 4.12 and 4.14, are satisfied

by the points Py, ..., P,>_, as well. Contradiction.
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For every k, choose i(k) € {1,...,n* — n} minimal with r:&k) > 0 (and
thus, r,l:l* =0V I<i(k)). Let L={Ly,...,Ls} be the index set of chosen
points P; (ordered such that L; < Ly < ... < L;), and let £; be the
set of k-values for which Pj has been chosen, i.e. £; = {k : i(k) = L;}.

. . . ) b
Construct new points P, ..., P, with P = Py, except that rk=2r, '™

Due to the choice of M, the new points P, ..., P, stay feasible:

Constraint 4.4:

A P.*
r,I:’“ = 27,
S 2 max dj, k
j
= maxdj7k+maxdjyk+adk7k
j j
< rrllax(max dj | +maxd; p, + ad; )
m o j
< M
Constraint 4.2:
e First, note that
2 2 P P
et adgy o= 20, F20, "

P; P;
2 (1 ® 47, )

P P
< 2 max(r, ™ + 1Y +ad, )
I,m
stg 1 ZPi*(k)
= ZP’“
e Now, for all m # k:
~ ~ P.* P.*
P j2 k- K
P ady = 20, Y 4™ ady,
P P
i(k i(k
< 20" +rn® + adg, m)
P-* P-*
< 2 max(r,;"™ +1,"" +ad; )
It ’
tep 1 .
VL O
= ZPk

e Finally, for all [,m # k,

2P > rlP’“ + ri’f + a d;, 1, since this was already valid for Pi(k).
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Thus, we have shown that the constructed points all lie in P,ypr. Next,

we show that the points Py, ..., P*

n2—n>

Py, ..., P, are affinely independent.

For this sake, assume that

’I'L*’I'L

Z ol P+ ZakPk =0 (4.18)

n—n

with Za +Zak = 0. (4.19)

Equation 4.18 and the construction of the points P, induce the following

equations for the variables X, , (m,r € {1,...,n}):

nfn

Za* mr"‘Zaka(T) =0
def - of Ly and L; ni:n *er+2(aL +Zaz) =0

leL;
z¢£
(4.20)

Due to the construction of the points PF (i = 1,...,n*> —n, i € L) and

)

Py (j=1,...,s)out of P,...,Pp_, € Pyyrr, we can conclude from 4.20
that
S o (o, + T ), -
leL,
z€£
Since
S o3 o, + Ta) = 3 o+ Y -0
leL,
z€£

(by 4.19) and P, ..., P,2_, have been chosen affinely independent, we can

conclude that

of = 0 Vie{l,...,n>—n},i¢gL

and o) +Y & = 0 Vje{l,... s} (4.21)
leL;
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Thus, equation 4.18 reduces to

S

3 (aszzj +y alﬁl) =0 (4.22)

j=1 lG,C]'
Now, consider the equations for the variables r, (k € {1,...,n}) induced
by 4.22:

S

Z (azjr,l:ij + Z évlr,f’) =0

J=1 leL;
Let k € L,. Then, by construction,
r,fzs >Oandrfl :21",525 >0 VIie L
furthermore ’I“]I:Zj =0 and r,ljl =0 VieLl;, j<s.

Inserting this result into the equation above yields

Pr 5
* Lg A Pl —
ap T +E ar,’ = 0
lELg
P
def.ofrkl P} . Pz
=" ap " +2 E ar,™ = 0
€L
P*
TkLS>0 N N equ.4.21 R N
< ap +2 E ap =0 = E =0 =a, =0.
IELS IELS

Next, let k € L,_1. Then, by construction,
Pl*/s—l 131 st—l
T >0and r,' =27, >0 Vie Ly
=3 -
furthermore rkLJ =0 and 7",]:’ =0 VieLl;,j<s—1,

and we obtain, similar to the above:

P; S P S
* Lg_1 E ~ Pl * L § ~ Pl _
le[»sfl leﬁs
P
def. of r,! N Pr. P o Py
5— A 1 * Lg A Ls _
=" ap, T + E Ty + o T +( E Ozl) 2r), =0
leﬁsfl leﬁs
Yier, G1=0,a} =0 N P
s—1 Pl _
ap T + g o, = 0
l€ELs—1
as for kEL ~
" E q=0=a;, , = 0

lEEs—l
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Repeatedly applying this argumentation to L, o, ..., L, gives azj =0 and
Doiec, w = 0 forall j € {1,...,s}. This means that we have reduced
equation 4.22 to

>N apn = 0 (4.23)

with » é = 0 Vje{l,..., s} (4.24)

Let 7 = s, k € L, and consider the equation above for the variable r;: By

: 5 , P;
construction, 7, = 0 for all P, [ € £;, j < s, and r,* > 0. Consequently,

we obtain:
.~ P pr A A
0 = E alr]fl :TkLS ( E al+2ak)
leﬁs leLg
1#k
Py
T, 0 >0 Z A . 4.24 .
k:} (07} =+ 20% = 0 fr— Qp = O
lELg
l#k

We can transfer this argument to £ € £; with j < s similar to the proce-
dure when regarding the a} - values, and finally obtain that a; = 0 for all
ke{l,...,s}

Hence, we have shown that the points Pf,..., P¥,_ .

]51, e P, are affinely
independent in Ppypr. To complete this proof, consider the point I5n+1
with P, = P} except for ZPue1 = %Zpl*. By choice of z in step 1, P,is
stays feasible. Using a similar argumentation as above, it is easy to see that

the points Py, ... Pl, ey PnH are affinely independent in P,ypy.

P
Ol
Remark 4.3.7 (Technical details of facet proofs)
Throughout section 4.4 and 4.5, several inequalities will be proven to be (non-)
facet-defining. To prove that an inequality does not represent a facet, it suffices
to give further equations that are fulfilled by all points lying in the corresponding
face. In contrast, it requires quite a lot of technical effort to prove that a given
inequality does in fact represent a facet. Assume that the set of decision variables
is represented by the vector z. Then, all following facet-proofs will proceed using

the following scheme (which has already been applied in the proof of lemma 4.3.4):
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1. (For non-elementary facets:) Show validity of the inequality.

2. Assume that a further equation =z = 7, is valid for all points lying in the

considered face:

(a) With the help of a general linear combination of the given equations,

derive dependencies between 7 and 7y that have to hold.

(b) Show that, if these dependencies hold, mx = my reduces to a linear

combination of the given equations.

(c) Prove the dependencies between the scalars by constructing points of

the face and inserting them into the equation 7wz = 7.

The reader who is more interested in facet results than in technical details of the
proofs is recommended to skip those (in the following, such proofs are marked
by the symbol *). Nevertheless, to understand the meaning of an inequality,
the validity proof of newly-derived inequalities is of good help; additionally, an

interpretation of each class of newly-derived facets will be given in section 4.5.

4.4 Elementary Facets

In this section, we will examine the faces that are defined by constraints
4.2 - 4.9 and check which of these are facets. This knowledge gives first hints
at the inequalities that still have to be tightened to obtain a better formulation

of PpUHL-

4.4.1 Elementary X; ,-Facets of P,ynyr

First, we will consider those constraints that contain only the X; ,-variables. As
a first step, the idea of the proof of theorem 4.3.5 can be used in determining

facets for Pyymr, as shown in the following:
Proposition 4.4.1
(i) Given n*> —n — 1 affinely independent points
P17 RS Pn27n71 € PpUFL;
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one can construct n? affinely independent points
Pl*,...,P* Pl;---;Pn+1€7DpUHL-

n2—n—1’

Consequently, every facet of Ppyrr corresponds to a facet of Ppuwr.-

(ii) Conversely, if an inequality in the variables x;  does not define a facet

of Pyurr, then the corresponding inequality in the variables X; p does not
define a facet of PyumL.

Proof:

ad (i)

ad (ii)

Transfer the points P, ..., P,2_,_; to n> —n—1 affinely independent points

Pr,..., P | in Pyypgr as shown in proposition 4.3.1.

Construct n 4+ 1 additional points as shown in the proof of theorem 4.3.5.
For this construction, note:

Similar to the proof of 4.3.5, we can assume that for every & € {1,... ,n},
there exists Py € {P1,. .., Pp2yp_1} with r, > 0: Otherwise, there would
be n — 1 > 3 additional equations’ X,k = 0V m # k which are valid for

all P;, and hence, Py,..., P,>_,,_; cannot be affinely independent in Ppypr;
contradiction.
If Furr is a face of Pyypr, but no facet, there exists at least one additional

equation (in the variables x; ) which is linearly independent from the given
equations, and which is satisfied for all points in F,ppr. If Fyypr denotes
the corresponding face of P,ypy, it follows that there is at least one addi-
tional equation (in the variables X; j) which is linearly independent from
the given equations and which is satisfied for all points in F,ypr. Hence,

Foumr cannot be a facet of Ppypr.

O

Thus, when searching for facets of P,y that only include X; g-variables, we

can restrict ourselves to searching for facets of Pyypr.

First note that some of the elementary inequalities of (pUHL) do not represent

facets:

"Note the general assumption that n > 4.
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Proposition 4.4.2
The following valid inequalities of (pPUHL) do not represent facets of Ppupr:

(b)) Xer <1 Vk

Proof:

(a) Xk,k:() = Xz,k:() V1.

(C) X%k:l = Xk7k:1andXZ~,m:0 Vm;ék
d
The remaining constraints that include only X; j-variables can be shown to define
facets:

Proposition 4.4.3
The following is a facet of Ppuur:
f[ = {PE’P:,)UHLZ)(Z{DIc :0} (fOTi,k € {1,...,Tl}, Z%k}

Proof: * (following the pattern given in remark 4.3.7) For ease of notation, F; will
in the following denote both the face defined in (pUHL) and its correspondence

in (pUFL). It will become clear from the context which set is being referred to.
W.lo.g.,2=1and k = 2. Assume that the equation
ZZCL]" X510 = d (425)
j=1 I1=1

holds for all (pUFL)-solutions P € F;. Show:

1. For all j,{,m with j & {l,m} and (1,2) & {(4,0), (j,m)}: a1 = aj m =: a;.

!
2. For all [,m: apy, p, — ap = a1, — a7 := a.

*Technical proof; may be omitted.
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If steps 1 and 2 have been shown, we can reformulate 4.25 as a linear combination

of the given equations:

n n

d = E § aj,1mj,
j=1 I=1
n

n

tep, =1

T d=Y a; = > (aj;—a;)z;;+ (a1, — 1)z,
j=1 =

n

n
:E1,2=0VP€.7'—1 d
= =Y ;= (a5, - aj)z;,
=1

j=1

n
step 2 Tk, k=D
’;’5 d—E aj—ap = 0.
Jj=1

To conclude, we prove steps 1 and 2 by constructing appropriate points that lie
in .7:[2

1. Forall j,I,m with j & {l,m} and (1,2) & {(4,1), (j,m)}: aj1 = a;, m(=: a;):

o If [;m # 2: Choose s1,...,5,-2 € {1,...,n}\{l,m, j} pairwise differ-
ent (note that p < n — 2) and set

Pz, = = Ty sy = L X = Ty = 1
zig=1 V die{l,....,n}\{s1,...,5-9,[,m},
Py: all values as in Py, except z;,; =0, 2, = 1.

Since x1, 9 = 0 for both points, they lie in F7, and inserting them into
4.25 gives a;j | = Qj, m-

e If | =2 (or m = 2): Construction as above, but choose s; = 1 to
ensure that x; 1 = 1 (and thus z; o = 0).

2. Forall [,m: ap, m — - a1 — (= a):

We have shown that, using step 1, we can transform 4.25 to

n

d—Y a;=> (a;,; — a;)z; (4.26)
j=1

J=1

e If [, m # 1: Choose s; =1, s9,...,5,-1 € {2,...,n}\{l[,m} pairwise
different (recall p < n — 2) and use the points
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P oz, =...= Ty 1,5, = L, 20 =1,

s, =1 Vre{l,...,n}\{s1,---, 51,1},
P,: all values as in P;, except

l‘llzoa l‘m,mzla Xy, s :lal‘m,sl =0.

)

Py, P, € Fy since for both points, 21,5 = 0.

e If 1 € {I,m}: W.lo.g., [ = 1. Construction as above, but choose
S1y.-oySp1 € {2,...,n}\{m} with s; # 2.

Proposition 4.4.4
The following is a facet of Ppuur:
Frri= {PEPpUHL : ka :le,k} (fOTi,k € {1,...,n}, Z7A k)

Proof: * Similar to the proof of 4.4.3, we will use F;; to denote both the face
defined in (pUHL) and its correspondence in (pUFL).

W.lo.g., k=1 and ¢ = 2. Assume that the equation
YD am=d (4.27)
j=1 I=1
holds for all (pUFL)-solutions P € F;.
To show that 4.27 is a linear combination of equations 4.12, 4.14 and x| = 21,1,
we have to prove the following three steps:

1. For all j,{,m with j & {{,m} and (2,1) € {(4,0), (j,m)}: a;,1 = aj m =: a;.

2. For all [,m # 1: al,l—aléam,m—am =:q.

3. a2,1—a2i—(a1,1—a1—a) =:b.

Then, equation 4.27 can be transformed as follows:

n n
d = § § a3,

j=1 =1
n n
step 1
5 d-) e = ) (aj,—aj) 3y + (az1 — a2) 32
= i1

*Technical proof; may be omitted.
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n
step 2
< d—g a; —ap = (al,l—al—a)x171+(a271—a2)x271
7=1
n
step 3
— d—g a; —ap = —bwxy1+bxy 1,
Jj=1

showing that, indeed, 4.27 is a linear combination of the given equations.

Consider the steps that have to be proven:

1. Forall j,I,m with j & {l,m} and (2,1) & {(4,1), (j,m)}: aj 1 = a;, m(=: q;).

e If [;m # 1: Choose s1,...,5,-2 € {2,...,n}\{l,m, j} pairwise differ-
ent (note p < n — 2) and use the points

P oz =...= Ty 5 5y = L, T 1 = Tmym = 1,
zip=1 Vie{l,...,n}\{s1,...,8-2,[,m},

Py: all values as in Py, except z;,; = 0, zj, ,» = 1,
which lie in Fp; since 1,1 = 29,1 = 0 for both points.
e If | =1 (or m =1): Construction as above, but choose
S1y.-y 52 € {1,...,n}\{l,m, 7,2} to ensure that x; | = x5 ; = 1.

2. Forall,m#1: a;; — q - Um, m — Om (=1 a):

With step 1 being correct, we have arrived at
n
d— a; = (aj;—a;)w;; + (a1 — a) x4 (4.28)
J Jj=1

Let I,m # 1. Then, a;; — L Qm, m — Gy can be shown by choosing

Sty Sp—1 € {1,...,n}\{l,m, 1} (note p < n —2) and using the points

Pi:owg = =w, 5, =1, 1, =1,

Ty =1 Vre{l,...,nf\{s1,...,sp-1,1},
P,: all values as in P;, except

2, 0=0, T, m=1 25 =1, Ty, 5 =0.

!
3. Q2,1 — Q2 = —(al,l—al —Cl)Z
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With step 2, we have arrived at

d— Zaj —ap = (CLQ’ 1 — CLQ) T2,1 —+ (CLL 1 — Q1 — Cl) T1,1 (429)
J
With P; from step 1 (first case) inserted into this equation, we get that
d— Zj aj —ap = 0. If we then plug in a point of Fy; with 1 ; = 21,2 =1
(e.g. P from step 1, second case), we obtain that

(ag,1 —az) + (a1,1 —ar —a) = 0.

4.4.2 Elementary Facets Involving r; and z

In subsection 4.4.1, we have examined all inequality constraints of the radius
formulation that contain only X; g-variables. Now, we focus on those constraints

that include the variables r;, and z.

To start off, it is easy to see that constraint 4.8 does not represent a facet of

PpUHLI
Proposition 4.4.5
The valid inequality r, > 0 for (pPUHL) does not represent a facet of Poumr-

d;, >0V itk
=

Proof: 1. =0 Xir=0 Vi#k. O

Next, we will show that constraint 4.2 does not define a facet either. A first hint

can be the following result, which is stated in [16]:

Lemma 4.4.6 (Ernst et al., 2001 [16])
The following constraint is valid for (pUHL) for all k,m:

2 > rp+rmtadp m+(1—a)(1—Xy, ) mind; p+(1—a)(1—X,,, ) mind; , (4.30)

Ernst et al. [16] gave no proof of this statement; but since the proof can provide
a deeper insight into the relation between inequalities 4.2 and 4.30, it is given

here:
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Proof:

1. Assume Xj = X, = 1.
Then, constraint 4.30 corresponds to constraint 4.2 and is thus valid for
(pUHL).

2. Now, assume X, , =1, X, ,, = 0.
Then, by constraint 4.4, we have that r,, = 0. If rhs(4.30) denotes the
right hand side of inequality 4.30, we have that
rhs(4.30) =  rpt+adg,+(1—a) rniin di,m
< rmptadg,+ (1 —a)d,, m (where X, ;. =1)
=  rptaldym—di, m)+di, m

A—ineq.
< Ty +odg i, +di m
43 42

< rk+adk,im+rim§z.

An analogous argumentation holds if X,, ,, =1, X, = 0.

3. Finally, assume X , = X, = 0.
Then, with 4,, and 4, such that X,, ; = X ; = 1, we obtain, similar to

the calculations above:
rhs(4.30) = adim+(1—a) miin dig+ (1 —a) miin di, m
< adgm+ (1 —a)di +(1—a)d, m
= aldp,m — diy, & — iy, m) + diy 1 + iy m

< a(dm, ip T dim, m) + dik’ k + dim, m

43 42
< adi i, +di g+ di o <1, Fad, G, 1 < 2

Ol
The proof above shows that, whenever hub k& or hub m is not opened, there
are other hubs [ and/or o such that z > ryp + rp,, + ady, , is dominated by
2 > 1+ 71, + ad,, This means that inequality 4.2 cannot represent a facet of
PpUHLi
Proposition 4.4.7
Assume that o €10, 1[. Then, the valid inequality z > 15 + rm + ady, m for
(pUHL) does not represent a facet of Pyuur-
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Lemma 4.4.8 (Nemhauser and Wolsey, 1988 [25])

Let P ={z € R} : Az < b} be a rational polyhedron and S = P NZ" # () the set
of integer points in P. If mx < my defines a face of dimension k — 1 of conv(S),
there are k affinely independent points z',...,z% € S such that Tz = my for
i=1,...,k.

Remark 4.4.9
The decisive point of lemma 4.4.8 is the fact that the affinely independent points
2!, ..., 2% lie not only in conv(S), but in 8. For our purpose, this means that the

search for affinely independent points can be restricted to integral points.

Proof: [of proposition 4.4.7]

Assume that F := {P € Pypur : 2 = ri + rm + adg, ) defines a facet. Lemma
4.4.8 can easily be adapted to the case that P = X,ygr and S = Z,ypyr; thus,
there exist n?
that X, = 1 for all P, i = 1,...,n? we would obtain that dimF < n? — 1,
which means that F is not a facet. Contradiction. Thus, there exists P; with

Xj, r = 0. But then:

affinely independent points Py,..., P2 € F N Zypypyyr. Assuming

Tk + T+ dy m u T + ady m
a€l0;lf,d;, k>0
< rm—l—adk,m—l—(l—a)dik,k
(where i), # k such that X ; =1)
= T+ (di, m — diy 1) + diy &
A—ineq.
< T + dpy, i+ di, &
4.3 4.2
< T + dpy, i + 15, < 2.
That is, z > ry + rp, + ady, , for P, and thus, P; ¢ F. Contradiction. O

However, inequality 4.30 still does not represent a facet of Py pr1.; see section 4.5.2.

Next, we examine constraints 4.3:

Proposition 4.4.10
For fized k € {1,...,n}, let j € {1,...,n} such that d; == max; d; .
Then, Frr = {P € PpUHL 1T = dy, ka,k} 8 a facet Of PpUHL-
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Proof: * W.lo.g., k=1 and j = 2, i.e. we deal with F;;; = {P € Pyypr : 11 =
d2,1 X2, 1}. Assume that the equation

Xn:zn:ai, mXi,m+ Xn:bm'rm‘FCZ =d (431)
m=1

i=1 m=1

holds for all (pUHL)-solutions P € Fj;;. If we can show that

l.e=0and b, =0 Ym#1

2. For all [,m,qi with i ¢ {l,m} and (2,1) & {(i,0), (¢, m)}: a;,1 = @i, m =: a;

!
3. Forall l,m: aj,; —a; = apm,m — am =: @

!
4. 2,1 = Az — b1d2, 1)

equation 4.31 can be written as a linear combination of the given equations
for f]]]Z

n n n
d = ZZai,mXi7m+merm+cz
m=1

i=1 m=1
n n
step 1
- § E Qj, mXi, m + [)17"1
i=1 m=1
n n
step 2
— d— E a; = g (G, m — Q) Xin, m + (a2, 1 — az) Xo 1 + by
i=1 m=1
n
step 3
——d-— E a; —ap = (CL271—02)X271+Z)1’I“1
i=1
step4

b1(7“1 - d2, 1 X2, 1)-

ad 1: CQOandbméo V'm # 1:

e It is easy to construct P, P, € Frrp with 272 = 2271, all other values

equal. Comparing equation 4.31 for points P, and P, gives ¢ = 0.

e Furthermore, for m > 2 fixed, one can easily construct P, P, € Fyyy
with X1 = X =1, r[t = max; d; ,, ]2 = 2r]}, all other values

equal (choose z large enough). Comparing equation 4.31 for points P;

and P, then gives b, = 0.

*Technical proof; may be omitted.
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ad 2:

ad 3:
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For all I, m,i with i & {{,m} and (2,1) & {(3,1), (i, m)}: as.; = as, m(=: a;):

Note that there is nothing to prove unless [ # m. Thus, we can assume
w.l.o.g. that [ # 1.

By step 1, 4.31 can be reformulated as

d= zn: Xn: a;, mXi, m + b1T1. (432)

i=1 m=1

Choose sy, ..., 8,2 € {2,...,n}\{l, m, i} pairwise different (note p < n—2)

and compare equation 4.32 for the points

P Xg0=0.. =X 0 6=1L X=X m=1,
X;o=1 Vje{l,....n}\{s1,...,sp2,[,m},
ry =0, 7 =max;dj ;, z=max,(rs + 1, + ads,,),
all other values equal to zero,

P,: all values equal to those of Py, except X; ,,, =1, X; ; =0, 7, = d;, -

(Both points satisfy r; = X, 1 = 0 and thus lie in Fjy;.)

1
For all I,m: a;,; — a1 = G, m — am(=: a):

By steps 1 and 2,
d — Z a; = Z(am m am)Xm7 m + (02’ 1 — ag) XQ’ 1 + b1T1. (433)

Choose s1,...,5p—1 € {2,...,n}\{l,m} pairwise different (note p < n — 2)

and insert the following two points into 4.33:

P X 6=...=Xs, 1,5, ., =1, X1 =1,
Xiss=1 Vie{l,...,n}\{s1,..., 51,1},
re, =max;d; 5, 1 =0, 2 =max;,(rs + 7, + ads, ,),
all other values equal to zero,

P,: all values equal to those of P;, except
Xl,l = 07 Xm,m = 17 Xm,31 = 07 Xl,sl =1L
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ad 4: g, 1 ; o — bldgy 1-

Using all results from above, we can reformulate 4.33 as
d— Z a; —ap = (as,1 — az)Xo 1 + b1y (4.34)

Inserting point P; from step 2 yields lhs(4.34) = 0. If we finally plug in
P e f]]] to 434, with

P: X1’1:X3’3:...: p+1,p+1:17
Xi71:1Vi€{2,p+2,...,n}, T1:d2,1,

we obtain that as | —ag + by dg,1 = 0.

Remark 4.4.11

If dj,k < max; di,k; then r, = dj,ka,k implies that Xz',k = 0 for all 7 with

2

d;,, > dj . Consequently, we cannot find n* affinely independent points satis-

fying r, > d; X, with equality, and thus, this inequality does not represent a

facet.

Finally, note that the newly-introduced constraint 4.4 defines a facet of (pUHL):

Proposition 4.4.12
For any k, Fry :={P € Pyynr : 1 = M Xy, 1} is a facet of Pyopr.

Proof: * W.Lo.g., k = 1, i.e. we deal with Fry = {P € Pyypr : 11 = MX, 1}

Assume that the equation

Xn: z”: Wi, mXi, m + 2”: bym + ¢z =d (4.35)
m=1

=1 m=1
holds for all (pUHL)-solutions P € Fpy .

It suffices to show:

l.c=0and b, =0Ym>2

2. For all [,m,i with i & {I,m} : a;,; = a;,m = a;

*Technical proof; may be omitted.
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!
3. Forall im>2:a,;—a; = am,m —am =10

4. al,léal—ka—blM.

Then we can write

d = iiai’mXi’m_F ibmrmﬂch
m=1

i=1 m=1
n n
stepl Z Z @i, m N, m + 0171
i=1 m=1
EVE SEED DI S
i m
step 3 d_zal_ap et ((LLl—al _a)XLl_'_blrl St24 bl(’rl_MXl,l)
i

ad 1: cé()andbméOVmZQ:

Similar to step 1 in the proof of 4.4.10.

ad 2: For all [,m,i with i & {l,m} : a; L ai, m(=: a;):

By step 1, equation 4.35 reduces to

d= Z Z a;, mXi, m + b1T1. (436)
=1 m=1
e If I,m # 1: Choose s1,...,5,_9 € {2,...,n}\{i,[,m} pairwise differ-

ent and use the points

P X 0=.=Xg, 56 =1L X1 =X m=1,
X;=1Vje{l,....n}\{s1,...,5p-2,1,m},
rp=DM,r =0, z=max,,7s + 7, + ads ,,
all other values equal to zero,

Py: all values equal to those of P;, except
Xl,l — 0, Xl,m = 17 T'm = dl,m-

e If [ = 1: Similar construction as above, but set r;(= r;) = M to ensure
that 7 = M X, ;. Analogous for m = 1.
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ad 3:

ad 4:

Forall ,m > 2: a;,;, — q - U, m — Gm (=1 @):

With step 2, equation 4.36 can be further reduced to

d— Zai = Z(am,m — ) X, m + bi71. (4.37)

m
Choose si,...5p—1 € {1,...,n}\{l,m, 1} pairwise different and use the

points

P X g=...=X,, 1,5, =1 X =1
Xis=1Vie{l,...,n\{s1,...,sp-1,1},
rs, =max; d; s, 11 =0, 2 = max,,7s + 7, + ads ,,
all other values equal to zero,

Py all values equal to those of P;, except
Xl,l = 07 Xm,m = 17 Xm,sl = 07 Xl,31 =1L

a171éa1+a—b1M:

Using all results from above, we can reformulate 4.37 as
d—Zai—ap: (a1,1 —ar —a) Xy, 1+ biry (4.38)

Plugging in P; from step 3 yields [hs(4.38) = 0. If we finally insert P € Fjy
into 4.38, with

Pr Xy =..=X,,=1, X, =1Vie{p+1,....n}, r =M,

we get that (a1,1 —ay —a) + b M = 0.

4.5 Non-elementary Facets of P,ypr

In this section, which can be seen as the core of the polyhedral analysis, several

classes of non-elementary facets of P,ygr will be presented. To deduce new

valid inequalities for our problem, the PORTA tool (Polyhedron Representation

Transformation Algorithm, see [9]) has been used: This tool calculates all facet-

defining inequalities for given small problem instances. Once such calculations

have been carried out for different small hub location examples, patterns among

the results have been identified and facet-defining inequalities have been deduced.
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4.5.1 Facets in the Variables X ;

For the derivation of non-elementary facets in the variables X, x, one can once
again make use of proposition 4.4.1, which allows to restrict to facets of the
(pUFL)-polyhedron.

Spoke-concentration Facets

Theorem 4.5.1 (Spoke-concentration Facets)
Let k € {1,...,n}. The inequality

(n—p)Xek =D Xi (4.39)
izh

is valid for Pyypr and represents a facet.

Proof: * Due to proposition 4.4.1, it suffices to show both validity and the facet-
defining property of the inequality for the polyhedron P,ypy.

Validity:
1. Assume x4, = 0. Then, trivially, inequality 4.39 holds (with equality).

2. Now, assume x3,, = 1. Since the number of hubs is fixed to p, only
n—1—(p—1)=n—pofthenodes1,...,k—1,k+1,...,n are spokes and
could thus be allocated to k. Thus,

n

Yo zip<n—p=(n—p) Tk
i=T,itk

Facet-defining:

For ease of notation, assume without loss of generality that £ = 1. Set
f = {P € PpUFL : (Tl —p)xl, 1= in’ 1}.
i=2

Assume that there is a further equation

Xn: zn: Qs kT4 |k = d (440)

=1 k=1

*Technical proof; may be omitted.
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that is satisfied by all points in F. We will show that this is a linear combination

of the given equations. For this sake, we prove the following:

1. For all i, k,l with k,1 & {1,i}: a; - ai, | =: a;.
2. For all k,l 2 2: Qf, k + ag ; ag, | +a; =: a.

]
. Foralle,j >2:a;1 —a;=aj—a; =:0b.

o

ca1=a+a —b(n—p).

e

Once we have proven the above, we can reformulate 4.40 as follows:

n n
d = E g i, kT, k

i=1 k=1
n n n n
1
= E a; E Ti k + E O, kTk, k T g i, 1%, 1
i=1 = k=1 =2
1
Z 1 n n n
ke Ti, k=
= d— E a; = E (ak,k — Cbk)ib'k’ kTt E (CLZ', 1 — ai)xi, 1
=1 k=1 =2

n n
2
= a E T,k + (ar,1 —a)xy 1 + E (@i, 1 —a;)z; 1
k=2 =2

n
> =
CETTA-Y ai—ap = (a1 —a—a)w+ Y (a1 — )T

i=1 =2

= —b(n—p)x1,1+b2xi,1
i=2

= b(rhs(4.39) — lhs(4.39))

which shows that equation 4.40 is a linear combination of the given equations.

Steps 1 to 4 will now be proven one by one:

ad 1: For all i, &k, with k,1 & {1,i}: a; - a;, (= a;):

Choose s1,...,5,-9 € {2,...,n}\{i,[, k} pairwise different (note p < n—2)

and consider
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ad 2:

ad 3:
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Py == Ty o sy = Tk = T1,0 = 1,
zjp=1forall j & {s1,...,5,-92,k, [},
P, : all values as in P, except z; , =0, z; ; = 1.

It is easy to see that P, P, € F, since for both points, we have that z; | =
;1 =0Ve=1,...,n. Inserting P, and P, into 4.40 yields a; , = a; ;.

For all k,l Z 2: g, k + ag ; ar + CL[(ZI Cl):

Using the result of 1, we can reformulate 4.40 as

n n n

Z(ak, k= ak)xk, k + (QL 1— al):m, 1 + Z(au 1— ai)xi7 1= d — Z a; (441)
i=1

k=2 i=2
(as shown above). Choose s1,...,s,_1 € {2,...,n}\{l, k} pairwise different
(note p < n — 2) and set

P oy == Ty i, sp1 = Thyk = 1,
zj s = 1forall j & {s1,...,sp_1,k},
P, all values as in P, except xp, =0, 2, =1, 21,5, = 0, 24,5, = 1.

As in 1, both P; and P, lie in F, since for both points, node 1 is a spoke.
Inserting P, and P, into equation 4.41 gives ay,  + ar = a;,; + q;.

Foralli,j > 2: a; 1 —a; - aj1 — aj(=:b):

As shown above, equation 4.41 can now be further reduced to
(a1,1 —ay —a)xy 1 + Z(ai, 1 —a)T 1 =d— Zai —ap. (4.42)
i=2 =1

Choose si1,...,5p—2 € {2,...,n}\{4,j} pairwise different (note p < n — 2)

and set
Pli -Tl,l:l‘i,i:l‘sl,sl:---:l‘spfg,spfzz]-a
xpy=1forall h & {sy,...,s,-2,1,i},
P, :all values as in P, except @; ;, =0,z ; =1, 2,1 = 1, ;1 = 0.

For both P, and P,, hub node 1 is open, and there are exactly n — p spokes
allocated to 1, such that both points lie in F. Inserting P, and P; into

equation 4.42 gives a; 1 — a; = a1 — ;.
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ad 4: al,léa+a1—b(n—p):

With step 3, equation 4.42 can be reduced to
n n
(a1,1—a1—a)x1,1+b2xi,1:d—zai—ap (4.43)
1=2 i=1

Now, for P, from step 1, for instance, we have that =1 | = ;1 = 0 V ¢,
and thus, rhs(4.43) = 0. Furthermore, pluggingin > .., ;1 = (n — p)z1,1
(which is valid due to the definition of F) yields

(b(n—p)+(a171—a1—a))x171 =0

Since there are points in F with zy 1 = 1 (e.g. P, from step 3), we finally

obtain a1 = a+a; —b(n —p).

Remark 4.5.2 (Interpretation of the facet)
Having a closer look at the facets in theorem 4.5.1, we can distinguish between

two types of points that satisfy the facet-inequality with equality:
1. Points with X} , = 0 (and thus, of course, X; , =0V 7).

2. Points with X, , = 1. In this case, to fulfill the facet-inequality with

equality, we are forced to assign every spoke to the hub in k.

Thus, the facets of theorem 4.5.1 represent all points with ”trivial” spoke alloca-
tion in the sense that all spokes are allocated to one single hub. Hence, we will

refer to these facets as "spoke-concentration facets”.

Focus-element Facets

Next, another class of facet-defining inequalities in the variables X; j, will be

presented:

Theorem 4.5.3 (Focus-element Facets I)
Let A C {1,...,n} with |A| =n —p and a € A an element of A. Then,

YNoXii= ) Xt Y Xai (4.44)

i€A JEA icA\{a}
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is a valid inequality for (pPUHL) and defines a facet.

Proof: As before, we restrict ourselves to showing validity and the facet-defining

property for Pyypr.

Without loss of generality, assume that A = {1,...,n — p} and a = 1. Then,

inequality 4.44 (for P,yrr) can be written as

-p

n—p n n
Zxkak =z Z Ti, 1 +Z$1,k (4.45)
k=1

i=n—p+1 k=2
Validity:

n

1. Assume z; 1 = 0. Then, of course, Ei:nfpﬂ

x;,1 = 0. Furthermore, due to

constraint 4.13, x; » < y, , and thus:

n—p n—p
rhs(4.45) = " my p <Y ap = lhs(4.45).
k=2 k=2

2. Now, assume 1 1 = 1. Then obviously > 7 5z, = 0. Let > ;S ay p =1
be the number of hubs among nodes 2,...,n—p. [ € {0,...,p—1} obvious.
Since the total number of hubs is p, there are exactly (p—1)—[ hubs among

nodesn —p+1,...,n,ie Y0 @k =p—1— 1 Consequently,

n

Z i1 < D - (p—1-1) =1+1
i=n—p+1
=Hn-p+1,..n}l & nodes which are

themselves hubs

Thus,

Ihs(4.45) = 1 _+ 1 > Yz =rhs(445).

1,1 Py, TPl

Facet-defining:

(Will be shown for a more general facet class in theorem 4.5.6.)
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Remark 4.5.4 (Graphical Interpretation)
Figure 4.1 gives a graphical interpretation of the focus-element facets presented
in theorem 4.5.3. The elements of A are marked by black nodes, all elements in

A={1,...,n}\A are represented as white nodes. We consider three sums:

® > .4 X i counts the hubs in A
. Zj ¢4 Xj, o counts the spokes in A which are allocated to a (doubled arrows)

° ZieA\{a} X,, i adds an additional 1 if a is not a hub, but allocated to a hub

in A (dashed arrows)

focus element

e

Figure 4.1: Graphical interpretation of focus-element facets I

There exist three possibilities to achieve equality in 4.44:

1. > ;caXii =0, i.e. there are no hubs in A. Then, by cardinality of A, all

nodes in A have to be hubs.
2. Y ieaXiji > 1, i.e. there are hubs in A.

(a) If @ is not a hub, there exists exactly one hub b # a in A, and a is

allocated to b.
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(b) If a is a hub, then there is a spoke in A that is allocated to a. For any

further hub in A, there is an additional spoke in A allocated to a.

Since our consideration of the node set A focusses at element a (see figure 4.1),

we refer to a as “focus element”.

Remark 4.5.5 (Number of facets in facet class)

The above inequalities have been shown to define facets only for the represen-
tative case that A = {1,...,n — p} and @ = 1. Note that there are actually
(n’_’p) -(n—p) = (7) - (n — p) different facets that are described by 4.44. Sec-

P
tion 5.2 examines the corresponding separation problem for this facet class.

In fact, the focus-element facet class can still be further generalized, as described

in the following:

1. The set A will be subdivided into two sets A* and A* = A\A* > a. The
addends X, ; from equation 4.44 will only be considered for i € A*.

2. For the elements £ € A*, additional addends X, , will be introduced, where
b € A.

Theorem 4.5.6 (Focus-element facets II)

Let AC{1,...,n} with |A] =n —p,

a € A an element of A,

A* C A a subset of A\{a} with |A*| € {0,...,n—p—2},

{by : k € A*} elements of A :={1,...,n}\A, pairwise different. Then,
YNXii>) Xjot+ > Xt D> Xy (4.46)
€A jeA i€ A\({a} U A*) keA~

is a valid inequality for (pPUHL) and defines a facet.

Proof: * Tt suffices to show validity and the facet-defining property for P,y pr.
Without loss of generality, assume that A = {l1,...,n — p}, a = 1 and
A* = {2,...,t} with t < n—p—1 (A* = 0 possible). Then, inequality 4.46
can be written as

n—p n n—p t
ZIk,k > Z T+ Z T,k + Zivbk,k- (4.47)
k=1

i=n—p+1 k=t+1 k=2

*Technical proof; may be omitted.
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Validity:

1. Assume x1,1 = 0. Then,

lhs(4.47) = Zxk k -+ Z Tk,

k=t+1

rhs(4.47) = bek,k—i- Z Ty

k=t+1

and validity follows since xy, 1 < 2, and x1 , < xy  for all k.

2. Now, assume x1, 1 = 1. Set Y,V xp = s. Then, due to Y ,_ g = p

and x1,; = 1, we have that Zzzn_pﬂ T, r = p — s — 1, and consequently,

rhs(4.47) = bek,k+ Z Ti 1

i=n—p+1
t n
= Y @kt T) Y wi
k=2 i=n—p+1
i@{b,....b }
o) ! -
< Z(l —xbk,bk) + Z (1 _xi,i)
k=2 i=n—p+1
" -~ 7 ig{bg,...,bt}
# spokes in {by,...,b S ~ g
{b, i} # spokes in
{n—p+1,...,n}\{ba, ..., b}
~~~ ——

# nodes in  # hubs in
{n—p+1,...,n} {n—p+1,...n}

where (*) is valid since xy, k + 23,1 < 1 and xy, ) = xp,,1 = 0 if by is a
hub?®.

Facet-defining:
n—p n
Let}"::{PEPpUFL:Zxk,k: Z T+ lek—Fbek,}
k=1

i=n—p+1 k=t+1 j
Assume that

n n
Z Z Qi T4 | = d (448)
i=1 k=1
is a further equation that is satisfied by all points in F; show:

8For the argumentation above, note futhermore that the by were assumed to be pairwise
different.
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1. (a) Fork,l=n—p+1,....n: a1y = a1, = a;.

(b) For k=2,...,t: a1, = a.
(c) Fori=2,...,n—pand k,l € {1,...,n}\{i}: a; r = a; = a,.

(d) Fori=n—p+1,...,nand k,l € {t+1,...,n}\{i}: a@kéai,l:: a;.

(e) Forie {n—p+1,...,n}\{bs,..., b} and k =2,...,t: a; xp = a;.

2. Fork,l=n—p+1,...,n: ak,k—akéal,l—al =:a.

3. (a) Fori,j=n—p+1,...,n a;,1 —a; =aj1 —aj = —b.

(b) For k=2,...,t: ap,, kr — ap, = —b.

k

(¢) Fork=t+1,....,n—p: a1 p —a; = —b.

4. Fork=1,...,n—p: ahk—ak—aéb.

Once this is shown, equation 4.48 can be reformulated as a linear combination of

the given equations for F:

n n
E a;, ki = d

i=1 k=1
@E a1, kT, k + E ai, k1, k + E a1, k21, k
k=t+1 k=n—p+1
n-p n
+§ E azkmz k+ E az I-Tzl
1=2 k=1 i=n—p+1
k;éi P

+ E E Q;, ki k E Qby,, kTby, k

i=n—p+1 k=2
Zg{b27 7bt}

+ Z ZazkIzk+Zakkak = d

t=n—p+1 k=t+1
ki
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-p

la le
E (a1, ) — 1)z, | + E (@i, 1 — a;)wi 1
+

i=n—p+1
t

n n
+ (a(,k, k— abk)mbh k+ Z(ak, k— ak)xk, | d— Z Qg (449)
k=2 k=1 V=
5 —p
— (a e —a)zr e+ Y (i1 — )i
k=t+1 i=n—p+1
n—p

t n
+E (ap,, & abkxbkk—l—g (g, k —ap —a)zg, = d—E Qi ), — ap
k=2 i=1

. (4.50)

= Z xi,p—b Z le—beb,ﬂ

k=t+1 i=n—p+1
n—p

n
+Z(ak7k—ak—a)xk7k = d—z%k—ap
i=1

k=1

& (lhs(4.47) - rhs(4.47)) = d— 2”:% K — ap.

We will now prove steps la to 4. As usual, we will proceed by constructing points

in F and inserting them into equation 4.48:

ad 1 (a) Fork,l=n—p+1,...,n: a, =ay, (= ay): Use
Pr: Tp—p+i,n—p+l — -+ = Tn,n — L,
rip=1 Vi=1,...,n—p,
Py: all values as in P, except 1, =0, z; ; = 1.
(Ihs(4.47) = 0 = rhs(4.47) for both points, = Py, P, € F)
(b) For k=2,...,t: ay éalz
Choose m € {n —p+1,...,n} such that by # m (note p > 2). Use

P: zpr=1z,s=1Vse{n—p+1,...,n}\{b},

Tk = 1 Veie {1,...,n—p, bk}\{k},
Py: all values as in Py, except 1, =0, 21, = 1.

(P, Py € F since lhs(4.47) = a1, = 1 = xy, , = rhs(4.47))
(c) Fori=2,....n—pand k,l € {1,...,n}\{i}: a; « éai,l(:: a;):
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e Case "k=1,1€{2,...,n—p}\{i}":

a;, = a;,; can be achieved using

Py T =T0 = Tpnptl,nptl = - = Tp2 n2 =1,
rj1=1 Vje{2,...,n—p,n—1n}\{l},
P,: all values as in Py, except z; 1 =0, z; ; = 1,

which both are elements of F, since

lhs(4.4T) =211+ 2,1 =2 =Ty_1, 1 + T, 1 = rhs(4.47).
e Case "k=1,le{n—p+1,...,n}":

W.l.o.g.,l #n —p+ 1. Use the points

P T1,1 = Tn—py2,n—p4+2 = -+ = Tp,n = L
rj1=1 Vje{2,...,n—p+1},
P,: all values as in Py, except 2; 1 =0, 2;,; = 1

(with Py, P, € F due to
lhs(4.47) =211 =1 =2,_p1,1 = rhs(4.47).)
e Case "k, l € {2,...,n}\{i}":
Can be combined from the two cases above.
(d) Fori=n—p+1,...,nand k,l € {t+1,...,n}\{i}: a; = a;, 1(=: a;):
e Case "k e {t+1,....,n—phle{n—p+1,....n}\{i}":
Use the points P, and P, with
P: azp =1z, ,=1Vse{n—p+1,...,n}\{i}
rir=1 Vje{l,...,n—p, i}\{k},
P,: all values as in Py, except z; , =0, z;; = 1.
Py, P, € F since lhs(4.47) = xy,, = 1 = xy,, = rhs(4.47). The
desired result is achieved by plugging in P, and P, to 4.48.
e Case "k, le{t+1,....,n—p}":
Can be shown by applying the first case twice.
e Case "k,le {n—p+1,...,n}\{i}":
Can be shown by applying the first case twice.

(e) Forie {n—p+1,....0n}\{bs,..., 0} and bk =2,... ¢ a; ) = a;:
We show: a; = ai, n—p step 1 a;. (In this context, recall that by overall
assumption, we have t < n —p — 1.) The above can be shown using

the points
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P: zpr=1Lznm=1 Vme{n—p,...,n}\{ib},
l'l’n,p:l,xj’k:l VjE{Q,,n—p—l,z,bk}\{k},
Py: all values as in Py, except z; =0, 2 np =1,

which lie in F, since they both satisfy
Ihs(4.47) = xp, k + Tpep, n—p = 2 = Ty, k + T1, n—p = rhs(4.47).

Once steps la to le have been proven, equation 4.48 reduces to

4.49, as shown above.

ad 2 Fork,l=n—p+1,...,n ap —ap =a,; —a(=:a):

Use the points

Pli

PQZ

Tmom=1 Vme{n—p, ... .n}\{l},
Tjnp=1 Vjie{l,...,n—p—11},
all values as in P;, except

T =0, =1, 2 np=0, T np =1L

(P, P, € F since lhs(4.47) = ©y_p n—p = 1 = 71, n—p = rhs(4.47)) and

insert them into 4.49.

With step 2, equation 4.49 can be further reduced to 4.50 (see above).

ad 3 (a)

(b)

Fori,j=n—p+1,...,n ai,l—aiéaj,l—aj(:: —b):

Insert the following points Py, P, € F into 4.50:

P: zy=lLagr=1Vke{n—p+1,....,0n}\{i},
Th1=1 Vhe{2,...,n—p,i},

P,: all values as in P;, except
zii=1,2;;=02;1=0,2;, =1

For k =2,...,t: ap, r — ap, =

Choose s € {n —p+1,...,n} with s # by (recall that p > 2). Insert
the points

P: mi1=zpr=1L2nm=1 Vme{n—p+1,...,0}\{b,s},

Tk =L, 1=1,2;1 =1 Vje{2,...,n—p}\{k},
Py: all values as in Py, except xy, 1 = 0,2p,,1 = 1.
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to equation 4.50 (P, P, € F is easy to see):

n
P d—z%k—ap
i=1

= (as,1 —as) + (ap,, k. — ap,) + (1,1 — a1 — a) + (ag, . — ar — a)

n
b d—z%k—ap
i=1
(as,1 — as) + (ap,,1 — ap,) + (a1,1 — a1 — a) + (ag, & — ax — a),
and thus, ay, r — ap, = ap,, 1 — ap, stende _yp,
(c) Fork=t+1,....n—p: aj,kr—a <
Will be shown in context with step 4.

Now that steps 3a and 3b have been proven, we arrive at the following

reformulation of 4.50:

n n—p n
d— E Qi |p—ap = E (a1,k —a1)$1,k—b g T
i=1 k=t+1 i=n—p+1

t n—p
—b E l‘bk,k+ E (a/%k — ag —a)l‘k,k.
k=2 k=1

Plugging in P, from the proof of step la gives d — >  a;  —ap =0, and

such, we have that

n—p n
Z (al,k —al)$1,k —b Z T
k=t+1 i=n—p+1
t n—p
—bz Ty, k + Z(a]% k— Qp — a):z:,% I 0. (451)
k=2 k=1

ad 4 Fork=1,...,n—p: ahk—ak—aéb:

o If k =1: a1,1 —a; —a = b can be achieved by inserting P € F into
4.51, with

P: T1,1 = Tpn—pt+i,n—p+1 = -+ = Tn—1,n—1 = 1,
rj1=1 Vje{2,....,n—p, n}.
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e If ke {2,...,t}: Use point P € F with

P: xk,kzl,xl,l:1Vl€{n—p+1,...,n}\{bk}
rir=1 Vje{l,...,n—p, bp}\{k}.

e Ifke{t+1,...,n—p}: Consider

P: Tik = Tpn—p+l,n—p+l = -+ = Tpn-1,n-1 = 1,
xj,kzl V]E{l,,n—p,n}\{k}

P € F since lhs(4.47) = xy,,, = 1 = x1, = rhs(4.47). Inserting P
into 4.51, we get that

(g, — ax —a) + (a1, — ay) :O:>£ak,k—ak—a)42—(al,k—al).

~~

=:C
So far, we have reduced equation 4.51 to

—cy, Z Ti,p —b Z Ti 1 —bebk

k=t+1 i=n— p+1
—|—()Z$k kT Ck Z Tk = . (452)
k=t+1
It remains to show that ¢, = b. (Then, both step 3c and 4 are proven
correct.)

Due to definition, all points in F satisfy
(Zm—zm— > z ) =0,
k=t+1 i=n—p+1

and such, by setting the left hand side of the above equation equal to
the left hand side of 4.52, we get that

n—p n—p
Z (Ck — b)l‘k,k — Z (Ck — b)l‘l,k = 0
k=t+1 k=t+1
n—p
=4 Z (Ck — b)(l‘k,k _xl,k) =0
k=t+1

Now, for fixed k € {t+1,...,n — p}, we plug in P* € F, with

P T1,1 = Tk, k = Tn—ptl,n—p+l = -+« = Tpn-2,n—-2 = 1,
rj1=1 Vje{2,...,n—p,n—1,n}\{k}.
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and such arrive at
ck—b=0Vke{t+1,....n—pt=c=bVEke{t+1,...,n—p}.

O

Remark 4.5.7 (Graphical Interpretation)

Figure 4.2 gives an interpretation of the facet class presented in theorem 4.5.6,
based on the interpretation of theorem 4.5.3 given in figure 4.1. Once again, black
nodes denote elements of A, white nodes elements of A. Additionally, the subset
A* C A has been marked. As in figure 4.1, the arcs that contribute to Zid Xia
are marked by doubled arrows. Note that D . 1 (4-u(a)) Xo,; (dashed arrows)
now considers only nodes in A\ A*. The arcs that contribute to the new addend

Y kea- Xb,, r are marked by dotted arrows.

Figure 4.2: Graphical interpretation of focus-element facets 11

Example: Given a problem instance with n = 8 and p = 2, assume the sets A,
A* and the node a are chosen as shown in figure 4.3 below. Consider point P; of
step 3 (b) in the above proof (seen as an element of Pyypy,):

Xooa=Xp =1, Xp m=1Vme A\{b, s},
Xpv=1X,.=1X,,=1Vje A\{q, k}

for some k € A* and s € A\{b;}.
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This point is shown in figure 4.3(a). Since X, o + Xpr = 2 = Xy, 1 + X5, 0
it fulfills inequality 4.46 with equality; but X, , + Xy =2 > 1 = X, ,, and
hence, inequality 4.44 is strict. To fulfill 4.44 with equality, we would have to set
Xy, = 0 and X3, , = 1 instead, which corresponds to point P, of step 3 (b);
see figure 4.3(b).

@\A

~

e
/

(a) Solution satisfying (b) Solution satisfying
focus-el. inequality IT focus-el. inequality I (and II)
with equality with equality

Figure 4.3: Comparison of focus-element facets I and II

Remark 4.5.8 (number of facets in facet class)
To calculate the total number of facets that are represented by inequality 4.46,

note:

e The number of possible choices of set A is (nr_’p)

()-
e The number of possible elements a to choose out of A is n — p.

e The number of possible choices of set A* C A\{a}
(with |A*| € {0,...,n —p — 2} fixed) is (”‘:{’:‘1).

e The number of possible choices of the elements by
with {by : & € A*} C {1,...,n}\A and by,..., b4~ pairwise different is

(\:*\) |A*|! (note that the order of the chosen elements by is important).
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Hence, the total number of facets in the given facet class is

<Z> (n—p) nf;( <n_§)_1> (i’) ).

4.5.2 Facets Including the Variable z

In subsection 4.4.2, we noted that inequality 4.2 (z > 7 + 7y, + ady, ) does
not define a facet of the polyhedron P,ypr, since using inequality 4.30 instead
provides a tighter description of P,ygr. However, inequality 4.30 still does not

define a facet of Pyypr:

Proposition 4.5.9
For any k,m € {1,...,n} and « €]0; 1[, the inequality

¥4 Z rk+1"m—|—adk,m

+(1 —a)(1 = Xy, ) mind;  + (1 — a)(1 — X, 1) mind;
i#£k i#m
does not represent a facet of Ppuwr.
Proof: Without loss of generality, kK =1 and m = 2. Let
F = {P S PpUHL 12 =T+ T —|—Oéd1,2

+(1 = a)(1 - Xy, 1) fg}lﬂdz', 1+ (1 =a)(1—-Xs5,) fgéi{?dw}

1. Assume that there exist nodes r,s # 1 with different distance to node 1,

i.e. dl, r 7& dl’ g-
Let the set M be defined as

M:={ke{2,...,n}:dy & >H;£i{1d1,i}

M # () by assumption.

Claim: For all P € FN Z,ypgy and all k € M, we have that X, = 0.

(a) Ile,lzl,thenXLl:O VZZQ,
and thus also X; , =0 Vke M.
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(b) Now, consider the case that X; ; = 0. Then, assuming that X; , =1
for k € M requires that Xy, , = 1.

i. Assume Xy o = 1. Due to the assumption that X; , = 1, we have

ri, > dy, . Hence

z = ro+ad o+ (1 — a)mind; ¢
i#1
keM, a<l
< 7“2—|—C¥d1,2+(1_a)d1,k
A—ineq.
< re +a(dy )+ dy, o) + (1 —a)dy

TE>dy, g

= T2+Oéd2,k+d1,k S 7”2+Oéd2,k+7”k
that is, any such point P violates constraint 4.2; contradiction.
ii. Now, assume X5 o = 0. That is, we have that X; | = X5 o = 0
and X; , = 1. Assume that X; , = 1. Then, 7, > d; . Let
[ € {3,...,n} be a hub with X, ;, = 1. Consequently, r; > dy 4,

and we have”

2 = ady, 2+ (1 —a)mind; | + (1 — @) mind,; »
i#1 i#2
keM, a<l
< ad1,2+(1—a)d1,k+(1—oz)dQ,l
= dik +aldy,o—dy g —do) +da
A—ineq.
< di,k + a(dg, o —do, ) +da,
A—ineq. rp>dy, g, T1>da g
S d11k+adk,l+d2,l S Tk—|—Oédk,l+7"l

that is, any such point P violates constraint 4.2; contradiction.

2. Now, assume that all nodes r,s # 1 have equal distances to node 1,

i.e. dl,r == dl,s-
Claim: For all P € FN 2,y and k > 3, we have that X, = 0.

We prove this claim for a fixed k£, w.l.o.g. k¥ = 3. For the following argu-
mentation, recall the general assumption that d; ; > 0 for all 7 # j, and

thus d3’2 > 0.

®Note that | = k is possible; in this case, ry, > max{di, ,d> ¢}
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(a) If Xy 1 =1, then X; ;=0 VI[> 2, and thus also X; 3 =0.

(b) Now, consider the case X; ; = 0. Then, assuming that X; 3 =1

requires X3 3 = 1.

i. Assume that Xy o = 1. Due to the assumption that X; 3 =1, we
have r3 > d; 3. Hence

z Per r2+ad172+(1—a)r&i?di,1
7

dy, 3=d3, 1=d;, 1 Vi#l
= T2+Oéd172+(1—0é)d173

d3, 2>0
< ro + Oé(dL 9+ d37 2) + (1 — a)d1,3

d1, 2=d1, 3

= ro+a(dy s +ds o) + (1 —a)dy 3
r3>dy, 3

= T2+Oéd372+d1’3 S T2+C¥d3’2+’l“3

that is, any such point P violates constraint 4.2; contradiction.
ii. Now, assume that X o = 0. That is, we have that X; | = Xy o =

0 and X3 3 = 1. Assume that X; 3 = 1. Then, r3 > d; 3. Let

[ € {3,...,n} be a hub with X, ; = 1. Consequently, r, > ds 4,

and we have!?

z Pg}- ad172—|—(1—a) mlnd171+(1_a) mindi,2
i#1 172

< adi 2+ (1 —a)d 3+ (1 —a)dy,
= d1,3+a(d1,2_d1,3_d2,l)+d2,l

d —d d2,5>0, a>0

b3 di,3 — ady+dy < di, 3+ dz,

r3>di, 3, r>d2, d3, 120, a>0

< rs+r < rgtady;+n

that is, any such point P violates constraint 4.2; contradiction.

O

Remark 4.5.10

Note that this chapter does not present any facet-defining inequalities contain-

ing the variable z. The fact that the variable z defines the objective function

value makes it extremely hard to determine such facets. However, future work

might have to concentrate more intensively on facets including the variable z; see

chapter 7.

!0Note that [ = 3 is possible; in this case, r3 > max{d; 3,d> 3}.
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4.5.3 Facets Including the Variables r;

Increasing-distances Facets

As stated in section 4.4.2, the constraint "rp > d; ,X; " represents a facet if
di,r = max;d; r (see proposition 4.4.10). Now, new facet-defining inequalities

that generalize the above constraint will be presented.

Theorem 4.5.11 (Increasing-distances Facets I)
Let k € {1,...,n} and let {ai,...,an1} = {1,...,n}\{k} such that
oy b <oy & < ... < do,_, k- The inequality

—p ann_p, kTt Z (dai, k— daifly k)Xai, k (453)

is valid for (pUHL); if p < |3, it represents a facet of the polyhedron Pyypr.
Proof: For ease of notation, assume that £ = 1 and
dp1 2 dy 1,12 dy 212> ... 2 do 1, (4.54)

and thus consider the inequality

T > dp—pi1, 1 Xp—pt1,1 + Z (dijy —diz1,1) X5, 1. (4.55)
i=n—p+2
Validity:
1. Assume that none of the nodes in {n —p+2,...,n} is allocated to node 1.

Then, inequality 4.55 reduces to constraint 4.3 and thus is valid.

2. Now, assume that at least one of the nodes in {n—p+2,...,n} is allocated
to node 1, i.e. Jiy,...,is € {n—p+2,...,n} (with s > 1 and i; < iy <
...<is)SllChthatXihl:XiQ’IZ...: is,lzlandXiJ:O Vi€

{n—p+2,...,n\{i1,...,is}.
Then, due to constraint 4.3, we have that r; > d;, ;. Now consider the

right hand side of inequality 4.55:
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n
Ay —pt1,1 X p—pt1,1 + Z (div —di—1,1) X1
i=n—p+2
— dnfp+l, anfp+1, 1
H(diy,1 = diy—1,0) + o+ (diy 10— diy 1) + (diy 10— digoa1)
= di1+(di, 1 —diy-1,1)+(diy 1 —diy_y—1,1) + ...

H(diy,1 —diy—1,1) —diy—1,.1 + dnpi1,1Xn—pt+1.1

Due to the assumption that i; < iy < ... < iy and integer, we have that
1 <ig—1,...,15_1 <ig— 1, and thus, using the general assumption 4.54,
we get that d;, , 1 —di,—1,1 <0, ..., d;;, 1 —di,—1,1 < 0. Similarly, since
n—p+1 <1, —1, we have that —d;, 1 1 +dy—pt1, 1 Xn—pt1,1 < 0, and such,
finally, we arrive at rhs(4.55) < d;, 1 <ry.

Facet-defining:

(Will be shown for a more general facet class in theorem 4.5.14.)

Remark 4.5.12
In inequality 4.53, we consider the nodes {1,...,n}\{k} in increasing order re-
garding their distance to node k. Hence, we refer to the corresponding facet class

as increasing-distances facets”.

Example: Let n > 4 and p = 2. Consider the facet-defining inequality from
theorem 4.5.11 for £ = 1, where we assume that node n is furthest and node n—1

second furthest away from node 1:

r > dp11Xn-1,1+ (dn,1 — dn—1,1) X0, 1- (4.56)

There are three different types of points for which inequality 4.56 is satisfied with
equality:

1. X,—1,1 = X,,1 = 0 and no other allocation to node 1 (trivial).

2. anl, 1 = 1, Xn, 1 = 0. (Then, r = dnfl’l.)
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3. Xn—l, 1= Xm 1= 1. (Then, r = dn, 1.)

Now assume a point with X, ; =1 and X,,_; ; = 0. In this case, we get

dp—1,1>0
T > dp1 > dp—dy11

= dn—1,1Xn—1,1+ (dp,1 — dn-1,1)Xn, 1,

which means that such a point does not satisfy 4.56 with equality; this fact will
become important when examining the inequality of theorem 4.5.11 for p > [ [;

see the following remark.

Remark 4.5.13 (the case p > |7])
Assume that the distances to node k are pairwise different!!; for the case k = 1,
which was presented in the proof of 4.5.11, this means that

dn,l>dn71,1>dn72,1>--->d2,1-

It is easy to see'? that a necessary condition for a point P to satisfy 4.55 with
equality is X,,_pp1,1=... = Xpppi1=1land X,_piip1,1=... = X, 1 =0 for
some i € {0,...,p}. Now, assume that a point P satisfies 4.55 with equality and
has X, ; = 1. Then, due to the above, X,,_,1; 1 =...=X,_; 1 =1, i.e. point P
contains at least p spokes. But if p > [% ], we have n — p < p, which means that
for point P, there are not enough nodes left to locate the p hubs. Hence, P is
not feasible for (pUHL). Consequently, all points that satisfy 4.55 with equality
also satisfy X, 1 = 0; thus, 4.55 is not facet-defining for p > |7 ].

We have shown so far that, if dy,,, < ... < d,,_,,» and p < |5], the following

inequalities are valid and define facets of Py

® Tk Z dan lkaan—lyk

n—1

1% > doy_y kXan_p kD (day b — day_y, k) Xai &

i=n—p+1

'This is the case for most real-world problems, where two distance values are very unlikely

to be exactly the same.
2For any point with Xj, ; =0 and X,, 1 = 1 for some k <m, k,m € {n—p+1,...,n}, we

have that ’I”hS(455) S dm7 1 — (dk7 1 — dk—l, 1) < dm7 1 S lh8(455)
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Next, we will see that the above inequalities are only special cases of a more

general class of facet-defining inequalities:

Theorem 4.5.14 (Increasing-distances Facets II)

Letp < [5], k€ {l,...,n} and iy := argmaz{d;  :i =1,...,n}.
Let A={ay,...,a;} C{1,....n}\{k,ix} with |A| =t e {1,...,p—1},
where dg; p < do,, x Vi=1,...,t—1. Consider the inequality

¢
Tk = dal, kXa, k + Z(dai, k= dai—l, k)Xai, kTt (diky k= dat, k)Xik, k- (4'57)
i=2
(1) Inequality 4.57 is valid for Pyunr,.-

(it) If t < p—2, then 4.57 represents a facet of Pyur-

(ii) Ift=p—1and (p < |25 ord; y <do,x VigA),
then 4.57 represents a facet of Ppunr-

Proof: * Assume without loss of generality!® that & = 1, i, = n and
A={{ag =n—t,ag =n—t+1,...,ap = n — 1}. Then, inequality 4.57

can be written as follows:

7y >yt 1 Xpt 1+ Z (dijv —di1,1)Xi 1 (4.58)

i=n—t+1

ad (i): Validity:
(Analogous to the proof of 4.5.11.)
ad (ii): Facet-defining (Case t < p — 2):
We will show that, if all points lying on the face

F = {P € PpUHL = dn—t, an—t, 1+ Z (di, 1= di—l, I)Xi, 1}

i=n—t+1

satisfy another equation

ZZ% chi,k +Zbkrk +cz= d, (459)
k=1

1=1 k=1

*Technical proof; may be omitted.
3Note that, in contrast to the w.l.o.g. assumption in the proof of 4.5.11, it might here be

possible that d; 1 > d,,—1,1 for some i € {1,...,n—¢—1}.
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then this new equation 4.59 is a linear combination of the other equations that
are fullfilled.

We will proceed by showing the following:

1. (a) Fork >2: by =0.

(b) ¢=0.

2. (a) Fori<n—t—1andk,l€{l,...,n}\{i}: ai,kéamz: a;.
(b) Fori>n—tand k,l € {2,...,n}\{i}: ai,kéai,l:: a;.

3. Fork,le{l, ....n}: ak,k—akéa“—al =: q.

4. (a) Ap—t,1 — Ap—t = _bl dn—t, 1-

(b) For ¢ Z n—t+1: a; 1 — Q4 ; —b1 (di,l —difl,l).

Once this has been shown, we can reformulate equation 4.59 and thus show that

it has to be a linear combination of the given equations:

ZZai,kXi,k +Zbk7"k +cz = d
i=1 k=1 k=1
<1a:,11>7> ZZCLL kXi,k —|—bl r = d (460)
1=1 k=1
n—t—1 n n—t—1

S >4y X+ Y (ak s — @) Xp
k=1

=1 k=1
+ Z Zai,kXi7k+b1r1 = d

i=n—t k=1
n n n
2
— E a; E Xik+ E (ag, k — ar) X, &
i=1 k=1 k=1

+ Z(ai,l—ai)Xi,1+b17"1 = d

i=n—t
n

<~ Z (ai, 1 — CLZ')XZ', 1+ Z(ak,k — ak)Xk,k + bl rn = d— Z CLZ(461)

i=n—t k=1 i=1
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n

n
& Z(ai,l—ai)Xi71+b1r1 = d—Zai—ap
i=1

i=n—t

(4.62)

4a,4b
<~

bi(ry —rhs(4.58)) = d— Zai —ap.
i=1

Now, we prove the required steps la to 4b:

ad 1: (a)

(b)

For k > 2: by = 0:
Choose hy,...,h,1 € {1,...,n}\{k} pairwise different and set

Pli Xk:,k = 1, Xhl,hl =...= th717hp71 = 1,
Xi,k:]- ‘v’iE{1,...,n}\{k,hl,...,hp_l},
T = maxi{di,k 11 € {1, .. .,n}\{k,hl,. . -ahpfl}}; ry= O,

P, all values as in P;, except r,f? =2 r,fl.

Obviously, both points are elements of F, and inserting them into 4.59
yields b, = 0.

c=0:

Choose P; as in step la above, and point P, with all values as in P;

except that 22 = 2 2. Once again, it is obvious that those points lie

in F, and inserting them into 4.59 delivers the desired result.

Having proven the steps above, equation 4.59 reduces to 4.60.

ad 2: (a)

Fori<n—t—1andk,le€{1,...,n}\{i}: ai,kéai,l(:: a;):

e Case I: k=1,1€{2,...,n—t—1}\{i}.
Note that p < [%Z| and ¢ < p — 2 by assumption. Hence,
n—t—1>n—-p+1>p+ 1. Consequently, it is possible to
choose nodes hy,...,h, o € {1,...,n —t — 1}\{1,[,i} pairwise
different. Do so and set
P X=X =1, Xpm==Xn on »=
Xii=1Vjie{2,...;,n}\{h1,..., hp_o,l},

r = dn,la ry= 07

L,

Py: all values as in Py, except X; 1 =0, X;;, =1, r,=d; ;.
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ad 3:

P, and P, satisfy

lh8(458) = dn, 1 = dnft’ 1+ Z (dj, 1 — djfl, 1) = Th8(458),
j=n—t+1

and thus lie in F. Inserting them into 4.60 gives a; 1 = a; ;.

e Case 2: ke {2,...,n—t—1}\{i}, le{n—t,...,n}.
Choose hy,...,h,—o € {1,...,n}\{k,[,i} (possible due to the
overall assumption that p < n — 2), and consider
P Xpn=X,0=1,Xp n=..=Xn, 5,0, =1,
Xjp=1 Vjie{l,....,n}\{k,l,hy,..., hp_o}, 71 =0,
ri =maz;{d; :j€{l,....n}\{k,l,h1,... by 2}},
Py: all values as in Py, except X; =0, X; =1, 1, =d; ;.
For both points, we have ry = X; | = 0V ¢, and hence, P, P, € F.
a; = a;,; follows by plugging these points in to 4.60.
e Case 3: k,l € {1,...,n}\{i} other than in cases 1 and 2.
Then, a; p = a;,; can be shown by applying cases 1 and/or 2

several times.

(b) Fori>n—tandk,l € {2,...,n}\{i}: a; = a;, 1 (=: a;):

Can be shown using the same construction as in case 2 of the proof of

step 2a.

As shown above, once that 2a and 2b have been proven correct, equation
4.60 reduces to 4.61.

Fork,le{l,....n}: ap . —ar =a,; —a (= a):

Can be shown using the points

PIZ

Xee =1, Xpyony = - =Xny_y hpy = 1,

Xin =1 Vie{l,...,n}\{k,h1,...,hp_1}, 1 =0,

r,];l = maxi{di, h it €41, n\{k, b, .. .,hp_l}},

all values as in Pj, except

Xe k=0, Xen, =1, X,,=1, X, 4, =0, 7"512 = max{r,ﬁ,dk, hy}-

where hy,...,h,—1 € {2,...,n}\{k, [} pairwise different (note p < n — 2).
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With step 3, we have arrived at equation 4.62. If we insert point P; from
step 3 into 4.62, we get that d — >  a; —ap =0, and thus,

n

Z (ai,1 — a;) Xi 1 + by = 0. (4.63)

i=n—t

!
ad 4: () ap—t,1 — apy = —bydy_y 1

Insert P € F into equation 4.63, where
P: X1’1:...:Xp’p:1,
Xn—t,lz]-;Xi,ZZ]- VZG{p—f—l,,TL}\{TL—t},
ri=dp_t,1, o =maz;{d; o i € {p+1,....,n}\{n—t}}.
(n —t is spoke since £ <p — 1 and p < [%])
(b) For ¢ Z n—t+1: Qi 1 — a; ; —bl (di,l — di*L 1)2
Will be shown via induction on i:

Start of Induction: 2 =n — t + 1. Consider

P: Xl,l = ... :Xp,p =1, Xn—t,l :Xn—t-i-l,l =1,
Xjo=1 Vjie{p+1,...,n}J\{n—t,n—t+1},
r = dn7t+1, 1, T'o = maxi{di,Q 1 s.th. Xi’Q = 1}
Clearly, P € F, and if we insert this point into 4.63, we get

(@n—t,1 — n—t) +(an—t+1,1 — Qn—t41) + b1dp_t41,1 =0,

A ~ >y
=—bidn—¢, 1 (from4a)
and Qp—t+1,1 — Ap—t+1 = —bl (dn7t+1, 1 — dnft, 1) follows.

Step from ¢ to ¢ — 1:

Assume that the claim holds up to an ¢ > n —t + 1. Set

p: Xl,lz"':Xp,p:Lant,lz---:Xi,l:Xi+1,1:1,
Xj2=1 Vie{p+1,....n\{n—t,...,i+1},

r = di+1, 1, I'p = maxi{di72 ) S.th.XZ',Q = ]_}

P € F can easily be seen. If we insert the values above into 4.63, we

obtain
i

(an—t,1 = ant) + > (051 — a5) (a1, 1 — ai1)
[\ ” X a,—/

+b1 di+1’1 - 0
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By step 4a, we have () = —byd,,_, 1, and (xx) = —by(d; 1 —d;_1,1) fol-
lows by assumption of the induction. Hence, we can deduce

(ai+1, 1~ ai+1) = _bl(di+1, 1~ di, 1)-

ad (iii): Facet-defining (Case t =p — 1):

In (ii), the only time that ¢ < p — 2 was needed was in case 1 of step 2a: We
needed t < p — 2 to guarantee that [{1,...,n—¢—1}\{1,0,i}| > p— 2.

Now, if t = p — 1, the additional assumptions
77p S LanlJn or ”di,k S dat,k Vi € A”?

can be used to prove case 1 of step 2a:

e Assumet=p—1and p < L”T_IJ(@n—p—lzp). Then,
H1,...,n—t—1}\{1,,i}|=n—t—4=n—p—-3=n—p—-1—-2>p—2,

and thus, step 2a can be shown exactly as in (ii).

e Assumet=p—1landd; <d,_1,1 Vi<n-—t
We have to show that
a1 =a; 1 fori<nm—t—1landle€{2,...,n—t—1}\{i}.
Choose hy,...,hy_s € {1,....,n—t—1=n—p}\{L,[,:} pairwise different

(possible since p < n — p) and consider

P: Xi1=X,1=Xpn=1 Xp ny=---=Xn, 50,5
Xj’lz]_ VjE{2,...,n—1}\{l,h1,...,hp_3},

r = dnfl, 1, = di,l

=1,

Py:  all values as in P, except X; 1 =0, X; ;= 1.

Note that P, and P, are feasible, since r = d,,_1,1 > d;,1 = d; 1 X; 1 by
assumption. P;, P, € F is easy to see, and inserting the points into 4.60

yields a;, 1 = Qg |-

Remark 4.5.15 (Graphical Interpretation)

The facet class given above can be interpreted quite similar to the special case
presented in proposition 4.5.11: The right hand side term

Aoy, k- Xay, &+ ZEZQ(dai, k= a1 k) Xy, k + (diy, & — day, 16X, 1
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considers, starting from the node a; that is nearest to k, the increase of the radius
rr when stepwise allocating new spokes to hub k, each one being further away
from k than the ones considered so far. Figure 4.4 marks the distances that are
added up in the increasing-distances facets (doubled lines) for an example with
t=3.

Figure 4.4: Graphical interpretation of increasing-distances facets

Remark 4.5.16 (number of facets in facet class)

Recall that the choice of £k = 1 and A = {n —t¢,...,n — 1} has only been one
possible way to choose a facet from the facet class described by 4.57. All in
all, there are n ways to choose the node k£ and (";2) ways to choose the set A,
resulting in a total sum of n f;f (”;2) facets in the facet class (plus additional

facets for the case that t = p — 1 and the additional conditions hold).

Remark 4.5.17 (Case t = p — 1 in general)

Assume that d;  # d;y1,5 Vi € A. Then, if t = p — 1 and neither p < L”—;lj nor
dip < dg r Yi¢g A, inequality 4.58 does not represent a facet:

From p = [%]| and p, n integer, one can deduce that p > n —p. Let i ¢ A
be a node with d; > d,, . Assume that X; , = 1 for some point P € F.
Then, 7, > di r, > dg, k. In this case, by construction of F, the only way to

guarantee that P € F is to even out 7, on the left hand side of 4.57 by setting
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Xo1 = ... = Xg,1 = Xi,, = 1. But, if we do so, we have already chosen
t4+ 1 =p > n— pnodes to be spokes, meaning that : cannot be a spoke, too.

Hence, X; , =0V P € F, and consequently, F is not a facet.



92 CHAPTER 4. FACET DERIVATION
4.5.4 Summary of Non-elementary Facets

In section 4.5, the following inequalities have been shown to represent facets of

PpUHLI

e Spoke-concentration facets:
(n—p)Xk,k > > Xik
ik
# facets in class: n

see theorem : 4.5.1

e Focus-element facets:

Y Xii> D Xjat > Xait+ Y Xk
icA jéA icA\({a} UA") KEA*

prerequisites: |Al=n—p, a €A,
A C A\{a}, |A*] €{0,...,n—p—2},
by € AV k € A* pairwise different

# facets in class: (Z) (n—p) S0P (" (7))

special cases: A* =0:
DoicaXiyi 2 2 iga Xja+ Dica\fa) Nayi
see theorem : 4.5.83 and 4.5.6

e Increasing-distances facets:

t
ry > da1, anh Kkt Z(dai, k — dai71, k)Xai, Kkt (dik, k — dat, k)Xik, k
i=2

prerequisites: p < L%J, i, = argmax;d; ,
{I{?,Zk} ¢ A= {al,...,at},te {1,,p—1},
dai,k S dai+1,k v i7

(p< |52 ordip <do,kVigA) ift=p—1
# facets in class: n Y07 (",%) (fort <p-—2)
special cases: t=p—1,de,, 1k <...<dy,_, k-

T > oy 6 Xan_p b + Soinpir (o & — day, 1) Xas,
see theorem : 4.5.11 and 4.5.14



Chapter 5
Separation

With the help of the new valid inequalities derived in section 4.5, a new exact
solution algorithm to (pUHL) can be designed, which is expected to improve
the CPU-times for solving problem instances to optimality. But, since we have
identified a large number of new inequalities, it is highly inefficient to simply
include all those inequalities to the original formulation and then start a simple
branch-and-bound algorithm. Instead, a branch-and-cut strategy will be used to
make sure that inequalities are only added to the original formulation if needed,

i.e. if they cut off a current (non-integral) solution.

Definition: Assume that, for a problem instance of (pUHL), we are given a
point P* and a family of valid inequalities for (pUHL). The separation problem
then consists of either finding an inequality in the above family that is violated

by P*, or proving that none exists. a

In the following, we will concentrate on the respective separation problems for

the different classes of facets that were derived so far.

5.1 Separating Spoke-concentration Facets

Note that there are only n inequalities
(n—p) Xk, k> ZXi,k VEe{l, ...,n}
7k
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representing the class of spoke-concentration facets (see theorem 4.5.1). Hence,
a simple enumeration procedure will solve the corresponding separation problem

efficiently.

5.2 Separating Focus-element Facets

Recall the inequalities representing the focus-element facet class, as given in the-
orem 4.5.6:

2 Xz ) Xat D Xait )Xo

€A JZA icA\({a} U A*) keA*

with A C {1,...,n}, |[A] = n—p, a € A an element of A, A* C A\{a} with
|A*] €{0,...,n—p—2},and b, € AV k € A* pairwise different.

In section 5.2.1, an exact solution algorithm will be presented for the special case
that A* = () (see theorem 4.5.3). Section 5.2.2 then suggests a heuristic for the

general separation problem, based on the exact algorithm of 5.2.1.

5.2.1 Focus-element Facets, Case A* = ()

Assume we are given a point P* = (X* r*, 2*) and have to identify, if existent,
an inequality of the focus-element facet class that is violated by P*. That is,
find a set A of n» — p nodes and a node a among those nodes such that the

term Y X7+ > Xy, — > X/, is maximized; if the value of the term is
jEA ieA\{a} i€A
strictly larger than zero, a violated inequality has been identified. It will turn out

that this separation problem can be solved in polynomial time, using a greedy

strategy!.

In the following, the class of focus-element facets with A* = () will be split off in

n subclasses regarding the element a:

For a fixed node a in {1, ..., n}, the separation problem reduces to finding n—p—1
further nodes such as to maximize Z Xj.+ > Xoi— > Xi, Assume
JEA 1€A\{a} icA

!One first hint that a greedy solution might already be optimal, is the fact that we do not

have any further restrictions on A despite that |A| =n — p.
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without loss of generality that « = n. Introduce index variables Ay, ..., A,_; for

the set A: A; =1 if node 7 is chosen as further element of A, A; = 0 else.

With the help of the (n — 1)-dimensional vector A = (A, ..., A,_1), the separa-

tion problem can be formulated as follows:
n—1 n—1 n—1
—— (Zx;:aa—A]-)+ZX;,Z.AZ.—ZX5§Z.Ai—X;;a)
j=1 i=1 i=1
n—1
s.t. ZAi = n—p—1, A;€{0;1} Vi
i=1

The above objective function can be reformulated as follows:

n—1 n—1 n—1
maxA(Zx;;aa AN+ X A=Y X A - X:;a)
j=1 i=1 i=1

n—1 n—1
_ maa:A(Z(X;"i—X:a—X:i)AijLZXZa—X;"a)
=1 =1
n—1 n—1
= maza| 30— XL - X)) A+ 30X, - X
=1 j:l ,
c;;L

Thus, it suffices to solve the following integer optimization problem:

n—l n—1
maxA{Z(X;"i—X:a—XZi)Ai ZAi =n—p—1A4; € {0;1}Vi}.
i=1 i=1

Since there is no further restriction on the set A, the above problem can be solved
by calculating the terms X, — X7 — X, foralli =1,...,n — 1, sorting the
¢ in decreasing order corresponding to the value of the above term and, for the

first n — p — 1 nodes, setting A; = 1.

As this greedy strategy has to be applied for all @ € {1,...,n}, the complete
separation algorithm has a complexity of O(n?).
5.2.2 Focus-element Facets, General Case

Assume that, by the procedure described in 5.2.1, no violating inequality is found

(and such, since we are using an exact solution algorithm for the separation of
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the facets so far, none exist). Though, it might be possible that the given point

P* violates an inequality of the focus-element facet class with A* # ().

For a given set A with element a, it is quite easy to determine A* C A and nodes
{by : k € A*} C A such that the term

> X5+ > X+ 20 Xp p— 20 X[, (%) is maximized:

JEA icA\({a} U A¥) ke A* i€A

Start with A* = (). For every node k € A, determine a node n; € A with maxi-

mum value X7 .  Starting with the node £ € A with largest value
Xk — X g check it X7 > X7 5 if yes, substitute those addends in the

above term?, i.e. set A* := A*U {k} and by, := ny,. Stop if either n — p — 2 nodes

have been substituted or the value of the term (*) exceeds zero.

However, as soon as the set A is not given any more, it does in general not
suffice to choose A optimal for the case that A* = () and then apply the above
procedure®. The general problem is that the sets A, A* and the nodes b, have to
be determined simultaneously, but optimal choices of the nodes b, can only be
made once the sets A and A* are known. Consequently, we will try to develop an
approximate solution method for the problem: Start with the greedy approach

described above, then apply local search to improve the given solution®*:

Heuristic: Separation of Violated Focus-element Inequalities

Fora=1,..,n
e Solve
m&x{Z(X;‘,i S XP - XiDA | S A =n—p—1,4 € {01} V z}
iZa iZa

by greedy technique (as described in 5.2.1); let z be the optimal objective

function value.

a, a’

e Set z:=z2+ ) X;,— Xy, and A:={i: A; =1} U{a}.

i=1
i#a

2To guarantee that the by are pairwise different, a sort of "tabu list” containing all chosen

by, so far has to be kept; see the heuristic algorithm below.
3Intuitively, if we choose A worse for the general formula facets, we might save ”better”

candidates for by, such that the worse choice of A in the beginning could be compensated.
“In this context, a neighborhood of a set A* could, for instance, be defined as the set of all

1-exchange sets to A*.
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o If 2 >0: STOP:
ZiGA Xi,i > zng Xj, at ZieA\{a} Xa,i

is a violated inequality.
e Else

— nNodes := 0, A* =10

— Calculate ny, := argmax; X for all k € A\{a}, and let

mnery = XF

ek — Xg  De the increase of z when adding node k to A*.

Let A= {a,a,...,ap_p_1} with incre, > incre,,, V i.
—Fori=1,....n—p—1:
If nNodes < n —p—1 and incr,, > 0, then

x« A* = A* U {a;}, A= A\{a;}, by, := n,,
% 2=z +1incry, nNodes+ =1
* For all k, redefine ny, := argmax;ga- X7 ;, update incry, with these

new ny and resort {a; i1, ..., a,_p+1} by increasing value of INCTy, 5

— Apply a local search procedure to improve the solution found.

— If 2> 0: STOP:

Diea Xii 2 Diga Xja + Diea\(ajuar) Xa,i + D pear Xow k
is a violated inequality.

5.3 Separating Increasing-distances Facets

We will now consider the separation problem for the increasing-distances facet

class given by theorem 4.5.14:

t
Tk = oy, 6 Xay, &+ Z(dai,k —da; k) Xag, & + (diy, 1 — dag, 1) Xiy & (5.1)

=2
with iy, = argmazx; d;, {k,ir} ¢ A = {ar,...,a4}, t < p—1 and
doj k. < dog kY i. Recall that the above inequality represents a facet for

t < p—2in any case, but for t = p — 1 only under additional conditions; but,

>This guarantees that the by are chosen pairwise different.
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even if those additional conditions are not met, the inequality for t = p — 1 is at

least valid.

Before considering the facet separation problem, here is an example of how an
increasing-distances inequality can be violated: At first sight, it might seem
obvious that, as soon as a point P* satisfies all the single radius constraints
e 2 di kX7, it will also fulfill all increasing-distances inequalities. However, for
points P* with non-integral X7 ;, this might not be true, as the following example

illustrates:

Example: Consider a hub center problem instance where the distances between
three nodes a;, as, k are given by d,, , = 1 and d,, , = 2, and assume that
ay = argmax;d; k. Then, given a point P* with X7 , =1, X7 = 0.5 and

[ 3 3 * * * *
ry = 1, the radius constraints rp > do, ¢ X, . and rp > dg, ¢ X;, , are both

fulfilled, whereas we have that ry =1 < 1.5 = do, 1 Xt + (day, x — day, 1) X}, 1

As for the focus-element facet class, the separation problem for the increasing-
distances facets will be considered for each choice of node k separately. For given k
and a given point P*, we have to determine a number ¢ and nodes a4, ..., a; such
that the term

dah ngl,k + Z::Z(dai,k - dai_l, k)X;z gt (dik,k - dat,k)X;k, k

is maximized; if this value is larger than r;, a violated inequality is found.

Note that the above separation problem shows similarities to a Knapsack Prob-
lem: We are allowed to choose a maximum of p — 1 elements (corresponding to
the volume constraint for Knapsack), where each element has a certain benefit,
and the total benefit that has to be maximized. However, the contribution of an
element a; to the total benefit depends on its "neighbor-element” a;_q, since it is
calculated by (da, x — da,_,, k)X, - Hence, it is impossible to apply the known
Knapsack strategies, e.g. by running a branch-and-bound procedure: Each time
an element is added to the knapsack, its benefit has to be determined dependent
on the elements that have already been chosen; even more, the benefit of already

chosen elements might change by such an addition.

Nevertheless, the considerations concerning Knapsack lead to an approach that is
finally capable of solving our separation problem to optimality: Since the ”ben-

efit” of each element in A depends on this particular element and its "neighbor-
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element”, a shortest path problem on a graph can be defined: Costs occur on the

edges and are thus by construction dependent on both end points of the edge.

The construction of the desired graph is done like follows:

e Each node of the shortest path graph corresponds to a node of the hub

network that can be chosen as an element of A.

e For each node i, include edges to all nodes j with d; , > d; 1.

e For an edge from i # k to j, include costs of —(d; . — di 1) X .

For an edge from k to 7, include costs of —d;, kX g

A sample graph with n = 0, k= 1, 2, =5, d27 1 < d37 1 < d47 1 < d57 1 fulﬁlhng the

above construction rules is given in figure 5.1.

—(ds1 — d31)X§1

=~ (da1 — d31)XJ; —(ds1 — da1) X35,

—d21 X3,

—(d31 — d21)X37
@) &)

—(da1 — d21)X};

—(ds1 — d21)X3;

Figure 5.1: Shortest path graph for increasing-distances facet separation

For every path from k to ¢, in the constructed graph, the nodes that have been

traversed correspond to the choice of elements in set A. The cost of a path is

equal to —rhs(5.1) for the particular choice of A. Hence, the shortest path in

the constructed graph yields a set A with maximum value rhs(5.1). If this value

is larger than r, = lhs(5.1), a violated increasing-distances inequality has been

identified.
Remark 5.3.1

Some nodes and arcs in the above graph can be thrown out right away, such that

we obtain a sparser graph:



100

CHAPTER 5. SEPARATION

e Nodes 7 with X}, = 0:

Let {1,...,n} = {k,a1,...an_1}, with do, k < dgp, 1 < ... < dq, , k. As-
sume that X , = 0 for an 7 € {2,...,n — 2}, and that node a; is part
of a shortest path from k£ to a, 1 in the above graph. Let ;7 be maximal
such that a; is part of the shortest path and d,; < dg,, . Similar, let [ be
minimal such that a; is part of the shortest path and d,,, 1 > d,,, . Then,

_(daiak - dajak)X;“ k- (dala k — dai7 k)X;l, k = _(dalak - daia k)X;l, k
> _(dalak - daj,k)X* k-

ar,

Consequently, when omitting a; in the shortest path, the resulting new
path from k to a,_; is as least as short. A similar argumentation holds for

a; = a,. Hence, we can right away throw out from the constructed graph
all nodes i € {k, ir} with X, = 0.
Arcs (Z,]) with di,k = dj’ki

Using a similar argumentation as above, we can throw out all edges (i, j)
with di’ k= dj’ k-

Remark 5.3.2

When reformulating the separation problem as a shortest path problem, we left

out of consideration that p < [ %] and # < p—1. But, as proven in theorem 4.5.14,

the increasing-distances inequalities are valid for all possible p and ¢. Hence, we

can enlarge the search for violated inequalities to this more general case.

The constructed graph has n nodes and O(n?) edges, such that a shortest path

from k to i can be found in polynomial time with respect to n, e.g. using the

Bellman-Ford algorithm, which is described in [11].



Chapter 6
Computational Results

In chapter 4 above some new classes of facet-defining inequalities for the radius
formulation of USApHCP have been presented; the separation of violated in-
equalities of these types has been dealt with in chapter 5. Now, we will present
a branch-and-cut solution algorithm for USApHCP which is based on these
new results; the performance of this algorithm has been tested for different hub

location problem instances.

The algorithm has been implemented in the Mosel programming language of
Xpress-MP [13], using the Xpress-IVE (Integrated Visual Environment) opti-
mization software (Version 1.14.10, Xpress Optimizer Version 14.10 [14]). Two
boolean parameters automaticcuts and facetcuts have been included, which indi-
cate whether the automatic cutting procedure of the Xpress Optimizer is enabled,
and whether cuttings derived from the new facet inequalities are included. By

adjusting these parameters, three different algorithms have been examined:

e automaticcuts = facetcuts = false:
pure branch-and-bound, without introducing cuttings at the different nodes.
In the tables below, this algorithm will be denoted by B&B.

e automaticcuts = true, facetcuts = false:
branch-and-cut, using the inbuilt automated cutting generation procedure
of Xpress. In the tables this is denoted by B&C-A.
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e automaticcuts = false, facetcuts = true:
branch-and-cut, using cuts that are generated from violated facet inequal-
ties of one of the new classes (spoke-concentration inequalities, focus-element
inequalities, increasing-distances inequalities). The automated cutting gen-
eration procedure is disabled. This algorithm will be denoted by B&C-F.

Cuts from violated facet-inequalities are generated using the separation proce-
dures described in chapter 5, but only for nodes up to a depth of cuttingdepth.
This parameter can be adjusted by the user; for the tests presented, a cutting
depth of both 3 and 5 has been examined — see the columns B&C-F(3) and
B&C-F(5).

Regarding focus-element inequality separation, only the greedy heuristic is ap-
plied, and further local search heuristics are left out of consideration (see sec-
tion 5.2).

For the evaluation of the algorithm variations above, the common CAB data set
has been used: It was evaluated by the Civil Aeronautics Board and contains
data on passenger airline travel between 25 large US cities; see [26]. This test set
is available through the OR-library [5] via internet. Subsets of the data set have
been derived by variating the number of nodes, number of hubs and the discount

factor!:
n e {10,15,20,25), p € {2,3,4), o € {0.25,0.5,0.75}.

For each problem, the optimal solution with objective function value and an
optimal hub set has been determined (columns o.f.v. and hub set). The CPU
time (in seconds) for running each algorithm has been measured (columns CPU);
finally, for the two algorithms B&C-F(3) and B&C-F(5) that include the new
facet cuttings, the number of added cuts of each class has been determined:
1 denotes the number of spoke-concentration cuts, 2 the number of focus-element

cuts and 3 the number of increasing-distances cuts.

All computations have been carried out on an AMD Athlon processor with
700 MHz and 128 MB RAM. The results are given in tables 6.1-6.3.

!For the CAB data, this is traditionally done by using only the first 10, 15, 20 or all 25 nodes

of the example.



103

A first look at the CPU times (tables 6.1 and 6.2) shows that the introduction
of cuttings only seems to make sense for larger-sized problems (n € {20, 25}).
For smaller problems (n € {10, 15}), pure branch-and-bound performs best, but
branch-and-cut using the new facet-cuttings (B&C-F(3) and B&C-F(5)) is at
least faster as branch-and-cut with automatic cutting (B&C-A) for most problem

instances.

The larger the number n of nodes gets, the more efficient a branch-and-cut strat-
egy is, compared to pure branch-and-bound. Comparing the different branch-and-
cut algorithms that have been tested, the automatic cutting algorithm B&C-A is
outperformed by either B&C-F(3) or B&C-F(5) in roughly 70 % of all cases with
n > 15.

Concerning the choice of the parameter cuttingdepth, no clear preference between
a depth of 3 and 5 can be made based on the given data. The larger the cutting
depth, the more time is consumed to search for violated facet-inequalities; but,
if violated inequalities are found, these newly introduced cuttings give hope to
reduce the total number of branch-and-bound nodes and such to accelerate the
solution process. Table 6.3 lists the number of nodes in the branch-and-bound
tree that are used to solve the respective problem instance. But, based on the
data that has been tested, no clear statement can be made whether or not the new
algorithm reduces the number of branch-and-bound nodes. A deeper investigation
should include more and larger test data sets. Furthermore, different possible
branching strategies should be taken into account, rather than just examining
the branch-and-bound nodes in depth-first manner as done here; this, however,

is beyond the scope of this thesis.

When considering the number of introduced facet-cuttings of each type, the per-
centage of violated increasing-distances facets (type 3 in the tables) is remarkably
high. This might hint at the fact that the use of facet-cuttings of this type is
highly efficient in a branch-and-cut algorithm. Future research should include a

more thorough examination of this effect.
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Chapter 7

Conclusions and Outlook

7.1 Summary of Main Results

This diploma thesis dealt with hub location problems with center objective. Sev-
eral problem variations have been discussed, and some known formulations for
the uncapacitated single-allocation p-hub center problem have been listed; the
problem is known to be A/P-hard.

The polyhedron of the newly developed radius formulation by Ernst et al. [16] has
been investigated: Using a connection to a special kind of uncapacitated facility
location polyhedron, the dimension of the radius formulation polyhedron could
be derived, and it has been examined whether the given problem constraints are
facet-defining or not. In the core part of this thesis, three new classes of facet-
defining inequalities have been derived, and a separation procedure has been

discussed for each of these classes.

The new results are used to design a branch-and-cut algorithm where cuttings
represent violated inequalities of one of the new types. First numerical evalu-
ations show that this algorithm can compete in CPU time with an automated
cutting procedure. A combination of the new branch-and-cut algorithm with an
automated cutting procedure might be able to solve problem instances with even
less time effort; hence, also larger problem instances —for which only heuristic so-
lutions exist up to now— could be solved to optimality within a reasonable amount

of time.

107



108 CHAPTER 7. CONCLUSIONS AND OUTLOOK

7.2 Further Research

7.2.1 Polyhedral Analysis for Pyyur

Though a number of new valid inequalities has already been derived for the
radius formulation of USApHCP, it is worth investigating the polyhedron Ppypr,
more thoroughly. A promising approach might be to search for valid inequalities
that include more than just one variable r, and thus to obtain information on
the connection between the different radius variables. Furthermore, tight valid
inequalities that include the variable z might be of great use. However, attempts
to deduce a facet-defining inequality using z failed so far. Since this variable
describes the objective function value, such inequalities are probably difficult to
find at all.

Another interesting way of deriving new facets for (pUHL) might be to examine
the (pUFL) problem in more detail, to find connections to the general (UFL)

problem and to transfer known facet results for (UFL).

Concerning the seperation problem of the class of focus-element facets that have
been derived in this thesis, a local search algorithm was suggested. Details on
the design of this procedure still have to be developed, and comparisons to other
heuristics such as tabu search have to me made. In fact, the complexity of the

separation problem for focus-element inequalities is still an open issue.

To test the performance of the new branch-and-cut algorithm of chapter 6, further
numerical examinations have to be done. These should include an examination
of the optimal cutting depth to be used within the algorithm. Furthermore,
the percentage of identified violated increasing-distances inequalities during the
algorithm has to be investigated more thoroughly. Additionally, numerical ex-
periments should not only consider the total running time to solve a problem
instance, but also compare the CPU times that are needed to determine a solu-
tion that is ”close enough” to a known lower bound. Other branch-and-bound

and branch-and-cut approaches from literature should be considered as well.

To test the algorithm’s performance for larger data sets, the AP data set should

be taken into account; this test set consists of 200 nodes, is provided by the
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Australian Post and can, as well as the CAB data set, be obtained via internet [5].
In this context, it is worth examining a combination of the new branch-and-cut
algorithm with an automated cutting procedure as provided in an integer program
solver such as Xpress. If, using the new procedure, optimal solutions to large
problem instances are available, these can be used to test the performance of

known heuristics in large scale.

7.2.2 Multiple Allocation Hub Center

This thesis concentrated on the single allocation case of hub center location. Nev-
ertheless, the multiple allocation problem variation is of great interest, e. g. when
modelling a passenger airline network, where the hub airport used depends on
the final destination of the flight passenger. Concerning multiple allocation hub
median problems, Sonneborn [32] presented useful work on polyhedral analysis.
An attempt to transfer these results to the center case (where the main difference
to Sonneborn’s problem is that the number of hubs is fixed a priori) seems to be

promising.

One main reason why we dealt with the single allocation hub center problem was
the new radius formulation, which was developed for this problem variation. At
first sight, the concept of a hub radius only makes sense for single allocation.
However, if we assume that a radius depends on two hubs simultaneously, it is

possible to transfer the radius idea to the multiple allocation case:

The following problem formulation of UM ApHCP is based on a formulation for
the median case by Skorin-Kapov et al. [31], reformulated by Sonneborn [32] to

reflect the idea of multicommodity flows:

Let IC be the set of all origin-destination pairs k = (k1, ks), seen as the set of
commodities that have to be shipped through the network. Let H be the set of
potential hubs, and Y; = 1 if a hub is opened at node j, ¥; = 0 else. Denote
by the variable X; ; i the allocation of a commodity k: X; ; , = 1 if and only if
commodity k is shipped via hubs ¢ and j (in that order).
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Now, for every commodity that is shipped via hubs ¢ and j, one can add up the
lengths of the spoke arcs of this connection. The maximum such sum for two

hubs ¢ and j is then referred to as the "radius” r; ; of ¢ and j:

(MA — HCP — Rad)

min z (7.1)
s.t z 2 ri,j+adi,j‘v’i,j€7{ (72)
rivj > Xij ok (diy, i+ diy, 5)
4 Z,j S H, k= (kQ, kg) S IC (73)
>N Xk = 1VEkeK (7.4)
1€EH jEH
Y Xijw < YiVieHkek (7.5)
JEH
Y Xk < YViVjeH kek (7.6)
1€EH
DV =p (7.7)
JEH
Xijr € {0,1}Vi,jeH,kekK (7.8)
Y, € {0,1}VjeH (7.9)
ri; > OVijeH (7.10)

Constraints 7.4 - 7.9 are directly lent from the multicommodity formulation given
by Sonneborn [32]: Constraint 7.4, together with the integrality constraints 7.8,
describes that each commodity has to be allocated to exactly one pair of hubs.
Constraints 7.5 and 7.6 guarantee that k& can only be allocated to ¢ and j if both
v and j are hubs. Constraint 7.7 states that the number of hubs to be located is
a priori fixed to p.

Now, consider the two groups of constraints 7.2 and 7.3 that contain the radius
variables 7; ;: By constraint 7.3, the radius 7; ; of two hubs is defined as the
maximum sum of spoke arc lengths for any commodity that is transported via ¢
and j. Constraints 7.2 state that the maximum transportation cost in the hub
network is the maximum sum of radius and (discounted) hub arc length for any

pair of hubs.



7.2. FURTHER RESEARCH 111

Though the notion of "radius” does not fit very well, once such "radius” depends
on two different hubs, the basic concept from the single allocation case has been
conserved in the above construction. This new multiple allocation radius formu-
lation should be examined regarding its behaviour in computational tests, and it
might be worth considering the corresponding polyhedron, as it is done in this

thesis for the single allocation case.

7.2.3 Hub Covering

Center location problems and covering problems are tightly linked together: In
a center location problem, the maximum distance from a customer to (or via) a
facility is minimized; for covering problems, such maximum allowed distance is
fixed a priori and facilities should be located such that all customers are covered.
In [6], Campbell defined the hub covering problem as the covering problem corre-
sponding to center hub location: He considers the multiple allocation case, where
pairs of hubs cover a pair of origin- and destination node, and presents several

problem formulations.

Now, it seems like there exists a link between hub covering and the radius concept,
presented in section 3.3: If the distance between a node 7 and a hub £ is at most
as large as the hub radius r,, we can say that ¢ is covered by hub k. But, as
already stated by Campbell, different to other location problems, we have to take
the interaction between the hub facilities into account. Consequently, it does not
solve the hub center problem to minimize the maximum hub radius such that all

nodes are covered. A counter example is given below.

Example: Consider the hub network given in figure 7.1, and assume that dis-
tances in the network are proportional to the given arc lengths. As shown in the
graph, d3 4 —dy, 4 =: € > 0 is very small compared to dy, o —di, 3 =: § > . Now,
if we choose nodes 1 and 2 as hub nodes (black arcs), the maximum radius is
r9 = dy,4. If nodes 1 and 3 are opened as hubs instead, this maximum radius
increases to r3 = ds 4; however, we have substantially decreased the length of
the hub arc from d; » to d; 3. Hence, though the covering radius is not minimal
for this second solution, the objective function value decreases (given that the

discount factor « is large enough).
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Figure 7.1: Connection between hub covering and hub radii

Future reseach should deal with the relationship between hub covering and hub
radii in more detail, such that, hopefully, new solution approaches to the hub

center problem can be developed.

7.2.4 Further Problem Variations

Though a couple of problem types have already been discussed in hub location
literature, there is still a large potential in refining given models in order to mirror

the real-world circumstances more precisely.

Concerning hub center problems, we have requested up to now that all flow in the
network has to be transported within the given time (which has to be minimized).
Now, in a postal delivery network, for instance, guaranteed transportation times
are often given only for some standard routes, and transportation on other, minor
routes, is still allowed to exceed these time limits. One straightforward approach
to model this would be to include only those origin-destination pairs to our prob-
lem which exceed a certain flow value. A more sophisticated advance might
a priori give a certain percentage of the total flow that has to be transported

within the given time (e.g. 95 %). It is even imaginable to work with two objec-
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tive functions simultaneously: To minimize the guaranteed transportation time
and to maximize the total flow percentage that can be shipped within this time
limit.

A second idea to modify given problem types can be derived from the passenger
airline example: Here, the convenience of the passenger is of high interest [8] and
might well determine the passenger’s decision to choose an airline. For instance, if
service between two major cities is only provided using a two-hub stop, passengers
might change to another airline to avoid this inconvenience. Hence, the type of
service provided between two nodes of a hub network might have an impact on
the amount of flow in between those two nodes. Some further literature on this

topic is given in [8].

Finally, future research should deal with more sophisticated designs of hub net-
works: In the introductory chapter 1, the notion of a two-level network was used
to refer to a hub network system. However, a network construction with more
than just two levels might be worth of consideration: Some logistics providers,
e.g. Federal Express, have already put this concept into reality by introducing a
couple of (regional) ”"mini-hubs” and one or few "major hubs” (see [23]): Hubs
lying on the first level of the network are completely interconnected, whereas
second-level hubs are only connected to one (or more) first-level hubs each; finally,
nodes on the third level (spokes) are only connected to one (or more) second-level
hubs. Some first hints at the mathematical formulation of such hierarchical hub

network problems can be found in [8].
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