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1. Introduction

Although major earthquakes cause serious harm at irregular intervals, fortunately the

big majority of all earthquakes does not cause relevant damage or even is not felt by any

human being. Independent of the consequences of such an event, seismic data reveal

secrets of the Earth’s interior. One typical data source of this kind are traveltimes of

earthquake waves. The time a wave needs from the source, i.e. the hypocenter, to the

receiver, i.e. a seismic station, depends on the spatially varying speed of the wave on its

journey through the Earth or across the Earth’s surface. This paper is focussed on the

first case, i.e. on body waves, which travel through the Earth’s interior. The analysis

of the traveltimes allows the approximate determination of the velocity field. This is

a typical example of an inverse problem. It is related to the Radon transform of com-

puterized tomography, where, however, in seismic traveltime tomography the rays of

the waves are essentially curvilinear. Numerous authors have studied this problem from

theoretical as well as numerical point of view. A brief and certainly incomplete list of

examples is [1], [3], [6], [7], [9], [19], [20], [37], [38], [40]. However, it should be mentioned

that surface wave tomography can be used to study the deeper structure of the Earth

as well (see e.g. [32], [33]). In contrast to surface wave tomography a parametrization

for the radial dependence of the unknown velocity field, or more general a basis system

for functions on the 3D ball, has to be chosen for numerically solving the body wave

tomography problem. We will demonstrate here that reproducing kernel based splines

are an appropriate tool for this purpose.

This paper consists of two parts: First, we derive the theoretical details of a spline

interpolation/approximation method for functions on a three–dimensional ball. The

given data are here represented as linear and continuous functionals that are applied

to the unknown function. This approach is motivated by the spherical spline approach

based on spherical harmonics as introduced in [14], [15], [16], [17]. This way of construct-

ing approximating structures out of a reproducing kernel has been applied to different

constellations in the meantime, see e.g. [13], [18], [21], [24], [25], [36]. Following this

line the present paper discusses the specific aspects of the transfer of the approach to

the 3-dimensional ball (see also [2]). The name “spline” refers here to the fact that the

interpolating spline minimizes a certain Sobolev–like norm among all interpolating func-

tions, where this norm can be regarded as a kind of measure for the oscillatory behavior

of the function. The characteristic minimum properties as well as an error estimate and

a convergence result are proved. In the second part we prove that the theoretical condi-

tions for the application of the spline method to the traveltime tomography are satisfied.

Then we show the results of some numerical tests. For this purpose we use certain given

functions for the velocity distribution and calculate the corresponding traveltimes as

data for the spline approximation. These computations include the recovery of a radi-

ally symmetric velocity model as well as a laterally heterogeneous function. We obtain

very good approximations in comparison to the used reference velocity fields.

Note that there also exist different approaches to construct approximating tools out of
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reproducing kernel Hilbert spaces such as in [4], [30], [31]. Furthermore, we remark that

in [10], [11] the idea of using reproducing kernels for regularizing ill-posed problems

is established in detail for Fredholm integral equations of first kind on L2[0, 1], where

the probable extendability to further reproducing kernel Hilbert spaces is stated. A

generalization of this to arbitrary real Hilbert spaces can be found at [12] which par-

tially provides a basis for further results and applications presented here. In [27], [28]

reproducing kernel based approaches are used to approximate the generalized inverse

of an operator from an arbitrary Hilbert space into a set of real-valued functions on an

interval or in between two such sets. Those approaches are related to this one presented

here in the idea of using reproducing kernels for regularizing ill-posed problems, but are

clearly different in the technical details and realization.

2. Jacobi Polynomials

In this paper N represents the set of all positive integers, where N0 := N ∪ {0}, and R

denotes the set of all real numbers.

Let b > 0 and a > b − 1 be given real numbers. The Jacobi polynomials are defined by

the following Rodriguez’s formula ([23])

Gn(a, b; x) :=
(−1)nΓ(n + a)

Γ(2n + a)
x1−b(1 − x)b−a

(

d

dx

)n
(

xn+b−1(1 − x)n+a−b
)

for n ∈ N0 and x ∈ [0, 1], where Γ is the Gamma function.

The Jacobi polynomials {Gn(a, b; x)}n∈N0
are the only polynomials to satisfy the

following properties for all n ∈ N0:

(i) Gn(a, b; ·) is a polynomial of degree n, defined on [0, 1].

(ii) Gn(a, b; 0) = 1.

(iii)

∫ 1

0

xb−1(1 − x)a−bGn(a, b; x)Gm(a, b; x)dx = 0 for all m ∈ N0\{n}.

Note that every integral in this paper is a Lebesgue integral.

In case of m = n, we have

∫ 1

0

xb−1(1 − x)a−bGn(a, b; x)Gn(a, b; x)dx = n!
Γ(a + n)Γ(b + n)Γ(a − b + n + 1)

(2n + a)[Γ(a + 2n)]2
.

Hence, the system {G̃n(a, b; ·)}n∈N0
defined by

G̃n(a, b; x) :=

[

(2n + a)[Γ(a + 2n)]2

n!Γ(a + n)Γ(b + n)Γ(a − b + n + 1)

]1/2

Gn(a, b; x), (1)

will be orthonormal in L2[0, 1] with the weight function w(x) = xb−1(1−x)a−b. Moreover,

it is known that the system {G̃n(a, b; ·)}n∈N0
is closed in C[0, 1].

Note that one finds an alternative definition in the literature (see e.g. [34]), where the
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functions P
(α,β)
n , n ∈ N0, with α, β > −1 fixed, are called Jacobi polynomials if they

satisfy the following properties for all n ∈ N0:

(i) P (α,β)
n is a polynomial of degree n, defined on [−1, 1].

(ii)

∫ 1

0

(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx = 0 for all m ∈ N0\{n}.

(iii)P (α,β)
n (1) =

Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
.

The relation between P
(α,β)
n and Gn(a, b; ·) is given by

Gn(a, b; x) =
n!Γ(n + a)

Γ(2n + a)
P (a−b,b−1)

n (2x − 1), x ∈ [0, 1]. (2)

For any α, β > −1 the Jacobi polynomials P
(α,β)
n have the following property (see [23],

p. 217):

max
x∈[−1,1]

∣

∣P (α,β)
n (x)

∣

∣ =

{

O(nq), if q = max(α, β) ≥ −1/2

O(n−1/2), if q = max(α, β) < −1/2
(3)

as n → ∞. For the calculations of the Jacobi polynomials P
(α,β)
n one can use the

recurrence formula given in [23], p. 213.

3. Spherical Harmonics

The space Harmn(Ω) of all real-valued homogeneous harmonic polynomials restricted

to the unit sphere Ω := {x ∈ R
3| |x| = 1}, i.e. the set of all P |Ω, where P : R

3 → R is a

homogeneous polynomial satisfying

∆xP (x) =

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)

P (x1, x2, x3) = 0

for all x ∈ R
3, has the dimension 2n + 1. Its elements are called spherical harmonics.

We define {Yn,j}j=−n,...,n as an L2(Ω)-orthonormal system in Harmn(Ω), i.e.

(Yn,j, Yn,k)L2(Ω) =

∫

Ω

Yn,j(ξ)Yn,k(ξ) dω(ξ) = δjk =

{

1, j = k

0, j 6= k

Due to the dimension formula this system is complete in Harmn(Ω).

As it is well-known spherical harmonics of different degrees are L2(Ω)-orthogonal such

that we have (Yn,j, Ym,k)L2(Ω) = δnmδjk. Moreover, it is possible to show that such an

orthonormal system {Yn,j}n∈N0; j=−n,...,n is always complete in L2(Ω). Furthermore, we

have the addition theorem for spherical harmonics

n
∑

j=−n

Yn,j(ξ)Yn,j(η) =
2n + 1

4π
Pn(ξ · η); ξ, η ∈ Ω;
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where Pn is the Legendre polynomial of degree n. Note that
∫ 1

−1
Pn(t)Pm(t) dt = 0 for

n 6= m and Pn(1) = 1.

For further details on the theory of spherical harmonics we refer to, for example, [7],

[17], and [26].

4. A Complete Orthonormal System in L2(B)

Let {gk}k∈N0
be an orthonormal system in L2[0, 1] with the weight function w(r) = r2

in [0, 1], i.e.
∫ 1

0

r2gk(r)gl(r)dr = δk,l, k, l ∈ N0. (4)

We define the sequence
{

W B
k,n,j(x)

}

k,n∈N0;j=−n,...,n
by

W B
k,n,j(x) = W B

k,n,j(rxξx) :=

{

gk(rx)Yn,j(ξx), if x ∈ B \ {0},
1, if x = 0,

where rx = |x|, ξx = x/|x| and Yn,j is the spherical harmonic of degree n and order j.

Note that here any other real can be taken as W B
k,n,j(0), too. Throughout this work by rx

and ξx we will always denote the norm and the unit vector of x ∈ R
3 \ {0} respectively.

Next, we see that

(

W B
k1,n1,j1, W

B
k2,n2,j2

)

L2(B)
=

∫

B

W B
k1,n1,j1(x)W B

k2,n2,j2(x)dx

=

∫

B

(gk1
(rx)Yn1,j1(ξx))(gk2

(rx)Yn2,j2(ξx))d(rxξx)

=

∫ 1

0

r2
xgk1

(rx)gk2
(rx)

(
∫

Ω

Yn1,j1(ξx)Yn2,j2(ξx)dω(ξx)

)

drx

=

(
∫ 1

0

r2
xgk1

(rx)gk2
(rx)dr

)

δn1,n2
δj1,j2

= δk1,k2
δn1,n2

δj1,j2,

where (4) and the orthonormality of {Yn,j}n∈N0;j=−n,...,n in L2(Ω) have been used. Hence,

W B :=
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
is orthonormal in L2(B). Moreover, it can be shown

that if {gk}k∈N0
is complete in L2[0, 1] then W B will be complete in L2(B). Thus,

in order to W B be a complete orthonormal system in L2(B), we need to choose the

system {gk}k∈N0
such that it is complete in L2[0, 1] and fulfils (4). Therefore, by taking

gk(r) := G̃k(3, 3, r), W B will be a complete orthonormal system in L2(B).

Using Equations (1) and (2), we obtain G̃k(3, 3, rx) =
√

2k + 3P
(0,2)
k (2rx − 1). Hence,

W B
k,n,j(x) = W B

k,n,j(rxξx) :=

{√
2k + 3P

(0,2)
k (2rx − 1)Yn,j(ξx), if x ∈ B \ {0},

1, if x = 0,
(5)

with k, n ∈ N0; j = −n, ..., n.

Let C0(B) be the space of all functions which are continuous on B \ {0} and bounded
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on B. It can be shown that C0(B) equipped with the supremum norm

‖F‖∞ := sup
x∈B

|F (x)|, F ∈ C0(B),

is a Banach space. Moreover, W B ⊂ C0(B).

5. Splines on the 3-dimensional Ball

In [14], [15], [16], and [17] harmonic spherical splines in a reproducing Sobolev

space are introduced. This concept will be used here to develop splines for an

interpolation/approximation of the prescribed data on a 3-dimensional ball.

5.1. Sobolev Spaces

Let {Ak,n}k,n∈N0
be an arbitrary real sequence. By E := E({Ak,n}; B) we denote the

space of all functions F ∈ L2(B) satisfying

∞
∑

k=0

∞
∑

n=0
Ak,n 6=0

n
∑

j=−n

A−2
k,n

(

F, W B
k,n,j

)2

L2(B)
< +∞

and
(

F, W B
k,n,j

)

L2(B)
= 0, if Ak,n = 0.

Due to the Cauchy-Schwarz inequality E is a pre-Hilbert space if it is equipped with the

inner product

(F, G)W({Ak,n};B) :=

∞
∑

k=0

∞
∑

n=0
Ak,n 6=0

n
∑

j=−n

A−2
k,n

(

F, W B
k,n,j

)

L2(B)

(

G, W B
k,n,j

)

L2(B)
F, G ∈ E.

The Hilbert space W := W({Ak,n}; B) is defined as the completion of E({Ak,n}; B) with

respect to (., .)W. The induced norm is denoted by ‖F‖W :=
√

(F, F )W.

We will see below (Lemma 5.2) that under certain conditions on the symbol {Ak,n}k,n∈N0

the elements of the Sobolev space W can be identified with piecewise continuous

functions with uniformly convergent L2-Fourier series.

A real sequence {Ak}k∈N0
is called summable if the sum

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,n

∥

∥W B
k,n,j

∥

∥

2

∞

is convergent. In particular, for any x ∈ B \ {0}
∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,n

(

W B
k,n,j(x)

)2
=

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,n (gk(rx))

2 (Yn,j(ξx))
2

=
∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3P

(0,2)
k (2rx − 1)

)2 2n + 1

4π
.
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Moreover, from (3) follows that

max
−1≤2rx−1≤1

∣

∣

∣
P

(0,2)
k (2rx − 1)

∣

∣

∣
= O(k2) as k → ∞.

Therefore, the sequence {Ak,n}k,n∈N0
is summable if

∞
∑

k=0

∞
∑

n=0

A2
k,nk

5n < ∞.

Note that this also includes the case x = 0.

Assumption 5.1 We always assume that the used sequences {Ak,n}k,n∈N0
are

summable.

For numerical implementations it is convenient to write {Ak,n}k,n∈N0
in the form of a

product of two sequences, i.e. Ak,n = BkCn, k, n ∈ N0. Clearly, in this case the sequence

{Ak,n}k,n∈N0
will be summable if the series

∑∞
k=0 B2

kk
5 and

∑∞
n=0 C2

nn are summable. For

example {Ak,n}k,n∈N0
is summable if Bk = h

k(k+1)/2
1 , with h1 ∈ (0, 1) (Gauß–Weierstraß

sequence) and Cn = h
n/2
2 with h2 ∈ (0, 1) (Abel–Poisson sequence).

The following lemma is an analog of the Sobolev lemma.

Lemma 5.2 W({Ak,n}; B) ⊂ C0(B) and for every F ∈ W({Ak,n}; B) the Fourier series

F (x) =

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

(

F, W B
k,n,j

)

L2(B)
W B

k,n,j(x) (6)

is uniformly convergent on B.

Proof: Application of the Cauchy-Schwarz inequality yields for F ∈ W the estimate

∣

∣

∣

∣

∣

∞
∑

k=K

∞
∑

n=N

n
∑

j=−n

(

F, W B
k,n,j

)

L2(B)
W B

k,n,j(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=K

∞
∑

n=N
Ak,n 6=0

n
∑

j=−n

(

F, W B
k,n,j

)

L2(B)
A−1

k,nAk,nW
B
k,n,j(x)

∣

∣

∣

∣

∣

∣

∣

≤







∞
∑

k=K

∞
∑

n=N
Ak,n 6=0

n
∑

j=−n

(

F, W B
k,n,j

)2

L2(B)
A−2

k,n







1/2





∞
∑

k=K

∞
∑

n=N
Ak,n 6=0

n
∑

j=−n

A2
k,n(W

B
k,n,j(x))2







1/2

≤ ‖F‖W







∞
∑

k=K

∞
∑

n=N
Ak,n 6=0

n
∑

j=−n

A2
k,n

∥

∥W B
k,n,j

∥

∥

2

∞







1/2

−→
K,N→∞

0,

where the right hand side converges as K → ∞ and N → ∞ uniformly and absolutely

with respect to x ∈ B due to the summability condition. Finally, from W B
k,n,j ∈ C0(B),

k, n ∈ N0, j = −n, ..., n and from the uniform convergence of the series in (6) follows
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that F ∈ C0(B). �

From this proof it also follows that

sup
x∈B\{0}

|F (x)| ≤ ‖F‖W

(

∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]

)2
2n + 1

4π

)1/2

for all F ∈ W. However, using property (iii) in the definition of P
(α,β)
k we obtain that

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]
≥ 1. Therefore, taking into account the fact that

|F (0)| ≤ ‖F‖W

(

∞
∑

k=0

∞
∑

n=0

A2
k,n(2n + 1)

)1/2

,

we obtain that

‖F‖∞ ≤ ‖F‖W

(

∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]

)2
2n + 1

2

)1/2

. (7)

Under the given assumptions we can prove the existence of a reproducing kernel, see

also [8] for further details on such kernels.

Definition 5.3 The function KW : B × B → R is called a reproducing kernel of W if

(i) KW(x, ·) ∈ W for all x ∈ B.

(ii) (F (·), KW(x, ·))W = F (x) for all F ∈ W and for all x ∈ B (reproducing property).

Theorem 5.4 If {Ak,n}k,n∈N0
is summable, then W has a unique reproducing kernel

KW : B × B → R given by

KW(x, y) =
∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,nW

B
k,n,j(x)W B

k,n,j(y)

This theorem can be proven in analogy to the corresponding theorem in [8] and [16].

Theorem 5.5 Let F be a bounded linear functional on W. Then the function y 7→
FxKW(x, y) is in W and

F(F ) = (F, FxKW(x, ·))W

for all F ∈ W.

(Here, FxKW(x, ·) means that F is applied to the function x 7→ KW(x, y) where y is

arbitrary but fixed.)

This is a general property of reproducing kernel Hilbert spaces, see [8]. This theorem

implies that we can define an inner product in the dual space W∗ of W as

(F, G)W∗ := (FxKW(x, ·), GxKW(x, ·))W = FGKW(·, ·).
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W∗ is a Hilbert space with respect to (·, ·)W∗. The spaces W and W∗ are known to be

isomorphic and isometric (see e.g. [8]).

The following theorem shows that in W({Ak,n}; B) complete sets of functions can be

generated from complete sets of functionals.

Theorem 5.6 ([8]) The sequence {Fn}n∈N of bounded linear functionals is complete in

W∗, i.e. f ∈ W, Fn(f) = 0, n = 1, 2, ..., implies f ≡ 0, if and only if the functions

gn(y) := (Fn)x KW(x, y), y ∈ X, n = 1, 2, ...

form a complete set for W.

Since in Hilbert spaces closure and completeness are equivalent concepts, we get the

following result.

Corollary 5.7 The system of bounded linear functionals {Fn}n∈N is complete in W∗ if

and only if

spann∈N{(Fn)x KW(x, ·)}‖·‖W

= W. (8)

In Figure 1 the localization character of KW(x, y), with Ak,n = BkCn, k, n ∈ N0 for some

Bk and Cn is demonstrated, where x = (0, x2, x3), y = (0, y2, y3), and the reproducing

kernel KW(x, y) is plotted in dependence of y2 and y3, with y2
2 + y2

3 ≤ 1 and the value

of KW(0, 0) is ignored.

Figure 1. The reproducing kernel KW(x, y) with Bk = e−0.1k, Cn = e−0.1n,

x2 = −0.1, x3 = −0.2 (left), Bk = e−0.05k(k+1), Cn = e−0.1n, x2 = −0.6, x3 = −0.5

(right)

5.2. Splines

Let FN := {Fn}n=1,...,N be a linearly independent system of linear continuous functionals

on W.
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Definition 5.8 A function S ∈ W of the form

S(x) =

N
∑

k=1

akFkKW(·, x), x ∈ B,

a = (a1, ..., aN)T ∈ R
N is called spline in W relative to FN . The scalars a1, ..., aN

are called the coefficients of the spline S. Such splines are collected in the space

Spline({Ak,n}; FN) or simply SplFN .

A spline interpolation problem can be formulated as follows.

Problem 5.9 For a given linearly independent system FN = {F1, ..., FN} of linear

continuous functionals and a vector y = (y1, ..., yN)T ∈ R
N determine S ∈

Spline({Ak,n}; FN) such that

FiS = yi for all i = 1, ..., N

Or, equivalently, determine a ∈ R
N such that

N
∑

j=1

ajFiFjKW(·, ·) = yi for all i = 1, ..., N (9)

This yields a linear equation system with the matrix

kN = (FiFjKW(·, ·))i,j=1,...,N (10)

which is positive definite according to the following theorem, which can be proved in

analogy to the spherical spline theory.

Theorem 5.10 Let FN := {F1, ..., FN} be a system of bounded linear functionals on

W. This system is linearly independent if and only if the matrix kN is positive definite.

As a consequence we obtain the following theorem.

Theorem 5.11 The formulated (spline interpolation) Problem 5.9 is always uniquely

solvable.

Remark 5.12 Theorem 5.10 implies that the system {F1KW(x, ·), ..., FNKW(x, ·)} is

linearly independent, and therefore, Spline({Ak,n}; FN) is an N-dimensional subspace of

W.

As an immediate consequence of Theorem 5.5 we get the following lemma.

Lemma 5.13 (W-spline formula) Let S ∈ SplFN with S(x) =
∑N

l=1 alFlKW(., x), x ∈
B. Then, for arbitrary F ∈ W, (F, S)W =

∑N
l=1 alFlF.

The following two theorems can be proven in analogy to the corresponding theorems in

[14] as a result of Lemma 5.13.
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Theorem 5.14 (1st Minimum Property) Let y ∈ R
N be given and FN :=

{F1, ..., FN} ⊂ W∗ be linearly independent. If S∗ =
∑N

i=1 ai(Fi)xKW(·, x) is the unique

spline satisfying FiS
∗ = yi for all i = 1, ..., N then S∗ is the unique minimizer of

‖S∗‖W = min{‖F‖W|F ∈ W, FiF = yi ∀i = 1, ..., N}.

The obtained result shows that the formulated (spline interpolation) Problem 5.9 is

equivalent to the minimum norm interpolation problem:

Problem 5.15 Let FN = {F1, ..., FN} be a linearly independent system of linear

bounded functionals on W and y = (y1, ..., yN)T ∈ R
N . Let also F ∈ W with FiF = yi

for i = 1, ..., N .

Determine SF
FN ∈ W such that

∥

∥SF
FN

∥

∥

W
= inf

G∈IN (y)
‖G‖W, (11)

where

IN(y) = {G ∈ W|FiG = FiF = yi, i = 1, ..., N} (12)

Theorem 5.16 (2nd Minimum Property) Let F ∈ W be given and FN :=

{F1, ..., FN} ⊂ W∗ be linearly independent. If S∗ ∈ Spline({Ak}; FN) is the unique

spline satisfying FiS
∗ = FiF for all i = 1, ..., N , then S∗ is the unique minimizer of

‖F − S∗‖W = min{‖F − S‖W|S ∈ Spline({Ak}; FN)}.

Thus, if F represents an unknown function in W, the interpolating spline S∗ represents

the best possible approximation to F among all splines, measured with respect to the

metric induced by the Sobolev norm ‖ · ‖W. Moreover, among all functions in W that

fit to the known data yi the spline S∗ is the ’smoothest’ (in ‖ · ‖W-sense).

Summarizing our results we obtain the following theorem.

Theorem 5.17 Problem 5.15 is well-posed, in the sense that its solution exists, is

unique, and depends continuously on the data y1, ..., yN . The uniquely determined

solution is given by

SF
FN (x) =

N
∑

i=1

aiFiKW(·, x) x ∈ B,

where the coefficients a1, ..., aN satisfy the linear equation system (9).

5.3. Error Estimates and Convergence Results

Theorem 5.18 Let F be a function in W, y = (y1, ..., yN)T ∈ R
N and let FN =

{F1, ..., FN} ⊂ W∗ be a linearly independent system. Denote by SF
FN ∈ W the uniquely

determined solution of Problem 5.15. Then

sup
L∈W∗

‖L‖W∗=1

∣

∣LF − LSF
FN

∣

∣ ≤ 2ΛFN‖F‖W, (13)



Splines on 3D Ball and App. to Body Wave Tomography 11

where the FN − width ΛFN is defined by

ΛFN := sup
L∈W∗

‖L‖W∗=1

(

min
J∈span(FN )

‖L − J‖W∗

)

.

Remark 5.19 Note that in the definition of ΛFN the ”min” exists due to the finite

dimension of span(FN). Moreover, for any L ∈ W∗ with ‖L‖W∗ = 1

min
J∈span(FN )

‖L − J‖W∗ ≤ ‖L‖W∗ = 1.

Thus, for arbitrary FN ⊂ W∗

0 ≤ ΛFN ≤ 1.

Hence, we see that (13) is a more precise version of the fact that for all L ∈ W∗ with

‖L‖W∗ = 1 and for all F ∈ W

∣

∣LF − LSF
FN

∣

∣ ≤ ‖L‖
W∗

∥

∥F − SF
FN

∥

∥

W
≤ ‖F‖

W
+
∥

∥SF
FN

∥

∥

W
≤ 2 ‖F‖

W
.

Proof of Theorem 5.18: For any L ∈ W∗ with ‖L‖W∗ = 1 there exists JL ∈ span(FN)

such that ‖L − JL‖W∗ ≤ ΛFN . Since FkF = FkS
F
FN for all k = 1, ..., N , hence

JLF = JLSF
FN , and therefore

LF − LSF
FN = LF − JLF + JLSF

FN − LSF
FN = (L − JL)F − (L − JL)SF

FN .

From Theorem 5.5 follows that

(L − JL)F = (F, (L − JL)xKW(x, ·))W

(L − JL)SF
FN =

(

SF
FN , (L − JL)xKW(x, ·))

)

W

Next, using the Cauchy-Schwarz inequality we obtain

|(F, (L − JL)xKW(x, ·))W| ≤ ‖F‖
W

(κW(L, JL))1/2

∣

∣(SF
FN , (L − JL)xKW(x, ·))W

∣

∣ ≤
∥

∥SF
FN

∥

∥

W
(κW(L, JL))1/2

where

κW(L, JL) = ((L − JL)xKW(x, ·), (L − JL)xKW(x, ·))W.

Therefore, again using Theorem 5.5 we obtain

(κW(L, JL))1/2 = ((L − JL)(L − JL)KW(·, ·))1/2 = ‖L − JL‖W∗ ≤ ΛFN .

Now, since SF
FN is the ’smoothest’ interpolant (see Theorem 5.14), thus

∥

∥SF
FN

∥

∥

W
≤ ‖F‖W.

Therefore, summarizing our results we obtain

∣

∣LF − LSF
FN

∣

∣ ≤ 2ΛFN‖F‖W

which proves the theorem, since L ∈ W∗ with ‖L‖W∗ = 1 was arbitrary. �
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Theorem 5.20 Let F be a function in W, y = (y1, ..., yN)T ∈ R
N and let FN =

{F1, ..., FN} ⊂ W∗ be a linearly independent system. Then

∥

∥F − SF
FN

∥

∥

W
≤ 2Λ

1/2

FN‖F‖W, (14)

where SF
FN and ΛFN are defined in Theorem 5.18.

Proof: Due to Riesz’s representation theorem (see e.g. [39]) for every F ∈ W and for

the corresponding SF
FN there exists L ∈ W∗ such that F − SF

FN is the representer of L,

i.e. for any G ∈ W we have LG = (G, F − SF
FN )W. By taking G = KW(x, ·), we will

have

LKW(x, ·) = (KW(x, ·), F − SF
FN )W =

(

F − SF
FN

)

(x).

Note that since L is the representer of F − SF
FN and due to Theorem 5.14

‖L‖W∗ =
∥

∥F − SF
FN

∥

∥

W
≤ ‖F‖W +

∥

∥SF
FN

∥

∥

W
≤ 2‖F‖W.

Let ‖F − SF
FN‖W 6= 0 (otherwise there is nothing to prove, since the right hand side of

(14) is non-negative). We set L0 := L/‖L‖W∗ , so L0 ∈ W∗ and ‖L0‖W∗ = 1. Hence, we

obtain
∥

∥F − SF
FN

∥

∥

W
=
(

F − SF
FN , F − SF

FN

)1/2

W
=
(

L
(

F − SF
FN

))1/2
= ‖L‖1/2

W∗

(

L0

(

F − SF
FN

))1/2

= ‖L‖1/2
W∗

(

L0F − L0S
F
FN

)1/2 ≤ ‖L‖1/2
W∗ (2ΛFN‖F‖W)1/2 ≤ 2Λ

1/2

FN‖F‖W,

where we used Theorem 5.5 and Theorem 5.18. �

One of the important questions of every interpolation problem is whether (and under

which circumstances) the interpolating function converges to the initial function. Here

we obtain a necessary and sufficient condition, under which the sequence of interpolating

splines converges to the initial function, in the sense of a strong as well as a weak

convergence.

Let F ∈ W be arbitrary and F := {F1, F2, ...} be a sequence of linearly independent

bounded linear functionals on W. For any N ∈ N define FN := {F1, ..., FN} and

consider the sequence
{

SF
FN

}

N∈N
of the (uniquely determined) solutions of the spline

interpolation problems

∥

∥SF
FN

∥

∥

W
= min

G∈W
FiG=FiF,i=1,...,N

‖G‖
W

, N ∈ N. (15)

Theorem 5.21 The following statements are equivalent

(i) lim
N→∞

∣

∣LF − LSF
FN

∣

∣ = 0 for any F ∈ W, and for any L ∈ W∗,

(ii) lim
N→∞

∥

∥F − SF
FN

∥

∥

W
= 0 for any F ∈ W,

(iii)the system {F1, F2, F3, ...} is complete in W
∗,

where for any N ∈ N, SF
FN ∈ W is the unique solution of the interpolation problem (15).
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Proof: First, let us show that (ii) is equivalent to (iii). Using Corollary 5.7 we obtain

that (iii) is equivalent to

spanN∈N
{(FN)yK(·, y)}‖·‖W

= W.

Next, it is clear that if (ii) holds, then

∞
⋃

N=1

SplFN

‖·‖W

= W, (16)

However, (16) means that for any F ∈ W and for any ε > 0 there exists N0 ∈ N and

SN0
∈ SplFN0 such that ‖F −SN0

‖W ≤ ε. Therefore, using Theorem 5.16 we obtain that

∥

∥F − SF
FN

∥

∥

W
≤
∥

∥F − SF
FN0

∥

∥

W
≤ ‖F − SN0

‖W ≤ ε for all N > N0.

Hence, (ii) is equivalent to (16). Observing the fact that

∞
⋃

N=1

SplFN

‖·‖W

= spanN∈N{(FN)yK(·, y)}‖·‖W

,

we obtain the equivalency of (ii) and (iii). Now we will show the equivalency of (i)

and (iii). Taking into account the fact that from the strong convergence of a sequence

follows the weak convergence of one, and using the equivalency of (ii) and (iii) we obtain

that (iii) implies (i). So, to finish the proof of the theorem, it is enough to show that

(i) implies (iii), or equivalently Not (iii) implies Not (i). Assume now that (iii) is not

true, i.e. there exists G ∈ W such that FiG = 0, i ∈ N, but G 6= 0. Denote by LG the

functional, whose representer is G. In this case using Lemma 5.13 we obtain

LGSG
FN =

(

SG
FN , G

)

W
=

N
∑

i=1

aN
i FiG = 0, for any N ∈ N,

where for any N ∈ N, aN
1 , ..., aN

N are the coefficients of the spline SG
FN . Hence,

lim
N→∞

∣

∣LGG − LGSG
FN

∣

∣ = |LGG| = |(G, G)W| = ‖G‖2
W 6= 0.

That is, Not (iii) implies Not (i). �

One can combine the interpolation conditions with a smoothing condition to obtain an

approximation problem. This is realized by adding positive constants to the diagonal of

the matrix ([17], [24]). More precisely, by solving the modified linear equation system

N
∑

k=1

ak (Fn)x (Fk)y KW(y, x) + ρan = bn; n = 1, ..., N ;
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for ρ > 0 the spline

S =

N
∑

k=1

ak (Fk)y KW(y, .)

is the unique minimizer of the functional (see also [2])

W ∋ F 7→
N
∑

n=1

|FnF − bn|2 + ρ(F, F )W.

6. Application to Seismic Body Wave Tomography

The task of seismic body tomography is to determine the slowness function S̃ of body

wave propagation out of the travel times Tq of seismic body waves along corresponding

seismic rays γq; q = 1, ..., N ; between Eq (epicenter) and Rq (seismometer, receiver).

The relation is given by the path integral

(

FqS̃ :=
)

∫

γq

S̃(ξ) dσ(ξ) = Tq, q = 1, ..., N.

We discuss the linear variant of the seismic traveltime tomography problem, where the

seismic rays γq; q = 1, ..., N are constructed according to a given (slowness) reference

model S0 and are independent from S̃ (see e.g. [5], [22], [29]).

We will assume the following properties.

Assumption 6.1 γi 6= γj, if i 6= j, i, j = 1, ..., N .

Assumption 6.2 There exists an integer L such that for any i, j = 1, ..., N , with i 6= j

the number of intersection points of γi and γj is smaller than L.

Assumption 6.3 The lengths of seismic rays are uniformly bounded, i.e. there exists

M ∈ R such that

length (γq) < M, q = 1, ..., N.

The functionals Fq are obviously linear, due to the linearity of the integral, and

continuous on W ⊂ C0(B) since

|FqF | ≤ ‖F‖∞ · length (γq)

≤ ‖F‖
W

(

∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]

)2
2n + 1

2

)1/2

M,

for all F ∈ W, where we have used Equation (7) and Assumption 6.3.

Theorem 6.4 The system of functionals {F1, F2, ..., FN} is linearly independent.

Proof: Let Assumption 6.1 hold, i.e. γi 6= γj, if i 6= j, i, j = 1, ..., N , but

{F1, F2, ..., FN} is linearly dependent. That is there exist coefficients a1, ..., aN where at
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least one of them is not 0, such that
∑N

k=1 akFk = 0. However, this means that for any

F ∈ W
N
∑

k=1

akFkF = 0. (17)

Let ai0 6= 0. Assume without loss of generality that ai0 > 0. We will construct a function

in W for which (17) does not hold. As we have already mentioned by rx and ξx we will

always denote the norm and the unit vector of x ∈ R
3 \ {0}, respectively. Clearly, from

Assumptions 6.1 and 6.2 follows that there exists x0 ∈ γi0, with x0 6= 0 and ε > 0 such

that x0(ε)∩γi = ∅ if i 6= i0, where x0(ε) is the ε-neighborhood of x0. Now, it is not hard

to check that for an arbitrary real M0 > 0 we can construct u1 ∈ C[0, 1] and v1 ∈ C(Ω)

such that for F1(x) = F1(rxξx) := u1(rx)v1(ξx), x ∈ B \ {0} we have that F1(x) ≥ 0,

x ∈ B and

F1(x) =

{

M0, if x ∈ x0(ε/n0)

0, if x ∈ B\x0(ε),
(18)

where n0 is some fixed integer.

Hence,

λ1 :=

N
∑

k=1

ak

∫

γk

F1(x)dσ(x) = ai0

∫

γi0

F1(x)dσ(x) >
ai0M0ε

2n0
=: M1 > 0. (19)

Now since length(γi), i = 1, ..., N is bounded

M2 :=
N
∑

k=1

|ak| length(γk) < ∞.

Let p := max(‖u1‖∞, ‖v1‖∞) and gk(r) := G̃k(3, 3, r), k ∈ N, r ∈ [0, 1]. Since the system

{gk}k∈N0
is closed in C[0, 1] (see e.g. [34]) and the system {Yn,j}n∈N0;j=−n,...,n is closed

in C(Ω) (see e.g. [17]), for δ := M1/(2M2) and for δ1 < min(p, δ/(3p)) there exist linear

combinations

g̃ :=

k0
∑

k=0

bkgk and Ỹ :=

n0
∑

n=0

n
∑

j=−n

cn,jYn,j

such that

‖u1 − g̃‖∞ ≤ δ1 and ‖v1 − Ỹ ‖∞ ≤ δ1.

Hence, if we denote F2(x) = F2(rxξx) = g̃(rx)Ỹ (ξx), x ∈ B \ {0} and F2(0) appropriate,
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then clearly, F2 ∈ W and

sup
x∈B\{0}

|F2(x) − F1(x)| = sup
x∈B\{0}

∣

∣

∣
g̃(rx)Ỹ (ξx) − u1(rx)v1(ξx)

∣

∣

∣

= sup
x∈B\{0}

∣

∣

∣
(g̃(rx) − u1(rx))(Ỹ (ξx) − v1(ξx))

+v1(ξx)(g̃(rx) − u1(rx)) + u1(rx)(Ỹ (ξx) − v1(ξx))
∣

∣

∣

≤ sup
r∈(0,1]

|g̃(r) − u1(r)| sup
ξ∈Ω

∣

∣

∣
Ỹ (ξ) − v1(ξ)

∣

∣

∣

+ sup
ξ∈Ω

|v1(ξ)| sup
r∈(0,1]

|g̃(r) − u1(r)| + sup
r∈(0,1]

|u1(r)| sup
ξ∈Ω

∣

∣

∣
Ỹ (ξ) − v1(ξ)

∣

∣

∣

≤ δ2
1 + 2pδ1 ≤ 3pδ1

≤ δ.

Thus, if we denote

λ2 :=

N
∑

k=1

akFkF2 =

N
∑

k=1

ak

∫

γk

F2(x)dσ(x),

then using in the case of 0 ∈ γk the fact that path integrals are invariant w.r.t. changes

of the function at one single point

|λ1 − λ2| =

∣

∣

∣

∣

∣

N
∑

k=1

ak

∫

γk

(F1 − F2)(x)dσ(x)

∣

∣

∣

∣

∣

≤ sup
x∈B\{0}

|F1(x) − F2(x)|
N
∑

k=1

|ak| length(γk)

≤ δM2 =
M1

2
.

That is

λ1 − M1/2 ≤ λ2 ≤ λ1 + M1/2,

such that using (19) we obtain that

N
∑

k=1

akFkF2 = λ2 > M1 −
M1

2
=

M1

2
> 0.

However, this is a contradiction to (17), hence, {F1, F2, ..., FN} is linearly independent.

�

The idea that we follow here is to approximate S̃ by a spline S ∈ W based on a system

{F1, F2, ..., FN}, i.e. by a spline of the form

S(x) =
N
∑

k=1

akFkKW(., x), x ∈ B.
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It is known that if L is a curve parameterized by a C(1)([a, b], R3)–function l, and F is

a continuous scalar field, then
∫

L

F (x) dσ(x) =

∫ b

a

F (l(t)) |l′(t)| dt .

Hence, knowing parametric equations of the raypaths γq; q = 1, ..., N we can calculate

the matrix components corresponding to our spline interpolation problem:

(Fl)x (Fq)y KW(y, x) =
∞
∑

k=0

∞
∑

n=0

A2
k,n

n
∑

j=−n

∫

γl

W B
k,n,j(x) dσ(x)

∫

γq

W B
k,n,j(y)dσ(y).

Note that here we can change the order of integration and summation, since the discussed

functionals Fq are linear and continuous.

Thus, by solving the linear equation system

N
∑

q=1

aq (Fl)x (Fq)y KW(y, x) = Tl for all l = 1, ..., N (20)

we obtain the coefficients (aq)q=1,...,N of the spline

S(x) =

N
∑

q=1

aq (Fq)y KW(y, x) =

N
∑

q=1

aq

∞
∑

k=0

∞
∑

n=0

A2
k,n

n
∑

j=−n

∫

γq

W B
k,n,j(y) dσ(y) W B

k,n,j(x)

approximating the function S̃.

Methods of determining the parametric equations of the raypaths γq; q = 1, ..., N can

be found e.g. in [5].

7. Numerical Tests

Let V0 be the P-wave velocity function according to PREM ([9]). In numerical tests we

take S1 := 1/V1 as a reference slowness model , where V1 is an approximation to V0 with

a function which stepwise is of the form (see Figure 2):

V (r) = A r(1−b), r ∈ [0, 1], A, b = const. (21)

More precisely, we get V1 by dividing [0,1] into 48 parts and in each of these parts

approximating V0 with a function of a form (21). Thus, rays should be generated

according to the slowness model S1. In this case the parametric equations of the raypaths

γq; q = 1, ..., N can be written in a simple analytic form (see [5], p. 177).

As a sequence {Ak,n}k,n∈N0
we took A2

k,n = B2
kC

2
n, k, n ∈ N0, where B2

k = e−λ1 k(k+1) is

the Gauß–Weierstraß symbol, and C2
n = e−λ2 n is the Abel-Poisson symbol. In this case

our reproducing kernel KH(·, ·) can be written as (see (5) and [17], p. 45),

KH(x, y) =

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,nW B

k,n,j(x)W B
k,n,j(y) =

1

4π

1 − h2

(1 + h2 − 2h( x
|x|

· y
|y|

))(3/2)

×
∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2|x| − 1)P

(0,2)
k (2|y| − 1) = K1 (x/|x|, y/|y|) K2 (|x|, |y|) ,
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where

K1 (x/|x|, y/|y|) = K1 (ξx, ξy) :=
1

4π

1 − h2

(1 + h2 − 2h(ξx · ξy))(3/2)
,

with h := C2
1 = e−λ2 and

K2 (|x|, |y|) = K2 (rx, ry) :=
∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2rx − 1)P

(0,2)
k (2ry − 1) (22)

(for similar kernels see [35]). We see that for fixed x0 ∈ B, K1 only depends on ξy, i.e.

on the unit vector of y, and K2 only depends on ry, i.e. on the radius of y. This suggests

that we can choose the parameters λ1, λ2 independently to control the localization

character (hat-width) of KH in the direction of ry and ξy, respectively. The last point

is particularly important in body wave tomography, since here the unknown (velocity)

function has strong variations in the direction of ry and relatively small variations in

the direction of ξy. In this case the matrix components corresponding to our spline

interpolation problem can be written as

(Fl)x (Fq)y KH(y, x) =
1 − h2

4π

∫

γl

∫

γq

(

1

(1 + h2 − 2h( x
|x|

· y
|y|

))(3/2)
×

∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2|x| − 1)P

(0,2)
k (2|y| − 1)

)

dσ(x)dσ(y).

Thus, by solving the linear equation system (20) we obtain the coefficients (aq)q=1,...,N

of the spline

S(x) =

N
∑

q=1

aq (Fq)y KH(y, x) =
1 − h2

4π

N
∑

q=1

aq

∫

γq

(

1

(1 + h2 − 2h( x
|x|

· y
|y|

))(3/2)
×

∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2|x| − 1) P

(0,2)
k (2|y| − 1)

)

dσ(y).

approximating the unkown function. The representation of x ∈ B in the spherical co-

ordinates will be denoted by x̄(r, θ, φ), where r ∈ [0, 1], θ ∈ [0, π] and φ ∈ [0, 2π).

Here we run several numerical tests. In Figure 4 we present a reconstruction of V1(r)

in the segment r ∈ [0.65, 1] with θ = 120◦ and φ = 90◦ using the synthetic ray system

presented in Figure 3(a). In Figures 6 and 5 we present an approximaton of the function

V2(x̄(r, θ, φ)) := 5 + 0.1 sin(5r) cos(20θ) at r = 0.98, r = 0.99, θ ∈ [100◦, 125◦] and

φ = 90◦ using the synthetic ray system presented in Figure 3(b). To see how the

measurement errors affect the result, we recalculate the models in Figures 4, 5 and

6, where we add a random noise of one percent to the corresponding traveltimes (see

Figures 7, 8 and 9). The integral terms representing the matrix components and the

spline basis have been calculated approximately with the trapezoidal rule, where the

series in (22) has been truncated at level 50. Moreover, a smoothing (regularization) of

the linear equation system, with a smoothing parameter ρ, was done.
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Figure 2. P-Wave velocity V0 (according to PREM) (left), approximation of V0, with

a function V1 which stepwise is of the form (21) (center), difference of V1 and V0,

∆V = V1 − V0 (right).

(a) paths of 360 synthetic rays (b) paths of 300 synthetic rays

Figure 3. paths of synthetic rays generated according to V1 and plotted on the plane

φ = 90◦

(a) reconstruction of V1 (b) error of the reconstruction of

V1

(c) comparison of the profiles of

V1 (solid line) and its reconstruc-

tion (dashed line)

Figure 4. reconstruction and corresponding error of V1 and comparison of their

profiles, using the rays in Figure 3(a), with λ1 = 0.001, λ2 = 10, ρ = 10−6
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(a) comparison of the profiles of

V2 (solid line) and its reconstruc-

tion (dashed line)

(b) error of the reconstruction of

V2

Figure 5. reconstruction of V2(r, θ) using the rays in Figure 3(b), with λ1 = 0.2,

λ2 = 0.3, ρ = 0.04 at r = 0.98, θ ∈ [100◦, 125◦] and φ = 90◦

(a) comparison of the profiles of

V2 (solid line) and its reconstruc-

tion (dashed line)

(b) error of the reconstruction of

V2

Figure 6. reconstruction of V2(r, θ) using the rays in Figure 3(b), with λ1 = 0.2,

λ2 = 0.3, ρ = 0.04 at r = 0.99, θ ∈ [100◦, 125◦] and φ = 90◦

(a) reconstruction of V1 (b) error of the reconstruction of

V1

(c) comparison of the profiles of

V1 (solid line) and its reconstruc-

tion (dashed line)

Figure 7. reconstruction and corresponding error of V1 and comparison of their

profiles, using the rays in Figure 3(a), with λ1 = 0.001, λ2 = 10, ρ = 10−6 and with

1% random error in the traveltimes
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(a) comparison of the profiles of

V2 (solid line) and its reconstruc-

tion (dashed line)

(b) error of the reconstruction of

V2

Figure 8. reconstruction of V2(r, θ) using the rays in Figure 3(b), with λ1 = 0.2,

λ2 = 0.3, ρ = 0.04 at r = 0.98, θ ∈ [100◦, 125◦], φ = 90◦ and with 1% random error in

the traveltimes

(a) comparison of the profiles of

V2 (solid line) and its reconstruc-

tion (dashed line)

(b) error of the reconstruction of

V2

Figure 9. reconstruction of V2(r, θ) using the rays in Figure 3(b), with λ1 = 0.2,

λ2 = 0.3, ρ = 0.04 at r = 0.99, θ ∈ [100◦, 125◦], φ = 90◦ and with 1% random error in

the traveltimes

8. Conclusions

The results demonstrate that with the described spline method we are able to obtain a

good approximation for a relatively smooth laterally heterogeneous model (see Figures 6

and 5) as well as for a model with rather big radial variations (see Figure 4). Moreover,

Figures 7, 8 and 9 demonstrate the stability of our method with respect to measurement

errors. Hence, the described spline approximation method proved to be a worthy

tool for interpolating/approximating a function in a ball, in particular for body wave

tomography.
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