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Abstract

Given an undirected, connected network G = (V, E) with weights on the edges, the cut

basis problem is asking for a maximal number of linear independent cuts such that the

sum of the cut weights is minimized. Surprisingly, this problem has not attained as much

attention as its graph theoretic counterpart, the cycle basis problem. We consider two

versions of the problem, the unconstrained and the fundamental cut basis problem.

For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the

problem can be written as a multiterminal network flow problem and is thus solvable in

strongly polynomial time. The complexity of this algorithm improves the complexity of

the best algorithms for the cycle basis problem, such that it is preferable for cycle basis

problems in planar graphs. In contrast, the fundamental cut basis problem, where all cuts

in the basis are obtained by deleting an edge, each, from a spanning tree T is shown to be

NP-hard. We present heuristics, integer programming formulations and summarize first

experiences with numerical tests.
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1 Introduction

Let G = (V, E) be an undirected, connected, simple graph with n vertices, m edges and

a weight function w : E −→ R+ on the edges. In G, we consider the set of all cuts

D = (U, V \U) = (U,U) which is well-known to form a vector space over the two-element

field F2, the cut space D of G. The dimension of D, and thus the number of cuts in any

cut basis, is n − 1.

The weights we for the edges e ∈ E, can be carried over to weights w(D) =
∑

e∈D we

for each cut D, and to w(D) =
∑t

i=1 w(Di) for any cut basis D = {D1, . . . , Dt}. The

min cut basis problem MinDB consists in finding a cut basis D with minimum value

w(D). If we want to emphasize the fact that the weights are summed up we call the prob-

lem also min-sum cut basis problem. Another problem is the min-max cut basis problem

min{max w(D) : D ∈ D}. The non-negativity of the weights implies that each cut D in

a minimum cut basis D is an elementary cut (i.e. no subset of D is disconnecting).

In addition to the unconstrained cut basis problem we may also enforce additional prop-

erties on the bases in D. In this paper, we focus on one constraint, the fundamentality

of the cuts: Given a spanning tree of G the deletion of any edge e ∈ E(G) separates the

node set V of G into two sets Ue and U e. Thus De = (Ue, U e) is a cut in G. Obviously,

the set D = {De : e ∈ E(T )} of n− 1 cuts is linearly independent and is thus a cut basis,

a fundamental cut basis. In the fundamental min cut basis problem MinFDB we want to

find a spanning tree T = (V, E(T )) such that its objective value is minimum among all

fundamental cut basis.

The min cut basis problem is closely related to its graph theoretic counterpart, the min cy-

cle basis problem. We use the denotations MinCB and MinFCB for the unconstrained and

fundamental min cycle basis problem, respectively. In contrast to the cut basis problems,

MinCB and MinFCB have been studied extensively in the past. The first polynomial al-

gorithm for MinCB is due to Horton [Hor87]. Its complexity was improved by [GPS02] and

[KMMP04]. Horton’s idea also led to a polynomial algorithm for problem MinCB with

min-max objective function in [Gal01]. Problem MinFCB, on the other hand, is known

to be NP-hard even for uniformly weighted graphs as was shown in [DPK82] for the min-

sum objective and in [Gal01] for the min-max case. The problems stay NP-hard even if

the graph is complete with non-uniform weights, but are polynomially solvable for com-

plete, uniform graphs [Gal01]. Several approximability results have been established for

MinFCB [Gal01] and [GA03]. Integer programming formulation and metaheuristics are

presented in [ALMM04]. Exact solutions can only be found for small instances of the cycle

base problem. Several suggestions for constructive heuristics solving larger instances can

be found in [DPK82], [DKP95].

Although the unconstrained and fundamental cut basis problems have as much potential

for applications as the corresponding cycle problems (electrical networks, estimation of
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damage in network failure, etc.) and are of theoretical interest in their own right, there is

- in contrast to the cycle problems - hardly any literature on MinDB and MinFDB. To

the best of our knowledge, the only publications are [GH02], who treat MinDB as special

case of a generalized base problem for regular matroids, a chapter in the Ph.D. thesis of

Bunke [Bun06] and the diploma thesis of Schwahn [Sch05].

In the next section we will give some results for general cut bases and present a polynomial

algorithm for MinDB. For planar graphs, this approach can be used to solve MinCB as

well, thus improving current algorithms. In Section 3 we will prove that MinFDB is NP-

hard, show that two special cases can be solved in polyomial time and present different

heuristics for tackling MinFDB . The next section is devoted to various integer program-

ming formulations for MinFDB . Two of these formulations use a cross product of the tree

and cut base polytope, while the third uses a characterization of fundamental cut basis

which does not require the tree polytope. First numerical experiences with the approaches

suggested in this paper are reported in Section 5. The paper concludes with a summary

of our findings and a list of current and suggestions for future work on cut basis.

2 Solving the unconstrained cut basis problem

Since linear independence is a special case of matroid independence, a min cut basis can,

in principle, be found by applying a greedy algorithm: Find iteratively the best cuts

until n − 1 linearly independent cuts have been found. The generation of the cuts can

be done by using the ranking procedure of [HQ85] which is applicable to general com-

binatorial optimization problems. This approach has the obvious drawback that, in the

worst case, exponentially many cuts have to be generated before a minimum basis is found.

Nevertheless, the validity of the greedy approach implies the following result, since every

min-sum cut basis can be constructed by the greedy approach and every solution derived

by this approach solves the min-sum as well as the min-max problem.

Proposition 2.1. Any solution for the unconstrained min-sum cut basis problem is also

a solution for the min-max cut basis problem.

In the special case, where G is a planar graph, it is easy to prove that min cut and min

cycle bases problems are equivalent.

Proposition 2.2. If G is a planar graph and G∗ its dual graph, then the min cut basis

problem in G is equivalent to the min cycle basis problem in G∗.

From Proposition 2.2 it is clear that in planar graphs the min cut basis problem MinDB can

be solved in polynomial time using any of the polynomial algorithms for solving the min

cycle basis problem MinCB ([Hor87],[GPS02], [KMMP04]). In the following we will, how-

ever, show that MinDB can be solved by the Gomory-Hu algorithm [GH61] more effi-

ciently. Its complexity improves the complexity of the best algorithms for MinCB such
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that it is preferable to solve MinCB in planar graphs with this algorithm. It should be

noted that [GH02] already observed the applicability of the Gomory-Hu approach in the

context of circuit bases for regular matroids, albeit without giving a validity proof. In

order to do the latter, we start by proving some general results for cut bases which are

also interesting in their own right.

Lemma 2.3. Let D be a minimum cut basis of G. Then for every pair of vertices, there

exists a minimum weight cut D ∈ D that separates these vertices.

Proof. Let D be a minimum cut basis of G and let u, v ∈ V be any pair of vertices in

G. The basis property of D implies that D contains a cut separating u and v. Suppose

that none of these cuts in D is of minimum weight. Then w(Duv) < w(D) holds for any

minimum weight u-v-separating cut Duv and all D ∈ D. On the other hand, the basis

representation of Duv in terms of the cut basis D – as a symmetric difference of cuts in

D – has to contain at least one u-v-separating cut D. Clearly, D′ := D \ {D} ∪ {Duv} is

again a cut basis, but with weight w(D′) = w(D) − w(D) + w(Duv) < w(D). This is a

contradition to the minimality of D.

This result can be used to give a characterization of min cut bases using non-crossing cuts.

(Two cuts D1 = (U,U) and D2 = (W, W ) are called crossing if all four set intersections

U ∩ W, U ∩ W, U ∩ W , and U ∩ W are nonempty.)

Theorem 2.4. Let D be a collection of non-crossing independent cuts of the graph G.

Then the following statements are equivalent:

a) D is a minimum cut basis of G.

b) For every pair u, v of vertices in G, D contains a minimum weight u, v-separating

cut and D is a minimal set with this property.

Proof. Let D be a minimum cut basis. By Lemma 2.3, D is a set with the property

required in b). The minimality of D follows from its non-crossing property which implies

that every cut D ∈ D separates a pair of vertices that is separated by no other cut in D
and thus, can not be deleted.

Conversely, we prove that D can be obtained as output of the Greedy Algorithm applied

to the set of all cuts of G if (b) holds. In the first step, the Greedy Algorithm chooses the

minimum cut among all cuts of G, and such a cut has to be also contained in D. Assume

that after iteration i, the Greedy Algorithm has already chosen a set of cuts Di ⊂ D. By

the non-crossing property of Di, the independent cut to be selected in the next iteration

has to separate a new pair of vertices that is not yet separated. Moreover, every cut

separating a new pair of vertices that is not yet separated can clearly not be represented

as a symmetric difference of cuts in Di and thus is independent of Di. It follows that

the candidate cuts for the Greedy Algorithm are exactly the cuts of minimum weight

separating a new pair of vertices. By property b), such a candidate cut can be chosen out

of the set D.
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Under the assumption of non-crossing cuts, Theorem 2.4 implies that MinDB corresponds

to the problem of finding minimum cuts separating all pairs of vertices. The latter can be

achieved in strongly polynomial time by solving a multi-terminal network flow problem

using the Gomory-Hu algorithm [GH61] or any of its improvements (see, e.g., [Gus90]).

The outcome of these algorithms is a minimum cut tree, in which each edge defines a cut

of a cut basis. We thus get the following result.

Theorem 2.5. The minimum cut basis problem MinDB can be solved by finding a mini-

mum cut tree T . In particular, it is polynomially solvable in O(nK) time, where K is the

complexity of finding a minimum u-v cut.

Note, that the minimum cut tree T of Theorem 2.5 is, in general, not a subtree of G and

thus not a solution of the fundamental cut basis problem.

Another alternative to solve MinDB in polynomial time is to generalize the algorithm

of [GPS02] by iteratively finding minimum weight odd cuts in a signed graph. Since the

complexity of the resulting algorithm is, however, much worse than O(nK), the complexity

of the minimum cut tree algorithm, we do not present this algorithm but refer to [Bun06]

for details.

3 Complexity of the fundamental cut basis problem and

heuristics

The example of Figure 1 with edge weights equal to 1 for all edges shows that the optimal

objective value of the fundamental min cut basis problem MinFDB is in general worse

than the optimal objective value of its relaxation, the unconstrained minimum cut basis

problem MinDB. Here, MinDB has an optimal objective value of ZMinDB = 16, which

is for example reached by the isolated nodal cut basis D = {D(1), D(2), D(3), D(4), D(6)}.

But the best value we can get when the cut basis is required to be fundamental is

ZMinFDB (T ) = 17, which is, for instance, obtained by the fundamental basis corre-

sponding to the spanning tree of Figure 1.

Figure 1: Optimal nodal cut basis for MinDB with weight 16 and optimal spanning tree

T for MinFDB with weight 17.

The proof of our complexity result is based on the following, well-known relation between

fundamental cuts and fundamental cycles.
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Lemma 3.1. Let T = (V, E(T )) be a spanning tree of graph G and let c be a chord of T

(i.e., c ∈ (E \E(T ))). Furthermore let C(T, c) = {e1, . . . , ek}∪{c} with e1, . . . , ek ∈ E(T )

be the fundamental cycle with respect to c and T .

Then c is contained in a fundamental cut D(T, e) defined by T and e ∈ E(T ) if and only

if e = ei for some i = 1, . . . , k.

Note that analogously, a branch e ∈ E(T ) that determines the fundamental cut D(T, e)

belongs to precisely all those fundamental cycles which are determined by the chords

of T contained in D(T, e). Using Lemma 3.1 we can establish a relation between the

objective functions of MinFDB and MinFCB for uniformly weighted graphs thus proving

the following result.

Theorem 3.2. The minimum fundamental cut basis problem MinFDB is NP-hard even

in the case of uniform edge weights.

Proof. The decision version of MinFCB , i.e. the problem whether there exists a span-

ning tree T for which ZMinFCB (T ) ≤ k, is known to be NP-complete even when all

weights are one (see [DPK82]). By Lemma 3.1, the objective function ZMinFDB (T ) of

MinFDB can be expressed in terms of fundamental cycles as

ZMinFDB (T ) =
∑

e∈T

we +
∑

e6∈T

(|C(T, e)| − 1) · we, (3.1)

where |C(T, e)| denotes the number of edges in the fundamental cycle C(T, e). In the case

where all edge weights we are equal (w.l.o.g. equal to one), this relation reduces to

ZMinFDB (T ) = n − 1 +
∑

e6∈T

|C(T, e)| − (m − n + 1)

= 2n − m − 2 + ZMinFCB (T ) .

Hence both objective functions of MinFDB and MinFCB just differ by a constant and

an optimal tree for one of the two problems is also optimal for the other.

As the following results show, there are, however, special cases of MinFDB which are

polynomially solvable.

Proposition 3.3. The fundamental min cut basis problem MinFDB in complete graphs

G can be solved in O(nK) time, where K is the complexity of finding a minimum u-v cut.

Proof. The unconstrained, i.e. non-fundamental, cut basis problem is a relaxation of

MinFDB and can by Theorem 2.5 be solved in polynomial time outputing a cut tree T .

Since G is a complete graph, T is a spanning tree of G and thus solves MinFDB .

The second graph type for which MinFDB is polynomially solvable is the cactus graph

(see Figure 2), i.e., a graph where any pair of different cycles is edge disjoint .

Proposition 3.4. The fundamental min cut basis problem MinFDB in cactus graphs G

can be solved in O(mlogn) time.
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Figure 2: Cactus graph

The proof of this result is an immedate consequence of the Heavy Tree heuristic presented

next. This heuristic is based on (3.1) in the proof of Theorem 3.2 which suggests to include

edges with large weights we in the tree T , since then their weights are only counted once.

Algorithm 3.5. Heavy Tree Heuristic

Choose T as maximum weighted tree in the weighted graph (G, w).

Clearly, Algorithm 3.5 solves MinFDB to optimality in cactus graphs (see Figure 2).

If, on the other hand, all weights are equal, then the objective function in edge form (3.1)

reduces to

min
∑

f=(u,v)∈E

lTuv, (3.2)

i.e. we want to minimize the sum of the length of all paths connecting nodes u and v in

T with (u, v) ∈ E(G). As a surrogate for (3.2) we take the objectives of an unweighted

min-sum or min-max location problem in the network G.

Algorithm 3.6. Short Tree Heuristic

1. Find the optimal solution v∗ ∈ V of the min-sum location problem minv∈V

∑

u∈V d(v, u)

or of the min-max location problem minv∈V maxu∈V d(v, u).

2. Choose T as the shortest path tree from v∗ to all other nodes u ∈ V .

Since the min-sum and min-max problem are known in location theory also as median and

center problem, we call a tree resulting from Algorithm 3.6 median short tree and center

short tree, respectively. The short tree and the heavy tree heuristics are complementing

each other, since one of them is usually producing good solutions if the other does not.

In the last heurstic we start with a cut-tree by solving MinDB as relaxation of MinFDB and

apply iteratively edge swaps until the tree becomes a subtree of G. Recall that an edge swap

T [e, f ] consists in removing an edge e ∈ E(T ) and replacing it by an edge f ∈ E \ (E(T )

from the fundamental cut of T and e. Obviously, edge swaps maintain the tree property

such that the following heuristic provides a feasible solution for MinFDB .
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Algorithm 3.7. Feasible Cut Tree Heuristic

1. Find an optimal solution for the unconstrained problem MinDB by computing an

optimal cut-tree T = (V, E(T )) using a multi-terminal network flow algorithm (see

Section 2).

2. If E(T ) ⊆ E, then T defines an optimal solution of MinFDB.

3. Otherwise, use edge swaps to transform T into a subtree of G.

Besides its application in Algorithm 3.7, edge swaps can be used in metaheuristics such

as Local Search and Variable Neighbourhood Search (VNS).

The former checks if a given tree - computed, for instance, by any of the preceding heuristic

– is locally optimal. I.e., it computes the total cut weight of all the trees that can be

obtained from the given tree through an edge swap. If one of these adjacent trees has

a smaller total cut weight, the given cut-tree is replaced by its best neighbour and the

search is iterated. The algorithm stops with a locally optimal solution.

In order to escape local optima which are not global ones, we repeat edge swaping a

certain number (the neighbourhood size) of times without checking on an improvement of

the objective value during the process. We then apply local search procedure to the new

tree. If a better solution is achieved in this way, we replace the previous locally optimal

tree by it. Obviously, the improved quality of the VNS solutions has to be paid for with

increased running times.

4 Integer Linear Programming Formulations

In this section, we give three integer programming formulations for the fundamental cut

basis problem MinFDB . The first two formulations use the cross product of tree and

cut basis formulations. The latter formulations are tied together by a condition which

ensures that the the cut basis is, indeed, a fundamental one. In the third formulation

we present a possibility to avoid the explicit formulation of tree constraints by using a

tree-free characterization of fundamental cut bases.

4.1 Formulation 1

We start this section with an intuitive formulation which uses the following interpretation

of the binary variables.

xk
ij :=

{

1 if edge (i, j) ∈ cut Dk

0 else

yij :=

{

1 if edge (i, j) ∈ spanning tree T

0 else

zik :=

{

1 if node i is contained in shore Uk of cut Dk = (Uk, V \ Uk)

0 else
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Then problem MinFDB can be formulated as follows.

min

n−1
∑

k=1

∑

(i,j)∈E

cijx
k
ij

such that
∑

(i,j)∈E

yij = n − 1 (4.3)

∑

(i,j)∈E(S)

yij ≤ |S| − 1 ∀ S ⊂ V, 2 ≤ |S| ≤ n (4.4)

n−1
∑

k=1

xk
ij ≤ 1 + m(1 − yij) ∀(i, j) ∈ E (4.5)

n−1
∑

k=1

xk
ij ≥ 1 ∀(i, j) ∈ E (4.6)

n
∑

i=1

zik ≥ 1 ∀k (4.7)

xk
ij ≤ zik + zk

j ∀(i, j) ∈ E, ∀k (4.8)

xk
ij ≤ 2 − zik − zk

j ∀(i, j) ∈ E, ∀k (4.9)

−xk
ij ≤ zik − zk

j ∀(i, j) ∈ E, ∀k (4.10)

−xk
ij ≤ zk

j − zk
i ∀(i, j) ∈ E, ∀k (4.11)

xk
ij , yij , z

k
i ∈ {0, 1}

(4.3) and (4.4) is the well-known rank formulation for spanning trees using the binary

variables yij . The constraints (4.6) to (4.11), and the binary edge-cut variables xk
ij and

shore-cut variables zk
i define a cut base. These sets of constraints define the cross prod-

uct of characteristic vectors of trees and cuts bases. Constraints (4.5) tie the polytopes

together and guarantee that the cut base defined by x and z is, indeed, the fundamental

cut base of the tree defined by y.

4.2 ILP Formulation 2

Instead of using the formulations of the tree and cut base polytope of the first formulation

any other formulation can be used. The rank formulation is, for instance, from a com-

putational point bad, since we would have to deal with exponentially many constraints.

Section 5 contains a discussion on how to deal with this issue.

In the second formulation we follow the same approach as the first one in crossing tree

and cut base polytopes. Our goal

We assume in this formulation that the given graph G is biconnected and loopless.

For the spanning tree polytope we use a formulation due to [Grö77]. For F ⊂ E, we

denote by GctrF the graph resulting from G by contraction of F , in which F is deleted and
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the vertices of V (F ) are shrunk to a super node. (Note that if F 6= E(V (F )), loops can

arise.) Furthermore H denotes the set of vertex-induced biconnected proper subgraphs of

G. Then the spanning tree polytope

PST = {y ∈ R
m | y satisfies (4.12) - (4.14)}

given by

y(E) =
∑

e∈E

ye = n − 1 (4.12)

y(F ) =
∑

e∈F

ye ≤ |W | − 1 ∀ H = (W, F ) ∈ H s.t. GctrF biconnected (4.13)

ye ≥ 0 ∀ e ∈ E s.t. G \ e biconnected (4.14)

has the dimension dim(PST ) = m − 1.

A minimal description of the cut polytope PD of a simple graph not contractible to K5 is

given as follows (see [BG86]). For a cycle C of G, we call h ∈ E \ C a chord of C if there

exist two cycles C1 and C2 such that C1 ∩ C2 = {h} and C1 △C2 = C. We denote by E3

the set of edges not contained in a triangle, that is, a cycle of size three.

Then PD has the form

PD = {x ∈ R
m | x satisfies (4.15) and (4.16)}

where
∑

e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1 ∀ cycles C without chord; ∀F ⊆ D, |F | odd (4.15)

0 ≤ xe ≤ 1 ∀ e ∈ E \ E3 . (4.16)

Since there are no parallel edges or loops in G, the cut polytope PD is fulldimensional,

i.e., dim(PD) = m .

Combining the preceding formulations we define

QF := {p = (x, y) = (x1, . . . , xn−1, y) ∈ R
nm | p satisfies (4.17) - (4.24)}
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where

y(E) =
∑

e∈E

ye = n − 1 (4.17)

y(F ) =
∑

e∈F

ye ≤ |W | − 1 ∀ H = (W, F ) ∈ H s.t. GctrF biconnected (4.18)

∑

e∈F

xk
e −

∑

e∈C\F

xk
e ≤ |F | − 1 ∀ chordless cycles C, ∀F ⊆ C, |F | odd; ∀ k (4.19)

∑

e∈E

xk
e ≥ 2 ∀ k (4.20)

n−1
∑

k=1

xk
e ≥ 1 ∀ e ∈ E (4.21)

n−1
∑

k=1

xk
e ≤ 1 + m(1 − ye) ∀ e (4.22)

0 ≤ xk
e ≤ 1 ∀ e ∈ E \ E3 ; ∀ k (4.23)

ye ≥ 0 ∀ e ∈ E s.t. G \ e biconnected (4.24)

Here (4.17) - (4.19) together with (4.23) - (4.24) describe the product Pn−1
D ×PST ⊂ R

nm

which contains PF . New constraints (4.20) - (4.22) are added to link the variables de-

scribing the spanning tree to those of the corresponding fundamental cuts to guarantee

fundamentality. Note that conditions (4.18) contain in particular the requirement ye ≤ 1

for all e ∈ E such that Gctr{e} is biconnected. We have thus the following result.

Proposition 4.1. The polytope QF is a formulation for XF , that is, XF = QF ∩ Z
nm.

In the definition of QF , the independence of the n − 1 cuts does not have to be required

explicitly since it is already implied by the fundamentality of the cuts corresponding to

the spanning tree T . Note also, that Pn−1
D × PST is – as product of integral polytopes –

an integral polytope. But this integrality is destroyed by the additional constraints (4.20-

4.22).

We can now easily establish the dimension of polytope PF .

Theorem 4.2. Let G be a biconnected, loopless graph. Then the dimension of the funda-

mental cut basis polytope PF is dim (PF ) = nm − 1.

Proof. The dimension of the product Pn−1
D ×PST ⊂ R

nm is the sum of the dimensions of

its components, since the blocks of variables are independent from each other. All vectors

in PF satisfy equation (4.17), and it hence follows that dim (PF ) = dim(Pn−1
D × PST ) =

(n − 1)m + (m − 1) = nm − 1.
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4.3 ILP Formulation 3

The last formulation is based on a characterization of fundamental cuts which is dual to

the one for fundamental cycles given by [HM91], [Sys79] and [Sys81]. Let D = {Di}i∈I be

a cut basis of graph G, where I = {1, . . . , n − 1}.

Lemma 4.3. Let D = {Di}i∈I be a cut basis of graph G. Then the following statements

are equivalent:

(i) D is a fundamental cut basis.

(ii) For every Dj ∈ D there exists an ej ∈ Dj with ej 6∈ Di for i ∈ I \ {j} .

Proof. (i) =⇒ (ii) : If D is fundamental then every branch e ∈ T is contained exclusively

in the cut D(T, e) generated by it. Hence every cut of the basis contains at least one edge

that does not belong to the other cuts.

(ii) =⇒ (i) : Let H := (V,∪n−1
j=1 ej). Then the number of edges of H is n − 1. Suppose

that C is a cycle in H. Then for any ek ∈ C ⊂ H we would get C ∩ Dk = {ek}, a

contradiction to the fact that the number of elements in the intersection of any cycle with

any cut is even. It follows that H is a spanning tree that generates the basis D, hence D
is fundamental.

We use condition (ii) of Lemma 4.3 (which we call in the following the Syslo condition)

to get an alternative integer programming formulation. Let M := 2m(n − 1) and let

XF2
⊂ B

M be the set of incidence vectors of fundamental cut bases of G, given in the

form χ = (χD(T,e1), . . . , χD(T,en−1), χb1 , . . . , χbn−1
). Here, χD(T,ek) are the incidence vec-

tors of the fundamental cuts D(T, ek) corresponding to some spanning tree T of G and

χbk
contain the information which edge is the unique branch of T in the fundamental cut

D(T, ek). Let PF2
:= conv(XF2

) be its convex hull.

Consider

QF2
:= {p = (x, t) = (x1, . . . , xn−1, t1, . . . , tn−1) ∈ R

M | p satisfies (4.25) - (4.31)}
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where
∑

e∈F

xk
e −

∑

e∈C\F

xk
e ≤ |F | − 1 ∀ chordless cycles C, ∀F ⊂ C, |F | odd; ∀ k (4.25)

∑

e∈E

xk
e ≥ 2 ∀ k (4.26)

n−1
∑

k=1

xk
e ≥ 1 ∀ e ∈ E (4.27)

∑

e∈E

tke = 1 ∀ k (4.28)

n−1
∑

h=1

xh
e ≤ 1 + m(1 − tke) ∀ e ∈ E ; ∀ k (4.29)

0 ≤ xk
e ≤ 1 ∀ e ∈ E ; ∀ k (4.30)

0 ≤ tke ≤ xk
e ∀ e ∈ E ; ∀ k (4.31)

Proposition 4.4. The polytope QF2
is a formulation for XF2

, that is, XF2
= QF2

∩ Z
M .

In this formulation we accept an increase in the number of variables compared with for-

mulation 2 in order to eliminate the exponentially many subtour elimination constraints.

Constraints (4.28) and (4.29) model the Syslo-condition (ii) of Lemma 4.3 as they make

sure that every cut of the basis contains one edge that is not contained in any other of

the cuts. Hence the fundamentality of the cuts can be guaranteed without modelling a

spanning tree explicitly. But variables tke can be interpreted as to linearize the product

xk
eye meaning that “edge e is the branch of cut k”. Hence condition (4.28) ensures that

every cut contains exactly one branch and by (4.29), it is excluded that a branch belongs

to more than one cut.

5 Numerical Results

Similar to the fundamental cycle basis problem MinFCB [ALMM04], exact solutions for

the fundamental cut basis problem can only be found for very small instances (n ≤ 7). We

therefore strive to find solution approaches which provide reasonable duality gaps (DG).

For this purpose, we use the heuristics

FCT Feasible Cut Tree

HT Heavy Tree

MT Median Tree

CT Center Tree

VNS Variable Neighbourhood Search
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from Section 3 to provide upper bounds and relaxations

GHT Gomory Hu Tree (see Section 2)

LPR LP Relaxation (see Section 4)

as lower bounds. It should be noted that the GHT bound can also be interpreted as a

Lagrange bound, since it corresponds to a feasible Lagrange solution with multipliers equal

to zero.

We performed the tests on randomly generated graphs with input number of vertices n,

edge density p, and weight span [wmin,wmax]. In the following, we will first analyze the

lower bounds and then report on our first experiences with duality gaps.

5.1 Computation of lower bounds

In order to compute lower bounds using the LP relaxations of the formulations from

Section 4, we have to deal with the exponentially many constraints in these formulation.

In Formulations 1 and 2 we replaced the rank constraints (4.3) and (4.4), and (4.12) and

(4.13), respectively, by the following set of polynomially many level constraints (see, for

instance, [GPS00], [Sch05] or [Bun06], where the latter also contains a validity proof ).
∑

e=(u,v)∈E

yuv = n − 1 (5.32)

level(v) ≥ level(u) + 1 − n + n · yuv ∀u, v ∈ V, u 6= v (5.33)
∑

v∈V,v 6=u

yuv = 1 ∀u ∈ V, u 6= 1 (5.34)

level(u) ∈ N ∀u ∈ V (5.35)

Instead of checking the cycle basis constraints (4.19) (or (4.25)) for all cycles in G we can

restrict ourselves to the cycles in an arbitrarily chosen cycle basis of graph G, since the

evenness of the intersection inherits itself from a cycle basis to all cycles. Moreover, a cut

can be characterized as an inclusionwise minimal set of edges D with the property that

|C ∩ D| 6= 1 for each cycle C. This can be modeled by using conditions (4.19) only for

singleton subsets F ⊆ C, i.e. sets with |F | = 1. We can, therefore, replace the expontially

many constraints (4.19) by

xk
f −

∑

e∈C\{f}

xk
e ≤ 0 ∀ cycles C in a basis, ∀ f ∈ C; ∀ k (5.36)

∑

e∈C

xk
e ≤ 2, ∀ cycles C in a basis; ∀ k (5.37)

If we use for each cycle in the basis characteristic vectors cl = (cl
e)e∈E then the preceding

constraints can be written as
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cl
fxk

f −
∑

e∈E\{f}

cl
ex

k
e ≤ 0 ∀ f ∈ E; ∀ k; ∀ l (5.38)

∑

e∈E

cl
ex

k
e ≤ 2, ∀ k; ∀ l. (5.39)

Table 1 shows some results comparing the resulting LP relaxation bounds (LPR) with the

Gomory/Hu lower bounds (GHT). In this table – and in all our computations – GHT is

the clear winner.

Average Degree GHT/LPR

n=30, p=13.8% 4 1.68

n=30, p=27.6% 8 1.88

n=30, p=41.4% 12 1.89

n=30, p=55.2% 16 1.90

n=30, p=69.0% 20 1.91

n=30, p=82.8% 24 1.91

n=30, p=96.6% 28 1.92

n=30, p=100.0% 29 1.92

n=50, p=6.1% 3 1.78

n=50, p=8.2% 4 1.92

Table 1: Quality of the lower bounds measured by the ration GHT/LPR (in all instances

w ∈ [1, 10])

That the GHT bound would do well for (almost) complete graphs is in light of Proposition

3.3 no surprise, since the solution is very likely to be optimal not only for the relaxation

MinDB but also for MinFDB . But even for sparse graphs the Gomory Hu cut tree yield

much better bounds than the LP relaxations. The ration between the bounds gets also

larger for increasing number n of vertices.

One reason for the bad performance of LP relaxation is the fact that the inequality
∑n−1

k=1 xijk ≥ 1 ∀(i, j) ∈ E (4.5) is satisfied with equality for all tested instances. I.e.

in the integer case every edge has to be contained in at least one cut, every chord is con-

tained in at least two cuts, whereas in the relaxed case an edge is contained in a cut with

“just a percentage” and these add up to 1. This way we considerably underestimate the

chords.

It takes much time to solve the LP relaxation, which is not surprising, since for a graph

with 100 vertices and an edge density of 0.5 we get, for instance, over 1.5 million functional

constraints and about 750000 binary variables.

As a consequence of the lower bound comparisons, the gap computations which are dis-

cussed next are only done using the GHT lower bound.
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5.2 Duality gap

In the test 20 random graphs were generated for each combination of parameters. The

figures shown in the tables are the mean values of the corresponding duality gaps.

DG Heuristic in % DG VNS in %

n FCT HT MT CT FCT HT MT CT

5 0.3 4.9 9.1 9.4 0.1 0.1 0.1 0.1

10 4.2 37.5 2.1 4.3 2.6 2.1 1.7 1.7

15 10.1 74.0 8.0 16.5 7.3 11.7 6.5 11.3

20 8.8 97.8 5.8 15.8 7.1 13.1 5.2 12.7

25 16.1 232.3 09.8 20.5 12.3 13.9 9.1 18.4

30 12.1 250.5 9.6 19.4 10.7 13.3 9.0 17.5

Table 2: Influence of the graph size (p = 0.75, w in [1,10], k = 5)

DG Heuristic in %

n FCT MT

40 12.7 10.0

60 16.9 10.5

80 19.0 12.6

100 18.8 13.5

Table 3: Influence of the graph size (p = 0.75, w in [1,10], k = 0)

Tables 2 and 3 demonstrate the influence of the graph size on the performance of the

heuristics. The larger the graph the worse the behaviour of the heuristics which becomes

especially apparent for the heavy tree heuristic. This is due to the increasing importance

of having short paths which is not accounted for in the heavy tree. In the worst case the

maximum spanning tree is a Hamiltonian path.

The median tree yields the best results for the heuristic and the variable neighbourhood

search except for instances with five vertices where the feasible cut tree and the heavy tree

are preferable. For larger graphs we tested the most promising heuristics, Feasible Cut

Tree and Median Tree and neglected VNS due to computation times, see Table 3.

The influence of the graph density is shown in Tables 4 and 5. The feasible cut tree yields

good solutions, in complete graphs due to Proposition 3.3 obviouisly the optimal one. The

initial short trees (Median and Center) become better, the heavy tree worse with increas-

ing density. Furthermore, we can observe that the heavy tree yields better solutions than

the short trees in graphs with only a few vertices.

The weight intervals tested in Table 6 do not influence the performance of the different

heuristics. The best solutions are obtained by the median tree, the second best solutions
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DG Heuristic in % DG VNS in %

p FCT HT MT CT FCT HT MT CT

0.5 0.0 0.9 11.2 11.1 0.0 0.0 0.0 0.0

0.75 0.3 4.9 9.1 9.4 0.1 0.1 0.1 0.1

1.0 0.0 5.9 9.6 9.6 0.0 0.0 0.1 0.2

Table 4: Influence of the density in (n = 5, w in [1,10], k = 5, k = 0 for p = 0.5)

DG Heuristic in % DG VNS in %

p FCT HT MT CT FCT HT MT CT

0.25 16.0 14.1 27.4 34.4 4.4 4.6 4.5 5.0

0.5 19.6 50.7 17.3 25.6 10.9 10.3 9.9 12.4

0.75 10.1 74.0 8.0 16.5 7.3 11.7 6.5 11.3

1.0 0.0 76.2 1.4 1.4 0.0 0.8 1.4 1.4

Table 5: Influence of the density in (n = 15, w in [1,10], k = 5)

by the feasible cut tree. The heavy tree solution does not yield an acceptable duality gap.

For the tests shown in Table 7 an edge weight is within the first interval with probability

75% and within the second interval with 25%. With increasing distance of the intervals

the short trees are less and the heavy tree is more efficient. Heavy tree and feasible cut

tree show the best behaviour if improved by variable neighbourhood search.

The last investigation concerning the influence of the weight is shown in Table 8. The

probability of the weight to be in the first of two intervals has been modified. Except for

the cases with probability 0 and 100%, the heavy tree behaves better and the short trees

behave worse for increasing probability of a lower weight. The performance rate between

heavy and short tree has a break even at probability 75% .

Enlarging the size of the neighbourhood to be combed improves the VNS-duality gaps (see

Table 9) but has to be paid off by higher computation times.

Summing up the results of our numerical tests, the feasible cut tree is the most reliable

heuristic. The center tree is never better than the median tree. The median tree yields

good results except for very small and sparse graphs and spread weight intervals. In these

cases the heavy tree is more efficient. Overall, the worst case solutions are much better of

the median than of the heavy tree. The VNS-duality gap of the respectively best procedure

is always below 10% with a neighbourhood size of only five. For larger graphs the initial

solution of median tree still provides a duality gap of 13.5% without VNS.
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DG Heuristic in % DG VNS in %

w FCT HT MT CT FCT HT MT CT

[1, 10] 10.1 74.0 8.0 16.5 7.3 11.7 6.5 11.3

[1, 100] 11.9 70.2 9.4 16.7 8.0 11.8 7.2 11.0

[1, 1000] 11.0 63.8 7.6 16.1 7.5 10.8 6.2 11.4

[1, 10000] 9.9 74.2 7.2 13.9 7.0 9.4 5.7 9.9

Table 6: Influence of the weight (n = 15, p = 0.75, k = 5)

DG Heuristic in % DG VNS in %

w FCT HT MT CT FCT HT MT CT

[1, 10] ∪ [91, 100] 15.2 28.8 14.4 26.1 3.9 4.6 5.7 7.5

[1, 10] ∪ [991, 1000] 13.1 26.4 24.5 29.0 2.6 2.3 7.6 6.9

[1, 10] ∪ [9991, 10000] 8.3 18.3 31.9 48.9 2.3 2.4 9.6 10.3

Table 7: Influence of the weight (n = 15, p = 0.75, k = 5)

6 Conclusion and Further Research

In this paper we considered the unconstrained and the fundamental cut basis problems

in undirected graphs. The unconstrained problem is solved by applying a multiterminal

network flow algorithm and using the cuts defined by the resulting minimum cut tree.

The fundamental cut basis problem was shown to be NP-hard. Two polynomially solvable

special cases are the complete graphs and cactus graphs. Several heuristics and integer

programming formulatios were proposed. The resulting lower and upper bounds were

used in numerical test which showed that a duality gap of less than 10% can be achieved

combining the proposed heuristics with variable neighbourhood search.

The numerical tests show that the Gomory/Hu lower bounds obtained by the relaxation

of the fundmentality outperforms the lower bound obtained by linear programming re-

laxation. Since the Gomory/Hu bounds are special cases of Lagrangian bounds (with

Langrangian multipliers all equal to zero), this indicates the solution of the Lagranian

dual as a promissing research area.

Another interesting area is the generalization of the presented formulations for fundamen-

tal cut bases to fundamental circuit bases in binary matroids. The reader is refered to

[Bun06] for more details in this matter.
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