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Abstract

In contrast top-hub problems with a summation objective (p-hub median), min-
max hub problems (p-hub center) have not attained much attention in the literature.
In this paper, we give a polyhedral analysis of the uncapacitated single allocation
p-hub center problem (USApHCP). The analysis will be based on a radiusfor-
mulation which currently yields the most efficient solution procedures. We show
which of the valid inequalities in this formulation are facet-defining and present
non-elementary classes of facets, for which we propose separation problems.

A major part in our argumentation will be the close connection between polytopes
of the USApHCP and the uncapacitatedp-facility location (pUFL). Hence, the new
classes of facets can also be used to improve pUFL formulations.
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1 Introduction

In the last two decades hub location models have enjoyed much attention from
researchers in different fields. Research concentrated, however, mostly on hub
problems with median objective. It is only in the last few years that hub center
problems have been given some attention (see surveys of Alumur and Kara2007
or Campbell, Ernst, and Krishnamoorthy 2002).

As in all hub problems, pairs of origin-destination (o-d) nodes need to exchange
a commodity, e.g., information, passengers, or goods. For this purpose, asub-
set of the original nodes is selected to serve ashub nodes, which are completely
interconnected. All the non-hub nodes (so-calledspokes) are allocated to hubs,
where flow is collected, consolidated and distributed. Transportation can profit
from economies of scale, thus making the hub network an interesting alternative
to a fully interconnected network. Thep-hub center problemconsists of choosing
a number ofp nodes to become hubs such as to minimize the maximum trans-
portation cost in the resulting hub network. In this treatise, we restrict ourselves to
thesingle allocationcase, i.e., each spoke node is connected only to one hub node.
The optimal allocation of spokes to hubs then becomes part of our problem. We are
dealing with anuncapacitatedoptimization problem, meaning that we can allocate
an arbitrary number of spokes to a hub. Thus, this special problem type isreferred
to as theuncapacitated single allocationp-hub center problem(USApHCP).

Hub location problems with median objectives have been considered from different
perspectives, e.g., polyhedral analysis (Hamacher et al. 2004 and Sonneborn 2002),
formulations (Campbell 1996), and heuristics (Ernst and Krishnamoorthy1998,
O’Kelly, Skorin-Kapov, and Skorin-Kapov 1995, etc.).

The study of USApHCP has been initiated by Campbell 1994. Formulations and
heuristics for the hub center problem have been considered in Ernst etal. 2002a,
Ernst et al. 2002b, and Ernst et al. 2002c. To the best of our knowledge, there are
two competing formulations for USApHCP: one due to Kara and Tansel 2000and
the other from Ernst et al. 2002c. In the following, we will concentrate onthe latter,
the radius formulation. This formulation, combined with a hub cover model of
Wagner 2004 is also the basis for the currently fastest implementation of a solution
algorithm for USApHCP (see Hamacher and Meyer 2006).

Consider an undirected graphG = (V, E) with n supply-demand nodesV =
{1, . . . , n}. Out of the setV , p nodes have to be chosen as hubs. A cost factordi j

is associated with each o-d pairi, j ∈ V , satisfying (i)di j ≥ 0 ∀ i, j ∈ V (non-
negativity), (ii) di j = 0 ⇐⇒ i = j, (iii) di j = dj i ∀ i, j ∈ V (symmetry), (iv)
di j ≤ di k + dk j ∀ i, k, j ∈ V (triangle inequality), and (v)di j = M ∀ ei j 6∈ E,
whereM is a large positive number. A discount factorα ∈ [0, 1] represents cost
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savings resulting from economies of scale on inter-hub arcs. For each hub node
k, the radius rk denotes the maximum distance fromk to all the spoke nodes al-
located to it. Fori, k ∈ V , let Xi k = 1 if node i is allocated to hubk, Xi k = 0
else. (Especially,Xk k = 1 if and only if nodek is a hub.) Assuming that
M ≥ max

k,m
(max

j
dj k + max

j
dj m + α dk m) for j, k, m ∈ V , the radius formula-

tion of Ernst et al. 2002c for USApHCP is

min z

s.t. z ≥ rk + rm + α dk m ∀ k, m ∈ {1, . . . , n} (1)

rk ≥ di kXi k ∀ i, k ∈ {1, . . . , n} (2)

rk ≤ MXk k ∀ k ∈ {1, . . . , n} (3)
n∑

k=1

Xi k = 1 ∀ i ∈ {1, . . . , n} (4)

Xi k ≤ Xk k ∀ i, k ∈ {1, . . . , n} (5)
n∑

k=1

Xk k = p (6)

rk ≥ 0 ∀ k ∈ {1, . . . n} (7)

Xi k ∈ {0, 1} ∀ i, k ∈ {1, . . . n}. (8)

Constraints (4) and (8) assure that each node is uniquely allocated to a hub, whereas
constraints (5) allow allocation to a node only if it is a hub. Constraint (6) requires
that exactlyp are established. Constraints (2) set up hub radii according to their
definition. Constraints (1) together with the objective function work to minimize
the maximum distance within an o-d pair. Constraints (3) provide an upper bound
on the radii and enforcerk = 0 for spoke nodes. Note that (3) are not included in
the original formulation of Ernst et al. 2002c, but have been added since they will
be helpful when examining facets.

In the following, we will present a polyhedral analysis for USApHCP using the
radius formulation. The rest of this paper is organized as follows: First we ex-
amine the polyhedron describing the convex hull of the points satisfying (1)–(8);
this examination entails calculating its dimension and determining which of the
given constraints are facet-defining. i.e. areelementary facets. Then we identify
three classes ofnon-elementary facets, i.e., facets of the convex hull other than the
ones derived from the constraints. Finally, we propose algorithms for theresulting
separation problems.
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2 Dimension of the polyhedron

Definition 2.1 i) The (radius) formulation polyhedronK of USApHCP is the
set of all pointsP = (X1 1, X1 2, . . . , Xn n, r1, . . . , rn, z) ∈ R

n2+n+1
+ such

thatP satisfies constraints (1)–(7) and0 ≤ Xi k ≤ 1 for all i, k ∈ {1, . . . , n}.

ii) The set of all feasible solutions satisfying constraints (1)–(8) is denoted by
X , i.e.,X = K ∩ ({0, 1}n2

× R
n+1).

Since USApHCP has been shown to beNP-hard (see Ernst et al. 2002c), the com-
putation ofconv(X ) is out of reach. Hence, in what follows, we present a polyhe-
dral analysis in order to find facet-defining inequalities ofconv(X ).

In our analysis, we take advantage of the relation between USApHCP and another
optimization problem—theuncapacitated p-facility location problem, pUFL (see
Cornuejols, Nemhauser, and Wolsey 1990).

Given an undirected graphG = (V, E) with demand nodesV = {1, . . . , n}, pUFL
consists of choosingp nodes out ofV as facilities to serve the other demand nodes.
Let xi k = 1 if node i is served by facilityk, otherwisexi k = 0. Then, equipped
with a center objective function, pUFL can be stated as follows:

min max
i,k

di k xi k

s.t.
n∑

k=1

xi k = 1 ∀ i ∈ {1, . . . , n} (9)

xi k ≤ xk k ∀ i, k ∈ {1, . . . , n} (10)
n∑

k=1

xk k = p (11)

xi k ∈{0, 1} ∀ i, k ∈ {1, . . . n} (12)

Note that we distinguish between the denotationsxi k andXi k when referring to
variables related to pUFL and USApHCP, respectively. Also, when notation be-
comes cumbersome, we separate the indices with commas, i.e.,Xi, k. In this work,
both USApHCP and pUFL are considered only forp ∈ {2, . . . , n− 2}. LetXpUFL

denote the set of feasible solutions to pUFL andconv(XpUFL) the convex hull of
these feasible solutions, and letKpUFL be the formulation polytope derived from
constraints (9)–(11) and the relaxed binary restrictions. The following relations
between USApHCP and pUFL are easy to see.
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Proposition 2.2 Let P = (x1 1, x1 2, . . . , xn n) be a feasible solution to pUFL.
Then,P ∗ := (X1 1, X1 2, . . . , Xn n, r1, . . . , rn, z), with Xi k := xi k ∀ i, k,
rk := maxi di kXi k ∀ k, andz ≥ maxk,m rk + rm + α dk m is a feasible solution
to USApHCP, and thus,P ∗ ∈ conv(X ).

Proposition 2.3 Let P1, . . . , Pm ∈ conv(XpUFL) be affinely independent points.
Then,P ∗

1 , . . . , P ∗
m ∈ conv(X ) are affinely independent, whereP ∗

i is constructed
fromPi as shown in proposition 2.2.

We have thus shown:

Corollary 2.4 dim(conv(X )) ≥ dim(conv(XpUFL)).

In the derivation of the dimension ofconv(X ), we will make use of the following
fact due to Cornuejols, Nemhauser, and Wolsey 1990.

Lemma 2.5 dim(conv(XpUFL)) = n2 − n − 1 .

Now we can determine the dimension ofconv(X ). To facilitate the development of
the proofs in the following sections, the dimension ofconv(X ) will be derived in
a direct way, that is by constructing a maximum set of affinely independentpoints
in conv(X ).

In the following, letXP
i k denote the value of a variableXi k for the pointP . The

denotationsrP
k andzP are used analogously.

Theorem 2.6 dim(conv(X )) = n2.

Proof: The radius formulation of USApHCP containsn2+n+1 variables andn+1
equations which are linearly independent. Consequently,dim(conv(X )) ≤ n2. It
remains to show that there existn2 + 1 affinely independent points inconv(X ):

By lemma 2.5, there existn2 − n affinely independent pointsP1, . . . , Pn2−n ∈
conv(XpUFL). Thus, by proposition 2.3, we can constructn2 − n affinely inde-
pendent pointsP ∗

1 , . . . , P ∗
n2−n

in conv(X ) as proposed in proposition 2.2, but set
z := 2 maxk,m (rk + rm + α dk m) for eachP ∗

i .

Now, useP ∗
1 , . . . , P ∗

n2−n
to construct additionaln+1 feasible, affinely independent

solutions. First, note that for everyk ∈ {1, . . . , n} there isi ∈ {1, . . . , n2 − n}

such thatr
P ∗

i

k > 0 (sinceP1, . . . , Pn2−n are affinely independent).

For everyk, choose the minimal indexi(k) ∈ {1, . . . , n2−n} with r
P ∗

i(k)

k > 0. Let
L = {L1, . . . , Ls} be the index set of chosen pointsP ∗

Lj
ordered such thatL1 <
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L2 < . . . < Ls, and letLj be the set ofk-values for whichP ∗
Lj

has been chosen,

i. e.,Lj = {k : i(k) = Lj}. Construct new pointŝP1, . . . , P̂n with P̂k = P ∗
i(k),

except thatrP̂k

k = 2 r
P ∗

i(k)

k . Due to the choice ofM , the new pointŝP1, . . . , P̂n stay
feasible.

Next, we show that the pointsP ∗
1 , . . . , P ∗

n2−n
, P̂1, . . . , P̂n are affinely independent.

Assume that
n2−n∑

i=1

α∗
i P

∗
i +

n∑

k=1

α̂kP̂k = 0 (13)

with
n2−n∑

i=1

α∗
i +

n∑

k=1

α̂k = 0. (14)

We want to show thatα∗
i = α̂k = 0 for all i, k. Equation (13) induces for all

m, r ∈ {1, . . . , n} the following equations in variablesXm r for the constructed
points:

n2−n∑

i=1

α∗
i X

P ∗

i
m r +

n∑

k=1

α̂kX
P ∗

i(k)
m r = 0

⇔
n2−n∑

i=1
i6∈L

α∗
i X

P ∗

i
m r +

s∑

j=1

(

α∗
Lj

+
∑

l∈Lj

α̂l

)

X
P ∗

Lj
m r = 0. (15)

The equivalence follows from the definition ofLj ,Lj andL. Due to the con-
struction ofP ∗

i (i = 1, . . . , n2 − n, i 6∈ L) andP ∗
Lj

(j = 1, . . . , s) and using
P1, . . . , Pn2−n ∈ conv(XpUFL), we can conclude from (15) that

n2−n∑

i=1
i6∈L

α∗
i Pi +

s∑

j=1

(

α∗
Lj

+
∑

l∈Lj

α̂l

)

PLj
= 0.

Now, by (14)

n2−n∑

i=1
i6∈L

α∗
i +

s∑

j=1

(

α∗
Lj

+
∑

l∈Lj

α̂l

)

=

n2−n∑

i=1

α∗
i +

n∑

k=1

α̂k = 0.

SinceP1, . . . , Pn2−n have been chosen affinely independent, we can conclude that

α∗
i = 0 ∀ i ∈ {1, . . . , n2 − n}, i 6∈ L

and α∗
Lj

+
∑

l∈Lj

α̂l = 0 ∀ j ∈ {1, . . . , s}. (16)
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Thus equation (13) reduces to

s∑

j=1

(

α∗
Lj

P ∗
Lj

+
∑

l∈Lj

α̂lP̂l

)

= 0.

Considering the resulting equations

s∑

j=1

(

α∗
Lj

r
P ∗

Lj

k +
∑

l∈Lj

α̂lr
P̂l

k

)

= 0

for the variablesrk (k ∈ {1, . . . , n}), we obtain fork ∈ Ls

α∗
Ls

r
P ∗

Ls

k +
∑

l∈Ls

α̂lr
P̂l

k = 0

⇒ α∗
Ls

r
P ∗

Ls

k + 2α̂kr
P ∗

Ls

k +
∑

l∈Ls

l 6=k

α̂lr
P ∗

Ls

k = 0

⇔ α∗
Ls

+ 2α̂k +
∑

l∈Ls

l 6=k

α̂l = 0

On the other hand, we know from (16) that

α∗
Ls

+ α̂k +
∑

l∈Ls

l 6=k

α̂l = 0,

and thus,α̂k = 0. In fact, α̂k = 0 ∀ k ∈ Ls which allows us to conclude that
α∗

Ls
= 0. In the same manner one can show thatα̂k = 0 ∀ k ∈ Lj ∀ j ∈ {1, . . . , s}

andα∗
Lj

= 0 ∀ j ∈ {1, . . . , s}.

Hence we have shown that the pointsP ∗
1 , . . . , P ∗

n2−n
, P̂1, . . . , P̂n are affinely inde-

pendent inconv(X ). To complete this proof, consider pointP̂n+1 with P̂n+1 = P ∗
1

except forzP̂n+1 = 1
2zP ∗

1 . By choice ofzP ∗

1 , P̂n+1 stays feasible. Using a similar
argumentation as above, it is easy to see that the pointsP ∗

1 , . . . , P ∗
n2−n

, P̂1, . . . , P̂n+1

are affinely independent inconv(X ). �

In the following sections we will present classes of facet-defining inequalities of
conv(X ). Sincedim(conv(X )) = n2, we will look for hyperplanes with dimen-
sionn2 − 1. Considering facets in variablesXi k, we can once again make use of
the relationship between USApHCP and pUFL, and apply similar arguments as in
the proofs of proposition 2.2 and theorem 2.6.
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Proposition 2.7 (i) Givenn2 − n − 1 affinely independent pointsP1, P2, . . .

. . . , Pn2−n−1 ∈ conv(XpUFL), one can constructn2 affinely independent
points P ∗

1 , . . . , P ∗
n2−n−1, P̂1, . . . , P̂n+1 ∈ conv(X ). Consequently, every

facet ofconv(XpUFL) corresponds to a facet ofconv(X ).

(ii) Conversely, if an inequality in variablesxi k does not define a facet of
conv(XpUFL), then the corresponding inequality in variablesXi k is not a
facet ofconv(X ).

Thus, when searching for facets ofconv(X ) that include onlyXi k variables, we
can restrict ourselves to looking only among the facets ofconv(XpUFL).

3 Elementary facets

In this section, we examine constraints (1) to (6) to decide which of these arefacet-
defining for conv(X ). To start off, we present some elementary inequalities of
USApHCP that do not represent facets.

Proposition 3.1 The following valid inequalities do not represent facets ofconv(X ):

(i) Xk k ≥ 0 ∀ k,

(ii) Xk k ≤ 1 ∀ k,

(iii) Xi k ≤ 1 ∀ i 6= k.

(iv) rk ≥ 0 ∀ k,

(v) z ≥ rk + rm + α dk m (for α ∈ (0, 1))

Proof:

(i)-(iii) Obvious.

(iv) If rk = 0 thenXi k = 0 ∀ i 6= k sincedi k > 0.

(v) Assume thatF := {P ∈ conv(X ) : z = rk + rm + α dk m} defines a
facet. Thus, there existn2 affinely independent pointsP1, . . . , Pn2 ∈ F∩X .
Since the points are affinely independent, there existsPi with Xk k = 0 (and
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Xk ik = 1 for anik 6= k). But then

rPi

k + rPi
m + α dk m = rPi

m + α dk m

< rPi
m + α dk m + (1 − α)dik k

= rPi
m + α(dk m − dik k) + dik k

≤ rPi
m + α dm ik + dik k

≤ rPi
m + α dm ik + rPi

ik

≤ z.

That is,z > rk + rm + α dk m holds forPi, and thus,Pi 6∈ F .

�

Next, we will make use of proposition 2.7 to present elementary facets ofconv(X )
in variablesXi k. The following propositions 3.2 and 3.3 are presented without
proofs in Cornuejols, Nemhauser, and Wolsey 1990. Here we give the details of
the proof of the first result. The reason for this is that most of the proofspresented
in the treatise follow a similar pattern. However, the details of those proofs are
sometimes very cumbersome and lengthy; therefore, they will be partially omitted,
but are available from the authors upon request.

Proposition 3.2 For any pair i, k ∈ {1, . . . , n}, i 6= k, FI = {P ∈ conv(X ) :
XP

i k = 0} is a facet ofconv(X ).

Proof:

Using proposition 2.7, it suffices to show thatFI is a facet ofconv(XpUFL). W.l.o.g.,
i = 1 andk = 2. Assume that the equation

n∑

j=1

n∑

l=1

aj lxj l = d (17)

holds for all pointsP ∈ FI feasible for pUFL.

By constructing appropriate points inFI , we will show that

1. aj l = aj m =: aj ∀ j, l, m with j 6∈ {l, m} and(1, 2) 6∈ {(j, l), (j, m)}

2. am m − am = al l − al := a ∀ l, m

With the two statements above, (17) can be reformulated as a linear combination
of equality constraints (9), (11) and the facet-defining constraintxi k = 0.
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ad 1: • If l, m 6= 2, chooses1, . . . , sp−2 ∈ {1, . . . , n}\{l, m, j} pairwise dif-
ferent (note thatp ≤ n − 2) and set

P1: xs1 s1 = . . . = xsp−2 sp−2 = 1, xl l = xm m = 1,
xi l = 1 ∀ i ∈ {1, . . . , n}\{s1, . . . , sp−2, l, m},

P2: all values as inP1, exceptxj l = 0, xj m = 1.

Sincex1 2 = 0 for both points, they lie inFI , and inserting them into
(17) givesaj l = aj m.

• If l = 2 (or m = 2), construct points as above, but chooses1 = 1 to
ensure thatx1 1 = 1 (and thusx1 2 = 0).

ad 2: Using statement 1, we have shown that (17) transforms into

d −
n∑

j=1

aj =
n∑

j=1

(aj j − aj)xj j . (18)

• If l, m 6= 1, chooses1 = 1, s2, . . . , sp−1 ∈ {2, . . . , n}\{l, m} pair-
wise different and use the points

P1: xs1 s1 = . . . = xsp−1 sp−1 = 1, xl l = 1,
xr s1 = 1 ∀ r ∈ {1, . . . , n}\{s1, . . . , sp−1, l},

P2: all values as inP1, exceptxl l = 0, xm m = 1, xl s1 = 1, xm s1 = 0.

P1, P2 ∈ FI since for both points,x1 2 = 0.

• If 1 ∈ {l, m}, w.l.o.g., l = 1. Construct points as above, but choose
s1, . . . , sp−1 ∈ {2, . . . , n}\{m} with s1 6= 2.

�

Proposition 3.3 For any pair i, k ∈ {1, . . . , n}, i 6= k, FII := {P ∈ conv(X ) :
XP

i k = XP
k k} is a facet ofconv(X ).

Next, we examine constraints (2).

Proposition 3.4 For a fixedk ∈ {1, . . . , n}, let j ∈ {1, . . . , n} such thatdj k :=
maxi di k. Then,FIII := {P ∈ conv(X ) : rk = dj kXj k} is a facet ofconv(X ).

Proof: W.l.o.g.,k = 1 andj = 2. Assume that the equation

n∑

i=1

n∑

m=1

ai mXi m +
n∑

m=1

bmrm + c z = d (19)

holds for all USApHCP-solutionsP ∈ FIII . By constructing appropriate points
in FIII , one can show that the following four statements hold:
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1. c = 0 andbm = 0 ∀ m 6= 1

2. ai l = ai m =: ai ∀ l, m, i with i 6∈ {l, m} and(2, 1) 6∈ {(i, l), (i, m)}

3. al l − al = am m − am =: a ∀ l, m

4. a2 1 = a2 − b1d2 1

Then equation (19) can be written as a linear combination of the given equations
for FIII :

d =
n∑

i=1

n∑

m=1

ai mXi m +
n∑

m=1

bmrm + c z

=
n∑

i=1

n∑

m=1

ai mXi m + b1r1

⇔ d −
n∑

i=1

ai =

n∑

m=1

(am m − am)Xm m + (a2 1 − a2)X2 1 + b1r1

⇔ d −
n∑

i=1

ai − a p = (a2 1 − a2)X2 1 + b1r1

= b1(r1 − d2 1 X2 1).

�

However, ifdj k < maxi di k, thenrk = dj kXj k implies thatXi k = 0 for all
i with di k > dj k. Consequently, we cannot findn2 affinely independent points
satisfyingrk ≥ dj kXj k with equality, and thus, this inequality does not represent
a facet.

Finally, using arguments similar to the ones in the above proofs, we can show that
constraints (3) are facet-defining.

Proposition 3.5 For all k in V , FIV := {P ∈ conv(X ) : rk = MXk k} is a facet
of conv(X ).

4 Non-elementary facets

In this section, we present several facet classes ofconv(X ) which do not result
from constraints (1)–(7).
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Theorem 4.1 (Spoke-concentration facets)Letk ∈ {1, . . . , n}. The inequality

(n − p)Xk k ≥
n∑

i=1
i6=k

Xi k (20)

is facet-defining forconv(X ).

Remark 4.2 There are two types of points that satisfy facet-inequality (20) with
equality:

i. points withXk k = 0 (and thusXi k = 0 ∀ i), and

ii. points withXk k = 1. In this case, to fulfill the facet-inequality with equality,
we are forced to assigneveryspoke to the hub ink.

Thus the facets of theorem 4.1 represent all points with "trivial" spoke allocation
in the sense that all spokes are allocated to a single hub; we call themspoke-
concentration facets.

Proof: Due to proposition 2.7, it suffices to show that (20) is valid and facet-
defining forconv(XpUFL).

Validity:
If xk k = 0, inequality (20) trivially holds with equality. Now, assumexk k = 1.
Since the number of hubs is fixed top, onlyn−p of the remaining nodes are spokes
and could thus be allocated tok. Thus,

n∑

i=1,i6=k

xi k ≤ n − p = (n − p)xk k.

Facet-defining:
For ease of notation, assume w.l.o.g. thatk = 1. Set

F = {P ∈ conv(XpUFL) : (n − p)x1 1 =
n∑

i=2

xi 1}.

Assume that there is a further equation

n∑

i=1

n∑

k=1

ai kxi k = d (21)

that is satisfied by all points inF . It is possible to construct appropriate points in
F to prove that the following statements hold:
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1. ai k = ai l =: ai ∀ i, k, l with k, l 6∈ {1, i}

2. ak k + ak = al l + al =: a ∀ k, l ≥ 2

3. ai 1 − ai = aj 1 − aj =: b ∀ i, j ≥ 2

4. a1 1 = a + a1 − b (n − p)

Then, we can reformulate (21) as follows:

d =
n∑

i=1

n∑

k=1

ai kxi k

=
n∑

i=1

ai

n∑

k=2
k 6=i

xi k +
n∑

k=1

ak kxk k +
n∑

i=2

ai 1xi 1 (by 1).
(22)

From (22) and the fact that
∑

k xi k = 1, we have

d −
n∑

i=1

ai =
n∑

k=1

(ak k − ak)xk k +
n∑

i=2

(ai 1 − ai)xi 1

= a

n∑

k=2

xk k + (a1 1 − a1)x1 1 +
n∑

i=2

(ai 1 − ai)xi 1 (by 2),

(23)

which, using the fact that
∑

k xk k = p, can be rewritten as

d −
n∑

i=1

ai − a p = (a1 1 − a1 − a)x1 1 +
n∑

i=2

(ai 1 − ai)xi 1

= −b (n − p)x1 1 + b

n∑

i=2

xi 1 (by 3 and 4)

= b
(
rhs(20) − lhs(20)

)
,

whererhs (lhs) denotes the right-hand side (left-hand side) of the given equa-
tion. �

Next we present another class of facet-defining inequalities in variablesXi k. Let
A ⊂ {1, . . . , n} anda be some fixed node inA. The setA will be subdivided into
two setsA∗ andĀ∗ = A\A∗ ∋ a. For the elementsk ∈ A∗, summandsXbk k will
be introduced, wherebk ∈ Ā.
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A
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A
∗

Figure 1: Graphical interpretation of focus-element facets

Theorem 4.3 (Focus-element facets)LetA ⊂ {1, . . . , n} with |A| = n − p, a ∈
A, andA∗ ⊂ A\{a} with |A∗| ∈ {0, . . . , n − p − 2}, and let{bk : k ∈ A∗} be
pairwise different elements of̄A := {1, . . . , n}\A. Then,

∑

i∈A

Xi i ≥
∑

j∈Ā

Xj a +
∑

i∈A\({a}∪A∗)

Xa i +
∑

k∈A∗

Xbk k (24)

is a facet ofconv(X ).

Remark 4.4 Since the facets described in theorem 4.3 concentrate on a single ele-
menta ∈ A, we refer to them asfocus-element facets. Figure 1 gives an interpreta-
tion of the facet class presented in theorem 4.3. Black nodes denote elements ofA,
white nodes are elements of̄A. The arcs that contribute to

∑

i∈Ā Xi a are marked
by doubled arrows. Dashed arrows denote arcs contributing to

∑

j∈A\(A∗∪{a}) Xa j .
The arcs that contribute to

∑

k∈A∗ Xbk k are marked by dotted arrows.

Proof: It suffices to show validity and the facet-defining property of (24) for
conv(XpUFL). W.l.o.g., assume thatA = {1, . . . , n − p}, a = 1 and
A∗ = {2, . . . , t} with t ≤ n − p − 1 (A∗ = ∅ is possible). Then, inequality
(24) can be written as

n−p
∑

k=1

xk k ≥
n∑

i=n−p+1

xi 1 +

n−p
∑

k=t+1

x1 k +
t∑

k=2

xbk k. (25)

Validity: If x1 1 = 0, then, (25) is valid sincexbk k ≤ xk k andx1 k ≤ xk k for all
k. Now, assumex1 1 = 1. Set

∑n−p
k=2 xk k = s. Then, due to

∑n
k=1 xk k = p and

14



x1 1 = 1, we have that
∑n

k=n−p+1 xk k = p − s − 1, and consequently,

rhs(25) =
t∑

k=2

xbk k +
n∑

i=n−p+1

xi 1

=
t∑

k=2

(xbk k + xbk 1) +
n∑

i=n−p+1

i6∈{b2,...,bt}

xi 1

≤
t∑

k=2

(1 − xbk bk
)

︸ ︷︷ ︸

# spokes in{b2,...,bt}

+
n∑

i=n−p+1

i6∈{b2,...,bt}

(1 − xi i)

︸ ︷︷ ︸

# spokes in
{n−p+1,...,n}\{b2,...,bt}

= p
︸︷︷︸

# nodes in
{n−p+1,...,n}

− (p − s − 1)
︸ ︷︷ ︸

# hubs in
{n−p+1,...,n}

= s + 1 = lhs(25),

where the inequality is valid sincexbk k + xbk 1 ≤ 1 andxbk k = xbk 1 = 0 if bk is
a hub.

Facet-defining:

LetF :=
{

P ∈ conv(XpUFL) :
n−p∑

k=1

xk k =
n∑

i=n−p+1
xi 1 +

n−p∑

k=t+1

x1 k +
t∑

k=2

xbk k

}

.

Assume that
n∑

i=1

n∑

k=1

ai kxi k = d (26)

is a further equation that is satisfied by all points inF . By constructing appropriate
points inF , we can show that

1. (a) a1 k = a1 l =: a1 ∀ k, l ≥ n − p + 1

(b) a1 k = a1 ∀ k ∈ {2, . . . , t}

(c) ai k = ai l =: ai ∀ i ∈ {2, . . . , n − p} andk, l ∈ {1, . . . , n}\{i}

(d) ai k = ai l =: ai ∀ i ≥ n − p + 1 andk, l ∈ {t + 1, . . . , n}\{i}

(e) ai k = ai ∀ i ∈ {n − p + 1, . . . , n}\{b2, . . . , bt} andk ∈ {2, . . . , t}

2. ak k − ak = al l − al =: a ∀ k, l ≥ n − p + 1

3. (a) ai 1 − ai = aj 1 − aj =: −b ∀ i, j ≥ n − p + 1

(b) abk k − abk
= −b ∀ k ∈ {2, . . . , t}

15



(c) a1 k − a1 = −b ∀ k ∈ {t + 1, . . . , n − p}

4. ak k − ak − a = b ∀ k ≤ n − p

Then equation (26) can be reformulated as follows:

t∑

k=2

a1 kx1 k +

n−p
∑

k=t+1

a1 kx1 k +
n∑

k=n−p+1

a1 kx1 k

+

n−p
∑

i=2

n∑

k=1
k 6=i

ai kxi k +
n∑

i=n−p+1

ai 1xi 1 +
n∑

i=n−p+1

i6∈{b2,...,bt}

t∑

k=2

ai kxi k

+
t∑

k=2

abk kxbk k +
n∑

i=n−p+1

n∑

k=t+1
k 6=i

ai kxi k +
n∑

k=1

ak kxk k = d. (27)

Using statements 1a–1e, (27) can be rewritten as

n−p
∑

k=t+1

(a1 k − a1)x1 k +
n∑

i=n−p+1

(ai 1 − ai)xi 1

+
t∑

k=2

(abk k − abk
)xbk k +

n∑

k=1

(ak k − ak)xk k = d −
n∑

i=1

ai k. (28)

Applying statement 2, equation (28) becomes

n−p
∑

k=t+1

(a1 k − a1)x1 k +
n∑

i=n−p+1

(ai 1 − ai)xi 1 +
t∑

k=2

(abk k − abk
)xbk k

+

n−p
∑

k=1

(ak k − ak − a)xk k = d −
n∑

i=1

ai k − a p. (29)

Statements 3a–3c transform (29) into

− b

n−p
∑

k=t+1

x1 k − b

n∑

i=n−p+1

xi 1 − b

t∑

k=2

xbk k

+

n−p
∑

k=1

(ak k − ak − a)xk k = d −
n∑

i=1

ai k − a p (30)
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which, using statement 4, can be rewritten as

b
(

lhs(25) − rhs(25)
)

= d −
n∑

i=1

ai k − a p.

�

As stated in section 3, constraintrk ≥ di kXi k represents a facet if and only if
di k = maxj dj k (see proposition 3.4). Now we present new facet-defining in-
equalities that generalize this constraint.

Theorem 4.5 (Increasing-distances facets)Let p ≤ ⌊n
2 ⌋, k ∈ {1, . . . , n} and

ik := argmaxi{di k : i = 1, . . . , n}. LetA = {a1, . . . , at} ⊂ {1, . . . , n}\{k, ik}
with |A| = t ∈ {1, . . . , p − 1}, wheredai k ≤ dai+1, k ∀ i = 1, . . . , t − 1.
Consider inequality

rk ≥ da1 kXa1 k +
t∑

i=2

(dai k − dai−1, k)Xai k + (dik k − dat k)Xik k. (31)

(i) Inequality (31) is valid forconv(X ).

(ii) If t ≤ p − 2, then (31) represents a facet ofconv(X ).

(iii) If t = p − 1 and p ≤ ⌊n−1
2 ⌋ or di k ≤ dat k ∀ i 6∈ A,

then (31) represents a facet ofconv(X ).

Remark 4.6 Due to the ordering of the nodes in increasing distances to nodek,
we refer to the facets presented in theorem 4.5 asincreasing-distances facets. The
right hand side term of inequality (31) considers, starting from the nodea1 that is
nearest tok, the increase of the radiusrk when stepwise allocating new spokes to
hubk, each one being further away fromk than the ones considered so far. Figure 2
marks the distances that are added up in the increasing-distances facets (doubled
lines) for an example witht = 3.

Proof: W.l.o.g., assume thatk = 1, ik = n andA = {a1 = n − t, a2 = n − t +
1, . . . , at = n − 1}. Then, inequality (31) can be written as

r1 ≥ dn−t, 1Xn−t, 1 +
n∑

i=n−t+1

(di 1 − di−1, 1)Xi 1. (32)

Validity: If Xi 1 = 0 for all i ≥ n − t + 1, then (32) reduces to constraint (2) and
thus is valid.
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dik k − da3 k

Figure 2: Graphical interpretation of increasing-distances facets

Now, consider the case that at least one of the nodes in{n − t + 1, . . . , n} is
allocated to1, i.e.,
∃ i1, . . . , ir ∈ {n − t + 1, . . . , n} (with r ≥ 1 andi1 < i2 < . . . < ir)
such thatXi1 1 = Xi2 1 = . . . = Xir 1 = 1 and
Xi 1 = 0 ∀ i ∈ {n − t + 1, . . . , n}\{i1, . . . , ir}.

The right hand side of inequality (32) can be transformed as follows:

dn−t, 1Xn−t, 1 +
n∑

i=n−t+1

(di, 1 − di−1, 1)Xi, 1

= dn−t, 1Xn−t, 1

+(di1, 1 − di1−1, 1) + . . . + (dir−1, 1 − dir−1−1, 1) + (dir, 1 − dir−1, 1)

= dir, 1 + (dir−1, 1 − dir−1, 1) + (dir−2, 1 − dir−1−1, 1) + . . .

+(di1, 1 − di2−1, 1) − di1−1, 1 + dn−t, 1Xn−t, 1.

Due to the assumption thati1 < i2 < . . . < ir, it holds thati1 ≤ i2 − 1, . . . ,
ir−1 ≤ ir − 1, and thus by the general assumption thatdi, k ≤ di+1, k ∀ i =
n − t, . . . , n − 1 we obtaindir−1, 1 − dir−1, 1 ≤ 0, . . . ,di1, 1 − di2−1, 1 ≤ 0.

Similarly, sincen − t ≤ i1 − 1, we conclude−di1−1, 1 + dn−t, 1Xn−t, 1 ≤ 0, and
thus arrive atrhs(32) ≤ dir 1 ≤ r1.

Facet-defining (caset ≤ p − 2): We will show that if all points lying on the face

F := {P ∈ conv(X ) : r1 = dn−t, 1Xn−t, 1 +
n∑

i=n−t+1

(di 1 − di−1 1)Xi 1}

18



satisfy
n∑

i=1

n∑

k=1

ai kXi k +
n∑

k=1

bkrk + c z = d, (33)

then (33) is a linear combination of (31).

First, one can construct points inF to show that the following statements hold:

1. (a) bk = 0 ∀ k ≥ 2

(b) c = 0

2. (a) ai k = ai l =: ai ∀ i ≤ n − t − 1 andk, l ∈ {1, . . . , n}\{i}

(b) ai k = ai l =: ai ∀ i ≥ n − t andk, l ∈ {2, . . . , n}\{i}

3. ak k − ak = al l − al =: a ∀ k, l ∈ {1, . . . , n}

4. (a) an−t, 1 − an−t = −b1 dn−t, 1

(b) ai 1 − ai = −b1 (di 1 − di−1, 1) ∀ i ≥ n − t + 1

Using claims 1a and 1b, equation (33) can be reformulated to obtain
n∑

i=1

n∑

k=1

ai kXi k + b1 r1 = d

⇒
n−t−1∑

i=1

ai

n∑

k=1

Xi k +
n−t−1∑

k=1

(ak k − ak)Xk k

+
n∑

i=n−t

n∑

k=1

ai kXi k + b1 r1 = d (by 2a)

⇒
n∑

i=1

ai

n∑

k=1

Xi k +
n∑

k=1

(ak k − ak)Xk k

+
n∑

i=n−t

(ai 1 − ai)Xi 1 + b1 r1 = d (due to 2b)

⇔
n∑

i=n−t

(ai 1 − ai)Xi 1 +
n∑

k=1

(ak k − ak)Xk k + b1 r1 = d −
n∑

i=1

ai.

⇒
n∑

i=n−t

(ai 1 − ai)Xi 1 + b1 r1 = d −
n∑

i=1

ai − a p

⇒ b1(r1 − rhs(32)) = d −
n∑

i=1

ai − a p

(by 4a and 4b).
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Facet-defining (caset = p − 1):

The proof of this case is analogous to that witht ≤ p − 2 (except that additional
assumptionsp ≤ ⌊n−1

2 ⌋ or di k ≤ dat k ∀ i 6∈ A must be used). The same four
claims can be shown to hold true, and then with a derivation similar to that above,
one can prove that (31) is a facet in this case as well. �

5 Separation

In this section we consider the respective separation problems for the different
classes of facets we have obtained.

Separating spoke-concentration facets

Since there are onlyn inequalities in the class of spoke-concentration facets, a
simple enumeration procedure can solve the corresponding separation problem ef-
ficiently.

Separating focus-element facets

In the case of the focus-element facets, the number of inequalities is exponen-
tially large. To find violated focus-element facets, we will first restrict ourselves to
searching among those facets withA∗ = ∅. In the following, we give a polynomial
time exact solution algorithm for this case.

Given a pointP ∗ = (X∗, r∗, z∗), we have to identify an inequality, if any, in the
focus-element facet class that is violated byP ∗, i.e., find a setA of n − p nodes
and a nodea ∈ A such that the term
∑

j 6∈A

X∗
j a +

∑

i∈A\{a}

X∗
a i −

∑

i∈A

X∗
i i

is maximized; if the value of the term is strictly larger than zero, a violated inequal-
ity has been identified. It turns out that this separation problem can be solved in
polynomial time using a greedy strategy.

For a fixed nodea in {1, . . . , n}, the separation problem reduces to finding
n−p−1 further nodes to obtain a setA so that

∑

j 6∈A

X∗
j a +

∑

i∈A\{a}

X∗
a i−

∑

i∈A

X∗
i i is

maximized. Assume w.l.o.g. thata = n. The setA is characterized using variables
A1, . . . , An−1 by Ai = 1 if nodei is chosen as further element ofA, Ai = 0 else.

With the help of the(n− 1)-dimensional vectorA = (A1, . . . , An−1), the separa-
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tion problem can be formulated as follows:

max
A

( n−1∑

j=1

X∗
j a(1 − Aj) +

n−1∑

i=1

X∗
a i Ai −

n−1∑

i=1

X∗
i i Ai − X∗

a a

)

s.t.

n−1∑

i=1

Ai = n − p − 1, Ai ∈ {0; 1} ∀ i.

The above objective function can be reformulated as

max
A

[ n−1∑

i=1

(X∗
a i − X∗

i a − X∗
i i)Ai

]

+
n−1∑

i=1

X∗
i a − X∗

a a.

The corresponding integer optimization problem

max
A

{ n−1∑

i=1

(X∗
a i − X∗

i a − X∗
i i)Ai

∣
∣
∣

n−1∑

i=1

Ai = n − p − 1, Ai ∈ {0; 1} ∀ i
}

can be solved by settingAi = 1 for then−p−1 values ofi with highest coefficients
X∗

a i −X∗
i a −X∗

i i. As this greedy strategy has to be applied for alla ∈ {1, . . . , n},
the complete separation algorithm has a complexity ofO(n2).

Suppose that the above procedure yields no violating inequality. Then, wecheck if
P ∗ violates an inequality of the focus-element facet class withA∗ 6= ∅.

For a given setA with elementa, it is quite easy to determineA∗ ⊂ A and nodes
{bk : k ∈ A∗} ⊂ Ā such that the term

∑

j 6∈A

X∗
j a +

∑

i∈A\({a}∪A∗)

X∗
a i +

∑

k∈A∗

X∗
bk k −

∑

i∈A

X∗
i i (34)

is maximized. We proceed as follows:

Start withA∗ = ∅. For every nodek ∈ A, determine a nodenk ∈ Ā with maximum
valueX∗

nk k. Starting with a nodek ∈ A with the largest value ofX∗
nk k − X∗

a k,
check ifX∗

nk k > X∗
a k; if so, substitute those summands in the above term, i.e., set

A∗ := A∗∪{k} andbk := nk. Stop if eithern−p−2 nodes have been substituted
or the value of (34) exceeds zero.

However, as soon as the setA is not given, it does not, in general, suffice to choose
A which is optimal for the caseA∗ = ∅ and then apply the above procedure.

The general problem is that the setsA andA∗ and the nodesbk have to be deter-
mined simultaneously, but optimal choices ofbk can only be made once the setsA

andA∗ are known. A heuristic to deal with the separation problem for this general
case is proposed in Baumgartner 2003.
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Separating increasing-distances facets

Lastly, we consider the separation problem for the increasing-distancesfacets. For
givenk andP ∗, we have to determine a numbert and a setA = {a1, . . . , at} of
nodes such that the term

da1 kX
∗
a1 k +

t∑

i=2

(dai k − dai−1, k)X
∗
ai k + (dik k − dat k)X

∗
ik k

is maximized. If this value is larger thanr∗k, a violated inequality is found. Note
that the above separation problem exhibits similarities to the knapsack problem.
Since the “benefit” of each element inA depends on this particular element and its
neighbors, the problem can be solved using a shortest path algorithm on agraph.

The construction of the desired graph is the following:

• Each node of the shortest path graph corresponds to a node of the hubnet-
work that can be chosen as an element ofA.

• For each nodei, include edges to all nodesj with dj k > di k.

• Edges fromi 6= k to j have costs−(dj k − di k)X
∗
j k.

The edge fromk to i has the cost−di kX
∗
i k.

For every path fromk to ik in the constructed graph, the nodes that have been
traversed correspond to the choice of elements inA. The cost of a path is equal to
−rhs(31) for the particular choice ofA. Hence the shortest path in the constructed
graph yields a setA with maximum valuerhs(31). If this value is larger than
rk = lhs(31), a violated increasing-distances inequality has been identified.
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