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Abstract

In contrast top-hub problems with a summation objectivet{ub mediaj, min-
max hub problemsgpthub centey have not attained much attention in the literature.
In this paper, we give a polyhedral analysis of the uncapacitated sithgbatzon
p-hub center problem (USApHCP). The analysis will be based on a rédiius
mulation which currently yields the most efficient solution procedures. We sh
which of the valid inequalities in this formulation are facet-defining and ptesen
non-elementary classes of facets, for which we propose separatibleprs.

A major part in our argumentation will be the close connection between pokytope
of the USApHCP and the uncapacitagethcility location (pUFL). Hence, the new
classes of facets can also be used to improve pUFL formulations.
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1 Introduction

In the last two decades hub location models have enjoyed much attention from
researchers in different fields. Research concentrated, hqweestly on hub
problems with median objective. It is only in the last few years that hub center
problems have been given some attention (see surveys of Alumur an@@GiFa

or Campbell, Ernst, and Krishnamoorthy 2002).

As in all hub problems, pairs of origin-destination (0-d) nodes need thamge

a commodity, e.g., information, passengers, or goods. For this purpcsd-a
set of the original nodes is selected to servénals nodeswhich are completely
interconnected. All the non-hub nodes (so-calipadke} are allocated to hubs,
where flow is collected, consolidated and distributed. Transportation idit p
from economies of scale, thus making the hub network an interesting alernati
to a fully interconnected network. Thehub center problensonsists of choosing

a number ofp nodes to become hubs such as to minimize the maximum trans-
portation cost in the resulting hub network. In this treatise, we restricebus to
thesingle allocationcase, i.e., each spoke node is connected only to one hub node.
The optimal allocation of spokes to hubs then becomes part of our probleraréV
dealing with aruncapacitatedptimization problem, meaning that we can allocate
an arbitrary number of spokes to a hub. Thus, this special problem typteised

to as theuncapacitated single allocatiop-hub center problenUSApHCP).

Hub location problems with median objectives have been considered fréaredif
perspectives, e.g., polyhedral analysis (Hamacher et al. 2004 anélSmrn 2002),
formulations (Campbell 1996), and heuristics (Ernst and Krishnamoa@agg,
O’Kelly, Skorin-Kapov, and Skorin-Kapov 1995, etc.).

The study of USApHCP has been initiated by Campbell 1994. Formulations and
heuristics for the hub center problem have been considered in ErséD2a,
Ernst et al. 2002b, and Ernst et al. 2002c. To the best of our kilgwlehere are
two competing formulations for USApHCP: one due to Kara and Tansel 2060
the other from Ernst et al. 2002c. In the following, we will concentrattheratter,
the radius formulation This formulation, combined with a hub cover model of
Wagner 2004 is also the basis for the currently fastest implementation oftesolu
algorithm for USApHCP (see Hamacher and Meyer 2006).

Consider an undirected gragh = (V, E) with n supply-demand nodeg =
{1,...,n}. Out of the se¥/, p nodes have to be chosen as hubs. A cost fattpr
is associated with each o-d pairj € V, satisfying (i)d;; > 0 Vi,j € V (non-
negativity, (i) d;; = 0 < i =7, (iii) d;; = dj; Vi,j € V (Symmetry, (iv)
dij < di, +dp; Vi, k,j €V (triangle inequality, and (V)d;; = M Ve;; ¢ E,
where M is a large positive number. A discount facterc [0, 1] represents cost




savings resulting from economies of scale on inter-hub arcs. For edrhdde
k, theradius r;, denotes the maximum distance franio all the spoke nodes al-
located to it. Fori,k € V, let X;,. = 1 if nodei is allocated to hulk, X;,. = 0
else. (Especially X, = 1 if and only if nodek is a hub.) Assuming that
M > 1}61?5( (mjaxdjk + m;lejm + ady ) for 4, k,m € V, the radius formula-

tion of Ernst et al. 2002¢ for USApHCP is

min z
st. z > rp+rmt+ady, Yeme{l,...,n} (D)
e > dipXir Vike{l,...,n} 2)
r. < MXipk Vk‘E{l,...,n} (3)
Y Xk = 1 Vie{l,...,n} (4)
k=1
Xir < Xpr Vike{l,...,n} ©))
> Xix = p (6)
k=1
r, > 0 Vke{l,...n} (7)
X;p € {01} Vike{l,.. .n. @)

Constraints (4) and (8) assure that each node is uniquely allocatedlowhereas
constraints/(5) allow allocation to a node only if it is a hub. Constraint (8)ireg

that exactlyp are established. Constraints (2) set up hub radii according to their
definition. Constraints (1) together with the objective function work to minimize
the maximum distance within an o-d pair. Constraints (3) provide an uppedbou
on the radii and enforce, = 0 for spoke nodes. Note that/(3) are not included in
the original formulation of Ernst et al. 2002c, but have been addeé sy will

be helpful when examining facets.

In the following, we will present a polyhedral analysis for USApHCP gdime
radius formulation. The rest of this paper is organized as follows: Fiesexy
amine the polyhedron describing the convex hull of the points satisfyirgg)t)

this examination entails calculating its dimension and determining which of the
given constraints are facet-defining. i.e. afementary facetsThen we identify
three classes afon-elementary facetse., facets of the convex hull other than the
ones derived from the constraints. Finally, we propose algorithms foethsting
separation problems.




2 Dimension of the polyhedron

Definition 2.1 i) The (radius) formulation polyhedroi of USAQHCP is the
set of all pointsP = (X711, X192, -+, XnnsT1s-- ., 70y 2) € R T such
that P satisfies constraints (1)—(7) afd< X;, < 1forall i,k € {1,...,n}.

i) The set of all feasible solutions satisfying constraints (1)—(8) is denoted b
X,ie, X =Kn({0,1}" x R*H),

Since USApHCP has been shown toNe-hard (see Ernst et al. 2002c), the com-
putation ofconv (X)) is out of reach. Hence, in what follows, we present a polyhe-
dral analysis in order to find facet-defining inequalities@iv(X').

In our analysis, we take advantage of the relation between USApHCPatitea
optimization problem—theincapacitated p-facility location problenpUFL (see
Cornuejols, Nemhauser, and Wolsey 1990).

Given an undirected gragh = (V, E') with demand node® = {1,...,n}, pUFL
consists of choosing nodes out ol as facilities to serve the other demand nodes.
Letx;, = 1 if nodei is served by facilityk, otherwiser;,, = 0. Then, equipped
with a center objective function, pUFL can be stated as follows:

min m%x dik Tik
1’1

sty wip= 1 Vie{l,...,n} (9)
k=1
Tir < Tk Vi,kG{l,...,n} (10)
Z:L’kk: p (ll)
k=1
2 €{0,1} Vi ke{l,...n} (12)

Note that we distinguish between the denotationsand X; ;. when referring to
variables related to pUFL and USApHCP, respectively. Also, when notéke
comes cumbersome, we separate the indices with commasyi.g. In this work,
both USApHCP and pUFL are considered onlyfos {2,...,n — 2}. Let XpurL
denote the set of feasible solutions to pUFL andv(X,urFL) the convex hull of
these feasible solutions, and fepurL be the formulation polytope derived from
constraints[(9)+(11) and the relaxed binary restrictions. The followatations
between USApHCP and pUFL are easy to see.



Proposition 2.2 Let P = (z11, 19, ..., Tny) be a feasible solution to pUFL.
Then,P* = (Xl 1, X12, . ,Xnn, 1y «o oy Tn, Z), with sz =Xk i i, k,

T = max; dip X; V k, andz > maxy, p, i, + 7 + @ diy, IS @ feasible solution
to USApHCP, and thus?* € conv(X).

Proposition 2.3 Let Py, ..., P, € conv(XpurL) be affinely independent points.
Then, P}, ..., P} € conv(X) are affinely independent, whef¢" is constructed
from P; as shown in proposition 2.2.

We have thus shown:
Corollary 2.4 dim(conv(X')) > dim(conv(XpurL))-

In the derivation of the dimension obnv(X'), we will make use of the following
fact due to Cornuejols, Nemhauser, and Wolsey 1990.

Lemma 2.5 dim(conv(XpurL)) =n? —n — 1.

Now we can determine the dimensioncohiv(X'). To facilitate the development of
the proofs in the following sections, the dimensiorcofiv(X’) will be derived in
a direct way, that is by constructing a maximum set of affinely indepenmEnts
in conv(X).

In the following, IetXﬁ denote the value of a variabl€; ;, for the pointP. The
denotations’ andz!" are used analogously.

Theorem 2.6 dim(conv (X)) = n?.

Proof: The radius formulation of USApHCP containd+n+1 variables ana +1
equations which are linearly independent. Consequetitty(conv(X)) < n?. It
remains to show that there exist + 1 affinely independent points ifonv(X):

By lemmal 2.5, there exist?> — n affinely independent point®y,...,P._, €
conv(XpurL). Thus, by proposition 2.3, we can construct— n affinely inde-
pendent points, ..., P*,_ in conv(X’) as proposed in proposition 2.2, but set
z = 2maxy m, (ry + rm + ady.,) for eachP;.

Now, usePy,..., Pr,  toconstructadditional+1 feasible, affinely independent
solutions. First, note that for eveky € {1,...,n} thereisi € {1,...,n%> — n}
such thabﬂ,]:i > 0 (sincePy, ..., P,»_,, are affinely independent).

P
For everyk, choose the minimal indeXk) € {1,...,n? —n} withr, ™ > 0. Let

L ={Ly,...,Ls} be the index set of chosen poirﬁ%j ordered such that; <



Ly < ... < Lg, and let; be the set ok-values for whicthj has been chosen,

i.e.,L; = {k :i(k) = L;}. Construct new point#y, ..., P, with P, = Py

except that» = 2 r:“’“). Due to the choice afZ, the new points”,, . . ., P, stay
feasible.
Next, we show that the points’, ..., P*, | Py, ..., P, are affinely independent.
Assume that
7”L —n
Z ol PF + ZakPk =0 (13)
n2—n
with " ar + Z@k = 0. (14)
i=1 k=1
We want to show thaty} = &, = 0 for all i, k. Equation[(13) induces for all
m,r € {1,...,n} the following equations in variable¥,, , for the constructed
points:
TL —n

Z a*XmTJrZa,CX T
& z_:a*erﬁ—Z(aL +Za1) = 0. (15)

leL;
Z§Z£

The equivalence follows from the definition &f;, £; and £. Due to the con-
struction of P¥ (i = 1,...,n*> —n, i € L) and Py (j = 1,...,s) and using

P,...,Pa2_, € conv(XpUFL) we can conclude fronﬂl5) that
TL —n
Za P; +Z<aL +Zal)PL = 0.
leL,
1€E
Now, by (14)
TL —n - n
2o +Z(aL +Y @) = Z +D a=0.
ZGE =1 k=1
z€£
SinceP, ..., P,2_,, have been chosen affinely independent, we can conclude that
of = 0 Vie{l,....n*—n}, igL
and af +> @ = 0 Vje{l,... s} (16)
lel:j



Thus equation (13) reduces to

S
3 (aszzj +3 lel) —0.

J=1 lEEj

Considering the resulting equations

ZS: (ozzjr;:zj + Z dlrf‘) =0

j=1 leﬁj

for the variables, (k € {1,...,n}), we obtain fork € L

P 3
* 0 Ls S~
arp .t + g ar, = 0
leLs
P* Px* P*
* L A L I L
= ap 0 200, + E ar, =0
lels
I1#k

Saj, +2+ Y & = 0
leLs
1k
On the other hand, we know from (16) that
Ozzg + Gy + Z@l =0,
leLs
1#k

and thus,&;, = 0. Infact,&, = 0 Vk € L, which allows us to conclude that
a7 = 0. Inthe same manner one can show that=0Vk € £; Vj € {1,...,s}
andazj =0Vj e {1,...,s}.

. _ Py, ..., P, are affinely inde-
pendent irconv(X). To complete this proof, consider poiﬁ;rlﬂ with Pn+1 = Py
except forz/n+1 = 1

Hence we have shown that the poifts, .. ., P* :

121, By choice of:"1, P, stays feasible. Using a similar
argumentation as above, itis easy to see that the pBjnts ., P, Py,..., P4
are affinely independent itonv(X). O

In the following sections we will present classes of facet-defining indosaof
conv(X). Sincedim(conv(X)) = n?, we will look for hyperplanes with dimen-
sionn? — 1. Considering facets in variable§; ;,, we can once again make use of
the relationship between USApHCP and pUFL, and apply similar arguments as in
the proofs of proposition 2.2 and theorem 2.6.
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Proposition 2.7 (i) Givenn? — n — 1 affinely independent poinf3;, P, . ..
ooy P21 € conv(XpurL), one can construck? affinely independent
points P}, ..., P* Py, ...,P,4+1 € conv(X). Consequently, every

n2—n—1’

facet ofconv(ApyrL) corresponds to a facet ebnv(X').

(ii) Conversely, if an inequality in variables;; does not define a facet of
conv(ApurL), then the corresponding inequality in variablés, is not a
facet ofconv(X).

Thus, when searching for facets @fuov(X) that include onlyX;, variables, we
can restrict ourselves to looking only among the faceiof (XpurL).

3 Elementary facets

In this section, we examine constraints (1) to (6) to decide which of thesacat
defining forconv(X). To start off, we present some elementary inequalities of
USApHCP that do not represent facets.

Proposition 3.1 The following valid inequalities do not represent facetswfv (X):
() Xgx >0 VEk,
(i) Xgr <1 VE,
(i) X;p <1 Vi#k.
(iv) r,. > 0 Vk,

(V) z > 1+ rm + adi, (fora € (0,1))

Proof:
(i)-(iii) Obvious.
(iv) If r, =0thenX;, =0Vi+# k sinced;; > 0.

(v) Assume thatF := {P € conv(X) : z = 7 + rm + adg,,} defines a
facet. Thus, there exist’ affinely independent point8;, ..., P,» € FNX.
Since the points are affinely independent, there eXtstgith X, = 0 (and



Xri, = 1forani; # k). Butthen

r,];i +r,]:f +adp, = rﬂ' + adim

7“2" + adim + (1 — a)di i
7“71:{' + a(dgm — dikk) +di, k
it admi, + di g

rfj + adpm i, —i—rilzi

Z.

A

IA A IA

Thatis,z > r, + ry, + adg, holds forP;, and thusP; &€ F.
O

Next, we will make use of proposition 2.7 to present elementary facetmeof X')

in variablesX; . The following propositions 3.2 and 3.3 are presented without
proofs in Cornuejols, Nemhauser, and Wolsey 1990. Here we giveeta#isiof

the proof of the first result. The reason for this is that most of the proesented

in the treatise follow a similar pattern. However, the details of those proofs are
sometimes very cumbersome and lengthy; therefore, they will be partially omitted,
but are available from the authors upon request.

Proposition 3.2 For any pairi,k € {1,...,n},i # k, Fr = {P € conv(X) :
X1 =0} is afacet ofonv(X).

Proof:

Using proposition 2.7, it suffices to show ti#&t is a facet oftonv (XpurL). W.l.0.g.,
1 = 1 andk = 2. Assume that the equation

ZZaﬂxﬂ =d (17)
Jj=11=1

holds for all pointsP € F; feasible for pUFL.
By constructing appropriate points jf;, we will show that

1. aj|] = Ajm =: aj VJ,l,mW|thj ¢ {lam} and(172) g {(jv l)? (,77 m)}
2. G — G, = app —ap :=aVil,m

With the two statements above, (17) can be reformulated as a linear combination
of equality constraints (9), (11) and the facet-defining constrgipt= 0.



ad1l: e If [,m # 2, choosesy,...,sp—2 € {1,...,n}\{l,m, j} pairwise dif-
ferent (note thap < n — 2) and set
P oxg 6 =...= Ts, 58y 5 = L,z =xmm =1,
zip=1 V ie{l,....n}\{s1,...,5p—2,1,m},
Py:  allvalues as inP, exceptr;; = 0, 2, = 1.
Sincex12 = 0 for both points, they lie ifF;, and inserting them into
(17) givesa;; = a; .
e If [ =2 (orm = 2), construct points as above, but chosse= 1 to
ensure that;; = 1 (and thuse; o = 0).

ad 2: Using statement 1, we have shown that (17) transforms into

n

d=Y aj=>) (aj; —aj)zj;. (18)
j=1

j=1
e If [, m # 1, chooses; =1, sa,...,s5p—1 € {2,...,n}\{l,m} pair-
wise different and use the points

Pll Tg1ep = -+ = xsp_lsp_l = 1, Ty = 1,

Trs, =1 Vre{l,....,n}\{s1,...,8p-1,1},
P,: allvalues as inP;, exceptr;; =0, Tpm = 1, 215, = 1, 15, = 0.
Py, P, € Fj since for both pointsy; 2 = 0.

e If 1 € {l,m}, wlo.g.,l = 1. Construct points as above, but choose
51,...,8p—1 € {2,...,n}\{m} with s; # 2.
U

Proposition 3.3 For any pairi, k € {1,...,n},i # k, Fr1 :== {P € conv(&X) :
X[ = X[, }is afacet ofconv(X).

Next, we examine constraints| (2).

Proposition 3.4 For a fixedk € {1,...,n}, letj € {1,...,n} such thatd;, :=
max; d; . Then,Frry := {P € conv(X) : r, = d; ;. X} is a facet ofconv(X).

Proof: W.l.o.g.,k = 1 andj = 2. Assume that the equation

znjzn:aimXim—F zn:bmrm—FCZZd (29)
m=1

i=1 m=1

holds for all USApHCP-solution® € F;;;. By constructing appropriate points
in 7771, one can show that the following four statements hold:

10



c=0andb,, =0 Vm#1
Aj] = Qim = Q4 Vl,m,leth i g {lvm} and(27 1) g {(Z7l)7 (Z7m)}

ayp — a4 = Qo — Am =2 a V1,m

A w0 b

az1 = az — bida1

Then equation (19) can be written as a linear combination of the given eqsiatio
for Frir-

n n n
d = ZZaimXim-l-merm-i-cz
m=1

=1 m=1
n n
= Z Z i mXim + b17m1
i=1 m=1
n n
<~ d_zai = Z(amm_am)Xmm+(a21_a2)X21+b1T1
i=1 m=1

n
& d—> ai—ap= (ag1 — az) Xo1 +biry
i—1
= bi(r1 —da1 X21).

g

However, ifd;;, < max;d;, thenr, = d;, X, implies thatX;, = 0 for all

i with d;, > dj;. Consequently, we cannot find affinely independent points
satisfyingr, > d; ;X with equality, and thus, this inequality does not represent
a facet.

Finally, using arguments similar to the ones in the above proofs, we can shbw th
constraints/(3) are facet-defining.

Proposition 3.5 For all kin V, Fry := {P € conv(X) : rp = M Xy} is a facet
of conv(X).

4 Non-elementary facets

In this section, we present several facet classesnf (') which do not result
from constraints (1)~(7).

11



Theorem 4.1 (Spoke-concentration facets) etk € {1,...,n}. The inequality

(n—p)Xpk = > Xik (20)
=1
i#k
is facet-defining foronv(X').

Remark 4.2 There are two types of points that satisfy facet-inequality (20) with
equality:

i. points with X, = 0 (and thusX;, = 0V ), and

ii. points with X, = 1. In this case, to fulfill the facet-inequality with equality,
we are forced to assigeveryspoke to the hub if.

Thus the facets of theorem 4.1 represent all points with "trivial" spokeatiion
in the sense that all spokes are allocated to a single hub; we call sheke-
concentration facets

Proof: Due to proposition 2.7, it suffices to show that |(20) is valid and facet-
defining forconv(XpurL).
Validity:
If 21, = 0, inequality |(20) trivially holds with equality. Now, assumg; = 1.
Since the number of hubs is fixedpponly n —p of the remaining nodes are spokes
and could thus be allocated ko Thus,

>, Tig<n—p=(n—p) T
i=1,i#k
Facet-defining:
For ease of notation, assume w.l.0.g. that 1. Set

n
F ={P € conv(XpurL) : (n —p)x11 = lel}
i=2
Assume that there is a further equation

S aigwin=d (21)

that is satisfied by all points ist. It is possible to construct appropriate points in
F to prove that the following statements hold:

12



air = a;; =:a; Vi, k,lwith k, 1 & {1,i}
arrpt+ap=ay+a =avVk,1>2

a“—ai:ajl—aj::bVi,jZQ

P w0 b

aj1=a+a; —b(n—p)

Then, we can reformulate (21) as follows:

d=>"Y apwir

=1 k=1

= > azziﬁm +) aprzre+ Y ainzin (by 1)
i=1 k=1 i=2

k;éz
From (22) and the fact thgt, =;;, = 1, we have
d— Zaz = Z (ark — ar)zre + Y _(ai1 — a;)zi
k=1 i=2 (23)

= azﬂfkk +(a11 —a1)z11 + Z(ail —ai)zi1 (by 2),
k=2 i=2

which, using the fact that, ., = p, can be rewritten as

n n
d_zai —ap=(a11 —ai —a)xriy +Z(ai1 —ai)Ti1
i—1

=2
= —b(n—p)z11+bY zi1 (by3and4)
=2
= b(rhs(20) — lhs(20)),

whererhs (lhs) denotes the right-hand side (left-hand side) of the given equa-
tion. O

Next we present another class of facet-defining inequalities in variahlgsLet
A C {1,...,n} anda be some fixed node iA. The setA will be subdivided into
two sets4* andA* = A\ A* > a. For the elements € A*, summandsYy, 5 will
be introduced, wherg, € A.

13



Figure 1: Graphical interpretation of focus-element facets

Theorem 4.3 (Focus-element facets)et A C {1,...,n} with|A| =n —p,a €
A, and A* C A\{a} with |A*| € {0,...,n —p — 2}, and let{b; : k € A*} be
pairwise different elements af := {1,...,n}\A. Then,
ZXii > ZXja + Z Xai + Z Xy k (24)
€A jeA i€ A\({a} U A*) keAx

is a facet ofconv(X').

Remark 4.4 Since the facets described in theofem 4.3 concentrate on a single ele-
menta € A, we refer to them afocus-element facet&igure 1 gives an interpreta-

tion of the facet class presented in theorem 4.3. Black nodes denote &evhédn

white nodes are elements df The arcs that contribute 0, 1 Xiq are marked

by doubled arrows. Dashed arrows denote arcs contributing;to,, 4« ¢qy) Xa -

The arcs that contribute f0), _ ,. X3, » are marked by dotted arrows.

Proof: It suffices to show validity and the facet-defining property [of| (24) for
conv(XpurL). W.lLo.g.,, assume thad = {1,...,n — p}, « = 1 and
A* = {2,...,;t} witht < n—p—1(A4* = 0 is possible). Then, inequality
(24) can be written as

n—p n n—p t
Zlvkkz Z Ti1 + Z $1k+ziﬁbk,k- (25)
k=1 k=2

i=n—p+1 k=t+1

Validity: If z1; = 0, then, |(25) is valid since;, < i, andz; < xj for all
k. Now, assume:;; = 1. Set} ;P xy, = s. Then, duetdy ;_, zx, = p and

14



z11 = 1, we have thaEZ:n_erl rrr = p — s — 1, and consequently,

rhs(25) = bekk+ Z

i=n—p+l
‘ n
k=2 At
i¢{b2,...,bt}
! n
< Z(l—l'bkbk) + Z (1_$“)
N i=n—p+1
# spokes in(bs,....b¢} i@{b2,....be}
# spokes in
{n—p+1,.,n}\{ba,....bs }
- p _(p_s_1)28+1:lh8@’
—~ S———

# nodes in # hubs in
{n—p+1,..m}  {n—p+1,.,n}

where the inequality is valid since,, ;. + x5, 1 < 1 andxy, , = 2,1 = 0if by is
a hub.
Facet-defining:

n
Let F .= {PGCOHV XpUFL) kak— Z x;1+ Z x1k+z$bkk}
i=n—p+1 k=t+1 =
Assume that

ZZaikxik =d (26)
=1 k=1
is a further equation that is satisfied by all pointsfinBy constructing appropriate
points inF, we can show that

1. @ar=a;=aVkIl>n—p+1
(b) a1 = a1 VkIG{Q,...,t}
) air=a;; =1a;Vie{2,...,n—p}landk,l € {1,...,n}\{i}
d) ajx =a;;=1a;Vi>n—p+1landk,l e {t+1,...,n}\{i}
©) aijrp=a;Vie{n—p+1,....n}\{be,...,b:} andk € {2,...,t}
2. Akl — A = ap] — Qy ::aVk,lZn—p—Fl
3. (a)a“—al-:ajl— -:'—bVij>n—p—|—1
(b) by, k — =-bVvVke {2 }

15



(€ a1g—a1=—-bVke{t+1,...,n—p}

4. app—ar—a=bvVk<n-—p

Then equation (26) can be reformulated as follows:

t n—p

Ea1kﬂf1k+ E a1 kT1k + E a1 kT k

k=2 k=t+1 knp+1

n—p n

+Zzazkxzk+ Z a; 151 + Z Zazkxzk

=2 k=1 i=n—p+1 i=n—p+1 k=2
k#i iZ{b2,...;b¢ }

+Zabkk$bkk + Z Z Qi kTik + Zakkfﬁkk
i=n—p+1 k=t+1
k#1
Using statements 1a-1g, (27) can be rewritten as

n—p

§ (a1 —ar)zr g + E (a1 —a;)xin
k=t+1 1=n—p+1
t n

—d. (@7

+Z(abkk —abk)wbkk-i-Z(akk —ap)Tpr = d_zaik- (28)

k=2 k=1 i=1

Applying statement 2, equation (28) becomes

n—p t
E (a1 —ar)z1p + E (@i1 —a;)zin + E (ap, 1 —
k=t+1 i=n—p+1 =2
n—p

by, ) Ty k

+Z(akk—ak—a)azkk = d—Za,’k—ap. (29)

k=1 i=1

Statements 3a—3c transform (29) into

—blek—b Z wzl—bzirbkk

k=t+1 i=n—p+1
n—p

+> (agr —ag —a)zpr = d—Y aip—ap (30)

k=1 i=1

16



which, using statement 4, can be rewritten as

b(lhs@) —rthZ—SD> :d—zn;aik —ap.
U

As stated in section|3, constraint > d,,X;, represents a facet if and only if
d;;, = max;d;j (See proposition 3.4). Now we present new facet-defining in-
equalities that generalize this constraint.

Theorem 4.5 (Increasing-distances facets)etp < |3, k¥ € {1,...,n} and
i := argmax;{d;r : 1 = 1,...,n}. LetA ={a1,...,a;} C{1,...,n}\{k,ix}
with [A] =t € {1,...,p — 1}, whered,,, < do,,, x Vi =1,...,t - L
Consider inequality

t
"% > daykXark + Y (dagk = dag_y 1) Xayk + (dig i — day 1) Xipn. - (31)
=2

(i) Inequality (31) is valid forconv(X).
(i) If t <p—2,then|(31) represents a facet@fnv(X).

(i) If t=p—1andp<|%5L]ordi < de i Vid A,
then|(31) represents a facet@fnv(X).

Remark 4.6 Due to the ordering of the nodes in increasing distances to hApde
we refer to the facets presented in theorem 4.mBa®asing-distances facet¥he
right hand side term of inequality (31) considers, starting from the mgdbat is
nearest td:, the increase of the radiug when stepwise allocating new spokes to
hubk, each one being further away franthan the ones considered so far. Figure 2
marks the distances that are added up in the increasing-distances ¢aedited
lines) for an example with = 3.

Proof: W.l.o.g., assume that=1,iy =nandA ={ay =n—t,aa =n—t+
1,...,a; = n — 1}. Then, inequality (31) can be written as

1> dp 1 Xpg1 Y (din—dim11)Xin. (32)
i=n—t+1
Validity: If X;; = 0foralli > n — ¢ + 1, then (32) reduces to constraint (2) and
thus is valid.
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Figure 2: Graphical interpretation of increasing-distances facets

Now, consider the case that at least one of the nodds.in t + 1,...,n} is
allocated tal, i.e.,

Jig,...yip€{n—t+1,...,n}(withr > 1andi; <is <...<i,)

such thatXZ-ll = Xi21 =...= Xi,«l =1and

Xi1=0 Vie {n—t+1,...,n}\{i1,...,ir}.

The right hand side of inequality (32) can be transformed as follows:

n
dp—t,1Xn—t,1 + Z (di1—di—1,1)Xi1
i=n—t+1

= dp—t,1Xn—t,1

H(diy1 —diy—1,1) + o (i1 — iy —1,1) F (di 1 —dip—1,1)
= di,, 1+ (di, 1 —dip—1,1) + (dip 51 —dip_—1,1) + - ..

+(diy 1 — dig—1,1) —diy—1,1 + dp—t, 1 Xn—t1-

Due to the assumption that < is < ... < 4, it holds thatiy < i5 — 1, ...,
ir—1 < i, — 1, and thus by the general assumption g} < d;y1, Vi =
n—t,...,n— 1 we obtaindirfl,l — dir—l,l <0,... -dil,l — di2_171 < 0.
Similarly, sincen — ¢t <1, — 1, we conclude-d;, 1 1 + dp—t,1 Xn—,1 < 0, and
thus arrive aths(32) < d;.1 < r1.

Facet-defining (case < p — 2). We will show that if all points lying on the face

f = {P S COHV(X) = dn—t,an—t,l + Z (dil — di—l 1)Xi1}
i=n—t+1
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satisfy

ZZallek—l—Zbkrk—Fcz— (33)

=1 k=1
then (33) is a linear combination cﬂBl).

First, one can construct points ffito show that the following statements hold:

1. @b, =0Yk>2
(0) ¢ =0

2. @ar=ay=aq;Vi<n—t—1landk,l e {1,...,n}\{i}
(b) ajp =a;; =1a;Vi>n—tandk,l € {2,...,n}\{i}

3. agr—ag=ay—a =:aVkle{l,...,n}

4. (@) an—t,1 — ap—t = —b1dp_4 1
() aj1 —a; =—bi (di1 —di—1,1)Vi>n—t+1

Using claims 1a and 1b, equation (33) can be reformulated to obtain

Zzaszzk+blr1 = d

=1 k=
n—t—1 n n—t—1
= Y ay X+ (akr — ar) Xgk
i=1 k=1 k=1
n

+ ) Zaszzwbm = d (byl2a)
i=n—t k=1

n n
izazZXerz Akl — k) Xik
1=1 k=1

n

+ Z a“ z Xi1+birp = d (duet@b)

i=n—t
n n n
& Y (e —a) X+ (arr—ap)Xep+0ir1 = d— Y a;
i=n—t k=1 i=1

= Z(ail_ai)Xil"i'blrl = d—Zai—ap

i=n—t i=1
= bi(r;1 —rhs(32) = d-— Zal—ap
(by@ and 4h)
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Facet-defining (case¢ = p — 1):

The proof of this case is analogous to that witkk p — 2 (except that additional
assumptiong < L"T‘lj ordir, < dgr Vi ¢ A must be used). The same four
claims can be shown to hold true, and then with a derivation similar to that above,
one can prove that (31) is a facet in this case as well. O

5 Separation

In this section we consider the respective separation problems for tleeedif
classes of facets we have obtained.

Separating spoke-concentration facets

Since there are only. inequalities in the class of spoke-concentration facets, a
simple enumeration procedure can solve the corresponding separatiberpref-
ficiently.

Separating focus-element facets

In the case of the focus-element facets, the number of inequalities is expon
tially large. To find violated focus-element facets, we will first restrictselves to
searching among those facets with = (). In the following, we give a polynomial
time exact solution algorithm for this case.

Given a pointP* = (X*, r*, z*), we have to identify an inequality, if any, in the
focus-element facet class that is violated By, i.e., find a setd of n — p nodes
and a node € A such that the term

> XF > Xoi— X

JEA icA\{a} i€A

is maximized; if the value of the term is strictly larger than zero, a violated inequal-
ity has been identified. It turns out that this separation problem can bedswiv
polynomial time using a greedy strategy.

For a fixed nodes in {1,...,n}, the separation problem reduces to finding

n—p—1further nodesto obtainasdtsothat) S X7 + > X;,—> XJis
JEA icA\{a} icA

maximized. Assume w.l.0.g. that= n. The setd is characterized using variables

Aq,..., A1 by A; = 1if nodei is chosen as further element 4f A; = 0 else.

With the help of thgn — 1)-dimensional vectod = (A, ..., A,—1), the separa-
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tion problem can be formulated as follows:
n—1 n—1 n—1
max (Zx;au A XA X A X;‘a>
j=1 i=1 i=1
n—1
st Y Ai=n-—p-1, A e{0;1} Vi
=1

The above objective function can be reformulated as
n—1 n—1
manc | D7 (Xis = Xfy = X5) Ai] + D X — X
i=1 i=1
The corresponding integer optimization problem

n—1

mac { DXz = X7, = X7) A,

i=1

n—1
ZAi:n—p—l,Aie{O;l}Vi}
=1

can be solved by setting; = 1 for then—p—1 values ofi with highest coefficients
X}, — X, —X/,. As this greedy strategy has to be applied fowadl {1,...,n},
the complete separation algorithm has a complexit§ 6f?).

Suppose that the above procedure yields no violating inequality. Therheod if
P* violates an inequality of the focus-element facet class with# (.

For a given setd with elementa, it is quite easy to determing* C A and nodes
{by : k € A*} C A such that the term

Sxnr Y xS x> Xy, (34)

JEA i€A\({a} U A¥) keA* €A
is maximized. We proceed as follows:

Start withA* = (). For every nodé € A, determine anodey, € A with maximum
value X . Starting with a nod& € A with the largest value ok , — X7,,
checkif X , > X7, if so, substitute those summands in the above term, i.e., set
A* = A*U{k} andby := ny. Stop if eithem — p — 2 nodes have been substituted
or the value of{(34) exceeds zero.

However, as soon as the séfs not given, it does not, in general, suffice to choose
A which is optimal for the casd* = () and then apply the above procedure.

The general problem is that the setsand A* and the nodes; have to be deter-
mined simultaneously, but optimal choiceshgfcan only be made once the seis
and A* are known. A heuristic to deal with the separation problem for this general
case is proposed in Baumgartner 2003.
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Separating increasing-distances facets

Lastly, we consider the separation problem for the increasing-distéamets. For
givenk and P*, we have to determine a numhbeand a setd = {a1,...,a;} of
nodes such that the term

t
da, ngl Kt Z(daik - dai—hk)X;ik + (dlk k — da, k)Xz*k k
=2
is maximized. If this value is larger tharj, a violated inequality is found. Note
that the above separation problem exhibits similarities to the knapsack problem.
Since the “benefit” of each elementihdepends on this particular element and its
neighbors, the problem can be solved using a shortest path algorithmrapta

The construction of the desired graph is the following:

e Each node of the shortest path graph corresponds to a node of theethub
work that can be chosen as an elementiof

e For each node, include edges to all nodgswith d; ;. > d; .

e Edges fromi # k to j have costs-(d; — dik)X;‘k.
The edge fronk to i has the cost-d; , X,

For every path fromk to i, in the constructed graph, the nodes that have been
traversed correspond to the choice of elementd.iiThe cost of a path is equal to
—rhs(31) for the particular choice ofi. Hence the shortest path in the constructed
graph yields a setl with maximum valuerhs(31). If this value is larger than

ri = Lhs(31), a violated increasing-distances inequality has been identified.
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