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Abstract

We study nonlinear finite element discretizations for the density gradient equa-
tion in the quantum drift diffusion model. Especially, we give a finite element
description of the so—called nonlinear scheme introduced by Ancona. We prove
the existence of discrete solutions and provide a consistency and convergence
analysis, which yields the optimal order of convergence for both discretiza-
tions. The performance of both schemes is compared numerically, especially
with respect to the influence of approximate vacuum boundary conditions.
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1 Introduction

During the last decade quantum corrections of the well-known drift diffusion (DD)
model for semiconductor devices [15, 16, 17] gained considerable attention in the
mathematics and engineering community [19, 9, 29]. Most common is the so—called
quantum drift diffusion (QDD) model proposed by Ancona and Iafrate [5, 8, 3], which
is also known as the density gradient (DG) model. It proved its reliability especially
in the simulation of MOSFET devices [29, 10, 9, 7, 6] and is also well understood
from the mathematical point of view [28, 1, 21, 18, 13, 14, 19]. This great success
is also underlined by its inclusion into commercial software packages, e.g. by Silvaco
or Lucent. Hence, the QDD model is a good candidate to be the successor of the
classical DD model, since it adds quantum effects to the DD model in a general,
compact and computationally efficient manner [9, 29].

The scaled unipolar, stationary QDD model on the bounded domain Q = (0, 1) reads
[19]

a:c:c \/_

£ N +log(n) +V = F, (1.1a)
0, (0, F) = 0, (1.1b)
~ N0,V =n — Cypp (1.1c)

for the electron density n, the quantum quasi—Fermi potential F' and the electrostatic
potential V. The parameter ¢ is the scaled Planck constant, A is the scaled Debye
length and the function Cjy,, represents the concentration of fixed background ions.
The system (1.1a)—(1.1c) is subject to Dirichlet boundary conditions modeling the
Ohmic contacts of the device

n=np, V=Vp:=Vey+ Ve F=Fp:=F,+ Ve on 0L, (1.1d)

where np, V., and Fy, are the equilibrium values of the charge concentrations, the
potential and the quasi-Fermi level, respectively, and V,,; is the external applied
voltage. Note, that the scaled constants are in general quite small, i.e. £2,\2 =
O(1072-7%), such that boundary or internal layers might occur [3].

Several discretization schemes have been proposed for solution of the coupled, non-
linear partial differential equations (1.1). These can be classified into linear and
nonlinear schemes, depending on the respective discretization of (1.1a). Among the
linear schemes are the piecewise linear finite element discretization developed in [24],
where also its stability properties are studied. In addition, a linear conservative
scheme based on finite differences is presented in [4]. However, due to the quantum
effects that occur inside the device, the density might change by several orders of



magnitude. Thus, such schemes require very fine grids in order to obtain reliable
results, which implies a significant computational cost. To cope with such difficul-
ties nonlinear schemes have to be used, like the finite difference nonlinear scheme
[4], which has been proved its efficiency in solving on coarse grids device examples
involving quantum effects. Another line of research is presented in [20, 22|, where the
existence of a discrete solution for the coupled problem, as well as error bounds and
uniform convergence for a Scharfetter—Gummel type discretization are investigated
(12, 25].

Although, the finite difference nonlinear scheme has been applied with success [4, 9],
no numerical analysis is so far available. In this paper, we embed this question into
the context of finite element discretizations and study their respective consistency and
convergence. Choosing appropriate quadrature rules we recover Ancona’s nonlinear
scheme [4]. In [27] the effect of approximate vacuum boundary conditions is studied
and an improved scheme is suggested. Here, we present a different approach based
on finite elements, which is also not affected by the boundary condition and yields
even simpler discrete nonlinear systems.

This paper is organized as follows. In Section 2 we present the two different discretiza-
tion schemes for the DG equation (1.1a). The existence of discrete solutions, as well
as consistency and convergence results for the discretization schemes are discussed
in Section 3. Finally, numerical tests for a MIS diode, underlining the theoretical
results, are presented in Section 4. Concluding remarks are given in Section 5.

2 The Finite Element Approach

In this section we introduce an exponential variable transform for the density, which
already proved very helpful in the analysis of the transient problem [13, 14]. The
construction of the nonlinear difference scheme in [4] relies on the same idea and is
there motivated by replacing the ”‘fast”’ density variable n with the ”‘slow”’ one
u = log(n). In the following we write the transformed DG equation in weak form
and perform the finite element discretization.

We consider here only the boundary value problem for the DG equation

&C\x/\ﬁ/ﬁ +log(n) +V =0, (2.1a)

n(0) =« n(l) = p. (2.1b)

on the bounded domain Q = (0, 1) and for a given potential V € H'(Q).

After multiplication with y/n and using an exponential transformation n = e, in
order to resolve better the large variations of the carrier density in the vicinity of



inversion layers [3], we get the transformed problem in terms of the new unknown u

— 20" + " 2u+ V) =0, (2.2a)
w(0) = %bg(a) u(1) = %log(ﬁ). (2.2b)

The weak formulation reads now: Find u € up + H} () such that
82/ e Oyu O, dr + /(2u +V)e ¢ dr =0 forall g € Hy(9Q), (2.3)
Q Q

where up is an H'(2)-extension of the boundary data.

Concerning the existence and uniqueness of solutions to the DG equation, different
results are available in the literature [19], which depend on the specific formulation
of the problem. In terms of the logarithmic variable v we have the following.

Proposition 2.1 Let V € H'(Q) and choose constants V, V. € R such that
V <V(z) <V forallz e

Then, there exists a unique solution u € up + Hy(Q) for
52/ e Oyu Oy do + /(2u +V)e" ¢ dv =0, forall p € Hy(Q). (2.4)
Q Q

In addition u is bounded from below and above, 1i.e.
u <u(x) <u forallx el
where u = -V /2 andu = -V /2.

Remark 2.1 The ezistence proof is based on Schauder’s fized point theorem [30]in
combination with Stampacchia’s truncation method for the derivation of the uniform

bounds. Uniqueness follows from the monotonicity of the quantum Bohm potential
[21, 13].

Remark 2.2 In fact, the solution u has a higher reqularity. The identity —e?0yu =
e2(0pu)? — 2u —V € LYQ) yields u € W*1(Q). Now, Sobolev’s embedding theorem
[2] implies Oyu € L*(Q) and hence we have u € H?(2).

In order to discretize (2.3), the interval [0,1] is splitted into N subintervals I; =
(Ii_l,l’i], 1= 1, ,N with

O=zg< 1 <..<xny_1 <2y =1
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We define the length of the intervals h; and the maximal mesh spacing h by

hi=xz;—x;_1 i=1,...,. N and h:= hax h;.
i=1,...,

As a finite dimensional subspace of H}(€2) we use the space of piecewise linear func-
tions

Hy,:={p€C'(Q): ¢
with basis {bg, ..., by_1}, where

I e Py, Zzl,,N}

o if v € I,
bi(x) = x@+h_1l—x if v € Iiya,
0 otherwise .

The discretized problem may then be written in the form: Find u, € up + Hj such
that

52/ e Oyup, Oybi(x) de + /(2uh + V)e* b(x) de = 0, (2.5)
Q Q

fori=1,...,N —1.

To solve this nonlinear system of equations we need to evaluate first the integrals in
(2.5). This can be done exactly or approximately, but the exact calculation of these

integrals yields a highly nonlinear system. This encourages us to use quadrature rules
instead.

We now describe two alternative ways to compute approximately the integral in (2.5).
The first approach leads us to the same exponential ansatz proposed by Ancona [4],
which shows that Ancona’s discretization can be studied from the finite element
theory point of view. The second method is based on the linear interpolation of a
part of the integrand and has the advantage that it allows for an easy treatment of the
discrete nonlinear system. Since both quadrature rules do not affect the consistency
of the discretization, we get finally convergence for both schemes.

2.1 Finite Element Derivation of Ancona’s Scheme.

To obtain a finite element version of Ancona’s nonlinear scheme [4] we approximate
both integrals in (2.5). For the first integral we use the midpoint rule and get

52/ e &Eu ambz(x) dr = 52 <%> / e“h(w)dx _ 62(“2‘-;;2_ ul) / euh(m)dx
Q i I; Iiy

i+1
~ &2 <M) eW®iz1/2) _ g2 (M) eWit1/2)
h’i h’i-l—l
=2 (_u, _ Ui—l) eluwi-1 +ui)/2 2 (ui"'l — u’) elui + uit1)/2
hi hit1

(2.6)



T + XTi—1
2
For the approximation of the second integral in (2.5) we proceed as follows

fori=1,...,N.

where z;_1/o =

T(i—1)+1/2 Tiy1/2
/(Qu + V)e'; dax = / e"(2u+V)b; dx + / e"(2u+V)b; dx
0

T(i—1)—1/2 Ti-1/2
T(i+1)+1/2
+ / e"(2u + V)b; dx, (2.7a)
T(i+1)—1/2
Tiy1/2
~ / e“Qu+ V)b dx, (2.7b)
Ti—1/2
Tiy1/2
~ (2u; + V,)/ e dx. (2.7¢)
Ti-1/2

The above approach considers the integrals between the midpoints of each subinterval
I; and uses an open quadrature rule obtaining (2.7b). Next, since e" never changes
sign in [x; 4 /25 Tig1 /2], we can apply the weighted mean value theorem for integrals
to replace (2.7b) by (2.7c).

The integral (2.7c) can be computed exactly which yields finally

0 = & (Fh) el F o <—u+hl+_1 =) el (2.8)
hi o hi o
+(2us + V) et (7 (1 _ 6@1,1_”1)/2) G M <€<u1+1—uz>/2 _ 1))
Uj — Uj—1 Ujp1 — Uy

Remark 2.3 From equation (2.7b) it is observed that the terms f;}o“” e"(2u+V)b; dx
and f;]’vvfllm e"(2u+V)b; dz, which contain the information given by the boundary con-

dition are neglected. This is the cause for the sensitive behavior of the approrimate
solution near to the boundary (see also the discussion in [27] and Section 4).

Remark 2.4 If we introduce

() 1, = A;e™”
where
A; :=exp (ui_l A Ii_l) and o, 1= i timt (2.9)
h; h;
fori=1,...,N and set s; := e“, then the discretization scheme (2.8) is equivalent

to the nonlinear discretization scheme developed in [4]. More precisely, plugging (2.9)
in (2.8) we get
A\/SiSi— i 7\/SiS; i
2 . . log( i ) —¢? . = log <S+1> = (2.10)
i i+1 Si

(2u; + Vi) s; {% (1- 8;1 ) + lozg}gijjl) ( Si; -1) }

Si—1 Si

€

Si—1

N —



After some algebraic operations, (2.10) becomes

{|:€2F<3i+1) B hi (log s? + V) W(S”l)] Sit1 — Si

S; 8 S hz’+1
_ [52]?(%) —%’2 (log s? +Vj) W(S;:1>i| S _hji_l}/%(hi +hia)
= —(log s} + Vi) s; (2.11)

where the functions F(z) and W (z) are defined by

F(z):= V2 log = W(z) = A (2\/2_1—1)

z—1 Cz—1 log 2

Equation (2.11) is just the nonlinear discretization of the DG equation (2.1a) obtained

in [4].

2.2 The FE Scheme with Linear Interpolation

The second alternative to approximate (2.5) is as follows. We replace (2.5) by:
Find u, € up + Hj, such that

g / et Qyup, 0,b;(x) dv + / (e"r (2up, + V) bi(x) dz =0, (2.12)
Q Q

for i =1,..., N — 1, where (-)! denotes the linear interpolant on the grid.

Now, we compute these integrals exactly and get

1 1 1
2 Ui 1 2 u; 2 Uit _hi Ui-1 (9 i "
<€ +¢ <_hi+hi+1)e Ehi+1€ +ghie (2ui—1 + Vizq)

1 1
+ g(hi + hit1) €' (2u; + Vi) + ma et (2uip + Vi) = 0,  (2.13)
fore=1,...,N — 1.

Remark 2.5 Rewriting equation (2.13) in terms of the variable s; we get

_ 2% 2<l 1 ) 2 51 lh. . 21 . Vi
c hi+€ hi+hi+1 e hit1 +6 ¢ 5ic (2108(5i-1) + Vi)

1
(hi + hit1) si (2log(s;) +Vi) + Bhi-i-l siv1 (2log(siy1) +Vigr) = 0.

Wl =

+

We observe that our approach is closer to the linear conservative scheme proposed in
[4]. The difference lies in the treatment of the second term.



3 Numerical Analysis

In this section we perform the numerical analysis of the finite element approximations
introduced in Section 2. Especially, we show the existence of discrete solutions, ana-
lyze the consistency error of the discretization and prove that the method converges
with optimal rate.

3.1 Auxiliary Results

In the following analysis we use several interpolation estimates, which we state here
for later reference.

For every function w € C°(Q) let w! denote the linear interpolant verifying w!(z;) =
w(z;) for i = 0,..., N. Then the approximation theory in Sobolev spaces yields the
following results [11].

Proposition 3.1 There exist a constant ¢ > 0, independent of h, such that

N 1/2
= w'lia) < h( D wlieg, )
=1

N 1/2
w —w']120) < ChZ(Z |w|§f2<m>
=1

for allw € H'(Q) N {H*(L),Yi=1,...,N}

The proof can be found in [23]. A simple application of Holder’s inequality and
Proposition 3.1 lead us to the following estimate.

Proposition 3.2 There exists a constant ¢ > 0, independent of h, such that

N 1/2
[ sadae= [ floasl < (3 1fliy) ol
i=1

forall f € HY(Q)N{H*([;),Yi=1,...,N} and g € L*(Q2).

3.2 Consistency

In this section we derive the order of consistency for the finite element discretization
(2.13). Let u € H?(Q2) be the solution of (2.2a). For r € (0,70), 1o = 2|ul (), we
define

BT(UI) = {’LUh € up + Hh : ||uI — wh||H1(Q) S 7’},
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and, further, for given wy, € B,.(ul) the auxiliary functions @ := T'(wy,) € up + H} ()
and uy, := Ty (wy) € up + Hy, where @ and 1, fulfill

(A(a), ¢) = (W,¢) and  (Ap(tn), ¢) = (Wi, ¢),
for all ¢ in H}(Q) or in Hy, respectively.

The corresponding operators A and A, are defined as follows

(A(u), @) == 52/ erOpu Op¢p dx + 2/ eru ¢ dx,

Q Q
(An(un), 6) = &2 / D, Ous dz + 2 / (e un)! & do,
Q Q

and for W and W), we set
(W, ¢) := —/ eV dr, (W, o) = —/(eth)I<Z> dz.
Q Q
Then, we can derive the following consistency result for the discrete operator T},.

Theorem 3.1 Let u € H?() be the solution of (2.2a). There exists a constant
¢ = c(u) > 0, independent of h, such that

| Th(wn) — T (ws) || 1) < ch
for all wy, € B,.(ul).

Proof: Since wy, is fixed, both operators A and A, are linear. First, we show that
the operator Ay, is Hy—elliptic. For fixed wy, € B,(u!) C H, C C°(Q), there are real
constants m and M, only dependent on r, such that m < wp(x) < M for all x € Q.
Then, the first integral in the definition of the operator A satisfies the inequality

52/ e |Opup P dr > %™ Opun 1320
Q

The second integral of A is just a numerical integration, where (e“ruy)? is the
piecewise linear interpolant of €“»u,, in each subinterval I; := [x;_1, z;]. Then

N
/(ewhuh)l up, dr = Z/ (6%*1%—15@'—1(95) + 6wiuibi($))(ui—1bi—1($) + w;bi(z))dx
Q i=1 71

(2

I
MZ i
o|&

@
Il
—

(Qewiflu?_l + wjui—q (e + e) 4+ 26”%?)

[V
e

~
Il
_— =

oy ) + (i + )

v
o

lunllZ, @)



where ¢; = ¢1(m) > 0 is independent of h. Hence, there exists a real constant
¢y = co(m,€) > 0 such that

(An(un), un) > callunl|F ) (3.1)
i.e., Ay is a Hy—elliptic operator.
For my, := 1y, — 4! € Hj, we get
Colltin, — 0|3y < (An(@n) — An(a’), mn)
= (Ap(up) — A(a), myp) + <A(121) — Ah(zll),mh> + (A(a) — A(al), mp)
Now, we proceed to estimate each term. For the first term we have
| (An(tin) — A(@), man) | = [ (Wi = W, mp) |

_ ‘/Q(eww — (V)Y my, da

< es |V g o llmanll 2,

Y

for some constant ¢3 = c¢3(M) > 0, independent of h.
Furthermore, the second term can be estimated as follows
| (A(a") — Ap(a"),mp) | = \2/ e“ril my, do — 2/
Q )
< 2lleral — (e i) | 2 lmnll 2 ()

< 204 h”a”Hl(Q) HthL2(Q)7

(e“ral)! my, dx),

for some ¢4 = ¢4(M) > 0, independent of h. The last term allows for the following
estimate:

| (A(a) — A(a"),mp,) | = 52/ €0, (4 — a)Opmpdr + 2/ eVt (4 — ') my, de,
0

Q
< &%M)9, (0 — 0" )| () [ Demnl| L2() + 26™ [[@ — @' [| 2@ [Imn ]| 220

< cshl|t| m2) |malla @),

for some constant c5(M,e) > 0, independent of h. Combining all three estimates we
get

i~ vy < Kok (Villgagey + 1V Loy ) -
with K7 = Ki(u,e) > 0, independent of h.
Finally, using the triangle inequality and standard interpolation results [11] we obtain
[T (wn) = T(wn) [ 10y = [ltn — @l )

<l — @'l g + 12" =l g

< Ky;h ("’&”Hz(g) + ”v"Hl(Q)) )
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3.3 Existence of the Discrete Solution and Convergence Rates

The previous consistency result in combination with Brouwer’s fixed point theorem
allows now to prove the existence of a discrete solution and the optimal convergence
rate.

Theorem 3.2 Let u € H?*(Q) be a solution of the continuous problem and assume
that the Fréchet derivative (I—DT)(u) € L(H*(Q), HY(Q)) of [-T : H*(Q2) — H'(Q)
at u is boundedly invertible. Then there exists a constant hg > 0, such that for h < hg
there ezists a solution u, € up + Hy of the discrete problem (2.12). Further, there
exists a constant ¢ > 0, independent of h, such that

|w — un | g < ch.
Proof: We employ Brouwer’s fixed point theorem [30] and define the fixed point
operator S : B,(u!) — B,(ul) via
S(w) :=w+ (I — DT (u))"(Th(w) — w).
It holds
S(w) —u' =w —u' + (I = DT (u))™(Th(w) — w)

= (I = DT(u))"[(I = DT (u))(w — u') + Tp(w) — w]
= (I = DT(u))™[(I = DT (u))(w —u) + T(w) —

(I — DT (u))(u—u") + Tp(w) — T(w) —T(u) + ul
= (I = DT(u) [ o(llu = wllm1(y) + Tn(w) = T(w)] +u —u'.

_|_

Let L := ||(I — DT (w))™"|| (), 11(0))- Due to Theorem 3.1 we have

c
| Th(w) = T(w) || < +h

7'
and, further, standard interpolation results give
Ju —u!|| () < ch.
If we choose r = min(3ch, 1), it holds for all w € B, (u?)
lu = wllm@) < lu—u'llm@) + lu’ —wllgi@) < 4eh. (32)

Moreover, we can choose hg > 0 such that for all h < hg it holds

|u — w|| ) < 4ch = o(|lu — wl|m () < +h.

t~l o

11



This implies
1S(w) — u'|| i) < ch+ch+ch=r,

i.e. S maps B,(u!) into itself.
Now, we apply Brouwer’s fixed point theorem [30] and derive the existence of a fixed
point u;, € B,(u!) of S fulfilling

up = S(uh) = up + ([ - DT(u))_l(Th(uh) — uh).

or up = Tp(uy), i.e. uy is also a fixed point of T),. Finally, we deduce from (3.2) the
estimate
HU — uh||H1(Q) < 4ch.

O

Remark 3.1 Note, that an analogous analysis holds for the nonlinear scheme (2.11).
In order to find the convergence rate it is only necessary to realize that for f € H'(Q)
and s = YN | six1,, i.e. a step function with

1+ [L’Z)
)

si:f( : i=1,.,N

and x;, denoting the characteristic function of I;, it holds that

If = sllz2) < h|0xfllz2 @) (3.3)

For f € HY(Q) and g € L*(I;) and s being the step function defined above, we have

< Rl fllaa

9llz2(r)-

fgdx—/sgdx

I; I;

Replacing the respective estimates in the proof of Theorem 3.1, we deduce that also
the nonlinear scheme of Ancona [4] is also converging with optimal rate.

4 Numerical results

In this section we present a numerical comparison of the proposed finite element
methods. In particular, we check the theoretically predicted convergence rates and,
moreover, the influence of the boundary data on both schemes, which is crucial in
the simulation of MOS devices [6]. To compare both discretizations, we study a
MIS (Metal Insulator Semiconductor) diode in thermal equilibrium. The MIS diode
consists of a uniformly doped piece of semiconductor coated with a thin layer of
insulating material which carriers a metal gate contact [16, 15, 26].

12



In particular, we study the behavior of the electron density in the semiconductor part
of the device. Such behavior is described by the following boundary value problem
for the electron density n(z)

&E\w/\ﬁ/ﬁ +log(n) + V(x) =0, inz € (0,1) (4.1)

g2
n(0) =0, n(l) =1 (4.2)
and the potential function V' is given by
V() = x(az — e

where o = —47.57, f = 5.42 and § = 19.45. This explicit form of V' (z) was obtained
by performing an exponential fitting on precomputed data for the fully coupled prob-
lem.

Remark 4.1 In [1] one finds an existence result for vacuum boundary conditions,
which ensures that the solution stays positive in the interior of the domain. It is clear
that the discretization schemes presented here cannot fulfill the boundary condition at
x = 0 due to their exponential character. For this reason we use a very small value
close to zero for the boundary value n(0). For our numerical simulations we have
considered several values of n(0) and used different uniform grids.

4.1 Influence of Approximate Boundary Conditions

From Figures 4.1 to 4.3 we see that the proposed finite element scheme is very stable
with respect to the imposed approximate boundary conditions for any grid size. On
the other hand, the nonlinear scheme shows a poor performance, which improves
for decreasing grid spacings as Figure 4.3 shows. This sensitivity problem of the

nonlinear scheme has been also reported in [27] and can be directly explained by
Remark 2.3.

4.2 Convergence Rates

For both discretization schemes with different values of n(0), we present in Figure
4.4 and Figure 4.5 the L*(Q2) and H'(Q) norm of the error for the electron density
n as the grid is refined. As ’exact solution’, we choose the solution on a very fine
grid (h=1/4500) for each method. From Figure 4.4, the sensitivity of the nonlinear
scheme to the boundary condition is observed, the smaller n(0) is taken the larger
the error gets. The FEM scheme behaves well and is less sensitive to the respective
approximate choice of the boundary condition (see Figure 4.5).

13
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Figure 4.1: Electron density obtained by the nonlinear (left) and the finite element
(right) scheme with N = 50 grid points and different boundary conditions at z = 0

In addition, the numerical results underline the theoretical consistency error of Section
3.3. In both cases the convergence rates behave like O(h) in the H'(2)-norm and
O(h?) in the L*(Q2)-norm (see Figure 4.4 and Figure 4.5, respectively).

5 Conclusions

We gave a finite element interpretation of Ancona’s nonlinear scheme [4] and proposed
a second approach based on an exponential transformation of variables and linear
interpolation. Numerical tests indicate that the second approach is more stable on
coarser grids. Both schemes are convergent with the optimal order of convergence.
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