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Tag der mündl. Prüfung: 5. Juli 2006

Mai 2007
D 386



ii



Zusammenfassung

In der vorliegenden Arbeit soll die Modellierung und numerische Handhabung von Diskonti-
nuitäten in thermo-mechanischen Festkörpern untersucht und auf unterschiedliche Problemstellun-
gen angewendet werden. Aus dieser Aufgabenstellung ergibt sich ein zweigeteilter Aufbau, wobei
sich der erste Teil mit der Beschreibung thermo-mechanischer Prozesse in Kontinua befasst und die
Grundlage für die Beschreibung von Diskontinuitäten und Grenzschichten (Interfacen) bildet, die im
zweiten Teil schließlich in den kontinuumsmechanischen und thermodynamischen Rahmen eingebet-
tet werden.
Die Festkörper-Modellierung baut auf einer ausführlichen Darstellung der geometrisch nichtlin-
earen Kinematik auf, die auf unterschiedliche nichtlineare Verzerrungs- und Spannungsmaße für
die Referenz- und Momentankonfiguration führt. Dementsprechend resultieren daraus auch unter-
schiedliche Formulierungen der mechanischen und thermodynamischen Bilanzgleichungen. Ausge-
hend von diesen Grundlagen wird zunächst mit Hilfe der Konzepte der Plastizitätstheorie ein thermo-
dynamisch konsistentes elasto-plastisches Prototyp-Modell abgeleitet, das sukzessive erweitert wird.
Insbesondere werden Schädigungsmodelle unter Berücksichtigung ratenabhängigen Materialverhal-
tens dargestellt. Im nächsten Schritt erfolgt eine Erweiterung der isothermen Material-Modelle auf
thermo-mechanisch gekoppelte Probleme, wobei auch der Sonderfall adiabater Prozesse diskutiert
wird. Bei der Darstellung der unterschiedlichen konstitutiven Gesetze wurde auf einen modularen
Aufbau Wert gelegt.
Des Weiteren wird die numerische Handhabung des isothermen und des gekoppelten Problems in
Hinblick auf eine Anwendung der Finite-Elemente-Methode ebenfalls umfassend beleuchtet. Dazu
werden die schwachen Formen bezüglich der unterschiedlichen Konfigurationen und ihre entsprechen-
den Linearisierungen hergeleitet und diskretisiert. Anhand einiger numerischer Beispiele wurden die
Material-Modelle dargestellt und hinsichtlich ihrer Plausibilität überprüft.
Zur Berücksichtigung der Diskontinuitäten wird zunächst eine geeignete Kinematik eingeführt und
die mechanischen und thermodynamischen Bilanzgleichungen entsprechend modifiziert. Die nu-
merische Beschreibung der Diskontinuitäten geschieht mit Hilfe einer speziellen Finite-Elemente-
Formulierung (Interface-Elemente), denen eine adäquate Diskretisierung zugrunde liegt. Dabei sollen
im Folgenden zwei grundsätzliche Anwendungsgebiete der Interface-Elemente unterschieden werden.
Zum einen dienen sie zur Beschreibung von post-kritischen Vorgängen bei Lokalisierungsproblemen,
die auch Materialtrennung zulassen und eignen sich daher zur Beschreibung von Trennvorgängen.
Hier sollen wiederum die gebietsabhängige und die gebietsunabhängige Formulierung behandelt wer-
den, die sich im Wesentlichen in der Definition des Verzerrungsmaßes in der Grenzschicht unterschei-
den. Im zweiten Fall werden den Diskontinuitäten materielle Eigenschaften zugeordnet, bei gleich-
zeitig geringer räumlicher Ausdehnung, sodass sich hier ein typisches Anwendungsfeld in der Model-
lierung von Verbundwerkstoffen findet. Für beide Anwendungsgebiete wird die thermo-mechanisch
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gekoppelte Formulierung hergeleitet. Anhand entsprechender Beispiele werden die unterschiedlichen
Interface-Formulierungen bezüglich ihrer Plausibilität überprüft.



Abstract

In the present work the modelling and numerical treatment of discontinuities in thermo-mechanical
solids is investigated and applied to diverse physical problems. From this topic a structure for this
work results, which considers the formulation of thermo-mechanical processes in continua in the
first part and which forms the mechanical and thermodynamical framework for the description of
discontinuities and interfaces, that is performed in the second part.
The representation of the modelling of solid materials bases on the detailed derivation of geometri-
cally nonlinear kinematics, that yields different strain and stress measures for the material and spatial
configuration. Accordingly, this results in different formulations of the mechanical and thermody-
namical balance equations. On these foundations we firstly derive by means of the concepts of the
plasticity theory an elasto-plastic prototype-model, that is extended subsequently. In the centre of
interest is the formulation of damage models in consideration of rate-dependent material behaviour.
In the next step follows the extension of the isothermal material models to thermo-mechanically
coupled problems, whereby also the special case of adiabatic processes is discussed. Within the rep-
resentation of the different constitutive laws, the importance is attached to their modular structure.
Moreover, a detailed discussion of the isothermal and the thermo-mechanically coupled problem with
respect to their numerical treatment is performed. For this purpose the weak forms with respect
to the different configurations and the corresponding linearizations are derived and discretized. The
derived material models are highlighted by numerical examples and also proved with respect to plau-
sibility.
In order to take discontinuities into account appropriate kinematics are introduced and the mechan-
ical and thermodynamical balance equations have to be modified correspondingly. The numerical
description is accomplished by so-called interface-elements, which are based on an adequate dis-
cretization. In this context two application fields are distinguished. On the one side the interface
elements provide a tool for the description of postcritical processes in the framework of localization
problems, which include material separation and therefore they are appropriate for the description of
cutting processes. Here in turn one has to make the difference between the domain-dependent and
the domain-independent formulation, which mainly differ in the definition of the interfacial strain
measure. On the other side material properties are attached to the interfaces whereas the spatial
extension is neglectable. A typical application of this type of discontinuities can be found in the
scope of the modelling of composites, for instance. In both applications the corresponding thermo-
mechanical formulations are derived. Finally, the different interface formulations are highlighted by
some numerical examples and they are also proved with respect to plausibility.
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Notation

B body
B configuration
∂B boundary
B0, ∂B0 reference configuration and boundary
Bt, ∂Bt spatial configuration and boundary
Bp, ∂Bp intermediate configuration and boundary
V, ∂V body and boundary
S subconfiguration
∂S boundary
I interface
∂I interfacial boundary
W strain energy function
Wvol volumetric contribution of an elastic potential
Wiso isochoric contribution of an elastic potential
Wmic hardening potential
Weth thermo-elastic potential
Wth thermal potential
Ψ free Helmholtz energy
Q heat power
Q entropy input
P mechanical power
Pint internal mechanical power
Pext external mechanical power
K kinetic energy
U internal energy
u specific internal energy
r specific heat sources
S entropy
s specific entropy
Y entropy production
η specific entropy production
g specific entropy source
D dissipation
Dloc local dissipation
Dcon convective dissipation
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F generalized thermodynamic flux
S generalized thermodynamic source
P generalized thermodynamic production
G mechanical virtual work
U thermal virtual work
ϕ motion
F � deformation tensor
f � inverse deformation tensor
J = det F � determinant of deformation gradient
H� displacment gradient
g�, [g�]−1 mixed variant metric tensor
P � 1. Piola-Kirchhoff stress

F �
iso isochoric deformation tensor

F �
vol volumetric deformation tensor

F �
e elastic deformation tensor

F �
p plastic deformation tensor

Q� proper orthogonal transformation tensor
R� proper orthogonal rotation tensor
∆F � deformation tensor increment
F �,trial

e trial deformation tensor
L̄ velocity gradient in Bp

L̄e, L̄p elastic and plastic velocity gradient in Bp

D̄ symmetric deformation rate tensor in Bp

D̄
�
p plastic deformation rate tensor in Bp

W̄
�
p skewsymmetric plastic spin in Bp

M̄
�

Mandel stress tensor in Bp

S� contravariant stress tensor inBp

X material placement vector

G�,G� contra- and covariant metric tensor
Grad[•] material gradient operator
Div[•] material divergence operator
U � right stretch tensor
V � left stretch tensor

C� right Cauchy Green tensor

C�
vol volumetric right Cauchy-Green tensor

˜C�,C�
iso isochoric right Cauchy Green tensor

C̄�
e elastic right Cauchy-Green tensor

C̄�
p plastic right Cauchy-Green tensor

B̄�
p, [C̄

�
p]

−1 inverse plastic right Cauchy-Green tensor

E� Green-Lagrange strain tensor
S� 2. Piola-Kirchhoff stress
t0 initial traction vector
b0 initial volume forces
Q material heat flux vector
H material entropy flux vector
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N initial normal vector
ν material yield surface normal tensor
x spatial placement vector
u displacement vector
g�, g� contra- and covariant metric tensor on Bt

gi, g
i co- and contravariant tangent vectors on Bt

Gi,G
i co- and contravariant tangent vectors on B0

ḡi, ḡ
i co- and contravariant base vectors on Bp

ḡ�, ḡ� contra- and covariant metric tensor on Bp

v velocity tensor
Grad[•] spatial gradient operator
Div[•] spatial divergence operator
c� inverse left Cauchy Green tensor
b� left Cauchy Green tensor
b�

e elastic left Cauchy Green tensor
l� velocity gradient
l�
e elastic velocity gradient

l�
p plastic velocity gradient

d� strain rate tensor
w� spin tensor
e� Almansi tensor
τ � Kirchhoff stress tensor
˜τ � deviatoric Kirchhoff stress tensor
σ� Cauchy stress
t spatial traction vector
b spatial volume forces
r distance vector
q spatial heat flux vector
h spatial entropy flux vector
n spatial normal vector
ν spatial yield surface normal tensor
να coefficient of yield surface normal tensor
Iα invariants
λα eigenvalues
˜λα deviatoric eigenvalues
∆λα eigenvalue increment
Nα material eigenvector
Mα material eigenbase
mα spatial eigenbase
nα spatial eigenvector
ϕαβ coefficient matrix
m mass
ρ mass density
ρ0 initial mass density
Θ temperature
Θ0 reference temperature



xii Zusammenfassung

p pressure
d damage variable
q hardening variable
ξi internal variable
Y0 initial yield stress
Yn resulting yield stress
h linear hardening modulus
κ nonlinear hardening modulus
Φ yield function
Φpla plastic potential
Φdam damage potenial
γ plastic multiplier
S0 energy release rate
R damage energy release rate
s0 damage exponent
η viscosity
µ shear modulus
κ bulk modulus
t Time
∆t,∆τ time increment
ωh, ωy temperature coefficients
cp heat capacity
κ0 material heat conduction tensor
κ spatial heat conduction tensor
α heat expansion coefficient
Na shape function of mechanical subproblem
Mb shape function of thermal subproblem
∇XNa gradient of Na with respect to X
∇xNa gradient of Na with respect to x
Dx[•] linearization of of [•]
∆[•] increment of [•]
δ[•] variation of [•]
M mass matrix
L external contributions
T internal contributions
Ke element stiffness matrix
KΘu

e ,KuΘ
e mixed element stiffness matrix

Kuu
e mechanical element stiffness matrix

KΘΘ
e thermal element stiffness matrix

u discrete displacement vectors
Fe discrete element deformation gradient
Se material discrete element stress vector
Ee material discrete element strain vector
Se material discrete element stress vector
Ee material discrete element strain vector
σe spatial discrete element stress vector
ee spatial discrete element strain vector
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Θ discrete temperature vector
Je finite element transformation matrix
Be element B-matrix
ε strain tensor (lin. theory)
σ Cauchy stress
σ̃ interfacial stress
m normal vector across interfaces
n̂ interface tangent vector
̂b interfacial volume force
̂t interfacial traction vector
tα tangent vector
P projection tensor (2nd order)
I unit tensor (2nd order)
˜div interfacial divergence operator
{•} average of [•]
[[•]] jump of [•]
[[q]] heat flux vector across the interface
q̂ heat flux vector along the interface
r̃ interfacial heat sources
[[h]] entropy flux vector across the interface
̂h entropy flux vector along the interface
η̂ interfacial entropy production
ĝ interfacial entropy sources
ŝ interfacial entropy
̂Ψ Interface free Helmholtz energy
α̃, α̂ interfacial heat expansion coefficients
κ̃, κ̂ interfacial heat conduction coefficients
ρ̂ interfacial mass density
̂Θ interfacial temperature
̂Θ0 interfacial reference temperature
̂D interfacial dissipation
ĉ interfacial heat capacity
̂E, ˜E interfacial elasticity tensor
˜E⊥, ˜E‖ elastic constants
� spatial fourth order material tensor
� material fourth order material tensor
� spatial fourth order unit tensor
� material fourth order unit tensor
�vol volumetric fourth order projection tensor
�iso, �dev isochoric/ deviatoric fourth order projection tensor
� set of real numbers
�3 three-dimensional vector-space
�3 three-dimensional Euclidian space
TB0 tangent space on B0

TBt tangent space on Bt

T ∗B0 cotangent space on B0

T ∗Bt cotangent space on Bt
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M manifold
P material point
Θi convected coordinates in B0

θi convected coordinates in Bt

�3 space of mappings �3 → �3

�
3
+ subspace of �3 with det(y) > 0

�
3 subspace of �3 with y = yt
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1 Introduction

Some Remarks on Terminology This thesis is concerned with the modelling of discontinuities
and interfaces within thermo-mechanical solids. At first we want to define the given terms, in
particular the difference between discontinuities and interfaces. The comprehension of discontinuities
in the present text is that a mechanical or non-mechanical field or a property is not smooth but obeys
a jump. Therefore the particular quantity is discontinuous and an interface relates a mechanical or
non-mechanical quantity to this jump. Since we are going to consider thermo-mechanical behaviour,
we are interested in displacement jumps that are related to the corresponding tractions by the
interfaces. In analogy to this, the thermal subproblem is governed by the jump of the temperature
for instance and the interfaces relates it to the corresponding heat flux. Due to the possibility to
handle discontinuities by interfaces these are also the perfect tools to describe the separation of
materials occuring in cutting and tearing processes. Other applications arise if not only the jump
contributions are taken into account but also tangential contributions within the discontinuity that
can be described by averaged values. These fomulations are capable to the description of composites
including fibres which can be modelled by interfaces as well.
Another focus of this work is the description of thermo-mechanical materials, whereby here especially
inelastic material behaviour is taken into account that should be combined with thermal effects. This
includes elasto-plastic material behaviour where the elastic range is exceeded and permanent strains
are induced, such that deformations remain after unloading. In the case of metals, for instance,
additionally hardening effects can occur that make increase the stress-strain-curve over the initial
yield stress. The stresses increase to a maximum but due to the nucleation of microcracks or
voids the material is weakened leading to the macroscopic decrease of the stress-strain-curve. Rate-
dependent formulations are taken into account if the deformation is not superposed quasistatically
but by means of high load velocities. The thermal problem can be divided into two subcases, namely
a locally coupled or adiabatic problem and a globally coupled problem. The more general case is
the globally coupled one, since here in contrast to the adiabatic case the heat transfer is taken into
account. To combine these different effects and to adopt them the interface formulation will be one
of the main tasks of this thesis.

Motivation This work emanated from a project which was concerned with the modelling of cutting
and tearing processes by numerical methods. Hereby one problem was to describe the different
physical effects which occur in a combined manner during the loading process of a cutting probe.
The process starts when the blade contacts the probe and the probe becomes deformed, whereby
the modelling of a two-body problem is very complex on its own. By focusing on the behaviour
of the probe it behaves elastic in the first phase of the process but one soon observes permanent

1



2 Introduction Chapter 1

plastic deformations of the material. In the next phase the probe is damaged due to the loading,
induced by the development of microcracks. This effect is usually modelled by a reduction of the
elasticity module. Nearly at the same time the blade also penetrates the material resulting into
a discrete separation of the material. These phases can be observed quite clearly as long as the
deformation is superposed quasi-statically. As soon as the loading velocity increases these phases
can not be separated as clear as before. In this case the material behaves rate-dependent and
also thermal effects have to be taken into account. These effects are related to each other such
that the higher the cutting velocity the higher is the temperature occuring in the cutting zone.
These temperatures again induce an increased damaging of the material, such that the damaging
is temperature-dependent and the temperature depends on the deformation rate, such that finally
also the damage depends on the loading velocity. All these effects have to be covered by a material
model, combining mechanical and thermal influences and their interaction.
A particular problem is how to model the cutting zone where additionally the penetration of the
blade and the discrete failure of the material takes place. These effects can be modelled only by
interface elements which have to be equipped with the before mentioned features. In particular the
extension to thermal effects have to be taken into account since with higher loading velocities the
thermal subproblem plays the dominant role. In particular if non-metallic materials are considered
due to the high temperatures occurring at the cutting zone the materials start to melt. These effects
can hardly be described by numerical methods.
The application of interfaces with respect to material separation is not the only field this feature
is useful for. Another application of interfaces is the treatment of discontinuities as they occur in
composites. In the last few years in material sciences one emphasis was placed on investigations
with respect to fiber-reinforced composite materials. Since it was nearly impossible to model the
materials and especially the fibres this accurately, the properties of the different components were
averaged as long as the numerical results and the experimental curves agreed. Also here the interface
elements are very promising since they feature the possibility to model the fibres and they also cover
the interaction of fibres and matrix material quite easily. Of course, it does not make any sense to
discretize every fibre in detail, but one can assemble a number of fibres to a bundle, for instance,
which is represented by an interfacial element.
In general interfaces are always useful in the context of discontinuities and therefore the potential
number of applications is quite high. However this kind of feature is not implemented in most of
the commercial software packages in spite of its high potential. This requires that a lot of problems
have to be modelled by numerically very expensive contact elements, which always need the solution
of a variation problem with an inequality side condition. This procedure sometimes is necessary but
in some applications it would be much more elegant to apply interface elements instead. It would
decrease the numerical costs and deliver better results.

Aim of this work Essentially there is more than one objective the author wants to follow up
in this work. At first a framework should be created, where different interface formulations and
applications can be integrated. Therefore a clear and capacious description of thermo-mechanically
coupled problems is intended, whereby the combination with different inelastic effects like plasticity,
viscoplasticity and damage are considered. Since the different material model formulations base on
the same mechanical and thermodynamical principles, it is possible to combine them in an arbitrary
way. For emphasizing this fact a modular representation of the different models is attempted and
the elementary realization and combination of the models is illustrated by means of simple or less
complicated examples. Furthermore, the numerical treatment of the theoretical material formula-
tions within the finite element formulation should be derived and tested in corresponding realistic
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applications.
In the next step the representation of discontinuities and their integration into the continuous back-
ground we developed before should be performed. This requires the reformulation of the governing
mechanical and thermodynamical balance equations in consideration of discontinuous displacement
and temperature fields, yielding a comprehensive theory. Finally, different discontinuous phenomena
are presented and it is shown how their theoretical description emerges from the generalized theory
and which assumptions have to be made to arrive at the corresponding formulation. Naturally,
the formulations have to be transformed into appropriate numerical forms and the corresponding
primary variables have to be discretized, such that it can be applied to realistic problems. In partic-
ular the subject of postcritical localization material behaviour and the modelling of composites are
investigated by means of the extended formulation.

Structure of this work As mentioned before the discontinuity and interfaces are embedded within
a surrounding (matrix) material, which has to be equipped at first with the thermo-mechanical
properties, i.e. definition of the material properties. This should be topic of chapter 2. In order
to assure a certain generality the material description is given in terms of geometrically nonlinear
deformations. That requires to distinguish between the initial state of the considered body and
its current state, which are connected by a nonlinear map. The detailed definitions are given in
the following chapter. According to this we obtain different nonlinear strain measures and the
corresponding stress fields. With this at hand the governing mechanical and thermodynamical
balance equations can be formulated from which important restrictions for the modelling of materials
emerge. The simplest and most important class of material models are elastic models and a lot of
achievements in mechanics base on the studies of elastic materials. However, we want to extend
the number of material models by taking inelastic effects into account. Another important class of
material models are plastic models. In this work we present a prototype plastic material law and as
we will see this model provides a good foundation for the description of other inelastic effects like
viscosity and damage. An intention of this work here is to emphasize the modular character of the
presented constitutive models. In order to work with the derived material models the corresponding
numerical aspects have to be highlighted. The main task there is to derive the corresponding
weak formulation in terms of the initial and the instantaneous configuration and since we consider
nonlinear balance equations we need to linearize them, such that the resulting algebraic equations
system can be solved by a standard Newton-Raphson iteration scheme. In the last section we like to
extend the given formulations to the consideration of thermal effects. Here the distinction between
adiabatic and global thermomechanically coupled materials has to be performed. Hereby the main
difference is that in the adiabatic case the temperature is defined as an additional internal variable,
whereas in thermo-mechanically coupled problems the temperature field is introduced as a further
primary variable, that allows the consideration of heat fluxes. In order to perform simulations, the
thermo-mechanical model has also transformed to the weak form and accordingly linearized.
The consideration of the discontinuities or interfaces, respectively, is performed in chapter 3. Here
we restricted ourselves to the linear theory, since the main aspects can be conceived there more
easily. The emphasis here is on the derivation of the governing balance equations in consideration
of interfaces. In particular we introduce the interface quantities ũ and û denoting the displacement
jump and the average displacement across and along the interface. From these definitions emerge
modifications of the linear momentum balance equation, the 1st and 2nd law of thermodynamics
and the corresponding weak formulations for the numerical implementation. Finally we want to
discuss two possible definitions of the interface temperature which lead to different formulations of
the entropy rate. In order to cover the numerical aspects of the interface formulation the chapter is
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finished by the discretization of the primary interface variables in space and time.
In the next step, in chapter 4 we want to apply the given interface formulation to localization
problems whereby firstly the appearance of localization phenomena has to be defined. For this the so-
called localization tensor or acoustic tensor is introduced that coincides with the double contraction
of the material tensor with the interface normal vector. It can be shown that localization occurs
if the acoustic tensor becomes singular. From the mathematical point of view the critical point
corresponds with a change of the differential equation type from elliptic to hyperbolic. If the critical
point is reached the interfaces are needed to describe the postcritical behaviour of the material.
There are two different interface formulations which have to be distinguished. On the one hand we
want to present the domain-dependent interface formulation, where the interface constitutive law
is taken from the ambient material by projecting it into the discontinuity. On the other hand we
introduce the domain-independent interface formulation where the discontinuity is described by an
extra interface constitutive law that mainly bases on the concepts of plasticity, which will have been
already introduced in chapter 2. Here the yield function is replaced by a slip function indicating
the failure of the particular interface and the onset of slip. Both formulations are presented here
and afterwards extended to thermo-mechanical/adiabatic problems. The application of the two
formulations to numerical examples show the advantages and disadvantages of both formulations.
In the last step a geometrically nonlinear approach of the domain-dependent formulation is presented.
In chapter 5 the complete interface formulation introduced in chapter 3 is applied to the modelling
of composites in consideration of thermo-mechanically coupled problems. For the simulation we need
to specify the corresponding constitutive laws for the interfaces, whereby we restrict ourselves to the
case of linear elasticity and thermo-elasticity. To investigate the influence of the different interface
contributions across and along the interface we present different numerical examples considering
elastic, thermal and thermo-elastic problems and vary the corresponding material parameters. In
chapter 6 a concluding consideration is made, where we summarize and evaluate the main results
of this work. This discussion also yields the existing problems and aspects of future research.



2 Bulk Modelling in Continuum Mechanics

2.1 Overview

In this chapter we want to focus on the modelling of materials in the framework of large deforma-
tions. In contrast to the formulation in terms of small strains, this requires a kinematical description,
that normally leads to nonlinear relations, representing a generalization of the linear theory. A crucial
quantity in this context is the so-called mixed-variant deformation gradient F �, that connects line
elements in the material configuration to line elements in the spatial configuration. From this em-
anates a variety of conceivable nonlinear strain measures and strain rates, that are associated with
different configurations. The aim of the first section is the representation of how they are related to
each other and which requirements have to be fullfilled to obtain physically reasonable formulations.
The kinematics constitute the fundament for the mechanical balance equations like the continuity
equation, linear and angular momentum balance equation and the balance of mechanical energy.
From the variety of strain measures emanates different representations of the balance equations.
Since we want to take care deriving thermodynamically consistent constitutive equations we resume
the 1st and 2nd law of thermodynamics in terms of continuum mechanics. By appropriate transfor-
mations we can derive the Clausius-Duhem-Inequality, a specific representations of the 2nd law of
thermodynamics, yielding restrictions for the theory of material modelling. With this at hand we
are able to develop the concept of stress as it emanates from an elastic potential, that is introduced
by strain energy function. In the next step we modify the theory of elasticity in the sense, that we
introduce side conditions accounting for inelastic effects, whereby firstly we give a brief review of the
concepts of linear elastoplasticity before applying them to the large strain formulation. In respect of
the implementation the emphasis is placed on the derivation of the material tensor or the consistent
tangent operator/ matrix. The described elastoplastic material model serves as a prototype model
which can be enriched by additional inelastic effects or rate dependent formulations. In particular
we introduce formulations of the Gurson type and the Lemaitre type for the description of ductile
damage and the elasto-viscoplastic effects are recorded by the Perzyrna model. Here we want to
emphasize the modular character, since all previously presented material models can be considered
as extensions of the prototype model of the von-Mises type. For the solution of nonlinear structures
in consideration of inelastic constitutive material behaviour we resort to the standard finite element
method. Since the numerical solution method is based on variational formulations we apply the
variational calculus to the governing differential equations to obtain finally the weak form, that is
equivalent to the initial problem. The solution of the resulting set of nonlinear algebraic equations
by the standard Newton-Raphson iteration scheme requires a linearization and a discretization of
the weak form. Finally we extend the isothermal inelastic models to thermo-mechanically coupled
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6 Bulk Modelling in Continuum Mechanics Chapter 2

formulations taking into account temperature dependent constitutive material behaviour and intro-
ducing the temperature as an additional global primary variable, whose evolution is determined by the
energy balance equation in terms of the internal energy. A specific thermo-mechanical formulation
assumes the process velocity this high, that any heat exchange of the system and the environment
is negligible, such that adiabatic conditions are given. Therefore there is no necessity to consider
the temperature as a global variable anymore, but it can be ,reduced’ to an internal variable. This
completes the theoretical formulation of thermo-mechanical materials including inelastic effects.
The kinematical description of elastic deformations in terms of large strains is state of the art and
for an exhaustive introduction of this subject and the theoretical foundations we want to refer to the
monographs of Eringen [Eri67], Wang & Truesdell [WT73], Becker & Bürger [BB75] , Marsden &
Hughes [MH94], Altenbach & Altenbach [AA94] , Ogden [Ogd97], Podio-Guidugli [PG00], Holzapfel
[Hol01], Greve [Gre03].
There are a lot of publications covering the subject of nonlinear elasto-plasticity and we just refer
here to a small number of them. The beginning of inelastic material formulations in terms of large
deformation usually is accredited to Green & Naghdi [GN64] and Lee [Lee67]. A comprehensive work
taking into account the theoretical and the numerical treatment of inelastic deformations in terms
of large strains was contributed by Simo in the papers [Sim88a] and [Sim88b]. Furthermore we like
to refer to the papers of Miehe & Stein [MS92], Miehe [Mie98a] and [Mie98b], Weber & Anand
[WA90], Naghdi [Nag90], Simo [Sim92]. Monographs about the subject of linear and nonlinear
elasto-plasticity are published by Simo & Hughes [SH98], Haupt [Hau02], Parisch [Par03], Miehe
[Mie92], Lubliner [Lub90] and Han & Reddy [HR99].
An overview of further literature corresponding to the subject of numerical realisation and thermo-
mechanical extension is given at the beginning of the particular sections.

2.2 Description of Nonlinear Deformations

In this section we firstly want to consider the fundamental concepts of nonlinear elastic material
theory, which are applied to elasto-plastic problems later on. The concepts presented here are
the kinematics, material objectivity or frame-indifference, respectively, and the concept of stress,
combined with the fundamental ideas of elasticity theory. We start with the definition of a material
body in its different configurations and the corresponding deformation tensors and strain measures
that are related by the deformation gradient. After that we derive the strain rates and discuss
the matter of objectivity before we declare the terms of Cauchy elasticity, hyper-elasticity and the
different stress formulations that refer to the configurations.

2.2.1 Kinematics and Strain Measures

Manifolds, Configurations and Metrics A material body B is represented by a differentiable
manifold M of finite dimension that consists of a set of material points P . At different times
t ∈ I ⊂ �+ the material points P ∈ B can be identified with different subsets of the Euclidean
point space �3. The states the body passes through at different times t are called configurations
and the smooth family of configurations with t as the family parameter we call motion. During
its motion every material point P describes a curve that can be characterised by time-dependent
position vectors x(t) ∈ �

3 or coordinate functions xk(t) ∈ �
3, k = 1, 2, 3. �

3 denotes the three-
dimensional Euclidean vector-space and the mapping (M, t) → x(t) ∈ �3 is called placement, i.e.
the placement of B at time t defines the corresponding configuration. The motion of the material
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body can be easily described by the change from one configuration to the other, so it is useful to
determine a reference or material configuration of the material body at a certain time t0, to which we
can refer the other configurations. This configuration can be chosen arbitrarily, but it makes sense to
choose a stress-free one. So we identify the reference configuration by (B, t0) → B(t0) = B0 ⊂ �

3

and accordingly the spatial reference configuration by (B, t) → B(t) = Bt ⊂ �3. Placements in
the reference configuration are denoted by X ∈ B0 and placements in the spatial configuration are
denoted by x(t) ∈ Bt and both are connected by the nonlinear mapping ϕ(X, t) : B0 × � → Bt.
Since the placement in the reference configuration is uniquely determined in time and space and
following Haupt [Hau02], it also can be interpreted as a designation. The mapping x(t) = ϕ(X, t) :
B0 × � → Bt describes the position of a particular material point named X at time t in �3. By
fixing two of the three coordinates xk, respectively, the vector x(xi, t), i �= k describes a curvilinear
coordinate line in �3, which are called convected coordinates. The convected coordinates in the
reference configuration are denoted by Θi = θi(X , t0) . With this at hand we can define a system
of natural base vectors gi = ∂θix(t), respectively Gi = ∂ΘiX, that are tangent vectors to θi(x, t),
respectively Θi(X) and that span the tangent spaces (TBt, TB0). According to that we can define
a dual base of cotangent base vectors gi = ∂xθ

i and Gi = ∂XΘi spanning the cotangent spaces
T ∗Bt, T

∗B0. In a precise mathematical notation we write

gi =
Gi =

∂θix
∂ΘiX

∈ �3 :
∈ �3 :

T ∗Bt

T ∗B0

→ �,
→ �,

gi =
Gi =

∂xθ
i

∂XΘi

∈ �3 :
∈ �3 :

TBt

TB0

→ �,
→ �

(2.2.1)

for the tangent and cotangent base vectors, whereby the θi(x, t) of the spatial configuration and the
Θi(X) of the reference configuration are connected by θi(x, t) = Θi(X) ◦ ϕ−1(x, t), respectively
by Θi(X) = θi(x, t) ◦ ϕ(x, t) with ϕ−1(x, t) : Bt ×� → B0. Naturally we can identify T ∗∗Bt and
T ∗∗B0 with TBt and TB0. The natural base vectors gi and Gi define contra-variant fields, whereas
the cotangent base vectors gi and Gi denote covariant vector fields, that are usually interpreted as
normal vectors on θi(x, t). Accordingly we define the covariant and contravariant metric tensors by

g� = gij

g� = gij

G� = Gij

G� = Gij

gi ⊗ gj

gi ⊗ gj

Gi ⊗ Gj

Gi ⊗ Gj

∈
∈
∈
∈

�
3
+ : TBt

�3
+ : T ∗Bt

�3
+ : TB0

�3
+ : T ∗B0

×
×
×
×

TBt

T ∗Bt

TB0

T ∗B0

→ �,
→ �,
→ �,
→ �

gij

gij

Gij

Gij

=
=
=
=

gi · gj

gi · gj

Gi · Gj

Gi · Gj

,
,
,

(2.2.2)

whereby here and subsequently [•]� and [•]� denote covariant and contravariant tensors. The set of
metric tensors is complemented by the following mixed-variant tensors

g� = gi ⊗ gi : T ∗Bt × TBt → � and G� = Gi ⊗ Gi : T ∗B0 × TB0 → �, (2.2.3)

that can be identified as the spatial and material identity tensors.

Deformation gradient and nonlinear strains The difference of the position vectors of a material
point P in the spatial and the material configuration

u(X, t) = ϕ(X , t) − X ∈ �
3 (2.2.4)

is called displacement field. Following the linear theory, we can define the non-symmetric displace-
ment gradient tensor H� by differentiating the displacement field with respect to X. That yields

H�(X, t) = ∂Xu = ∂Xϕ(X, t) − G� = F � − G� ∈ �
3 (2.2.5)
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and the quantity F �(X, t) ∈ �3
+ : TB0 → TBt denotes the deformation gradient tensor. F �(X, t)

is a mixed-variant two-point tensor of second order and involves points in two different config-
urations. This property makes it able to link elements of TBt to elements of TB0. In addi-
tion to that the Jacobian of the deformation gradient is always positive, such that the inverse
f �(x, t) = [ F � ]−1 (X, t) ∈ �3

+ : TBt → TB0 is defined. If we consider the transposed deforma-

tion gradient tensor [ F � ]t ∈ �3
+ : T ∗B0 → T ∗Bt and the transposed of the inverse deformation

gradient [ f � ]t ∈ �3
+ : T ∗Bt → T ∗B0 we are also able to transform elements of the cotangential

spaces in different configurations to each other. The collection

F �(X, t)

[ F � ]t (X, t)

f �(x, t)

[ f � ]t (x, t)

=
=
=
=

gi ⊗ Gi

Gi ⊗ gi

Gi ⊗ gi

gi ⊗ Gi

∈ �3
+

∈ �3
+

∈ �3
+

∈ �
3
+

:
:
:
:

TB0

T ∗B0

TBt

T ∗Bt

→
→
→
→

TBt

T ∗Bt

TBt

T ∗Bt

,
,
,

(2.2.6)

shows possible mappings of line elements dX or dx, respectively. The deformation described by the
deformation gradient generally includes a rotation of the line elements, such that the deformation
gradient can be decomposed uniquely in two different ways, namely F � = R · U � = [ ga ⊗ ˜G

a
] ·

[ ˜Ga ⊗ Ga ] and F � = V � · R = [ ga ⊗ g̃a ] · [ g̃a ⊗ Ga ], whereby g̃a, g̃a, ˜Ga and ˜G
a

denote
base systems in a fictitious intermediate configuration and R ∈ ��

3 is a proper orthogonal rotation
tensor, whereas U � ∈ �3

+ and V � ∈ �3
+ describe the stretches and accordingly they are called the

right and left stretch tensors. Both decompositions lead to the same mapping but the order of
rotation and stretching are exchanged. Since the rotation tensor is proper orthogonal, it can be
shown, that the eigenvalues of the stretch tensors coincide, but they live in different configurations.
Nevertheless, the deformation gradient F �(X, t) and also the displacement gradient H�(x, t) are
no useful strain measures in nonlinear kinematics, since they include rotational transformations.
Therefore we follow the definition of normal strains in linear theory (x = X), where the strains
coincide with the symmetric displacement gradient [ ∂Xu ]sym

ε =
|dx| − |dX|

|dX| =⇒ dx · dx = [ε+ 1]2 dX · dX = dX · [[ F � ]t · g� · F �
] · dX

= dX · C� · dX (2.2.7)

and obtain the right Cauchy-Green tensor C� = gijG
i ⊗ Gj ∈ �

3
+ : TB0 × TB0 → �. The double

contraction of this second order tensor with the initial line element dX yields the squared length
of the stretched spatial line element dx and moreover this excludes the rotational contributions.
Another interpretation of the right Cauchy-Green tensor is given by considering it as the spatial
metric g� applied to the reference configuration1. Nevertheless, solving eqn. 2.2.7 for all terms
including ε
[

ε+
1

2
ε2

]

dX · dX =
1

2
dX ·

[

C� − G�
]

· dX := dX · E� · dX =⇒ E� =
1

2

[

C� − G�
]

(2.2.8)

renders the Green-Lagrange tensor E� = 1
2
[gij −Gij ] G

i ⊗ Gj ∈ �3 : TB0 × TB0 → �, that
can be identified as a proper strain tensor recording obviously the effects of nonlinearity. This can
also be interpreted as the difference of the spatial and material metric with respect to the reference

1This so-called pull back operation ϕ∗(x, t) is often used to express spatial quantities in terms of the reference
configuration. The opposed operation from the reference configuration to the spatial one is called push forward
operation ϕ∗(X , t).
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configuration. For the shear strain of two material line elements dx1 and dx2 the Green-Lagrange
strain tensor accordingly yields

2dX1 · E� · dX2 = [dx1 · dx2 − dX1 · dX2]

= |dx1||dx2| cos γ12 − |dX1||dX2| cos γR
12

=
[

[ε1 + 1] [ε2 + 1] cos γ12 − cos γR
12

] |dX1||dX2|, (2.2.9)

that records the change of the length and the angle to each other. The Green-Lagrange strain tensor
can also be expressed in terms of the displacement gradient H�

E� =
[

[

H� + G�
]t · g� · [H� + G�

]− G�
]

=

⎡

⎢

⎢

⎣

[

H�
]t · g� · H �

︸ ︷︷ ︸

E�

nonl

+
[

H�
]t · g� · G� + [ G� ]t · g� · H�

︸ ︷︷ ︸

E�

lin

−G�

⎤

⎥

⎥

⎦

(2.2.10)

whereby E�
lin denotes the linear part of the Green-Lagrange strain tensor, whereas the nonlinear

part is detected by E�
lin.

In analogy to the right Cauchy Green tensor, that lives purely in the material configuration, we can
define the so-called left Cauchy-Green tensor b� = Gijgi ⊗ gj ∈ �3

+ : T ∗Bt × T ∗Bt → �, that lives
in the spatial configuration. In addition it is conceivable to define the inverse tensors denoted by
B� = [ C� ]−1 and c� = [ b� ]−1, so that we get the following collection

C�

B�

c�

b�

=
=
=
=

[ F � ]t · g� · F �

f � · g� · [ f � ]t

[ f � ]t · G� · f �

F � · G� · [ F � ]t

=
=
=
=

gij

gij

Gij

Gij

Gi

Gi

gi

gi

⊗
⊗
⊗
⊗

Gj

Gj

gj

gj

∈ �3
+

∈ �
3
+

∈ �3
+

∈ �3
+

:
:
:
:

TB0

T ∗B0

TBt

T ∗Bt

×
×
×
×

TB0

T ∗B0

TB0

T ∗Bt

→ �

→ �

→ �

→ �

,
,
,
(2.2.11)

With these kinematical quantities it is also possible to define generalized co- and contravariant
strain measures in different configurations. In the following set the different types of nonlinear strain
measures are compiled in a generalized way

nE�
(n)

nA�
(n)

ne�
(n)

na�
(n)

=
=
=
=

[ C� ]
n
2 − G�

G� − [ B� ]
n
2

g� − [ c� ]
n
2

[ b� ]
n
2 − g�

=
=
=
=

n [ E(n) ]ij
n [ A(n) ]ij

n [ e(n) ]ij
n [ a(n) ]ij

Gi ⊗ Gj

Gi ⊗ Gj

gi ⊗ gj

gi ⊗ gj

∈ �3 :
∈ �

3 :
∈ �

3 :
∈ �3 :

T ∗Bt × T ∗Bt

TBt × TBt

T ∗Bt × T ∗Bt

TBt × TBt

→ �

→ �

→ �

→ �

,
,
,
(2.2.12)

A particular strain measure that can be also derived from this set of generalized strain measures
is the logarithmic or natural strains. Since these strain measures are essential for the numerical
treatment of elastoplasticity, we mention them here explicitly

E�
(0)

A�
(0)

e�
(0)

a�
(0)

=
=
=
=

1
2
ln C�

−1
2
ln B�

−1
2
ln c�

1
2
ln b�

∈ �3 :
∈ �3 :
∈ �3 :
∈ �3 :

T ∗Bt × T ∗Bt

TBt × TBt

T ∗Bt × T ∗Bt

TBt × TBt

→ �

→ �

→ �

→ �

,
,
,
.

(2.2.13)

Furthermore it can be shown, that all these different strain measures are equal to first order and
therefore they coincide in the case of small strains, such that C� → G�, B� → G�, c� → g� and
b� → g�.



10 Bulk Modelling in Continuum Mechanics Chapter 2

Spectral decomposition All the previously established kinematical quantities are tensors of sec-
ond order and if they are symmetric, they can be represented by the spectral decomposition as it is
represented in the appendix. For the (nonsymmetric) deformation tensor F � the described decom-
position is not valid, but following Parisch [Par03] it consists of an rotation tensor and an stretch
tensor in the subsequent way

F � =

3
∑

α=1

λαnα ⊗ Nα =

3
∑

α=1

nα ⊗˜N
α ·

3
∑

α=1

λα
˜N

α ⊗ Nα = R · U � (2.2.14)

=

3
∑

α=1

λαnα ⊗ Nα =

3
∑

α=1

λαnα ⊗ ñα ·
3
∑

α=1

ñα ⊗ Nα = V � · R (2.2.15)

for the polar decomposed form and it is obvious, that the right and left stretch tensor U � =
∑3

α=1 λα
˜N

α⊗Nα and V � =
∑3

α=1 λαnα⊗ñα have the same eigenvalues, which can be considered
as the stretches in the principal directions and therefore they are called principal stretches. The
difference between the stretch tensors can be found in the eigenbase, since the right stretch tensor
exits in the material configuration whereas the right stretch tensor exists in the spatial configuration.
Since the right Cauchy-Green tensor C� and accordingly the left Cauchy-Green tensor b� can be
expressed in terms of the stretch tensors it ensures that also the deformation tensors possess the
same eigenvalues.

C� = [ U � ]2 =

3
∑

α=1

λ2
αNα ⊗ Nα, b� = [ V � ]2 =

3
∑

α=1

λ2
αnα ⊗ nα, (2.2.16)

which coincide with the squared principal stretches. As mentioned before the deformation tensors
can be related to each other by the push-forward Φ∗ and pull-back Φ∗ operations, whereby only
the eigenvectors are transformed and the eigenvalues remain untouched. For this transformation we
take eqn. 2.2.15 into account and rewrite it as

λαNα = nα · F �. (2.2.17)

Hence, we obtain

C� =
3
∑

α=1

λ2
αNα ⊗ Nα =

3
∑

α=1

[ F � ]t nα ⊗ nα · F �

= [ F � ]t ·
3
∑

α=1

nα ⊗ nα · F � = [ F � ]t · g� · F �. (2.2.18)

Since the principal stretches of the right and left Cauchy-Green tensors are the same, it follows from
eqn. A.1.5, that also the principal invariants are the same. Of course, for the calculation of the
invariants of the deformation tensors the squares of the principal stretches have to be considered.
The invariants can be expressed in the following representations

I1(C
�) =

I2(C
�) =

I3(C
�) =

G� : C�

1
2
[ I2

1 − G� : [ C� ]2 ]

det [ C� ]

=
=
=

λ2
1 + λ2

2 + λ2
3

λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

λ2
1λ

2
2λ

2
3

=
=
=

g� : b�

1
2
[ I2

1 − g� : [ b� ]2 ]

det [ b� ]

= I1(b
�)

= I2(b
�)

= I3(b
�).

(2.2.19)



Section 2.2 Description of Nonlinear Deformations 11

Transformation formulas We want to stop here considering eigenvalue problems, but therefore
we would like to give some useful tools for the transformation of surface elements and volume
elements from the referential configuration to the current one and vice versa. For this we firstly
have to introduce some additional quantities, like permutation tensor E=εijkg

i ⊗ gj ⊗ gk that
possess the following properties

εijk =

⎧

⎨

⎩

1, with (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1, with (i, j, k) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)}

0, otherwise
(2.2.20)

With this at hand we can define the vector product of two vectors u and v given by

u × v = εijkuivjg
k (2.2.21)

and the triple product of three vectors u,v and w

v = u · [ v × w ] = εijku
ivjwk (2.2.22)

that yields a scalar quantity, that can be identified with the volume enclosed by the three vectors.
Applying this relation to the material and spatial base vectors renders the infinitesimal volume
elements dV = dX1 · [ dX2×dX3 ] = G1dX

1 · [ G2dX
2×G3dX

3 ] and dv = dx1 · [ dx2×dx3 ] =
g1dx

1 · [ g2dx
2×g3dx

3 ]. For the transformation rules describing the relation between both volumes,
we firstly need the definition of the determinant that is given by

εijkε
lmn = det

⎛

⎝

gl
i gl

i gl
k

gm
i gm

j gm
k

gn
i gn

j gn
k

⎞

⎠ . (2.2.23)

Applying this definition to the deformation gradient we obtain

J = det(F �) =
1

6
εijkεIJKF

I
i F

J
j F

K
k � JεIJK = εijkF I

i F
J
j F

K
k . (2.2.24)

The meaning of this relation for the transformation becomes clear if we consider the spatial volume
element dv

dv = dxi · [ dxj × dxk ] = εijkdxidxjdxk (2.2.25)

= εijkF I
i F

J
j F

K
k dXIdXJdXK = JεIJKdXIdXJdXK = JdV. (2.2.26)

From this result it is derivable that scalar quantities in principle transform by the Jacobian of the
deformation gradient J , such that the initial and current density are related by

ρ0dV = ρdv = ρJdV � ρ0 = Jρ. (2.2.27)

Another important transformation rule is called the Nanson formula, that transforms surface elements
from the material to the spatial configuration. A material surface element can be represented by
its normal vector in the form dA = NdA. Since N = GI is defined on the cotangential space it
cannot be transformed by the deformation tensor but by its inverse gi = f � ·GI . For the derivation
of the Nanson formula we start from the following relation for the material surface element

dA = G3dA = G1 × G2dΘ
1dΘ2 = G3 [ G1dΘ

1 × G2dΘ
2 ] · G3 = G3dΘ1dΘ2dV.

(2.2.28)
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In analogy to the material description the spatial surface elements can be derived and by applying
the transformation rules for the contravariant base vectors and the volume elements we obtain the
so-called Nansons formula

da = g3da = g3dΘ1dΘ2dv = [ f � ]t · G3dΘ1dΘ2JdV = J [ f � ]t · dA (2.2.29)

whereby here the material surface description was taken into account. These transformation rules
appear quite often and are very useful tools. At this point we like to remark, that for the particular
case the body B carries out a pure rotation, the volume remains unchanged in eqn. 2.2.15 :
F � = R =⇒ det(F �) = 1.

2.2.2 Material Objectivity and Strain Rates

Objectivity For the formulation of the mechanical and the thermodynamical balance equations
as well as for the constitutive laws, the rates of quantities are needed, such that it is also necessary
to know the rates of the non-linear strain measures derived in the section before. The problem here
is, that these strain rates have to fullfill the constraint of material objectivity or material frame-
indifference, in the following sense. Two different observers at different positions observing the same
deformation of the body B at time t and t′ = t− a, are expected to see the properly transformed
result. A deformation observed by two observers at position o and õ is related by

x̃ = Q�(t) · x + c(t), (2.2.30)

whereby Q ∈ ��
3 is a proper orthogonal transformation tensor and c(t) denotes a distance vector

between o and õ. Another point of view is to regard eqn. 2.2.30 as a rigid body motion that is
superimposed on B at a particular configuration C and leading to the new configuration ˜C. If the
state of a quantity transforms properly from C to ˜C, it is called objective or frame-indifferent. In
general there is hardly no other subject in solid mechanics, where the minds are less conform than
in the definition of objectivity. Usually, the objectivity of a scalar a, a vector a or a tensor A is
ensured, if they transform in the following way

ã(x̃,˜t) = a(x, t), ã(x̃,˜t) = Q� · a(x, t), ˜A(x̃,˜t) = Q� · A(x, t) · [ Q. ]t (2.2.31)

The new deformation gradient ˜F
�
= ∂Xϕ̃(X, t) can be obtained by the derivative of eqn. 2.2.30

with respect to X that yields

˜F
�
= Q · F �. (2.2.32)

Comparing this expression with the transformation rule in eqn. 2.2.313, the deformation gradient
has to be assumed as a non-objective quantity.2 By applying this transformation to the tangent
vector dx of the spatial configuration

dx̃ = ˜F
� · dX = Q(t) · F � · dX = Q(t) · dx (2.2.33)

we see that it causes a rigid body rotation of the spatial tangent vector dx. Therefore the tangent
vector dx can be considered as an objective quantity. Furthermore the transformed Jacobian ˜J is

2In some textbooks the deformation gradient is considered as an objective tensor, since it is a twofield tensor
consisting of a spatial and a material base vector, which is ,,intrinsically independent of the observer” (s. Holzapfel
[Hol01]). In this spirit the transformation of the deformation tensor also yields an objective quantity, since the rotation
is applied to the spatial base vector.
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equal to the original one, because Q(t) is a proper orthogonal tensor and the transformation results
in

˜J = det(˜F
�
) = det(Q) det(F �) = 1 det(F �) = det(F ). (2.2.34)

Now we investigate the nonlinear strain measures with respect to the objectivity requirements given
in eqn. 2.2.31. Taking the objectivity of the spatial covariant metric tensor g� = Qtg̃�Q into
account, we can easily show, that the right Cauchy-Green tensor keeps completely untouched by an
change of observer

˜C
�
= [ ˜F

�
]t · g̃� · ˜F �

= [ F � ]t · Qt · g̃� · Q · F � = [ F � ]t · g� · F � = C�, (2.2.35)

since both base vectors are defined on the material configuration, which are independent of the
observer. Therefore we refer to the right Cauchy-Green tensor as non-objective, because it does not
fulfill the objectivity requirement in eqn. 2.2.313. But since it is not influenced by the rigid body
motion, it is an (observer-) invariant quantity. Inserting the transformation rule of the deformation
gradient into the definition of the left Cauchy-Green tensor we obtain

˜b
�
= ˜F

� · G� · [ ˜F �
]t = Q · F � · G� · [ F � ]t · Qt = Q · b� · Qt. (2.2.36)

The transformation of the left Cauchy-Green tensor b� coincides with the objectivity requirements
in eqn. 2.2.30 and can be identified as an objective tensor. For completeness we want to mention
here, that also the inverse quantities are either invariant or objective, respectively, such that we
obtain for the inverse right Cauchy-Green tensor

˜B
�
= ˜f

� · g̃� · [ ˜f �
]t = f � · Qt · g̃� · Q · [ f � ]t = f � · g� · [ f � ]t , (2.2.37)

that is invariant and the inverse left Cauchy-Green tensor

c̃� = [ ˜f
�
]t · ˜G� · ˜f �

= Q · [ ˜f �
]t · G� · ˜f � · Qt = Q · c� · Qt, (2.2.38)

is also objective. Analogously all the corresponding strain measures in eqn. 2.2.12 can be proofed
with respect to objectivity and invariance. In general one can say, that symmetric material tensor
quantities are invariant, whereas spatial symmetric quantities are objective.

Strain Rates Now we consider the rates of the deformation tensor and the corresponding strain
measures. We start with the time derivative of the Green-Lagrange strain tensor

2Ė
�
= ∂t

[

[ F � ]t · g� · F � − G�
]

=
[

[ Ḟ
�
]t · g� · F � + [ F � ]t · g� · Ḟ �

]

= Ċ
�

(2.2.39)

whereby of course the material metric tensor is constant in time. Eqn. 2.2.39 includes the time
derivative of the deformation tensor that is defined by

Ḟ
�
= ∂tϕ(X, t) =

∂

∂t

∂x

∂X
=

∂

∂X

∂x

∂t
=

∂v

∂X
=
∂v

∂x
· ∂x
∂X

= gradv · F � = l� · F �. (2.2.40)

Here l� = lijgi ⊗ gj ∈ �3 : T ∗Bt × TBt → � denotes the spatial velocity gradient. Ḟ
�

relates
the spatial velocity gradient gradv to the material configuration, that often is specified as material
velocity gradient Gradv. Inserting this in eqn. 2.2.39 renders

Ė
�
=

1

2

[

[ F � ]t · [ l� ]t · g� · F � + [ F � ]t · g� · l� · F �
]

=
1

2
[ F � ]t ·

[

[ l� ]t · g� + g� · l�
]

· F �

= [ F � ]t · d� · F � (2.2.41)
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whereby d� = dijgi ⊗ gj ∈ �3 : TBt × TBt → � denotes the strain rate tensor and cor-
responds to the symmetric part of the spatial velocity tensor, whereas the skewsymmetric part
w� = 1

2

[

l� · g� − g� · [ l� ]t
] ∈ �

3 : TBt × TBt → � is called spin tensor. To investigate the
objectivity of the material strain rate tensor we apply again a rigid body motion

˙̃
E

�

= [ ˜F
�
]t · ˜d� · ˜F �

= [ F � ]t · Qt · ˜d� · Q · F � = [ F � ]t · d� · F � = Ė
�

(2.2.42)

and find that it is an invariant quantity, since ˜d
�
= Qt · d� · Q fullfills the requirement of material

objectivity. In the case of the Almansi-tensor we found that it is also an objective strain measure,
because of the identity ẽ� = Q · e� · Qt. However, the time derivative

˙̃e
�
= Q̇ · e� · Qt + Q · ė� · Qt + Q · e� · Q̇ �= Qt · ė� · Q (2.2.43)

is obviously not objective. In general one can say that rates of spatial quantities are not objective,
since also their base system are time-dependent, whereas the material base system is fixed. But it is
possible to construct objective spatial strain rates by the Lie-derivative, that is denoted by Lt [ • ].
With this method an objective time derivative of spatial variables is constructed by pulling back the
particular spatial quantity on the reference configuration, where the time derivative is performed and
the resulting expression is pushed forward again to the spatial configuration. Applying this scheme
to the Almansi strain tensor renders

Lt(e
�) = ϕ∗

[

∂tϕ
∗(e�)

]

= [ f � ]t · Ė� · f � = [ f � ]t ·
[

[ F � ]t · d� · F �
]

· f � = d� (2.2.44)

and we find that the objective deformation rate tensor d� is the Lie-derivative of the Almansi-strain
tensor. The subject of objective time-derivative of spatial quantities is not only important for the
formulation of strain rates, but also in the context of stresses. There is a variety of different objective
stress rates, that were constructed in the past and for example the Olroyd stress rate can be identified
with the Lie time derivative of the Cauchy stress [Hol01].

2.3 Balance Principles in Mechanics

In this section we will briefly summarize the main balance principles in mechanics: the conservation
of mass, the linear and the angular momentum balance equation and the mechanical energy balance
equation. In the framework of the linear momentum balance equation we will anticipate the concept
of stress. Therefore we will introduce the stresses in an abstract manner, before we will give a more
precise definition in the subsequent section. For brevity we will not discuss every balance equation
in detail for the reference and the current configuration, but the most important relations will be
given. A tool that is needed in all the following considerations are the spatial and material time
derivatives, that we introduce at first.

2.3.1 Material and Spatial Time Derivatives

According to the different configurations we have to distinguish two kinds of time derivatives. A time
derivative of a smooth material field F(X, t) parameterized in material coordinates X, denoted by
D [ • ] /Dt, is defined by

DF
Dt

=: Ḟ(X, t) =
∂F(X , t)

∂t

∣

∣

∣

X
, (2.3.1)
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whereby X is fixed. In analogy to the material time derivative we can define the spatial time
derivative of a smooth spatial field F(x, t) parameterized in x by

dF
dt

=: Ḟ(x, t) =
∂F(x, t)

∂t

∣

∣

∣

x
. (2.3.2)

This time the spatial coordinate x is fixed. At last we consider the material time derivative of a
smooth spatial field F(x, t), that is very crucial in the context of balance equations. The corre-
sponding time derivative is given by

DF(x, t)

Dt
=

F(x, t)

∂t
+
∂F(x, t)

∂x

∣

∣

∣

t
· ∂ϕ(X, t)

∂t

∣

∣

∣

X=ϕ−1(X,t)
. (2.3.3)

A particular application of the material time derivative can be found in the so-called Reynolds
theorem. This theorem allows to compute the material time derivative of a spatial quantity field
I(x, t) defined by the integral of Φ(x, t) over the current configuration Bt, such that we obtain

DI(x, t)

Dt
=

D

Dt

∫

Bt

Φ(x, t)dv. (2.3.4)

For being able to perform the time derivative we need to transform the relation to the fixed material
configuration, such that the time derivative and the integral can be exchanged

D

Dt

∫

Bt

Φ(x, t)dv =
D

Dt

∫

B0

JΦ(x, t)dV

=

∫

B0

D

Dt
[ JΦ(x, t) ] dV

=

∫

B0

[ J̇Φ(x, t) + JΦ̇(x, t) ] dV (2.3.5)

For the time derivative of the Jacobian J we start with the definition of J = det F � and differenti-
ating it with respect to time we obtain

J̇ =
∂J

∂F �
· Ḟ �

= J [ f � ]t : [ l�F � ] = Jdivv with
∂J

∂F �
= J [ f � ]t , (2.3.6)

whereby here eqn. 2.2.40 was taken into account. The time derivative of Φ(x, t) is given by eqn.
2.3.3, such that we finally obtain

D

Dt

∫

Bt

Φ(x, t)dv =

∫

B0

J [ ∂tΦ(x, t) + gradΦ(x, t) · v + Φ(x, t)divv ] dV

=

∫

Bt

[ ∂tΦ(x, t) + div(Φ(x, t)v) ] dv. (2.3.7)

In the last step the transformation back to the current configuration is performed.
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2.3.2 Conservation of Mass

The law of mass conservation states that the mass m of a system does not change during a
deformation process. Since the mass is defined by the product of mass density and the volume, we
can formulate the total mass in the reference and the current configuration by

m =

∫

B0

ρ0dV =

∫

B0

ρJdV =

∫

Bt

ρdv. (2.3.8)

This relation more or less was already introduced in eqn. 2.2.27 and contains the relation between the
mass densities in the reference and the current configuration ρ0 = Jρ. An equivalent representation
of the continuity mass equation is given by the constraint, that the current mass alteration in time
has to be zero. The corresponding time derivative can be obtained if we apply the Reynolds theorem
in eqn. 2.3.7, whereby Φ(x, t) = ρ(x, t) is taken into account, such that applies

ṁ =

∫

Bt

∂t [ ρ(x, t)J(X, t) ] dV =

∫

Bt

[ Jρ̇+ Jgradρ · v(x, t) + J̇ρ ] dV = 0. (2.3.9)

Here the time derivative of the Jacobian that was performed in eqn. 2.3.6 is inserted into eqn. 2.3.9
and we can rewrite the time derivative as

ṁ =

∫

Bt

[ ∂tρ+ div[ρv] ] dv = 0. (2.3.10)

If we apply the Gauss theorem to the second term we obtain the mass continuity equation for closed
systems

∫

Bt

∂tρdv = −
∫

∂Bt

ρv · nda, (2.3.11)

that coincides with the idea, that the mass within a control volume alters with the flux over the
boundary of the system or the control volume, respectively.

2.3.3 Balance of Linear Momentum

The balance equation of linear momentum is the basic equation in solid mechanics, from which
the weak form for the finite element method is derived. It states, that the change of the linear
momentum in time emanates from the sum of the external forces, whereby we distinguish between
forces acting on the surface of the body and the volume forces. In the current configuration it takes
the standard form

∂

∂t

∫

Bt

ρvdv =

∫

Bt

bdv +

∫

∂Bt

tda, (2.3.12)

whereby b here describes a force per unit volume and t denotes the traction vector. Usually the
Cauchy theorem t = σ� · n can be applied to the traction vector, whereby σ� denotes the spatial
stress tensor, that will be defined later on. In consideration of the application of the Cauchy
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theorem we can replace the integral over the surface by an integral over the volume. This leads to
the representation

∂

∂t

∫

Bt

ρvdv =

∫

Bt

[ b + divσ� ] dv with divσ� = σij,j, (2.3.13)

and by shrinking the volume to zero we obtain the local linear momentum balance equation

ρv̇ = b + divσ�. (2.3.14)

In quasistatics the applied velocity field is assumed to be constant such that its time derivative gets
zero and we find the relation

b + divσ� = 0. (2.3.15)

The material formulation of the linear momentum balance equation can be obtained by relating
the terms in eqn. 2.3.13 with respect to the reference volume V . The transformation of the body
force can be found by

∫

Bt

bdv =

∫

B0

bJdV =

∫

B0

b0dV (2.3.16)

The transformation of the forces per current unit area we again take into account the Cauchy
theorem and apply the Nansons formula in eqn. 2.2.29 such that we get

∫

∂Bt

tda =

∫

∂Bt

σ� · nda =

∫

B0

Jσ� · [ f � ]t · NdA =

∫

B0

DivP �dA. (2.3.17)

Here P � is the corresponding stress field in the reference configuration, that is denoted by 1. Piola-
Kichhoff stress. P � is a two-field tensor and it measures the actual stress with respect to a surface
element of the reference configutaion. Finally we need to rewrite the inertia forces with respect to
the reference unit volume. This happens taking eqn. 2.2.27 into account and we get

∫

Bt

ρv̇dv =

∫

B0

ρv̇JdV =

∫

B0

ρ0v̇dV. (2.3.18)

With this at hand we are finally able to formulate the linear momentum balance equation with
respect to the material configuration by inserting the results from eqn. 2.3.16 -2.3.18 into eqn.
2.3.13, such that we obtain

∫

B0

ρ0v̇dV =

∫

B0

[ b0 + DivP � ] dV. (2.3.19)

The performing terms in eqn. 2.3.19 depend on the place X in the reference configuration and on
time t. The local formulation can be derived by shrinking the volume to zero again and for the case
of elastostatics the velocity has v to be set to zero.
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2.3.4 Balance of Angular Momentum

The result of the angular momentum balance equation yields the symmetry of the Cauchy stress
σ�. For completeness the derivation should be sketched here briefly. The proposition of the angu-
lar momentum balance equation can be formulated analogously to the linear momentum balance
equation. The change of the angular momentum in time is equal to the resultant external moments
acting on the body about a particular point x0. This can be derived by writing eqn. 2.3.12 in a
vector product with an vector r such that we get

D

Dt

∫

Bt

r × ρvdv =

∫

∂Bt

r × tda+

∫

Bt

r × bdv. (2.3.20)

This equation can also be rewritten in consideration of the Cauchy theorem and applying the diver-
gence theorem to the surface integral renders

∫

∂Bt

r × tda =

∫

∂Bt

r × σ� · nda =

∫

∂Bt

[ r × divσ� + E : [ σ� ]t ] dv, (2.3.21)

whereby here E denotes the permutation tensor, which was already intrduced in eqn. 2.2.20. Con-
sidering the linear momentum balance equation we find

∫

∂B

r × [ ρv̇ − b − divσ� ] dv = 0 =

∫

∂Bt

[ σ� ]axl dv. with [ σ� ]axl = E: [ σ� (2.3.22)

and this equation is only fulfilled if the Cauchy stress σ� is symmetric, i.e. σ� = [ σ� ]t. For the
1. Piola-Kirchhoff stress tensor the symmetry cannot be derived, but the product P � · [ F � ]t is
symmetric as well. Furthermore [ σ� ]axl denotes the axial vector, that becomes zero, if the stresses
are symmetric.

2.3.5 Balance of Mechanical Energy

Starting point for the derivation of the kinetic energy balance equation is the balance of linear
momentum. If eqn. 2.3.14 is multiplied by the spatial velocity vector v and the product is integrated
over Bt such that we obtain

∫

Bt

ρv · v̇dv =

∫

Bt

[ v · divσ� + v · b ] dv. (2.3.23)

which can be identified with mechanical powers. Furthermore the first contribution on the right
hand side can be integrated partially yielding

∫

Bt

v · divσ�dv =

∫

Bt

[ div(v · σ�) − gradv : σ� ] dv (2.3.24)

and after applying the Gauss theorem to the term containing the divergence operator we can rewrite
the balance as

∫

Bt

ρv · v̇dv =

∫

Bt

v · bdv +

∫

∂Bt

v · tda−
∫

Bt

gradv : σ�dv. (2.3.25)
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In this expression we can identify the left-hand side with the time derivative of the kinetic energy

DtK =

∫

Bt

ρv · v̇dv = Dt

∫

B0

1

2
ρ0v · vdV. (2.3.26)

On the right handside we can summarize the contributions due to external forces

Pext =

∫

Bt

v · bdv +

∫

∂Bt

v · tda, (2.3.27)

whereby Pext denotes the external power. The last term in eqn. 2.3.25 describes the power due to
internal forces such that it is called the internal power

Pint =

∫

Bt

gradv : σ�dv =

∫

Bt

σ� : d�dv. (2.3.28)

With these abbreviations at hand we can rewrite the balance of kinetic energy as

DtK = Pext − Pint (2.3.29)

This balance shows that the power due to external force which are applied to a system and which is
not transformed to internal power contributes to a change of kinetic energy. In analogy to the rate
of kinetic energy we can express the internal power and external power with respect to the material
configuration. The transformation leads to

D

Dt

∫

B0

1

2
ρ0v · vdV +

∫

B0

P � : Ḟ
�
dV =

∫

∂B0

t0 · vdA+

∫

B

b0 · vdV, (2.3.30)

whereby the traction vector t0 = t0(X, t), the volume force per unit reference volume b0 = b0(X, t)
and the velocity vector v = v(X, t) here depends on the material placement X. We solely want to
discuss here the transformation of the stress power in detail. Using the transformation rules in eqn.
2.2.27 - 2.2.29 the stress power in terms of the 1. Piola-Kirchhoff stress can be derived as follows

Pint =

∫

Bt

σ� : d�dv =

∫

Bt

σ� : [ Ḟ � · f � ] dv =

∫

B0

Jσ� · [ f � ]t : Ḟ �dV =

∫

B0

P � : Ḟ �dV. (2.3.31)

By expressing the strain rate tensor in terms of the Euler Lagrange strain tensor E� it is possible to
rewrite the stress power also in terms of an purely material stress tensor S�, such that we obtain

Pint =

∫

Bt

σ� : d�dv =

∫

Bt

σ� :
[

[ f � ]t · Ė� · f �
]

dv =

∫

B0

J
[

f � · σ� · [ f � ]t
]

: Ė
�
dV

=

∫

B0

S� : Ė
�
dV. (2.3.32)

These different representations with respect to different configurations and coordinates describe
always the same stress power, since it is an scalar expression and therefore independent of the
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particular configuration. Rewriting the energy balance equation for the case of quasistatics we
integrate it over the time and assume that the velocity gets zero such that we obtain

∫

Bt

σ� : [ grad∆u ]sym dv =

∫

∂Bt

t · ∆uda+

∫

Bt

b · ∆udv, (2.3.33)

whereby the velocity on the right hand side is replaced by the incremental displacement or later on
by the test function within variational formulations. During the deformation the other quantities are
assumed to be time independent.

2.4 Thermodynamical Balances

Thermodynamics forms the framework in which the phenomenological mechanical theories (and
other sciences) are embedded and yields additional constraints for the material theory for instance.
Moreover, as the name makes us assume, thermodynamics considers also thermal processes and
introduces the temperature as another primary variable. Here we want to present the first law
of thermodynamics which emenates from the consideration of reversible processes. However the
second law of thermodynamics deals with irreversible process and yields a tool to measure the
irreversibility. This tool is called entropy. For the theory of materials the second law is needed in a
particular form that is denoted as Clausius-Duhem-Inequality. This inequality allows to derive the
crucial constraints, that a material model has to fullfill ensuring the thermodynamic consistency.

2.4.1 1st Law in Continuum Thermodynamics

As mentioned before the first law of thermodynamics extends the mechanical energy balance equation
whereby here non-mechanical quantities, as heat and temperature in particular, are introduced.
These non-mechanical quantities can also effect the mechanical behaviour and vice versa. Therefore
we want to start by assuming that except for the kinetic energy, the complete energy, of the
considered system (or body in particular) occupying a certain volume V is described by the so-called
internal energy U. This internal energy is a state variable that can be expressed by

U =

∫

Bt

ρudv =

∫

B0

ρ0udV (2.4.1)

The sum of the internal energy and the kinetic energy characterizes the total energy of the system.
The change of the total energy depends on the external mechanical power Pext and thermal power
Q such that we can make up the balance of energy by

d

dt
[ K + U ] = Q + Pext. (2.4.2)

In the case of a pure mechanical process the thermal effects are neglected, such that the thermal
power Q becomes zero. Following Greve [Gre03] the change of every physical quantity ξ(ω, t) in
time within a control volume ω in general consists of three contributions, namely

• flux terms F over the boundary ∂ω,

• source terms S in ω and
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• production terms P in ω,

such that by formulating the balance we obtain

d

dt
ξ(ω, t) = F(∂ω, t) + S(ω, t) + P(ω, t). (2.4.3)

Since the flux is assumed to show in direction of the environment and usually in thermodynamics
all quantities are assumed positive if they enter the body, the flux terms usually get negative. For
conserving quantities as energy, for instance, the production term is zero. Furthermore it is assumed,
that the flux term depends on the normal vector linearly and can be expressed by

F =

∫

∂ω

f(x,n, t)da. (2.4.4)

On this relation the Cauchy theorem is applicable such that we finally can rewrite it as an integral
over the domain ω by using the divergence theorem.

F = −
∫

∂ω

φ(x, t)nda. (2.4.5)

This procedure was already applied to the traction vector when the linear momentum balance
equation was introduced. Therefore in the linear momentum balance equation, for instance, the
traction vector can be identified by the flux term, whereas the volume forces correspond to the
source terms. Since the linear momentum is a conserving quantity no production terms can be
found. This structure can be also applied to the non-mechanical power Q, that only consists of the
heat flux qn and the heat source r, but without heat production. We obtain

Q =

∫

∂ω

qn(x, t,n)da+

∫

ω

ρr(x, t)dv (2.4.6)

whereby the heat flux, following the upper remarks, can be rewritten by the Cauchy theorem as

qn(x,n, t) = −q(x, t) · n. (2.4.7)

Inserting these non-mechanical flux and source terms in eqn. 2.4.2 the spatial formulation of the
first law of thermodynamics is given by

d

dt

∫

Bt

[
1

2
ρv · v + ρu ] dv =

∫

∂Bt

[ t · v + qn ] da+

∫

Bt

[ b · v + ρr ] dv. (2.4.8)

Here the change of the total energy of a thermodynamic system not only depends on the external
mechanical power Pext, that is done by the surface tractions and the volume forces, but also of the
thermal power that is caused by the heat fluxes and the heat sources. With this relation at hand,
processes can be described where a transformation of one form of energy to another one takes place,
i.e. thermomechanical processes can be taken into account. Taking eqn. 2.3.29 into account we
can reformulate eqn. 2.4.2 in terms of the internal mechanical power, such that the rate of internal
energy coincides with the internal mechanical power. In the case of a general thermodynamical
process the change of the internal energy also depends on the heat power, such that we get

d

dt
U = Pext + Q. (2.4.9)
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This identity can be rewritten by inserting the particular terms that were derived before and that
finally renders

d

dt

∫

Bt

ρudv =

∫

Bt

[ σ� : d� − divq + ρr ] dv (2.4.10)

the so-called balance of internal energy in the spatial configuration. By shrinking the volume to
zero the local form of the first law can be obtained. The material representation of the first law of
thermodynamics is given by

d

dt

∫

B0

[
1

2
ρ0v · v + ρ0uR ] dV =

∫

∂B0

[ t0 · v +QN ] dA+

∫

B0

[ b0 · v + ρ0r ] dV, (2.4.11)

whereby the Nansons formula relates the material heat flux and the spatial one. This renders the
according pull back operation

−
∫

∂Bt

q · nda = −
∫

∂B0

Jq · [ f � ]t · NdA = −
∫

∂B0

Q · NdA =

∫

∂B0

QNdA. (2.4.12)

In analogy to eqn. 2.4.10 the balance of energy includes also the non-mechanical contributions such
that

d

dt

∫

∂B0

ρ0udV =

∫

B0

[ P � : Ḟ
� − DivQ + ρ0r ] dV (2.4.13)

describes the total internal energy with respect to the material ccordinates. In this relation the
divergence theorem was used to transform the surface integral to an integral over the volume.

2.4.2 2nd Law in Continuum Thermodynamics

While the first law of thermodynamics quantifies the energy transfer of a process the second law
provides a tool to predict the direction that a process will take. For this the so-called entropy is
introduced that is a non-conserving quantity, i.e. an additional production term has to be considered.
This production term Y can be calculated by the difference of the total entropy rate Ṡ and the entropy
input Q

Y =
d

dt
S − Q ≥ 0, (2.4.14)

whereby here Q determines the entropy supply and includes the flux and source terms, such that we
obtain the same structure that was installed in the section before. The entropy of the system is a
state variable and it can be written as

S =

∫

Bt

ρsdv =

∫

B0

ρ0sdV (2.4.15)

for the current and the reference configuration, respectively. Denoting the entropy flux by hn and
the entropy sources by g we can write the total entropy production as the difference

Y =
d

dt

∫

Bt

ρsdv −
∫

Bt

ρgdv +

∫

∂Bt

h · nda ≥ 0. (2.4.16)
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Here it is taken into account, that analogously to the heat flux the Cauchy theorem can be applied
to the entropy flux and it is defined by

hn = −h · n. (2.4.17)

As long as the total entropy production is zero the process is reversible whereas if it becomes greater
than zero the process is irreversible. The case Y < 0 is not admissible. Therefore the system will
follow this direction of a process, in which it can increase its entropy. For the material formulation
we assume that the entropy flux also transforms by the Nansons formula such that we obtain

Y =
d

dt

∫

B0

ρ0sdV −
∫

B0

ρ0gdV +

∫

∂B0

H · NdA ≥ 0. (2.4.18)

All natural and spontaneously proceeding processes are irreversible and following Zemansky [Zem68]
they are indicated by the fact that they do not pass through equilibrium states and they are causing
dissipative effects like friction or inelasticity. The given representations are very general and for
material theory a specified formulation is used that is called the Clausius-Duhem inequality which
is derived in the following subsection.

2.4.3 Clausius-Duhem Inequality

The entropy fluxes and entropy sources are not measurable quantities and the entropy input Q
usually is related to the rate of thermal heat Q. For this the heat power is divided by the absolute
temperature that is denoted by Θ, such that the total entropy input is determined by

Q = −
∫

∂Bt

q

Θ
· nda+

∫

Bt

ρ
r

Θ
dv, (2.4.19)

whereby the entropy flux and the entropy sources are identified with

h =
q

Θ
, g =

r

Θ
. (2.4.20)

These relations are valid for equilibrium processes and for processes close to equilibrium they are
good approximations [Hau02]. Nevertheless, the approaches are not useful for the description of gas
dynamics or diffusion processes, but in order to characterise the behaviour of materials they work
satisfactorily. The relation which results from these approaches is the so-called Clausius-Duhem
inequality, which was firstly studied intensively by Coleman & Noll [CN63]. In terms of the spatial
coordinates we obtain

Y =
d

dt

∫

Bt

ρsdv +

∫

∂B

q

Θ
· nda−

∫

B

ρ
r

Θ
dv ≥ 0 (2.4.21)

and by taking into account the Nansons formula the corresponding representation in the reference
configuration can be derived. In order to derive the local form of these relations we need to transform
the surface integral to a volume integral again by the divergence theorem. However, here we have
to consider the quotient of the heat flux and temperature, thus we finally obtain

ρṡ +
1

Θ
divq − 1

Θ2
q · gradΘ − ρ

r

Θ
≥ 0. (2.4.22)
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This equation can be multiplied by Θ and taking into account eqn. 2.4.10, such that the heat source
is replaced, we obtain the following representation of the second law of thermodynamics

ρΘṡ− ρu̇+ σ� : d� −∇ ln Θ · q ≥ 0. (2.4.23)

If finally the rate of the internal energy is rewritten by using the Legendre transformation u = Ψ+sΘ
that in general replaces the variables with their conjugate variables, we find the representation of
the Clausius-Duhem inequality in the form of

−ρΨ̇ − ρΘ̇s+ σ� : d� −∇ ln Θ · q ≥ 0. (2.4.24)

whereby Ψ denotes the Helmholtz energy. With eqn. 2.4.24 a relation is given connecting thermo-
dynamical restrictions to the material behaviour that is defined by the free Helmholtz energy Ψ.
While the Clausius-Duhem inequality demands to be non-negative for the sum of all terms in eqn.
2.4.24, a stronger restriction separates the heat conduction term from the rest in eqn. 2.4.24 and
requires from both terms to be non-negative separately. Therefore this proceeding yields the heat
conduction inequality on the one hand

Dcon = −∇ ln Θ · q ≥ 0, (2.4.25)

that also is identified with the nonlocal or convective dissipation Dcon and on the other hand we
find the so-called Clausius-Planck inequality

Dloc = σ� : d� − ρΨ̇ − ρΘ̇s ≥ 0, (2.4.26)

whereby Dloc defines the internal or local dissipation. Eqn. 2.4.25 yields a restriction to the heat
flux vector q. Since the temperature gradient of the system can be negative or positive the simplest
choice of q to fullfill the inequaltity in any case is given by q = −κ · gradΘ, that accords to a
Fourier-type law. κ denotes the heat conduction coefficient tensor of order two and in isotropic
applications it reduces to κ = kb�.
The Clausius-Planck inequality presents the fundamental restriction that materials have to fullfill
such that thermodynamical consistency can be ensured. In the isothermal case the last term in eqn.
2.4.26 vanishes and the local dissipation solely depends on the rate of the free Helmholtz energy.
A matter in material theory is to decide in which variables the free energy must be formulated to
record the effects it should describe. While in isotropic hyperelasticity of homogenous bodies the
material solely depends on the actual deformation, in plasticity it also depends on the history of
deformation, for instance, such that the free energy has to be enriched by additional variables.
Before we continue presenting this method we firstly have a look at the kinematics of inelastic
deformations in the next section. Finally we want to mention here, that the presented method by
Coleman & Noll is not the only one and there are ”...no generally valid and universally acknowledged
formulations of the second law so far for expressing a general principle of irreversiblity....” [Hau02].
A detailed discussion of different theories of thermodynamics with respect to material theory is also
given by Hutter [Hut77].

2.5 The Concept of Elasticity

2.5.1 Stresses in Elastic Materials

Definition of stress In this section we want to consider constitutive relations, which describe the
behaviour of a body B consisting of a certain material and undergoing external loads like forces or
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heat fluxes. Here at first, we solely restrict ourselves to forces. The work done by these forces on
the considered body during a certain deformation process is partially stored in the body. This stored
energy is denoted by W, that we like to call stored energy function or strain energy function. Since
the strain energy depends on the deformation given by F �, we can write W = W(F �(X, t),X), that
is called a scalar-valued tensor function. If the material behaves the same way at every X it is called
homogenous and therefore we can reduce the arguments of the work function as W = W(F �(X, t)).
Furthermore it is called elastic if it behaves completely reversible, i.e. after withdrawing the external
loading the material returns to its initial state 3. Is the state of the body additionally independent
of the way of deformation the strain energy function defines a potential and we refer to the material
as hyper-elastic or Green-elastic. In the case of isothermal elastic deformations the strain energy
function coincides with the free Helmholtz energy Ψ

W(F �(X, t)) = Ψ(F �(X, t)) = ρ0ψ(F �(X, t)). (2.5.27)

and is referred to reference volume V . Another restriction we want to introduce here, is called
isotropy, which means that the properties of a material does not change with the direction. For
the investigation of this property we consider a particular point in the reference configuration X
undergoing a certain motion x = ϕ(X, t), which generates a strain-energy W(F �(X, t)). If we apply
a rigid-body motion (consisting of a translation and rotation) to the reference configuration, such
that we attain at the point X∗ and afterwards additionally employ the deformation x∗ = ϕ(X∗, t),
in general we would expect to obtain another strain-energy W(F �(X∗, t)). A material is called
isotropic, if and only if the expressions of the strain energy function for different X and X∗ do not
differ. We have to emphasize here that there has to be distinguished between isotropy and frame-
indifference. We want to oppose both restrictions at the example of the strain energy function
W(F (X, t)). For this we firstly recall the constraint of frame indifference, where a rigid body
motion is superimposed on the current configuration and the deformation gradient F � is multiplied
on the left by Q ∈ S�3. To check if the strain energy function fullfills the constraint of objectivity,
we like to consider a particular choice of Q, namely the transposed of the proper orthogonal rotation
tensor Rt

W(F �) = W(Rt · F �) = W(Rt · R · U �) = W(U �). (2.5.28)

This is the necessary and sufficient condition for the strain energy to be objective. Usually however,
the strain energy function is formulated in terms of of the right Cauchy-Green deformation tensor
C� = [ U � ]2 or the Green-Lagrange strain tensor 2E� = [ U � ]2−G�. Therefore an objective strain
energy function is given by

W = W(C�). (2.5.29)

In contrast to this for the proof of isotropy the deformation gradient F � is multiplied on the right
hand side by Qt

W(F �) = W(F �∗) = W(F � · Qt), (2.5.30)

namely in the reference configuration. Applying this relation to the strain energy function in terms
of the right Cauchy-Green tensor

W(C�) = W([ F �∗ ]t · F �∗) = W(Q · [ F � ]t · F � · Qt) = W(Q · C� · Qt) (2.5.31)

3The exact definition of elastic materials says, that during an elastic deformation no entropy is produced
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we can identify the strain energy function as an isotropic tensor function. The topic of isotropic
and anisotropic material description is quite difficult and detailed discussion of anisotropic material
modelling is given by Menzel [Men02].
Now we consider the rate of the strain-energy function

Ẇ =
∂W

∂F �
: Ḟ �, with

∂W

∂F �
= ρ0

∂ψ

∂C�
· ∂C

�

∂F �
= 2ρ0g

� · F � · ∂ψ
∂C�

= g� · F � · S�, (2.5.32)

that is called stress power and the expression 2ρ0∂C�ψ defines the 2. Piola-Kirchhoff stress tensor

S� = SijGi⊗Gj ∈ �
3 : T ∗B0×T ∗B0 → �. S� is called work conjugated to the right Cauchy-Green

deformation tensor or the Green Lagrange tensor E� as we already have seen in eqn. 2.3.32 and has
no physical meaning. Nevertheless, it is a very crucial quantity, since it lives solely in the reference
configuration and therefore it can be used for the formulation of objective stress rates. Moreover, the
expression g� · ∂F �W derived in eqn. 2.5.32 can be interpreted as a stress that commonly is called
the 1.Piola-Kirchhoff stress or nominal stress . This two-point tensor was also already introduced
in eqn. 2.3.31 and we denoted it by P � = P j

i gi ⊗ Gj ∈ �3 : T ∗B0 → T ∗Bt. As we can learn from
eqn. 2.3.31 the 1. Piola-Kirchhoff stress is work-conjugated to the deformation tensor F � and can
be interpreted as a measure for the actual forces in the current configuration with respect to surface
elements in the reference configuration. With this at hand eqn. 2.5.32 can also be interpreted as a
transformation equation between both stress formulations that are related by the push forward and
pull back operations, as

P � = g� · F � · S�. (2.5.33)

Both stress formulations can be identified with derivatives of the strain energy function with respect
to the deformation gradient F � or the right Cauchy-Green tensor C�, respectively. Therefore we need
different formulations for the strain energy function W, namely in terms of F � or C�. Accordingly
we obtain these two different stress formulations derived before, whereby the 2. Piola-Kirchhoff
stress can be assumed as an frame-indifferent stress tensor whereas the 1. Piola-Kirchhoff stress
is not objective. For the engineering practice the stresses at the current configuration are of most
interest. By appling the push forward operation to the 1. Piola-Kirchhoff stress P �

τ � = g� · P � · [ F � ]t (2.5.34)

we obtain the so-called Kirchhoff stress τ � = τ ijgi ⊗ gj ∈ �3 : T ∗Bt × T ∗Bt → �. Sometimes it
is also called the weighted Cauchy stress tensor because the Cauchy stress or true stress σ� can be
obtained from τ � by multiplying the Kirchhoff stress by the inverse Jacobian J−1. Finally we get
the following relations between the different stress quantities in the different configurations

σ� = J−1τ � = J−1P � · [ F � ]t = J−1F � · S� · [ F � ]t . (2.5.35)

Since the stored energy function is invariant under rotation, like W(C�), it can also be expressed in
terms of the principal invariants I1, I2 and I3. Therefore the 2. Piola-Kirchhoff stress tensor can be
rewritten as

S� = 2

[

∂W

∂I1

∂I1

∂C �
+
∂W

∂I2

∂I2

∂C�
+
∂W

∂I3

∂I3

∂C�

]

. (2.5.36)

The derivatives of the principal invariants with respect to the right Cauchy-Green tensor can be
derived from eqn. 2.2.19

∂I1

∂C�
= G�,

∂I2

∂C�
= I1G

� − G� · C� · G�,
∂I3

∂C �
= I3 [ C� ]−t . (2.5.37)
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Since C� is symmetric it is sufficient to calculate the inverse of C� in eqn. 2.5.373, but in general
the derivative of the Jacobian is given in the form that is presented here. Inserting the derivatives
in eqn. 2.5.36 we obtain an equation for the material 2. Piola-Kirchhoff stress in terms of the
invariants.

S� = 2

[[

∂W

∂I1
+ I1

∂W

∂I2

]

G� − ∂W

∂I2
G� · C� · G� + I3

∂W

∂I3
[ C� ]−1

]

(2.5.38)

This representation is only valid for isotropic hyperelastic materials. By pushing forward this represen-
tation in the manner of eqn. 2.5.35 and by taking eqn. A.1.9 into account we get the representation
of the Kirchhoff stress in terms of principal invariants

τ � = 2

[

∂W

∂I1
b� +

[

I2
∂W

∂I2
+ I3

∂W

∂I3
I3

]

g� − I3
∂W

∂I2
[ b� ]−1

]

, (2.5.39)

which is analogous to the representation of the 2. Piola-Kirchhoff stress in eqn. 2.5.38. In this
context we like to present another important result with respect to equivalent stress representations.
If we assume, that the strain energy depends only on the spatial left Cauchy Green tensor and it is
objective in b� the strain energy rate can be expressed by

Ẇ =
∂W

∂b�
: ḃ

�
=
∂W

∂b�
: [ l� · b� + [ l� · b� ]t ] = 2

[

∂W

∂b�
· b�

]

: l� =
[

g� · τ �
]

: l� (2.5.40)

On the other hand we consider the strain energy in terms of the material Euler Lagrange strain
tensor E�, such that the push forward of the 2. Piola-Kirchhoff stress to the spatial configuration
yields

τ � = Φ∗(S�) = F � · ∂W
∂e�

:
∂e�

∂E�
· [ F � ]t =

∂W

∂e�
. (2.5.41)

If we finally consider the derivative of the strain energy function with respect to the spatial metric
tensor g�, taking the result from eqn. 2.5.41 into account, we obtain

∂W

∂g�
=
∂W

∂e�
· ∂e

�

∂g�
=

1

2
τ �. (2.5.42)

The last three equations render three different but equivalent constitutive laws for the spatial Kirch-
hoff stress tensor. We want to summarize these results here in one equation

τ � =
∂W

∂e�
= 2

∂W

∂g�
= 2g� · ∂W

∂b�
· b�. (2.5.43)

Stresses in terms of principal stretches Since in the case of isotropy the invariants depend on
the eigenvalues, stress tensors can also be represented in terms of the principal directions, that is
crucial for the numerical treatment. We start with the definition of the 2. Piola Kichhoff stress S�

S� = 2
∂W

∂C�
= 2

∂W

∂λα

∂λα

∂C�
, (2.5.44)

whereby the derivative of the eigenvalue with respect to the right Cauchy-Green deformation tensor
can be derived as follows. We consider the derivative of the right Cauchy Green tensor with respect
to itself

∂C �

∂C �
=
∂C �

∂λα
⊗ ∂λα

∂C�
= �

sym � ∂Cij

∂Ckl
=

1

2

[

δk
i δ

l
j + δl

iδ
k
j

]

, (2.5.45)
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that defines the symmetric material fourth order identity tensor �sym = Gi ⊗ Gk ⊗ Gj ⊗ Gl ∈
�3×3 : TB0 × TB0 × T ∗B0 × T ∗B0 → �. In eqn. 2.5.452 we used the chain rule and considering
the derivative of the right Cauchy-Green tensor with respect to the eigenvalues, that can be easily
determined from the spectral decomposed representation of the right Cauchy-Green tensor (eqn.
2.2.181), such that we obtain

∂C �

∂λα

= 2λαNα ⊗ Nα. (2.5.46)

Inserting this relation in eqn. 2.5.45 and solving for
∂λα

∂C�
renders

∂λα

∂C�
=

1

2
λαMα, with Mα = λ−2

α Nα ⊗ Nα (2.5.47)

such that we can rewrite the relation for the 2. Piola-Kirchhoff stress in terms of the eigenvalues as

S� =

3
∑

α=1

∂W

∂λα
λ−1

α Nα ⊗ Nα =

3
∑

α=1

∂W

∂λα
λαMα. (2.5.48)

Taking eqn. 2.5.35 and 2.5.36 into account, we can also determine the 1. Piola-Kirchhoff stress P �,
the Kirchhoff stress τ � and the true stress σ� in terms of the principal directions by pushing forward
the relation in eqn. 2.5.48. Of course we have to consider the deformation gradient in eigenvalue
representation as well. Therefore the stress tensors can be calculated by

P � =
3
∑

α=1

∂W

∂λα

nα ⊗ Nα, τ � =
3
∑

α=1

∂W

∂λα

λαmα σ� = J−1
3
∑

α=1

∂W

∂λα

λαmα, (2.5.49)

whereby

mα = nα ⊗ nα (2.5.50)

denotes the eigenbasis on the current configuration. An essential result that can be recognized in
all stress representations is that their principal directions coincide with the principal directions of the
corresponding work-conjugated deformation tensors. We want to emphasize here, that this is only
valid for isotropy and therefore in the sequel we restrict ourselves to isotropic formulations.

2.5.2 Volumetric- Isochoric Decomposition

In modelling of materials it is a quite common idea, that the deformation can be decomposed into
a part that describes the volumetric change of the material body and another part that records
the change of its shape. The latter one is thought to be volume-preserving or isochoric. This idea
is reflected in the additive decomposition of the strain energy function into an volumetric and an
isochoric part

W(C�) = Wvol(J) + Wiso(˜C
�
). (2.5.51)

This proposition firstly was made by Lee [Lee67] and it is straight forward that the volumetric part
only depends on the Jacobian J of the deformation gradient, that describes the volumetric change
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of the body within a deformation process. The isochoric part depends on ˜C
�
that consequently only

denotes the isochoric part of the right Cauchy-Green tensor. For the determination of the isochoric
part the following crucial assumption is made that says that also the deformation gradient can be
decomposed multiplicatively into a volumetric part and an isochoric part

F � = F �
vol · F �

iso. (2.5.52)

Since the volumetric change is described by the principal stretches, which are assumed to be equal
as long as we consider isotropic materials, it is clear that the volumetric part of the deformation
gradient can be described by

F �
vol = J

1
3 g�. (2.5.53)

and from eqn. 2.5.52 we can also easily determine the isochoric part of F � by

F �
iso = ˜F

�
= J− 1

3 F �. (2.5.54)

With this at hand it is also possible to determine the decomposition of C� by inserting this expression
into the definition of the right Cauchy-Green tensor. Here we obtain the two parts

C�
vol = J

2
3 G�, C�

iso = ˜C
�
= J− 2

3 C�. (2.5.55)

Alternatively the free energy function can also be formulated in terms of the left Cauchy-Green
tensor

W(b�) = Wvol(J) + Wiso(˜b
�
), with b�

vol = J
1
3 g� and b�

iso = ˜b
�
= J− 2

3 b� (2.5.56)

whereby the two formulations coincide to each other since the left and right Cauchy-Green tensor
depend on the same eigenvalues. Therefore it makes sense to formulate the strain energy function
in terms of the eigenvalues directly. Taking into account the volumetric-isochoric decomposition the
free energy function in terms of the eigenvalues can be written as

W(λα) = Wvol(J) + Wiso(˜λα), with ˜λα = λα,iso = J− 1
3λα (2.5.57)

Here the terms ˜λα denote the eigenvalues of the isochoric part. To give some examples for hyper-
elastic strain energy functions we like to refer to the Mooney-Rivlin model and to the neo-Hookean
model, which are applied to incompressible materials like rubber for instance. The Mooney-Rivlin
model is represented by the strain energy function

W = c1[I1 − 3] + c2[I2 − 3] (2.5.58)

whereby the constants c1 and c2 are material parameters. The Neo-Hooke model can be obtained
from the Mooney-Rivlin model by setting the second term to zero, such that it reduces to

W = c1[I1 − 3]. (2.5.59)

Here the constant c1 is identified with the shear modulus µ. These models can be extended to
compressible materials by adding a contribution in terms of J , such that volumetric changes are
treatable. The compressible modification of the Mooney-Rivlin, for instance, could look like

W = c3[J − 1]2 − d ln J + c1[I1 − 3] + c2[I2 − 3], with d = 2[c1 + 2c2] (2.5.60)
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as it was proposed similarly by Ciarlet & Geymonat [Cia82]. Here c3 is another given material
parameter. Another free Helmholtz energy function we want to mention here is the modified St.
Venant-Kirchhoff -model

W =
1

2
κ[ln J ]2 +

1

4
µ
∑

α

[ ln ˜λ2
α ]2 , (2.5.61)

which is well known from the geometrically linear theory. For the nonlinear case the linear strains
are replaced by the logarithmic strain measure, such that the additive structure of the geometrically
linear formulation of the Hookean material law can be maintained. κ and µ are material param-
eters denoting the bulk and the shear modulus. This material model is very crucial with respect
to hyperelasto-plastic material formulations, since it forms the starting point for the von-Mises for-
mulation, as we will see later on. Here we just want to point out that this energy function is also
decomposed into a volumetric and an isochoric contribution. An overview on the most important ge-
ometrically nonlinear elastic material models and their modifications with respect to rate-dependent
and damage formulations is given in [Hol01].
The consequence of the volumetric-isochoric decomposition of the strain energy function is that we
obtain a decomposed stress formulations. For this we firstly consider the 2. Piola Kirchhoff stress
S� in terms of the eigenvalues and in its decomposed form we get the contributions

S�
vol = 2

∂Wvol

∂J

∂J

∂λα

∂λα

∂C�
, S�

iso = 2
∂Wiso

∂˜λα

∂˜λα

∂λα

∂λα

∂C�
, (2.5.62)

that we want to investigate separately. The derivative of J with respect to C� can be derived from
eqn. 2.5.373, such that we rewrite the volumetric part of the 2. Piola-Kirchhoff stress as

S�
vol = J

∂Wvol

∂J

3
∑

α=1

Mα with
3
∑

α=1

Mα = [ C� ]−1 (2.5.63)

Computing the isochoric part is more complicated since the derivative of the isochoric eigenvalues
with respect to λα needs to be evaluated, whereby the relation ˜λα = J− 1

3λα, as already introduced
in eqn. 2.5.57, is consulted. From this the derivative of the isochoric eigenvalues with respect to
the original eigenvalues λα is given by

∂˜λα

∂λβ
= J− 1

3 [ δαβ − 1

3
λ−1

β λα ] , (2.5.64)

such that by taking eqn. 2.5.47 into account, the isochoric stress contribution S�
iso can be determined

by

S�
iso =

[

∂Wiso

∂˜λ(β)

˜λ(β) −
3
∑

α=1

1

3
˜λα
∂Wiso

∂˜λα

]

Mβ = τ̃βMβ. (2.5.65)

In this representation the reader can see that the isochoric part of the 2. Piola-Kirchhoff stress
is decomposed into the eigenbase Mβ and the coefficient denoted by τ̃β, that coincide with the
isochoric eigenvalues of the Kirchhoff stress. The brackets of the index β indicate that no summation
takes place here. An alternative representation of the isochoric part of the 2. Piola-Krichhoff stress
is common use, whereby the last two factors are merged to the material eigenbase, that renders

S�
iso =

[

∂Wiso

∂˜λ(β)

˜λ(β) −
3
∑

η=1

1

3
˜λη
∂Wiso

∂˜λη

]

λ−2
β
˜M

α
, with ˜M

α
= Nα ⊗ Nα. (2.5.66)
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It follows from eqn. A.1.3 and 2.2.16 that the sum of the material eigenbases

3
∑

α=1

Mα =

3
∑

α=1

λ−2
α
˜M

α
= [ C� ]−1 (2.5.67)

defines the inverse of the right Cauchy-Green tensor.
At the end of this section we want to introduce projection tensors which extract the volumetric or
the isochoric part, respectively, of a given second order tensor A. The volumetric part of a tensor
can be calculated from

Avol = �vol : A with �vol =
1

3
I ⊗ I (2.5.68)

and �vol denotes the volumetric fourth oder projection tensor The deviatoric part of A can be
determined by

Adev = ˜A = �dev : A, with �dev = �
sym − 1

3
I ⊗ I (2.5.69)

whereby �dev is the deviatoric projection tensor of fourth order, that is defined by the difference
between the fourth order unit tensor �sym and the volumetric projection tensor. Therefore the sum
of the volumetric and the isochoric part of A yields the tensor itself.

2.5.3 Elasticity Tensor

In the framework of numerical calculations the deformation of the body is applied incrementally, that
means that the loading is imposed stepwise. For a given loading step the crucial task is to find a
set of primary variables, i.e. the displacements u for instance, such that the configuration describes
a state of equilibrium. The stress of the particular configuration is determined by its integral over
the time from tn to tn+1

Sn+1 = Sn +

tn+1
∫

tn

dS, with dS =
∂S

∂t
dt. (2.5.70)

whereby Sn describes the stress at the time tn for a given equilibrium state. The time integration
can be replaced by an equivalent integration over the strains, whereby a constitutive relation

� =
dS

dE
(2.5.71)

relating the differential of the total strains and the differential of the stresses. The resulting quantity
represents the forth order material tensor and in general it contains inelastic material behaviour as
well. In the case of pure elasticity the material tensor is also called elasticity tensor. Firstly we want
to consider the elastic case, since the derivation of the elasticity tensor includes a lot of aspects
which are also needed for the inelastic material formulations. Therefore we want to have a detailed
view to the derivation of the elasticity tensor as well in the initial as in the current configuration.
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Material Description If we consider hyperelastic materials, the continuous elasticity tensor co-
incides with the second derivative of the strain energy function with respect to the applied strain
measure, such that we obtain

Ṡ� = 2
∂S�

∂C�
: Ċ� = 4

∂W

∂C� ⊗ C�
: Ċ� = �

e : Ċ� (2.5.72)

for the rate of the 2. Piola-Kirchhoff stress tensor. Here �e = Cijkl
Gi ⊗ Gj ⊗ Gk ⊗ Gl ∈ �

3×3

denotes the continuous fourth order elasticity tensor in the reference configuration. In general this
elasticity tensor possess the minor symmetry, i.e. the first and the second index are exchangeable
and the third and fourth as well. This attribute is valid for all materials, whereas the major symmetry
is restricted to hyperelastic materials. This kind of symmetry means that the first pair of indices
and the second pair are also exchangable. This can also be considered as a definition of hyperelastic
materials, to which we like to restrict ourselves subsequently. The introduced tangent modulus lives
in the material configuration, accordingly we can define a spatial tangent modulus or elasticity tensor
�e = Cijklgi ⊗ gj ⊗ gk ⊗ gl ∈ �3×3. This current elasticity tensor can be obtained by the Piola
transformation of the four base vectors of the material elasticity tensor

�
e = J−1ϕ∗(�e). (2.5.73)

If the free Helmholtz energy W is decomposed into a volumetric and an isochoric part, the material
tensor consists of a volumetric and an isochoric part accordingly, since it emanates from the derivative
of the stress tensor, which itself can be decomposed in this way. We obtain for the material elasticity
tensor

�
e = �

e
vol +�

e
iso (2.5.74)

Following eqn. 2.5.57 it is conceivable to determine the material tensor in terms of the eigenvalues,
that we like to discuss in detail here. The volumetric and isochoric contributions of the 2. Piola-
Kirchhoff stress tensor in the representations above, we can derive the consistent tangent operator
and as mentioned before, we obtain two contributions for the material tensor. Firstly we consider
the volumetric part of the material tensor

�
e
vol = J

[

∂Wvol

∂J
+ J

∂2Wvol

∂J2

]

[ C� ]−1 ⊗ [ C� ]−1 − 2J
∂Wvol

∂J
�

sym
C−1 (2.5.75)

that is independent of the eigenbases, whereas the isochoric contribution depends on the eigenbases,
as the reader can easily see in eqn. 2.5.65. This makes the calculation of the tangent operator quite
complex and starting from eqn. 2.5.66 we obtain for the isochoric part

�
e
iso =

∑

α=1

Mα ⊗ ∂τ̃α

∂C �
+ 2τ̃α

∂Mα

∂C �
. (2.5.76)

Here the first term describes the stress alteration because of a change of the eigenvalues, whereas
the second term records the stress rate due to (geometrical) changes of the eigenvectors. Using
eqn. 2.5.47 and 2.5.64 the contribution due to the changing eigenvalues can be evaluated by

2
∂τ̃α

∂C�
= ϕαβM β, with ϕαβ =

∂τ̃α

∂˜λα

∂˜λα

∂λβ
λβ. (2.5.77)
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Here we introduce the coefficient matrix ϕαβ that denotes the derivative of the principal Kirchhoff
stress with respect to the principal stretches. This abbreviation makes the subsequent proceeding
more comprehensible. The only term that still needs to be determined are the derivatives of the
eigenvalues τ̃α of the second Piola-Kirchhoff stress with respect to the isochoric principal stretches,
such that a symmetric 3 × 3- matrix will be obtained. The coefficients of the isochoric 2. Piola-
Kirchhoff stress are defined in eqn. 2.5.66, whereby the index was exchanged by α and its derivative
can be determined by the product rule, such that we obtain

∂τ̃α

∂˜λβ

=
∂2Wiso

∂˜λα∂˜λβ

˜λα +
∂Wiso

∂˜λα

δαβ − 1

3

[

∂Wiso

∂λγ

+
∂2Wiso

∂˜λη∂˜λβ

˜λη

]

(2.5.78)

Inserting this derivative and the results from eqn. 2.5.47 and 2.5.64 into eqn. 2.5.77 yields the
coefficient matrix ϕαβ and taking it into account we can rewrite eqn. 2.5.76 as

�
e
iso =

3
∑

γ=1

3
∑

α=1

ϕαγM
γ ⊗ Mα + 2τ̃

∂Mα

∂C�
. (2.5.79)

The last step is to determine the derivative of the eigenbase Mα with respect to the right Cauchy
Green tensor C�, that is summarized in the appendix.

Spatial Description In the spatial setting the elasticity tensor � can be obtained in a similar
procedure as the material tensor for the reference configuration, by differentiating the strain energy
function with respect to the spatial metric tensor or the corresponding strain measure. On the
other hand the spatial elasticity tensor can also be determined by pushing forward (eqn. 2.5.73) the
essential results of the material description. Using this approach maintains the additive structure
of the stress tensor and the material tensor consisting of volumetric and isochoric parts. Therefore
we firstly consider the volumetric part of the material elasticity tensor in eqn. 2.5.75 and apply the
push forward operation, such that we obtain

�
e
vol =

[

∂W

∂J
+ J

∂2W

∂J2

]

g� ⊗ g� − 2
∂W

∂J
�g� , (2.5.80)

whereby �g� = gi ⊗ gk ⊗ gj ⊗ gl ∈ �
3×3 denotes the push forward of �sym

C−1. We want to note here,
that the coefficients remain unaltered here, only the base tensors are transformed. Accordingly, the
deviatoric part of the material elasticity tensor in eqn. 2.5.79 can also be transformed, such that we
get

�
e
iso =

3
∑

α=1

3
∑

γ=1

1

J
ϕαγm

γ ⊗ mα +

3
∑

α=1

2

J
τ̃αϕ∗(

∂M

∂C�
), with mα = F � · Mα · [ F � ]t(2.5.81)

The derivative of the material eigenbase with respect to the right Cauchy Green tensor was derived
in eqn. A.2.16 and one can show, that its pushing forward is equivalent to the derivative of the
spatial base tensor with respect to the spatial metric tensor. A more detailed discussion is given in
the appendix. Finally we want note, that the derived expressions will also be used for the derivation
of the inelastic material tensors.
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Example of an elastic material To give an example the derived relations are applied to the
model defined by eqn. 2.5.61. The volumetric and isochoric eigenvalues of the Kirchhoff stress are
given then by

τ̃vol,α =
∂Wvol

∂λα
λα = κ lnJ, and τ̃iso,α =

∂Wiso

∂˜λα

˜λα = µ ln ˜λ2
α. (2.5.82)

The coefficient matrix ϕαβ for the isochoric part of the tangent operator, which was defined in eqn.
2.5.77 reduces to

ϕαβ = 2µ [ δαβ − 1

3
] (2.5.83)

such that by taking the volumetric part into account the complete spatial elasticity tensor is given
by

�
e =

3
∑

α=1

3
∑

β=1

1

J
ϕe

αβmβ ⊗ mα +
3
∑

α=1

2

J
τ̃α
∂mα

∂g�
, with ϕe

αβ = κ+ 2µ [ δαβ − 1

3
] .(2.5.84)

This elasticity tensor is modified in the framework of hyper-elastoplasticity, whereby usually the
main structure remains unchanged. Only the coefficients are adopted to the elasto-plastic problem.
Therefore these described results are very essential for the consideration of inelastic deformations.
Finally we want to note here for completeness, that the calculation of the tangent operator analyt-
ically can be a bad exercise or nearly impossible, such that in a lot of applications it is preferable
to determine the tangent operator numerically, whereby the system is pertubed by a small number
ε << 1 and the derivative is approximated by the difference quotient. Moreover, the numerical
tangent operator can sometimes be a very helpful tool for the determination of the analytical one.
The main problem in the numerical approach is to find the best pertubation parameter ε. A detailed
discussion can be found in [DS96] and [Wri01].

2.6 Concepts of Inelasticity

2.6.1 Remarks to Linear Elasto-Plasticity

Plastic strains and the yield function The theory of elasto-plasticity is based on macroscopic
observations that can be understood in the simplest way by investigating the uniaxial tension test. In
fig. 2.1 a typical stress-strain curve is depicted and there we find essentially three different domains:

1. The elastic domain that is indicated by the linear branch of the curve determined by the Young
modulus.

2. The domain where the material changes from purely elastic to elasto-plastic behaviour that is
indicated by the yield stress Y0 and that is followed by a further increase of strength which is
denoted by hardening. This hardening effect goes back to microscopic processes like moving
dislocations and imperfections.

3. The domain of softening where the strength of the material decreases from the maximum to
the point of disruption.
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εt
εeεp

σ

Y∞

Y0

Figure 2.1. Stress-strain-Curve of an uniaxial tension-test

Before we continue with the kinematical description of nonlinear elasto-plastic deformations we want
to give an idea of the basic concepts within the framework of the linear theory. While in elasticity
the total strains coincide with the elastic strains, in plasticity we have to differ between the elastic
and the plastic strains. The elastic strains vanishes as soon as the external loading vanishes, whereas
the plastic strains remain permanently after unloading. Therefore in the linear theory the total strain
is given by the sum

εt = εe + εp. (2.6.1)

To describe this inelastic effect and other phenomena like hardening and softening it is necessary
to introduce additional variables, such that the strain energy does not solely depend on the strains
(or the deformation gradient in the nonlinear theory) and the temperature θ anymore, but also on
the so-called internal variables ξi, which can also be merged into a vector ξ. Subsequently we
will firstly neglect the temperature and restrict our considerations to isothermal processes, but the
reader should keep in mind, that there are no temperature independent plastic deformations. The
concepts of plasticity will be extended to temperature dependent processes in the last section of this
chapter. Now we want to focus our attention on how these internal variables can be used to describe
plasticity. For the sake of clarity subsequently we want to restrict our considerations only to one
internal variable ξ, that is sufficient to describe hardening effects and therefore it is often denoted
by hardening variable. The regard of hardening effects is reflected in the free energy function

W = Wvol(ε
e
vol) + Wiso(ε

e
dev) + Wmic(ξ), (2.6.2)

that is extended by the hardening potential Wmic, that records micromechanical processes like moving
dislocations, that are considered as responsible for hardening effects. This potential solely depends
on the internal variable ξ.
As mentioned before, plastic strains solely occur if a certain threshold stress, the yield stress Y0, is
reached during the loading. Because of this we introduce a function comparing the current stress
state σ with the yield stress Y0 and indicating if the proceeding deformation is inelastic or not. This
function is called yield function Φ and as derived before, it depends on the current stress state σ
and the initial yield stress Y0. In general the yield stress is not constant but it increases due to
hardening effects, such that it is reasonable to introduce a resulting yield stress Yn that consists of
the initial yield stress and a function H(ξ) that describes the hardening effects

Yn(ξ) = Y0 +H(ξ). (2.6.3)
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Taking this into account, the corresponding yield function depends on the current stress state σ and
the resulting yield stress Yn, but since the initial yield stress is constant the yield condition usually
is written as

Φ = Φ(σ, H). (2.6.4)

The initial yield stress Y0 depends on the considered material and in the case of an uniaxial tension
this parameter is simple to measure. In the three dimensional case this threshold must be extended
to a so-called yield surface that incloses all possible stress states. The interior of this yield surface
describes the elastic range whereas stress states on the surface cause plastic deformations. Stress
states beyond the surface are not admissible so far. This means if the yield surface can be described
by the yield function Φ we obtain the following constraints

Φ(σ, H)

⎧

⎨

⎩

< 0� elastic
= 0� plastic
> 0� not admissible

(2.6.5)

Since plastic strains induce an alteration of the shape of the body these deformations are assumed to
be caused by the isochoric or deviatoric stresses, whereby this assumption is only valid for metallic
materials. Therefore the yield function Φ(σdev, H) is usually formulated in terms of the deviatoric
stresses and the volumetric contributions are neglected. In the case of metallic materials this is a
good approximation. However, the yield function Φ detects the transition from the elastic to the
inelastic range.

The principle of maximum dissipation Another important constraint in the framework of plas-
ticity ensuring the thermodynamical consistency is the principle of maximum dissipation, that states
that the current stress state always maximizes the dissipation. Applying this principle we consider
the isothermal Clausius-Planck inequality for geometrically linear deformations

Dloc = σ : ε̇t − Ẇ(εe, ξ) ≥ 0, (2.6.6)

where the dissipation has to be maximized. The conditions in eqn. 2.6.5 and 2.6.6 can be considered
as a problem of finding the extremal value with side condition that coincides with the yield condition.
This kind of problem is solved by the Lagrange-formalism, whereby both constraints are written as
a Lagrange functional

L(σ, H) = −Dloc + γ̇Φ(σdev, H) −→ stat. (2.6.7)

that is demanded to get stationary and where γ̇ denotes the Lagrange multiplier. In this relation
we inserted the negative dissipation to guarantee a positive multiplier, such that we obtain a mini-
mization problem with a side condition. This condition of becoming stationary is fullfilled if the first
variation of the Lagrange functional gets zero for any σdev and Y0

δL(σ, Y0) =
∂L
∂σdev

: δσdev +
∂L
∂H

δH = 0. (2.6.8)

Since the product of free energy Ψ(εe, ξ) times the density ρ yields the strain energy W we can
rewrite the Clausius-Planck inequality as

Dloc =
∂W

∂εe
: ε̇p + [ σ − ∂W

∂εe
]

︸ ︷︷ ︸

=0

: ε̇e − ∂W

∂ξ
ξ̇ ≥ 0, (2.6.9)
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whereby the stress σ is work conjugated to the elastic strains and it can be determined from the
free energy function W, such that the second terms in eqn. 2.6.9 vanishes. Since the free energy
function also depends on the internal variable ξ we can define it work conjugated to the current
hardening stress

H(ξ) = −∂W
∂ξ

. (2.6.10)

Inserting eqn. 2.6.9 in consideration of 2.6.10 into eqn. 2.6.7, this relation is solely fulfilled for
any σ and H if the partial derivatives of the Lagrange functional in eqn. 2.6.8 is zero. From this
postulate the so-called evolution equations follow

ε̇p = γ̇
∂Φ

∂σ
and ξ̇ = γ̇

∂Φ

∂H
, (2.6.11)

which describe the development of the plastic strain rate εp and the rate of the hardening variable
ξ in time. With eqn. 2.6.11 and 2.6.5 the so-called Kuhn-Tucker conditions can be formulated,
describing the loading/ unloading behaviour

γ̇ = 0, if Φ < 0
γ̇ ≥ 0, if Φ = 0

}

γ̇Φ = 0

γ̇Φ̇ = 0. (2.6.12)

These relations express that there is no plastic flow γ̇ = 0 as long as the material behaves elastic
Φ < 0, whereas we get plastic deformations γ̇ > 0 when the yield condition becomes zero Φ =
0. Therefore the product of the Lagrange multiplier and the yield function becomes always zero.
According to this, assuming a state of plastic loading Φ = 0 the consistency condition (eqn. 2.6.123)
applies because

• if the yield function changes to elastic unloading (Φ̇ < 0), there is no plastic flow γ̇ = 0.

• if there is no change in the yield function (Φ̇ = 0), it means that we still have plastic loading
and there is plastic flow γ̇ > 0.

The J2-plasticity For the determination of the evolution equations it is crucial what kind of yield
function is given. There are a lot of propositions and one of the most important is the von-Mises
yield function, that is reviewed here. As mentioned before, the yield condition compares the current
(deviatoric) stress state with the yield stress. Therefore one of the simplest conceivable form of a
yield function is given by

Φ = |σdev| − Y0 ≤ 0. (2.6.13)

Here the yield surface in the three-dimensional stress space coincides with a cylinder that is oriented
in direction along the space diagonal. Von-Mises modified this yield function and proposed that in
the case of a three-dimensional stress state the material starts yielding as soon as the second invariant
of the deviatoric stress J2 = −1

2
σdev : σdev reaches the second invariant of the one-dimensional

deviatoric stress that can be identified with the yield stress Y0 determined by the one-dimensional
tension test. Therefore we obtain the identity

−1

2
σdev : σdev = −1

3
Y 2

0 . (2.6.14)
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convex non-convex

Φ < 0Φ < 0

Φ = 0

Φ = 0

P1(σ1)P1(σ1)

P2(σ2)P2(σ2)

Figure 2.2. Convex and non-convex domain of a yield function

Multiplying eqn. 2.6.14 by −1 and after some simple algebra we finally obtain the von-Mises yield
condition

Φ(σdev, Y0) = |σdev| −
√

2

3
Y0 ≤ 0 (2.6.15)

Since this yield condition is derived from the second invariant of the deviatoric stress field that is
usually denoted by J2, this yield condition is often called J2-Plasticity. As mentioned before, in
general the yield stress is not constant but it changes in time, since it depends on the internal
variable ξ. Therefore usually the resulting yield stress Yn(ξ) (eqn. 2.6.3) has to be taken into
account here. If we evaluate the evolution equations in eqn. 2.6.11 and calculate the derivative of
this yield function with respect to the deviatoric stress tensor or the yield stress, respectively, we
obtain

ε̇p = γ̇ν̃ and ξ̇ =

√

2

3
γ̇. (2.6.16)

Here ν̃ denotes the corresponding normal tensor, which is a deviatoric quantity as well and its
direction coincides with the deviatoric stress. This means that the direction of the plastic flow always
coincides with the direction of deviatoric stress. Therefore the evolution equation of the plastic strain
is also denoted by normality rule or flow rule. Since the plastic strain rate is proportional to the
gradient of the yield function with respect to the stress field, the yield condition can be considered
as a plastic potential. If the plastic strain rate can be derived from a plastic potential, it is called
associated.4

Constraint of Convexity From the circumstance, that the plastic flow is normal to the yield
condition, emanates a very important property, the yield function has to fullfill and that is also very
crucial for numerical aspects. Namely, the yield function has to be convex as it is illustrated in fig.
2.2. In simple terms, convexity means that every line connecting two possible stress states on the
surface must lie completely within the enclosed surface. Since the yield surface resulting from the
von-Mises yield condition is a circle the convexity condition is ensured.
This yield function needs to be convex since in numerical computations firstly the current stress state

4Of course, since the rate of hardening variable is also proportional to the gradient of the plastic potential Φ with
respect to the yield stress, it is also associated. Admittedly this term of associated evolution equations is reserved
with respect to plastic potentials. As we will see in the sequel the same proceeding can be also applied to damage
mechanics, where a damage potential is introduced and the evolution equation is derived from that, but they are not
denoted by being associated.
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σ1

σ2

σ3

n

∆γ
σtrial

Figure 2.3. Radial return mapping

is approximated by the so-called trial stress σtrial
dev . This trial stress can lie in the non-admissible

domain Φ > 0 and by projecting it on the yield surface along the normal direction we obtain the
current stress σdev. In the case of a non-convex yield surface the projection is not unique. The
mathematical requirement of convexity demanded from the yield surface is equivalent to the principle
of maximum dissipation, that says, that the current stress state σ always maximizes the dissipation
compared to any other possible stress state σ∗. Therefore the plastic work done by the actual stress
state has to be greater than the plastic work done by any other possible stress state for a given
plastic flow ε̇p. We finally obtain the relation

[ σ − σ∗ ] : ε̇p = γ̇ [ σ − σ∗ ] :
∂Φ

∂σ
≥ 0 (2.6.17)

and by taking into account the Kuhn-Tucker optimality condition, γ̇Φ = 0 and assuming a homo-
geneity of degree one for Φ we can rewrite the principle of maximum dissipation as

γ̇ [ σ − σ∗ ] :
∂Φ

∂σ
≥ γ̇ [ Φ(σ) − Φ(σ∗) ] . (2.6.18)

The argumentation is as follows:

1. If there is no plastic flow, i.e. γ̇ = 0, there is pure elastic loading and the inequality holds
trivially.

2. If plastic flow takes place, i.e. γ̇ > 0 and Φ(σ) = 0 results

[ σ∗ − σ ] :
∂Φ

∂σ
≤ Φ(σ∗) − Φ(σ) = Φ(σ∗), (2.6.19)

whereby we multiplied the inequality by −1 and we can identify this expression with the
convexity condition as it is derived in appendix 1 (eqn. A.3.22).

A more descriptive reasoning to derive the normality rule from the principle of maximum dissipation
is that eqn. 2.6.171 only holds if σ is collinear to ε̇p, as it was derived in eqn. 2.6.16.
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Radial return The common method to calculate the plastic flow in linear theory is the radial return
method. This method takes the convexity of the yield surface into account, that allows an unique
determination of the plastic flow. If this constraint is not fulfilled, the calculation of plastic strains
is not possible. We consider fig. 2.3 that shows the stress space, whereby the stress states along
the diagonal denote volumetric stress states, whereas the stresses that lie on a plane orthogonal
to the space diagonal denote the deviatoric stress contributions. Therefore the decomposition of
a given stress state is unique. The yield function limits the deviatoric ,,stress plane” to the yield
surface. If a given stress state (trial stress) lies outside the yield surface it coincides with a violation
of the yield condition Φ ≤ 0, this stress state is projected on the yield surface, namely in orthogonal
direction ν̃ to the yield surface, such that the yield condition is fullfilled again. The distance ∆σ
of the trial stress state to the yield surface is assumed to be proportional to the plastic flow. The
plastic flow itself is defined by eqn. 2.6.161 and depends on γ̇ proportionally, that is determined
iteratively within numerical calculations.
In the subsequent sections the presented concepts will be transformed from the linear to the nonlinear
theory. There are the Kuhn-Tucker loading/unloading conditions, the associated flow rule, the
convexity of the yield function and the radial return method, which are taken one by one from the
linear theory. The kinematics of nonlinear elastoplasticity do not seem to be appropriate for the
application of the described concepts of linear elastoplasticity. But as we will see the nonlinear
kinematics can be modified, such that the methods of the linear theory can be adapted to the
nonlinear case.

2.6.2 Kinematics of nonlinear Elasto-Plasticity

In the linear theory the basic assumption was the additive decomposition of the total strains into an
elastic and a plastic contribution. This idea is transformed to the nonlinear theory by introducing
an additional configuration, that is called the intermediate configuration. This plastic configuration
Bp is inserted among the reference and the current configuration. In the case of unloading the
body from the current configuration the permanent strains remain, which are cumulated in the
intermediate configuration. The additive decomposition of the total strains is not possible anymore
because of the nonlinear contributions in the strain measures. But by the introduction of the plastic
configuration a multiplicative decomposition of the deformation gradient can be installed

F � = F �
e · F �

p, (2.6.20)

whereby here the order of the terms is essential. In the linear theory the plastic deformations are
assumed to be isochoric and therefore the plastic strain is a deviatoric quantity. This assumption is
adopted to the non-linear theory, that is represented by

det F � = det [ F �
e ] · det [ F �

p ] = det [ F �
e ] , with det [ F �

p ] = 1. (2.6.21)

Here and in the sequel we assume the plastic deformations as isochoric. This multiplicative decom-
position works analogously to the volumetric-isochoric decomposition of the deformation, that was
introduced for elastic problems (s. section 1.2.4). Furthermore it requires additional base systems,
but since this configuration is not compatible, they can not be defined by the tangent and cotangent
spaces. Therefore we want to define the co- and contravariant metric tensors on Bp, as follows

ḡ� =
ḡ� =

[ ḡ ]ij
[ ḡ ]ij

ḡi ⊗ ḡj

ḡi ⊗ ḡj

∈ �+ :
∈ �+ :

TBp × TBp

T ∗Bp × T ∗Bp

→ �,
→ �,

[ ḡ ]ij =

[ ḡ ]ij =

ḡi · ḡj

ḡi · ḡj.
(2.6.22)
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Figure 2.4. Multiplicative Decomposition of elasto-plastic Deformations

Bp constitutes the current configuration with respect to the reference configuration and with respect
to the current configuration it forms the material configuration. For calculating the pure elastic
deformation we solve eqn. 2.6.20 for the elastic deformation gradient F �

e and insert this into the
definition of the left Cauchy Green tensor in eqn. 2.2.114

b�
e = F �

e · ḡ� · [ F �
e ]t = [ F � · f �

p ] · ḡ� · [ F � · f �
p ]t = F � · B�

p · [ F � ]t . (2.6.23)

This corresponds to the pull back of the metric in the intermediate configuration to the reference
configuration, that is followed by the push forward to the current configuration. Therefore the elastic
left Cauchy Green tensor can be understood as the push forward of the inverse plastic right Cauchy

Green tensor B̄
�
p. On the other hand it is possible to define a strain measure on the intermediate

configuration, that is denoted by elastic right Cauchy Green tensor C̄
�
e. It can be obtained by pulling

back the current covariant metric tensor to the intermediate configuration, such that we obtain

C̄
�
e = [ F �

e ]t · g� · F �
e, (2.6.24)

that corresponds to a Riemann metric on Bp. For the rates of the introduced strain measures in the
intermediate configurations we consider the time derivative of the deformation gradient as it was
reformulated in eqn. 2.6.20

Ḟ
�
= Ḟ

�

e · F �
p + F �

e · Ḟ
�

p. (2.6.25)

Multiplying this expression by f � and comparing it with eqn. 2.2.40 we find the definition of the
spatial velocity gradient l� as

l� = Ḟ
� · f � = l�e + l�

p, with l�e = Ḟ
�

e · f �
e and l�

p = F �
e · L̄�

p · f �
e (2.6.26)

Here we see an additive decomposition of the strain evolution into a purely elastic part and a plastic

contribution, L̄
�
p = Ḟ p

� · f �
p define the plastic mixed-variant velocity gradient on the intermediate

configuration and applying the push forward operations to them yields the corresponding plastic and
elastic velocity gradients on the spatial configuration. Performing a pull back of the spatial velocity
gradient to the intermediate configuration

L̄
�
= [ f �

e ] · l� · F �
e = f �

e · Ḟ
�

e + Ḟ p
� · f �

p = L̄
�
e + L̄

�
p (2.6.27)
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we can preserve the additive structure of the strain evolution as it was known from the linear theory.

Moreover, both contributions are completely decoupled from each other, since L̄
�
e only depends on

F �
e, whereas the plastic strain rate L̄

�
p only depends on the plastic deformation gradient F �

p. With
this at hand we are also able to derive the strain rate formulations of the elastic right Cauchy Green
tensor

˙̄C�
e = [ Ḟ �

e ]t · g� · F �
e + [ F �

e ]t · g� · Ḟ �
e + [ F �

e ]t · ġ� · F �
e = [ L̄

�
e ]t · C̄�

e + C̄
�
e · L̄�

e, (2.6.28)

whereby the time derivative of the spatial covariant metric tensor becomes zero. These derived
relations in terms of the intermediate configurations enables one to install the plasticity theory in
the nonlinear context, whereby the anisotropic case is still included.
Of course we can also consider the elastic left Cauchy Green tensor b�

e and with the given definitions
its rate formulation can be written as

ḃ
�

e = Ḟ
�

e · ḡ� · [ F �
e ]t + F �

e · ḡ� · [ Ḟ
�

e ]t = l�e · b�
e + b�

e · [ l�
e ]t (2.6.29)

On the other side if we start from the definition in eqn. 2.6.233 we obtain a formulation where the
Lie-derivative of b�

e occurs, that coincides with the plastic part of the rate

ḃ
�

e = l� · b�
e + b�

e · [ l� ]t + Lt(b
�
e) (2.6.30)

with

Lt(b
�
e) = F � · ∂t [ f �

p · ḡ� · [ f � ]tp ] · [ F � ]t = −l�
p · b�

e − b�
e · [ l�

p ]t , (2.6.31)

whereby eqn. 2.6.26 and ḟ
�

p = −f �
p · L̄�

p was taken into account. This is an alternative nonlinear
formulation, where the anisotropic contributions are also included.

2.6.3 Principle of Maximum Plastic Dissipation

In this section we want to transform the principle of maximum dissipation to a formulation in terms of
finite deformations and in consideration of the yield function Φ as a side condition. For the purpose
to obtain a general formulation we assume the elastic potential W depending on the covariant

strain measure C̄
�
e. Considering the time derivative of the elastic potential the corresponding work-

conjungated contravariant stress measure S̄
�

can be identified with the derivative of the elastic

potential with respect to the C̄
�
e

Ẇ(C̄
�
e) = 2

∂W

∂C̄
�
e

: ˙̄C�
e = S̄

�
: ˙̄C�

e = 2C̄
�
e ·

∂W

∂C̄
�
e

: L̄
�
e with S̄

�
= 2

∂W

∂C̄
�
e

. (2.6.32)

In the last expression the product of the elastic right Cauchy Green strain tensor C̄
�
e and the

contravariant stress tensor S̄
�

defines a mixed-variant stress tensor M̄
�
= C̄

�
e · S̄�

that is denoted

by Mandel stress tensor and that is work-conjugated to the mixed-variant velocity gradient L̄
�
e on

Bp. In literature the principle of maximum plastic dissipation on Bp is usually formulated in terms

of L̄
�
e, whereby the elastic velocity gradient can be replaced by the difference of the total velocity

gradient tensor and the plastic contribution L̄
�
p, that was defined in eqn. 2.6.26. In analogy to the
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linear theory we assume that the elastic potential also depends on the internal variable ξ, such that
we obtain

Dloc =

[

M̄
� − 2C̄

�
e ·

∂W

∂C̄
�
e

]

: L̄
�
+ 2C̄

�
e ·

∂W

∂C̄
�
e

: L̄
�
p +Hξ̇ ≥ 0, with H =

∂W

∂ξ

(2.6.33)

Here Y0 also denotes the yield stress as it was introduced in the linear theory. Since the product of

C̄
�
e and 2∂W/∂C̄

�
e commutes, the corresponding product coinciding with the mixed-variant Mandel

stress M̄
�
, is a symmetric quantity. Like in the linear theory the plastic velocity gradient L̄

�
p can be

decomposed into a symmetric and skew-symmetric part, such that

L̄
�
p = D�

p + W �
p, with D�

p = [ L̄
�
p ]sym and W �

p = [ L̄
�
p ]skw . (2.6.34)

However we want to follow the proposal of Miehe & Stein [MS92], who considered the formulation

of the dissipation inequality in terms of S̄
�
, such that we obtain

Dloc =

[

S̄
� − 2

∂W

∂C̄
�
e

]

: [ C̄
�
e · L̄�

] + 2 · ∂W
∂C̄

�
e

: [ C̄
�
e · L̄�

p ] +Hξ̇ ≥ 0, with H = −∂W
∂ξ

(2.6.35)

The advantage of this formulation becomes clearer as soon as we decompose the kinematical quantity

[ C̄
�
e · L̄�

p ] a symmetric and a skewsymmetric part

[ C̄
�
e · L̄�

p ] = D̄
�
p + W̄

�
p with D̄

�
p = [ C̄

�
e · L̄�

p ]sym and W̄
�
p = [ C̄

�
e · L̄�

p ]skw = 0 (2.6.36)

C̄
�
e is a symmetric quantity, such that only the symmetric contribution of velocity gradient D̄

�
p

has to be considered and any contributions due to the skew-symmetric part W̄
�
p becomes zero

whereas from the decomposition of the velocity gradient L̄
�
p emanate two contributions where the

skewsymmetric part does not disapear. The consequence of this fact is that also in eqn. 2.6.35
only the symmetric contributions have to be taken into account, such that we automatically obtain
an isotropic non-linear elasto-plastic constitutive law. If we transform the derived equations from
the intermediate configuration Bt to the spatial one, this also yields an isotropic formulation on Bp.
Taking eqn. 2.6.24 and performing the particular push forward operations

d�
p = f �

e · D̄�
p · F �

e and S̄
�
= f �

e · τ � · [ f � ]te , (2.6.37)

the principle of maximum dissipation yields the resulting plastic dissipation inequality

Dloc = τ � : [g� · d�
p] +Hξ̇ ≥ 0 with H =

∂W

∂ξ
, (2.6.38)

whereby d�
p defines the spatial plastic deformation rate tensor on Bp.

On the other hand the elastic potential W can also be assumed depending on b�
e, such that the

derivative of W with respect to b�
e has to yield the equivalent formulation on the current configu-

ration. If isotropy is assumed the derivative ∂W/∂b�
e and the elastic left Cauchy Green tensor b�

e
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commute such that the time derivative of W can be written as

Ẇ(b�
e) =

∂W

∂b�
e

: ḃ
�

e = [
∂W

∂b�
e

· b�
e ] : l� + [ [ b�

e ]t · ∂W
∂b�

e

] : [ l� ]t +
∂W

∂b�
e

: Lt(b
�
e)

= [ 2g� · ∂W
∂b�

e

· b�
e ] : g� · d� + [ 2g� · ∂W

∂b�
e

· b�
e ] : [

1

2
g� · Lt(b

�
e) · [ b�

e ]−1 ]

= τ � : g� · d� − τ � : [
1

2
g� · Lt(b

�
e) · [ b�

e ]−1 ] . (2.6.39)

For being able to factor out the covariant strain rate tensor we multiplied the expression by the unit
tensor I = g� = g� · g� and after some algebra we find the definition of the Kirchhoff stress tensor
from eqn. 2.5.43. Comparing eqn. 2.6.36 and eqn. 2.6.37 it is easy to find the identity 5

d�
p = −1

2
Lt(b

�
e) · [ b�

e ]−1 (2.6.40)

whereby we have to emphasize here, that in the first case the isotropy of the spatial formulation
emanates from the transformation of the isotropic formulation in the intermediate configuration in

terms of C̄
�
e, whereas in the second case the isotropy was postulated before. The given definitions

can be inserted into the dissipation inequality in terms of the Kirchhoff stress

Dloc = τ � : d�
p +Hξ̇ ≥ 0 with H = −∂W

∂ξ
and d�

p = g� · d�
p. (2.6.41)

In the next step we want to derive the evolution equations for the plastic strains and the hardening
variable by formulating the dissipation inequality as a Lagrange functional with the yield function as
side condition.

2.6.4 Evolution Equations

For the derivation of the evolution equations we proceed analogously to eqn. 2.6.7, where we
considered the local dissipation inequality as a minimization problem. By taking into account the
yield function as side condition we rewrite the two constraints as a Lagrange functional. In terms
of the intermediate configuration, the Lagrange functional can be written as

L(M̄
�
, Y0) = M̄

�
: L̄

�
p − Y0ξ̇ + γ̇Φ(M̄

�
, Y0) → stat. (2.6.42)

and it becomes stationary if the partial derivatives of the functional with respect to the Mandel
stress and the yield stress becomes zero. In analogy to the linear theory we obtain the evolution
equations for the plastic deformations and the internal variable by solving the derivatives for the
rates of the plastic strain measure and the internal variable

L̄
�
p = γ̇

∂Φ

∂M̄
�

ξ̇ = γ̇
∂Φ

∂H
. (2.6.43)

5This relation can also be shown as follows:

Lt(b�
e) = −l�p · b�

e − b�
e · [ l�p ]t = −b�

e · [ l�p + [ l�p ]t ] = −2b�
e · d�

p
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Here L̄
�
p includes also skewsymmetric contributions, such that this formulation is not restricted to

isotropy. But if we rewrite the Lagrange functional and the yield function Φ(S̄
�
, C̄

�
e, Y0) on Bp in

terms of C̄
�
e and the contravariant stress measure S̄

�
we find the resulting flow rule by

D̄
�
p = [ C̄

�
e · L̄�

p ] = γ̇
∂Φ

∂S̄
�
. (2.6.44)

Finally we like to formulate the flow function in terms of the current configuration. Therefore
we can derive the flow function by inserting the transformed isotropic local dissipation into the
Lagrange functional and in analogy to the linear theory we assume the yield function depending on
the Kirchhoff stress, such that we obtain the Lagrange functional

L(τ �, H) = τ � :

[

−1

2
g� · Lt(b

�
e) · [ b�

e ]−1

]

+Hξ̇ + γ̇Φ(τ �, H) → stat., , (2.6.45)

that has to become stationary. This is fullfilled if the partial derivatives with respect to the actual
stress and the yield stress becomes zero and solving again the resulting equations for the plastic flow
and the internal variable, respectively, we obtain the evolution equations

−1

2
g� · Lt(b

�
e) · [ b�

e ]−1 = γ̇
∂Φ

∂τ �
, ξ̇ = γ̇

∂Φ

∂H
. (2.6.46)

That means, that we can specify the Lie derivative of the left Cauchy-Green tensor in terms of the
derivative of the yield function with respect to τ � and the Larange multiplier. Therefore the total
rate of the left Cauchy-Green tensor in eqn. 2.6.30 can be rewritten as

ḃe =
[

l� · b�
e + b�

e · [ l� ]t
]− 2γ̇ν · b�

e, with ν = g� · ∂Φ
∂τ �

. (2.6.47)

In this equation we can interprete the expression in brackets as an elastic predictor describing the
rate of the elastic left Cauchy-Green tensor if a pure elastic deformation occurs. Whereas in the case
of inelastic deformations additionally plastic flow occurs and the first term leads to a virtual state,
that can be identified with the trial state, that lies in the non-admissable range beyond the yield
surface. Therefore the last term in eqn. 2.6.47 can be understood as a corrector that projects this
trial stress state back on the yield surface, namely in direction of the gradient of the yield surface,
that coincides with the normal direction on the yield surface. This term becomes zero if no plastic
flow emerges. This time derivatives of the elastic left Cauchy-Green tensor can also be derived in
terms of incremental kinematics, that is described in the next subsection and that allows a more
comprehensible view of the evolution equation of the plastic strains. Of course we can reformulate

the plastic flow also in terms of B̄
�
p. For this we simply perform a pull back operation of the

Lie-derivative of b�
e to the material configuration and obtain

∂tB̄
�
p = −2γ̇ν · B̄�

p, for ν = f � · g� · ∂Φ
∂τ �

· F �. (2.6.48)

Here we want to note that the normal direction ∂τ �Φ in the spatial configuration is transformed
to the material configuration and it seems straightforward that the normal direction in the material
configuration is given by ∂S�Φ. In the next step these determined evolution equations need to be
integrated. But before we continue we want to note here that eqn. 2.6.46 and 2.6.47 once more
show that the material behaviour depends crucially on the kind of yield function, since it prescribes
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Figure 2.5. Incremental Kinematics of inelastic Deformations

the direction of plastic flow. The yield function still must fulfill the properties as they were discussed
in the framework of linear theory. There are the Kuhn-Tucker conditions detecting the frontier
between the elastic and inelastic range. Furthermore there is the convexity condition, that ensures
the unique direction of the plastic flow, that usually coincides with the direction of the current
stress field (normality rule). There are a lot of conceivable yield functions and it always depends
on what the model has to describe. The J2-plasticity that was introduced before is a prototype
of elasto-plastic models and some models that we want to present here, are based on von-Mises
plasticity. Before we discuss some of these more involved material models we want to describe the
numerical treatment of the derived relations. For this we will refer subsequently to the von-Mises
yield condition as it was presented in eqn. 2.6.15.

2.6.5 Incremental Kinematics

Since plastic deformations are dissipative and therefore path-dependent it is necessary to subdivide
the loading into increments denoted by ∆F � , such that the stress-strain curve can be retraced more
precisely. From this emanates an incremental kinematic, illustrated in fig. 2.5, that starts with the

assumption that the strain tensors b�
e,n, B̄

�
p,n, ξn for the last load and time step n are known and

that they describe an equilibrium state. Furthermore the multiplicative decomposition described in
the upper paragraph can also be adopted to incremental kinematics, such that the new deformation
gradient F �

n+1 can be represented by

F �
n+1 = ∆F � · F �

n. (2.6.49)

Since we start from the intermediate configuration we firstly need to consider the pull back from the
intermediate configuration to the material one, such that the corresponding deformation gradient is
given by

F �,trial
n+1 = ∆F � · F �

e,n = ∆F � · F �
n · [ F �

p ]−1
n = F �

n+1 · [ F �
p ]−1

n . (2.6.50)

This deformation gradient describes the deformation starting from the plastic configuration of the
old load step Bp,n to the current configuration of the new load step Btn+1 , that includes also plastic
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deformations. Since we do not know the plastic flow due to the new load increment this deformation
gradient describes a trial state. If we consider the elastic left Cauchy-Green tensor by taking into
account the new increment we obtain

b�,trial
e = F �,trial

n+1 · g�
p · [ F �,trial

n+1 ]t = ∆F � · b�
e,tn · [ ∆F � ]t = F �

n+1 · B�
p,n · [ F � ]tn+1 (2.6.51)

Furthermore, if we consider the time derivative of the elastic left Cauchy-Green tensor, on the one
hand we obtain the expression that was already derived in eqn. 2.6.47. On the other hand we can
derive the time derivative from eqn. 2.6.514 that renders

ḃ
�,trial

e = ∆Ḟ
� · b�

e,n · [ ∆F � ]t + ∆F � · b�
e,n · [ ∆Ḟ

�
]t = l� · b�

e,n+1 + b�
e,n+1 · [ l� ]t . (2.6.52)

Here the deformation is assumed as purely elastic, whereas in eqn. 2.6.47 also the alteration of the
plastic metric in time is taken into account. Therefore we can also identify the Lie derivative of the
plastic metric as the contribution that describes the plastic flow. This plastic strain rate goes into
the deformation increment that consists of an elastic and a plastic contribution, which is reflected
in the multiplicative decomposition of the incremental deformation gradient

F �,trial
e,n+1 = F �

e,n+1 · ∆F �
p. (2.6.53)

This split of the deformation increment can be found in Bonet & Wood [BWed] or in Parisch [Par03].
Following eqn. 2.2.15 the incremental trial deformation gradient can be represented in terms of the
eigenvalues and the eigenvectors as well as the total deformation gradient F �

n+1. The spectral
decomposition of the elastic trial deformation gradient in consideration of the multiplicative split in
eqn. 2.6.53 leads to

F �,trial
e,n+1 =

∑

3

[ λtrial,n+1
e,α ] nα

e,n+1 ⊗ nα
p,n =

∑

3

[ λn+1
e,α ] [ ∆λn+1

p,α ] nα
e,n+1 ⊗ nα

p,n. (2.6.54)

According to this the elastic trial tensor can also be rewritten in terms of the principal directions
and the principal stretches, such that we obtain the representation of the trial tensor

b�,trial
e,n+1 =

∑

3

[ λn+1
e,α ]2 · [ ∆λn+1

p,α ]2 nα
e,n+1 ⊗ nα

e,n+1 =
∑

3

[ λtrial,n+1
e,α ]2 nα

e,n+1 ⊗ nα
e,n+1.(2.6.55)

We want to emphasize here, that the elastic trial tensor only depends on the principal direction
of the actual configuration nα

e,n+1. For the determination of the plastic strains we start from eqn.
2.6.48 that coincides with a ordinary differential equation can be solved by an exponential update
algorithm of the Euler-backward type. We finally obtain the actual plastic strains in terms of the
material configuration by

[ B̄
�
p ]n+1 = exp [ − 2∆γν ] · [ B̄

�
p ]n . (2.6.56)

Performing a push forward operation to the spatial configuration leads to the integration scheme of
the left Cauchy-Green tensor

[ b�
e ]n+1 = exp [ − 2∆γν ] · b�,trial

e,n

= exp [ − 2∆γναnα ⊗ nα ] [ λtrial,n+1
e,α ]2 nα

e,n+1 ⊗ nα
e,n+1. (2.6.57)

Since the spectral decomposition of the elastic left Cauchy Green tensor b�
e is unique and the

spectral representation of ν and b�,trial
e are unique as well, their principal directions have to coincide
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nα = nα
e,n+1. Moreover the exponential expression can be represented by a power series. Since all

the series terms possess the same eigenbase, it can be extracted, such that the following relation
results

F �
n+1 · exp [ • ] · f �

n+1 = exp [ F �
n+1 · [ • ] · f �

n+1 ] . (2.6.58)

Therefore the resulting representation of the actual left Cauchy Green tensor in terms of the principal
directions can be rewritten as

b�
e,n+1 =

3
∑

α=1

exp [−2∆γνα] [ λtrial,n+1
α ]2 nα ⊗ nα. (2.6.59)

Here it is easy to identify the eigenvalue of the incremental plastic strains with [ ∆λn+1
p,α ]2 =

exp [ 2∆γνα ]. If we apply the logarithmic strain measure we can transform the multiplicative
structure of the coefficients into an additive form

2 ln [ λn+1
e,α ] = −2∆γνα + 2 ln [ λtrial,n+1

e,α ] , (2.6.60)

whereby the eigenbase remains untouched by this operation. From this equation it is straight forward
to determine the principal deviatoric Kirchhoff stresses

τα = 2µ [ ln [ ∆λtrial
α,e ] − ∆γνα ] . (2.6.61)

In this relation we can see, that the trial stress is a kind of predictor, whereas the second term acts
as a corrector that is conditioned by the increment of the Lagrangian multiplier ∆γ. The main
result of this subsection is that we transformed the multiplicative structure to an additive one by
the introduction of logarithmic strains. Therefore we can apply the methods of the linear theory
also to nonlinear formulations. Moreover, we performed a transition from the continuous setting to
the discrete one, which is very crucial for the numerical treatment. Therefore the aim of the next
subsection is the introduction of numerical methods to determine the Lagrange multiplier.

2.6.6 Integration of Evolution Equations

For the treatment of inelastic deformations the crucial task is to determine the accumulated per-
manent deformations, expressed by B�

p = [ C�
p ]−1 for instance, that occur if a particular load is

applied. These plastic contributions can be calculated by integration of the evolution equations.
These evolution equations that are derived from the principle of maximum dissipation, generally
constitute a system of ordinary differential equations (ode’s) with inequality constraints. There are
some conceivable integration schemes that can be applied to the solution of the system of ode’s.

Implicit Euler integration scheme The standard integration scheme that is usually applied to
the integration of the evolution equations is the implicit Euler backward method. For a scalar-,
vector- or tensor-valued function d(t), which is known at the time step tn the evolution can be
described by a differential equation

ḋ(t) = ∂td = f (d(t)). (2.6.62)

We like to know the function value dn+1 at the current time tn+1. For this we rewrite the system of
ordinary differential equations as a residual in terms of the discrete time increment ∆t = tn+1 − tn
and the function values of d at these times, such that we finally obtain

dn+1 = dn + ∆tf (dn+1) � r = dn − dn+1 + ∆tf (dn+1) = 0 (2.6.63)
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This generally nonlinear problem can be solved by a Newton-Raphson iteration algorithm. Within
this method we approximate the residual by a Taylor series, such that we obtain the following
structure

rn+1 ≈ rn + J · ∆d, with J =
rn+1

dn+1
, (2.6.64)

whereby J denotes the Jacoby-Matrix and by solving this equation for dn+1 we obtain an equation
to determine the new function value at the new iteration step n + 1

dn+1 = dn − [ J ]−1 · ∆d. (2.6.65)

The new values are inserted in eqn. 2.6.64 and if the new quantities fulfill the residual sufficiently
we can stop the iteration process, otherwise we repeat this procedure as long as the constraint is
fulfilled. The accuracy of the Euler backward scheme is of first order and if the starting point is
sufficiently close to the solution the Newton Raphson algorithm converges quadratically. The only
problem is the determination of the entries of the Jacoby matrix.

Integration of evolution equations In the case of the integration of the evolution equations
given in eqn. 2.6.46 the time increment can be eliminated easily and we only need to determine the
increment of the Lagrange multiplier. Therefore we chose the yield function as the first residual to
determine the Lagrange multiplier and we reformulate the evolution equation as the second residual,
such that we obtain

r1 = |τ̃ �,trial| − 2∆γµ−
√

2
3
Y0(ξ)

r2 = ξn − ξn−1 +
√

2
3
∆γ

=⇒ J =

[

∂∆γr1 ∂ξr1
∂∆γr2 ∂ξr2

]

. (2.6.66)

With this procedure we have collected all tools so far, that are needed to describe and solve inelastic
deformations. Subsequently, we present the algorithm for the determination of the plastic flow and
the rate of the hardening variable, which are needed to update the actual elastic and accumulated
plastic strains and the current stress, respectively. For this we assume, as mentioned before, that
the deformation gradient F �

n+1 of the new load step is known as well as the plastic strains of the last
time or load step that are given by the plastic inverse right Cauchy-Green tensor B�

p,n. Additionally,
the stress of the old time step τ �

n is known. With this at hand we can start the algorithm that is
determined by the subsequent steps:

1. Computing the current elastic left Cauchy-Green trial tensor.

2. Spectral decomposition of b�,trial
e,n+1 =

∑

α

λtrial
α,e nα ⊗ nα, whereby the principal trial stretches

consists of an elastic and plastic contribution, as it was derived in eqn. 2.6.54.

3. Transforming the multiplicative structure of the principal trial stretches into an additive one,
by applying the logarithmic strain measure.

4. Calculation of trial stress τ �,trial
n+1 from the modified St. Venant- Kirchhoff strain-energy func-

tion (eqn. 2.5.61). Isolating the deviatoric part of the trial stress.

5. Evaluating the yield-function Φ 6 and checking the yield condition, such that the following
two possibilities arise:

6As mentioned before, we firstly restrict ourselves to the von-Mises yield-function, that was already introduced in
eqn. 2.6.15.
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(a) Φ ≤ 0, i.e. the trial stress coincides with the new actual stress state: τ �,trial
n+1 = τ �

n+1

and from eqn. 2.6.46 emanates that the plastic flow is zero: γ̇ = 0.

(b) Φ > 0, i.e. the trial state lies beyond the admissible range, such that we need to iterate
the plastic flow and the rate of the hardening variable defined by the evolution equations
in eqn. 2.6.46. For this we reformulate the evolution equations as residuls and determine
the Lagrange multiplier γ̇ by applying the implicit Euler backward scheme. If γ̇ is known,
the hardening variable can be updated.

6. Calculation of the new actual stress state τ �
n+1.

7. Update of lnλn+1
e,α and retransformation to non-logarithmic strain measure b�

e,n+1.

8. Updating and storing the new accumulated plastic strains B�
p,n+1

9. Evaluating the elasto-plastic tangent operator.

This algorithm describes the complete procedure solving problems of nonlinear elasto-plastic defor-
mations by the J2-plasticity. The used equations are collected once more in the Box 1.5.1. The last
task that is left to do now, is the derivation of the material tensor, whereby we can employ some
results from elasticity.

2.6.7 Elasto-plastic Material Tensor

In section 1.2.4 we introduced a free energy function with completely decoupled volumetric and
isochoric contributions, that gave rise to a stress formulation, which could be decomposed analo-
gously. Also the elasticity tensor could be splitted into a volumetric and an isochoric part as well.
In analogy to the linear theory in the case of hyper-elastoplasticity with hardening effects we have
to complement an additional contribution in the free energy function considering the hardening be-
haviour (s. eqn. 2.6.2). This part depends on the hardening variable ξ, such that we obtain a free
energy function

W(λα, ξ) = Wvol(J) + Wiso(˜λα) + Wmic(ξ), (2.6.67)

whereby the hardening potential is indicated by ,mic’, since the hardening phenomena is assumed
to be based on microscopic effects. We will specify the hardening potential later on. Here we just
want to keep in mind, that it has to be considered for the description of hardening effects. The
aim of this section is the calculation of the material tensor. We start from the free energy function
in eqn. 2.5.61, that is formulated in terms of the principal stretches or the isochoric eigenvalues,
respectively. For the elastic case the corresponding stress was already determined in eqn. 2.5.82
and the spatial elasticity tensor is given by eqn. 2.5.82. In the inelastic case the volumetric part
of the elasticity tensor remains unchanged and in the isochoric material tensor only the coefficient
matrix changes, whereby also the inelastic contributions have to be considered, which results in the
modified formulation of the deviatoric principal Kirchhoff stresses

τ̃α = µ ln ˜λ2
α − 2µ∆γνα. (2.6.68)

Computing the derivatives of the deviatoric principal Kirchhoff stresses with respect to the principal
stretches yields the coefficient matrix

∂τ̃α
∂λβ

λβ = ϕαβ =
∂µ ln ˜λ2

α

∂λβ
+ 2µ [

∂∆γ

∂λβ
να + ∆γ

∂να

∂λβ
] . (2.6.69)
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Here the last two terms needed to be determined, whereby the να denotes the components of the
normal direction tensor, that is defined by να = τ̃ trial

α /‖τ̃ �,trial‖ and from this definition emanates
the derivative

∂να

∂λβ
=

2µ

‖τ̃ �,trial‖ [ δαβ − νανβ ] (2.6.70)

that coincides with the results in the linear theory. Furthermore, the derivative of the Lagrange
multiplier ∆γ with respect to the principal stretches needs to be determined, that can also be
obtained from the consistency condition and that yields

∂∆γ

∂λβ
=

2µνβ

[ 2µ+

√

2

3

∂Y0

∂ξ

∂ξ

∂∆γ
]

, (2.6.71)

that also has the analogous structure as in the linear theory. With these modifications we can adopt
the spatial elasticity tensor in eqn. 2.5.84 to the hyper-elastoplastic formulation and obtain the
consistent elasto-plastic algorithmic tangent operator

�
ep =

3
∑

α=1

3
∑

β=1

ϕαβmα ⊗ mβ +

3
∑

α=1

2τ̃α
∂mα

∂g�
, with

ϕαβ = ϕe
αβ − 4µ2∆γ

‖τ̃ �‖ [δαβ − νανβ ] − 2µ

[

1 +
1

3

Y ′
0

µ

]−1

νανβ (2.6.72)

if a Newton-Raphson iteration scheme is supposed. This algorithmic tangent operator completes
the numerical formulation of a prototype model, that can be used as a starting point for an amount
of material models including inelastic effects. In the subsequent sections some additional models
are introduced that are based on the J2-plasticity model and which take into account additional
attributes of material behaviour like viscosity and damage.
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1. Computing
b�,trial

e,n+1 : b�,trial
e,n+1 = F �

n+1 · B�
p,n · [ F � ]tn+1

2. Spectral decomposition in terms of logarithmic strains:

b�,trial
e =

3
∑

α=1

ln [ λtrial
e,α ]mα

3. Calculate the deviatoric trial stress:

τ̃ �,trial =
3
∑

α=1

τ̃αnα ⊗ nα τ̃α = 2µ ln ˜λtrial
e,α

4. Evaluate the yield function

Φ(τ̃ �, σy) = ‖τ̃ �,trial‖ −
√

2
3
Yn(ξ)

5. Iteration of Lagrange multiplier and internal variables from residuals, if Φ(τ̃ �,trial) > 0

r1 = |τ �,trial| − 2µ∆γ −
√

2
3
σy(ξ) r2 = ξn − ξn+1 +

√

2
3
∆γ

6. Update of the principal Kirchhoff stresses

τ̃α = 2µ [ ln ˜λtrial
e,α ] − ∆γνα ]

7. Update of the principal stretches and retransformation

b�
e,n+1 =

3
∑

α=1

exp [ − 2∆γνα ] [ λtrial
e,α ]2 mα

8. Update of the accumulated plastic strains

B�
p,n+1 = f �

n+1 · b�
e,n+1 · [ f � ]tn+1

9. Consistent elasto-plastic tangent operator

�
ep =

3
∑

α=1

3
∑

β=1

ϕαβmα ⊗ mβ +
3
∑

β=1

2τ̃α
∂mα

∂g�
, with

ϕαβ = ϕe
αβ − 4µ2

‖τ̃ �‖∆γ [δαβ − νανβ] − 2µ
[

1 +
1
3

Y ′
n

µ

]−1

νανβ

Box 1.5.1: Integration algorithm for the kinematical state variables
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Figure 2.6. Superposition of linear and nonlinear hardening

2.6.8 Isotropic Hardening

In the sections before we derived the equations for the description of inelastic deformations, whereby
we introduced the yield function, which compares the actual stress state with a so-called yield stress
and in case the difference becomes greater than zero, plastic flow takes place and the material
behaviour changes from elastic to an inelastic one. We introduced the resulting yield stress Y0 and
defined it by the derivative of the free energy function with respect to the hardening variable ξ (eqn.
2.6.10), for which we formulated an evolution equation. In general ξ alters during the deformation
process and is not constant, but it is possible to describe hardening effects as they were mentioned in
the introduction to this section. Here we want to give an example for a potential Wmic(ξ) describing
the hardening effects, that were mentioned before. The simplest approach for a hardening potential
is given by

Wlin
mic =

1

2
hξ2 (2.6.73)

that leads to a linear hardening in the yield function, whereby h denotes the linear hardening
modulus. The application of this hardening formulation yields a very unsatisfying description of
real deformation processes, such that it is quite common to upgrade the linear model by a nonlinear
approach like

Wnonl
mic = [ Y∞ − Y0 ] [ ξ +

1

κ

exp[−κξ] ] . (2.6.74)

The superposition of the linear and the nonlinear hardening potential yields a resulting yield stress
Yn(ξ) that can be obtained by differentiation of the hardening potential with respect to the according
variable ξ, such that the yield function finally can be specified as

Φ(τ̃ �, Yn) = ‖τ̃ �‖ −
√

2

3
Yn(ξ), with Y0(ξ) = Y0 + hξ + [ Y∞ − Y0 ] [ 1 − exp[−κξ] ] .

(2.6.75)

The quantities Y0, Y∞ and κ are material specific parameters, whereby Y0 defines the initial yield
stress, namely when the material starts to plastify. The nonlinear hardening curve finally approxi-
mates a parallel to the linear hardening law, whereby the difference ∆Y = [ Y∞−Y0 ] determines the
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distance to the linear hardening curve that goes through the initial yield stress Y0. The parameter
κ determines how fast the nonlinear root approximates the linear model. In the given description
we assumed an isothermal deformation process, but in general these parameters are temperature
dependent. This causes a softening material behaviour, since the resulting yield stress Yn(ξ,Θ)
decreases when the temperature increases. Therefore, the nonlinear hardening parameters Y0, Y∞
and the linear hardening modulus h are assumed to be linearly temperature dependent, such that
we obtain

˜Y0(Θ) = Y0

∣

∣

∣

Θ0

[ 1 − ωy∆ϑ ] ,

˜Y∞(Θ) = Y∞
∣

∣

∣

Θ0

[ 1 − ωh∆ϑ ] ,

˜h(Θ) = h
∣

∣

∣

Θ0

[ 1 − ωh∆ϑ ] ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

with ∆ϑ = Θ − Θ0. (2.6.76)

Here ϑ0 denotes a reference temperature, where the parameters have their initial values and the
quantities ωy and ωh denote further material specific parameters. They describe how strong the
thermal softening process takes place. The nonlinear hardening parameter κ is assumed as not
temperature dependent.

2.7 Inelastic Constitutive Models

In this section we like to present some isotropic inelastic models considering additional effects to
plasticity. In particular we want to present two models taking ductile damage into account and which
can be understood as an extension of the J2-model. Furthermore we want to discuss a model, by
which rate-independent hyperelasto-plastic material formulations can be transformed into an elasto-
viscoplastic material model. The representation of the governing equations are analogous to the
von-Mises plasticity and therefore the models are not discussed in detail. Where the methods differ,
an closer consideration takes place, but otherwise we restricted ourselves to present the governing
equations and giving some remarks on the numerical aspects.

2.7.1 The Model of Gurson

Governing equations Originally this model was derived by Gurson [Gur77], who derived a yield
potential for porous plastic materials for simple cell models. As the term ’porous’ suggests, the key
idea here is that the material contains voids, that arise from fracture of particles or micro-cracks in
the surrounding matrix material. This process is denoted by nucleation. These microscopic voids
can grow with further loading, such that microscopic holes evolve. If these holes reach a particular
volume they can coalesce with each other and the softening process of the material gets accelerated.
These mechanisms are recorded by the Gurson model, where the void evolution is described by the
so-called void-volume-ratio,

d =
Vv

VA
(2.7.1)

that is introduced as an additional internal variable and where Vv denotes the void volume and VA is
the elementary volume of the material. Improvements of the model with respect to the predictions
at low void-volume-ratios and a better representation of final void coalescence were performed
by Tvergaard & Needleman [TN84]. A nonlinear formulation of the Gurson model was proposed
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Figure 2.7. Differences of the a) Gurson-type model and b) a damage model of the Lemaitre-type

by Steinmann, Miehe & Stein [SMS94] and further improvement with respect to the numerical
treatment and identification of the models parameter was proposed by Mahnken [Mah99]. Here we
want to refer to the latter formulation, whereby we neglect the nucleation process and assume that
the material initially contains already micro-voids.
It has to be emphasized here, that the Gurson model is not a real damage model since only the yield
stress is reduced, but not the effective stress. Therefore within a cycling loading the slope of the
elastic part of stress-strain curve would not be effected due to damaging, whereas in real damage
models it would. This effect is scetched in fig. 2.7 where a softening can be observed, but the
stiffness of the remaining ’undamaged’ material is not effected by that. In comparison to that the
Lemaitre-type model incorporates this effect and the stiffness decreases. Furthermore we have to
mention here, that the ’damage effects’ only occur for tension, otherwise the voids are decreasing due
to pressure loading. Therefore this material model is predestinated for the description of concrete
where damage effects are mainly initiated due to tension loading.
The Gurson model describes porous elasto-plastic materials including a kind of damaging, that is
reflected in the reduction of the resulting yields stress by a scalar-valued function ϕ, that itself
depends on the modified void volume ratio d̂. Therefore the yield function, as we introduced it in
the previous sections, gets the subsequent representation

Φ = ‖τ̃‖ −
√

2

3
sign (ϕ)

√

|ϕ|JYn(ξ), with

ϕ = 1 + q3d̂− 2q1d̂Coshv, v =

[

3q2p

2JYn

]

, with

d̂ = d+ (k − 1)(d− dc)ς(d, dc,∆d). (2.7.2)

The factors qi are material parameters and p = tr (τ̃ �)/3 denotes the Kirchhoff pressure. The
void volume function d̂ describes the change of the initial void growth to the increased growth due
to coalescence, when a crucial void volume dc is reached. Here k denotes the new slope and the
function ς is defined by

ς(d, dc,∆d) =

⎧

⎨

⎩

0
1
2
[ 1 + sin [ d−dc

∆d
π − π

2
] ]

1

, with d ≤ dc

, with dc < d < dc + ∆d
, with dc + ∆d ≤ d,

(2.7.3)
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that provides a smooth transition and numerical troubles due to the disconinuity can be avoided.
Also the Cosh- function is modified for numerical reasons, since initially it coincides with the standard
cosh-function, but if its argument reaches a crucial value vc it is modified as follows

Cosh =

{

cosh v

cosh vc + [ v − vc ] sinh vc + 1
2
[ v − vc ]2 cosh vc

, with v ≤ vc

, with v > vc.
(2.7.4)

These modifications lead to a better control of particular effects of the model, but with that an
increasing number of parameters comes along.

Evolution equations As we learned in the previous section the evolution of the plastic strains is
proportional to the derivative of the yield function Φ with respect to the Kirchhoff stress. Since also
the function ϕ depends on the Kirchhoff stress or the Kirchhoff pressure, respectively, the evolution
equation of the plastic strains become more complicate. Therefore the plastic flow emanates from
eqn. 2.6.46 as

−1

2
Lt(b

�
e) · c�

e = γ̇ g� · ∂Φ
∂τ �

= γ̇ν +
1

3
γ̇sI, with s =

[
√

2

3
q1q2d̂Sinhv

]

(2.7.5)

whereby Sinhv denotes the derivative of the Coshv. We want to emphazise, that in contrast to
the J2-plasticity, where the volumetric stress remained untouched by the local iteration scheme,
that here the plastic flow is not purely deviatoric anymore. Therefore we also need to update the
volumetric stress contributions.
The evolution equation for the hardening variable can also be derived from the dissipation equation,
whereby the hardening potential is modified, such that the resulting yield stress can be introduced
by

∂W

∂ξ
= ˜Yn = [ 1 − d ]Yn(ξ). (2.7.6)

Inserting this into the Lagrange functional and differentiating it with respect to the associated
stress-like quantity ˜Yn we obtain

∂YnL = − [ 1 − d ] ξ̇ + γ̇
∂Φ

∂Yn
= 0. (2.7.7)

This relation can be solved for the rate of the hardening variable and its evolution equation can
finally be written as

ξ̇ =
1

[ 1 − d ]

[

γ̇

√

2

3
|ϕ|sign ϕ+

ps

Yn

]

. (2.7.8)

In opposition to the plastic strains and the hardening variable the evolution of the void-volume-ratio
is not derived from the dissipation inequality, but from the balance equation of mass. The total
mass densisty ρ consists of the matrix material ρm and the mass of the included voids ρv. Since
the mass of the voids can be neglected and the matrix material is assumed to be incompressible
(ρ̇m = 0) we obtain for the balance equation of mass and its evolution

ρ = [ 1 − d ] ρm and ρ̇ = −ḋρm. (2.7.9)
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Otherwise we know from the mass balance in eqn. 2.3.10 that the mass rate can be expressed by

ρ̇ = −ρdivv = −ρl� : I = −ρ [ l�
e + l�p ] : I (2.7.10)

whereby the elastic contributions in the mass balance l�e : g� = 0 can be neglected. Comparing both
mass rate formulations we can identify the rate of the void volume ratio with

ḋ = [ 1 − d ] l�
p : g� = [ 1 − d ] γ̇s. (2.7.11)

For the numerical iteration of the internal variables we have to rewrite these evolution equations as
residuals and apply the Newton-Raphson iteration scheme. As mentioned before, also the volumetric
Kirchhoff stress, respectively, needs to be updated, such that the subsequent four residuals can be
derived

r1 = sign (ϕ)‖τ̃ �,trial‖ − 2µ∆γ −
√

2

3
Yn(ξ) (2.7.12)

r2 = ξn − ξ +
1

[ 1 − d ]

[

∆γ

√

2

3
|ϕ|sign ϕ+

ps

Yn

]

(2.7.13)

r3 = dn − d+ [ 1 − d ] ∆γ

[
√

2

3
q1q2d

∗Sinhv

]

(2.7.14)

r4 = p− ptrial + κ∆γ

[
√

2

3
q1q2d

∗Sinhv

]

. (2.7.15)

For the further proceeding we need to determine the entries of the Jacoby-matrix Jij = ∂xj
ri, where

xi denotes the vector of four unknowns x = [ ∆γ, ξ, d, p ]. The inverse Jacobian is inserted into
eqn. 2.6.65 and an updated set of the unknowns can be obtained. This procedure is repeated until
the residuals are sufficient small. Some additional features for a better convergence are introduced
by Mahnken, which are not presented here.

Algorithmic tangent operator Due to the additional dependency of the volumetric stresses on
the plastic flow, the general representation of the spatial algorithmic tangent operator has to be
modified for the Gurson-model

�
ep =

3
∑

α=1

3
∑

β=1

1

J
ϕαβmβ ⊗ mα +

3
∑

α=1

2

J
τ̃α
∂mα

∂g�
+

3
∑

α=1

∂τα
∂J

mα ⊗ g�. (2.7.16)

This representation can be obtained from the principal Kirchhoff stress, that can be rewritten as
follows

τα = τα,vol + τα,dev, with

τα,vol = κ[ln J − ∆γs] and τα,dev = 2µ [ ln ˜λα − ∆γνα ] . (2.7.17)

Following eqn. 2.5.77 the coefficient matrix ϕαβ is defined by the derivative of the principal Kirchhoff
stresses with respect to the principal stretches, that yields

ϕαβ = κ− κs
∂∆γ

∂˜λβ

− κ∆γ
∂s

∂˜λβ

+ 2µ [ δαβ − 1

3
] − 2µ∆γ

∂να

∂˜λβ

− 2µ
∂∆γ

∂˜λβ

να (2.7.18)
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The derivative of the Kirchhoff stress with respect to the Jacobian yields

∂τα
∂J

= κ
∂ ln J

∂J
− κs

∂∆γ

∂J
− κ∆γ

∂s

∂J
− 2µ

∂∆γ

∂J
να. (2.7.19)

We want to dispense with details here on the calculation of the appearing derivatives. We just want
to note here, that also the volumetric part of the stresses are touched by the local iteration process
and because of that, we have to take some care of the linearization of the stress formulation.

2.7.2 The Model of Lemaitre

Governing equations This damage model was firstly introduced by Lemaitre in his papers [Lem84]
and [Lem85], whereby we mainly refer to the first puplication. The idea of the elasto-plastic damage
models of the Lemaitre-type is, that during the deformation the supporting cross section decreases,
such that an effective stress τ̂ � can be defined. In the original proposition the effective stress
includes volumetric parts as well as isochoric contributions, whereas Steinmann, Miehe & Stein
[SMS94] suggest, that only the deviatoric part is affected by the damage effect. Therefore the strain
energy function is assumed as

W(b�, ξ, d) = Wvol(J) + [ 1 − d ] Wiso(˜λα) + Wmic(ξ), (2.7.20)

such that we obtain the effective deviatoric stress by

τ̂ � =
1

[ 1 − d ]
τ �, (2.7.21)

whereby τ � denotes the deviatoric Kirchhoff stress as it was defined within the elastic framework.
Here 0 ≤ d ≤ 1 denotes the damage variable, and the material disrupts completely, if the denomi-
nator in eqn. 2.7.21 gets zero. Furthermore, from eqn. 2.7.21 emanates the stress-like quantity

R = −∂W
∂d

= Wiso(˜λα), (2.7.22)

which is thermodynamically conjugated to the damage variable and that is denoted by damage
energy release rate R.

Evolution equations With this at hand we can write the Lagrange functional in considerartion
of the side conditions as

L(τ̃ , Yn, R) = −τ � :

[

1

2
g� · Lt(b

�
e) · c�

e

]

+ Ynξ̇ − Rḋ+ γ̇Φpla ≥ 0, with

Φ = Φpla(τ̃ �, Yn) + Φdam(R) (2.7.23)

whereby here the side condition consists of the plastic potential as it was introduced in eqn. 2.6.15 .
In the yield function we have to take into account, that the resulting yield stress of the undamaged
material is compared with the absolute value of the effective stress. Therefore the yield function
becomes

Φpla =
‖τ̃‖

[ 1 − d ]
−
√

2

3
Yn(ξ). (2.7.24)



Section 2.7 Inelastic Constitutive Models 59

The damage potential is assumed to be a function of the damage energy release rate R, that is related
to an value S0, that can be denoted by reference damage energy release rate of the undamaged
material. The original damage potential given by Lemaitre was assumed by

Φdam =
S0

[ 1 − d ] [ s0 + 1 ]

[−R
S0

]s0+1

, (2.7.25)

but in Steinmann, Miehe & Stein s0 = 1 is assumed, that we also want to adopt here. From these
potentials the following evolution equations emanate

−1

2
g� · Lt(b

�
e) · c�

e = γ̇
∂Φpla

∂τ̃ �
, ξ̇ = γ̇

∂Φpla

∂Yn

, ḋ = γ̇
∂Φdam

∂R
. (2.7.26)

The concept, that the evolution equation of the internal variable is derived from the plastic potential
by differentiating it with respect to the associated variable is called hypothesis of associativity. Since
this procedure is adopted here to the damage variable, whereby the plastic potential is replaced by
the damage potential, it is denoted by hypothesis of generalized associativity. From the evolution
equations of the internal variables, as they are formulated in the continuous setting, we can derive
the corresponding residuals in an incremental representation as they are needed for the Newton-
Raphson iteration scheme. We obtain three residuals, whereby the first one coincides with the yield
condition and

r1 =
‖τ̃ �‖

[ 1 − d ]
− 2µ∆γ

[ 1 − d ]
−
√

2

3
Yn,

r2 = ξn − ξ +

√

2

3
∆γ,

r3 = dn − d− ∆γ

[ 1 − d ]

[−R
S0

]

. (2.7.27)

To install again a Newton-Raphson iteration scheme for the iteration of the internal variables, we
have to calculate the entries of the Jacobi matrix, which correspond to the derivatives of the residuals
with respect to the internal variables.

Algorithmic tangent operator In contrast to the Gurson-type damage model here only the
deviatoric Kirchhoff stress is attracted by the damage effects, such that we can adopt the structure
of the tangent operator of the v.-Mises formulation

�
ep =

3
∑

α=1

3
∑

β=1

1

J
ϕ̂αβmα ⊗ mβ +

3
∑

α=1

2

J
[ 1 − d ] τ̃α

∂mα

∂g�
with

ϕ̂αβ =
∂τ̂

∂λβ
= κ+[ 1−d ]

[

2µ [ δαβ − 1

3
] − 2µ

[

∂∆γ

∂λβ
ν − α− ∆γ

∂να

∂λβ

]]

−τ̃α ∂d

∂∆γ

∂∆γ

∂λβ
, (2.7.28)

whereby ϕ̂αβ denotes the coefficient matrix obtained from the derivatives of the principal stretches
with respect to the principal stretches. From the derivative of eqn. 2.7.273 with respect to the
Lagrange multiplier we obtain the term, that is needed for the derivation of the damage variable
with respect to the principal stretches. Since the plastic potential depends on the effective stress, also
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the Lagrange multiplier depends on the plastic potential. Therefore the derivative of the Lagrange
multiplier with respect to the principal stretches

∂∆γ

∂λβ
=

2µ
[

2µ+
2

3
Y ′

n +
1

[ 1 − d ]

[−R
S0

]]νβ . (2.7.29)

gets modified by a contribution of the damage potential in the denominator. This completes the
algorithmic tangent operator and we want to emphasize here once more that the volumetric stress
contribution is not affected by the damage effects.

2.7.3 Rate-dependent Formulations

The inelastic models, as they were presented so far, are rate-independent. However, in general
the material behaviour depends on the loading velocity and therefore we need an approach that
records this effect, that is usually denoted by viscosity. We want to introduce an approach made
by Perzyna in [Per63], [Per66] and [PW68], that allows an over-stress, in contrast to the rate-
independent models, such that a stress state in the non-admissible domain (Φ > 0) is possible. The
material behaves elastic as long as the yield condition is not violated. After that plastic flow occurs
superposed by a rate-dependent effect. In rheological models this effect is motivated by a dash-pot
that acts parallel to the friction element, that describes the effects due to plasticity. The derivation
of the elasto-viscoplastic material behaviour can also be effected from the principle of maximum
dissipation, where the inequaltiy of dissipation is enforced by a penalty term that replaces the side
condition in the Lagrange functional in eqn. 2.6.7. Therefore the dissipation equation takes the
following shape

L = −τ̃ � : d� + Ẇ(b�, ξ) +
1

2
ζ [ Φ(τ̃ �) ]2 , with Φ > 0 (2.7.30)

Here ζ denotes the penalty parameter and if we consider the gradient of the dissipation with respect
to the deviatoric Kirchhoff stress, we obtain a formulation for the viscoplastic strain-rate

−1

2
g� · Lt(b

�
e) · c�

e =
1

η
〈Φ〉 ∂Φ

∂τ̃ �
, with ζ =

1

η
(2.7.31)

whereby the McCauley brackets are defined by

〈Φ〉 =
1

2
[ Φ + |Φ| ] =

{

Φ,
0,

for
for

Φ > 0
Φ ≤ 0.

(2.7.32)

Moreover we replaced the penalty parameter by the inverse of the viscosity η, that describes the
viscoplastic material behaviour. If we compare eqn. 2.7.31 and eqn. 2.6.16 we realize, that the
Lagrange multiplier was replaced by a constitutive approach

γ̇ =
〈Φ〉
η
. (2.7.33)

To transform the rate-independent into a rate-dependent J2-plasticity formulation, we solve this
relation for the yield function, that finally yields

Φ = ‖τ̃ �,trial‖ − 2µ∆γ −
√

2

3
Yn(ξ) − η

∆t
∆γ with γ̇ =

∆γ

∆t
(2.7.34)
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whereby we installed an incremental description, where ∆t denotes the time increment, by which
the dependence on time is realised explicitly. This modification also involves a simple addition in
the spatial algorithmic tangent operator as it was derived for the rate-independent formulation in
eqn. 2.6.72. The only alteration takes place in the derivative of the plastic multiplier with respect
to the principal stretches in eqn. 2.6.71

�
ep =

3
∑

α=1

3
∑

β=1

1

J
ϕαβmα ⊗ mβ +

3
∑

α=1

2

J
τ̃α
∂mα

∂g�
, with

ϕαβ = ϕe
αβ − 4µ2∆γ

‖τ̃ �‖ [δαβ − νανβ] − 2µ

[

1 +
η

2µ∆τ̄
+

1

3

Y ′
n

µ

]−1

νανβ . (2.7.35)

This viscous description shows a modular character and can be integrated into every hyper-elasto-
plastic material formulation, such that a rate-independent formulation can easily be transformed
into a rate-dependent one.

2.8 Numerical Aspects of Elasticity and Inelasticity for Finite
Deformations

In this section we discuss the numerical realization of the derived material models within the frame-
work of the finite element method. And we want to develope the procedure from the continuous
balance equation to the set of linear equations step by step. Starting point here is the balance of lin-
ear momentum, that needs to be transformed into the weak form. The derived equation is nonlinear,
since we consider nonlinear strain measures and therefore we need to perform a linearization, such
that a Newton- Raphson iteration scheme is applicable. In the sequel we will discretize the equations
by standard Lagrange element formulations and finally we will construct the element stiffness matrix
and the corresponding element load vector. The assembling procedure is described briefly and the
numerical integration methods, as there are the Gauss quadrature or the Newton-Cotes quadrature,
are briefly summarized. The used numerical methods are common standard, such that they are not
discussed in detail, but for completeness the main ideas are represented. The emphasis is placed on
the weak form in the different configurations, the corresponding linearization and the discretization.
The number of publications on the finite element method is quite large, such that it is not difficult
to give a link to further reading. A very fine introduction into the linear finite element method
is given by Hughes [Hug00], Reddy [Red93] or Rappaz, Bellet & Deville [RBD03]. These authors
focus on the representation of the main steps to get a finite element formulation, whereas Oden &
Reddy [OR76] highlight the mathematical basics of the Finite element method. A nice compromise
between theory and application can be found in Jung & Langer [JL01]. Formulation of the finite
element method with respect to nonlinear problems can be found in Oden [Ode72], Bonet & Wood
[BWed], Wriggers [Wri01] or in Belytschko, Liu & Moran [BLM00]. The standard work containing
the representation of linear and nonlinear problems is published by Zienkiewics & Taylor [ZT02a],
[ZT02b] and [ZT02c].

2.8.1 The Weak Form in Terms of the Cauchy Stress

Point of departure is the spatial formulation of the linear momentum balance equation in eqn. 2.3.14,
whereby the corresponding intial boundary value problem requires additional information about the
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initial values of the deformation and the velocity and the given conditions at the boundary of the
considered domain. The complete description of the strong formulation in terms of the reference
and the current configuration is given by

ρ0∂tv = DivP � + b0, ρ∂tv = divσ� + b (2.8.1)

with the initial values of the deformation and the velocity

ϕ(t0) = ϕ0 in B0, v(t0) = v0 in B0 (2.8.2)

and the Dirichlet and Neumann boundary conditions

u = u on ∂B0u, σ� · n = t on ∂B0σ, (2.8.3)

where u and t prescribed displacements and tractions at the boundary, respectively. By these
presettings the problem is wellposed and the next step is to derive the weak form of the linear
momentum balance equation, which is completely equivalent to the strong representation, but here
some of the boundary conditions are already included within the formulation. But in contrast to
the strong form the restrictions on the solution with respect to smoothness are weaker. To obtain
firstly the variational form of the differential equation, it is multiplied by a so-called test function
or weight function δu ∈ H1(Bt)

7 and by integrating the resulting equation over the domain of
Bt we transform it to a functional G, that is called variational form. The test function has to be
continuous and becomes zero at the boundaries. The weak form can be represented as

G =

∫

Bt

[

divσ� + b − ρv̇
] · δudv = 0 (2.8.4)

whereby we can apply the partial integration to the first term and in consideration of the test function
it can be rewritten as

∫

Bt

divσ� · δudv =

∫

Bt

[ div [ σ� · δu ] dv −
∫

Bt

σ� : gradδudv. (2.8.5)

7There are two important function spaces, which are needed in the framework of the finite element method and
that are fundamental to it. The first one is the set of quadratically integrable functions, that usually are defined by

L2(Ω) = {u : ∃
∫

Ω

(u(x))2dx < ∞},

such that L2 includes all functions u, for which the integral over Ω exists and becomes finite. Therefore L2 is denoted
by space of quadratically integrable functions. For a function u ∈ H1

2 (Ω) one demands that also the integral of the
first generalized derivative over Ω exists and gets a finite value as well, such that it is also an element of L2(Ω).
H1

2 (Ω) is called Sobolev space, which is a subspace of L2. The generalized derivative can be derived from the partial
integration, where the function u(x) ∈ C1(Ω) is weighted by the continuous function ϕ(x) ∈ C1(Ω)|ϕ(∂Ω) = 0,
such that we can write

∫

Ω

u(x)ϕ′(x)dv = −
∫

Ω

u′(x)ϕ(x)dv + u(x)ϕ(x)
∣

∣

∂Ω
︸ ︷︷ ︸

=0

.

This generalized derivative was introduced by Sobolev and it is fundamental for the derivation of the weak formula-
tions.
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Furthermore we can apply the Gauss theorem to the first term in eqn. 2.9.59 and include the
Neumann boundary conditions, such that we can write

∫

Bt

div [ σ� · δu ] dv =

∫

∂Bt

n · σ� · δuda =

∫

∂Bt,σ

t · δuda. (2.8.6)

Inserting this into eqn. 2.9.59 we finally obtain the so-called weak form

G =

∫

Bt

σ� : gradδudv −
∫

Bt

[ b − ρv̇ ] · δudv −
∫

∂Bt,σ

t · δuda = 0. (2.8.7)

This equation represents the weak form of the linear momentum balance equation in terms of the
spatial configuration. This formulation coincides with the variational formulation that emanates
from the principle of virtual work. Therefore the particular terms in the variational formulation

G =

∫

Bt

σ� : δe�dv

︸ ︷︷ ︸

Gint

−
∫

Bt

b · δudv −
∫

∂Bt,σ

t · δuda
︸ ︷︷ ︸

Gext

+

∫

Bt

ρv̇ · δudv
︸ ︷︷ ︸

Gdyn

= 0 (2.8.8)

can be interpreted as virtual work, whereby the first one describes the virtual work due to internal
forces. The rest records the virtual work done by the external forces, acting at the surface and the
volume, and the inertial forces.

2.8.2 The Weak Form in Terms of the Piola Stress

The weak formulation of the material representation of the momentum balance equation can be
derived analogously to the spatial one, whereby here the work-conjugated strain measure accords to
the deformation gradient. With this at hand the variational form can be written as

G =

∫

B0

[ DivP � + b0 − ρ0v̇ ] · δudV = 0 (2.8.9)

To this expression we can apply the same transformations as in the spatial description, only with
respect to the material configurations, such that we finally obtain for the material weak formulation

G =

∫

B0

P � : δF �dV

︸ ︷︷ ︸

Gint

−
∫

B0

b0 · δudV −
∫

∂B0,σ

t0 · δudA
︸ ︷︷ ︸

Gext

+

∫

B0

ρ0v̇ · δudV
︸ ︷︷ ︸

Gdyn

= 0, with δF � = Gradδu

(2.8.10)

whereby here the surface and volume forces are transformed by t0 = tdA/da and b0 = Jb, re-
spectively, and the internal virtual work is expressed in terms of the 1. Piola-Kirchhoff stress. An
equivalent representation in terms of the 2. Piola-Kirchhoff stress can be obtain by the subsequent
transformation

Gint =

∫

B0

P � : δF �dV =

∫

B0

S� : [ [ F � ]t · g� · δF � ]sym dV =

∫

B0

S� : δE�dV. (2.8.11)
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Inserting this result in eqn. 2.9.64 yields the weak form of the material momentum balance equation
in terms of the symmetric 2. Piola-Kirchhoff stress S�, that filters the symmetric part of [ F � ]t ·
g� · δF �, that coincides with the rate of the Green-Lagrange strain tensor.
The results in eqn. 2.9.64, 2.8.11 and eqn. 2.9.62 describe an energetic state of a given system, that
depends on the configuration given by the motion ϕ. The task is to find the particular configuration,
that minimizes the energy in the system, since this coincides with a state of equilibrium. The
problem is, that the balance equations represented by the weak forms in terms of the material
or the spatial configurations are highly nonlinear and therefore the problem can not be solved
directly. For a numerical solution of the given problem the weak formulations need to be linearized,
i.e. it is approximated by a Taylor expansion, which is truncated after the linear term. If the
linearization is performed, finally a numerical iteration algorithm like the Newton-Raphson iteration
scheme for instance can be applied to find the particular configuration, that minimizes the systems
energy. We have to distiguish between nonlinearities, that are induced by the consideration of large
deformations and nonlinearities due to the constitutive equations. The nonlinearity of the given
variational formulations is a consequence of both reasons, whereby the linear approximations of
the particular stress rates was already performed by derivation of the material or spatial algorithmic
tangent operators, such that in the sequel we can assume them as given. Therefore in the subsequent
sections we consider the linearization of the variational formulations with respect to the nonlinear
strain measures in particular.

2.8.3 Linearization of the Weak Form

Linearization of a function means that a function f(x) at x is approximated by a Taylor expansion

f (x) = f (x̄) +
∂f

∂x

∣

∣

∣

x̄
[ x − x̄ ] +

1

2!

∂f 2

∂x2

∣

∣

∣

x̄
[ x − x̄ ]2 + . . . (2.8.12)

which is truncated after the second terms, such that we obtain

f(x) = f (x̄) +
∂f

∂x

∣

∣

∣

x̄
[ u ] + O(u2) (2.8.13)

a linear approximation of the function f at x̄, whereby the function value f (x̄) is given and the
second term coincides with the directional derivative of the function f (x) in direction of u. u
denotes the difference of the old and the new x and describes a kind of increment. The directional
derivative often is denoted by ∆f or Dx [ f ]u and it can also be derived by

∆f (x̄,u) = Dx [ f(x̄,u) ] · u =
∂

∂ε
f (x̄ + εu)

∣

∣

∣

ε=0
=
∂f (x̄ + εu)

∂x̄ + εu
· ∂x̄ + εu

∂ε

∣

∣

∣

ε=0
=
∂f

∂x

∣

∣

∣

ε=0
· u

(2.8.14)

where the derivative of f with respect to x = x̄+εu is evaluated at x̄. The last term in eqn. 2.8.13
O(u2) → 0 is the remainder, that is characterized by the Landau order symbol and it becomes lower
the more terms are considered in the Taylor series. We want to apply this linearization procedure
to the weak form of the linear momentum balance equation, where we like to consider the different
terms in detail now. As mentioned before, we can divide the weak form into an internal virtual
work Gint(ϕ̄, δu) and an external virtual work Gext(ϕ̄, δu), which depend on the motion ϕ̄, that
accords to x̄ in the general consideration, and on the variation δu. The linearization of a quantity
is indicated by the L [•] -operator, that we firstly apply to the internal virtual work.

L
[Gint(ϕ̄, δu)

]

= Ḡint + ∆Ḡint(∆u), (2.8.15)
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whereby Ḡint indicates, that the expression of internal virtual work is evaluated at the last established
equilibrium state of the motion denoted by ϕ̄. Since the motion is given by ϕ(X, t) = x(X, t) =
X + u(X , t), where u(X, t) denotes the complete displacements we want to introduce the dis-
placement increment ∆u. The main task is to determine the directional derivative represented by
the second term in eqn. 2.8.15. For the initial configuration we can rewrite it as

DxGint(ϕ̄, δu)∆u =
∂

∂ε

∫

B0

S�(E�(ϕ̄ + ε∆u)) : δE�(ϕ̄ + ε∆u)dV

=

∫

B0

[

DxS
� : δE� + S� : DxδE

� : ∆u
]

dV . (2.8.16)

In order to determine the linearization of the 2. Piola-Kirchhoff stress, we can use the chain rule
that is applicable here, since the directional derivative is a linear operator. This consideration yields

Dx [ S�(E�) ] · ∆u =
∂S�

∂E�
: DxE

�(u)∆u = � : Dx [ E� ] · ∆u, (2.8.17)

and we find, that for the linearization of the stress tensor the material tensor of the material
description has to be taken into account. Furthermore we need to establish the directional derivative
of the Green-Lagrange tensor. For this we firstly investigate the linearization of the deformation
gradient, that is

Dx [ F � ] · ∆u =
∂

∂ε
F �(ϕ̄ + ∆u) =

∂

∂ε

[

ϕ̄ + ε∆u

∂X

]

=
∂

∂X

[

∂ [ ϕ̄ + ε∆u ]

∂ε

]

= Grad∆u

(2.8.18)

where Grad[•] denotes the gradient with respect to the reference configuration. The application of
this result to the linearization of the Green Lagrange strain tensor accordingly yields

Dx [ E� ] · ∆u =
1

2

[

[ [ F � ]t · Grad∆u ]t + [ F � ]t · Grad∆u
]

(2.8.19)

For the complete linearization of the virtual internal work the determination of the linearized variation
of the Green Lagrange tensor is required. But before we can perform its linearization we have to
determine the variation of the Green Lagrange tensor itself, which can be performed analogously to
its linearization, such that we obtain

δE� =
1

2

[

[ [ F � ]t · Gradδu ]t + [ F � ]t · Gradδu
]

. (2.8.20)

The corresponding linearization is represented by

Dx [ δE� ] · ∆u =
1

2

[

[ Grad∆u ]t · Gradδu + Grad∆u · [ Gradδu ]t
]

, (2.8.21)

such that the directional derivative of the material internal virtual work finally can be rewritten as

Dx [ Gint(ϕ̄, δu) ] · ∆u =

∫

B0

[

δE� : � : [ [ F � ]t · Grad∆u ]

+ S� : [ [ Grad∆u ]t · Gradδu ]
]

dV.(2.8.22)
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We want to note here, that the variation of a quantity and its linear approximation both are based
on the concept of directional derivatives, such that the symbol of the first variation δ [ • ] easily can
be replaced by ∆ [ • ] to obtain the linearization.

The contribution of the external virtual work due to volume forces and surface forces can be
assumed as deformation independent 8. Likewise the contributions due to inertia forces are neglected
here, since we consider quasistatic problems such that the corresponding linearization of the external
virtual work and the dynamic contribution are given by

Dx [ Gext(ϕ̄, δu) ] · ∆u = 0 and Dx [ Gdyn(ϕ̄, δu) ] · ∆u = 0, (2.8.23)

such that the linearization of the total virtual work reduces to the internal virtual work.

Dx [ G(ϕ̄, δu) ] · ∆u = Dx [ Gint(ϕ̄, δu) ] · ∆u. (2.8.24)

The linearization of the Cauchy stress formulation can be performed in analogy to the Piola stress
formulation. Therefore it makes sense to rewrite the weak form in terms of the Kirchhoff stress

Gint =

∫

Bt

σ� : δe�dv =

∫

B0

τ � : δe�dV. (2.8.25)

The linearization of this formulation can be divided into different contributions

Dx [ Gint(ϕ̄, δu) ] · ∆u =

∫

B0

[ Dx [ τ � ] · ∆u : δe� + τ � : Dx [ δe� ] · ∆u ] dV. (2.8.26)

In order to linearize the Kirchhoff stress we take eqn 2.5.35 into account, such that the linearization
can be represented by

Dx [ τ � ] ∆u = Dx [ F � · S� · [ F � ]t ] · ∆u

= grad∆u · τ � + τ � · [ grad∆u ]t + F � ·Dx [ S� ] · ∆u [ F � ]t . (2.8.27)

8However, in general the contributions due to surface forces, like the ambient pressure for instance, or volume
forces have to be considered as deformation dependent, since the pressure always acts in normal direction, which can
change during the deformation. The concerning term in the weak form can be rewritten as

∫

∂Bt

t · δuda =
∫

∂Bt

pn · δuda =
∫

B0

Jp [ F � ]−1 · N · δudA,

whereby p denotes the scalar value of the pressure and N is the normal unit vector on the surface in the material
configuration. Therefore the directional derivative can be obtained from

Dx [ nda ] · ∆u = Dx [ J [ F � ]−t · NdA ] · ∆u =
[

DxJ [ F � ]−t + JDx [ [ F � ]−t ]
]

· NdA,

whereby the directional derivatives of the different terms are given by

Dx [ J · ] ∆u = Jdivu, Dx [ [ F � ]−t ] · ∆u.

The volume forces can be decomposed into the magnitude and the normed direction vector b = bg, which is constant,
such that the total differential of the external contribution can finally be written as

Dx [ Gext ] · ∆u = ρ0Dx [ b ] · ∆u

∫

B0

g · δudV + Dx [ p ] · ∆u

∫

∂Bt

n · δuda +
∫

∂Bt

p
[

ndivu − [ gradδu ]t n
]

· δuda.
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If we insert the linearization of the second Piola stress derived in eqn. 2.8.17 we obtain the corre-
sponding push forward

F � [ Ḋx [ S� ] · ∆u ] · [ F � ]t = J� : [ grad∆u ]sym ,

(2.8.28)

whereby in the last step the push forward relation from eqn. 2.5.73 is performed. The linearization
of δe� can also be represented by the push forward of the δE�, such that the linearization is given
by

Dx [ δe� ] · ∆u = Dx [ [ f � ]t · δE� · f � ] · ∆u

= [ [ grad∆u ]t · gradδu ]sym − [ grad∆u ]sym · δe�. (2.8.29)

Inserting the results from eqn. 2.8.27, eqn. 2.8.28 and eqn. 2.8.29 into eqn. 2.8.26 yields the
linearization of the internal virtual work in terms of the Cauchy stress

DxGint =

∫

B0

[

[ grad∆u]sym ]t · τ � : δe� + Jδe� : � : [grad∆u]sym

− [ [grad∆u]sym ]t · τ � : δe� + τ � : [[grad∆u]sym]t · gradδu]sym
]

dV. (2.8.30)

Here the first and the third term vanishes and the linearized internal virtual work finally reduces to

DxGint =

∫

B0

[

Jδe� : � : [grad∆u]sym + τ � : [[grad∆u]sym]t · gradδu]sym
]

dV. (2.8.31)

Eqn. 2.8.31 is the corresponding linearization of the internal virtual work in terms of the Cauchy
stress, whereby the linearization of the spatial quantities were performed analogously to the Lie-
derivative. We want to note here, that the linearization of the spatial or material strain tensors tend
to the linear strain measure we know from the linear theory, where the reference setting coincides
with the spatial configuration X = ϕ(X, t) = x. Furthermore, we want to remark that the
expressions derived due to linearization are symmetric that makes it possible to install more efficient
numerical solvers. Within the treatment of thermomechanically coupled problems we will realize,
that the symmetry of the tangent matrix can not be ensured anymore.

2.8.4 Discretization of the Weak Form in Terms of the Piola Stress

Within the discretization of the weak form the continuous differential equations are transformed to
a system of algebraic equations which are evaluated for a certain material particle X at a discrete
time tn+1 and spatial placement xn+1. For the discrete description of the governing quantities we
follow the isoparametric concept, where the same shape functions Na are used for the geometry and
the kinematic quantities as well, such that the initial and actual placement of a particle within a
finite element is given by the interpolations

Xe ≈
n
∑

a=1

Na(ξi)X
a, xe ≈

n
∑

a=1

Na(ξi)x
a. (2.8.32)

Here Na denotes the standard shape functions of the Lagrange type, which depends on the coordi-
nates ξi of the reference element, that represents a configuration B� that is never adopted by the
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considered body. n is the number of element nodes represented by their particular positions Xa and
xa. Since the reference element is of orthonormal structure we can give up distinguishing between
covariant and contravariant quantities and derivatives, respectively. According to the isoparametric
concept we can introduce the interpolation of the displacements and the corresponding variation by

ue ≈
n
∑

a=1

Na(ξa)ua and δue ≈
n
∑

a=1

Na(ξa)δua. (2.8.33)

For the determination of the gradients the main trick of the finite element approach is introduced.
Since here the derivatives of the displacement field is not calculated directly, but the derivatives
of the shape functions with respect to the coordinates of the reference element. The gradient of
the displacements and the corresponding variations with respect to the material and the spatial
configuration are approximated by

Gradue =
n
∑

a=1

ua ⊗∇XNa,

Gradδue =
n
∑

a=1

δua ⊗∇XNa,

gradu =
n
∑

a=1

ua ⊗∇xNa,

gradδu =
n
∑

a=1

δua ⊗∇xNa.
(2.8.34)

There is no more information needed, but the displacement of the particular particle. The derivatives
of the shape functions with respect to the placement in the material or spatial setting are obtainad
by

∇XNa = [ Je ]−t ∇ξNa, ∇xNa = [ je ]−t ∇ξNa, (2.8.35)

whereby the Je and je are the so-called Jacobi matrices mapping the geometry from the reference
element to the material or the spatial configuration and vice versa. Therefore they are defined by

Je =
n
∑

α

Xa ⊗∇ξNa, je =
n
∑

α

xa ⊗∇ξNa (2.8.36)

With this at hand we are able to construct the further quantities in discrete form. Therefore we can
define the deformation gradient analogously to the gradient of the displacement with respect to the
material setting, whereby the spatial placement field is exchanged by the displacement field

Fe = I + Gradue = I +

n
∑

a=1

ua ⊗∇XNa. (2.8.37)

In the sequel we want to discretize the weak form with respect to the material setting, whereby
we only consider the element formulation that is indicated by the fact, that the integration is not
performed over the whole body B0, but over the domain of one element denoted by Be. Point of
departure is the weak form in terms of the 2. Piola Kirchhoff stress

Ge =

∫

Be

S� : δE�dΩ −
∫

Be

[ b0 − ρ0v̇ ] · δudΩ −
∫

∂Be

t0 · δudΓ, (2.8.38)

consisting of the expressions of virtual work due to internal, external and inertial forces. We derive
the discretization of the different terms separately and start with the internal virtual work. Here the
variation of the Green Lagrange strain tensor occurs, whose discretized formulation is obtained by
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replacing the corresponding quantities in eqn. 2.8.20 by the discretized approximations as they are
given in eqn. 2.8.37 and 2.8.34

δEe =
1

2

n
∑

a=1

[

Ft
e · [ δua ⊗∇XNa ] + [ ∇XNa ⊗ δua ] · Fe

]

=
n
∑

a=1

Ba · δua. (2.8.39)

In order to implement the formulations the discretized quantities are usually represented by the Voigt
notation, where the variation of the Green Lagrange tensor δEe due to symmetry reduces to a vector
with six components δEe = {E11, E22, E33, E12, E23, E31} and the components are determined by

δEAB =

n
∑

a=1

[ FAkNa,B +Na,AFkB ] δuka. (2.8.40)

The product of the deformation gradient and the gradient of the shape function, that is summarized
by the B-matrix and can be written precisely as

Ba =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F11Na,1 F21Na,1 F31Na,1

F12Na,1 F22Na,1 F32Na,1

F13Na,1 F23Na,1 F33Na,1

F11Na,2 + F12Na,1 F21Na,2 + F22Na,1 F31Na,2 + F32Na,1

F12Na,3 + F13Na,2 F22Na,3 + F23Na,2 F32Na,3 + F33Na,2

F11Na,3 + F13Na,1 F21Na,3 + F23Na,1 F31Na,3 + F33Na,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.8.41)

The discretized variation of the Green Lagrange tensor can be inserted into eqn. 2.8.38, such that
the internal virtual work can be approximated by

Gint
e =

n
∑

a=1

δua ·
∫

Be

Ba · SdΩ, (2.8.42)

where S = {S11, S22, S33, S12, S23, S31} represents the 2. Piola Kirchhoff stress in vectorial notation
by exploiting its symmetry and that is already calculated on the constitutive level. For the integration
over the element usually the standard Gauss quadrature is applied, where the particular ,,physical
element” is transformed to the reference element. On the reference element the integration is
performed and afterwards the re-transformations takes place. We do not present this method here,
but a detailed description can be found in [Fel93], [Wel96] [Sch97] or [RS99].
The discretization of the external virtual work contribution can be easily performed by inserting the
approximation of the virtual displacements into eqn. 2.8.38. We obtain

Gext
e =

∫

Be

n
∑

a=1

b · δuaNadΩ +

∫

∂Be

n
∑

a=1

t · δuaNadΓ =
n
∑

a=1

δut
a ·
⎡

⎣

∫

Be

bNadΩ +

∫

∂Be

tNadΓ

⎤

⎦(2.8.43)

whereby the contribution due to surface forces only takes place at these element boundaries, which
in fact coincides with the boundary of the particular structure ∂Be ⊂ ∂B0.
Finally, for completeness we want to consider here the inertial contribution to the virtual work

Gdyn
=

∫

Be

ρ0v̇δudv. (2.8.44)
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The crucial point here is, that it depends on time, such that it has to be discretized not only in space
but also in time. Within the isoparametric concept the spatial approximations of the acceleration
field are simply given by

v̇ = ü =
n
∑

a=1

Naüa, (2.8.45)

whereby the acceleration field at the different element nodes are approximated by adequate ap-
proaches that are treated subsequently. Of course, we also have to replace the virtual displacement
by its corresponding interpolation, such that we get

Gdyn
e =

∫

Be

ρ0

n
∑

a=1

Naδua

n
∑

b=1

NbübdΩ =

n
∑

a=1

n
∑

b=1

δut
a ·
⎡

⎣

∫

Be

Naρ0NbIdΩ

⎤

⎦ · üb. (2.8.46)

The aim in the sequel is to rewrite the discretized expressions in such a way, that the virtual
displacement can be factored out. For this we introduce the following abbreviations

Ta =

∫

Be

B · Se dΩ, La =

∫

Be

bNadΩ +

∫

∂Be

tNadΓ, Mab =

∫

Be

Naρ0NbI dΩ, (2.8.47)

and by inserting these quantities into eqns. 2.8.42, 2.8.43 and 2.8.46 we can write the discrete
formulation of the element balance equation as

Ge =
n
∑

a=1

n
∑

b=1

δut
a · Mab · üb +

n
∑

a=1

δut
a · Ta −

n
∑

a=1

δut
a · La. (2.8.48)

Since we need the balance equation for the whole body we need to sum up over the whole number
of elements ne,

G =
ne
⋃

e=1

Ge (2.8.49)

that is expressed by the union of all elements. This notation indicates, that the element contributions
are organized in a particular manner within an assembly algorithm, that belongs to the standard
finite element procedure and that we do not discuss here. The last step, however, leads to

δut · [M · ü + T(u) − L] = 0, ∀δu ∈ �
dim×n, (2.8.50)

that describes the global form of the discretized equlibrium equation. Since the virtual displacements
can be chosen arbitrarily, eqn. 2.8.50 is only fullfilled, if the expression within the brackets gets zero

M · ü + T(u) − L = 0. (2.8.51)

This set of nonlinear algebraic equations represents the discretized formulation of the momentum
balance equation in terms of the material configuration.
So far the time discretization is not taken into account and we just want to sketch a quite simple way
to approximate the time dependent quantities. For this we assume a time increment ∆t = tn+1− tn
and the velocity and acceleration vectors can be approximated by

u̇ =
un+1 − un

∆t
and ü =

un+1 − 2un + un−1

[ ∆t ]2
, (2.8.52)
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as they emanate from the finite difference method. Inserting these approximations into eqn. 2.8.51
it can be reformulated in terms of the displacements

M · [ un+1 − 2un + un−1 ] = [ ∆t ]2 [ L −T(un) ] . (2.8.53)

Since the discrete formulation of the virtual work only consists of sum expressions where the dis-
placements can be factored out and the discretized balance of momentum can be rewritten as

M · un+1 = [ ∆t ]2 [ L −T(un) ] + M · [ 2un − un−1 ] , (2.8.54)

that describes a system of algebraic equations that can be solved directly for the new configuration
represented by un+1

9. In the case of quasistatic deformations the inertial contribution can be
neglected, such that the eqn 2.8.51 reduces to

T(u) − L = 0, (2.8.55)

where no time dependent contributions occur anymore and it solely depends on the displacements. In
the sequel we consider quasistatic problems, where the mechanical time dependent contributions are
neglected, whereas the heat conduction within the thermal problem is predominant as we will see later
on. Both types of problems act on different time scales, such that in the case of thermo-mechanically
coupled problems, the ’mechanical time scale’ is neglectible, since the mechanical processes go on
very much faster than the heat conduction. 10 Furthermore, we want to emphasize here once more
that we took the assumption that the external loads are independent of the deformation, such that
within the linearization procedure of the virtual work only the contribution caused by internal forces
needs to be taken into account. The resulting system of nonlinear equations in eqn. 2.8.55 has
to be solved by the Newton-Raphson method, that requires the linearization of the given residual.
This linearization was already performed in one of the previous sections, namely with respect to the
weak form. Therefore, the only thing left to do is to carry out the discretization of the linearized
virtual work. In principle the linearization and discretization can be exchanged, but commonly the
presented order is retained. Since we assumed the external virtual work as deformation independent,
the linearization is restricted to the internal contribution, as it was derived in eqn. 2.8.22. It consists
of two terms

Dx [ Gint ] · ∆u =

∫

B0

[

δĒ
�
: �̄ : Dx [ Ē

�
] · ∆u + [ Grad∆u ] · S̄� · [ Gradδu ]

]

dV (2.8.56)

9There are better approximations for the time dependent quantities, but the chosen (explicit) approaches in eqn.
2.8.52 serve as a showcase to present exemplarily the common procedure to solve dynamic problems. In general one
distinguishes between explicit and implicit methods, which differ from each other by assuming the actual configuration
depending on the old time step tn or considering the quantities ün+1, u̇n+1 and un+1 as implicitly depending on each
other. In this case we need to perform a linearization of the virtual work with respect to the actual configuration for
being able to apply the Newton Raphson iteration scheme. However, since the linearization of the dynamic depends
on the chosen time integration scheme and the approximations of the time dependent quantities, respectively, it is not
possible to give a general representation of the linearization of the virtual work in the case of dynamic investigations.
Within the framework of dynamic problems the research is concerned with investigations of efficient time integration
schemes, which are energy and momentum conserving and which are suffciently stable in a numerical sense. Since
we do not consider dynamic problems subsequently, we refer to the following puplications There is big number of
publications dealing with this subject and we just want to mention some of them. There are publications of Simo
& Tarnow [ST94], [ST92], Gonzales & Simo [GS00], Gonzales [Gon96a], [Gon96b], [Gon00], Betsch & Steinmann
[BS00a], [BS00b], [BS02a], [BS02b] and the work Betsch [Bet02] and Groß[Gro04].

10This assumption is not valid anymore as soon as the load velocity is of the same order as the dynamical effects like
wave propagation effects within the particular structure. High speed cutting or deep drawing processes for instance
are dynamic processes, where the effects due to wave propagation possibly is not neglictible anymore.
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and analogously to eqn. 2.8.42 we consider the stress tensor S and the corresponding tangent
operator � as known from the constitutive level. The discretization of Grad∆u in eqn. 2.8.34 can
be also adopted one by one to the interpolation of the incremental displacement, such that we get
the approximation

Grad∆ue =

n
∑

a=1

∆u ⊗∇XNa (2.8.57)

and the discretization of the linearized Green Lagrange tensor can be derived from eqn. 2.8.39 by
substituting the test function by the incremental element displacement vector, such that we obtain

∆Ee =
1

2

n
∑

a=1

[

Ft
e · [ ∆ua ⊗∇XNa ] + [ ∇XNa ⊗ ∆ua ] · Fe

]

=

n
∑

a=1

Ba · ∆ua. (2.8.58)

With this at hand and the discretized virtual strain tensor in eqn. 2.8.39 the discrete linearization
of the first term in eqn. 2.8.56 with respect to an element can be written as

∫

Be

δĒ
�
: �̄ : DxĒ

�
dΩ =

n
∑

a=1

n
∑

b=1

δut
a ·
⎡

⎣

∫

Be

B̄t
a · D̄ · B̄b dΩ

⎤

⎦ · ∆ub. (2.8.59)

Here D̄ denotes the incremental tangent matrix that corresponds to the algorithmic tangent operator
� and [ •̄ ] indicates, that the quantity is evaluated at the last iteration step. Taking eqn. 2.8.57
into account the discretization of the second term in eqn. 2.8.56 is straight forward

∫

Be

[ Grad∆u ] · S̄� · [ Gradδu ] dΩ =

n
∑

a=1

n
∑

b=1

δut
a ·
⎡

⎣

∫

Be

[ ∇XNa ]t · Se · [ ∇XNb ] dΩ

⎤

⎦ · ∆ub.

(2.8.60)

In both expressions the variation δu and and the incremental displacements ∆u can be factored
out, such that summing up both contributions yields

Dx [ Gint
e ] · ∆u =

n
∑

a=1

n
∑

b=1

δut
a · K̄e,ab · ∆ub, with (2.8.61)

K̄e,ab =

∫

Be

[

[∇XNa] · S̄e · ∇XNb + B̄t
a · D̄ · B̄b

]

dΩ

whereby K̄e denotes the so-called element tangent stiffness matrix. The corresponding arrangement
within the assemply procedure leads to the global stiffness matrix

δut · K · ∆u =
ne
⋃

e=1

n
∑

a=1

n
∑

b=1

δut
a · K̄e,ab · ∆ub. (2.8.62)

With this at hand we have found a complete numerical description of the mechanical problem that
enables one to find the configuration describing the equilibrium state of a body for given loads. If
we consider eqn. 2.8.15 we can write the discrete linear approximation of the linear momentum
balance equation as

δut · [R(u) + K · ∆u] = 0, ∀δu ∈ �
dim×n. (2.8.63)
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Here the residual R(u) = T(u)−L summarizing the internal and external forces and K corresponds
to the global tangent stiffnes matrix, that coincides with the gradient of the given residual. Therefore
the Newton-Raphson iteration scheme is applicable to the expression within the brackets

K · ∆u = −R(xk), with xk+1 = xk + ∆u. (2.8.64)

Here the residual expression and the stiffnes matrix are evaluated at the last iteration step k within
the n + 1st load step.

2.8.5 Discretization of the Weak Form in Terms of the Cauchy Stress

Analogously to the discretization of the weak form in terms of the Piola stress the discretization can
be performed in terms of the Cauchy stress setting and some results of the previous section can also
be used here. We again start from the weak form in eqn. 2.9.62, but with respect to an element,
that is represented by

Ge =

∫

Be

σ� : δe�dΩ −
∫

Be

[ b − ρv̇ ] · δudΩ −
∫

∂Be

t · δudΓ. (2.8.65)

At first we discretize the variation of the Almansi strain tensor in eqn. that is given by

δee =
1

2

n
∑

a=1

[δu⊗∇xNa + ∇xNa ⊗ δu] =
∑

a=1

Bs
a · δua, (2.8.66)

where eqn. 2.8.34 is taken into account. Comparing eqn. 2.8.66 and eqn. 2.8.39 it is clear, that the
B-matrices in both formulations are different. This is taken into account by the superscript index s
and in this present context the Bs-matrix for a certain node a is defined by

Bs
a =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Na,1 0 0
0 Na,2 0
0 0 Na,3

Na,2 Na,1 0
0 Na,3 Na,2

Na,3 0 Na,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.8.67)

Since this Bs-matrix has much less entries, this finite element formulation is more efficient than the
formulation in terms of the Piola stress. Inserting eqn. 2.8.66 into the spatial internal virtual work
we obtain

Ge =

n
∑

a=1

δut
a ·
∫

Be

[ Bs
a ]t · σedΩ =

n
∑

a=1

δut
a · Ts, with Ts =

∫

Be

[ Bs
a ]t · σedΩ, (2.8.68)

whereby the Cauchy stress vector σe = {σ11, σ22, σ33, σ12, σ23, σ31} is calculated in the constitutive
routine. The interpolation of the external and inertial virtual work contributions do not alter very
much from the formulation in terms of the Piola stress except for the factor J . Therefore we can
adopt them one by one, such that the discretization of the weak form yields the general form

δut · [Ms · üs + Ts(u) − Ls] ∀δu ∈ �
dim×n (2.8.69)
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where the index [ • ]s indicates, that we consider the formulation in terms of the Cauchy stress. The
global formulation is obtained from the summation over all elements within an assembly procedure.
As we learned from the previous sections the linearization restricts to the internal virtual work, since
we consider quasistatic deformations and the external forces are assumed to be independent of the
deformation. The linearized formulation consists of two terms and can be rewritten as

Dx [ Gint ] · ∆u =

∫

Be

[ gradδu · σ� · grad∆u + gradδu : � : grad∆u ] dΩ. (2.8.70)

Taking eqn. 2.8.33 and 2.8.57 into account the discretization of the linearized internal virtual work
contribution can easily be written as

Dx [ Gint ] · ∆u =

n
∑

a=1

n
∑

b=1

δut
a ·
⎡

⎣

∫

Be

[

[ ∇xNa ]t · σ̄e · ∇xNb + [ Bs
a ]t · D̄s · Bs

b

]

dΩ

⎤

⎦ · ∆ub

(2.8.71)

and the element stiffness matrix can be identified by

Ks
a =

∫

Be

[

[ ∇xNa ]t · σ̄e · ∇xNb + [ Bs
a ]t · D̄s · Bs

a

]

dΩ. (2.8.72)

The global formulation can be derived by assemblying all elements into the global tangent stiffness
matrix, such that the corresponding system of linearized algebraic equations is given by

Ks · ∆u = −R(xk), with xk+1 = xk + u. (2.8.73)

The solution is performed by the Newton-Raphson iteration scheme, that shows a quadratic conver-
gence behaviour. In the case of constitutive laws considering (ductile) damage, one can recognize a
mesh dependence of the finite element solution, that means, the finer the geometry is mapped by
the mesh, the smaller the damage zone is represented. To avoid this size effect and the associated
ill-posedness of the matehmatical problem, so-called regularization methods were developed. Within
these methods an intrinsic length scale is introduced, that relates the microscopic processes to the
macroscopic continuum description. Furthermore not only the information of the microstructure at a
local point is taken into account, but also the state of surrounding points are incorporated, whereby
the intrinsic scale determines the considered neighbouring points. This proceeding leads to a non-
local material formulation. Important keywords in this context are homogenization or the gradient
theory, where hardening or damage variables for instance, are introduced as global variables. This
topic is very important in the research of computational mechanics, but to present these theories
would extend the aim of this work, such that we restrict ourselves to refer to the work of Askes
[Ask00], where the different regularisation methods are introduced. Here the author attempted to
circumvent the problem by certain mesh adaptivity strategies within the finite element method or
by meshless methods like the element free Galerkin method. Askes & Sluys [AS00] attempted to
overcome the problem of strain localisation by appropriate remeshing strategies. In Eringen [Eri02],
Askes & Aifantis [AA02] or Liebe [Lie03] the gradient theory is treated in detail.

2.9 Thermo-Mechanical Problems

In many technical processes the temperature is not negligible and the isothermal considerations
fail. In particular the production of technical components, as there are machining or deep drawing
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processes for instance, requires a better understanding of thermomechanically coupled problems.
There are a lot of investigations concerned with providing appropriate constitutive propositions and
optimized solution algorithms for this kind of problem. For the description of thermal effects on the
concepts of hyperelasticity in terms of large strains we refer to Miehe [Mie95], Holzapfel [Hol01],
Wilmanski [Wil99], Reese [Ree01], Ibrahimbegovic et al. [ICG01]. Here we want to present a
completely thermo-mechanically coupled large strain formulation in consideration of plasticity. A
fundamental and exhaustive contribution on this subject is the work of Simo & Miehe [SM92],
who present a complete formulation of a model of associated thermoelastoplasticity for large de-
formations. They introduce a plastic entropy as an independent internal variable and extend the
principle of maximum dissipation to thermo-elastoplastic deformations conserving the multiplicative
decomposition of the deformation gradient. Based on this they are able to generalize the principle
of associativity. Furthermore, the paper presents a product formula algorithm that leads to two step
algorithm, where the thermal and the mechanical subproblems are solved separately. Parts of this
work can be also found in Miehe [Mie88] and [Mie92]. Other contributions on the matter of thermo-
plasticity in terms of large deformations can be found in the work of Argyris & Doltsinis [AD81],
Argyris et al. [ADPW82], Miehe [Mie94], Celigoj [Cel98], Simo in 1998 [Sim98], Ibrahimbegovic &
Chorfi [IC02].
In section 2.4 we introduced the 1.law of thermodynamics, that teaches us that we have to distin-
guish mechanical and thermal energy and that they can be transformed to each other.
In most technical applications the thermal effects can not be considered separately from the mechan-
ical problem. Therefore the isothermal considerations as we performed them in the previous sections
is not realistic and the thermal effects have to be taken into account. In general the processes are
thermo-mechanically coupled. In the sequel we distinguish between two kinds of thermo-mechanically
processes. In the first case we assume that no heat flux takes place and the system is only effected
by internal heat sources and mechanical loads. This kind of process is called locally coupled or
adiabatic, whereas a problem is denoted by globally coupled, if also a heat flux has to be taken
into account. The dilatation of a body due to external heating is a simple example of a globally
coupled problem. An adiabatic process is given if the mechanical loading is performed very fast, such
that the heat flux can be neglected during the deformation. In experimental investigations for the
identification of parameters for instance, one tries to exclude thermal effects from experiments by
superposing the load in a quasi-static manner. The thermal effects due to mechanical loads become
stronger the faster the deformation takes place, such that we have to register a relation of defor-
mation velocity and temperature increase. As we mentioned before, the 1st law of thermodynamics
is predestinated as a starting point for the derivation of relations, which are able to describe the
thermo-mechanical interaction. In particular we need a relation, that determines the temperature
evolution due to thermal and mechanical load. In analogy to the pure mechanical case, where the
mechanical attributes of a material were described by an elastic potential, it is assumed that its
thermal behaviour be described by a potential function as well. Therefore we extend the isotropic
strain energy function

W(b�
e, ξ,Θ) = ρ0Ψ(b�

e, ξ,Θ) (2.9.1)

by assuming an additional dependence on the temperature. By the Legendre transformation the free
energy can be related to the entropy and the internal energy

u = Ψ + Θs, (2.9.2)

such that it is useful for the subsequent derivations to replace the strain energy function by the
product of initial density and free energy. The particular formulation of the thermo-mechanical
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potential will be specified later on, but we want to assume that a hyperelasto-plastic material of
the von-Mises type with hardening behaviour is considered, such that we have to take an internal
variable ξ into account.

2.9.1 Temperature Evolution

In order to derive a evolution equation for the temperature we start from eqn. 2.4.10, that defines
the alteration of the internal energy u with respect to time and it is expressed with respect to
quantities in the current configuration. We rewrite this balance equation per unit volume of the
initial configuration and obtain an expression

ρ0u̇ = τ � : d� − Jdivq + ρ0r, (2.9.3)

that is the local form of the 1. law of thermodynamics in terms of the Kirchhoff stress. Taking the
Legendre transformation into account, that we performed in eqn. 2.9.2, we can replace the rate of
internal energy by

ρ0u̇ = ρ0Ψ̇ + ρ0sΘ̇ + ρ0Θṡ. (2.9.4)

Inserting this expression for the rate of the internal energy and in consideration of eqn. 2.9.1 we can
rewrite the rate of the free energy function by its total differential, such that we can rewrite eqn.
2.9.3 as

2ρ0
∂Ψ

∂b�
e

· ḃ�

e + ρ0
∂Ψ

∂ξ
ξ̇ + ρ0

∂Ψ

∂Θ
Θ̇ + ρ0Θṡ+ ρ0sΘ̇ = τ � : d� − Jdivq + ρ0r. (2.9.5)

In this representation we can identify the Kirchhoff stress and the hardening stress, which were
defined by the derivatives of the free energy function with respect to the elastic left Cauchy Green
tensor and the internal hardening variable, respectively. In addition to that we now want to define
here

∂Ψ(b�
e, ξ,Θ)

∂Θ
:= −s(b�

e, ξ,Θ), (2.9.6)

that the derivative of the free energy function with respect to the temperature conincides with the
negative entropy. With this at hand we can eliminate the entropy-dependent terms in eqn. 2.9.3,
but not the terms where the entropy rate is involved. However, we can derive the entropy rate by
considering the total differential of eqn. 2.9.6

ṡ = −∂
2Ψ

∂Θ2
Θ̇ − ∂2Ψ

∂Θ∂b�
e

ḃ
�

e −
∂2Ψ

∂Θ∂ξ
ξ̇. (2.9.7)

Inserting this relation into eqn. 2.9.5 and taking the definition of the local dissipation in eqn. 2.6.41
into account, the eqn. 2.9.3 can be represented by

−Dloc − ρ0Θ
∂2Ψ

∂Θ2
Θ̇ − ρ0Θ

∂2Ψ

∂Θ∂b�
e

ḃ
�

e − ρ0Θ
∂2Ψ

∂Θ∂ξ
ξ̇ = −Jdivq + ρ0r. (2.9.8)

At this point we need to specify the form of the strain energy or the free energy function, respectively,
since we need to compute the derivatives occuring in the previous equation. Here we want to follow
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the suggestion given by Miehe [Mie92], where the thermomechanical potential is assumed to consists
of the following five contributions

W(b�
e, ξ,Θ) = Wvol(J) + Wiso(˜λα) + Wmic(ξ) + Weth(J,Θ) + Wth(Θ). (2.9.9)

The first three terms in eqn. 2.9.9 can be identified by the same contributions as in the isothermal
case (eqn. 2.6.67) where we distinguished between the volumetric, the ischoric and the microme-
chanical contribution taking the hardening effects into account. Furthermore we enriched the strain
energy function by two additional temperature dependent terms Weth and Wth, whereby one of them
additionally depends on the deformation. From this terms emanates the thermal stress, whereby it
is of volumetric nature, since it is a function of J . The thermoelastic potential is chosen as

Weth = −3α∆ϑ
∂Wvol

∂J
= −3ακ∆ϑ ln J, with ∆ϑ = Θ − Θ0, (2.9.10)

whereby Θ0 defines a reference temperature. Of course a strong restriction is made here since we
assume that the thermomechanical coupling only depends on the volumetric part of the thermome-
chanical potential. Of course, in general also the deviatoric part can be defined as temperature-
dependent, such that an contribution of the free energy function can be assumed like Ψ = Ψ(˜λα,Θ).
But to keep things more simple in our formulation we just introduced an indirect temperature de-
pendence since we assumed that the initial yield stress is reduced due to higher temperatures. These
relations were already discussed in section 2.6.8.
The previous assumptions additionally yield the subsequent identities

ρ0Θ
∂2Ψ

∂ξ∂Θ
= 0, and ρΘ

∂2Ψ

∂J∂Θ
= −3καΘ

J
. (2.9.11)

Furthermore, it is common to define the double derivative with respect to the temperature as a
constant

−Θ
∂2Ψ

∂Θ∂Θ
:= cp, (2.9.12)

whereby this quantity is denoted by heat capacity. From this definition the corresponding potential
can be constructed by integrating eqn.2.9.12 with respect to the temperature, such that we obtain
for the purely thermal potential

Wth = cp [ Θ − Θ0 − Θ ln
Θ

Θ0
] . (2.9.13)

This completes the thermomechanical potential and we are able to specify the internal energy
expression, but before we come to that, we want to reformulate the local dissipation in a more
comfortable way. For this we rewrite the dissipation inequality in terms of the yield function, such
that we obtain

Dloc = τ � : d�
p − Ynξ̇ = γ̇

√

2

3
H(Θ), (2.9.14)

whereby the yield function has to be zero in the case of plastic flow and in the elastic case no local
dissipation takes place. That means, that the local dissipation can be reduced to an expression only
depending on the initial yield stress. This does not coincide with experimental observations, which
show that the hardening process is indeed a dissipative one, such that the initial yield stress in eqn.
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2.9.14 is replaced by the resulting yields stress Yn(ξ,Θ) and furthermore it is common to introduce
a constant factor χ < 1, that weights the dissipation, such that the temperature evolution can be
rewritten as

ρ0cpΘ̇ = Dloc + Qeth − Jdivq + ρ0r + Θ∂ΘDloc with Qeth = −3καΘtr (d�). (2.9.15)

Here we solved for the term including the temperature rate, such that we obtain the temperature
evolution equation in consideration of thermomechanical coupling, where elastoplasticity of the von-
Mises type is taken into account.
The last term in eqn. 2.9.15 emanates from eqn. 2.6.41 where the definition of the local dissipation
for the isothermal case is introduced and that was reformulated in eqn. 2.9.14 in terms of the
temperature-dependent resulting Yield Stress. This definition can be recovered again in eqn.2.9.8
whereby here additionally a derivative with respect to temperature was performed, such that in the
end we obtain

−ρΘ ∂2Ψ

∂Θ∂b�
e

: b�
e (2.9.16)

In the case of the inelastic material models of the Gurson-type or the Lemaitre-type the derived
equation would have to be specified accordingly. Furthermore we like to note here, that the terms
describing the heat power are untouched by all the derivations, that were previously performed.

2.9.2 The Thermomechanically Coupled Problem

Before we try to transform the thermo-mechanical formulation into its weak form and try to prepare
it for the finite element method we want to achieve a clear summary of the coupled problem. There
are two coupled subproblems consisting of the linear momentum balance equation and the balance
of internal energy

ρv̇ = divσ� + b

ρcpΘ̇ = −divq + Dloc + ρr + Qeth + Θ∂ΘDloc, (2.9.17)

whereby Qeth describes the thermomechanical coupling. Usually there are no additional heat sources
r and the heat only increases due to thermo-mechanical coupled deformations or the heat flux. Since
both subproblems are time dependent we have to prescribe initial conditions, for the motion ϕ(t),
the velocity v(t) and the temperature Θ(t)

ϕ(t = t0)
v(t = t0)
Θ(t = t0)

=
=
=

ϕ0

v0

Θ0

in B0

in B0

in B0

(2.9.18)

and for the wellposedness of the initial boundary value problem we have to define boundary values
of the Dirichlet and the Neumann type for the mechanical and for the thermal field as well

u = u
Θ = Θ

on ∂Bu

on ∂BΘ

σ� · n = t
q · n = qn

on ∂Bσ

on ∂Bq .
(2.9.19)

Taking the constitutive relations into account completes the description of the problem in its strong
representation and we can continue to derive the equivalent weak formulation. In the subsequent
representation we restrict ourselves to the thermal subproblem, since the mechanical subproblem
coincides with isothermal case we discussed in the previous sections. Naturally, the required modi-
fications and extensions are considered.
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2.9.3 Weak Form of the Thermomechanical Problem

The aim is to transform the energy balance equation into a weak form to solve the coupled problem
numerically by the finite element method. In contrast to the adiabatic case, that we consider at the
end of this section, here the temperature and the temperature gradient are introduced as additional
primary variables, such that the linearization procedure has to be modified if the Newton-Raphson
iteration scheme has to be applied. Point of departure is the strong form of the energy balance
equation and we obtain the variational form by testing and integrating it over the considered domain,
namely the actual configuration Bt

U =

∫

Bt

[

−ρcpΘ̇ − divq + r̃
]

δΘdv = 0, ∀δΘ ∈ �. (2.9.20)

Here δΘ is the test function and can be understood as the virtual temperature, analogous to the
virtual displacements. r̃ combines all terms which can be considered somehow as ,,sources” and
therefore it also includes the dissipation and the thermal stress. Furthermore, we can apply the
partial integration method to the heat conduction, such that we obtain

−
∫

Bt

divqδΘdv = −
∫

Bt

div [ qδΘ ] dv +

∫

Bt

q · gradδΘdv. (2.9.21)

Here the Gauss theorem can be applied to the first term in eqn. 2.9.21, such that we can introduce
qn = −q · n, that defines the boundary condition at ∂Bt of the Neumann type. The unit vector n
acts in normal direction to the surface, such that an incoming heat flux becomes positiv. With this
at hand the virtual thermal energy can be written as

U =

∫

Bt

[

−ρcpΘ̇δΘ + q · gradδΘ + r̃δΘ
]

dv +

∫

∂Bt

qnδΘda = 0, ∀δΘ ∈ �. (2.9.22)

This represents the weak form of the energy balance equation in terms of the spatial configuration,
whereby also here the equation can be splitted into an internal and an external contribution

U = U int − Uext

U int =

∫

Bt

[

−ρcpΘ̇δΘ + q · gradδΘ
]

dv, Uext = −
∫

∂Bt

qnδΘda−
∫

Bt

r̃δΘdv. (2.9.23)

Here we can insert the Fourier heat conduction law where the heat flux vector is proportional to the
negative temperature gradient, such that we obtain for the virtual energy contribution due to heat
conduction

Ucon = −
∫

Bt

gradδΘ · κ · gradΘdv. (2.9.24)

The transformation to the corresponding material formulation can be obtained by a pull back oper-
ation of the spatial temperature gradient

GradΘ = [ F � ]t · gradΘ (2.9.25)
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Applying this transformation also to the gradient of the virtual temperature field we can rewrite the
energy balance equation (eqn. 2.9.22) with respect to the reference configuration and obtain

U =

∫

B0

[

−ρ0cpΘ̇δΘ − [ GradΘ ]t · κ0 · GradδΘ + Jr̃δΘ
]

dV −
∫

∂B0

QnδΘdA = 0, ∀δΘ ∈ �.

(2.9.26)

Here the material heat conduction tensor κ0 = Jf � · κ · [ f � ]t includes the transformation to the
reference configuration and if we assume an isotropic heat conduction behaviour in the undeformed
configuration we replace the spatial heat conduction tensor by

κ = κb�, (2.9.27)

such that the energy contribution due to heat conduction in terms of the material setting is repre-
sented by

Ucon = −κ0

∫

B0

GradΘ · G� · GradδΘdV with κ0 = Jκ. (2.9.28)

This relation shows that the spatial heat conduction term depends on the deformation and a corre-
sponding linearization with respect to the displacement field has to be performed.

2.9.4 Linearization and Discretization of the Thermomechanical Problem

The weak formulation of the thermal subproblem needs to be linearized in analogy to the linear
momentum balance equation. Since we have to consider the coupling between both subproblems,
we have to perform the linearization not only with respect to the temperature, but also with respect
to the displacements, such that we obtain

D [ U ] = DΘ [ U ] ∆Θ +Dx [ U ] · ∆u. (2.9.29)

Naturally, we also have to extend the linearization of the linear momentum balance equation by
an thermal contribution describing the alteration of the mechanical subproblem due to temperature
changes. But at first we want to consider the linearization of the thermal problem. In this case it
is useful to approximate the temperature rate by

Θ̇ ≈ Θn+1 − Θn

∆t
(2.9.30)

and in contrast to the mechanical problem, we want to perform the discretization before the lin-
earization procedure. For this we introduce the interpolation of the temperature and its variation

Θ =
n
∑

a=1

MaΘa, δΘ =
n
∑

a=1

MaδΘa (2.9.31)

and the corresponding gradient formulations with respect to the spatial and the material setting are
approximated by

GradΘ =
n
∑

a=1

∇XMaΘa,

gradΘ =
n
∑

a=1

∇xMaΘa,

GradδΘ =
n
∑

a=1

∇XMaδΘa,

gradδΘ =
n
∑

a=1

∇xMaδΘa.
(2.9.32)
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The insertion of these approximations into the weak form yields the discretized form of the thermal
balance equation, whereby we restrict ourselves again to a single finite element of the body Be ⊂ Bt.
For the internal contribution we obtain

U int
e =

∫

Be

n
∑

a=1

[ρcp
∆t

[ Θn+1 − Θn ]MaδΘa − gradxΘ · κ · ∇xMaδΘb

]

dΩ (2.9.33)

and the linearization of this term with respect to the temperature increment renders

DΘ [ U int ] ∆Θ =

n
∑

a=1

n
∑

b=1

δΘa

∫

Be

[ρcp
∆t

MaMb −∇xMa · κ · ∇xMb

]

∆ΘbdΩ (2.9.34)

For the discretization of the external contribution we replace the abbreviation r̃ again and by inserting
the interpolation of the virtual temperature δΘ we obtain

Uext
e =

n
∑

a=1

δΘa

∫

Be

[Dp
loc − 3καΘdivu̇ + ρ0r] MadΩ. (2.9.35)

Here the first and the second term of this equation are temperature dependent, such that they must
be considered in the linearization prozess, whereas the boundary term is assumed to be given and is
unimportant for the linearization. The temperature derivative of the dissipation yields

∂ΘDp
loc = ∂Θ

[

∆γ

∆t
χ

√

2

3
Yn(ξ,Θ)

]

=

√

2

3

χ

∆t

[

∂∆γ

∂Θ
+ ∆γ

∂Yn

∂Θ
+ ∆γ

∂Yn

∂ξ

∂ξ

∂∆γ

∂∆γ

∂Θ

]

. (2.9.36)

Here the derivative of the plastic multiplier needs to be determined and this quantity can be calculated
from the yield function, whereby we differentiate the yield function with respect to the temperature
and obtain for the corresponding derivative

∂∆γ

∂Θ
= −

√

2
3
∂ΘYn

2µ+ 2
3
∂ξYn

(2.9.37)

This relation inserted into eqn. 2.9.36 completes the linearization of the dissipation. Finally we have
to linearize the second term in eqn. 2.9.35, that describes the thermoelastic coupling of the external
energy contribution. The linearization of this term is straight forward and we obtain

∂ΘQeth = −3καtr (d�). (2.9.38)

This completes the linearization of the external energy contribution, such that in the end we obtain
a tangent stiffness matrix of the thermal subproblem with respect to the temperature

KΘΘ
e =

n
⋃

a=1

n
⋃

b=1

⎡

⎣

∫

Be

Ma

[ρcp
∆t

+ ∂ΘDp
loc + ∂ΘQeth∆t

]

MbdΩ +

∫

Be

κ∇xMa · b · ∇xMbdΩ

⎤

⎦

(2.9.39)

As already suggested in eqn. 2.9.29 the thermal subproblem also depends on the deformation,
such that we need to linearize the energy balance equation additionally with respect to the dis-
placements. This yields the thermo-mechanical coupling between both subproblems beneath the
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thermo-mechanical interaction of the mechanical subproblem, that also yields a coupling contribu-
tion. These two coupling terms are derived in the sequel and we start with the linearization of the
thermal field with respect to the displacements. At first we consider the heat conduction term in
eqn. 2.9.24, that depends on the temperature gradient with respect to the spatial configuration and
the corresponding material formulation was derived in eqn. 2.9.28. Here it is straight forward to see
that this term does not depend on the displacement field, such that the corresponding linearization
becomes zero 11

Dx [ Ucon ] ∆u = 0. (2.9.40)

Furthermore, there is the thermoelastic contribution, that depends on J and therefore also on the
deformation. The corresponding linearization can be derived from

Dx [ J ] · ∆u = J [ f � ]t · [ F � ]t grad∆u = Jdiv∆u (2.9.41)

and by taking this result into account, the linearization of the elasto-thermal contribution yields

Dx [ Qeth ] · ∆u =
∂Qeth

∂J

∂J

∂u
∆u =

∂Qeth

∂J
Jdiv∆u =

∂Qeth

∂J
Jg� : grad∆u. (2.9.42)

The linearization of the dissipation with respect to the mechanical field is a little bit more complicated
and needs some additional considerations, since we can replace the derivative of Dp

loc with respect
to the displacement field by the differentiation with respect to the spatial metric tensor

∂Dp
loc

∂u
∆u = 2

∂Dp
loc

∂g�
: grad∆u (2.9.43)

The corresponding derivative renders

∂Dp
loc

∂g�
=

χ

∆t

√

2

3

[

Yn(ξ,Θ) + ∆γ
∂Yn

∂ξ

∂ξ

∂∆γ

]

∂∆γ

∂g�
, (2.9.44)

where we obtain the problem to determine the derivative of the plastic multiplier ∆γ with respect to
the spatial metric tensor. This information emanates from the differentiation of the yield condition

∂Φ

∂g�
=
∂‖τ̃ �‖
∂g�

− 2µ
∂∆γ

∂g�
−
√

2

3

∂Yn

∂ξ

∂ξ

∂∆γ

∂∆γ

∂g�
= 0. (2.9.45)

The only task left to do is to perform the differentiation of the norm of the deviatoric Kirchhoff
stress with respect to the spatial metric tensor. It can be calculated from

2
∂‖τ̃ �‖
∂g�

= ∂g�

√

[ τ̃ � · g� ] : [ g� · τ̃ � ] = 2µν + 2‖τ̃ �‖ν2 (2.9.46)

and with this at hand we can obtain the needed derivative of the local dissipation with respect to
the spatial metric tensor

2
∂Dp

loc

∂g�
=

4χ

∆t

β1

β0

[

µν + ‖τ̃ �‖ν2
]

, with

11This is valid, since we have chosen an isotropic constitutive law of the Fourier type with respect to the reference
configuration (κ0 = κG�). It is also conceivable to postulate isotropy with respect to the spatial configuration
(κ = κg�), that would yield a corresponding contribution to linearization.
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β0 =

[

µ+
2

3
∂ξYn

]

, and β1 =

√

2

3
[Yn + ∂ξYn∆ξ] (2.9.47)

This relation makes up the linearization of the thermal subproblem and since we considered here the
term describing the thermoplastic coupling, in the corresponding discretization we find combinations
of the mechanical and the thermal shape functions in the mixed element tangent matrix

KΘu
e =

n
⋃

a=1

n
⋃

b=1

δΘa

⎡

⎣

∫

Be

Ma

[

2∂g�Dp
loc + ∂JQethJI

] · ∇xNb − Jκ∇xMa · ∇xNa · q
⎤

⎦∆ubdΩ,

where

∇xNa =
1

2
[ ∇xNa ⊗ I + I⊗ [ ∇xNa ]t ] . (2.9.48)

According to the purely mechanical problem we obtain the global set of linearized equations by
assembling over all elements analogous to eqn. 2.8.49, whereby still the linearization of the me-
chanical balance equation needs to be performed with respect to the temperature field. For an
exhaustive treatment we have to mention here, that in general we have to take the heat convection
into account. Therefore one can make an approach for the boundary terms qn, which are assumed
to be prescribed in the previous considerations. In this case the heat convection, that we want
to denote by Usurf(Θ), which acts at the boundaries has also to be linearized with respect to the
temperature field and the displacement field as well, such that we obtain additional terms in the
thermomechanical tangent matrix. Here we just want to scetch the linearization of the boundary
contribution with respect to the displacement field. For this we obtain

Dx [ da ] · ∆u = [ div∆u − n · [ grad∆u ]t · n ] da, (2.9.49)

that emanates from the subsequent argumentation. The deformations are related to the surface
over which we need to integrate. Therefore we rewrite da = n · [ nda ] and by differentiating we
get

Dx [ da ] · ∆u = n ·Dx [ nda ] · ∆u = n ·Dx [ J [ f � ]t · NdA ] · ∆u, (2.9.50)

whereby in the last step the Nanson formula was applied. Of course we also have to linearize the
spatial normal vector, but since ∆n · n = 0 we obtain no further contributions. Here J and [ f � ]t

are the quantities depending on the deformation and for the corresponding linearization we can
resort to eqn. 2.9.41 and the derivation of the linearized [ f � ]t can be performed by resorting on
eqn. 2.8.18 and the relation Dx [ [ F � ]t · [ f � ]t ] = 0, such that we obtain

Dx [ [ f � ]t ] · ∆u = − [ grad∆u ]t · [ f � ]t . (2.9.51)

These results inserted again into eqn. 2.9.50 finally leads to eqn. 2.9.49. Since we asssume the
boundary values qn as given this linearization is not relevant here. But for a complete linearization,
these terms should have taken into account. Accordingly, also the element stiffness matrix needs to
be complemented by these surface contributions.
The linearization of the mechanical field equation with respect to the temperature still needs to be
performed and this would be the last step to accomplish the thermo-mechanical problem. There
is only the internal virtual work in eqn. 2.9.62, that makes one suppose, that it is temperature
dependent. Therefore we have to calculate

DΘ [ Gint ] ∆Θ =

∫

Bt

gradδu : DΘ [ τ � ] ∆ΘdV, (2.9.52)
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whereby here the internal virtual work is expressed in terms of the Kirchhoff stress tensor. Since the
Kirchhoff stress can be divided into a volumetric and a deviatoric part it is easy to see the explicit
dependence of the volumetric stress on the temperature, what follows from the thermo-mechanical
potential chosen eqn. 2.9.9. Here the thermomechanical stress can be derived from

τ �
eth =

∂W

∂J
=
∂Wvol

∂J
+
∂Weth

∂J
= τ �

vol − 3κα∆ϑg� (2.9.53)

and the linearization of this term with respect to the temperature finally yields

DΘ [ τ �
Θ ]∆Θ = −3καg�. (2.9.54)

According to this there is an implicit dependence of the deviatoric stress field on the temperature,
namely, since the plastic flow depends on the temperature. The update of the deviatoric stress is
given by

τ̃ � = τ̃ �,tr − 2µ∆γν (2.9.55)

such that the linearization is restricted to the term including the plastic flow. For the directional
derivative of the deviatoric stress contribution we obtain

DΘ [ τ̃ � ] = −2µDΘ∆γν. (2.9.56)

and this term was already determined in eqn. 2.9.37. This completes the linearization prozess and
the corresponding element stiffness matrix is given by

KuΘ
e =

n
∑

a=1

n
∑

b=1

δua ·
∫

Be

∇xNa · [ − 3καI − 2µ∂Θ∆γν ]Mb∆ΘbdΩ (2.9.57)

such that we are able to construct the complete element stiffnes matrix for the thermo-mechanical
problem and to apply the standard Newton-Raphson iteration scheme. The total thermomechanical
stiffness element stiffness matrix is composed by the contributions in the eqns. 2.9.48, 2.9.57,2.9.39
and 2.8.62

[

Kuu
e

KΘu
e

KuΘ
e

KΘΘ
e

] [

ue

Θ

]

= −
[

Ru
e

RΘ
e

]

(2.9.58)

whereby in this context the purely mechanical part of the stiffness matrix Kuu
e coincides with the

element stiffness matrix derived in eqn. 2.8.62. By assemplying these equations we obtain the global
set of coupled algebraic equations, that is solved by the Newton-Raphson iteration or an quasi-
Newton algorithm. This described method is usually denoted by monolithic algorithm, since the
thermal and the mechanical subproblem are solved simultanously. This algorithm enforces a mixed
discretization with the consequence, that the tangent stiffness matrix in general is not symmetric
anymore and in addition to that, in general it is bad conditioned, since both subproblems are of
different order. This requires solvers which are able to treat nonsymmetric problems and to improve
the condition number specific algorithms like pivoting are necessesary. To avoid these effects another
approach is possible, that is denoted by staggered algorithm, where one subproblem is solved at first
and serves as initial condition for the second subproblem. The benefit of this algorithm is, that each
subproblem can be solved by stable algorithms oriented on the particular requirements, since they
are independent from each other. From this emanates another advantage, which is the symmetry
of both subproblems, which can be maintained, whereas in the monolithic algorithm the symmetry
of the stiffness matrix gets lost.
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2.9.5 Adiabatic Processes

Adiabatic temperature evolution A special case of thermomechanical processes are so-called
adiabatic ones. In general a process is called adiabatic, if no heat exchange with the surrounding
environment takes place due to isolation for instance. In the case, that we like to consider here, it
is assumed, that no external heat is induced, but the deformation velocity is so high, such that the
heat flux out of the system during the deformation process is negligible. This assumption leads to
a simpler temperature evolution equation and the main advantage of this formulation is, that the
temperature does not appear as an additional primary variable like the displacements, but it can
be introduced as an additional internal variable. This means, that the linear momentum balance
equation remains the only global balance equation, which needs to be fullfilled, in contrast to the
thermo-mechanically coupled problem, where the temperature is introduced as a global primary
variable and its evolution is another global balance equation, that needs to be taken into account.
Finally, the made assumptions yields

Θ̇ =
1

ρ0cp

[

γ̇

√

2

3
Y0(Θ) + Θ∂Θτ � : d�

]

(2.9.59)

for the temperature evolution equation. If this is embedded into the von-Mises plasticity we obtain
three residuals, where the first one coincides with the yield condition. Here it is taken into account,
that the linear and non-linear hardening moduli depend on temperature, as they were introduced in
eqn. 2.6.76. Therefore we obtain the representation of the residuals for the local iteration

r1 = ‖τ̃ �‖ − 2µ∆γ −
√

2

3
Yn(Θ, ξ)

r2 = ξn − ξ +

√

2

3
∆γ

r3 = Θn − Θ +
1

ρ0cp

[

∆γ

√

2

3
Y0 + Θ0∂Θτ � : d�

]

. (2.9.60)

Here we also introduced a reference temperature Θ0 to simplify the equation

Algorithmic tangent operator Analogous to damage models, where the damage variable was
introduced as an additional internal variable, here we have to consider the temperature-dependence
in the representation of the algorithmic tangent operator of the adiabatic material model. As the
dilatation due to temperature increase shows, we have to consider the volumetric part of the free
energy as temperature-dependent. Therefore we adopt the formulation of thermoelastic contribution
of the free helmholtz energy as

Welth = κ ln J [
ln J

2
− 3α∆ϑ], with ∆ϑ = Θ − Θ0, (2.9.61)

whereby we combined it here with the volumetric part of the isothermal formulation. As a con-
sequence the volumetric part of the spatial adiabatic elasto-plastic algorithmic tangent operator
becomes

�
adep
vol =

3
∑

β=1

3
∑

γ=1

ϕvol
βγ mβ ⊗ mγ. (2.9.62)
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In eqn. 2.9.61 α denotes the heat expansion coefficient and of course only the volume dilatation with
respect to the initial temperature has to be considered, such that only the temperature difference is
inserted into this approach.
In addition we have to consider the temperature dependence of the resulting yield stress, if the deriva-
tive of the plastic multiplier with respect to the principal stretches are calculated. This derivative
yields

∂∆γ

∂λβ
=

2µνα

2µ+

√

2

3

[

∂Yn

∂ξ

∂ξ

∂∆γ
+
∂Yn

∂Θ

∂Θ

∂∆γ

]
(2.9.63)

whereas the rest of the isothermal elasto-plastic tangent operator in eqn. 2.6.72 remains unchanged
and can be adopted to the adiabatic material model. Therefore we find the well-known structure
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3
∑

β=1

ϕiso
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3
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3
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∂∆γ
+
∂Yn

∂Θ

∂Θ

∂∆γ

]

]−1

νανβ

(2.9.64)
for the isochoric part of the algorithmic spatial tangent operator for an adiabatic hyperelasto-plastic
material formulation. The total tangent operator is given by the sum of the volumetric and the
isochoric contribution and this completes the adiabatic modification of the J2 plasticity.

2.10 Applications

In the last section of this chapter we like to present the effects of the different material models,
that were derived in the previous sections, by means of some numerical examples. Here we tried to
choose some examples which we recover in later chapters of this work in a modified way, whereby
then interface elements are taken into account. Especially, the thermo-mechanical coupling and the
different characters of the inelastic formulations of the Lemaitre and the Gurson type are in the
center of interest and last but not least the influence of the rate-dependence should be investigated.
Some of the examples in this work were developed within a project about the tearing and cutting
of ductile materials, where a validation of the models by experimental results was performed. In
this context the deepdrawing problem of polypropylen was calculated, whereby some results are also
presented in this section. Finally, we like to investigate the tension test of a plate with a hole and the
tension of a notched shell, whereby also here the two damage formulations were applied taking elasto-
viscoplastic effects into account. As mentioned before we like to start with a thermo-mechanically
coupled problem, whereby only mechanical loads are imposed.

2.10.1 Thermo-Elasto-Plasticity

Description The first example is illustrated in fig. 2.8b) and it shows a 2-dimensional quadratic
block of 10×10 units of length, discretized by 200 6-node triangular finite elements. The left and
lower boundaries are fixed in vertical as well as in horizontal direction. The loading is imposed by
means of 300 displacement steps a 0.001 units in vertical direction, such that in total the deformation
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Parameter Dimension Value
E kN/mm2 206.9
ν [−] 0.29

Yield stress Y∞ kN/mm2 0.450
lin. Hardening modulus h kN/mm2 -0.0129

nonlin. Hardening modulus κ [−] 16.93
Conductivity k [W/◦K] 0.045

Heat expansion coefficient α [◦K−1] 0.000012
Θ0 [◦K] 293.15
ωy [1/◦K] 0.002
ωh [1/◦K] 0.002
cp [W/◦K] 0.003855

a) b)

Figure 2.8. a) Thermo-mechanically coupled von-Mises model: Table with the applied material
parameters b) initial problem

takes 0.3 units of lengths. The applied material parameters are depicted in fig. 2.8c whereby the
chosen values corresponds to the typical parameter values of steal.
The results are depicted in fig. 2.9 that shows the initial configuration, the deformed block after
125 load steps and the final configuration after 250 load steps, whereby the colors highlight the
temperature distributions in the block. One can observe, that a band evolves, where the temperature
increases and it coincides with the zone of plastic deformation. In plasticity theory this band is called
localization band and it indicates the zone where the material possibly localizes, i.e. an accumulation
of plastic strains take place 12. Since the load is quasistatically superposed the temperature increase
is not very pronounced, but sufficient for the qualitative demonstration of the thermo-mechanical
coupling.

Interpretation The imposed loading leads to the typical development of a localization zone, that
means a pronounced accumulation of plastic strains, such that the upper part nearly tends to move
like a rigid body, if the intermediate and the final state is considered. Nevertheless, due to the
continuous discretization of the primary field of unknowns the failure mode is not fully developed.
Since the temperature is related to the plastic strains due to the yield function or the resulting
yield stress, respectively, finally the plastic strains induce an increase of temperature. Of course
this evolves in the localization zone where the localization takes place. Since we applied a fully
thermo-mechanically coupled material model, the heat flux has to be taken into account, such that
the temperature also increases in regions beyond the plastic zone, whereas in the case of an adiabatic
formulation, the temperature increase would be restricted to the plastic zone. In fact this effect is
not very pronounced here since the thermal conductivity was chosen quite low. If the conductivity
was increased and additionally a rate-dependent formulation was chosen, this effect would have been
more obviously.

12A detailed consideration on localization is given in chapter 4
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a)

b)

c)

Figure 2.9. Thermo-mechanically coupled von-Mises model: Temperature evolution due to the
deformation a)initial state b) after 150 load steps c) after 300 load steps.
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2.10.2 The Lemaitre Model and the Gurson Model

Description In the next step we want to apply the rigid footing test to a purely isothermal prob-
lem, but taking damage and other inelastic effects into account. Therefore the thermo-mechanical
material law is replaced by the Lemaitre-type or the Gruson-type Model, respectively. The boundary
conditions and the loading are chosen exactly the same as before. Only the material parameters
are chosen with respect to the Lemaitre-type r the Gurson-type model and the coresponding values
are summarized in figure 2.10. The crucial parameters for the Lemaitre-type Model defining the
eneregy release rate are given by S0 = 50 and the corresponding exponent was chosen as s0 = 1.
Accordingly, we recover the parameters of the Gurson-like Model also in fig. 2.10, whereby here the
crucial quantity is the initial void volume fraction d0 = 4 · 10−4 and the slope k = 1.5 determing
the developement of the void volume fraction. The rest of the parameters are chosen in the ranges,
recommended by Mahnken [Mah99].
The results are depicted in fig. 2.12 or 2.13, respectively, representing the initial state, the state
after 150 load steps and the final state after 300 load steps. The coloring highlights the distribution
of the damage variable or the void volume fraction, respectively, during the deformation.

Parameter Value Lemaitre Gurson

E 1600 x x
ν 0.3 x x
Y0 8 x x

Yinfty 20 x x
h 12 x x
κ 9.6 x x
S0 50 x -
s0 1 x -
d0 4 · 10−4 - x
dc 5 · 10−4 - x
∆d 8 · 10−5 - x
vc 1.5 - x
q1 1.2 - x
q2 1.2 - x
q3 0.5 - x
k 1.5 - xa) b)

Figure 2.10. a) Parameters for the Lemaitre-type and the Gurson-type model b) initial geometry
of a plate with a hole

Interpretation The evolution equation of the Lemaitre-type damage model depends on the energy
release rate which is a function of the stress or the strain field, respectively. Therefore it seems
plausible, that the damage evolve in zones of increasing stresses as they occur in the upper area
where the force is imposed and high stresses due to tension are induced.
A more interesting result delivers the same calculation taking the Gurson model into account.
Since the model assumes, that there are voids in the material in the initial state, we obtain a
orange colouring of the block. These voids increase due to tension, but desintegrate if pressure is
imposed. In the particular example only pressure is imposed, such that the initial voids decrease
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and finally desintegrate. Accordingly the color changes from orange to green and finally to blue,
that corresponds to much smaller void volume fraction than the initial one. There is only one little
zone, where tensile stress occur and it is plausible, that this zone coincides with the red colored
zone indicating an increasing void volume. Here the main difference of the Lemaitre-type damage
formulation and the Gurson-type formulation can be easily realized, since the Lemaitre-type model
starts from the undamaged material, which is indicated by the red colour and the damaged zone
can not regress, whereas in the assumption of voids this is conceivable. On the other hand within
the Gurson-type model the voids can totally vanish, such that a kind of ’healing’ takes place, that
physically does not make any sense, at least not in this context. Therefore the Gurson-type model
is not appropriate for the modelling of squeezing problems. Nevertheless it seems useful if ductile
or porous materials like polypropylen or alluminium alloys are considered.

Description Another application that seems more appropriate for the application of the Gurson-
type model is the tensile test of a plate with a centered whole as depicted in fig. 2.10b. The plate
was discretized by 376 quadriliteral 4-node elements, where the length of the plate consists of 18
units and it has a width of 10 units. The diameter of the inner whole is 3.75 units. The loading was
applied by 200 steps of 0.01 units until a maximum displacment of 2.0 units was reached. In this
numerical example the three different material laws were applied: 1) the Gurson-type model 2) the
Lemaitre-type model and 3) rate-dependent modification of the Lemaitre-type model. We used the
same parameter values as they were already used in the previous example and as they are summarized
in fig. 2.10a. For the last calculation we additionally assumed a viscosity η = 500N/mm2s and a
∆t = 0.01s to perform the ratedependent calculation. The corresponding results are summarized
in fig.2.14 in the previously mentioned order.

Interpretation Here we can see, that the void volume fraction and the damage variable in the
first two calculation evolve similarly, however, the corresponding variables are not of the same order.
What one can find in both calculations is, that the development of the considered internal variable
shws the shape of an ’x’, that is characteristic for this kind of problem. The evolution of the internal
variables begins at the middle of the plate due to the hole, that weakens the shell essentially and
that induces locally higher stresses that initiate the weakening of the material and finally leads to
the failure of the material in these specific zones. This coincides with experimental observations. In
this kind of problem we find the Gurson-type model behaving similar to the Lemaitre-type model,
since this time only tensile stresses are superposed.
The extremely high values for the damage variable in the last calculation, where viscous effects
were taken into account, bases on the fact that due to the high deformation velocity the material
gets stiffer, such that higher stresses are induced. Therefore in the zones of increased stresses, the
material accordingly suffers an increased damage evolution and also here we find the maximum in
the zones where the material is weakened the most, i.e. at the boundary of the hole.

2.10.3 Deepdrawing Process

Description The last example, that should be discussed here is an application requiring all the
effects provided by the material models we derived before: cutting and deepdrawing processes. This
kind of problems are quite complex, since a lot of mechanical effects occur in a combined manner.
In fig. 2.11b the corresponding geometry and the boundary conditions are depicted and the results
of such an deepdrawing process can be find in fig. 2.16 - 2.18. The calculation was performed
with the quasistatic adiabatic Lemaitre-type model using the same material parameters as they are
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Parameter Dimension Value
E kN/mm2 206.9
ν − 0.29

Yield stress Y∞ kN/mm2 0.450
lin. Hardening modulus h kN/mm2 0.0129

nonlin. Haredening modulus κ − 16.93
Heat expansion coefficient α ◦K−1 0.000012

Θ0
◦K 293.15

ωy
◦K−1 0.002

ωh
◦K−1 0.002

cp W/◦K 0.04
S0 W 200
s0 − 1

a) b)

Figure 2.11. a) List of applied parameters for the adiabatic Lemaitre-type modell b) Initial
geometry of deepdrawing prozess

collected in fig. 2.11a. The specimen was discretized by 875 linear quadrilateral 4-node elements.
The specimen posesses a height of 5 units and a entire length of 15 units whereby the finite element
mesh was adequately refined in the cutting zone between the stator and the blade. The loading was
applied at the upper boundary as it is illustrated in fig. 2.11 by means of 300 steps of 0.01 units in
vertical direction. Since the problem is axially symmetric the calculation only had to be performed
for one half. Therefore the right boundary was fixed in horizontal direction. Furthermore the left
boundary of the specimen was fixed in vertical and horizontal direction as well as the part of the
lower boundary which is connected to the stator. The rest of the lower boundary is free.

Interpretation In analogy to the previous examples of the footing test we find the typical shear
band in the cutting zone where strain localization would be expected and accordingly the hardening
variable evolves along the cutting zone, as it is illustrated in fig. 2.16. The damage variable within
the Lemaitre formulation depends on the stresses, therefore the damage variable evolves as well as
the temperature in the localization zone (s. fig.2.17 and 2.18). Since the loading was performed
quasistatically here the temperature increase is not as significant as in the case of higher loading
velocities. Nevertheless, in the cutting zone plastic strains accumulate and localization takes place
and the internal variables, like hardening variable, damage and temperature evolves in this particular
region of course.

The material models are able to cover these kind of problems quite well. Of course, it depends on the
set of parameters, whether the simulation can be performed or not. Especially, taking the adiabatic
effects and the thermo-mechanical coupling into account, often induces numerical difficulties, since
the slope of the force-displacement curve can become negativ. This induces negative eigenvalues in
the stiffness matrix, such that the Newton-Raphson method fails. In this case it is recommended to
apply the arclength method to handle these kinds of problems.
At last a comparison of a real deepdrawing process of polypropylen and a calculation is presented in
fig. 2.10.3, whereby it should not be discussed in detail here. Here a simple geometrically nonlinear
von-Mises frmulation was chosen, whereby the softening was induced due to a negative hardening
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a)
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Figure 2.12. Lemaitre-type model: Evolution of the damage variable d in the a) initial state b)
after 150 load steps c) after 300 load steps.
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Figure 2.13. Gurson- type model: Evolution of the void volume fraction d in the a) initial state
b) after 150 load steps c) after 300 load steps.
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a)

b)

c)

Figure 2.14. Evolution of the damage variable of a) the Gurson-type model b) the Lemaitre-type
model and c) the rate-dependent Lemaitre-type model
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Parameter Parameter Value

E 1000 N/mm2

ν 0.3
Y0 52 N/mm2

Y∞ 55 N/mm2

κ 1.6
h −1. N/mm2

von-Mises Model
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Cutting Geometry

angle of blade specimen thickness gap width velocity material specimen end
90◦ 5 mm 0.2 mm 50 mm/s Polypropylen horizontally fixed

Figure 2.15. Comparison of experiment and simulation: The diagramm shows the force- dis-
placement- curve of a cutting process of PP

modulus as it can be seen in table 2.10.3a. Furthermore the probe was fixed as in the last example
and the loading was imposed quasistically. Due to the softening efects it was necessary to apply the
arclength method for the solution. The parameters were chosen by the hand-fitting method and the
match between simulation and real process is quite good. But the parametrization would have to
be chosen completly different if a higher loading velocity was chosen. Therefore it would have been
necessary to perform a parameter optimzation that was not topic of the particular project.
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a)

b)

c)

Figure 2.16. Axial symmetric adiabatic Lemaitre-type model: Evolution of the hardening
variable during a deepdrawing process: a) at initial state b) after 150 load steps c) after 300
load steps.
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a)

b)

c)

Figure 2.17. Axial symmetric adiabatic Lemaitre-type modell: Evolution of the damage variable
during a deepdrawing process: a) at initial state b) after 150 load steps c) after 300 load steps.
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a)

b)
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Figure 2.18. Axial symmetric adiabatic Lemaitre-type modell: Evolution of the temperature
during a deepdrawing process: a) at initial state b) after 150 load steps c) after 300 load steps.



3 Interface Formulations

3.1 Overview

In the sequel we like to take discontinuities into account, which are embedded in the ambient
continuum. These discontinuities can emerge from a different material behaviour, whereby their
volumetric size can be neglected with respect to the ambient material. In this spirit they are pre-
destinated for the modelling of composites and in general for all problems, where different orders of
magnitudes are considered but the influence on the total behaviour of a certain structure can not be
neglected. Another application of discontinuities is the modelling of material separation processes
as they occur within shear deformations for instance. Here the stresses within an inelastic material
locally increase so, that the yield stress locally is exceeded and so-called shear bands evolve, which are
characteristic limited zones. This occurence is called localization and in general it induces damage
effects, which finally leads to macroscopic failure of the material. The numerical description of the
failure and the implied discrete separation of the material can not be covered by standard finite
element formulations and their numerical treatment requires particular interface elements, which
are able to record such effects. As mentioned before discontinuities are fields or properties which
obeys a jump of the particular quantity and interfaces relate these jumps to dependent quantities.
The subsequent chapter bases on a publication of Steinmann & Häsner [SH05] and here we like to
develop the main tools for the treatment of discontinuities and interfaces, which are specified with
respect to different applications in the subsequent chapters. At first we introduce some kinematical
quantities and some mathematical issues needed for the modelling of discontinuities and interfaces.
Then we like to represent the momentum balance equations and the balance of mechanical energy,
which have to be modified in consideration of the discontinuities and interfaces. Likewise we have
to adopt the laws of thermodynamics to the formulations taking discontinuities and interfaces into
account. The derived representations are transformed to weak formulations, whereby, as we will
see, the introduction of an interface temperature yields two possible definitions, which induce two
different possible weak formulations of the thermal subproblem. The modified balance equations
represented in this chapter are very general and shall be apprehended as an overview and framework
to discontinuous and interface problems. The given formulations will be adopted to the specific
problems discussed in the subsequent chapters concerned with localization and composite behaviour.

3.2 Introduction

In the previous chapter we investigated the mechanical behaviour of solids based on the formulations
and methods in continuum mechanics. In the classical context it is assumed that the corresponding

99
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Figure 3.1. Strong discontinuity

displacement field is continuous. In the sequel we also take discontinuities into account, that are
represented by a material surface I embedded in the body B. The body B is represented by certain
configuration B, whereby here and in the sequel we firstly do not distinguish between the reference
and the current configuration anymore: B0 = Bt = B. Therefore the notation material surface
has to be declared and adopted to the current context. Here the term material indicates that the
motion of the interface depends on the motion of the surrounding continuum by kinematic slavery.
Let the material surface be fixed within the body and its position in �3 is given by the placement
vector x(θα), where θα, α = 1, 2 denote convected coordinates. With this parametrization at hand
a possible representation of the material surface is given by

I = I(x, t) = 0. (3.2.1)

The tangent vectors on this surface are defined by the derivatives of the placement vector with
respect to the corresponding coordinate lines, such that we obtain the contravariant basis vectors
analogously to the first section in chapter 2. Here we like to denote them by tα = ∂θαx (instead of
the gi) and from the tangent vectors it is straightforward to derive the corresponding normal vector
m by

m =
t1 × t2

‖t1 × t2‖ . (3.2.2)

The material surface divides the body into two disjoint parts B+ and B− and accordingly, the
boundary consists of the two parts ∂B = ∂B− ∪ ∂B+. The interfacial normal vector m is assumed
to point from B− to B+. Furthermore, in the sequel we shall consider arbitrary subbodies V taking
the subconfigurations V ⊂ B with the corresponding boundary ∂V. If the subconfiguration contains
a part of the interface S ⊂ I, its intersection with the boundary ∂V is denoted by ∂S. Thereby
we adopt the notations and definitions of the previously defined normal vector n and m to ∂V and
S. Moreover, we introduce the outward normal vector n̂ to the interfacial boundary ∂S pointing in
tangential direction. The angles enclosed by the two normal vectors n and n̂ are arbitrary and in
general, both point in different directions. Before we can go on we have to introduce two relevant
notations, since we have to distinguish between jump quantities [[[•]]] across the interface S and
interfacial average quantities {[•]}. For the corresponding definitions we approach the interface
from V+ or V− and obtain

[•]+ (x, t) = lim
ε→0

[•] (x − εm)

[•]− (x, t) = lim
ε→0

[•] (x + εm)

}

∀ x ∈ S. (3.2.3)
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With this at hand we are able to define the jump and the average of [•] by

[[[•]]] := [•]+ − [•]− and {[•]} :=
1

2

[

[•]+ + [•]−] . (3.2.4)

An important relation, that is needed for the subsequent derivations, between the jump and the
average of the quantities [•] and [◦] with respect to an an appropriate multiplicative operation � is
given by

[[[•] � [◦]]] = [[[•]]] � {[◦]} + {[•]} � [[[◦]]]. (3.2.5)

Furthermore, in the sequel it will be necessary to consider the limits of integrals extending over V±

or ∂V±, respectively, containing parts of the interface S ⊂ I. Then for an integral extending over
either V or ∂V, i.e. for a volume and a surface integral we obatin

lim
V→0

∫

V

[•] dv = 0 lim
V→S

∫

V

[•] dv =

∫

S

[[[•]]] · mda (3.2.6)

From this relations we learn, that the interfacial kinematics depend on the ambient continuum
motion. Another important tool is the relation between volume and surface integrals by applying
the Gauss theorem, that transforms a flux [•] through the boundary ∂V to its divergence div [•] in
V. Taking a possible jump of the flux [•] into account the Gauss theorem is represented by

∫

∂V

[•] · nda =

∫

V

div [•] dv +

∫

S

[[[•]]] · mda. (3.2.7)

In analogy to this we can apply the Gauss theorem to the interface, such that a flux ̂[•] through the

interfacial boundary ∂S is related to the interface divergence ̂div̂[•] in the interface S by
∫

∂S

̂[•] · n̂dl =

∫

S

̂div̂[•]da. (3.2.8)

Here ̂[•] either denotes a tangential vector field or a superficial tensor field in the sense of Gurtin

[Gur00], such that ̂[•] · m = 0 and ̂∇ [•] and ̂div [•] are the surface gradient and the divergence
of [•], respectively. These two operators can be defined by taking the covariant basis vectors tα

into account, such that the interfacial gradient and divergence operators of a vector field [•], for
instance, is given by

̂∇ [•] = [•] ,α ⊗tα and ̂div [•] = [•] ,α ·tα. (3.2.9)

Then in particular if [•] is smooth in a three dimensional neighbourhood of S, the surface gradient

and divergence expands into ̂∇ [•] = ∇ [•] · P and ̂div [•] = ̂∇ [•] : P , where

P = [I − m ⊗ m] (3.2.10)

is called a projection tensor. In passing it is noted that if the geometrical properties of the interface
I are concerned, its curvature tensor L = −̂∇m and its total curvature (twice the mean curvature)

K = −̂divm are given by the negative surface gradient and surface divergence of the normal m to
I, respectively.
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3.3 Modified Balance Equations

3.3.1 Momentum Balance Equations

For the derivation of the momentum balance equation we consider the work done by the external
mechanical forces as there are volume forces b and ̂b acting on the bulk material V and on the
interface S, respectively. Additionally we have to consider tractions on ∂V and ∂S that are denoted
by t = σt ·n and ̂t = σ̂t · n̂. Here the assumption is taken into account, that the Cauchy theorem
holds for the standard bulk stress σt as well as for the non-standard interfacial stress σ̂t. Therefore
we obtain for the resulting external mechanical power

Pext =
dWext

dt
=

∫

V

b · v dv +

∫

S

̂b · v̂ da+

∫

∂V

t · v da+

∫

∂S

̂t · v̂ dl ∀ v, v̂, (3.3.1)

whereby v is the time derivative of the standard displacement field and v̂ denotes the according
interfacial velocity field that is not specified so far. Performing a change of observer by a superposed
rigid body motion as it is defined by

v∗ = v + c + ω × r and v̂∗ = v̂ + c + ω × r (3.3.2)

we get another expression for the external mechanical power Pext(v∗, v̂∗). Here c and ω are the
angular and translational velocity vectors of the superposed rigid body motion and r describes the
distance vector to a fixed point in �3. Due to the restriction of material objectivity both expressions
have to coincide with each other, such that

Pext(v, v̂) − Pext(v∗, ̂v∗) = 0. (3.3.3)

We note here, that the interfacial velocity vector v̂ is affected by the rigid body motion the same as
the bulk velocities v. From the difference in eqn. 3.3.3 we separate all terms that are multiplied by
the transversal velocity c from the contributions that are multiplied by the resulting vector ω × r
and obtain the global formulations of the linear momentum balance equation

∫

V

b dv +

∫

∂V

t da+

∫

S

̂b da+

∫

∂S

̂t dl = 0 (3.3.4)

and the balance of angular momentum

∫

V

r × b dv +

∫

∂V

r × t da+

∫

S

r × ̂b da+

∫

∂S

r ×̂t dl = 0. (3.3.5)

By shrinking the subconfiguration V, that does not contain the interface, to zero we obtain the local
form of the linear and angular momentum balance equations

divσt + b = 0 and σt = σ, (3.3.6)

whereby here the Cauchy theorem t = σ · n and the (standard) Gauss theorem were taken into
account. For the derivation of the local angular balance equation we used the identity div(r×σt) =
r × divσt − 2σaxl, whereby σaxl was already introduced as the axial vector in eqn. 2.3.22.
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To obtain the interfacial formulation of the balance equations we chose a corresponding subconfig-
uration V containing the interface S ⊂ V and by taking the limit V → S we analogously obtain the
local interface balance equations of linear and angular momentum

[[σt]] · m + ̂divσ̂t + ̂b = 0 and σ̂t = σ̂. (3.3.7)

For the derivation of the interfacial relations in eqn. 3.3.7 we analogously applied the interface
Cauchy theorem ̂t = σ̂t · n̂ together with the corresponding interface Gauss theorem, that was
already introduced in eqn. 3.2.8. Finally we applied the relation ̂div(r × σ̂t) = r × ̂divσ̂t − 2σ̂axl

that yields the symmetry of the interfacial stress σ̂t, whereby the axial vector is defined in analogy
to the bulk formulation. Therefore σ̂t can be identified as a purely tangential superficial tensor field,
that does not possess any normal contributions σ̂t ·m = σ̂ ·m = 0 and also the interface traction
vector ̂t = σ̂t · n̂ acting at ∂S is tangent to S as well.
To derive the internal mechanical power we firstly introduce an abbreviation for the displacement
jump [[u]] and its energetically conjugate traction {σt} · m, that subsequently are denoted by

ũ := [[u]] and ˜t := {σt} · m. (3.3.8)

Furthermore, here we want to determine the interface displacement û as the average of the bulk
displacements when approaching the interface from V+ and V−, i.e.

û := {u}. (3.3.9)

This assumption seems feasible, since the limit of continuous displacements across the interface S
is captured correctly. With these definitions at hand and the above local bulk and interface balances
of linear and angular momentum we can derive the internal mechanical power in terms of the bulk
stress power and the corresponding interface stress power, such that we obtain

Pint
∣

∣

V =

∫

V

∇v : σt dv +

∫

S

[

̂∇v̂ : σ̂t + ṽ ·˜t
]

da. (3.3.10)

Here we find that the interface part is divided into contributions along the interface in tangential
direction and across the interface in normal direction to S.
In order to describe dynamical processes the momentum balance equation has to be extended by the
corresponding inertial terms, whereby also here we have to distinguish between the standard bulk
formulation and a non-standard interfacial contribution, such that the sum of external forces causes
a change of linear momentum

d

dt

⎡

⎣

∫

V

ρv dv +

∫

S

ρ̂v̂ da

⎤

⎦ =

∫

V

b dv +

∫

∂V

t da+

∫

S

̂b da+

∫

∂S

̂t dl. (3.3.11)

This consideration yields the problem, that we have to distinguish between the interfacial and the
standard bulk velocity v and v̂, respectively, which were introduced previously only in a formal way.
Of course, we have to make a difference between the motion of the body on the one hand and the
motion of the surface, since it is conceivable, that the surface moves through the body. The example
of an freezing lake where the ice front, characterized by another mass density than water, can be
considered as moving surface, while the water ,,stands still”. Another example is the wave front
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moving through a body with a certain expansion velocity, that is different from the body motion.
In general the total interfacial velocity consists of

v̂ · m = [v + w] · m. (3.3.12)

Here w denotes the expansion velocity of the surface, describing the movement of the interface
through the ambient material. If the interfacial velocity coincides with the bulk velocity

[v − v̂] · m = 0 (3.3.13)

the surface is fixed with respect to the body. In this case the surface is called a material surface.
This notation bases on the idea that materials can not penetrate and move through each other.
A wave moving through a material is an example of a non-material surface. The case we like to
investigate, assumes that the interfacial velocity coincides with the motion of the body and therefore
we restrict ourselves to material surfaces.

3.3.2 Balance of Mechanical Energy

Following the concept described in section 2.3.4, the balance of mechanical energy coincides with
the power done by the external forces which is equal to the change of internal energy and the
kinetic energy in time. The external power was still derived in eqn. 3.3.1 and the internal energy
accordingly can be found in eqn. 3.3.10. In the sequel we only consider quasistatic deformations,
but for completeness we like to specify the kinetic energy by

K(t) =
1

2

∫

V

ρv · vdv +
1

2

∫

S

ρ̂v̂ · v̂da. (3.3.14)

As mentioned before we solely consider material surfaces and in addition to this, we assume qua-
sistatic deformations, such that the kinetic energy contribution can be neglected. Therefore the
resulting balance of mechanical energy can be written as

∫

V

b · v dv +

∫

S

̂b · v̂ da+

∫

∂V

t · v da + (3.3.15)

∫

∂S

̂t · v̂ dl =

∫

V

∇v : σt dv +

∫

S

[

̂∇v̂ : σ̂t + ṽ ·˜t
]

da,

whereby the power due to external forces is written on the left hand side and the internal contributions
can be found on the right hand side.
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3.4 Thermodynamical Modifications

3.4.1 The 1st Law in Consideration of Interfaces

The 1st law of thermodynamics for closed systems coincides with the balance of internal energy.
The rate of the internal energy, as mentioned before in section 2.4.1, is caused by the heat power
Q and the internal due to mechanical forces. Adopting the notation of section 2.4.1 the rate of
internal energy can be represented by

∫

V

ρ∂tudv +

∫

S

ρ̂∂tûda = Q + Pint, (3.4.1)

whereby the terms Q and Pint include the contribution due to the discontinuity, such that the heat
power consists of the regular part derived in eqn.2.4.6 and the interfacial part that can be written
analogously to the regular one, such that the total heating is given by

Q = −
∫

∂V

q(x, t,n)da+

∫

V

ρr(x, t)dv −
∫

∂S

q̂(x̂, t,m)dl +

∫

S

ρ̂r̂(x̂, t)da. (3.4.2)

Here r̂ denotes the non-standard heat source in the interface and ρ̂ is the corresponding interface
mass density. The interface heat flux can be decomposed in analogy to the bulk heat flux by
the Cauchy theorem, such that q̂ = q̂ · n̂. We emphasize here that we made three distinctive
assumptions of an extra contribution to internal energy in the interface û, an extra heat source ρ̂r̂
and the interface heat flux q̂, that solely acts in tangential direction I. The local form of the regular
part can be found in eqn. 2.9.3 and the corresponding local interface formulation can be obtained
by chosing V containing S and taking the limit V → S. This yields the local interface balance of
internal energy

ρ̂∂tû = ̂∇v̂ : σ̂t − ̂divq̂ + ρ̂r̂ + ∂tũ ·˜t − [[q]] · m. (3.4.3)

Here we take the Cauchy theorem and the corresponding Gauss theorem for the interface heat flux
into account, which was already introduced in eqn. 3.2.8. It resembles to eqn. 2.9.3, whereby we
have to recognize that the first three terms represent internal energy production and sources along
the interface, whereas the last two terms are related to the internal energy production and energy
sources across the interface.

3.4.2 The 2nd Law in Consideration of Interfaces

Similar to the rate of internal energy the entropy rate also has to be modified with respect to
interface contributions. In contrast to the balance of internal energy the entropy is not a conserving
quantity, such that in addition to the entropy flux and entropy source, a production term, which
is denoted by Y, has to be taken into account. Therefore the rate of total entropy renders eqn.
2.4.14, such that we have to specify the entropy production and entropy input Q in consideration of
the interface contribution. The entropy input consists of the standard entropy flux h and entropy
source g and the corresponding interface entropy input is determined by ̂h and ĝ, which describe
the entropy flux and source in the interface. The resulting entropy input can be written as

Q =

∫

V

ρgdv +

∫

∂V

hda+

∫

S

ρ̂ĝda+

∫

∂S

̂hdl. (3.4.4)
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Analogous to the internal energy, the entropy rate consists of an regular bulk contribution and the
additional interface contribution. The corresponding production term can also be decomposed into
a standard bulk contribution η and the interface contribution η̂. With this at hand we can write the
entropy production as the difference of the entropy rate and the entropy input

∫

V

ηdv +

∫

S

η̂da =

∫

V

ρ∂tsdv +

∫

S

ρ̂∂tŝda− Q ≥ 0. (3.4.5)

Clearly, the asumption of a separate interface entropy ŝ, interface entropy production η̂, interface
entropy source ĝ and interface entropy flux ̂h are the distinctive features, here. In the next step we
can localize the global statement of total entropy for an arbitrary subconfiguration V, that does not
contain S, and obtain the familiar bulk entropy balance equation

ρ∂ts = −divh + ρg + η with η ≥ 0, (3.4.6)

whereby we again applied the Cauchy theorem to the entropy flux h = h · n and the standrad
Gauss theorem transforms the integral over ∂V into a integral over V. Analogous we applied the
non-standard interface Cauchy theorem to the interface entropy flux ̂h = ̂h · n̂ and afterwards we
transform the integral over ∂S into an integral over S by applying the non-standard Gauss theorem.
Taking the limit V → S, whereby this time the subconfiguration V contains the interface S, and
localizing for an arbitrary S we get the local entropy balace equation for the interface

ρ̂∂tŝ = −̂div̂h + η̂ + ρ̂ĝ − [[h]] · m with η̂ ≥ 0. (3.4.7)

Again we like to point out, that in this representation the first three terms describe the entropy input
and entropy production along the interface, reflecting the format of the bulk balance of entropy,
whereas the last term describes the entropy flux across the interface.

3.4.3 Modified Clausius-Duhem Inequality

In order to proceed we have to specify the entropy flux and entropy production terms by constitutive
assumptions. It is quite common to relate the entropy fluxes and sources to the heat fluxes and
sources, as already mentioned in section 2.4.3. From this emanates the subsequent relations

h :=
1

Θ
q, g :=

1

Θ
r, ̂h :=

1

̂Θ
q̂, ĝ :=

1

̂Θ
r̂, (3.4.8)

defining the entropy flux and entropy source for the bulk and the interface, respectively. Here ̂Θ
denotes the non-standard interface temperature in S, which has to be specified exactly later on. The
given approach for the entropy flux is somehow arbitrary and generally questionable. However, it is
widely accepted. In addition to that, it is motivated by the corresponding p-V-T thermodynamics.
For the purposes of this work this ansatz is sufficient and derives reasonable results. Therefore we
shall accept the given assumption in the spirit of simplicity and clearness.
Furthermore we have to define the entropy production terms η and η̂ and in general it is related
to the dissipation D, whereby we introduce here an extra interface dissipation ̂D, such that the
production terms can be defined by

η :=
1

Θ
D ≥ 0 and η̂ :=

1

Θ
̂D ≥ 0. (3.4.9)
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With the above given constitutive assumptions at hand the local bulk and interface balance equations
can be rewritten as

Θρ∂ts = −divq + ∇ lnΘ · q + ρr + D
̂Θρ̂∂tŝ = −̂divq̂ + ̂∇ ln ̂Θ · q + ρ̂r̂ + ̂D − ̂Θ[[h]] · m

with
with

D ≥ 0,
̂D ≥ 0.

(3.4.10)

The derived balance equations of the bulk and interface entropy can be related to the internal energy
balance equations and the free Helmholtz energy by means of the Legendre transformation

u = Ψ + Θs and û = ̂Ψ + ̂Θŝ, (3.4.11)

whereby this also requires the distinction between the standard bulk free energy Ψ and an interface
free energy contribution ̂Ψ. The corresponding rate formulations are given by

∂tu = ∂tΨ + Θ∂ts+ s∂tΘ and ∂tû = ∂t
̂Ψ + ̂Θ∂tŝ+ ŝ∂t

̂Θ. (3.4.12)

Inserting these expressions in eqn. 3.4.10, 3.4.3 and 2.9.3 into the corresponding rate formulations
and solving for the dissipation powers, finally yields

D = [ ∇v ]sym : σt − ρ∂tΨ − sρ∂tΘ −∇ ln Θ · q ≥ 0,
̂D = [ ̂∇v̂ ]sym : σ̂t − ρ̂∂t

̂Ψ − ŝρ̂∂t
̂Θ − ̂∇ ln ̂Θ · q̂ + ∂tũ ·˜t − [[q]] · m + ̂Θ[[h]] · m ≥ 0.

(3.4.13)

Analogous to the entropy rate and the internal energy balance, in the interface dissipation power we
can identify the first four terms, which are related to the dissipation along the interface resembling
the format of the bulk dissipation inequality, whereas the last three terms stem from the dissipation
associated with jumps of displacement, heat and entropy flux across the interface. In section 2.4.3
we splitted the dissipation into a local and a convective part and this decomposition is also applied
to the interface dissipation power. Therefore, analogous to eqn. 2.4.25 and 2.4.26 we have to
distinguish the local interface dissipation

̂Dloc = [ ̂∇v̂ ]sym : σ̂t − ρ̂∂t
̂Ψ − ρ̂ŝ∂t

̂Θ + ∂tũ ·˜t ≥ 0. (3.4.14)

from the non-local or convective interface dissipation contribution

̂Dcon = ̂Θ[[h]] · m − [[q]] · m
︸ ︷︷ ︸

bD⊥
con

−̂∇ ln ̂Θq̂
︸ ︷︷ ︸

bD
‖
con

≥ 0, (3.4.15)

whereby we want to distinguish additionally the dissipation contribution in tangential direction D
‖
con

and normal direction D⊥
con. In these expressions the definition of the interface temperature ̂Θ, that

was not specified so far, plays a crucial role and that shall be investigated in the following section.

3.4.4 Remarks on the Interface Temperature

For the description of the thermal subproblem further constitutive assumptions with respect to the
heat flux are necessary. Therefore we resort to the Fourier heat conduction law and adopt it to the
interface heat flux, such that we obtain

q ∝ −∇Θ and q̂ ∝ −̂∇̂Θ, (3.4.16)
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whereby the heat flux is assumed depending linearly of the temperature gradient and the interface
temperature gradient, respectively. Inserting this assumptions into the reduced bulk dissipation
inequality shows

Dcon ∝ ∇ lnΘ · ∇Θ ≥ 0, (3.4.17)

that a possitive bulk convective dissipation power is ensured. This conclusion can extended to the
complete interface formulation, but solely for the tangent part ̂D

‖
loc, since we get

̂Dcon �= ̂D‖
con ∝ ̂∇ ln Θ · ̂∇̂Θ ≥ 0. (3.4.18)

The second part of the convective interface dissipation describing the perpendicular contributions
leads to the sufficient requirement

̂D⊥
con = −[[q]] · m + ̂Θ[[

q

Θ
]] · m ≥ 0, (3.4.19)

whereby we replaced the entropy flux by the constitutive assumption made in eqn. 3.4.8. This con-
dition is fullfilled if an appropriate interface temperature ̂Θ is chosen and subsequently we investigate
two reasonable alternatives with respect to the thermodynamical consistency of eqn. 3.4.19

Hypothesis I The simplest attempt to find an interface temperature is to define it by the average
temperature when approaching the interface from V− and V+

̂Θ := {Θ}. (3.4.20)

Inserting this approach into eqn. 3.4.19 we obtain an expression, in which the term {Θ}[[ q
Θ

]] occurs

and applying the relation in eqn. 3.2.5, we can replace it by

{Θ} [[q]]

Θ
= [[Θ

q

Θ
]] − [[Θ]]{ q

Θ
}, (3.4.21)

such that the convected dissipation power across the interface reduces to

̂D⊥
con = −[[Θ]]{ q

Θ
} · m ≥ 0. (3.4.22)

This equation is fullfilled, if the average entropy flux across the interface is proportional to the
negative temperature jump

˜h := {h} · m ∝ −[[Θ]]. (3.4.23)

Hypothesis II The second obvious choice for the interface temperature is the inverse of the
average coldness

̂Θ := {Θ−1}−1. (3.4.24)

Inserting this choice into the reduced interface dissipation inequality and applying the relation

[[
q

Θ
]] = [[Θ−1]]{q} + {Θ−1}[[q]] (3.4.25)
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we obtain for the convective dissipation power due to jumps of heat and entropy flux across the
interface

̂D⊥
con = −[[Θ]]

{q}
{Θ} · m ≥ 0. (3.4.26)

A natural choice to satisfy this equation is a Fourier type behaviour for the average heat flux across
the interface

q̃ := {q} · m ∝ −[[Θ]]. (3.4.27)

Summarizing adopting one of the hypotheses I or II for the interface temperature together with the
assumption of Fourier type behaviour in the bulk, along and across the interface identically satisfies
the reduced dissipation inequalities for the bulk and in the interface.

3.5 Weak Form of the Coupled Problem

Likewise the continuous case the described problem has to be solved numerically by the finite
element method. For this we have to derive the weak form, which has to be extended by the
interface contributions and in analogy to the continuous case we like to distinguish between the
mechanical subproblem and the thermal one. Here we want to consider the different formulations
emerging from the two approaches for the interface temperature ̂Θ.

3.5.1 Mechanical Subproblem

For representation of the virtual mechanical work we need to introduce some abbreviations for the
virtual bulk and interface displacements as there are δu, δû := {δu} and δũ = [[δu]]. The strong
formulations of the balance of linear momentum for the bulk and the interface

divσt + b = 0 and ̂divσ̂t + ̂b + [[σt]] · m = 0 (3.5.1)

are tested by the virtual displacements and the resulting representation of the mechanical virtual
work is given by

0 =

∫

B

[∇δu : σt − δu · b] dv −
∫

∂B

δu · t da

+

∫

I

[

̂∇δû : σ̂t − δû̂b + δũ · {σt} · m
]

da−
∫

∂I

δû ·̂t dl. (3.5.2)

This equation is the point of departure for the application of numerical iteration schemes to the
mechanical subproblem.

3.5.2 The Thermal Subproblem based on Hypothesis I

If adopting hypothesis I for the interface temperature it turns out that the following version of the
entropy evolution leads eventually to the most convenient definition of the thermal virtual work
expressions

ρ∂ts = −divh + η + ρg and ρ̂∂tŝ = −̂div̂h + η̂ + ρ̂ĝ − [[h]] · m. (3.5.3)
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Testing these equations with virtual entropies δs and δŝ := {δs} renders after some straight forward
manipulations the thermal virtual work statement, whereby we used the abbreviation δs̃ := [[δs]] for
the jump of the virtual entropy

∫

B

δsρ∂ts dv +

∫

I

δŝ∂tŝ da =

∫

B

[∇δs · h + δsη + δsρg] dv

−
∫

∂B

δsh da

+

∫

I

[

̂∇δŝ · ̂h + δŝη̂ + δŝρ̂ĝ + δs̃˜h
]

da

−
∫

∂I

δŝ̂h dl. (3.5.4)

This version of the thermal virtual work statment is on the one hand most suited for hypothesis
I, i.e. the probably naive assumption ̂Θ := {Θ}, since it allows to incorporate directly the Fourier

type behaviour for the average entropy flux across the interface ˜h ∝ [[Θ]]. On the other hand the
necessity to specify constitutive laws for the entropy flux in the bulk and along the interface together
with the difficulty to prescribe entropy fluxes across the Neumann boundaries and to evaluate the
entropy production terms makes this formulation less attractive.

3.5.3 The Thermal Subproblem based on Hypothesis II

In analogy it turns out that adopting hypothesis II for the interface temperature an alternative
version of the entropy evolution equations leads eventually to a more convenient definition of the
thermal virtual work expression

ρΘ∂ts = −divq + r and ρ̂̂Θ∂tŝ = −̂divq̂ + ρ̂r̂ − [[q]] · m. (3.5.5)

Testing these equations with virtual entropies δs and using the same abbreviations as before it
renders after some straight forward manipulations the thermal virtual work statement

∫

B

δsρΘ∂ts dv +

∫

I

δŝρ̂̂Θ∂tŝ da =

∫

B

[∇δs · q + δsρr] dv

−
∫

∂B

δsq da

+

∫

I

[

̂∇δŝ · q̂ + δŝρ̂r̂ + δs̃q̃
]

da

−
∫

∂I

δŝq̂ dl (3.5.6)

This version of the thermal virtual work statement is most suited for the hypothesis II, i.e. the
somewhat unexpected assumption ̂Θ := [ Θ−1 ]−1, since it allows to incorporate directly the Fourier
type behaviour for the average heat flux across the interface q̃ ∝ [[Θ]].
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3.5.4 The Thermal Subproblem in Terms of Temperature

The formulation of the thermal subproblem was performed in terms of the entropy rate, which
is not very useful for realistic calculations, which usually require a formulation of the measurable
and controllable quantities temperature and heat flux. The corresponding temperature evolution
equation can be derived from the entropy rate equation of hypothesis II. Point of departure for this
is the entropy rate equations in eqn. 3.4.10, where we insert the bulk and interface dissipation
inequalities from eqn. 3.4.13, such that we obtain

ρΘ∂ts = ρr− divq+ [ ∇v ]sym : σt− ρ∂tΨ− ρs∂tΘ

ρ̂̂Θ∂tŝ = ρ̂r− ̂divq̂+ [ ̂∇v̂ ]sym : σ̂t− ρ̂∂t
̂Ψ− ρ̂ŝ∂t

̂Θ +∂tũ ·˜t− [[q]] · m.
(3.5.7)

Analogous to the bulk free energy function, that depends on the displacement and the temperature
field, the interface free energy function depends on the interface displacement and temperature field
and in addition to that also on the displacement jump across the discontinuity. According to this
we can express the rates of the free energy functions by

∂tΨ =
∂Ψ

∂ [ ∇u ]sym∂t [ ∇u ]sym +
∂Ψ

∂Θ
∂tΘ and

∂t
̂Ψ =

∂̂Ψ

∂ [ ̂∇û ]sym
: ∂t [ ̂∇û ]sym +

∂̂Ψ

∂ũ
· ∂tũ +

∂̂Ψ

∂̂Θ
∂t
̂Θ

(3.5.8)

whereby we define the appearing derivatives of the interface free energy in analogy to the continuous
quantities

ρ
∂Ψ

∂ [ ∇u ]sym := σt, ρ
∂Ψ

∂Θ
:= −ρs,

ρ̂
∂̂Ψ

∂ [ ̂∇û ]sym
:= σ̂t, ρ̂

∂̂Ψ

∂ũ
:= ˜t, ρ̂

̂Ψ

̂Θ
:= −ρ̂ŝ. (3.5.9)

Inserting these quantities in eqn. 3.5.8 the entropy rate equations reduce to

ρΘ∂ts = ρr− divq

ρ̂̂Θ∂tŝ = ρ̂r− ̂divq̂ −[[q]] · m,
(3.5.10)

whereby here two interface heat fluxes occur describing the heat conduction behaviour across and
along the interface. But still the rate equation is formulated in terms of the entropies. Therefore we
use now the definitions of the entropies s := −∂θΨ and ŝ := −∂

bθ
̂Ψ for replacing it by expressions

in terms of the free energies, such that we obtain

ρ∂ts = −ρ ∂2Ψ

∂Θ∂[∇u]sym
: ∂[∇u]sym − ρ

∂2Ψ

∂Θ2
∂tΘ (3.5.11)

ρ̂∂tŝ = −ρ̂ ∂2
̂Ψ

∂̂Θ∂[̂∇û]sym
: ∂[̂∇û]sym − ρ

∂2
̂Ψ

∂̂Θ∂ũ
· ∂tũ − ρ̂

∂2
̂Ψ

∂̂Θ2
∂t
̂Θ. (3.5.12)

Solving these expression for the terms containing the temperature rates, we obtain the temperature
evolution equations for the bulk and the interface

ρc∂tΘ = ρr∗ −divq

ρ̂ĉ∂t
̂Θ = ρ̂r̂∗ −̂divq̂ −[[q]] · m (3.5.13)
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Γ+

Γ−

I

m

Figure 3.2. Shape of a strong discontinuity

These equations are the temperature evolution equations for the bulk and the interface. Here we
assumed a thermo-elastic material where no further internal variables are taken into account. The
terms of thermo-mechanical coupling are collected in the modified source terms r∗ and r̂∗, which
are defined by

ρr∗ = ρr +Θβ : ∂t[∇u]sym

ρ̂r̂∗ = ρ̂r̂ +̂Θ
[

̂β · ∂t[̂∇û]sym +˜β : ∂tũ
]

.
(3.5.14)

It seems feasible, that we obtain two contributions to the interface temperature evolution due to
the mechanical work done across and along the interface which are covered by the interface stress
σ̂t and the traction vector ˜t or the corresponding temperature derivatives ̂β and ˜β. These are the
local temperature rate equations describing the thermal subproblem.
In the next step we derive the variational form of the temperature balance equation by multiplying
it by a virtual temperature and integrating it over the corresponding domains. After applying once
more the partial integration scheme and the standard Gauss theorem we obtain the weak form
consisting of the three following contributions

Uext(δΘ) − U int(δΘ) + Udis(δΘ) = 0, ∀δΘ. (3.5.15)

Here we recover the terms for the external virtual power as we derived them in eqn. 2.9.23 and we
rewrite them here just for clarity

U int =

∫

Bt

[

−ρcpΘ̇δΘ + q · gradδΘ
]

dv, Uext =

∫

∂Bt

qnδΘda−
∫

Bt

r∗δΘdv.

Furtheron we also get additional contributions of virtual thermal power due to the discontinuity,
that arise from the integral over the internal boundaries Γ+ and Γ− (fig. 3.2), such that we obtain

Udis = −
∫

Γ+

δΘ+q+ · m+da−
∫

Γ−

δΘ−q− · m−da (3.5.16)

Analogous to the mechanical subproblem we assume −m+ = m− = m and taking eqn. 3.2.9 into
account we can rewrite the thermal discontinuous virtual power contribution as

Udis = −
∫

I

[ δ̂Θ[[q]] · m + [[δΘ]]{q} · m ] da. (3.5.17)
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Figure 3.3. Construction of interface element

Here we like to replace the first term by the interface temperature evolution equation in eqn. 3.5.13,
that we accordingly solve for [[q]] · m. This yields for the discontinuous contribution to the weak
form of the thermal subproblem

U(δΘ) = −
∫

I

[

δ̂Θ [ ρ̂r̂∗ − ρ̂ĉ∂t
̂Θ ] + [[δΘ]]{q} · m + ̂divq̂

]

da. (3.5.18)

The last term in this relation can be replaced by applying the partial integration scheme such that
the weak form of the thermal subproblem, in consideration of interfaces, can be represented by

∫

Bt

[ρcp∂tΘ − r∗]δΘdv +

∫

I

[ρ̂ĉp∂t
̂Θ − r̂∗]da =

∫

∂B

qnδΘda−
∫

Bt

q∇δΘdv −
∫

I

[[δΘ]]{q · m}da

+

∫

∂I

δ̂Θq̂ndl −
∫

I

̂∇δ̂Θ · q̂da (3.5.19)

Here q̂n = q̂ · n̂ describes the heat flux over the interface boundary. This is the point of departure
for the numerical realization of the thermal problem in consideration of thermo-mechanical coupling
and interfaces. As mentioned before, we considered the simple case of thermo-elastic coupling, such
that the introduction of additional internal variables is not necessary. If we apply the presented
theory to the subject of localization problems (domain-dependent formulation), we will find the
formulation of yield condition indicating the onset of slip. This initiates the postcritical behaviour and
in the following proceeding the slip zone can behave inelastic requiring additional internal variables
describing inelastic effects (hardening, damage, etc.). According to this the list of arguments of the
interface free energy function has to be extended. Here for the sake of clearness, we restricted the
presentation to the thermo-elastic case.

3.6 Numerical Aspects

The numerical treatment of discontinuities and interfaces requires, as mentioned above, certain finite
element formulations that are able to cover discrete separation of materials. On the one hand we
need element formulations describing the jump contributions and on the other hand there is some
necessity for elements, which are able to describe the material behaviour of the interface in mean
by the average quantities. Since we investigate the linear theory, we do not need any linearization,
such that it is sufficient to present the discrete representation of the corresponding elements. For
the spatial discretization of the displacements and temperatures in the interface we resort to the
isoparametric concept. For the discretization of the bulk displacement and temperature fields we
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use the standard Legendre interpolations. The geometry of the interface element is described by

x
∣

∣

∣

Ie

≈
n
∑

a=1

Na(ξi)xa I =
⋃

e

Ie. (3.6.1)

whereby x denotes an isoparametric finite element interpolation and xa are the coordinates of a
typical finite element node. Since no derivatives of higher order are needed the choice of linear shape
functions for the interpolation of the interface displacments and temperatures are sufficient. At first
we approximate the tangent vector m within the interface by

n̂
∣

∣

∣

Ie

=
n
∑

a=1

∇xNa(ξi)xa (3.6.2)

and by following the standard finite element approach we discretize the actual and virtual displace-
ment jumps

ũ
∣

∣

∣

Ie

=

n/2
∑

a=1

Na(ξi)[[u]]a and δũ
∣

∣

∣

Ie

=

n/2
∑

a=1

Na(ξi)[[δu]]a (3.6.3)

and analoguously the temperature jump and the corresponding variation are interpolated by

˜Θ
∣

∣

∣

Ie

=

n/2
∑

a=1

Ma(ξi)[[Θ]]a and δ˜Θ
∣

∣

∣

Ie

=

n/2
∑

a=1

Ma(ξi)[[δΘ]]a. (3.6.4)

Here again the quantities [[u]]a = u+
a − u−

a and [[Θ]]a = Θ+
a − Θ−

a comply with the jump of the
particular variable at the a-th node of a typical interface element. That is also the reason why the
summation only runs over n/2 nodes.
To approximate averages of the interfacial quantities we transfer the discretization of the jump to
the average terms, such that we obtain for the average displacements

û
∣

∣

∣

Ie

=

n/2
∑

a=1

Na(ξi){u}a, δû
∣

∣

∣

Ie

=

n/2
∑

a=1

Na(ξi){δu}a. (3.6.5)

The interface temperature ̂Θ can be chosen in different ways, whereby here for the reasons mentioned
before we chose it in the spirit of hypothesis II, such that the numerical approximation is given by

̂Θ
∣

∣

∣

Ie

=

n/2
∑

a=1

Ma(ξi){Θ−1}−1
a and δ̂Θ

∣

∣

∣

Ie

=

n/2
∑

a=1

Ma(ξi){δΘ−1}−1
a . (3.6.6)

We calculate the average of the displacements by {u}a = 1
2
[u+

a + u−
a ] and the discrete interfacial

temperature can be determined by ̂Θ = {Θ−1}−1
a =

[

1
2
[1/Θ+

a + 1/Θ−
a ]
]−1

= [2Θ+
a Θ−

a ]/[Θ+
a + Θ−

a ].
The theory developed so far did not need the averages of the displacements and here the discretization
is just written for completeness. In contrast to that, for the thermal subproblem the temperature
average is needed for the determination of the average-based thermomechanical stress.
Finally, we are interested in the finite element interpolation of the tangential gradients of the interface
quantities. Also here we apply the standard finite element interpolation whereby the derivatives of
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the shape functions are needed. The gradient of the tangent interface displacements is interpolated
by

̂∇û
∣

∣

∣

Ie

=

n/2
∑

a=1

∇Na(ξi){u}a and ̂∇δû
∣

∣

∣

Ie

=

n/2
∑

a=1

∇Na(ξi){δu}a (3.6.7)

and the corresponding interface temperature gradients are discretized as follows

̂∇̂Θ =

nen/2
∑

a=1

∇Ma(ξi){Θ−1}−1
a and ̂∇δ̂Θ =

n/2
∑

a=1

∇Ma(ξi){δΘ−1}−1
a (3.6.8)

Since we consider generally a time-dependent thermal subproblem we also have to discretize the
entropy ŝ or the temperature ̂Θ, respectively in time

∂tŝ =
1

∆t
[ ŝn+1 − ŝn ] and ∂t

̂Θ =
1

∆t
[ ̂Θn+1 − ̂Θn ] (3.6.9)

where ∆t is the given time-step and ŝn+1 or ̂Θn+1 denote the interface entropy or interface temper-
ature at the new time step and ŝn and ̂Θn are the corresponding values for the old times step. For
the time integration of the non-mechanical variable the generalized midpoint rule was appplied.

,
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4 Interfaces in Localisation Problems

4.1 Overview

There are a lot of technical problems which can not be treated with the tools of the classical con-
tinuum mechanics or solid mechanics, respectively, since the presetting of continuity is not given
anymore. Of course the continuous inelastic material models presented in the previous chapter are
able to indicate localization phenomena due to damage evolution. But in particular the description
of discrete cracks in materials or material separation occuring in cutting and machining processes re-
quire additional tools to describe the appearing jumps in the corresponding displacement fields. The
aim of this section is to present possibilities of modelling such kind of phenomena, which in general
are denoted by strong discontinuities. J. Oliver defines them in [Oli96a] & [Oli96b] as ,, . . . jumps
in the displacement field appearing at a certain time, in general unknown before the analysis, of the
loading history and developing across paths of the solid which are material (fixed) surfaces. They
have to be distinguished from weak discontinuities that correspond to jumps in the strain field (the
displacement remaining continuous) which develop along moving surfaces.” We present numerical
techniques accomplishing the modelling of discrete postcritical material separation by interface el-
ements. The presented formulations are oriented on the paper Miehe and Schröder [MS94]. They
compared two methods for modelling the postcritical behaviour of discontinuities in materials by
interface elements. They distinguish between so-called domain-dependent and domain-independent
interface formulations. The first formulation proposes a projection of the constitutive law of the
ambient material into the discontinuity. From this projection emerges the acoustic or localization
tensor that can be interpreted as a stiffness of the discontinuity. The singularity of the localisation
tensor finally indicates the failure of the corresponding interface element. Furthermore, this formu-
lation can be understood as a bifurcation problem, since the singularity of the localization tensor
also indicates, that the type of differential equation changes.
In the domain-independent formulation a separate constitutive law for the interface is assumed de-
pending on the displacement jump. Here the key idea is to split the displacement jump into an elastic
and an inelastic contribution analogously to linear plasticity theory. The failure in this formulation
occurs as soon as the traction vector exceeds a certain treshold value.
Before we start presenting the different formulations we give a brief definition of localization phe-
nomena, we want to apply the general form of the weak formulations in chapter 3 to localization
problems, such that a simpler formulation emerges. Afterwards we present the domain-dependent
and the domain-independent interface formulation separately. The differences of both formulations
emerge, as we will see, from the kinematical assumptions, such that we concentrate on this topic be-
fore we derive the corresponding constitutive relations. Since we like to consider thermo-mechanically

117
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processes, we tried to extend the corresponding formulations to thermomechanical behaviour. After
that we derive the numerical realisation of both formulations and finish this chapter with some
numerial examples comparing both formulations.

4.2 Localization Requirement

As mentioned before the localization criteria coincides with the loss of ellipticity of the governing dif-
ferential equation. For the determination of reliable localization criteria, we resort to the assumption
of a discontinuous displacement field

∂tu(θ1, θ2, θ3) = ∂tuc(θ
1, θ2, θ3) + R(θ3)γ(θ1, θ2)s(θ1, θ2). (4.2.1)

parametrized in terms of the convective coordinates. Here ∂tuc denotes the regular and smooth
velocity field and R(θ3) is the ramp function, which is defined as follows

R(θ3) :=

{

θ3

0
with
with

θ3 > 0,
θ3 ≤ 0.

(4.2.2)

Here γ(θ1, θ2) is assumed to be a smooth function describing the amount of the discontinuity,
whereas s(θ1, θ2), |s| = 1 defines its direction. In the framework of the linear theory the strains are
defined by the gradient of the displacement field such that applying the gradient operator to the
given displacement field in eqn. 4.2.2 we obtain an expression

∇∂tu = ∇∂tuc + R∂θα(γs) ⊗ tα + γH(θ3)s ⊗ t3, with α = 1, 2 (4.2.3)

where H defines the Heaviside function

H(θ3) :=

{

1
0

with
with

θ3 > 0,
θ3 ≤ 0,

(4.2.4)

that emanates from the gradient of the ramp function ∂θ3R(θ3). Since the first two terms in eqn.
4.2.3 are smooth we assume, that these contributions describe the regular strain field, whereas the
last term covers the discontinuous part of the strain field. Furthermore, we assume that there is a
stress-strain-relation given by an inelastic constitutive law, such that we can express the stress rate
in terms of the strain rate field and the corresponding rate of the traction vector can be derived
from the Cauchy theorem

∂tt = m ·�in : ∇∂tu. (4.2.5)

Here �in denotes the inelastic continuous material tensor of the ambient constitutive material law.
Taking eqn. 4.2.3 into account, we can derive the limits of the traction vector at the positive and
negative surfaces Γ+ and Γ−, which shape the material surface I and with this at hand we can
define the jump of the traction rate vector [[∂tt]] = [ t+ − t− ] = 0, that has to equal zero for
fullfilling the equilibrium requirement. If we finally assume, that �in+ = �

in− = �
in when the

discontinuity starts to evolve, the subsequent relation can be derived

[[∂tt]] = m ·�in : [[∇∂tu]] = 0, (4.2.6)

The jump of the rate traction vector has to equal zero, since we still consider the continuous case,
where the displacment field is still assumed to be continuous [[∂tu]] = 0 . In eqn. 4.2.4 we identified
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the last term as responsible for the discontinuity of the strain field, such that we can identify the
rate of the displacement jump with

[[∂tu]] = γs ⊗ m, with t3
∣

∣

θ3=0
= m. (4.2.7)

Inserting this expression again into eqn. 4.2.6, we obtain the requirement

[[∂tt]] = m ·�in : [ γs ⊗ m ] = γ [ m ·�in · m ] · s = γQin · s = 0 ∀s. (4.2.8)

Here Qin denotes the acoustic tensor and the equation is only fullfilled for arbitrary directions s �= 0,
if Qin gets singular, i.e. an eigenvalue gets zero. This indicates the loss of ellipticity and the onset
of localization. As a consequence thereof the determinant of the localization tensor changes its sign
from positive to negative.
These presented relations are the essence of very interesting investigations on localization phenom-
ena. For a more detailed insight to this subject we like to refer to Belytschko et al. [BFE87] and the
refered literature. In the work of Steinmann & Willam [SW91a], [SW91b] and Steinmann [Ste92]
one can find some numerical investigations with respect to localization phenomena and in particular
the behaviour of different types of finite elements to localization. In the sequel we like to investigate
the so-called postcritical behaviour and the description in means by the domain-dependent and the
domain-independent formulation.

4.3 Domain-Dependent Interfaces

Beneath the previously denoted publications of Oliver and Miehe & Schröder treating the modelling
of strong discontinuities and their numerical realisation, the representation of the domain-dependent
strategy can be found in a paper of Larson et al. [LRO93] or Leppin [Lep00]. An essential work
dealing with the numerical realization of discontinuities was made by Schellekens [Sch92] and in
Schellekens and de Borst [SDB93]. An extension to geometrically non-linear formulations in the
framework of elastoplasticity was performed by Steinmann in [SLR97], [Ste99] or in Steinmann &
Betsch [SB00]. The treatment of coupled problems with respect to porous media can be found
in Steinmann [Ste98]. Another numerical approach, which is summarized by the term embedded
discontinuity element technique, can be found in the publications of Wells et al. [WS00], [WS01c],
[WS01a], [WS01d], [WS01b] and [Wel01].

4.3.1 Kinematical Aspects

For the derivation of the kinematical relations, we follow the representation of Leppin [Lep00], that
assumes, that the material points x are parametrized in terms of the convective coordinates θ1, θ2

and θ3. The discontinuity is divided into equal halves by the reference surface, that is defined by
θ3 = 0. The convective cordinates θα, α = 1, 2 describes the material surface in tangential direction
and the derivatives of x with respect to θα, α = 1, 2 defines the tangent vectors tα. With this
parametrization of the placement vector a material point of the localization surface is given by

x(θ1, θ2, θ3) = x̂(θ1, θ2) + θ3m(θ1, θ2). (4.3.1)

Here x̂ is the corresponding placement vector of the middle surface and the normal vector m points
from B− to B+. In the sequel we assume the localization zone as constant in time and additionally
due to the assumption of geometrically linear deformations the interfacial normal vector m remains
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constant as well. Therefore the time parameter is neglected in the following derivations. For the
consideration of the discontinuities in the context of the domain-dependent interface formulation,
the crucial kinematical assumption is made, that the displacement field can be decomposed into a
continuous and a discontinuous part. Thus the interface displacement field is represented by

u(θ1, θ2) = û(θ1, θ2) +
θ3

w
ũ(θ1, θ2), (4.3.2)

where w denotes the width of the localization zone and the definitions of û and ũ were already
given in eqn.3.3.8 and 3.3.9, respectively. The corresponding expression describing the discontinuous
strain field emanates from the gradient of the displacement field by differentiating the displacement
field with respect to x, such that we obtain

εδ = ∇u = ∂θαû ⊗ tα +
1

w
ũ ⊗ t3 +

θ3

w
∂θαũ ⊗ tα. (4.3.3)

Here the tα and t3 denote the covariant base vectors, whereby the direction of t3 coincides with the
direction of m. In general only the second term is considered, since the derivatives of the displace-
ment jump are neglected ∂θαũ ≈ 0 as well as the derivatives of the corresponding displacement
average ∂θαû = 0 1, such that the interface strain field reduces to

εδ = ∇u =
1

w
[ũ ⊗ m] , with m ≈ t3. (4.3.4)

This term dominates the process of strain localization and for the description of postcritical processes
it seems sufficient.
An alternative approach to derive the interface strain field in eqn. 4.3.4 can be found in the paper of
Larson et al. [LRO93] or in the work of Wells [WS01c]. Here the discontinuity of the displacement
field is taken into account by the Heaviside function, such that the total displacement field is given
by

u(x) = uc(x) + H(θ3)ũ, (4.3.5)

where H denotes the Heaviside function as it was introduced in eqn. 4.2.4 and u is the continuous
displacement field of the ambient domain. From this point of departure we can derive the strain
field by differentiation of the displacement field. Therefore we get the expression

ε = ∇u = ∇uc + H(θ3)[∇ũ] + δ(θ3) [ ũ ⊗ m ] (4.3.6)

and here δ denotes the Dirac-Delta, which emanates from the gradient of the Heaviside function
and which is defined by

δ(θ3) :=

{ ∞
0

with
with

θ3 = 0,
θ3 �= 0.

(4.3.7)

The first two terms in eqn.4.3.6 are assumed to describe the continuous part of the displacement
field, whereas the last one records the kinematical properties of the localization zone εδ. For w → 0
we find the accordance of the results for εδ in eqn. 4.3.4 and eqn. 4.3.7

1We also want to note here, that derivatives of the average displacement field describes the deformation due to
bending and disregarding this term is questionable. For the sake of simplicity here we follow the proceeding of Miehe
& Schröder [MS94] and Larson [LRO93] et al.. A representation taking the bending terms into account is given by
Leppin [Lep00]
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4.3.2 Constitutive Equations

Like the notation makes one suppose, the domain-dependent postcritical surface formulation is
deteremined by the constitutive equations of the ambient material, since it is projected into the
cohesive zone. For this projection we resort to the localization requirement, where we introduced
the acoustic tensor Q as an indicator of localization. This localization tensor was derived by the
definition of the traction vector via the Cauchy theorem and the corresponding jump condition across
the discontinuitiy, such that we obtained eqn. 4.2.6. Now we have to formulate constitutive relations
for the interface in terms of the interface strain field εδ in eqn. 4.3.4 and the internal variable

̂Ψ = ̂Ψ(εδ, ξ) = ̂Ψvol(tr εδ) + ̂Ψiso(ε̃δ) + Ψmic(ξ). (4.3.8)

Here tr (εδ) and ε̃δ denote the volumetric and deviatoric parts of the interface strain field εδ. The
corresponding stress field can by obtained by differentiating eqn. 4.3.8 with respect to the interface
strain field. But since the quantity of interest is not the stress field but the traction vector, the
result has to be contracted by the normal vector such that the algorithmic traction vector increment
is given by

[[ṫ]]n+1 =
1

w
m ·�in

n+1 : [ [[u̇]]n+1 ⊗ m ]sym = Qin
n+1 · [[u̇]]n+1, (4.3.9)

where we refind the algorithmic localization tensor Qin
n+1 = m ·�n+1 · m. In the interface context

we can identify the acoustic tensor as the corresponding interface stiffness operator that relates the
interface traction vector to the interface displacement jump. From these derivations we find that
the interface behaviour depends from the constitutive law in the ambient material, which is given
by the tangent operator �in. The corresponding interface stiffness represented by the acoustic
tensor requires the tangent operator �in of the bulk material as they are derived in chapter 2
(in terms of large deformations). Therefore the constitutive law in the bulk is projected into the
discontinuity, such that the interface behaviour adopts the bulk behaviour. According to this, effects
like damage, viscosity or adiabatic behaviour can be simply taken into account, without requiring
a specific interface modelling. In contrast to this, the domain-independent interface formulation
needs appropriate material models to cover the corresponding effects like the domain-dependent
formulation. Of course, for the investigation of (thermo-mechanically) coupled problems we need a
corresponding kinematical extension, which includes an extension of the interface stiffness.

4.3.3 Thermo-mechanical Extension

For completeness we want to sketch the thermo-mechanical problem for a domain-dependent inter-
face formulation. The thermo-mechanical extension of the domain-dependent formulation includes,
that the stresses are temperature dependent, such that the list of arguments of the free energy
function has to be extended by the corresponding interface temperature

̂Ψ = ̂Ψ(εδ, ξ, ̂Θ) (4.3.10)

In contrast to the previous chapter, here the interface temperature only depends on the temperature
values of the boundary limiting the discontinuity, such that it seems feasible, that

̂Θ := [[Θ]] (4.3.11)
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With this at hand we are able now to specify the corresponding free energy function. For this we
simply transform the approach of thermo-mechanical coupling presented in eqn. 2.9.9 to the linear
theory, such that the free energy function consists of the subsequent contributions

̂Ψ = ̂Ψvol(tr (εδ)) + ̂Ψiso(ε̃δ) + ̂Ψmic(ξ) + ̂Ψeth(tr (εδ), ̂Θ) + ̂Ψth(̂Θ). (4.3.12)

We note here, that the three first contributions, recording the elasto-plastic behaviour, are assumed
to be independent on the temperature field. The thermal effects are solely covered by the contribu-
tion ̂Ψeth, which records the thermo-elastic coupling and ̂Ψth, that solely depends on the temperature
field. Adopting these contributions to the framework of the linear theory finally gains

ρ̂ ̂ψth = ρ̂
ĉ

2

̂Θ2

̂Θ0

and ρ̂ ̂ψeth = −3α̂∆̂ϑκtr (εδ)m ⊗ m, with ∆̂ϑ =
[

̂Θ − ̂Θ0

]

.(4.3.13)

The total stress can be derived from the strain energy function by differentiation with respect to the
elastic strain field εδ. But since we consider discintinuities, we are interested in the traction vector,
that can be determined by the projection of the resulting stress field on normal direction by twice
contraction with the normal vector m, such that we obtain

˙̃
t =

∂̂Ψ

∂εδ
· m =

1

δ
Qin · [[u̇]] − m · βδ∆

˙̂
ϑ, with βδ = 3α̂κm ⊗ m. (4.3.14)

Hereby Θ0 corresponds to the reference temperature, βδ denotes the thermal interface stress and
Qin is the acoustic tensor, which was already introduced in the previous section. To complete the
description of the thermal subproblem we need to define the heat flux in the localization zone.
In the continuous case usually a constitutive law of the Fourier type is installed where the heat
flux is assumed to be proportional to the negative temperature gradient. In the discontinuous case
it is assumed that the heat flux in the discontinuity only depends on the temperature jump in
normal direction to the materal surface. Therefore we want to introduce the ,,interface temperature
gradient”, that is defined by

hδ := −1

δ
[[Θ]]m. (4.3.15)

To obtain a thermodynamical consistent temperature model, we have to demand the non-local
interface dissipation as non-negative, which is guaranteed by the constitutive relation of the Fourier
type

q̃ = − ∂̂Ψ

∂hδ

· m = −1

δ
kδ[[Θ]], (4.3.16)

from which the corresponding potential can be easily constructed. Here kδ denotes the specific
interface conductivity parameter and the vector hδ can be understood as the interface temperature
gradient, that naturally points in direction across the interface. This completes the modelling of
thermo-mechanical processes in the context of domain-dependent interface formulations.

4.4 Domain-Independent Interfaces

The domain-independent interface formulation allows to introduce an extra material law for the
cohesive zone, which differs from the ambient constitutive assumptions. In particular formulations
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are used, which base on the concepts of plasticity. In the framework of plasticity theory we introduced
a yield condition, that is formally adopted to the cohesive zone model and if the yield function gets
zero this accords to the slip of a gliding plain. Likewise the plasticity theory we apply the principle
of maximum dissipation from which we can derive an associated flow rule for the displacement jump
and associated evolution equations for possible internal variables.
The subsequent representation bases on the paper of Miehe & Schröder [MS94] and on the work
of Leppin [Lep00]. In the publications of Janson [Jan01], [Jan02], [Jan], Larsson & Jansson [LJ02]
and Jansson & Larsson [JL] the interface formulations were applied to the delamination analysis
in composite structures. In order to show the agreement of the linear plasticity and the domain-
independent post-critical localization formulation we will assume an inelastic bulk material of the von-
Mises type and perform the corresponding procedure for the derivation of the governing equations.

4.4.1 Kinematical Aspects

The crucial kinematical assumption in the domain-independent approach is, that the displacement
jump can be splitted into an elastic and an inelastic contribution, such that we obtain

ũ = ũe + ũp. (4.4.1)

The material behaviour is mainly determined by the traction vector acting in the material surface.
For the computation of stresses or tractions, respectively, we assume an interface free energy Ψδ

in terms of the elastic displacement jump and an internal variable ξ, that is able to record any
hardening or softening effects within the cohesive zone Ψδ(ũe, ξ). Furthermore, it is assumed, that
the free energy describing the post-critical behaviour of the localization zone only depends on the
displacement jump. Since we like to describe the onset of slip with methods of the linear plasticity
theory we have to introduce a treshold like the resulting yield stress denoted by ˜Yn, such that the
free energy functions are given by

Ψ = Ψ([ ∇u ]sym , ξ, [•]) and ̂Ψ = ̂Ψ(ũ, ̂ξ). (4.4.2)

Since we consider a domain-independent formulation the list of arguments of the free energy func-
tions, do not have to coincide with each other, such that it is conceivable, that there are additional
variables the bulk free energy depends on. In the sequel we like to restrict ourselves to the explicit
denoted variables. The simplest choice of an inelastic model is given by the subsequent specification
of the free energy function

Ψ :=
1

2
[ ∇u ]sym

e : � : [ ∇u ]sym
e +

1

2
hξ2 and ̂Ψ :=

1

2
ũe · ˜E · ũe +

1

2
̂ĥξ2 (4.4.3)

From this we can derive the bulk stress and the interface stress-like quantity by differentiating the
free energy functions with respect to the work-conjugated elastic strains and elastic displacement
jump, respectively. Therefore we obtain

σt =
∂Ψ

∂ [ ∇u ]sym = � : [ ∇u ]sym
e and ˜t =

∂̂Ψ

∂ũ
= ˜E · ũe (4.4.4)

where ˜t emerges as the interface traction vector. � denotes the fourth order elasticity tensor and
the corresponding interface elasticity tensor is denoted by ˜E which shall be defined by

˜E = ˜E⊥m ⊗ m + ˜E‖P , with P = I − m ⊗ m (4.4.5)
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whereby P defines the projection tensor into the material surface and ˜E⊥ and ˜E‖ are parameters
describing the elastic behaviour across the interface and along the material surface in tangential
direction. We emphazise here, that E is a second order tensor, that maps the displacment jump
vector to the traction vector, whereas the material tensor in general is fourth order tensor, that maps
the strain tensor on the corresponding stress tensor. Furthermore we assumed a linear hardening law
and with this at hand we can evaluate the corresponding isothermal local dissipation inequalities for
the bulk and the interface in eqn. 3.4.13 and obtain

Dloc = σt : ∂t [ ∇u ]sym − ρ∂tΨ ≥ 0 and
̂Dloc = ˜t · ∂tũ − ρ̂∂t

̂Ψ(ũe, ̂ξ) = ˜t · ∂tũp − ρ̂∂ξ
̂Ψ∂t

̂ξ ≥ 0.
(4.4.6)

In analogy to the linear plasticity theory we have to define a yield function, that defines the onset
of slip. In contrast to the continuous inelastic constitutive material laws the given threshold is
compared with the tangential projection of traction vector on the material surface s · n̂ and not
with the magnitude of the deviatoric stress tensor. Hence the yield condition, proposed by Miehe
and Schröder has the following structure

Φ := |σt| −
√

2

3
Yn(ξ) ≤ 0 and ̂Φ := |˜t · n̂| − ̂Yn(̂ξ) ≤ 0, with ̂Yn = ̂Y0 − ̂ĥξ (4.4.7)

where ̂Y0 denotes the initial yield traction or ,,slip-stress” and ̂h can be understood as a hardening
modulus. In order to derive the evolution equations we follow the procedure of plasticity theory and
rewrite the local dissipation inequality as Lagrange functional, where the yield conditions corresponds
to the side conditions. From this we can determine the evolution equations for the plastic bulk strains
and the plastic displacement jump of the interface

∂t [ ∇u ]sym
p = γ̇ndev and ∂tũp = ˙̂γsign (˜t · n̂)n̂, (4.4.8)

whereby the interface flowrule can also be denoted as slip rule. According to this the we obtain for
the evolution equations of the internal variables

∂tξ =
√

2
3
γ̇ and ∂t

̂ξ = ˙̂γ. (4.4.9)

From the yield condition, where only the tangential projection of the traction vector is taken into
account and was compared with the yield stress, follows, that the slip rule only includes the tangential
contribution of the displacement jump. With this at hand we can also calculate the corresponding
rate of the traction vector

∂t
˜t = ˜C

in · ∂tũ, with ˜C
in

= ˜E⊥m ⊗ m + P

[

1 −
˜E‖

˜E‖ + ̂h

]

(4.4.10)

where ˜C
in

denotes the consistent algorithmic interface tangent operator. Note that we can split
the traction vector into a contribution perpendicular to the material surface and a tangent con-
tribution along the interface. For the description of the slip mechanism within the cohesive zone
this formulation is completely sufficient. In order to apply this formulation also to more general
problems like cutting processes, in the sequel we like to modify the given yield function, such that
also contributions in normal direction are considered.
In contrast to the domain-dependent formulation the domain-independent formulation can be devel-
oped from the general theory in chapter 3. Since the general formulation also includes extra-energy
contributions which are treated in detail in the subsequent chapter, we like to consider the nonlin-
ear extension of domain-dependent interface formulation in the framework of the more generalised
representation in chapter 5.
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4.4.2 Constitutive Modifications

The governing equations within this formulation remain unchanged and the procedure of deriving
them keeps the same as well, such that we restrict ourselves to the modifications according to the
interface description. But, as mentioned before, in the sequel also contributions in normal direction
have to be considered in the yield condition. Thus we have modified the interface yield function as
follows

̂Φ = kν˜t · m + [1 − k] [ ˜t · n̂ ]2 − (̂Y0 + ̂ĥξ) (4.4.11)

Here ν is a dimension factor and k denotes a weighting parameter, such that the influence of the
different contributions can be controlled. We introduced the squared tangential contribution of the
traction vector for numerical reasons. Accordingly we obtain a modified slip rule, that also consists
of contributions that correspond to the normal direction and the tangential direction

∂tũp = ˙̂γ [ kνm + 2 [ 1 − k ] [ ˜t · n̂ ]2 n̂. (4.4.12)

Obviously also the evolution equation of the internal variable changes and we finally obtain

∂t
̂ξ = ˙̂γ (4.4.13)

From this it is straightforward to calculate the rate of the traction vector of this formulation if we
know the interface tangent operator, that of course also becomes a little bit more complicated

∂t
˜t = Cin · ∂tũ

=

[

˜E⊥

[

1 −
˜E⊥ [ kν ]2

N

]

m ⊗ m + ˜E‖

[

1 − 4 ˜E‖ [ 1 − k ]2 [ ˜t · n̂ ]2 n̂ · P · n̂
N

]

P

]

· ∂tũ

(4.4.14)

whereby the denominator N can by computed by

N = ˜E⊥ [ kν ]2 + 4 ˜E‖ [ 1 − k ]2 [ ˜t · n̂ ]2 n̂ · P · n̂ + ̂h. (4.4.15)

This formulation also takes nomal contributions of the traction vector into account, such that not
only slip behaviour can occur but also real separation. In the next step we extend this formulation
to the adiabatic case where locally the material can be heated, but no heat flux is considered.

4.4.3 Adiabatic Extension

The main task in this formulation is, that the material can get warm, but the heat flux to the ambient
material is neglected. We already investigated adiabatic formulations in the continuous setting and
there we learned that in this case the temperature can be treated as an additional internal variable.
Therefore we have to extend the list of arguments for the free energy functions

Ψ = Ψ([ ∇u ]sym ,Θ, ξ) and ̂Ψ = ̂Ψ(ũ, ̂Θ, ̂ξ) (4.4.16)

In particular we like to specify the thermoelastic potentials potential by

Ψ =
1

2
[ ∇u ]sym : � : [ ∇u ]sym +

1

2
h0 [ 1 − ωhϑ ] ξ2 − c

Θ0

ϑ2

2
− ϑαI : � : [ ∇u ]sym

̂Ψ =
1

2
ũ · ˜E · ũ +

1

2
̂h0 [ 1 − ω̂h

̂ϑ ] ̂ξ2 − ĉ

̂Θ0

̂ϑ2

2
− ̂ϑα̃m · ˜E · ũ

(4.4.17)
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with ϑ = [ Θ − Θ0 ] and ̂ϑ = ̂Θ − ̂Θ0

Here c and ĉ denote the bulk and interface heat capacity and α and α̂ are the corresponding heat
expansion coefficients. ωh and ω̂h approximates the decrease of the hardening modulus due to
thermal effects and also here we introduced reference temperatures Θ0 and ̂Θ0 for the bulk and the
interface. Secondly we have to adopt the yield function of the previous section to the adiabatic case
by assuming the yield stress and the linear hardening modulus as temperature-dependent, such that
we get

̂Φ = kν˜t · m + [1 − k]|˜t · n̂|2 − [Y0(Θ) + h(Θ)̂ξ] (4.4.18)

Since we introduced the temperature as an additional internal variable an evolution equation is
required, that should be derived from the modified interface Clausius-Duhem inequality, that we
already introduced in eqn. 3.4.132. Inserting this expression into eqn. 3.4.10 and solving for the
entropy rate we finally obtain

̂Θρ̂∂tŝ = ρ̂r̂ + [ ̂∇∂tû ]sym : σ̂t − ρ̂∂t
̂Ψ − ρ̂ŝ∂t

̂Θ +˜t · ∂tũ. (4.4.19)

Since we consider the adiabatic case, we can disregard any temperature flux terms and additionally,
in the given context, we can neglect any average-based contributions. Furthermore we assume that
there are no further artificial interface heat sources, such that the entropy evolution can be reduced
to

̂Θρ̂∂ts = ˜t · ∂tũ − ρ̂∂t
̂Ψ − ρ̂ŝ∂t

̂Θ. (4.4.20)

As we derived in the previous sections we can identify the traction vector with the derivative of
the free energy function with respect to the elastic displacement jump and the hardening modulus
̂h corresponds to the derivative with respect to the hardening variable. Due to the temperature
contribution in the free energy stress or stress-like quantities are modified and we get the following
expressions

σt = � : [[∇u]sym − αϑI] and ˜t = ˜E · [ũ − α̃̂ϑm] (4.4.21)

For the specification of the entropy we want to follow the familiar definition, where it emerges from
the differentiation of the free energy function with respect to the temperature

s = −∂Ψ
∂Θ

=
c

Θ0

ϑ+ αI : � : [∇u]sym and ŝ := −∂
̂Ψ

∂̂Θ
=

ĉ

Θ0

̂ϑ+ α̃m · ˜E · ũ (4.4.22)

With this definition at hand the bulk entropy rate is given by

∂ts = − ∂2Ψ

∂Θ∂[∇u]
∂t[∇u] − ∂2Ψ

∂Θ∂ξ
∂tξ − ∂2Ψ

∂Θ2
∂Θ (4.4.23)

and for the interface we obtain

∂tŝ = − ∂2
̂Ψ

∂Θ∂ũ
∂ũ − ∂2

̂Ψ

∂̂Θ∂̂ξ
∂t
̂ξ − ∂2

̂Ψ

∂̂Θ2
∂t
̂Θ. (4.4.24)

Inserting this expression into eqn. 4.4.19 the interface temperature evolution equation results in

ρ̂ĉ∂t
̂Θ = ˜t · ∂tũp − h∂t

̂ξ + ̂Θ0
˜β · ∂tũ − ̂Θ0∂Θ [ ˜t · ∂tũp − ̂h∂t

̂ξ ] with ĉ = −̂Θ
∂2
̂Ψ

∂̂Θ2
.(4.4.25)
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Here we introduced the notation ˜β for the thermomechanical stress in the interface. It can be
defined by

˜β = α̃˜E · m = α̃ ˜E⊥m (4.4.26)

Finally we have to determine the corresponding consistent tangent operator that emerges from the
above introduced governing equations. By using the consistency condition of the yield function we
can determine the Lagrange multiplier and by inserting this into

∂t
˜t = ˜E · ∂tũe = ˜E ·

[

∂tũ − ˙̂γ[νkm + 2[1 − k]2[˜t · m]m]
]

= C in · ∂tũ (4.4.27)

we can finally determine the consistent tangent operator

C in = ˜E⊥

[

1 −
˜E⊥k2ν2 + ̂Θ0α̃ ˜E⊥kν [ ρ̂ĉ ]−1

N

]

m ⊗ m + E‖

[

1 − 4 ˜E‖[1 − k]2[˜t · n̂]n̂ · P · n̂
N

]

P ,

(4.4.28)

where the denominater N is given by

N = Kν ˜E⊥ − 4 ˜E‖[1 − k]2[˜t · n̂]2 + ̂h + LP. (4.4.29)

The appearing functions L and P occur due to the adiabatic contributions and they are defined by

L = [̂Y00ω̂y + ̂h0ω̂h
̂ξ] and P = [ ρ̂ĉ ]−1

[

̂Y0(̂Θ) + ̂Θω̂y
̂Y00

]

(4.4.30)

From the approach of the free energy function where the thermoelastic contribution only is associated
with the normal direction, we find the corresponding contribution in the consistent tangent operator.
In the yield function for the adiabatic case we have squared the tangential contribution of the traction
vector for numerial reasons.

4.5 Weak Form for localization problems

The numerical treatment of discontinuities within thermo-mechanical solids in the framework of
finite elements requires the corresponding weak formulations of the mechanical and thermal sub-
problem and since we reduced the list of arguments for the description of localization phenomena
the corresponding weak formulations can be simplified.

4.5.1 Weak Form of the Mechanical Subproblem

For the derivation of numerical approaches the weak form is required and beneath the standard
terms we obtain additional contribution due to the localization zone or discontinuity, respectively.
Starting point here is the interfacial linear momentum balance equation derived in 3.3.7, whereby
we can neglect all the terms along the interface or discontinuity, respectively, such that it reduces
to

[[σ · m]] = 0. (4.5.1)
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Considering the balance equation of the regular parts B+ and B−, where Γ+ and Γ− denotes the
boundaries rendering the discontinuity S and therefore the weak form can be written as

Gext(δv) − Gint(δv) + Gdis(δv) = 0. (4.5.2)

The contribution due to external forces can be written as

Gext(δv) =

∫

B+∪B−

δv · bdv +

∫

∂B+∪∂B−

δv · tda (4.5.3)

and the internal virtual work is given by

Gint =

∫

B+∪B−

∇δv : σdv. (4.5.4)

The contribution due to the discontinuity emanates from the integral of the virtual mechanical
energy over the internal boundaries Γ+ and Γ−, such that we obtain

Gdis(δv) =

∫

Γ+

δv+ · σ+ · m+da+

∫

Γ−

δv+ · σ− · m−da. (4.5.5)

By assuming −m+ = m− = m and taking eqn. 3.2.9 into account, we can rewrite the discontin-
uous contribution in the subsequent form

Gdis(δv) = −
∫

I

[{δv} · [[σ · m]] + [[δv]]{σ · m}] da, (4.5.6)

such that in consideration of eqn. 4.3.2, we only obtain a single additional contribution due to the
discontinuity. Thus, the virtual complete mechanical power can be represented by

G(δv) =

∫

B

δv · bdv +

∫

∂B

δv · tda−
∫

B

∇δv : σdv −
∫

I

δṽ · {σ · m}da, (4.5.7)

where δṽ = [[δv]] denotes the time derivative of the corresponding virtual displacement jump ũ.
Comparing the weak form of the mechanical subproblem in eqn. 4.5.7 with the more general formu-
lation in eqn. 3.5.2 we see that the resulting formulation only contains the interface contributions
describing the traction in direction across the interface, such that no inner contributions are taken
into account here.

4.5.2 Weak Form of the Thermal Subproblem

By completing the formulation with the specification of the weak form of the thermal subproblem,
we are able to consider thermo-mechanically coupled problems in the framework of localization prob-
lems.
In chapter 3 we already introduced the weak formulation of the thermal subproblem, but this formu-
lation was given in terms of the entropy and this is less helpful for the solution of realistic problems,
since it is hard to define reasonable entropy boundary conditions. Therefore we have to reformulate
the entropy rate equation in terms of the temperature, such that we finally obtain a temperature
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evolution equation. This finally represents the balance equation for the thermal subproblem, that
we have to transfom to the weak form and that we like to discretize in terms of the temperature.
Analogous to the mechanical subproblem we can neglect any contribution along the interface, such
that the local entropy evolution equation for the bulk and the interface in eqn. 3.4.10 reduce to

Θρ∂ts = −divq + ∇ lnΘ · q +ρr +D with D ≥ 0,

0 = +̂D −Θ[[h]] · m with ̂D ≥ 0.
(4.5.8)

According to this also the dissipation inequality changes, since also here any tangential contributions
along the interfaces are not taken into account. The corresponding expressions of the dissipation
inequalities ineqn. 3.4.13 results in

D = [∇v]sym : σt −ρ∂tΨ − ρs∂tΘ −∇ ln Θ · q ≥ 0,
̂D = ∂tũ ·˜t −ρ̂∂t

̂Ψ − ρ̂ŝ∂t
̂Θ −[[q]] · m +̂Θ[[h]] · m ≥ 0.

(4.5.9)

Inserting the dissipation into the entropy rate equation we finally obtain

Θρ∂ts = [∇v]sym : σt −divq +ρr −ρ∂tΨ −ρs∂tΘ,
̂Θρ̂∂tŝ = ∂tũ ·˜t −[[q]] · m +ρ̂r̂ −ρ̂∂t

̂Ψ −ρ̂ŝ∂t
̂Θ,

(4.5.10)

whereby it seems as if we did not win anything so far. The crucial trick is, that we can express
the entropy rates in terms of the free energy functions as in eqn. 4.4.23 and eqn. 4.4.24, whereby
we assumed the list of arguments in the form of eqn. 4.4.14. But since we assumed that the
discontinuity is independent of any interface contributions we also have to remove the interface
temperature from the list of arguments. Inserting this expression into eqn. 4.5.10 the entropy
evolution can be replaced by an expression in terms of the temperature rate, such that in analogy
to the adiabatic case in eqn. 4.4.25 we get the following bulk and interface temperature evolution
equations

ρc∂tΘ = r∗ −divq,

ρ̂ĉ∂t
̂Θ = r̂∗ −[[q]] · m.

(4.5.11)

These equations are the point of departure for the derivation of the weak form of the thermal
subproblem, whereby we introduced the abbreviations

r∗ = [∇v]sym
p : σt −h∂tξ +Θ0β : ∂t[∇u]sym −Θ0∂Θ

[∇v]sym
p : σt − h∂tξ

]

+ρr

r̂∗ = ∂tũp : ˜t −̂h∂t
̂ξ +Θ0

˜β · ∂tũ −Θ0∂bΘ

[

∂tũp ·˜t − h∂tξ
]

+ρ̂r̂.
(4.5.12)

The above proceeding is completely analogous to the continuous nonlinear case as it was described
in chapter 2 and one can easily see that by removing all heat flux terms divq = [[q]] · m and
addititional heat sources r = r̂ = 0 the adiabatic formulation in eqn. 4.4.25 remains.
For the derivation of the weak form, we follow the proceeding presented in section 3.5.4, whereby
we have to consider the modified temperature balance equation, where no contributions along the
interface are taken into account. Therefore we solve eqn. 4.5.122 for the interface heat flux term
and accordingly replace the power contribution due to the jump in the heat flux in eqn. 3.5.17, such
that we obtain for the virtual power contribution due to the discontinuity

Udis(δΘ) = −
∫

I

[

δ̂Θ[ρ̂r̂∗ − ρ̂ĉ∂t
̂Θ] + [[δΘ]]{q · m}

]

da. (4.5.13)
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Summarizing all contributions to the virtual thermal power the weak form can be represented by

∫

Bt

[ρcp∂tΘ − r∗]δΘdv +

∫

I

[ρ̂ĉp∂t
̂Θ − r̂∗]da =

∫

∂B

qnδΘda−
∫

Bt

q∇δΘdv −
∫

I

[[δΘ]]{q · m}da,

(4.5.14)

whereby here the interface contributions can be clearly distinguished from the bulk contributions.
In this expression the heat conduction term needs to be specified and in general a material law
of the Fourier type is chosen. A possible specification is given in the next chapter, where explicit
thermomechanical coupled problems are treated.

4.6 Nonlinear Formulation

For the geometrically nonlinear formulation we want to restrict ourselves to the domain dependent
formulation and resort to the decomposition of the displacement field in eqn. 4.3.5 into an continuous
contribution and a discontinuous one, indicated by the Heaviside function. Furthermore we have to
distinguish between the reference configuration and the spatial configuration, which are connected
by the mapping x(t) := ϕ(X, t) : B0 × � → Bt as it is written in eqn. 2.2.4. The deformation
map considering an embedded discontinuity within the body and taking eqn. 4.3.5 into account we
can rewrite eqn. 2.2.4 as

ϕ(X, t) = x(t) = X + u(X, t) + H(X)ũ(X, t). (4.6.1)

The crucial quantity in the nonlinear theory was the deformation gradient, that was derived by
the derivative of the deformation map with respect to material coordinates. Applying this to the
deformation map given in eqn. 4.3.10 we obtain analogously to the strain field of the linear theory
the deformation gradient

F � = ∇Xϕ = F �
c + H(X)˜F

�
+ δ(X) [ ũ ⊗ M ] , (4.6.2)

whereby here we introduced the material normal vector on the material surface M in the reference

configuration. Furthermore F �
c denotes the standard deformation gradient and ˜F

�
= ∇Xũ coincides

with the gradient of the displacement jump with respect to the material coordinates. The crucial
task in the nonlinear theory is the determination of the normal unit vector on the material surface in
the deformed configuration, since it is conceivable in contrast to the linear theory, that the normal
vectors on Γ+ and Γ− do not coincide anymore. In principle the normal vectors can be transformed
by the Nanson formula, but in the case of the discontinuity the normal vector is not unique and
therefore we have to distinguish between the transformations

m− = det(F �
c) [ F �

c ]−t · M dA

da−
and m+ = det(F �

c + ˜F
�
)[F �

c + ˜F ]−t · m dA

da+
. (4.6.3)

These relations can be found in the work of Wells [Wel01] and they are most general. In contrast to
that one can find the accordance of the normal vectors m+ = m− in the publications of Steinmann
et al. [SLR97] or Larson et al [LRO93]. In general this assumption seems questionable. On the other
hand within numerical investigations, it is necessary to define an particular normal vector within the
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open discontinuity, since the forces on both boundaries, which are given by the traction vector, have
to be equal in their direction and magnitude. Wells [?] defines the average normal vector m∗ by

m∗ = det(F � +
1

2
˜F

�
)

[

F � +
1

2
˜F

�
]−t

M
dA

da∗
(4.6.4)

This normal vector is finally used to define a local base system and the traction vector at the
discontinuity. This assumptions seems questionable as well as the accordance of the positive and
negative normal vectors at the discontinuity and seems to be a matter of taste, which assumption
has to be made.

The Weak formulations In any case it is necessary to derive the corresponding weak formulation
for the nonlinear theory. Following the propositions of Wells [Wel01] the virtual work equation in
the reference configuration can be written as

G =

∫

B0

P � : δF �dV −
∫

∂B0

t0 · δudA−
∫

B0

b0 · δudV = 0, ∀δu. (4.6.5)

Here P � denotes the first Piola-Kirchhoff stress tensor and δF � = Gradδu is the material gradient
of the displacement field, that can be expressed in terms of the deformation gradient, which includes
also the discontinuous contributions. Inserting the expression derived in eqn. 4.3.11 we obtain the
subsequent virtual work formulation

G =

∫

B0

[ δF �
c : P � + H(X)δ ˜F

�
: P � + δ(X) [δũ ⊗ m0] : P � ] dV (4.6.6)

−
∫

∂B0

[t0 · δu + t0 · [ H(X)δũ ]] dA−
∫

B0

[b0 · δuc + b0 · [ H(X)δũ ]] dV = 0.

In this equation we can eliminate the Dirac-delta δ(X) by integrating over the domain B0 and the
Heaviside Function disappears by changing the domain of integration from B0 to B+

0 , such that we
finally obtain

G =

∫

B0

δF �
c : P �dV +

∫

B+
0

δ ˜F
�
: P �dV +

∫

B0

δũ
[

P � · m0

]

dV (4.6.7)

−
∫

∂B0

[t0 · δu + t0 · [ H(X)δũ ]] dA−
∫

B0

[b0 · δuc + b0 · [ H(X)δũ ]] dV = 0.

This equation can be splitted into an continuous contribution
∫

B0

δE�
c : S�dV −

∫

B0

b0 · δucdV −
∫

∂B0

t0 · δucdA = 0 (4.6.8)

and a contribution due to the discontinuity
∫

B+
0

δ ˜E
�
: S�dV +

∫

I0

δũ · [F � · S� · m0]dA

−
∫

∂B0

H(X)δũ · t0dA−
∫

B0

H(X)δũ · b0dV = 0. (4.6.9)
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The corresponding spatial formulations for the continuous and the discontinuous contributions are
given by the following relations

∫

Bt

δe� : σ�dv −
∫

∂Bt

t · δucda−
∫

Bt

b · δucdv = 0 (4.6.10)

and
∫

B+
t

δe� : σ� +

∫

I

δũ ·˜tda−
∫

∂Bt

H(X)δũ · tda−
∫

Bt

H(X)δũ · bdv = 0 (4.6.11)

whereby the following transformations were used

Gradδuc = gradδuc · F � and mda = JM · [ f � ]t dA and dv = JdV. (4.6.12)

We applied the Cauchy theorem ˜t = σ� ·m to calculate the true traction vectors in the discontinuity
and here we have to determine the normal vector in the spatial configuration, which is not unique.
We want to cite the work of Wells [WS01c] here:,, ... Conceptually, it is necessary to deviate from
classical mechanics when applying a traction force at a discontinuity which is opening. Classically,
two bodies can only transmit forces, if the bodies are in contact, and being in contact implies that
at the point of contact the outward normal vectors to the surfaces of two bodies are identical in
direction and opposite in sign. However here it is possible that forces are transmitted between
bodies for which the outward normal vectors are not in the same direction....”. For the numerical
implementation he suggests to take the normal vector not from the boundaries Γ+ and Γ− but from
the center surface of the discontinuity, that leads to the relation in eqn. 4.6.4.

Linearizations In section 2.8 we already derived that in the nonlinear theory the balance equations
need to be linearized, such that they can be solved by numerical methods as there is the Newton-
Raphson iteration scheme. The linearization of the continuous contributions to the virtual work
was already derived in chapter 2. For the sake of completeness we want to add the linearization
of the discontinuous contributions without any derivations. The corresponding derivations can be
also found in the work of Wells [WS01c]. Furthermore, we assume that the external loads are
independent of the deformation, such that their contributions are zero in the linearized form and
only contributions due to the internal virtual work and the discontinuity remain. Linearizing the
material formulation of the weak form including the discontinuity finally leads to

Dx [ Gdis(ϕ̄) ] · ∆u =

∫

B0

[

δ˜E� : � : [ [ F � ]t · Grad∆u ] + S� : [ [ Grad∆u ]t · Gradδũ ]sym
]

dV

+

∫

I0

δũ · [Grad∆u · S� + F �
� : [[ F � ]t · Grad∆u]sym] · MdA (4.6.13)

whereby the linearizations DxS
� can be found in section 2.8. Furthermore we still need the lin-

earization of the spatial formulation and this is given by

Dx [ Gdis(ϕ̄) ] · ∆u =

∫

Bt

[ gradδũ : grad∆u · σ� + gradδũ : � : grad∆u ] dv

+

∫

I

δũ · [gradδu · σ� + � : grad∆u] · mda (4.6.14)
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Figure 4.1. Arrangement of tension test of jointed sheets

For the linearization of the particular terms we resort to the relations already given in section 2.8.
In this representation the normal vector is not specified so far. But within the numerical treatment
the application of the normal vector on the centered material surface is useful. With this relations
we like to finish the investigations of discontinuities within the framework of the nonlinear theory.

4.7 Applications

The applications, which are presented in the sequel emanate from investigations, which were per-
formed in the framework of a project supported by the german research foundation (DFG) and
which were concerned with the modeling and numerical treatment of cutting a tearing processes
of ductile materials. In particular we want to perform a comparison of the domain-dependent and
domain-independent interface formulation by the problem of jointed sheets and by the more complex
application of cutting processes, where also a contact problem has to be taken into account and a
brief description of the applied contact algorithm is given in the corresponding section.

4.7.1 Problem of Jointed Sheets

The interface formulations given above are predestined for the modelling of failure processes as they
occur within an tension test of jointed sheets. In the sequel we apply the different interface formu-
lations to the modelling of such processes comparing the properties of the different formulations.
In fig. 4.1 the arrangement of such a tension test can be found whereby in the presented example
the used parameters remain the same (as far as possible) and only the interface formulation was
exchanged. For the sheets themselves a simple linear elastic material law was chosen and to the
interfaces we applied the following models

• domain-dependent interface elements

• the domain-independent interface elements without normal contributions and

• the domain-dependent interface elements with normal contributions.

The sheets were discretized by 11 × 4 quadrilateral 4-node elements and they are connected by
a single layer of 6 linear interface elements. The tension force is superposed by 20 displacement
increments à 0.02 units in x-direction on the right boundary of the upper sheet, whereby here plane
strains were assumed. The left boundary of the lower sheet was fixed in both directions.
Observations and interpretations

1. In fig. 4.2 we find the tension test of jointed sheets taking the domain-dependent interface
formulation into account, whereby we assumed an elasto-plastic standard von-Mises material
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law for the interface whereas as mentioned before, linear elastic law was applied to model the
sheets behaviour. One can observe, that the upper sheet slips along the horizontal direction
and in addition to this the system rotates slightly. This rotation is caused by angular forces,
appearing in the interface layer. Furthermore the plotted hardening variable indicates that the
inelastic range in the interface layer is reached (picture a) and b)), whereas in the sheets no
plastic deformation can occur. If the same material was chosen in the interface as in the bulk
the rotation of the probe would have been much stronger than in the presented case, since
the stress of failure would have been reached much later.

2. In fig. 4.3 we find the same problem whereby in this calculation the domain-independent
interface formulation was applied, whereby no contributions of the traction vector in normal
direction was taken into account. Therefore one can observe, that the upper sheet more or
less solely slips in horizontal direction, whereby almost no rotation of the system takes place,
because of the missing normal contributions of the traction vector.

3. In fig. 4.4 we finally find the deformation of the jointed sheets with the application of the
domain-independent interface formulation with additional contributions in normal direction of
the traction vector. Here one can observe, that the sheets get much more deformed than in
the previous case. Since the load is distributed in normal and tangential direction, the system
can be loaded much more and according to this it is deformed much more than in the previous
case before the yield stress in the interface is reached and they fail.
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a)

b)

c)

Figure 4.2. Evolution of the hardening variable in the a) initial state b) after 10 load steps
c) after 20 load steps. The interface layer was modelled by 6 linear interface elemensts of the
domain-dependent type.
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a)

b)

c)

Figure 4.3. Evolution of the hardening variable in the a) initial state b) after 10 load steps
c) after 20 load steps. The interface layer was modelled by 6 linear interface elemensts of the
domain-independent type without considering normal contributions of the traction vector.
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a)

b)

c)

Figure 4.4. Evolution of the hardening variable in the a) initial state b) after 10 load steps
c) after 20 load steps. The interface layer was modelled by 6 linear interface elemensts of the
domain-independent type in consideration of normal contributions of the traction vector.
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Figure 4.5. Contact problem between cutting tool and ductile probe

4.7.2 Cutting Problems

Contact problem The modelling of cutting and tearing processes is a more complex subject where
also the contact problem between cutting tool and the probe has to be taken into account. Since we
consider ductile materials like polypropylen (PP), which is less stiff than any steal-like materials we
can assume that the cutting tool is rigid in comparison to the probe material. In order to describe
the penetration of the cutting knife into the material we applied the following numerical strategy,
which is illustrated in fig. 4.6. We start by introducing a so-called gap function gN = g(x) ·n that
measures the distance of the considered boundary of the cutting tool for instance and the nodes
of the probe, which possibly get in contact with the knife. With this gap function at hand we can
distinguish the following three cases:

gN > 0
gN = 0
gN < 0

=⇒
=⇒
=⇒

no contact
contact
penetration.

(4.7.1)

Obviously, the last possibility is not admissible and therefore the gap function has to be gN ≥ 0.
For the fullfillment of this equation we introduce an artifical force Fc which acts in direction of the
boundary and that moves the corresponding nodes back to the boundary gN = 0. This force should
be proportional to gN and has the direction −n, such that it is defined by

F c = εAc〈−gN 〉n, (4.7.2)

where ε denotes the penalty parameter that has to be chosen sufficiently great, such that the
contact condition is fullfilled. Usually, some problems arsise due to an increasing the condition
number, such that the convergency of the Newton-Raphson iteration becomes worse. Therefore
often an alternative formulation is applied, denoted by augmented Lagrange algorithm, where the
penalty value is increased step by step after each iteration until the contact condition is fullfilled.
This method ensures that the penalty parameter only increases as much as necessary, whereby the
contact condition is fullfilled exactly and the problem remains numerically well-conditioned. In the
discussed formulations no friction is taken into account. For a closer treatment of this topic we
refer to the publications of Hallquist, Goudreau & Benson & [HGB85] and Benson & Hallquist
[BH90], who firstly considered the numerical treatment of contact problems. A very enclosing treat-
ment of contact problems can be found in Simo & Laurson [LS93a], [LS93b], in the publications
of Laurson [Lau94] and Laursen & Oancea [LG94], where also friction was taken into account. An
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Figure 4.6. Contact problem between cutting tool and ductile probe

overview on small and large strain contact formulations is given by Laursen [Lau02] and in the
publications of Wriggers [Wri86], [Wri95], [Wri96] [Wri02], Wriggers & Scherf [WS98] and Wriggers
& Miehe [WM94], where especially thermomechanically coupled contact problems were investigated.

The phenomenology Basically, observing the phenomenology of cutting processes two kinds of
failure occur. On the one hand the failure takes place at the tip of the cutting tool and on the other
hand the failure goes ahead the cutting blade. Moreover, the failure changes from the first type to
second one by an increasing cutting velocity, such that the process is highly rate-dependent. This
effect is illustrated in fig. 4.9.

With the increase of the cutting velocity the temperature in the cutting zone increases as well
and materials like polypropylen reach their melting point and accordingly the stiffness of the material
decreases. These are the most important effects if cutting processes are investigated. Furthermore
we can summarize the main results of the experimental investigation in the following rules:
The maximum cutting force

• increases with the thickness of the probe

• increases with the applied cutting velocity

• decreases with increasing ambient temperature

• increases with angle of the cutting blade

• decreases with decreasing cutting radius of the blade.

The results of the modelling of cutting process, which we like to discuss here, are depicted in fig.
4.9 and fig. 4.7.2. In this example we restrict ourselves to the quasi-static case, such that the
rate-dependent and thermal effects can be neglected here. Therefore the simple von-Mises material
law can be applied to the complex problem. In contrast to the previous problem of jointed sheets the
separation of the material takes place and so the corresponding failing interface elements have to be
taken from the calculation. This problem was solved by introducing an fixed threshold stress (not
the yield stress) and as soon as the interface traction has reached the threshold value, this particular
element was ignored in the following iterations. This effect can be seen clearly in the diagram in
fig. 4.7.2 where the calculated curve of the cutting force is compared to the experimental curve.
In this curve the failure of an interface element can be seen in the sudden decrease of the curve.
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2 Additionally, we want to mention here, that the used material parameters extremly differ to
the specific material parameters as they are used to characterize the particular material. Thus the
elastic modulus for polypropylene for instance, usually is specified by 16000 − 20000 N/mm2. For
the simulation of cutting process it had to be reduced to the number of 1000 N/mm2. According
to this also the other material parameters like the yield stress and the linear hardening modulus in
particular had to be corrected to cover the real cutting process by the finite element model. These
effects are caused by the fact, that the material fails nearly immediately after the penetration of the
blade takes place, such that the inelastic range is not reached. On the other hand the penetration
induces stresses in the material regions which are not reached by the blade, such that the material
there behaves in an elasto-plastic manner. For the investigations of cutting processes, which were
performed for polypropylene and alluminium alloys the elastic modulus can be estimated by 10%
of the standard values. In additon to this the corresponding set of parameters for a particular
problem also depends on the geometric parameters of the cutting process. In addition to this one
obtains different force- displacement curves in dependency of the blade angle, cutting gap, the
material thickness and so on. Therefore it is a difficult task to define a reliable set of parameters
which is valid for all real cutting processes. Probably it would be necessary to perform a parameter
identification procedure, which was not aim of this present work. In order to minimize the number
of parameters we decided to chose the simple geometrically nonlinear isotropic von-Mises material
model for the description of the cutting process, whereby for the interfaces the domain-dependent
formulation with a negative hardening modulus was applied which requires the arc-length solution
method.

Discretization For the modelling of the cutting problem we discretized the modelling as follows.
The probe was divided into three blocks whereby the left block consists of 25 rows and 20 columns
of rectangular 4-node elements. The height of the whole probe was chosen by 2 units and its length
is 15 units. The length of the first block is 10 units, whereas the second block was introduced to
realize a variable gap between the rotor blade and the static blade. In the particular calculation
the second block simply consists of a single column and it has a width of 0.2 units. The last block
models the free end of the probe, that is separated and which consists of 14 columns of elements.
It is connected to the second block by a single interface layer of linear domain-dependent 4-node
interface elements. The load was superposed by vertical displacement increments of 0.01 units of
the blade until the separation of the probe was performed, that is indicated by the divergence of the
corresponding iteration step. The used material parameter are summarized in fig. 4.7.2

Interpretation The interpretation of the results is performed by fig. 4.9, that illustrates different
states of the cutting of polypropylene. After 5 load steps one can observe, that the cutting tool
penetrates the probe slightly and induces stresses in vertical direction along the interface layer. The
more the blade penetrates into the material the stresses increase. But due to the modified interface
formulation the material relaxes, where the separation is finished and the stress disappear at the
corresponding interface elements (s. fig 4.9b). After 44 load steps the stresses in the material are
increased so much (s. fig 4.9c) that in the next load step the calculation stops due to divergency
and we can interprete it as the complete failure of the material. This corresponds to experimental
experience, where after some time of ductile failure at the tip of the cutting tool, the stresses in

2Of course, there are better criteria which can be found to indicate the failure of an interface. An appropriate
criteria of failure could be the singularity of the interface stiffness. But for the sake of a better understanding and
control of the calculation, we decided simply to introduce the threshold value.
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Parametername Parametervalue

E 1000 N/mm2

ν 0.3
Y0 34 N/mm2

Y∞ 35 N/mm2

κ 9.6
h −10 N/mm2

Eint 1000 N/mm2

Y int
0 20 N/mm2

Y int
∞ 20 N/mm2

κint 0
hint −10 N/mm2
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Figure 4.7. Comparison of experiment and simulation: The diagramm shows the force- dis-
placement- curve of a cutting process of PP

the remaining material are increased so much that it fails due to sudden fracture. The divergency
indicates that the separated material behaves like a separate body, that can not be treated within
an quasistatic formulation, since there are no sufficient boundary conditions for the ,,new” body.
We want to note here, that the interface elements are also able to cover the separation processes
as they occur in the framework of material cutting processes. The force- displacement curve in fig
4.9 shows a good accommodation of the experimental and numerical data, whereby the parameters
had to be adapted to the complex problem for the before mentioned reasons.
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a)

b)

Figure 4.8. Stress distribution during a cutting process a) after 5 load steps b) after 25 load
steps
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c)

d)

Figure 4.9. Stress distribution during a cutting process a) after 44 load steps b) after 45 load
steps
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5 Interfaces with Extra-Energy
Contributions

5.1 Overview

In chapter 3 we introduced the kinematics of interfaces which have certain properties in tangential
direction of the material surface. These contributions were neglected within the description of
localization phenomena, since they are not relevant for this kind of problems. In the context we like
to investigate in this chapter we need these additional contributions. One can imagine the material
surface which feature these extra contributions as a kind of membrane or fibre embedded in the
ambient material. Therefore this kind of interfaces is predestinated for the description of composites,
where the material properties are relevant, whereas the volumetric dimension is neglectable. The
given kinematical introduction from chapter 3 is completely taken to this description, such that
there is no need to derive any kinematical tools anymore, since they can be taken from chapter 3
one by one. Also the thermodynamical features are completely given, such that the only thing left
to do is to derive some constitutive laws for the mechanical and thermal subproblem. In particular
for the thermal subproblem we want to resort to hypothesis II for the interface temperature ̂Θ,
since it is difficult to predict Neumann boundary conditions for the entropy flux in a reasonable
way. Afterwards we will show some applications of this formulation, disccussing the mechanical and
the thermal subproblem and finally we give some simple examples of thermo-mechanically coupled
problems.

5.2 Constitutive Equations

In order to exploit the above derived dissipation inequality we specify the constitutive model by
selecting a particular list of arguments for the free energy functions for the bulk and the interface.
Moreover, an appropriate heat conduction law has to be chosen, that depends on the coice of the
interface temperature that is assumed in the spirit of hypothesis II: ̂Θ = {Θ−1}−1. In the sequel,
for sake of simplicity we will restrict ourselves to the thermoelastic case, whereby in principle also
inelastic models are conceivable. Furthermore, we tried to construct the interface constitutive laws
analogously to the corresponding bulk formulations. However, for the thermoelastic case the free
energy for the bulk and the interface depends on

Ψ := Ψ([ ∇u ]sym ,Θ) and ̂Ψ := Ψ([ ̂∇û ]sym , ũ, ̂Θ) (5.2.1)
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From these assumptions and the corresponding dissipation inequalities the following familiar consti-
tutive laws of the bulk stress and the bulk entropy emenate

σt = ρ
∂Ψ

∂ [ ∇u ]sym and s = −∂Ψ
∂Θ

(5.2.2)

In analogy to the bulk formulation the interface dissipation inequalitity yields the following interface
entropy

ŝ = −∂
̂Ψ

∂̂Θ
, (5.2.3)

whereas we have to distinguish between the tangential interface stress σ̂t along the interface S and
the stress contribution that we obtain from the traction vector ˜t acting across the interface and
which we already introduced in the previous chapter. We finally obtain for the mechanical forces in
the interface

σ̂t = ρ̂
∂̂Ψ

∂ [ ̂∇û ]sym
and ˜t = [[σt]] · m = ρ̂

∂̂Ψ

∂ũ
. (5.2.4)

The free energy functions for standard linear thermo-elastic bulk materials can be assumed by

ρΨ :=
1

2
[ ∇u ]sym : � : [ ∇u ]sym − ρ

c

Θ0

ϑ2

2
− ϑαI : � : [ ∇u ]sym , (5.2.5)

whereby � denotes the fourth order elasticity tensor for linear elastic materials, that can be specified
by

� = L� + 2GI ⊗ I. (5.2.6)

Here L and G denote elastic material parameters, α denotes the heat expansion coefficient and c is
the heat capacity of the bulk material. According to this we can prescribe also a free energy function
for the interface which in principle has the same structure

ρ̂̂Ψ :=
1

2
[ ̂∇û ]sym : ̂E : [ ̂∇û ]sym − ̂ϑα̂P : ̂E : [ ̂∇û ]sym − ĉ

̂Θ0

̂ϑ2

2
+

1

2
ũ · ˜E · ũ − ̂ϑα̃m · ˜E · ũ.

(5.2.7)

The appearing second order tensor ˜E was already introduced in the previous chapter and was defined
by

˜E = ˜E‖P + ˜E⊥m ⊗ m, with P = I − m ⊗ m. (5.2.8)

It relates the displacement jump to the interface traction vector ˜t, whereby ˜E‖ and ˜E⊥ are elastic
parameters describing the elastic behaviour perpendicular and tangential to the material surface.
The fourth order isotropic elasticity tensor ̂E relates the symmetric interface displacement gradient
[ ̂∇û ]sym to the tangent interface stress contribution σ̂t and is defined in analogy to the continuous
elasticity tensor in eqn. 5.2.6

̂E = ̂L̂� + 2 ̂GP ⊗ P . (5.2.9)
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Here ̂L and ̂G are the corresponding material parameter and ̂� = P⊗P + P⊗P . From the given
free energy functions we can derive the bulk stress and the bulk entropy in the manner of equation
5.2.2 by performing the differentiation of the free energy with respect to the displacement gradient
and the temperature, such that the specified expressions are given by

σt = � : [ [ ∇u ]sym − αϑI ] and s =
c

Θ0
ϑ+ αI : � : [ ∇u ]sym . (5.2.10)

Furthermore, from the interface free energy function we can derive the specified expressions for the
interface entropy and the interface stress quantities. They emanate analogously from the derivatives
of the interface free energy function with respect to the interface temperature, the interface gradient
of the average displacement field and the displacement jump, such that we obtain according to eqn.
5.2.3 and 5.2.3 the interface stress tensor and the interface traction vector

σ̂t = ̂E : [ [ ̂∇û ]sym − α̂̂ϑ̂P ] and ˜t = ˜E · [ ũ − α̃̂ϑm ] (5.2.11)

and finally the interface entropy is given by

ρ̂ŝ = ρ̂
ĉ

Θ0

̂ϑ+ α̂P : ̂E : [ ̂∇û ]sym + α̃m̃ · ˜E · ũ. (5.2.12)

Note that the interface temperature is related to the heat expansion along the interface and across
the interface. By selecting the various material parameters properly, different linear thermoelastic
submodels can be established. As mentioned before we like to assume the interface temperature
in the spirit of hypothesis II, from which the definition of the tangential heat flux q̂ and the heat
flux across the interface q̃ emerges. As mentioned before we chose a constitutive formulation of the
Fourier type, such that they are given by

q̂ = −κ̂̂∇̂θ and q̃ = [[q]] · m = −κ̃[[θ]], (5.2.13)

where κ̂ and κ̃ denote the heat conduction coefficients along and across the interface. They are
material specific parameters.

5.3 Applications

In this section we want to give some numerical examples, where the before shown extended inter-
face formulation is applied, whereby the emphasis is on the illustration of the influence due to the
additional interface contributions indicated by [•̂]. The parameters in the following examples were
chosen in a way to emphasize the qualitative effect of the interface formulation. A validation of the
presented results in the spirit of comparing them with experimental data, did not take place and a
corresponding application would be a subject of future work. Therefore the given examples are soly
investigated with respect to plausibility.
The subsequent presented calculations are restricted to the 2-dimensional case, such that the inter-
face elasticity tensors for the case of isotropy reduces to

̂E = ̂En̂ ⊗ n̂ and ˜E = ˜E‖n̂ ⊗ n̂ + ˜E⊥m ⊗ m, (5.3.14)

whereby the constants ̂E, ˜E‖ and ˜E⊥ are independent from each other and can be chosen arbitrarily.
Furthermore we need to specify the heat conduction vectors for the thermal subproblem, which are
assumed of the Fourier type

{q} · m = −κ̃[[Θ]] and q̂ = −κ̂ · ̂∇̂Θ, with κ̂ = κ̂n̂ ⊗ n̂. (5.3.15)
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a) b)

c) d)

Figure 5.1. Bending of a beam with a) ˜E‖ = ˜E⊥ = ̂E = 0 b-d) ˜E‖ = ˜E⊥ = 0, ̂E �= 0

The remaining parameters are scalar quantities and they are specified within the particular problem.
We begin by investigating the purely mechanical problem of a bended beam and continue to consider
some heat flux problems representing the thermal subproblem. Finally, two simple examples of
thermomechanically coupled problems are presented.

5.3.1 Mechanical Problem

We start with a pure mechanical example of a bending beam that is fixed at both ends and loaded
as it is depicted in fig. 5.1. The beam has a thickness of 3 units of lengths and a length of 10.
For demonstration of the interface influence we insert two layers of interfaces into the finite element
mesh and vary their stiffness in tangential direction by changing the elastic parameters ˜E‖, ˜E⊥ and
̂E. The other parameters for the bulk and the interface remain unchanged and they are collected in
table 5.1. The thermal parameters are neglected and set to zero. The continuous part is discretised
by three rows of ten 9-Node quadrilateral elements and these are connected accordingly by two rows
of ten 6-Node interface-elements. The stiffness for the tangential jump-based contributions ˜E⊥ was
set to zero, such that the effects of the jump-based and the average based contributions can be
distinguished more easily.
In the first step also the interface stiffness ̂E and ˜E⊥ are set to zero and the beam is load by means

of displacment boundary conditions, such that the three continuous parts the beam consisting of,
are disconnected and behave as depicted in fig. 5.1a). We note here, that the lower parts of the
beam are not affected by the deformation. This example is physically not reasonable, since the
different parts may not penetrate each other, but it is appropriate as point of departure to illustrate

Parameter Bulk-
Material

Interface (jump-
based)

Interface
(average-based)

Youngs Modulus [N/mm2] E = 10 ˜E‖ = 0, 10, ˜E⊥ = 0 ̂E = 10, 100, 1000
Poissonzzahl ν 0.29 - -

Table 5.1. Parameter for linear elastic material
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Figure 5.2. a) Undeformed and deformed Beam b) Increasing stiffness

the influence of the different interface contributions. Therefore in fig. 5.1b)-d) we can see the beam
at different load steps, whereby the loading is the same as in the previous example, but in contrast
to the previous example, the tangential interface stiffness is chosen ̂E > 0.

Interpretation In contrast to the first calculation we can see, that also the lower part of the
beam is affected by the loading. That means, that ̂E contributes to the interface stiffness, but the
penetration prevented by this parameter. Naturally, this example is not physically reasonable at all,
but it indicates the influence of ̂E, that controls the tangential interface stiffness.

In the next example we set the parameter ˜E⊥ = 10 and as in the previous calculation we imposed
displacements as depicted in fig. 5.2 and we measured the reaction forces acting at the fixed element
nodes in the middle row during the deformation.

Interpretation There are two phenomena we can observe in this example.

• At first one can see, that the different parts of the beam do not penetrate anymore, such
that the increase of the interface stiffness parameter ˜E seems to control the contact condition
between the different layers.

• On the other hand one expects that the stiffness of the beam increases according to the
increase of the interface stiffness. This is verified by the diagramm in fig. 5.2 where the
stiffness increase induces a higher slope of the curves.

5.3.2 Thermal Problems

Now we show an example for the pure thermal heat conduction problem. For this we consider a
plate with a height and width of ten units of length and discretize it by 10×10 quadrilateral 4-
node-elements. In the middle of the plane we insert again an interface layer of ten 4-node interface-
elements. On this plate we apply a one-time temperature increment of 100 degrees at the left
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Parameter Bulk-
Material

Interface
(jump-based)

Interface (jump-
based)

Heat Conduction coefficient κ = 0.01 κ̃ = 0.001 κ̂ = 0.005, 0.50
Heat Expansion Coefficient α = 0.000012 α̃ = 0.000012 α̂ = 0.000012
Reference Temperature [◦ K] 293.15
Heat Capacity [kJ/ K] c = ĉ = 0.0036

Table 5.2. Parameter for linear elastic material

boundary for a time-increment of 0.01 seconds. After that we consider the heat conduction for the
next 0.29 seconds. This problem was computed for different values of the tangential heat conduction
parameter κ̂ of the interface layer direction while the other parameter remained unchanged. The
used parameters for the computation are collected in table 5.2 whereby the same values for the
mechanical subproblem were applied as in the previous numerical example.

Interpretation The calculations in fig. 5.3 show the temperature distribution of the system after
10, 20 and 30 seconds, whereby in the left series a)-c) the average interface heat conduction pa-
rameter was chosen by κ̂ = 0.005, such that is of the same order than in the ambient bulk material.
In the second calculation that is represented in the right series d)-f) the interface heat conduction
parameter was set to κ̂ = 5.0, where as the heat conduction parameter in the bulk remained con-
stant. If we compare the second calculations d)- f) to the first series, it is easy to observe, that
the heat conduction in the interface layer is much higher than in the bulk material, where the heat
conduction parameter is chosen as before. The interface heat conduction coefficient is chosen much
higher than in the bulk material to show the qualitative effect.

In other calculations the interface heat conduction parameter κ̂ was decreased to a value much
lower than the heat conduction parameter in the bulk material, such that the interface heat flux was
expected to be less developed after 30 s than the heat flux in the ambient bulk material. But the
interface heat flux is effected by the temperature jump and thus it also depends on the bulk temper-
ature distribution, such that the interface behaviour was superimposed by the bulk behaviour. The
resulting effect was marginal, such that we pass on without presenting the corresponding calculations.

In the next example we investigate the influence of the interface component across the interface
with respect to the heat conduction behaviour. For this we consider the same system as before,
whereby this time a homogenous temperature field of 100◦ K in ten time steps à 0.1 s at the lower
boundary is superposed. Afterwards the system is left on its own for further 30 s. The corresponding
calculation is represented in fig. 5.4, whereby the left series a)-c) again represents the reference
calculation without any interface contribution, whereas the right series shows the system, where an
interface layer is integrated. The interface heat conduction coefficients κ̃ and κ̂ are set to zero. The
remaining parameters are listed in table 5.2. Like in the previous example also here the temperature
distribution in the plate is plotted, indicating the heat flux within the system. One can observe
that in the reference calculation due to the heat flux the temperature in the upper part of the plate
increases after some time. In the calculation including the interface layer, presented in the series
d)-e), the heat flux to the upper part of the plate is prevented by the interface layer.
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Figure 5.3. Thermal Problem with average-based heat conduction a-c) Temperature distribu-
tion after 10s, 20s and 30s with κ̂ = 0.005 d)-f) Temperature distribution after 10s, 20s and
30s with κ̂ = 0.5
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a) d)

b) e)

c) f)

Figure 5.4. Temperature distribution a)-c) without interface layer after 2s, 3s und 4s d)-e) with
interface heat conduction κ̃ = 0 after 1s, 2s und 3s
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Temperature

Temperature

Interface Layer

Figure 5.5. a) Arrangement of coupled problem

Interpretation Since the heat conduction coefficients in the interface is set to zero no heat
exchange with the upper part of the plate can take place and the heat accumulates in the lower
part. Therefore the interface works as an insulator preventing the heat flux to the upper system
part.
Also for this example we investigated the inverse problem, where the interface heat conduction
coefficient in normal direction was chosen much higher than in the ambient bulk material. One
expects an ,,acceleration” of the heat flux due to higher heat conduction in the interface. But also
here, the effect was likewise marginal, such that we pass on the representation of the corresponding
calculations.

5.3.3 Coupled Problems

For the investigation of the thermoelastic coupled problem we choose the arrangement depicted in
fig. 5.6 a). Here again a single interface layer consisting of ten 4-node-interface elements is inserted
between two continuous plates that are fixed at the boundaries at the top and at the bottom. The
two continuous domains are discretized symmetrically by 10 × 5 quadrilateral 4-node-elements and
they have a height and width of 10 units of length. The boundaries at the side are free and at
the top and bottom boundary twenty temperature increments of 25◦ are imposed during 2 seconds.
The parameters for the mechanical and the thermal problem are chosen as in the previous examples

Parameter Bulk-
Material

Interface (jump-
based)

Interface (average-
based)

Youngs Modulus [N/mm2] E = 10 ˜E⊥ = 50, ˜E‖ = 0 ̂E = 10
Poissonzzahl ν 0.29 - -
Heat Conduction coefficient κ = 0.002 κ̃ = 0.002 κ̂ = 0.002
Heat Expansion Coefficient α = 0.00001 α̃ = 0.00001 α̂ = 0.00101
Reference Temperature [◦ K] 293.15

Table 5.3. Parameter for linear thermo-elastic material
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except for the heat expansion coefficent of the average-based interface contribution that is chosen
much higher than the heat expansion coefficents α and α̃ for the bulk material and for jump-based
interfacial contributions. All parameters are collocated in table 5.3.

Interpretation Due to the extremly high interface heat expansion coefficient the fibre, represented
by the interface layer, expands much more than the bulk material as it can be seen in fig 5.6 b).
Since the interface heat expansion coefficient across the interface α̃ is chosen from the same order
than the bulk the fibre is solely able to expand in tangential direction, where no boundary conditions
are prescribed, a tension stress is induced in the bulk material that is fixed at the upper und lower
boundaries. If the stiffness of the interfaces is not high enough, these stresses cause an opening of
the interfaces. This can be avoided by an increase of the jump-based elastic modulus ˜E⊥.
In a last example treating a thermodynamically coupled problem we consider the ,, inverse” problem
and exchange the parameters of the previous example in the spirit, that the tangent interface heat
expansion coefficient is chosen much lower than in the ambient bulk material. The corresponding
boundary conditions and time steps are retained unchanged, such that we obtain the different
deformed configurations at different time steps as they are depicted in fig. 5.7.

Interpretation Due to its lower tangent heat expansion coefficient the interface is not able to
expand as much as the surrounding bulk material. This causes a necking in the middle of the plate.
But since the interface lives in kinematical slavery to the bulk material, it is superposed by the bulk
deformation. Thus naturally the interface can not remain completely undeformed as well.
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Figure 5.6. Distribution of absolute temperature in the a) initial configuration and after b) 10
seconds and c) 20seconds
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a)

b)

c)

Figure 5.7. Distribution of absolute temperature in the a) initial configuration and after b) 10
seconds and c) 20seconds



6 Summary and Conclusions

The submitted work is divided into two parts whereby the first part is concerned with the prepa-
ration of a continuum mechanical framework where discontinuities and interfaces can be integrated.
We started with the general description of geometrically nonlinear deformation and the inherent
distinction of material and spatial configurations. From these two point of views different nonlinear
strain and stress measures and the corresponding rate formulations emerge. In this context the two
essential concepts of isotropy and material objectivity were introduced. With these tools at hand
the fundamental mechanical and thermo-mechanical balance equations could be formulated, which
are the foundations of material theory. Especially, the 2nd law of thermodynamics, in terms of the
Clausius-Duhem-Inequality, delivers important constraints for the modeling of materials. Firstly we
applied the previous concepts of nonlinear (isothermal) continuum mechanics to elastic problems.
Here the spectral decomposition of kinematical quantities led to a stress-strain-relation in terms
of the eigenvalues, which simplify the transformation of terms in the initial configuration to the
spatial one and vice versa. With respect to the numerical solution methods, where usually the
Newton-Raphson-Scheme is applied, the derivation of the corresponding tangent operators is nec-
essary. These were derived for the spatial and the material formulation, in terms of the eigenvalues
and the corresponding eigenbases. These material tensors were also used for the inelastic constitu-
tive laws in consideration of the corresponding inelastic modifications. Afterwards the fundamental
concepts for the geometrically linear plasticity theory was resumed, before they were applied to the
nonlinear theory. The main ideas in plasticity are the additive decomposition of the strains into an
elastic and a plastic part, the concept of internal variables and the principle of maximum dissipation,
that yields the normality rule providing a unique relation between the (deviatoric) stresses and the
plastic strain rate. The main difference of the linear and the nonlinear plasticity theory consists
in the more complex nonlinear kinematics that require an additional plastic configuration and the
introduction of strain measures describing the accumulated plastic strains. In the linear plasticity
theory, the strains consist of the sum of elastic and plastic contributions, whereas in the nonlinear
theory the deformation gradient is decomposed multiplicatively. Hereby the plastic deformation gra-
dient maps from the reference configuration to the intermediate configuration, where plastic strains
are described by the plastic right Cauchy-Green tensor as the usual plastic strain measure. The
elastic deformation gradient maps quantities from the plastic configuration to the spatial one. By
introducing a logarithmic strain measure the multiplicative structure is reduced to a sum again, such
that the concepts of the linear plasticity theory can be applied. For updating the internal variables
the implicit Euler-backward scheme was used and with the resulting plastic multiplier the consistent
algorithmic tangent operator could be computed. The solution of the momentum balance equation
was performed by the finite element method. In this context the weak forms of the spatial and the
material configuration had to be derived and the corresponding linearizations had to be carried out.
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Hereby the general form was restricted to quasistatic problems. In order to take thermal effects into
account, a temperature evolution equation was derived, that also led to a modified Clausius-Duhem
inequality. Here in addition to the isothermal standard local dissipation a nonlocal or convective
dissipation was derived induced by the entropy flux, that was related to the heat flux by appropriate
constitutive assumptions. Within the consideration of thermo-mechanical problems two different
kinds of thermo-mechanical coupling have to be distinguished, which also induces different ways in
numerical treatment. In the first case we assumed that the temperature increase in a particular
point does not effect its neighbourhood, since heat flux is neglected. This adiabatic assumption
usually can be made if the investigated processes are very fast. Since the temperature only depends
on the location itself and not on the neighbourhood, it can be introduced as an additional internal
variable and its rate can be determined by a local iteration algorithm. In contrast to this, in the
second case the temperature can also be introduced as an additional primary variable. With this
at hand we can also describe the heat flux within a material. The numerical realization proves
to be analogous to the isothermal problem, whereby in addition to the linear momentum balance
equation the temperature evolution needs to be transformed to the weak form in consideration of
coupling terms connecting both types of subproblems. Afterwards the corresponding linearization
procedure was performed and finally, the additional primary variable required to be discretized in an
appropriate way. This concluded the theoretical description of bulk modelling of elasto-plastic and
thermo-elasto-plastic materials. Finally the derived models were applied in numerical calculations.
In the second part of this work the given mechanical and thermodynamical framework was extended
to enable the consideration of discontinuities and interfaces, whereby we restricted ourselves to the
geometrically linear theory. At first we started with the reformulation of the momentum balance
equation, whereby the discontinuities were considered as boundaries cutting through the continuous
body. From the kinematical point of view finally two interfacial displacement contributions, namely
across and along the interface emanated. The first contribution was given by the displacement jump,
that results from the difference of the boundary displacement values and the second was defined
by the gradient of the averaged displacements. From these two interfacial kinematical quantities
emerged two corresponding tractions or stress contributions, respectively, in the interfacial linear
momentum balance equation.
In consideration of the additional interface contributions, we derived the modified balance equations
of internal energy and entropy. These balances formally contain, in analogy to the balance of linear
momentum, an average-based and a jump-based heat flux, whereby these terms were not defined up
to this point, since the interface temperature was not defined so far. This definition was performed in
the next step, whereby two possible definitions were investigated leading to two corresponding forms
of the interface heat flux or the interface entropy flux, respectively. The simplest assumption was that
the interface temperature coincides with the average of the boundary temperature values. But this
led to a formulation that required a presetting of entropy boundary conditions, such that this choice
rather was of less practical interest. The second approach was that the inverse interface temperature
coincides with the average of the inverse boundary temperature values. This assumption yielded a
formulation involving boundary conditions of the interface heat flux. For the numerical investiga-
tions within the finite element method the derived balance equations had to be transformed into the
weak form and afterwards the corresponding discretization was performed, whereby especially the
additional interfacial primary variables had to be taken into account. Finally the interface formu-
lation was adopted to localization problems and to the description of thermo-mechanical composites.

This thesis can be understood as an introductory framework for the description of discontinuities
and interfaces within inelastic thermo-mechanical materials. The derived concepts were transformed



159

to corresponding numerical formulations and they were successfully applied to realistic problems.
Although the given representation was as capacious as possible, there are still some aspects which
were not considered so far. Further investigations could be concerned with:

• The transformation of the interface formulations from the linear to the geometrically nonlinear
context as far as it was not performed so far. Especially from the consideration of the average-
based contributions within the nonlinear theory some problems emanate since a reasonable
determination of the average values from the initially related boundary values after deformation
often is not unique anymore in the framework of large deformations.

• The numerical behaviour of thermo-mechanical interfaces with respect to different types of
finite elements taking interfaces with extra energy contributions into account.

• A numerically stable interface formulation that is able to cover mechanism of complete material
separation.

• Interaction of interfaces and contact formulations as they arise from cutting problems as they
were discussed fundamentally in this thesis.
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A Appendix

A.1 Spectral Decomposition

A lot of kinematical quantities introduced in chapter 2 are tensors of second order and if they are
symmetric, they can be represented by the spectral decomposition of the form

A =

3
∑

α=1

λαNα ⊗ Nα, with A ∈ �
3 (A.1.1)

where λα denotes the eigenvalues and Nα (α = 1, 2, 3) are the corresponding eigenvectors or
principal directions. Since the triple of the eigenvectors are generally orthogonal to each other, the
co- and contravariant eigenvectors coincide and the position of the index can be chosen arbitrarily,
but it is common to mark the eigenvectors by superscripts. In spectral decomposed form the tensor
is a linear combination of the eigenbase Mα = Nα⊗Nα multiplied by the corresponding eigenvalue
as the linear factor. Every particular eigenbase is a rank one tensor and therefore we obtain the
following properties

Mα · M β = Nα ⊗ Nα · Nβ ⊗ Nβ =

{

Mα

0
if
if

α = β
β �= α

,
3
∑

α=1

Mα = I (A.1.2)

with the consequence, that A to the power of n is equivalent to raising the eigenvalue λα to the
power of n and remaining the eigenbase unaltered. Therefore we obtain

An =
3
∑

α=1

λn
αNα ⊗ Nα. (A.1.3)

Before we can reformulate the tensor in this form, we need to calculate the eigenvalues λα and the
corresponding eigenvectors Nα. For the determination of the eigenvalues of A we firstly calculate
the determinant of the eigenvalue problem represented by

det [ A − λαI ] = λ3
α − I1λ

2
α + I2λα − I3 = 0, (A.1.4)

whereby the I1, I2 and I3 denote the principal invariants that are defined by

I1 =
I2 =
I3 =

tr (A)
1
2
[ tr 2(A) − tr (A2) ]

det(A)

=
=
=

λ1 + λ2 + λ3

λ1λ2 + λ2λ3 + λ3λ1

λ1λ2λ3.
(A.1.5)
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From this expression the eigenvalues can be determined analytically by

λα =
1

3

[

I1 + 2
√

I1 − 3I2 cos
1

3
[ ψ + 2πα ]

]

with ψ = arccos

⎡

⎣

1
2
[ 2I3

1 − 9I1I2 + 27I3 ]
√

[ I2
1 − 3I2 ]3

.

⎤

⎦

(A.1.6)

and the corresponding eigenbase Mα can be obtained by the following relation

Mα =

3
∑

ζ=1\α
[A − λζI]

3
∑

ζ=1\α
[λα − λζ ]

=
A2 − [ I1 − λα ] A + I3λ

−1
α I

2λ2
α − I1λα + I3λ−1

α

. (A.1.7)

Here we have to remark that for the denominator in eqn. A.1.7 the eigenvalues shall not be
equal. For this case the eigenvalues have to be pertubed by a small number δ, such that we obtain
λα = λα [ 1 + δ ] , λβ = λβ [ 1 − δ ] and λγ = λγ/ [ 1 − δ ] [ 1 + δ ]. Another remark we like to do
here is that it is usually sufficient with respect to numerical applications to calculate the eigenbase
Mα and not the eigenvectors. The expression given in eqn A.1.7 is very crucial for the numerical
determination of stress-rates. A detailed discussion can be found in the publication of Miehe [Mie93]
and the main results are represented in section 2.5.3 . Another crucial relation, we want to mention
here is the Cayley-Hamilton-theorem that states that the characteristic polynomial is solved by the
tensor A itself, such that

A3 − I1A
2 + I2A − I3I = 0� A3 = I1A

2 − I2A + I3I. (A.1.8)

Here we have to take into account, that if I3 gets zero, A−1 is singular. With this at hand it is
possible to express the exponent Am for every integer m in terms of the invariants and I, A and
A2. Hence, the inverse A−1 can easily be represented by

A−1 =
1

I3

[

A2 − I1A + I2I
]

. (A.1.9)

These results are applicable to symmetric tensors, like the right Cauchy Green tensor or the strain
measures derived in Chapter 2.
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A.2 Differentiation of Base Tensors

Material Description The implementation of constitutives requires the knowledge of the elasticity
tensor, that is determined by the derivative of the stress measure with respect to the corresponding
strain measure. Performing this differentiation it is necessary to determine also the derivative of the
eigenbase with respect to the corresponding strain measure. Here we want to start with the material
formulation where the derivative of the material eigenbase with respect to the right Cauchy Green
tensor ∂S�/∂Mα has to be computed. For this we start with the expression for the eigenbase in
eqn. A.1.7, whereby we want to rewrite it here in terms of the right Cauchy Green tensor C� and
therefore we must insert here the squared eigenvalues. Furthermore we have to take into account
that the derivation of the modified eigenbase has to be calculated here. That means, that we have
to multiply the equation by λ−2

α and therefore we obtain

Mα =
G� · C� − [I1 − λ2

α]G� + I3λ
−2
α [ C� ]−1

2λ4
α − I1λ2

α + I3λ−2
α

=
Kα

Dα

(A.2.10)

Of course, the invariants are also formulated in terms of the squared eigenvalues. At first we can
determine the derivative by using the product rule again

∂Mα

∂C�
=

1

Dα

∂Kα

∂C �
− Kα ⊗ 1

D2
α

∂Dα

∂C�
, (A.2.11)

whereby the derivatives of Kα and Dα with respect to the right Cauchy Green tensor have to be
computed. We start with the computation of the nominators derivative that is

∂Kα

∂C�
= �

sym
C − G� ⊗ G� + λ2

(α)M
α ⊗ G� − λ−2

(α)I3M
α ⊗ [ C� ]−1

+ I3λ
−2
α [ C� ]−1 ⊗ [ C� ]−1 − λ−2

α I3�
sym
C−1. (A.2.12)

Here we get the fourth order tensor �sym
C−1 that was already introduced in eqn. 2.5.75 and that

results from the derivative of the inverse right Cauchy Green tensor with respect to the right Cauchy
Green tensor itself ∂ [ C� ]−1 /∂ [ C� ]. To determine this derivative we start with the identity
[ C� ]−1 ·C� = I and consider its derivative with respect to the right Cauchy Green tensor, whereby
we take the definition of the fourth order identity tensor in eqn. 2.5.45 into account. With this at
hand we obtain the expression we are looking for, such that 1

�
sym
C−1 =

∂ [ C� ]−1

∂C�
= −1

2

[

[ C� ]−1 ⊗ [ C� ]−1 + [ C� ]−1 ⊗ [ C� ]−1
]

. (A.2.13)

Taking eqn.2.5.47 and eqn. 2.5.371,3 into account also the derivative of the denominator can be
calculated by

∂Dα

∂C �
=
[

4λ4
α − I1λ

2
α − I3λ

−2
α

]

Mα − λ2
αG� + λ−2

α I3 [ C� ]−1 . (A.2.14)

1Here � = I⊗I denotes the fourth order unit tensor, that maps a second order tensor to itself A = � : A, whereas
�

t = I⊗I maps a second order tensor to its tranposed: [ A ]t = �
t : A. Therefore the given definition yields a

symmetric fourth order unit tensor.
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Now the relations in eqn. A.2.12 and A.2.14 can be inserted into eqn. A.2.11 and by using the
identity Kα/Dα = Mα we can rewrite it as

∂Mα

∂C�
=

1

Dα

[

�
sym
C − I3λ

−2
α �

sym
C−1 − G� ⊗ G� + λ2

α [ Mα ⊗ G� + G� ⊗ Mα ]

+ I3λ
−2
α [ C� ]−1 ⊗ [ C� ]−1 − I3λ

−2
α

[

[ C� ]−1 ⊗ Mα + Mα ⊗ [ C� ]−1
]

+ [ 2I3λ
−2
α − 2λ4

α ] Mα ⊗ Mα − Mα ⊗ Mα
]

. (A.2.15)

This result corresponds to the representation derived by Miehe [Mie93], whereby here the derivative
with respect to the material strain tensor is considered. Following Miehe [Mie93] equation A.2.15
can be rewritten as

∂Mα

∂C �
=

1

Dα
[ �sym

C − I3λ
−2
α �

sym
C−1 ] −

3
∑

β=1

[ I3λ
−2
α − λ4

β ] Mβ ⊗ Mβ − Mα ⊗ Mα, (A.2.16)

such that the derivative of the eigenbase with respect to the strain tensor can be reduced to a sum of
the eigenbases themselves and the fourth order unit tensors �sym

C and �sym
C−1. In favour of brevity the

author abandons to discuss the derivatives of the eigenbases for plane problems and the numerical
treatment of identical eigenvalues. These investigations are accomplished in detail by Miehe [Mie93]
or in the pupblication of Betsch & Steinmann [BS98].

Spatial Description For the determination of the spatial formulation we simply push forward the
results of the material setting, whereby we employ the relation

mα = F � · Mα · [ F � ]t . (A.2.17)

Performing the push forward operation term by term the derivative of the spatial eigenbase with
respect to the spatial metric tensor can be computed by

ϕ∗(
∂Mα

∂C�
) =

∂mα

∂g�
= [ �b − I3λ

−2
α �g ] − 1

Dα

3
∑

β=1

[ I3λ
−2
α − λ4

β ] mβ ⊗ mβ − mα ⊗ mα

(A.2.18)

The spatial fourth order unit tensor �g� is given by the push forward of the material fourth order unit
tensor �sym

C� .
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A.3 Convexity

x1 x2x

P1

P2
Pf(x1)

f(x2)

f(x)

Figure A.1. Definition of a konvex function

In the framework of plasticity convexity is a very important condition which the yield function
has to fullfill. In Königsberger [K0̈1] it is defined as follows. For a given scalarvalued function f(x),
as it is illustrated in fig. A.3 the convexity is ensured if there are two arbitrary values f(x1) and
f(x2) that are connected by a line

L(x) = f(x1) +
f(x2) − f(x1)

[x2 − x1]
[x− x1] (A.3.19)

and every value f(x) for any x1 < x < x2 lies below the line

L(x) ≥ f(x) (A.3.20)

A more comfortable formulation of the convexity criterion can be obtained by introducing a scalar
parameter λ and expressing x in terms of λ. This yields x = x1 + [1 − λ]x2, λ ∈ [0, 1], that is
inserted in eqn. A.3.19, such that we obtain

L(x) = f(x1) + λ [ f(x2) − f(x1) ] ≥ f(x1 + λ[x2 − x1]) λ ∈ [0, 1] (A.3.21)

This representation is also valid if vector- and tensorvalued functions f(x) are considered.
Another equivalent definition is given by Simo & Hughes [SH98] where the function f(x) for any
x1 < x < x2 is convex if the

f(x2) ≥ f(x1) + gradf(x1) · [x − x1]. (A.3.22)

This equation describes that if the gradient at f(x1) is less than the values f(x) for any x1 < x < x2

then convexity is ensured. Of course the function f(x) needs to be smooth in [x1,x2], such that
the gradient exists. This relation can be derived from eqn. A.3.21 that can be transformed to

f(x1 + λ[x2 − x1]) − f(x1)

λ
≤ f(x2) − f(x1), λ ∈ [0, 1]. (A.3.23)

By considering the limes of λ→ 0 we obtain the presented result in eqn. A.3.22.
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