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Abstract

In an undirected graph G we associate costs and weights to each edge. The weight-constrained

minimum spanning tree problem is to find a spanning tree of total edge weight at most a given

value W and minimum total costs under this restriction. In this thesis a literature overview

on this NP-hard problem, theoretical properties concerning the convex hull and the Lagrangian

relaxation are given. We present also some in- and exclusion-test for this problem. We apply a

ranking algorithm and the method of approximation through decomposition to our problem and

design also a new branch and bound scheme. The numerical results show that this new solution

approach performs better than the existing algorithms.
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1 Introduction

1.1 Problem

In this diploma thesis we focus on a problem from graph theory. Therefore we consider an

undirected graph G = (V,E) with a set of vertices V = {1, 2, . . . , n} and a set of edges E with

cardinality m, where we associate to each edge e ∈ E costs ce and a weight we. A very popular

concept of this mathematical field are the spanning trees of a graph.

Definition 1.1

A spanning tree T is a connected subgraph of G which contains no cycle and all vertices of G.

The problem is to find a spanning tree with minimal costs under the constraint that the weight

of the tree is not greater than a given constant W . We can state our problem in the following

way.

Problem 1 Weight-Constrained Minimal Spanning Tree Problem

OPT := min
∑

e∈T

ce (1.1)

s.t.
∑

e∈T

we ≤ W (1.2)

T ∈ T (1.3)

where T is the set of all spanning trees in G.

For simplification we denote the costs of a tree T as c(T ) =
∑

e∈T ce and the weight of a tree

T as w(T ) =
∑

e∈T we. We call this problem weight-constrained minimal spanning tree problem

(WCMST) and in the multidimensional case with a vector of weights on each edge resource-

constrained minimal spanning tree problem (RCMST) where for each edge L resources are given

and for each of them a constraint has to be satisfied.

Problem 2 Resource-Constrained Minimal Spanning Tree Problem

min
∑

e∈T

ce (1.4)

s.t.
∑

e∈T

wl
e ≤ Wl for 1 ≤ l ≤ L (1.5)

T ∈ T (1.6)
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Example 1.1

Let the following graph G with n = 11 and m = 18 be given:

(ce, we) /.-,()*+
(4,8)

(3,6)

(1,8) NNNNNNNNNNNNNNNNNNNNNNNNNNN
N /.-,()*+ (5,6) /.-,()*+

(9,7) >>>>>>>>>>>>>>>>>(1,1)/.-,()*+
(1,17) EEEEEEEEEEEEEEEEEEE

(1,4)

zzzzzzzzzzzzzzzzzzz (8,0) /.-,()*+
(2,5)

(3,0) /.-,()*+ (15,15) /.-,()*+
(2,9)oooooooooooooooooooooooooooo (6,8)

(3,3) /.-,()*+
(4,4)�����������������/.-,()*+ (5,2) /.-,()*+ (1,0) /.-,()*+

A minimal spanning tree ignoring the weight constraint is:

(ce, we) /.-,()*+ (3,6)

(1,8) NNNNNNNNNNNNNNNNNNNNNNNNNNN
N /.-,()*+ /.-,()*+

(1,1)/.-,()*+
(1,17) EEEEEEEEEEEEEEEEEEE

(1,4)

zzzzzzzzzzzzzzzzzzz /.-,()*+
(2,5)

(3,0) /.-,()*+ /.-,()*+ (3,3) /.-,()*+
(4,4)�����������������/.-,()*+ /.-,()*+ (1,0) /.-,()*+

This tree has the costs c(T ) = 20 and the weight w(T ) = 48. If we search for a minimal spanning

tree with weight less or equal than 33, this tree is not feasible. An optimal solution with c(T ) = 24

and w(T ) = 33 is the following tree.

(ce, we) /.-,()*+ (3,6)

(1,8) NNNNNNNNNNNNNNNNNNNNNNNNNNN
N /.-,()*+ /.-,()*+

(1,1)/.-,()*+ (1,4)

zzzzzzzzzzzzzzzzzzz /.-,()*+
(2,5)

(3,0) /.-,()*+ /.-,()*+ (3,3) /.-,()*+
(4,4)�����������������/.-,()*+ (5,2) /.-,()*+ (1,0) /.-,()*+
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1.2 Literature Overview

In this thesis our nomenclature is related to the paper of Xue [38] and to the publication of

Dumitrescu and Boland [12], which discusses the problem of finding a shortest path instead of a

spanning tree. In the literature very different denotations for our problem can be found: Minimal

spanning tree subject to a side constraint, minimal spanning tree subject to a budget constrained,

knapsack constrained minimum spanning tree problem and constrained minimum spanning tree

problem. The name ’constrained minimum spanning tree’ used in two on this problem most

important papers, the article of Goemans and Ravi [18] respectively the publication of Hong,

Chung and Park [27], seems not to be precise enough since a large number of different problems

of finding a minimal spanning tree with some constraint exists. Deo and Kumar study in [11] 29

constrained spanning tree problems. Some examples:

• Degree-Constrained Minimal Spanning Tree Problem:

The goal is to find a minimal spanning tree under the condition that the degree of each

vertex i (the number of edges connecting the node i) is bounded by B i.e., deg(i) ≤ B for

all i ∈ V .

• Diameter-Constrained Minimal Spanning Tree Problem

The aim is to find a minimal spanning tree such that the largest unique path between two

nodes on the tree contains at least a given number of edges. If weights for each edge are

given, the problem can be extended to the problem of finding a minimal spanning tree

under the condition that the weight of every path between two nodes is smaller than a

given value.

• Hop-Constrained Minimal Spanning Tree Problem

This is a special case of the diameter-constrained minimal spanning tree problem: We

search for a minimal spanning tree such that the number of edges in the shortest path

along the tree from a fixed node 0 to all other nodes is smaller than a value B.

• Capacitated Minimal Spanning Tree Problem:

For every node i ∈ V a weight or a demand di is given. Additionally, we have a value C.

For a set S ∈ V we define d(S) =
∑

i∈S di and δ−(S) = {(i, j) ∈ E i ∈ V \ S, j ∈ S}. The

problem is to find a minimal spanning tree T such that |T ∩ δ−(S)| ≥ ⌊d(S)
C

⌋ for all S ⊂ V .

• Weight-Constrained Minimal Spanning Tree With Flow Requirements:

Additionally to Problem 1 we identify one single vertex as source and associate a demand

of infinity. All other nodes i ∈ V are interpreted as sinks and have a demand di. The goal

is to find a minimal spanning tree which satisfies the flow requirements and the weight-

constraint.

By definition of some problems the tree has to be directed. The description and some remarks

to the directed version of the WCMST-problem, the so called weight-constrained minimum ar-

borescence problem (WCMA), are given in Chapter 3.

9
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Only a few considerations have been published to our problem: The WCMST was first mentioned

in the paper of Aggarwal, Aneja and Nair in 1982 [1]. In the literature two main approaches are

used to solve the problem exactly. On the one hand a Lagrangian relaxation to approximate a

solution combined with a branch and bound strategy ([1], [37]) and on the other hand a more

innovating approach by using the matrix tree theorem [27]. The most important publications to

the problem are the paper of Aggarwal, Aneja and Nair and the paper of Shogan [37] which give

some exact algorithms, the article of Goemans and Ravi [18] which contains an approximation

scheme and the paper of Hong, Chung and Park [27] which proposed an exact algorithm by using

the matrix tree theorem. The publication of Xue [38] contains only an algorithm for computing

the Lagrangian relaxation, and in [23] Hassin and Levin improve the results from [18]. In [39]

the authors Yamada and Wantanabe consider a maximum spanning tree problem subject to a

weight constraint. We can easily apply this to the minimization case. A few sources refer to the

publication of Morozov [33]. This text is written in Russian and was not found in non-Russian

literature. Unfortunately, from the sources it can not be concluded what the content of this

paper is like. In [4] is only mentioned that a polynomial approximation algorithm is published.

A further article in Chinese published and not available in English is the paper of Li and Yao

[28]. In the abstract it can be read that the NP-completeness is proven, with a dual algorithm of

generalized linear programming the upper bound was estimated and the character of an optimal

solution was analyzed.

1.3 Chapter Outline

In Chapter 2 we collect some basic definitions from graph theory and focus on the minimal cost

spanning tree problem. These results become relevant for other parts of this thesis. Chapter 3

introduces different formulations for our problem. Chapter 4 shows the relation between spanning

trees and matroids which allows us to state our problem in a more general way. In Chapter 5 we

classify the complexity of our problem. The consideration of a bicriterial optimization problem

allows us in Chapter 6 to state some conclusion for the convex hull of our problem which will be

connect to the Lagrangian relaxation in Chapter 7. Chapter 8 reviews an alternative relaxation

approach. In Chapter 9 we develop some possibilities to reduce the complexity of a problem by

in- and exclusion methods. Chapter 10 focus on a relation between the costs and the weight

of an edge. Chapter 11 gives an overview over all existing exact solution methods and a new

branch and bound scheme. All known approximation algorithms for the WCMST are described

in Chapter 12. The numerical results are presented in Chapter 13 and finally we summarize the

results of this thesis and give an outlook for further research in Chapter 14.

10
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1.4 Application

To motivate our considerations we present two applications:

Example 1.2 Designing Physical Systems

In Ahuja, Magnanti and Orlin [2] some possible applications for the simple minimal spanning tree

problem are given. They list some problems of physical systems where a spanning tree structure

is needed:

• Pipeline Construction

A pipeline network connecting a number of towns should be constructed: We search for the

smallest possible total length of the pipeline.

• Linking Isolated Villages

There are several villages given which are connected by roads but not by telephone lines.

The aim is to determine along which stretches of road the telephone lines should be placed

such that the total of road length is minimized.

In both cases we have to solve a minimal spanning tree problem. For the construction costs we

can remark that the pipeline / telephone line with smallest total length need not be automatically

the cheapest way of connecting the towns (e.g. a mountain must be passed by a tunnel etc.). If

the construction costs should not exceed a given value we have to add a budget constraint. This

is a WCMST where the objective function is to minimize the total length and the constraint that

the costs are smaller then the budget limit.

The second application is sketched in [38]:

Example 1.3 Minimum Cost Reliability Constrained Spanning Tree

An important application of our problem is the minimum cost reliability constrained spanning tree

problem in communication networks: We have n stations in the plane which can communicate

with each other. The goal is to find a minimum cost connection (for instance the costs are

modelled by distances de for e = {i, j} between the stations i and j) under the restriction that the

reliability of a connection (as spanning tree) described by a probability pe for each pair of stations

i, j is greater than a limit P ∈ [0, 1].

min
∑

e∈T

de

s.t.
∏

e∈T

pe ≥ P

T ∈ T

We can reformulate the constraint

∏

e∈T

pe ≥ P ⇔ log
∏

e∈T

pe ≥ log P ⇔
∑

e∈T

log pe ≥ log P.

11
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This is by multiplying with (−1) equivalent to

∑

e∈T

− log pe ≤ − log P.

So we can interpret the minimum cost reliability constrained spanning tree as weight-constrained

minimal spanning tree problem.

12



2 Spanning Trees

The minimal spanning tree problem is one of the most popular problems in graph theory and

therefore a lot of literature concerning fast algorithms can be found. In this chapter we collect

some basic definitions from graph theory, properties concerning spanning trees and some facts for

the minimal spanning tree problem which might become useful for our problem. Also we use the

two optimality conditions for the minimal spanning tree problem to obtain optimality conditions

for the weight-constrained minimal spanning tree problem.

2.1 Definitions and Properties

The denotations and results in this section are taken from Ahuja, Magnanti and Orlin [2]. In

the first chapter we gave the definition of the a spanning tree. If only the denotation tree is used

we talk about a connected subgraph that contains no cycle. The whole set of vertices need not

necessarily be contained in the tree. For simplification we use the following notations: For an

edge e ∈ E which connects the vertices i and j we can write e = {i, j}. (In the directed case - e

goes from i to j - the denotation e = (i, j) is used. We call i the source of e and j the target of

e.) To characterize a spanning tree we define firstly a path.

Definition 2.1 Path

A path P is a sequence of vertices (i1, . . . , ik, ik+1, . . . , iK) with eikik+1
= {ik, ik+1} ∈ E for all

k ∈ {1, . . . , k} and without any repetition in the set of vertices.

For a spanning tree we can state some properties.

Property 2.1

Let T be a spanning tree of G. Then we have the following properties:

1. T has at least two leaves, where a leaf is a vertex which is endpoint of exactly one edge.

2. T contains n − 1 edges.

3. Every pair of vertices in T is connected by exactly one path.

A very important ingredient for several algorithms in the next chapters is the concept of ex-

changing some edges for a spanning tree.

Definition 2.2 T -exchange

A T-exchange is a pair of edges [e, f ] such that for e ∈ T and f /∈ T the set T \ {e} ∪ {f} is a

spanning tree. We define the costs of a T−exchange as c[e, f ] := cf − ce.

13
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Now we define fundamental cycles and fundamental cuts which become important in the next

section.

Definition 2.3 Cycle

A cycle is a path i1, i2, . . . , ik with the edges {i1, i2}, {i2, i3}, . . . , {ik−1, ik} together with the edge

{ik, i1}.

Property 2.2 Fundamental Cycle

Let T be a spanning tree of G. For every T -exchange [e, f ] we obtain exactly one cycle. This

cycle is called fundamental cycle.

For an edge f /∈ T let C(T, f) denote this cycle in T ∪ {f}. A spanning tree T has m − n + 1

fundamental cycles since |E \T | = m−n+1. If we delete in every fundamental cycle an arbitrary

edge, we obtain again a spanning tree (i.e. if f ∈ E \ T and if C(T, f) is the uniquely defined

cycle in T ∪ {e}, then T ∪ {f} \ {e} for all e ∈ C(T, f) is a spanning tree).

Definition 2.4 Cut

A cut is a partition of V in a set X ⊂ V and a set V \X. Every cut defines a set {X,V \X} ⊂ E

with the edges in E which have one node in X and the other node in V \ X.

Property 2.3 Fundamental Cuts

Let T be a spanning tree of G. If we delete an arbitrary edge e of T , we get some disconnected

trees T1 and T2. The edges which have one node in T1 and one node in T2 constitute a cut, called

fundamental cut, of G with respect to T . Let {Xe, V \ Xe} denote this set of edges.

A graph has n − 1 fundamental cuts with respect to any tree since a spanning tree T contains

n − 1 edges. If we add an edge of a fundamental cut to the two subtrees T1 and T2, we obtain

again a spanning tree (i.e. if e ∈ T and if Q = {Xe, V \ Xe} is the uniquely defined cut in G.

Then T \ {e} ∪ {f} is a spanning tree for all f ∈ Q.)

For computational uses we define at last the adjacency list which allows us to store the data

structure in a simple way:

Definition 2.5 Adjacency List

The edge adjacency list A(i) of a vertex i ∈ V is the set of edges emanating from this vertex i.e.,

A(i) = {{i, j} ∈ E|j ∈ V }. The node adjacency list A(i) is the set of vertices adjacent to i i.e.,

A(i) = {j ∈ V |{i, j} ∈ E}.

Property 2.4

For an adjacency list in an undirected graph we have

∑

i∈V

|A(i)| = 2m.

14
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2.2 Minimal Spanning Tree Problem

Now we give some optimality conditions for the minimal spanning tree problem which can be

used to formulate two necessary optimality conditions for our WCMST. Firstly, we state the

formulation of the already mentioned minimal spanning tree problem.

Problem 3 (MST) Minimal Spanning Tree Problem

min
∑

e∈T

ce

s.t. T ∈ T

where T is the set of all spanning trees of the graph.

For the minimal spanning tree problem two optimality conditions can be formulated.

Theorem 2.5 Cut Optimality Condition [2]

A spanning tree T ⋆ is a minimal spanning tree if and only if for every edge e ∈ T ⋆, ce ≤ cf for

every f ∈ {Xe, V \ Xe}.

Proof

• Assume there exists a minimal spanning tree T that does not satisfy this condition. Then

we have an edge e ∈ T and an edge f ∈ {Xe, V \ Xe} with cf < ce. Now we can delete e

from the tree and add f to it. So we obtain again a spanning tree with c(T \ {e} ∪ {f}) =

c(T ) − ce + cf < c(T ). This is a contradiction to the optimality of T .

• For the other part of the proof we have to show that a tree T ⋆ satisfying the cut optimality

condition is optimal. Assume T ′ is a minimal spanning tree and T ′ 6= T ⋆. At least one edge

e ∈ T ⋆ exists with e /∈ T ′. If we delete this edge we have a cut Xe, V \ Xe. Now we add

e to the tree T ′. This T ′ ∪ {e} must contain a cycle C(T ′, e) with an edge f 6= e where f

has one node in Xe and the other in V \Xe. Since T ⋆ satisfies the optimality condition we

have ce ≤ cf . On the other hand T ′ is optimal and cf ≤ ce must hold, therefore ce = cf .

Then

c(T ⋆) = c(T ⋆) − ce + cf = c(T ⋆ \ {e} ∪ {f}).

The tree T ⋆ \ {e} ∪ {f} has one edge more in common with T ′ and satisfies also the cut

optimality. So we repeat this step until we obtain T ′. In total we have c(T ⋆) = c(T ′) and

therefore T ⋆ is also a minimal spanning tree.

�

The theorem leads directly to the following corollary.

Corollary 2.6 [31]

A spanning tree T has minimal costs if and only if no T -exchange has negative costs.

15
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A further optimality condition follows from the property that for each pair of vertices there exists

a path between both vertices in a spanning tree.

Theorem 2.7 Path Optimality Condition [2]

A spanning tree T ⋆ is a minimal spanning tree if and only if for every nontree edge f = {k, l}
holds that ce ≤ cf for every edge e contained in the path in T ⋆ connecting k and l.

Proof

• Let T ⋆ a minimal spanning tree and the edge e = {i, j} is contained in the path in T ⋆

between the vertices k and l. If for the nontree edge f = {k, l} holds that ce > cf , we could

execute a T ⋆−exchange [e, f ]. The new spanning tree has smaller costs than T ⋆. This

contradicts the optimality of T ⋆ and the path optimality conditions hold.

• Let e = {i, j} ∈ T ⋆ and let Xe and V \ Xe be the set of vertices obtained by deleting e

from T ⋆. Consider an edge {k, l} with k ∈ Xe and l ∈ V \Xe. Since T ⋆ contains an unique

path from k to l and e is the only edge connecting the sets Xe and V \ Xe, e is element

of the path connecting the vertices k and l. From the path optimality condition we know

that ce ≤ cf where f = {k, l}. This condition must hold for every nontree edge {k, l} in

the cut {Xe, V \ Xe} for all e ∈ T ⋆.

So T satisfies the cut optimality and from Theorem 2.5 it is a minimal spanning tree.

�

2.3 Optimality Conditions for the WCMST

The optimality conditions of the minimal spanning tree problem can be used to formulate neces-

sary conditions for an optimal solution of the weight-constrained minimal spanning tree problem.

Unfortunately, these two conditions are not very useful for practical purpose.

Theorem 2.8 Cut Optimality Condition

A spanning tree T ⋆ is an optimal solution for the weight-constrained minimal spanning tree prob-

lem if for every edge e ∈ T ⋆ and for every f ∈ {Xe, V \ Xe} with cf < ce the weight satisfies

w(T ) − we + wf > W .

Proof

Suppose the theorem does not hold. Then we can make a T ⋆-exchange [e, f ] and obtain a tree

with

c(T ⋆ \ {e} ∪ {f}) = c(T ⋆) − ce + cf < c(T ⋆)

and

w(T ⋆ \ {e} ∪ {f}) = w(T ⋆) − we + wf ≤ W.
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This is a contradiction to the optimality of T ⋆.

�

Theorem 2.9 Path Optimality Conditions

A spanning tree T ⋆ is optimal for the weight-constrained minimal spanning tree problem if for

every nontree edge f = {k, l} with cf < ce for every edge e contained in the path in T ⋆ connecting

k and l, it must hold that w(T ⋆) − we + wf > W .

Proof

Suppose the theorem does not hold. Then we can replace e by f in T ⋆ and we get a tree with

c(T ⋆ \ {e} ∪ {f}) = c(T ⋆) − ce + cf < c(T ⋆)

and

w(T ⋆ \ {e} ∪ {f}) = w(T ⋆) − we + wf ≤ W.

This is a contradiction to the optimality of T ⋆.

�

Corollary 2.10

Let T ⋆ be an optimal solution for the WCMST. For every T ⋆-exchanges [e, f ] with c[e, f ] < 0 it

must hold that w(T ⋆) − we + wf > W .

Proof

The theorem is valid since otherwise the tree obtained by the T ⋆-exchanges which improves the

total costs is feasible. This is a contradiction to the optimality of T ⋆.

�

2.4 Algorithms for the Minimal Spanning Tree Problem

To solve the WCMST in many approaches a ’simple’ minimal spanning tree problem without

constraint has to be solved. Therefore we give a short remark to MST-algorithms: In the history

there are several approaches to solve the minimal spanning tree problem. The first work was

published in 1926 by Boruvka [5], [19]. Chazelle [9] claimed that the minimal spanning tree

problem is one of the oldest problems in computer science. The two most popular algorithms are

the algorithms of Prim and Kruskal, which will be presented next. Both algorithms are ’greedy’

algorithms. They add in each step an edge with minimal costs from a candidate list until a

spanning tree is found.

17



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Prims Algorithm

Algorithm 2.1 MST - Algorithm of Prim

Require: Graph G = (V,E) costs ce for all e ∈ E

Ensure: minimal spanning tree T

choose an edge e = {i, j} with minimal costs X := {i, j}
T := {e}
while |T | < n − 1 do

choose e = {i, j} with i ∈ X and j ∈ V \ X and minimal ce

5: X := X ∪ {j}
T := T ∪ {e}

end while

The time complexity of this algorithm is O(n2) and can be reduced by an efficient implementation

to O(m + n log n).

Example 2.1

The algorithm of Prim works in the following way:/.-,()*+ ce /.-,()*+/.-,()*+ 5

3 8 //////////////
/.-,()*+ 1

4

3 OOOOOOOOOOOOOO /.-,()*+
4 ???????? /.-,()*+/.-,()*+

0
/.-,()*+

10

1

oooooooooooooo /.-,()*+ 2

��������/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+/.-,()*+ /.-,()*+ /.-,()*+/.-,()*+
0

/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
a) /.-,()*+

0
/.-,()*+ 1

ooooooooooooooo /.-,()*+ b) /.-,()*+
0

/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
c)/.-,()*+

3

/.-,()*+ /.-,()*+ /.-,()*+
3

/.-,()*+
3 PPPPPPPPPPPPPPP /.-,()*+ /.-,()*+

3

/.-,()*+ 1

3 PPPPPPPPPPPPPPP /.-,()*+/.-,()*+ /.-,()*+ /.-,()*+/.-,()*+
0

/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
d) /.-,()*+

0
/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

}}}}}}}}}}
e) /.-,()*+

0
/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
f)
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Kruskals Algorithm

Algorithm 2.2 MST - Algorithm of Kruskal

Require: graph G = (V,E) with costs ce for all e ∈ E

Ensure: minimal spanning tree T

sort the edges of E such that ce1
≤ ... ≤ cem with m = |E|

T := ∅
while |T | < n − 1 do

choose an edge with minimal costs such that T ∪ {e} contains no cycle.

5: end while

The time complexity of this second algorithm is O(m log m).

Example 2.2

To expose the difference between both algorithms we consider again the example from the previous

section./.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ 1 /.-,()*+ /.-,()*+ /.-,()*+ 1 /.-,()*+/.-,()*+ /.-,()*+ /.-,()*+/.-,()*+
0

/.-,()*+ /.-,()*+ a) /.-,()*+
0

/.-,()*+ /.-,()*+ b) /.-,()*+
0

/.-,()*+ 1

ooooooooooooooo /.-,()*+ c)/.-,()*+ /.-,()*+ 1 /.-,()*+ /.-,()*+
3

/.-,()*+ 1 /.-,()*+ /.-,()*+
3

/.-,()*+ 1

3 PPPPPPPPPPPPPPP /.-,()*+/.-,()*+ /.-,()*+ /.-,()*+/.-,()*+
0

/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
d) /.-,()*+

0
/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
e) /.-,()*+

0
/.-,()*+ 1

ooooooooooooooo /.-,()*+ 2

~~~~~~~~~
f)

Other Algorithms

Furthermore there are some other algorithms with much lower time complexity. Yao [40] and

Cheriton and Tarjan [10] independently developed algorithms with O(m log log n). In 1986

Gabow, Galli, Spencer and Tarjan [15] published an algorithm with complexity O(m log β(m,n))

where β(m,n) is the number of needed log-iterations for mapping n to a number less than m
n

.

In [9] an algorithm for the minimal spanning tree problem is proven which runs in O(mα(m,n))

where

α(m,n) := min{i ≥ 1|A(i, 4⌈m

n
⌉) > log n}
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with the Ackermann’s function A : N × N → N where

A(i, j) :=































2j if i = 0

0 if j = 0

2 if i ≥ 1 and j = 1

A(i − 1, A(i, j − 1)) if i ≥ 1, j ≥ 2.

20



3 Different Formulations

In this chapter we are interested in modelling the problem as integer programm and present two

different formulations. For the sake of simplicity we make at first a simplification for our costs

and weights.

3.1 Generalization

Lemma 3.1

Without lost of generality we can assume that all weights and costs are positive.

Proof

Suppose a graph with negative costs and weights is given. Let cmin := |mine∈E ce| and wmin :=

|mine∈E we|. Then we define:

c̄e := ce + cmin, w̄e := we + wmin for all e ∈ E and W̄ := W + (n − 1)wmin

An optimal tree T̄ ⋆ for the WCMST with costs c̄ and weights w̄ such that the total weight of the

tree is not greater than W̄ is also optimal for the original problem:

w(T̄ ⋆) =
∑

e∈T̄ ⋆

we

=
∑

e∈T̄ ⋆

(w̄e − wmin)

=
∑

e∈T̄ ⋆

w̄e − (n − 1)wmin

= w̄(T̄ ⋆) − (n − 1)wmin

≤ W̄ − (n − 1)wmin

= W + (n − 1)wmin − (n − 1)wmin

= W
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So T̄ ⋆ is feasible. Suppose it exists a tree T with w(T ) ≤ W and c(T ) < c(T̄ ⋆).

c̄(T ) =
∑

e∈T

c̄e

=
∑

e∈T

(ce + cmin)

=
∑

e∈T

ce + (n − 1)cmin

= c(T ) + (n − 1)cmin

< c(T̄ ⋆) + (n − 1)cmin

=
∑

e∈T̄ ⋆

(ce + cmin)

= c̄(T̄ ⋆)

Since T is also feasible for the new problem (same arguments) this is a contradiction to the

optimality of T̄ ⋆.

�

For the following chapters we make the assumptions that costs and weights are greater or equal

than zero. Moreover we suppose that a graph does not contain multiedges and loops.

3.2 WCMST as Integer Program I

An interesting topic is to formulate our problem especially the set T . A classical formulation is

the following, which can be found in different sources [1], [2], [3].

Problem 4

OPT := min
∑

e∈E

cexe (3.1)

s.t.
∑

e∈E

wexe ≤ W (3.2)

∑

e∈S

xe ≤ |S| − 1,∀S ∈ S with 2 ≤ |S| ≤ n − 1 (3.3)

∑

e∈E

xe = n − 1 (3.4)

xe ∈ {0, 1} (3.5)

where S is the set of all subgraphs of G.

The binary variable xe is equal to 1 if the tree contains the edge e and 0 otherwise. The constraint

(3.2) is the weight-restriction. The inequality (3.3) ensures that T contains no cycles and (3.4)

guarantees that every vertex is connected. This formulation is not very useful for a LP-relaxation
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since the cardinality of the set of all subgraphs S is very large. For the RCMST problem we can

replace (3.2) by
∑

e∈E

wl
exe ≤ Wl for all 1 ≤ l ≤ L (3.6)

3.3 WCMST as Integer Program II

A second way to formulate the problem of finding a minimal spanning tree is to interpret the

problem as a multicommodity network flow problem. Therefore, we need a directed edge struc-

ture: We replace each edge e ∈ E with nodes i and j by two anti-symmetric arcs (i, j) and (j, i).

We call this set ~E. Additionally, we define cij = cji := ce and wij = wji := we. For an undirected

graph G = (V,E) let ~G = (V, ~E) denote the corresponding directed graph.

Definition 3.1

A spanning tree T ∈ ~G = (V, ~E) is a directed-in-tree rooted at node s if the unique path in the

tree from any vertex to node s ∈ V is a directed path.

Every node in the directed in-tree (except the node s) has outdegree 1.

Lemma 3.2

There is an one-to-one correspondence between the trees in G and the set of all directed-in-trees

rooted at node n.

Proof

Let Tn denote the set of directed-in-trees rooted at node n in ~G.

1. Let T ∈ T . If we orientate all edges in T to n, we have a tree ~T in Tn.

2. Let ~T ∈ Tn. If we ignore the directions of the tree ~T , we get a tree T in T .

So the one-to-one correspondence holds.

�

Example 3.1 Correspondence?>=<89:;1 ?>=<89:;2 OOOOOOOOOOOOOOOO ?>=<89:;3 ?>=<89:;4?>=<89:;5 ?>=<89:;6

oooooooooooooooo ?>=<89:;n

���������
corresponds to ?>=<89:;1

��
?>=<89:;2 oo ''OOOOOOOOOOOOOOOO ?>=<89:;3 ?>=<89:;4?>=<89:;5 // ?>=<89:;6

77oooooooooooooooo ?>=<89:;n
�� ���������
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Obviously the transformation of an undirected tree to a directed tree does not change costs and

weights. If we find a directed weight-constrained minimal spanning tree in Tn, we have an optimal

solution for our problem.

For the alternative formulation, which can be found in the paper of Jörnsten and Migdalas

[29], we interpret the node n as sink and all the other nodes as sources generating one unit of

flow. The flow has to be sent from each source over an unique path to the sink:

Problem 5

min
∑

(i,j)∈ ~E

cijyij (3.7)

s.t.
∑

(i,j)∈ ~E

wijyij ≤ W (3.8)

∑

j∈V

(i,j)∈ ~E

yk
ij −

∑

j∈V

(j,i)∈ ~E

yk
ji =



















1 if i = k

−1 if i = n

0 else

∀j ∈ V,∀k ∈ V \{n} (3.9)

yk
ij ≤ yij ∀(i, j) ∈ ~E ∀k ∈ V \{n} (3.10)

yk
ij ≥ 0 ∀(i, j) ∈ ~E ∀k ∈ V \{n} (3.11)

yij + yji ≤ 1 ∀(i, j) ∈ ~E (3.12)

yij ∈ {0, 1} (3.13)
∑

j∈V

(i,j)∈ ~E

yij = 1 ∀i ∈ V \{1} (3.14)

The variable yij is 1 if an edge (i, j) is element of the solution and 0 otherwise. The yk
ij ∈ R

denote if a flow generated at node k is sent along the edge (i, j). The equalities (3.9) are the

flow conserving constraints and (3.10) ensures that flow is sent along an edge only if the edge is

contained in the minimum spanning tree. The inequality (3.14) ensures that only one edge goes

out from a node. Combined with (3.12) this guarantees the spanning tree structure. From a

resulting directed tree we go back to the undirected tree by ignoring the direction of each arc in

the directed tree. To obtain a spanning tree in G = (V,E) we can set xe = yij + yji if e = {i, j}.

3.4 The Weight-Constrained Minimal Arborescence Problem

In the previous formulation we have considered a directed version of our problem. More formal.

Definition 3.2 Arborescence

Let G = (V,A) a directed graph with a set of vertices V and a set of arcs A := {(i, j), i, j ∈ V }.
An arborescence B, rooted at s, is a connected partial graph G′ = (V,B) of G, B ⊂ A, such that
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each vertex has out-degree 1, |B| = n − 1, B contains no cycles and for each vertex j exists a

unique path from s to j.

We can extend the weight-constrained minimum spanning tree problem to a weight-constrained

minimum arborescence problem (WCMA).

Problem 6 Weight-Constrained Minimum Arborescence Problem

min
∑

(i,j)∈B

cij

s.t.
∑

(i,j)∈B

wij ≤ W

B ∈ B

where B is the set of all arborescence.

By construction we can model B ∈ B by (3.9) - (3.14). The difference between the WCMST and

the WCMA is that in the WCMA cij and cji or wij and wji need not necessarily be equal.

3.5 Dual Problem

In the paper of Mehlhorn and Ziegelmann [32] a dual problem for the WCMST is stated. For

each possible tree T ∈ T we introduce a variable xT ∈ B and get:

Problem 7

min
∑

T∈T

c(T )xT

s.t.
∑

T∈T

xT = 1

∑

T∈T

w(T )xT ≤ W

xT ∈ B

This leads to the dual problem

Problem 8 Dual Problem

max u + Wv

s.t. u + vw(T ) ≤ c(T ) ∀T ∈ T
v ≤ 0

In this formulation only two variables are given, but the number of constraints may be exponen-

tial.
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4 Interpretation as Matroid Optimization

Problem

In Chapter 3 we have discussed the weight-constrained minimal spanning tree problem from the

Integer Programming perspective. This chapter deals with a relation to a field of combinato-

rial optimization, the structure of matroids. In the first section of this chapter we give some

fundamental definitions of matroid theory. The second section contains the connection between

matroids and the minimal spanning tree problem which is extended to the weight-constrained

minimal spanning tree problem in the last part of this chapter.

4.1 Basics in Matroid Theory

Let us define a matroid:

Definition 4.1 Matroid

An ordered pair M = (F,F) where F is a family of subsets of the set F is called matroid if and

only if the following three conditions hold.

1. ∅ ∈ F

2. If S ∈ F and S′ ∈ S, then S′ ∈ F .

3. If Sp, Sp+1 ∈ F are subsets with p respectively p+1 elements, then there exists a f ∈ Sp+1\Sp

with Sp ∪ {f} ∈ F .

We call the elements of M independent sets.

Example 4.1 [2]

• Graphic Matroid

We let F = E where E is the set of edges in a graph G. Furthermore, we define F as the

collection of edge sets which contains no cycle. (E,F) satisfies the matroid properties: If

Sp and Sp+1 are some independent edge sets which contain p and p + 1 edges, we can add

some edge e from Sp+1 to Sp and get a new set which contains no cycle.

• Partition Matroid

Let F = F1 ∪F2 ∪ · · · ∪FK be an union of K disjoint sets and let u1, . . . , uK ∈ N. Let F be

the family of subsets S ⊂ F such that for all k ∈ {1, . . . ,K} S ∩ Fk contains no more than

uk.
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Notice that both examples become relevant in Section 12.2. The important idea in matroid

theory is the concept of finding maximal independent sets.

Definition 4.2

A set S is called maximal independent set if we cannot add an element f ∈ F \ S such that

S ∪ {f} is independent. A maximal independent set is also called a basis of the matroid.

In Definition 2.2 we have introduced the T -exchange. The corresponding idea in matroid theory

(S is basis and S′ = S \ {f} ∪ {e} is also a basis) is called elementary basis operation.

4.2 Matroid Optimization Problem

Now we associate some costs cf to each element f ∈ F and define the costs of a subset S ⊂ F as

c(S) :=
∑

f∈S

cf .

So we can formulate the following problem:

Problem 9 Matroid Optimization Problem

min
∑

f∈S

cf

s.t. S is a basis of M.

where M = (F,F) is a matroid.

A simple approach for this problem is the use of a greedy algorithm.

Algorithm 4.1 Greedy algorithm for minimum cost basis of Ahuja, Magnanti and Orlin

order the elements of F = {f1, . . . , fm} such that c1 ≤ c2 ≤ · · · ≤ cm

set LIST:= ∅
for j = 1 TO m do

if LIST∪{fj} is independent then

5: LIST := LIST ∪ {fj}
end if

end for

LIST is a minimum cost basis;

Theorem 4.1 [2]

The algorithm solves the matroid optimization problem
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Proof

Let S⋆ be an optimal solution for Problem 9 and the solution of Algorithm 4.1 is LIST:=

{fj1 , fj2, . . . , fjK
}. If LIST= S⋆ nothing is to show. Assume S⋆ 6= LIST. Suppose the elements of

S⋆ are ordered in the order of increasing elements from F = {f1, . . . , fm} as fj1, . . . , fjk
, fq, . . .

with fq 6= fjk+1
and fq is the first element of S⋆ not contained in LIST. We know that the set

{fj1 , fj2, . . . , fjk
, fq} is independent. From the construction during the algorithm we can conclude

from q ≥ jk+1 that cq ≥ cjk+1
. The sets S = {fj1, . . . , fjk

, fjk+1
} and S⋆ are independent. So

we can add some elements of S⋆ to S and obtain another basis S′. This basis must contain the

elements S⋆ ∪ {fjk+1
} \ fp for some fp ∈ S⋆ and p ≥ jk+1, c(S

′) ≤ c(S⋆). So S′ is also an optimal

basis. This basis S′ has more common elements with LIST than S⋆. We can iterate with the set

S′ until we have equality of S′ and LIST.

�

We can interpret the minimal spanning tree problem as matroid optimization problem where we

call like in Example 4.1 a set independent if we set E equal to F and call F the set of all subsets

of E which contains no cycles. The Algorithm 4.1 is a generalization of Kruskal’s algorithm. The

if-clause testing if LIST ∪{ej} is independent corresponds to the test in Kruskal’s algorithm if

T ∪ {e} contains a cycle.

4.3 Weight-Constrained Matroid Optimization Problem

Quite obviously, we can extend our Problem 9 to a weight-constrained matroid optimization

problem if we add a weight constraint to the formulation, if some weights are associated to each

f ∈ F :

Problem 10 Weight-Constrained Matroid Optimization Problem

min
∑

f∈S

cf

s.t.
∑

f∈S

wf ≤ W

S is a basis of M

where M = (F,F) is a matroid.

Like in the previous section this problem is a generalization of the weight-constrained minimal

spanning tree problem. The idea to interpret the WCMST as matroid problem is used in Section

12.2. Also a large number of presented algorithms in this thesis can be extended to the weight-

constrained minimal matroid optimization problem.
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5 Complexity

The minimal spanning tree problem is polynomially solvable by the algorithms of Prim and

Kruskal. For the weight-constrained minimal spanning tree problem this result is only true if

NP = P . Aggarwal, Aneja and Nair [1] and Yamada and Wantanabe [39] prove the NP-hardness.

Theorem 5.1 NP-Hardness

The weight-constrained minimal spanning tree problem is NP-hard.

Proof

The idea is to reduce the knapsack-problem to the weight-constrained minimal spanning tree

problem.

Let us consider an instance of the knapsack-problem:

max

n
∑

i=1

aixi (5.1)

s.t.
n
∑

i=1

bixi ≤ B (5.2)

xi ∈ {0, 1} for 1 ≤ i ≤ n (5.3)

Without loss of generality we can assume that all ai are positive. (Otherwise we define ãi :=

ai + |min1≤i≤n ai|. An optimal x for the problem with costs ãi is also optimal for the original

problem.) Using the identity max cx = −min(−c)x we can transform the knapsack problem to:

−(min

n
∑

i=1

−aixi) (5.4)

s.t.

n
∑

i=1

bixi ≤ B (5.5)

xi ∈ {0, 1} for 1 ≤ i ≤ n (5.6)

Now we construct a graph (V,E) with the set of vertices

V = {1, 1, 2, 2, . . . , n + 1, n + 1}

and an edge set

E = {{1, 1}, {1, 2}, {1, 2}, {2, 2}, {2, 3}, {2, 3}, . . . , {n, n + 1}, {n, n + 1}, {n + 1, n + 1}}.
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Let M := 1+
∑n

k=1 ak. Now we define cii := −M for 1 ≤ i ≤ n+1 and cii+1 := −ai for 1 ≤ i ≤ n

and wii := 0 for 1 ≤ i ≤ n + 1 and wii+1 := bi for 1 ≤ i ≤ n. We set W := B. (Obviously this

can be done in polynomial time.)

This leads to the graph:?>=<89:; (ce,we) ?>=<89:;ONMLHIJK1

(−M,0)

(0,0) ONMLHIJK2

(−M,0)

(0,0)
. . .

(0,0) ONMLHIJKn

(−M,0)

(0,0) ONMLHIJKn+1

(−M,0)ONMLHIJK1
(−a1,b1) ONMLHIJK2

(−a2,b2) . . .
(−an,bn) GFED�ABCn

(−an,bn) WVUTPQRSn+1

If we solve the weight-constrained minimal spanning tree problem for this graph, all edges {̄i, i}
are contained in an optimal solution. To obtain the spanning tree structure we have for each

i ∈ {1, . . . , n} the opportunity either to take the edge {i, i + 1} or the edge {̄i, i + 1}. If an

edge {i, i + 1} is part of an optimal solution T ⋆ of the weight-constrained minimal spanning tree

problem for this graph, then xi = 1. More formal

xi :=







1 if {i, i + 1} ∈ T ⋆

0 if {i, i + 1} ∈ T ⋆
.

So the knapsack-problem can be reduced to the weight-constrained minimal spanning tree prob-

lem. Since the knapsack-problem is NP-hard [17] (number [MP9]) the weight-constrained minimal

spanning tree problem is also NP-hard.

�
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6 Convex Hull

In this chapter we make some statements for the convex hull of our problem and prove some

properties of our solution. Therefore it is useful to interpret the weight-constrained minimal

spanning tree problem as bicriterial optimization problem and use some already known results

of a bicriterial optimization problem for our WCMST. Also we collect some properties of the

relation between different trees in the convex hull which are interesting for us.

6.1 WCMST as Bicriterial Problem

The weight-constrained minimal spanning tree problem is related to a bicriterial optimization

problem where we consider the constraint as second objective function:

Problem 11

min







∑

e∈T

ce

∑

e∈T

we






(6.1)

s.t. T ∈ T (6.2)

From the bicriterial problem we can classify the set of trees.

Definition 6.1

1. A tree T is called dominated by a tree T̂ if c(T̂ ) ≤ c(T ) and w(T̂ ) ≤ w(T ) where in at least

one case ’<’ holds.

2. A tree T̂ is called efficient if and only if for all trees T in T with c(T̂ ) 6= c(T ) and w(T̂ ) 6=
w(T ), c(T̂ ) 6≥ c(T ) and w(T̂ ) 6≥ w(T ) hold.

3. An efficient tree T̂ whose image (c(T ), w(T )) lies on the border of the convex hull of

{(c(T ), w(T ))|T ∈ T } is called a supported tree.

4. A tree is called weakly efficient if and only if for all trees T in T with c(T̂ ) 6= c(T ) and

w(T̂ ) 6= w(T ) c(T̂ ) ≯ c(T ) and w(T̂ ) ≯ w(T ).

For the relation between the bicriterial optimization problem and the weight-constrained minimal

spanning tree problem, we can state the following theorem.
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Theorem 6.1

1. An optimal solution of the weight-constrained minimal spanning tree problem is weakly

efficient for the bicriterial problem.

2. Under all optimal trees for Problem 1 there exists at least one efficient tree for Problem 11.

Proof

1. Assume it exists an optimal solution T ⋆ which is not weakly efficient. Then there exists a

tree T with c(T ) < c(T ⋆) and w(T ) < w(T ⋆). Since w(T ⋆) ≤ W T is also feasible and has

lower costs than T ⋆ which is a contradiction to the optimality of T ⋆.

2. Let T ⋆ := {T ∈ T |c(T ) = OPT, w(T ) ≤ W}. Take a tree T ⋆
min in T ⋆ with minimal weight.

This tree is efficient for Problem 11 since otherwise a tree T exists with c(T ) ≤ c(T ⋆
min)

and w(T ) ≤ w(T ⋆
min) ≤ W where in one case ’<’ holds. This is a contradiction either to

the optimality of T ⋆
min or to the property that T ⋆

min has minimal weight under all optimal

solutions.

�

For graphical interpretation we consider the two dimensional space with the c- and w-axes. The

points in the diagram represent the cost-weight-vector of a tree. The convex hull of our Problem

1 is the boundary of the grey region. If we drop the line W = 35 we have the convex hull to

Problem 11.
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Figure 6.1: Convex hull
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The optimal solution to our original problem is the tree with costs 8 and weight 32 marked

with a square in the figure. This is an efficient tree. Another optimal solution is the tree with

costs 8 and weight 33 marked with a triangle. This tree is weakly efficient.

In [26] Hamacher and Ruhe show that the number of efficient spanning trees is in the worst

case exponential in the number of vertices n.

6.2 Adjacency and Connectedness

The next area which will be threaded, is the question whether a feasible solution can be improved

by changing edges until an optimal solution is reached. Therefore we need a definition concerning

the relation between two trees.

Definition 6.2

1. Two spanning trees T1 and T2 are called adjacent if one T -exchange between the trees exists.

2. Two trees T1 and TK are called connected if a sequence of trees T1, T2, . . . , Tn exists such

that for all k = 2, . . . ,K Tk is adjacent to Tk+1.

One of the most important properties is the following theorem which describes the relation

between the supported trees.

Theorem 6.2 [1]

The set of all supported spanning trees of Problem 11 is connected.

This means that for two supported trees T1 and TK a sequence T1, T2, . . . , TK of pairwise adjacent

trees exists such that Tk is a supported tree for all k ∈ {1, . . . ,K}. In Section 11.1.3 we pick this

property up and analyze this connectedness intensively to construct a branch and bound scheme

to solve the WCMST.

The set of all efficient trees is not necessarily connected. Consider the following example from

Ehrgott and Klamroth [14].

Example 6.1 Connectedness of Efficient Solutions?>=<89:; (ce,we) ?>=<89:;GFED�ABCv11

(9,0)CCCCCCCCC GFED�ABCv21

(10,0)CCCCCCCCC GFED�ABCv31

(0,19)CCCCCCCCCGFED�ABCv1
(0,0)

(0,0)
{{{{{{{{{

(0,0) CCCCCCCCC GFED�ABCv12
(7,1) GFED�ABCv2

(0,0)

(0,0)
{{{{{{{{{

(0,0) CCCCCCCCC GFED�ABCv22
(0,7) GFED�ABCv3

(0,0)

(0,0)
{{{{{{{{{

(0,0) CCCCCCCCC GFED�ABCv32
(20,6) GFED�ABCv4GFED�ABCv13

(1,2)

{{{{{{{{{ GFED�ABCv23

(7,1)

{{{{{{{{{ GFED�ABCv33

(1,15)

{{{{{{{{{
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In the table only edges with positive costs and weights are listed. The edges

{v1, v11}, {v1, v12}, {v1, v13}, {v2, v21}, {v2, v22}, {v2, v23}, {v3, v31}, {v3, v32}, {v2, v33}

belong to every efficient tree.

Tree Type (c(T ), w(T )) Edges

T1 Supported (1, 28) {v13, v2}, {v22, v3}, {v31, v4}
T2 Supported (2, 24) {v13, v2}, {v22, v3}, {v33, v4}
T3 Non-Supp. (8, 22) {v13, v2}, {v23, v3}, {v31, v4}
T4 Supported (9, 18) {v13, v2}, {v23, v3}, {v33, v4}
T5 Non-Supp. (12, 17) {v13, v2}, {v21, v3}, {v33, v4}
T6 Non-Supp. (17, 16) {v11, v2}, {v23, v3}, {v33, v4}
T7 Non-Supp. (20, 15) {v11, v2}, {v21, v3}, {v33, v4}
T8 Non-Supp. (27, 14) {v12, v2}, {v22, v3}, {v32, v4}
T9 Supported (28, 9) {v13, v2}, {v23, v3}, {v32, v4}
T10 Supported (31, 8) {v13, v2}, {v21, v3}, {v31, v4}
T11 Non-Supp. (36,7) {v11, v2}, {v23, v3}, {v31, v4}
T12 Supported (39,6) {v11, v2}, {v21, v3}, {v31, v4}

If we consider the not-supported tree T8, it is clear that this tree is not adjacent to any efficient

tree and the set of efficient trees is not necessarily connected.

Remark

Aggarwal, Aneja and Nair [1] claimed in their second theorem that the set of efficient solutions

is connected. Example 6.1 shows that this claim is not correct. Their proof mentions only the

set of supported efficient trees. In [14] it is further shown that each graph can be extended to a

graph in which the set of all efficient trees is disconnected.

Conclusion

From this example we can conclude for the weight-constrained minimal spanning tree problem

that an optimal solution is not necessarily adjacent to a known efficient tree. Furthermore Ruzika

[35] shows that the set of all weakly efficient trees is also not connected. So an optimal solution

can not be found by simple edge exchanges. If we are interested in some better upper bounds,

it might be possible to improve a feasible solution by T−exchanges. Therefore we present in the

next section the ideas of Neighborhood- and Adjacency-search.
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6.3 Neighborhood- and Adjacency-Search [3]

In the publication of Andersen, Jörnsten and Lind [3] two algorithms are proposed to find efficient

solutions for Problem 11. They start by the set of supported solutions. Firstly, we state the two

optimality conditions which are needed for the search algorithms. These two conditions are very

similar to the optimality conditions in Section 2.1 which are formulated only for costs.

Theorem 6.3 [3]

Assume that a tree T is not dominated by any spanning tree which is adjacent to T . Then:

1. Let e ∈ T . Then there exists no f ∈ {Xe, V \ Xe} \ {e} such that cf ≤ ce, wf ≤ we where

in at least one case ’<’ holds.

2. Let f ∈ E \ T . Then there exists no e ∈ C(T, f) \ {f} such that cf ≤ ce, wf ≤ we where in

at least one case ’<’ holds.

Proof

1. Assume it exists an edge in f ∈ {Xe, V \Xe} \ {e} with cf ≤ ce, wf ≤ we where in at least

one case ’<’ holds. Then T \ {e} ∪ {f} is a spanning tree which is adjacent to T . Also

c(T \ {e} ∪ {f}) = c(T ) − cf + ce ≤ c(T ) and w(T \ {e} ∪ {f}) = w(T ) − wf + we ≤ w(T )

where in at least one case ’<’ holds. This is a contradiction to the assumption that T is

not dominated by any adjacent spanning tree.

2. Assume it exists an edge e ∈ C(T, f) \ {f} with cf ≤ ce and wf ≤ we where in at least one

case ’<’ holds. Then T \{e}∪{f} is adjacent to T and c(T \{e}∪{f}) = c(T )−ce+cf ≤ c(T )

and w(T \ {e} ∪ {f}) ≤ w(T ) where in at least one case ’<’ holds. This is a contradiction

to the assumption that T is not dominated by any adjacent spanning tree.

�

So we have two different methods for searching supported trees.

Neighborhood-Search

Start with the set of all supported solutions. For each tree T in this set we evaluate all trees which

are adjacent to this T and not dominated by T and all the trees evaluated so far. If this true, we

add this tree to our set. Then we test whether one of the trees evaluated so far was dominated by

this new tree. If this true, we eliminate the already known tree and go on with the next adjacent

tree to T until all trees in our set are considered.

Adjacent-Search

The algorithm works in the same manner as the Neighborhood-Search but we search only for non

dominated trees which are adjacent to at least two known trees.
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The main difference of both approaches is that the number of found trees of the neighborhood-

search is on average greater than the number of found trees by the adjacency-search. The

advantage of the adjacency-search is that a smaller number of trees is examined than in the

neighborhood-search.

Extension to the WCMST

Obviously, we can run both algorithms and take from the set of found trees the best efficient tree

which is feasible. From Example 6.1 we know that the set of all efficient trees is in general not

connected. So both search algorithms will in general not find an optimal solution. But it might

be possible that better upper and lower bounds can be found. Notice that we are not interested

in the whole set of all efficient trees, so we have to check whether the algorithm can be speed up.

For the neighborhood-search a modified version is given in [39] which is proposed in the Section

12.3. For the adjacency-search one could think of considering not all supported solutions in the

starting step. Perhaps a feasible and an infeasible supported tree. But this idea might fail: If we

search in Example 6.1 for the optimal solution such that w(T ) ≤ 7 and start with T10 and T12.

We have at first to compute T9 to find another tree which is adjacent to the optimal solution T11.
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7 Lagrangian Relaxation

The most used approach to handle the weight-constrained minimum spanning tree problem is

the Lagrangian relaxation ([1], [18], [29], [37], [39]) which delivers a lower bound for the objective

value OPT . In this chapter we introduce the Lagrangian relaxation of our problem, show a nice

and very useful relation to the convex hull, present two algorithms for finding the Lagrangian

dual and make a statement to the quality of the relaxation.

7.1 Definition and Properties

In the best case the value of the Lagrangian relaxation and OPT coincide but in general we have

a duality gap.

Problem 12 Lagrangian Relaxation

C⋆(MST ; µ) := min (c(T ) + µw(T )) (7.1)

s.t. T ∈ T (7.2)

This is a minimum spanning tree problem and thus it is easy to solve. For all µ ≥ 0 this relaxation

is a lower bound for our problem since

C⋆(MST ; µ) − µW = min(c(T ) + µw(T )) − µW = min(c(T ) − µ(W − w(T )) ≤ OPT

holds for all µ ≥ 0. To obtain the best lower bound we have to solve the Lagrangian dual:

Problem 13 Lagrangian Dual

C⋆(D1) := max (C⋆(MST ; µ) − µW ) (7.3)

s.t. µ ≥ 0 (7.4)

In the following we define µ⋆ := arg max(C⋆(MST ; µ) − µW ). We can illustrate the function

c(T ) + µw(T )− µW in the following figure where the dotted lines describe the function for fixed

T .

For an alternative way to visualize the Lagrangian Dual we use the same figure as in Section 6.1

where T ⋆
µ solves Problem 12 for µ⋆.
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µ

c(T) + µw(T) − µW

µ⋆

Figure 7.1: Lagrangian Relaxation I

w(T)

C⋆(D1)

c(T)

b

b

b

b

bTµ⋆

r

Figure 7.2: Lagrangian relaxation II
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In the article of Yamada and Wantanabe [39] some properties of the Lagrangian relaxation for

the maximization case are given which can easily be transformed to the minimization case.

Theorem 7.1 [39]

1. C⋆(MST ; µ) − µW is piecewise linear and concave in [0,∞).

2. If C⋆(MST ; µ) − µW is differentiable at µ,

dC⋆(MST ; µ) − µW

dµ
= w(Tµ) − W

where Tµ is the optimal solution to the relaxed problem.

Proof

1. For a fixed tree the function c(T )+µw(T )−µW is linear in µ. For the function C⋆(MST ; µ)−
µW we take the lower envelope of all the linear functions which corresponds to a tree. So

we get a piecewise linear function.

2. The derivative follows directly.

�

For our µ⋆ ≥ 0, the optimal solution for the Lagrangian dual, we can conclude from the properties

that Tµ is feasible if µ > µ⋆ and infeasible if µ < µ⋆.

Theorem 7.2 [39]

1. If µ⋆ = ∞, then the WCMST is infeasible.

2. Let T0 is the optimal solution for min{c(T )|T ∈ T }. If T0 is feasible, then µ⋆ = 0 and T0

is the optimal solution.

3. If w(Tµ⋆) = W , then Tµ⋆ is optimal and we have no duality gap.

Proof

1. We know that

OPT ≥ C⋆(MST ; µ⋆) − µ⋆W = min(c(T ) − µ⋆(W − w(T )))

For a feasible solution T is W − w(T ) ≥ 0 and so

min(c(T ) − µ⋆(W − w(T ))) = −∞ < min(c(T ) − µ(W − w(T )))

for µ < ∞ which is a contradiction to the maximality of µ⋆. There does not exist a feasible

tree and the WCMST is infeasible.
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2. If T0, the optimal solution for min{c(T )|T ∈ T }, is feasible then T0 is a optimal solution

for the WCMST since no other tree has smaller costs. For the Lagrangian relaxation we

know that

min(c(T ) − µ⋆(W − w(T )) ≤ OPT = c(T0) = min(c(T0) + 0(W − w(T0))

Since µ⋆ maximizes the lower bound of the Lagrangian relaxation, µ⋆ has to be equal to 0.

3. Since

OPT ≥ C⋆(MST ; µ⋆) − µ⋆W = min(c(Tµ⋆) − µ⋆(W − w(Tµ⋆))) = min c(Tµ⋆)

holds c(Tµ⋆) = OPT since Tµ⋆ is feasible.

�

7.2 Lagrangian Relaxation and Convex Hull

Between the Lagrangian relaxation and the frontier of the convex hull (more precisely, the lower

left frontier of the convex hull) there exist a very nice relation:

Theorem 7.3

Every supported tree T corresponds to a µ such that c + µw is minimized by this tree.

Proof

Every facet of the convex hull of the bicriterial problem is a segment of a function in the w − c-

space:

f(w) = −µw + b

For a supported tree T where (w(T ), c(T )) lies on such a facet holds

c(T ) = −µw(T ) + b.

This can be reformulated to

b = c(T ) + µw(T ).

If we displace the function parallel such that an other vector (c(T ′), w(T ′)) lies on this function,

we have to increase b to b′. Then we have for all T ′ where (c(T ′), w(T ′)) lies not on this facet

∑

e∈T ′

ce + µwe = c(T ′) + µw(T ′) = b′ > b = c(T ) + µw(T )
∑

e∈T

ce + µwe.

Therefore, T minimizes c(T ) + µw(T ).

�
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So every facet corresponds to a µ. For two adjacent facets with corresponding µ1 and µ2 all trees

T where (c(T ), w(T )) is the extreme point which has both facets in common are optimal for the

costs c + µw for all µ ∈ [µ1, µ2].

Theorem 7.4 [8]

The number of extreme points on the convex hull is polynomially bounded.

Proof

We define for every pair of edges with we 6= wf :

µef :=
ce − cf

wf − we
.

We call this µef a breakpoint and define the set of all these µef

M := { ce − cf

wf − we
|e, f ∈ E}.

Let us order and number the elements of M as

−∞ < µ1 < µ2 < · · · < µK < ∞.

We know that K is bounded by m(m − 1). Let us now consider an extreme point and the

corresponding tree T . We know that T is optimal for the cost function c(T ) + µw(T ) all µ ∈
[µj , µj+1] =: Î where µj and µj+1 corresponds to the two facets which have this extreme point

in common. We know further from the cut optimality condition that

cf + µwf ≥ ce + µwe for all e ∈ T and for all f ∈  L(e, Tk)

where L(e, T ) := {f ∈ E \ T |e ∈ C(Tk, f)}

for an arbitrary µ ∈ [µj , µj+1]. Our µ is also element of an interval [µk, µk+1] =: I. We show

that I ⊂ Î. If I 6⊂ Î, we have, without loss of generality, the situation that µk < µj ≤ µ ≤ µk+1.

So for a µ̄ ∈ (µk, µj) an edge f ∈ L(e, T ) has to exists with cf + µ̄wf < ce + µ̄we. Therefore, we

have µk < µ̄ < µfe < µj. This is a contradiction to the fact hat M contains all breakpoints.

So I ⊂ Î and the number extreme points is bounded since K is bounded by m(m − 1).

�

7.3 Algorithms for Finding the Extreme Points and the Lagrangian

Dual

In this section we review two algorithms for finding the (nondominated) extreme points and the

Lagrangian dual. In the article of Jüttner concerning the resource constrained spanning tree

problems [30] the Handler-Zhang method is proposed to find these points. Since this method

is methodically very similar to the following two algorithms it is not presented in this thesis.
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Both algorithm check at the beginning whether the weight-constrained minimal spanning tree

is feasible and whether a cost minimal solution is an optimal one for the WCMST. This can be

done be computing the lexicographical optima:

lex min (
∑

e∈T

ce,
∑

e∈T

we)

s.t. T ∈ T

and

lex min (
∑

e∈T

we,
∑

e∈T

ce)

s.t. T ∈ T

Procedure 7.1 Feasibility

Find T1 = arg lex min{(
∑

e∈T

ce,
∑

e∈T

we)|T ∈ T }
C1 := c(T1)

W1 := w(T1)

if W1 ≤ W then

5: STOP (T1 is optimal)

else

Find T2 = arg lex min{(
∑

e∈T

we,
∑

e∈T

ce)|T ∈ T }
C2 := c(T2)

W2 := w(T2)

10: if W2 > W then

STOP (problem is infeasible)

else if W2 = W then

STOP (tree is optimal)

end if

15: end if

At the beginning the algorithm tests whether a tree which is optimal for the minimal cost

spanning tree problem is also feasible for the WCMST. In the lines 7 - 11 the algorithm decides

if the problem is feasible and in the case of w(T2) = W the algorithm has found an optimal

solution.
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Algorithm of Aggarwal, Aneja, Nair

In [1] an algorithm for computing all extreme points of the convex hull is proposed:

Algorithm 7.2 Bound algorithm of Aggarwal, Aneja, Nair

Run Procedure 7.1

µ := (w(T1) − w(T2))/(c(T2) − c(T1))

compute a minimal spanning tree T3 of G under the costs ce + µwe

repeat this step for (T1, T3) and (T3, T2) until no more solutions can be found

In this algorithm the quotient denotes the point where c(T1) + µw(T1) = c(T2) + µw(T2). In the

case that T1 or T2 are optimal for µ then T1 is optimal for all µ̄ < µ and T2 is optimal for µ̄ > µ.

If another tree T3 is optimal, the algorithm iterates for (T1, T3) and (T3, T2).

Algorithm of Xue [38]

In the paper of Xue [38] an algorithm for identifying the closest segment of the convex hull to

the optimal solution is proposed.

Definition 7.1

Let λ ∈ [0, 1]. We define a graph G(λ) = (V,E, λ) with the same nodes and edges as G and with

cost function lλe = λce + (1 − λ)we ∀e ∈ E.

We have l0 = w and l1 = c.
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Algorithm 7.3 The approximation scheme of Xue

Run Procedure 7.1

λ := 0; µ := 1

while lλ(Tµ) 6= lλ(Tλ) do

γ :=







w(Tµ)−w(Tλ)
w(Tµ)−w(Tλ)+c(Tλ)−c(Tµ) odd iteration

λ+µ
2 , even iteration

5: Compute a minimum spanning tree Tγ with respect to lλ

if there are more than one minimal spanning trees then

take one with smallest weights (⋆)

end if

if w(Tγ) ≤ W then

10: λ := γ; Tλ := Tγ

else

µ := γ

Tµ := Tγ ;

end if

15: end while

T λ is approximation

(⋆) This line is not included in the original algorithm. The reason why we have to add it can be

seen in the Example 7.1.

The algorithm finds the facet of the convex hull which is close to the optimal solution. There-

fore the algorithm starts with a feasible tree for the WCMST Tλ and an infeasible tree Tµ.

By updating the actual tree Tλ is always feasible and the tree Tµ is always infeasible. We

try to minimize the distance between Tµ and Tλ by finding values between λ and µ until

λc(Tµ) + (1 − λ)w(Tµ) = λc(Tλ) + (1 − λ)w(Tλ) which means that Tµ is also optimal for lλ

and the facet is found. The Tλ is an upper bound and the extreme supported spanning tree of

the feasible trees which has smallest costs.

Theorem 7.5 [38]

Let T0 be a minimal spanning tree in G(0) and T1 a minimal spanning tree in G(1).

1. There exists an optimal tree for the WCMST if and only if w(T0) ≤ W .

2. If w(T1) ≤ W , then T1 is optimal for the WCMST.

3. Assume that a solution for the WCMST exists but w(T1) > W . The algorithm stops after

a polynomial number of iterations with λ, µ, Tλ and Tµ such that lλ(Tµ) = lλ(Tλ),W ∈
[w(Tλ), w(Tµ)], and OPT ∈ [c(Tλ), c(Tµ)].
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In [38] the theorem is stated but not proven. Only a similar theorem for the weight-constrained

shortest path problem is published. For completeness we give here a modification of Xue’s proof

for the weight-constrained shortest path problem to our problem combined with the results es-

tablished in the section above.

Proof

1. directly

2. directly

3. Let T and T ′ spanning trees. If c(T ) = c(T ′) and w(T ) = w(T ′) we call T and T ′ equivalent.

(We denote this by T ≃ T ′.) Assume that T is an optimal solution. (T ′ is also an optimal

solution if T ′ ≃ T .) Let T̂ denote the set of all efficient spanning trees where we remove

for each efficient solution all equivalent spanning trees. From Theorem 6.1 we know that

T̂ contains one optimal solution.

The number of spanning trees in a graph is bounded and therefore K := |T̂ | < ∞. Let the

trees in T̂ be numbered T[1], T[2], ...T[K], such that

c(T[1]) ≥ c(T[2]) ≥ ... ≥ c(T[K]).

Then

w(T[1]) ≤ w(T[2]) ≤ ... ≤ w(T[K])

must hold. Otherwise there are some trees in T̂ which are dominated. Let T[k] be an

optimal solution. For w(T1) > W and T1 ∈ T̂ we know that k < K. If k = 1, then T0 is an

optimal solution. Assume that 1 < k < K. Since no tree in T̂ is dominated we have

c(T[1]) > c(T[2]) > ... > c(T[K])

and

w(T[1]) < w(T[2]) < ... < w(T[K]).

For every λ ∈ (0, 1) every minimal spanning tree in G(λ) is equivalent to a tree in T̂ .

Since the algorithm only computes spanning trees which are optimal for costs of the form

(1 − λ)c + λw only the trees on the facets of the convex hull are considered. The number

of such trees is bounded by m(m − 1).

The algorithm stops after O(min{log K,m2}) iterations (the logarithm depends on the

binary search). If the algorithm stops, it is not guaranteed that the solution is optimal.

We only know that segment between (w(Tλ), c(Tλ)) and (c(Tµ), w(Tµ)) is a facet of the

convex hull. And for the optimal solution T ⋆ it must hold that w(Tλ) ≤ w(T ⋆) ≤ w(Tµ)

and c(Tµ) ≤ c(T ⋆) ≤ c(Tλ).

�
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7.4 Quality of the Lagrangian Relaxation

The question of the goodness of the Lagrangian relaxation and the algorithm of Xue naturally

occurs. Unfortunately, the gap between OPT and the result of the algorithms can be made as

big as possible:

Example 7.1

Let a graph be given /.-,()*+
(1,n)

(0,0) /.-,()*+
(n−⌈n

2
⌉+2,⌈n

2
⌉)

(0,0) /.-,()*+
(n,1)/.-,()*+ (0,0) /.-,()*+ (0,0) /.-,()*+

Let W = n − 1. Obviously the optimal solution is a tree with all horizontal edges and the edge

(n − ⌈n
2 ⌉ + 2, ⌈n

2 ⌉). So OPT = n − ⌈n
2 ⌉ + 2.

1. Algorithm:

Iteration λ µ (c(Tλ), w(Tλ)) (c(Tµ), w(Tµ)) lλ(Tµ) lλ(Tλ) γ (c(Tγ), w(Tγ))

1 0 1 (n, 1) (1, n) n 1 1
2 (n, 1)(⋆⋆)

2 1
2 1 (n, 1) (1, n) 1

2n + 1
2

1
2n + 1

2 STOPP

In (⋆⋆) also (1, n) is a solution since

1

2
n +

1

2
1 =

1

2
1 +

1

2
n =

n

2
+

1

2
<

n

2
+ 1 =

1

2
(n − ⌈n

2
⌉ + 2) +

1

2
⌈n

2
⌉

Assume we do not have line (⋆) in the algorithm and choose this tree:

Ite. λ µ (c(Tλ), w(Tλ)) (c(Tµ), w(Tµ)) lλ(Tµ) lλ(Tλ) γ (c(Tγ), w(Tγ))

1 0 1 (n, 1) (1, n) n 1 1
2 (1, n)

2 0 1
2 (n, 1) (1, n) n 1 1

4 (n, 1)

3 1
4

1
2 (n, 1) (1, n) 3

4n + 1
4

n
4 + 3

4
1
2 (1, n)

4 1
4

1
2 (n, 1) (1, n) 3

4n + 1
4

n
4 + 3

4
3
8 (n, 1)

5 3
8

1
2 (n, 1) (1, n) 5

8n + 3
8

3
8n + 5

8
1
2 (1, n)

6 3
8

1
2 (n, 1) (1, n) 5

8n + 3
8

3
8n + 5

8
7
16 (n, 1)

7 7
16

1
2 (n, 1) (1, n) 9

16n + 7
16

7
16n + 9

16
1
2 (1, n)

... ... ... ... ... ... ... ... ...

It is easy to see that the algorithm does not terminate. So the modification of the algo-

rithm is necessary.
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The solution of the algorithm is a tree T with c(T ) = n and w(T ) = 1. For our optimal

solution we have

c(T ) − OPT = n − (n − ⌈n

2
⌉ + 2) = ⌈n

2
⌉ − 2

and our gap is not bounded.

2. Lagrangian relaxation

Additionally we will compute the Lagrangian dual by the definition above. We consider the

Lagrangian relaxation

min c(T ) + µw(T )

s.t. T ∈ T

For µ ≥ 1 we have

n + µ1 ≤ 1 + µn and n + µ1 < n + 2 + (1 − µ)⌈n

2
⌉ = (n − ⌈n

2
⌉ + 2 + µ⌈n

2
⌉)

and for µ ≤ 1 we have

1 + µn ≤ n + µ1

and

1 + µn < µn + 2

= n + 2 − n + µn + 3 − 3µ⌈n

2
⌉

≤ n + 2 − (1 − µ)(n − ⌈n

2
⌉)

≤ n + 2 − (1 − µ)⌈n

2
⌉

≤ n − ⌈n

2
⌉ + 2 + µ⌈n

2
⌉

For the Lagrangian dual we have to consider

max n + µ1 − µ(n − 1)

s.t. µ ≥ 1

and

max 1 + µn − µ(n − 1)

s.t. µ ≤ 1

In the first case we have for µ ≥ 1

n + µ1 − µ(n − 1) = n(1 − µ) + 2µ
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Since µ ≥ 1 this term is maximized for large n for µ = 1.

In the second case we have for µ ≤ 1

1 + µn − µ(n − 1) = 1 + µ

Since µ ≤ 1 this term is maximized for µ = 1.

From both cases we obtain the value of the Lagrangian dual

c∗(D1) = 2

For the duality gap we get

OPT − c⋆(D1) = (n − ⌈n

2
⌉ + 2) − 2 = (n − ⌈n

2
⌉)

For large n no approximation quality can be guaranteed.
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8 Alternative Relaxation

The following alternative relaxation was published by Jörnsten and Migdalas [29]. The main idea

is to combine variable splitting with the Lagrangian relaxation.

The basis for this consideration is the formulation Problem 5. We introduce some auxiliary

variable zij for all (i, j) ∈ −→
E and some α and β which are non negative parameters with α+β = 1:

Problem 14

min α
∑

(i,j)∈
−→
E

cijyij + β
∑

(i,j)∈
−→
E

cijzij (8.1)

s.t. (3.9) − (3.14)
∑

(i,j)∈
−→
E

wijzij ≤ W (8.2)

zij ∈ {0, 1} ∀(i, j) ∈ −→
E (8.3)

zij = yij ∀(i, j) ∈ −→
E (8.4)

It is obvious that the objective values of Problem 5 and Problem 14 are equal.

We consider now the well-known Lagrangian relaxation and the Lagrangian dual problem

c⋆(D1) := max c⋆(MST ; µ) − µW

s.t. µ ≥ 0.

We apply the Lagrangian relaxation to Problem 14 and split the problem into two subproblems

Problem 15

c⋆(MST ; λ) = min
∑

(i,j)∈
−→
E

(αcij + λij)yij

s.t. (3.9) − (3.14)

and

Problem 16

c⋆(KNPSK; λ) = min
∑

(i,j)∈
−→
E

(βcij − λij)zij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E
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We have the easily solvable Problem 15 of finding a minimal spanning tree and the NP-hard

Problem 16 of solving a knapsack problem. We define also a dual problem to the splitten problem:

Problem 17

c⋆(D2) := max (c⋆(MST ; λ) + c⋆(KNPSK; λ))

s.t. λij ≥ 0 ∀(i, j) ∈ −→
E

λ = (λij)(i,j)∈−→E

For this problem we can conclude the following important result:

Proposition 8.1

The value c⋆(D2) is a lower bound for OPT and is at least as good as the value of the Lagrangian

dual, i.e.

c⋆(D2) ≥ c⋆(D1).

Proof

Let λ⋆ and µ⋆ be the optimal solutions to Problem 17 and Problem 13 respectively. For α+β = 1

we have

λ̄ := µ⋆w + βc
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with w := (wij)(i,j)∈
−→
E

and c := (cij)
(i,j)∈

−→
E

. Then

c⋆(D2) = c⋆(MST ; λ⋆) + c⋆(KNPSK; λ⋆)

≥ c⋆(MST ; λ̄) + c⋆(KNPSK; λ̄)

=











min
∑

(i,j)∈
−→
E

(αcij + λ̄ij)yij

s.t.(3.9) − (3.14)











+



























min
∑

(i,j)∈
−→
E

(βcij − λ̄ij)zij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E



























=











min
∑

(i,j)∈
−→
E

(αcij + µ⋆wij + βcij)yij

s.t.(3.9) − (3.14)











+



























min
∑

(i,j)∈
−→
E

(βcij − (µ⋆wij + βcij))zij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E



























=











min
∑

(i,j)∈
−→
E

(cij + µ⋆wij)yij

s.t.(3.9) − (3.14)











+



























min
∑

(i,j)∈
−→
E

−µ⋆wijzij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E



























− µ⋆W + µ⋆W

=











min
∑

(i,j)∈
−→
E

(cij + µ⋆wij)yij − µ⋆W

s.t.(3.9) − (3.14)











+



























min
∑

(i,j)∈
−→
E

µ⋆W − µ⋆wijzij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E



























= c⋆(D1) +



























min
∑

(i,j)∈
−→
E

µ⋆W − µ⋆wijzij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E



























≥ c⋆(D1)
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It remains to show that Problem 17 is a relaxation i.e., c⋆(D2) ≤ OPT . This part of the proof

was not shown in [29]. We prove this in the following.

c⋆(D2) = max
λ

(c⋆(MST ; λ) + c⋆(KNPSK; λ))

= max
λ

(

{

min
∑

(i,j)∈
−→
E

(αcij + λij)yij

s.t.(3.9) − (3.14)

}

+















min
∑

(i,j)∈
−→
E

(βcij − λij)zij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E















)

= max
λ

(























min
∑

(i,j)∈
−→
E

(αcij + λij)yij + (βcij − λij)zij

s.t.(3.9) − (3.14)
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E























)

≤ max
λ

(























min
∑

(i,j)∈
−→
E

(αcij + λij)yij + (βcij − λij)zij

s.t.(3.9) − (3.14)
∑

(i,j)∈
−→
E

wijzij ≤ W ∀(i, j) ∈ −→
E

zij = yij∀(i, j) ∈ −→
E























)

= max
λ

(















min
∑

(i,j)∈
−→
E

cijyij

s.t.(3.9) − (3.14)
∑

(i,j)∈
−→
E

wijyij ≤ W ∀(i, j) ∈ −→
E















)

=















min
∑

(i,j)∈
−→
E

cijyij

s.t.(3.9) − (3.14)
∑

(i,j)∈
−→
E

wijyij ≤ W ∀(i, j) ∈ −→
E















= OPT

�

Corollary 8.2

The bound of the splitting approach is strictly better if the objective value of

min
∑

(i,j)∈
−→
E

µ⋆W − µ⋆wijzij

s.t.
∑

(i,j)∈
−→
E

wijzij ≤ W

zij ∈ {0, 1} ∀(i, j) ∈ −→
E

is not 0.

Proof

This follows directly from the proof of the previous proposition.

�
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We can add
∑

(i,j)∈
−→
E

zij = n − 1

to Problem 16 which is also a NP-hard problem. This might lead to a better bound without

increasing the complexity substantially.

Conclusion

The advantage of this approach is not only of theoretical worth: Every Lagrangian multiplier

corresponds to a binary variable. An infeasible solution depends on different values in a pair

(yij , zij). By changing the according multipliers only this pair is affected.

Generalization

The proposed approach of variable splitting in this chapter can also be applied to several other

problems of the form

min f(x)

s.t. F (x) ≤ 0

G(x) ≤ 0

x ∈ X

The values of the traditional Lagrangian relaxation are

v1 = min{f(x)|G(x) ≤ 0, x ∈ Conv[F (x) ≤ 0, x ∈ x]}

and

v2 = min{f(x)|F (x) ≤ 0, x ∈ Conv[G(x) ≤ 0, x ∈ X]}

Therefore the value of the reformulated problem is

v = min{f(x)|x ∈ Conv[F (x) ≤ 0, x ∈ X] ∩ Conv[G(x) ≤ 0, x ∈ X]}.

Then we have v ≥ max{v1, v2}.
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9 In- and Exclusion Tests

In this chapter some possibilities are presented which allow us to decide for some edges whether

the edge is in at least one optimal tree (inclusion) or whether there is no optimal tree containing

this edge (exclusion). The ambition of these tests is to reduce the complexity of our problem.

In contrast to the weight-constrained shortest path problem [5] in the literature only Aggarwal,

Aneja and Nair [1] touch on this subject. Their algorithm will be found at the end of this chapter.

For the sake of completeness also some trivial results will appear in the following. Regrettably,

the most results are of more theoretical interest and not quite useful for practical applications.

9.1 Inclusion Tests

Theorem 9.1

If there is a cut X and V \ X with |{X,V \ X}| = 1, then this edge is in every optimal and

furthermore in every feasible solution.

Proof

Since the solution of the weight-constrained minimal spanning tree problem must be connected

we have to include this edge in every tree.

�

Corollary 9.2

If our graph contains a leaf, the corresponding edge is element of every optimal solution.

In this case we can search for a minimal spanning tree in the remaining n − 1 vertices and with

total weight less than W minus the weight of the edge of the leaf.

Theorem 9.3

If for an edge e ∈ E there does not exist an edge f ∈ E with cf < ce and wf ≤ we, then there

exists at least one optimal solution which contains e.

Proof

Assume the theorem does not hold. Let T be an optimal solution. We consider T \ {f} ∪ {e}
where f is an arbitrary edge in the cycle C(T, e). We get

w(T \ {f} ∪ {e}) = w(T ) − wf + we ≤ w(T ) ≤ W
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and

c(T \ {f} ∪ {e}) = c(T ) − cf + ce < c(T )

which is a contradiction to the optimality of T . So the theorem holds.

�

Corollary 9.4

Let e1, . . . , eK be edges such that
⋃K

k=1 ek does not contain a cycle and ce1
≤ ce2

≤ · · · ≤ ceK
< cf

and wek
≤ wf for all k ∈ {1, . . . ,K} and for all f ∈ E \⋃K

k=1 ek, then there exists an optimal

solution containing the edges e1, . . . , eK .

Proof

Assume the theorem does not hold. Let T be an optimal solution such that an edge ek exists

with ek /∈ T . We consider T \ {f} ∪ {ek}. By adding the edge ek the set T \ {ek} must contain

a cycle. In this cycle at least one edge has to exist which is not in {e1, . . . , eK} since this set

contains no cycle. We get:

w(T \ {f} ∪ {ek}) = w(T ) − wf + wek
≤ w(T ) ≤ W

and

c(T \ {f} ∪ {ek}) = c(T ) − cf + cek
< c(T )

which is a contradiction to the optimality of T . So the corollary holds.

�

Theorem 9.5

Let e = {i, j} ∈ E. If along every path dk
ij from i to j in G which does not contain the edge e

exists an edge ek such that ce < cek
and we ≤ wek

, then exists an optimal solution which contains

e.

Proof

Assume the theorem does not hold. In the optimal solution T there exists one path dT
ij from i

to j. If we consider T ∪ {e}, we get a cycle dT
ij ∪ {e}. On this cycle there exists an edge eT such

that ce < ceT
and we ≤ weT

. For T \ {eT } ∪ {e} holds

w(T \ {eT } ∪ {e}) = w(T ) − weT
+ we ≤ w(T ) ≤ W

and

c(T \ {eT } ∪ {e}) = c(T ) − ceT
+ ce < c(T )

which is a contradiction to the optimality of T . So the theorem holds.

�
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In this context one question forces on: Is an edge being contained in at least one minimal spanning

tree with respect to the costs and in at least one minimal spanning tree with respect to the weights

also in at least one optimal solution for the WCMST? The following example provides a negative

answer.

Example 9.1

We consider the following graph with ǫ ∈ (0, 1):/.-,()*+ (ce,we) /.-,()*+/.-,()*+
(1,0)

(0,1)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1,0)

(0,1)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1−ǫ,1−ǫ)

(0,1)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1,0)

(1,0) IIIIIIIIIIIIIIIIIIIII/.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+
A minimal spanning tree with respect to the costs is the tree T1 with c(T1) = 1−ǫ and w(T1) = 8−ǫ:/.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+

(1−ǫ,1−ǫ)

(0,1) /.-,()*+
/.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+ (0,1) /.-,()*+

A minimal spanning tree with respect to the weights is the tree T0 with c(T0) = 8− ǫ and w(T0) =

1 − ǫ: /.-,()*+
(1,0)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1,0)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1−ǫ,1−ǫ)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+
(1,0)

(1,0) IIIIIIIIIIIIIIIIIIIII/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+
In both trees the edge with the cost-weight vector (1 − ǫ, 1 − ǫ) occurs. We are searching now for

a WCMST with w(T ) ≤ 4. A feasible tree is the tree:/.-,()*+
(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+

(1,0)

(0,1)

(1,0) IIIIIIIIIIIIIIIIIIIII /.-,()*+ (0,1) /.-,()*+
(1,0) IIIIIIIIIIIIIIIIIIIII/.-,()*+ (0,1) /.-,()*+ /.-,()*+ /.-,()*+ (0,1) /.-,()*+

This tree has costs 4 and weight 4. Assume it exists a tree T containing the edge with cost-weight

vector (1 − ǫ, 1 − ǫ) with c(T ) ≤ 4 and w(T ) ≤ 4. The sum of the costs of the remaining seven
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edges has to be smaller than 3+ ǫ and the sum of the weights of these edges has to be also smaller

than 3 + ǫ. Since all the possible edges in the graph have an integral cost-weight vector both sums

have to be smaller than 3. This is not possible since seven edges have to be chosen and by this

one sum is greater than 3. So no optimal solution to the WCMST-problem can contain the edge

(1 − ǫ, 1 − ǫ).

9.2 Exclusion Tests

Before starting with exclusion tests we focus on the problem how to handle with edges found

by an inclusion-test. Unfortunately, the way to update the graph in an ordinary minimal cost

spanning tree problem after finding one edge which is element of an optimal solution can not be

extended to our and other multicriterial spanning tree problems. The difficulty of updating will

be described in the following example.

Example 9.2

Assume that we have a graph with the following subgraph and only costs associated to each edge:?>=<89:;2

4

2

1 HHHHHHHHHHHHHHHHHHHHHH
?>=<89:;4

5?>=<89:;1
3 ?>=<89:;3

Let the edge {2, 3} be found by an inclusion test and be a member of an optimal solution for the

minimal spanning tree problem. Then we can interpret the nodes 2 and 3 as one vertex and for

all edges {2, k}, {3, k} we can exclude all edges {3, k} with c2k ≤ c3k and all edges {2, k} with

c3k < c2k. So for every k only one edge {2, k} or {3, k} is in the tree and we can exclude some

edges and get a graph with n − 1 nodes. In this example the graph reduces to:?>=<89:;2
2

1 HHHHHHHHHHHHHHHHHHHHHH
?>=<89:;4

?>=<89:;1
3 ?>=<89:;3

resp. ?>=<89:;2′

3

2 ?>=<89:;4

?>=<89:;1

Now we consider a subgraph for our WCMST with costs and weights for each edge:?>=<89:;2

(4,1)

(2,5)

(1,1) HHHHHHHHHHHHHHHHHHHHHH
?>=<89:;4

(5,6)?>=<89:;1
(3,2) ?>=<89:;3
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Let the edge {2, 3} be found by an inclusion test and be a member of an optimal solution for a

weight-constrained minimal spanning tree. We cannot decide if the edge {1, 2} or {1, 3} can be

dropped since concerning the costs {1, 3} is a better choice but {1, 2} is a better choice for the

constraint. So in this case no edge can be dropped and the graph cannot be reduced to a graph

with n− 1 nodes since multiple edges are not allowed. On the other hand, the edge {3, 4} can be

excluded from the graph since c24 = 2 < 5 = c34 and w24 = 5 < 6 = w34 and {3, 4} cannot be an

edge of an optimal solution.

Now we formulate the results from this example in a more formal way.

Definition 9.1 Dominated Edges

Let A,B \ V be disjoint and TA and TB two subtrees for the sets A and B. Let EAB ⊂ E denote

the sets of edges having one node in A and one node in B. An edge e = {i, j} ∈ EAB is dominated

by some edge f = {k, l} ⊂ EAB if and only if cf < ce and wf ≤ we.

Theorem 9.6 Exclusion of Dominated Edges

Let we have found some disjoint subtrees TA and TB of an optimal tree for the WCMST. Let

A := V (TA) and B := V (TB) the two connected set of nodes. All dominated edges in EAB are

not elements of the optimal solution which contains the subtrees TA and TB.

Proof

Assume that the theorem is not valid and a dominated edge e with one node in A and the other

node in B is in the optimal solution T . The edge f dominating e is not in the tree since otherwise

we have a cycle. Let us consider T \ {e} ∪ {f}. This set is a tree since f connects the subtrees

TA and TB. We have

w(T \ {e} ∪ {f}) = w(T ) − we + wf ≤ w(T ) ≤ W

and

c(T \ {e} ∪ {f}) = c(T ) − ce + cf < c(T )

which contradicts the optimality of T . So the theorem is valid.

�

Corollary 9.7

If we have found a subtree TA which is in an optimal solution T and which connects the node set

A, then we can drop all dominated edges in EA{v} for all v ∈ V \ A.

Proof

Analogously to the proof of the previous theorem.

�

58



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Example 9.3

Let in the following graph the solid edges be the edges which are in an optimal tree and the dotted

edges be all possible edges that can be contained in an optimal solution./.-,()*+
(3,1) (1,3)

/.-,()*+
(4,4)

(1,1)

/.-,()*+
(4,1) /.-,()*+

/.-,()*+ /.-,()*+ (1,2)/.-,()*+ (2,1)

The edges with the cost-weight vector (4, 4) and (4, 1) are dominated and cannot be elements of

an optimal solution. Our graph reduces to:/.-,()*+
(3,1) (1,3)

/.-,()*+
(1,1)

/.-,()*+
/.-,()*+

/.-,()*+ /.-,()*+ (1,2)/.-,()*+ (2,1)

Surely, it is also possible to exclude an edge e if there exists an edge f between the sets A and

B with cf = ce and wf < we. In this case we have to give up our ambition to exclude only edges

which cannot appear in every optimal solution.

Theorem 9.8

All edges e with we > W and more strictly all edges with we > W −∑n−2
i=1 wei

where ei, 1 ≤ i ≤
n − 2, are edges with smallest weight in the graph cannot occur in a feasible solution.

Proof

It is clear that the total weight of every tree including an edge with costs greater than W is

greater than W and therefore this tree is not feasible. Further, the total weight of every tree is

greater than the sum of n− 2 times the smallest weights in the graph and therefore an edge with

weights we > W −∑n−2
i=1 wei

is not a feasible solution.

�

59



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

If an upper bound UB for the optimal solution is found, we can reformulate the theorem by

replacing W by UB and weights by costs.

In the literature only Aggarwal, Aneja and Nair [1] present an exclusion test:

Algorithm 9.1 Exclusion Test of Aggarwal, Aneja and Nair

while change = true do

change: = false

for all e ∈ E do

compute a minimal spanning tree Te such that w(Te) = min(
∑

f∈T wf |T ∈ T , e ∈ T ).

5: if w(Te) > W then

delete e from E.

change:=true

end if

end for

10: for all e ∈ E do

Compute c(Te) = min(
∑

f∈T cf |T ∈ T , e ∈ T )

if c(Tkl) ≥ UB then

delete e from E.

change:=true

15: end if

end for

end while

The proposed algorithm is not quite efficient with respect to the run time by the computation

of the minimal spanning tree for a fixed edge: Since the minimal spanning tree with no fixed

edge and the minimal spanning tree with one fixed edge differ only in one edge exchange, we

show a possible way to implement the idea of Algorithm 9.1 efficiently. The approach is to take

a weight minimal spanning tree T and consider for each edge e ∈ E \ T the cycle C(T, e). We

take from this cycle without the edge e the edge f with largest weight. The tree T \ {f} ∪ {e}
is a minimal tree for the fixed edge e, and if w(T ) − wf + we > W , the edge e can be excluded

from the tree. Analogously, we can do this for a cost minimal spanning tree and a known upper

bound UB on OPT . This improvement has the advantage that the complete spanning tree need

not be recalculated in each step.
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Algorithm 9.2 Refinement of Algorithm 9.1

Compute

T1 := arg min{∑
e∈T

we|T ∈ T }
T2 := arg min{∑

e∈T

ce|T ∈ T }
repeat

5: for all e ∈ E do

compute C(T1, e)

f := arg min{cf |f ∈ C(T1, e) \ {e}}
if w(T1) − wf + we > W then

E := E \ {e}
10: if e ∈ T2 then

perform a minimal cost T2-exchange [e, f ] with f ∈ E

end if

end if

compute C(T2, e)

15: f := arg min{cf |f ∈ C(T2, e) \ {e}}
if c(T2) − ce + cf > UB then

E := E \ {e}
if e ∈ T1 then

perform a minimal weight T1-exchange [e, f ] with f ∈ E

20: end if

end if

end for

until E was not changed in the last iteration
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10 Dependence of Costs and Weights

We focus here on the case that the weights depend on the costs: Let us consider a function

f : Q −→ Q such that f(ce) = we for each e ∈ E. In this chapter we deal only with simple

functions. If such a dependence exists, we may be able to make some statements concerning the

properties of an optimal solution.

10.1 Monotony

Theorem 10.1

Let the WCMST be feasible and a function f : Q −→ Q with f(ce) = we is given. We define for

a tree T cmax := maxe∈T ce and cmin := mine∈T ce.

1. Let f be monotonically increasing.

a) If f(cmax) ≤ W
n−1 , then T is feasible.

b) If f(cmin) > W
n−1 , then T is infeasible.

2. Let f be monotonically decreasing.

a) If f(cmin) ≤ W
n−1 , then T is feasible.

b) If f(cmax) > W
n−1 , then T is infeasible.

Proof

1. a) w(T ) =
∑

e∈T

we =
∑

e∈T

f(ce) ≤ (n − 1)f(cmax) ≤ (n − 1) W
n−1 = W

b) w(T ) =
∑

e∈T

we =
∑

e∈T

f(ce) ≥ (n − 1)f(cmin) > (n − 1) W
n−1 = W

2. a) w(T ) =
∑

e∈T

we =
∑

e∈T

f(ce) ≤ (n − 1)f(cmin) ≤ (n − 1) W
n−1 = W

b) w(T ) =
∑

e∈T

we =
∑

e∈T

f(ce) ≥ (n − 1)f(cmax) > (n − 1) W
n−1 = W

�
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10.2 Linear Functions

Theorem 10.2

Let the function f : Q −→ Q be linear such that f(ce) = ace + b = we for each e ∈ E. Let the

WCMST be feasible.

1. If a ≥ 0, then an optimal tree T ⋆ for min{c(T )|T ∈ T } is optimal for the WCMST.

2. If a < 0, then an optimal tree T̂ for max{c(T )|T ∈ T } is feasible for the WCMST.

3. If a < 0, the tree T̂ which solves max{w(T )|w(T ) ≤ W, T ∈ T } is optimal for the WCMST.

Proof

1. Let T̄ be a feasible solution. Then

w(T ⋆) =
∑

e∈T ⋆

we =
∑

e∈T ⋆

(ace + b) = a
∑

e∈T ⋆

ce + (n − 1)b

≤ a
∑

e∈T̄

ce + (n − 1)b =
∑

e∈T̄

(ace + b) =
∑

e∈T̄

we = w(T̄ ) ≤ W.

So the optimal solution for the unconstrained problem is feasible for the WCMST and

therefore optimal.

2. Let T̄ be a feasible solution. Then

w(T̂ ) =
∑

e∈T̂

we =
∑

e∈T̂

(ace + b) = a
∑

e∈T̂

ce + (n − 1)b

≤ a
∑

e∈T̄

ce + (n − 1)b =
∑

e∈T̄

(ace + b) =
∑

e∈T̄

we = w(T̄ ) ≤ W.

So the optimal solution for the unconstrained maximization problem is feasible for the

WCMST. (Notice that the optimal solution for the unconstrained maximal spanning tree

problem can be found analogously to the minimal spanning tree problem by taking in the

algorithm of Prim always a possible edge with greatest costs.)

3. By definition the tree T̂ is feasible. Let us consider a tree T with w(T ) < w(T̂ ):

c(T̂ ) =
∑

e∈T̂

ce =
∑

e∈T̂

1

a
we −

b

a
=

1

a
w(T̂ ) − b

a

<
1

a
w(T ) − b

a
=
∑

e∈T

1

a
we −

b

a
=
∑

e∈T

ce = c(T )

So T̂ is an optimal solution.

�
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10.3 Proportional / Inverse Proportional Costs and Weights

Let ce and we be proportional for all e ∈ E i.e., ce

we
= a for all e ∈ E.

Theorem 10.3

If ce

we
= a for all e ∈ E and the WCMST is feasible, then the weight-constraint can be ignored.

Proof

Since the WCMST is feasible a feasible tree T̄ exists. Let T ⋆ be the optimal solution for

min{c(T )|T ∈ T }. Then

w(T ⋆) =
∑

e∈T ⋆

we =
∑

e∈T ⋆

1

a
ce =

1

a

∑

e∈T ⋆

ce

≤ 1

a

∑

e∈T̄

ce =
∑

e∈T̄

1

a
ce =

∑

e∈T̄

we = w(T̄ ) ≤ W

Since c(T ⋆) ≤ c(T̄ ) the claim holds.

�

Let ce and we be inverse proportional for all e ∈ E i.e., cewe = a for all e ∈ E.

Theorem 10.4

If cewe = a for all e ∈ E and the WCMST is feasible, then an optimal solution is greater than

a (n−1)2

W
.

Proof

At first we show that for a, b > 0 the term 1
a

+ 1
b
≥ 2 1

a+b
2

holds: We now that

(a − b)2 ≥ 0

which can reformulated to

a2 − 2ab + b2 ≥ 0.

If we add on both sides 2ab, we get

a2 + b2 ≥ 2ab

which can be reformulated to
a2 + b2

ab
≥ 2

and further to
a2 + 2ab + b2

ab
≥ 4.

By using the binomial theorem
(a + b)2

ab
≥ 4
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holds. Since a > 0 and b > 0 we can conclude that

(a + b)

ab
≥ 4

a + b

which leads finally to the desired
1

a
+

1

b
≥ 2

1
a+b
2

.

For a1, . . . , aK > 0 we have
K
∑

k=1

1

ak
≥ K

1
∑K

k=1
ak

K

.

For a feasible solution of our problem we have:

∑

e∈T

ce =
∑

e∈T

a

we
= a

∑

e∈T

1

we
≥ a(n − 1)

1
∑

e∈T we

n−1

= a
(n − 1)2
∑

e∈T

we
≥ a

(n − 1)2

W

�

Remark

In the previous theorem we see that the costs are minimal if each edge in the tree has costs an−1
W

.

If we search for a solution with w(T ) = W , we have:

min
∑

e∈T

ce

s.t.
∑

e∈T

a

ce
= W

T ∈ T

So we can alternatively search for a tree with

min
∑

e∈T

|ce − a
n − 1

W
|

s.t.
∑

e∈T

a

ce
= W

T ∈ T

Since very different functions can appear the topic of a dependence between costs and weights

might be interesting for further research.
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11 Exact Algorithms

In the literature only a few ideas to solve the WCMST exactly can be found. We can charac-

terize these exact algorithms in branch and bound schemes which splits the problem into several

problems by fixing and excluding some edges and other exact solutions. We explain three branch

and bound procedures found in the publication of Aggarwal, Aneja and Nair [1], the article of

Shogan [37] and the paper of Yamada, Watanabe and Kataoka [39] and give a new own branch

and bound algorithm. Additionally we state two alternative ways to solve our problem: the idea

of Hong, Chung and Park [27] using the matrix tree theorem is more algebraically orientated and

the idea of solving the WCMST by a ranking algorithm.

11.1 Branch and Bound Algorithms

Since branch and bound is a very popular method to solve various optimization problems, using

a branch and bound method for solving the WCMST suggests itself. The four following branch

and bound schemes works with the same idea: In each branching we restrict our problem by

fixing and forbidding edges i.e., we introduce the disjoint sets A,B ⊂ E. A spanning tree must

contain all edges of A, i.e. xe = 1 for all e ∈ A. For all e ∈ B the edge e is not in the spanning

tree, i.e. xe = 0.

Problem 18 (PAB)

C⋆
AB := min

∑

e∈E

cexe

s.t.
∑

e∈E

wexe ≤ W

x ∈ TAB

where TAB := T ∩ {x|xe = 1, ∀e ∈ A} ∩ {x|xe = 0, ∀e ∈ B} = {T ∈ T |A ⊂ T,B ∩ T = ∅}.

Since TAB ⊂ T this (PAB) is a more restrictive problem than Problem 1. And obviously

OPT ≤ C⋆
AB

holds. The difference between the algorithms is how to choose A and B and how to handle PAB .

The first and second scheme use the Lagrangian relaxation and compute in each iteration a large

set of spanning trees under some cost function ce+µwe for all e ∈ E. The third algorithm updates

only an existing tree be edge-exchanges chosen by a clever exchange rule. The last branch and

bound algorithm describes a more general procedure.
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11.1.1 The Algorithm of Aggarwal, Aneja and Nair [1]

The branch and bound scheme of Aggarwal, Aneja and Nair, which is the oldest idea to solve

the WCMST, works in the following way: By computing the convex hull we get some best trees

T+, T− ∈ T with w(T+) > W and w(T−) ≤ W and c(T+) < c(T−). Also we have an upper

bound UB = c(T−) and a lower bound on the intersection point of the line w(T ) = W and

the line (c(T+), w(T+))((c(T−), w(T−)). An efficient solution of the bicriterial problem which is

optimal for the WCMST lies in the triangle uvz (see Figure 11.1) where u = (c(T−), w(T−)), z =

( c(T−)−c(T+)
w(T−)−w(T+)W − c(T+) + c(T−)−c(T+)

w(T−)−w(T+)w(T+),W ) and v = (c(T−),W ).

W w(T)

c(T)

c(T−)

c(T+)

w(T−) w(T+)

u v

z

b

b

b b

Figure 11.1: Algorithm of Aggarwal, Aneja and Nair

The idea of Aggarwal, Aneja and Nair is to start from the known upper bound on the convex

hull and update by using a branch and bound scheme the triangle uvz until an optimal solution

is found. Let T− = {e1, . . . , en−1}. Therefore, we have xei
= 1 for i < n−1 and xei

= 0 for i ≥ n.

Branching

We branch from the tree T− by partitioning T \{T−} in n− 1 non-empty and disjoint sets TAkBk

(k ∈ {1, . . . , n − 1}) such that

TAkBk
= {T ∈ T | {e1, . . . , ek−1} =: Ak ⊂ T, {ek} =: Bk ∩ T = ∅}.

For TAkBk
we search also for trees T+

k and T−
k on the convex hull of TAkBk

with w(T−
k ) ≤ W ,

w(T+
k ) > W and c(T+

k ) < c(T−
k ). If the facet defined by this T+ and T− of this problem

lies outside of uvz or does not lead to a better solution, we will not consider this set further.

Otherwise we branch TAkBk
with T−

k . In general, if we branch from a tree T−
s ∈ T s

AB where

T−
s \ A = {e1, . . . , eK}, we have at level s + 1 a partition

T s+1
AkBk

:= {T ∈ T s
AB|A ∪ {e1, . . . , ek−1} =: Ak ⊂ T,Bs ∪ {ek} =: Bk ∩ T = ∅}

for all k ∈ {1, . . . ,K}. (Please notice that in [1] the used numbering of the xi is wrong.) So we

can formulate the algorithm.
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T− = {A} ∪ {e1, e2, . . . , eK}
T s

AB

T s+1
A1B1

T s+1
A2B2

T s+1
A3B3

. . . T s+1
AKBK

A,B ∪ {e1} A ∪ {e1}
B ∪ {e2}

A ∪ {e1, e2}
B ∪ {e3}

A ∪ {e1, . . . , eK−1}
B ∪ {eK}

Figure 11.2: Branching in an arbitrary step

Procedure 11.1 Branch- and bound-Scheme of Aggarwal, Aneja and Nair: Efficient Frontier

run Procedure 7.1 with TAs
k
Bs

k

if C1 ≥ UB or W2 > W then

return to Main Case 1 {TAs
k
Bs

k
can be ignored}

end if

5: if W1 ≤ W then

define T−
k := Tk1

return to Main Case 2

else

Case 3

10: end if

repeat

{with (Tk1, Tk3) and (Tk3, Tk2)}
µ := (w(Tk1) − w(Tk2))/(c(Tk2) − c(Tk1))

Compute a minimal spanning tree Tk3 under the cost ce + µwe from the set TAs
k
Bs

k
.

15: until no further efficient solution can be found

Choose two efficient trees T+
k , T−

k next to w(T ) = W such that w(T+
k ) > W and w(T−

k ) < W

return to Main
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Algorithm 11.2 Branch- and bound-Scheme of Aggarwal, Aneja and Nair: Main

while the set of eligible branches is not empty do

repeat

For the kth partition of TAs
k
Bs

k
goto Procedure 11.1

if return under 1. case then

5: the set can be ignored

else if return under 2. case then

the tree T−
k is the best feasible tree for this branching

UB := c(T−
k )

else {return under 3. case}
10: if {(c, w)|(c, w) ≥ µ(c(T+

k ), w(T+
k )) + (1 − µ)(c(T−

k ), w(T−
k )), 0 ≤ µ ≤ 1} ∩ {(c, w)|c ≤

UB,w ≤ W} = ∅ then

this branching need not considered

else if w(T−
k ) = W then

UB = c(T−
k )

else

15: TLBk := c(zk) where zk describes the intersection point of (T+
k , T−

k ) and w = W .

T (TLBk) := T−
k

end if

if c(T−
k ) < UB then

UB := c(T−
k )

20: end if

end if

k := k + 1

until all partitions of the level are considered

if TLBk ≥ UB then

25: prune T (TLBk) for all branchings

end if

LB := mink TLBk = TLB(ẑk)

if LB ≥ UB then

T ⋆ = T (UB) respectively OPT = UB

30: STOPP

end if

k := 1

end while
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Theorem 11.1

1. The algorithm terminates.

2. The algorithm is valid.

Proof

1. Since this is an ordinary branch and bound scheme with breadth-first search the algorithm

terminates after a finite number of steps.

2. The algorithm is valid since in each step we update the triangle (u− v− z). Since (u− z) is

a face of the convex hull of the efficient solution an optimal solution cannot lie below this

face. The triangle in each branching level l can be constructed in this way:

zl :=ẑk = (TLB(ẑk),W ) = (LB,W )

vl :=(UB,W )

ul :={(c, w)|min
k

[w|ĉ = UB, (c, w) = λ(c(T+
k ), w(T+

k )) + (1 − λ)(c(T−
k ), w(T−

k ))λ ∈ [0, 1]]

for all eligible branchings }

The facet (ul, zl) either coincides with (ul−1, zl−1) or lies above this. (vl, zl) lies beneath

from (vl−1, zl−1) if UB changes. In general, we reduce in every branching by fixing and

excluding edges the set of free eligible edges. Then ∆(ul, vl, zl) ⊂ ∆(ul−1, vl−1, zl−1). In a

finite number of steps TLB(ẑk) ≥ UB and the triangle reduces to a line and the optimal

solution was found.

�

Remark

If we stop before the algorithm is finished we get a lower and upper bound for the value of the

solution.

Comment

The main disadvantage of this algorithm is that for every problem all supported trees have to

be computed in the Procedure 11.1, since the quotient w(T1)−w(T2)
c(T2)−c(T1) delivers for the best known

(feasible) upper bound tree T1 and the best known (infeasible) lower bound tree T2 in general no

µ such that a tree T which is optimal for ce + µwe for all e ∈ E satisfies c(T1) ≤ c(T ) ≤ c(T2)

and w(T1) ≥ w(T ) ≥ w(T2).
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11.1.2 The Algorithm of Shogan [37]

In [37] Shogan introduces an algorithm for the resource-constrained spanning tree problem (see

equation (3.6)) which can be extended to a resource-constrained spanning tree problem with

flow requirements. Here we show only the case L = 1. All other branch and bound algorithms

mentioned in this thesis run only for the case L = 1 and cannot be extended to the resource-

constrained minimal spanning tree problem.

Idea

The approach of Shogan’s algorithm is a branch and bound scheme combined with the Lagrangian

relaxation. The difference to the previous algorithm is a different branching rule. We use the

following Notation: Let Ccu be the objective value of the current solution. If no solution is known

let Ccu = ∞. For this algorithm we need the Lagrangian relaxation of Problem 18:

Problem 19 (Pµ
AB)

C⋆
AB(µ) := min

m
∑

k=1

ckxk + µ(
m
∑

k=1

wkxk)

s.t. x ∈ TAB

We know

C⋆
AB ≥ C⋆

AB(µ) − µW.

For sake of completeness we formulate the Lagrangian dual for this problem.

Problem 20 (DAB)

max C⋆
AB(µ) − µW

µ ≥ 0

The solution of every Pµ
AB results in at least one of the following possibilities:

1. A better lower bound for C⋆
AB can be found.

2. We can reduce the objective value of the current solution.

3. The optimal solution of PAB is found.

Let x⋆
AB(µ) be the optimal solution of (Pµ

AB) and s⋆
AB(µ) ∈ R be the slack variable defined in

this manner:

s⋆
AB(µ) := W −

n
∑

k=1

wkx
⋆
AB(µ)k.

Algorithm

We can describe all branchings by a vector [A,B, µ,C⋆
AB(µ), s⋆

AB(µ)] where µ is not necessary

the optimal solution of the dual problem but provides the best known lower bound for C⋆
AB and

store this problem on a stack.
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Algorithm 11.3 Branch- and Bound-Scheme of Shogan

Require: [∅, ∅, 0, c⋆
∅∅(0), s⋆

∅∅(0)], ǫ > 0

repeat

Choose a problem from the stack with largest C⋆
AB(µ)

Out:=false

while t < 4n or C⋆
AB(µI) − µW does increase by 0.1 percent or OUT = false do

5: µt := max{0, µt−1 − θts
⋆
AB(µt−1)}

Solve (Pµt

AB)

if (1 + ǫ)(C⋆
AB(µk) − µW ) ≥ Ccu then

delete Problem

OUT:=true

10: end if

if s⋆
AB(µt) ≥ 0 then

if cx⋆
AB(µt) < Ccu then

cu := x⋆
AB

end if

15: if µts⋆
AB(µt) ≤ ǫ(C⋆

AB(µt) − µtW ) then

delete problem

OUT:=true

end if

end if

20: if C⋆
AB(µt) − µW > C⋆

AB(µI) − µIW then

I := t

end if

t:=t+1

end while

25: if OUT = false then

Take e⋆ ∈ JAB with minimal ce + µIwe.

if
∑

e∈{A∪{e⋆}} we ≤ W and |A ∪ {e⋆}| < n − 1 then

add [A ∪ {e⋆}, B, µI , C⋆
AB(µI), s⋆

AB(µI)] to the stack

end if

30: if (PµI

A,B∪{j⋆}) is feasible then

add [A,B ∪ {j⋆}, µI , c⋆
A,B∪{j⋆}(µI), s⋆

A,B∪{j⋆}(µI)] to the stack

end if

end if

until the stack is empty

35: The current solution is optimal
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Explanations and Remarks

General: The input corresponds to a minimal spanning tree problem without constraints. If

C⋆
AB(µ) is greater than the current solution Ccu, this problem can be pruned. We try

to solve the Lagrangian dual (DAB) by a subgradient approach. The subgradient for the

objective function for (DAB) on µ is −s⋆
AB(µ). The iteration of the subgradient method is

done in the while-loop:

Line 5: The difficult part of the algorithm is the choice of µ. Proposed is the following approach:

For θl ∈ R+ sufficiently small

µt := max{0, µt−1 − θts
⋆
AB(µt−1)}

is closer to the optimal solution of (DAB) than µt−1 i.e.,

C⋆
AB(µt) − µtW ≥ C⋆

AB(mut−1) − µt−1W.

The most difficult part is the choice of θt. Proposed is θt = 1 for all t.

Line 6: The problem Pµ
AB can be solved by any minimal spanning tree algorithm.

Line 7: If the value of the relaxation is greater than the objective value of the incumbent so-

lution, the sets A and B cannot lead to an optimal solution since every solution of PAB

would be greater than C⋆
AB(µt) − µW and we could prune the subproblem. The ǫ denotes

an approximation tolerance (ǫ = 0 is possible). We can stop our subgradient method and

therefore set OUT:=false.

Line 11: We check if x⋆
AB(µ) is feasible for (PAB). This is true if and only if s⋆

AB(µ) ≥ 0. Then

all conditions are fulfilled. Otherwise the problem has to be considered further.

Line 12: It holds

C⋆
AB(µ) − µW = cx⋆

AB(µ) − µs⋆
AB(µ) < Ccu.

Since xAB(µ) is feasible, xAB(µ) becomes the current solution if cx⋆
AB(µ) < Ccu.

Line 15: Since xAB(µ) is feasible and C⋆
AB(µ) − µW is a lower bound for C⋆

AB :

C⋆
AB(µ) − µW = cx⋆

AB(µ) − µs⋆
AB(µ) ≤ C⋆

AB ≤ cx⋆
AB(µ).

If µs⋆
AB = 0, then c⋆

AB(µ) = cx⋆
AB(µ) = c⋆

AB . It follows that µ and x⋆
AB(µ) are optimal

for (DAB) and (PAB). If µs⋆
AB(µ) ≤ ǫc⋆

AB(µ), we could also accept x⋆
AB(µ) as an optimal

solution.

If the problem is not fathomed, we must decide whether it is meaningful to continue

the subgradient method (e.g. start another turn of the loop). Notice that the sequence
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µ0, µ1, . . . , µt is not necessarily monotonous. So we have to store the µI which delivers the

greatest lower bound for c⋆
AB . We start the (t + 1)st iteration until one of the following

cases occurs:

1. t > 4n

2. In the last 5 iterations, c⋆
AB(µI) does not increase by 0.1 percent

Line 25: If the problem was not pruned yet, we have to branch further. In contrast to the

previous algorithm we partition the problem only in two branches: Let V (A) denote the

set of vertices which are connected by the edges of A. Let JAB ∈ E with JAB ∪ B = ∅
denote the set of edges with one node in V (A) and one node in V \ V (A). If A = ∅ then

JAB is the set of all edges which has the node 1. Let e⋆ ∈ JAB be the edge that minimizes

ce + µIwe. We partition TAB into TA∪{e⋆},B and TA,B∪{e⋆}.

By construction A ∪ {e⋆} is connected. The choice of e⋆ guarantees that e⋆ lies in the

minimal spanning tree of PµI

AB and of PA∪{e⋆},B since in Prim’s algorithm this edge will be

added to the tree. Therefore [A∪{j⋆}, B, µI , c⋆
AB(µI), s⋆

AB(µI)] is added to the stack while

not one of the following cases holds:

1.
∑

e∈A∪{e⋆}

we > W . The problem is not feasible.

2. |A ∪ {e⋆}| = n − 1 the solution is found.

For PA,B∪{e⋆} we have to check:

1. A lower bound of C⋆
A,B∪{e⋆} can be found by solving PµI

A,B∪{e⋆}.

2. We use this C⋆
A,B∪{e⋆}(µ

I), y⋆
A,B∪{e⋆}(µ

I), s⋆
A,B∪{e⋆}(µ

I) and check whether the problem

is feasible.

3. If the problem cannot be deleted, we add [A,B∪{ej}, µI , C⋆
A,B∪{e⋆}(µI), s⋆

A,B∪{e⋆}(µ
I)]

to the stack.

11.1.3 The Algorithm of Ruzika and Henn

In this section we will give a new branch and bound scheme with a more sophisticated branching

rule. Therefore, we need some further knowledge about the properties of the convex hull. Let us

start with a tree which has minimal weight and perform T−exchanges [e, f ] such that

f := arg min{ cf − ce

wf − we
|cf < ce, f /∈ T, e ∈ T, T \ {e} ∪ {f} ∈ T }. (11.1)

We call these edges e and f pivot edges, and this exchange pivot operation. We can solve this

minimization problem in O(nm) since the tree T has n− 1 edges and m − (n − 1) edges are not

contained in T . Therefore, at least (n − 1)(m − (n − 1)) exchanges are possible.

In the following we show that the sequence T1, . . . , TK of these exchanges where T1 is a tree

with minimal weights and TK a tree with minimal costs decreases the costs in each step strictly

74



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

(e.g. c(T1) > c(T2) > · · · > c(TK)), each (c(Tk), w(Tk)) k ∈ {1, . . . ,K} lies on the frontier of the

convex hull and all extreme points of the convex hull are contained in this sequence. Moreover,

we see that if we perform such pivot operations starting from an arbitrary tree on the border of

the convex hull, the new tree is also a tree whose cost-weight-vector lies on a facet.

In Theorem 6.2 we have already seen that the set of supported trees is connected which implies

that a sequence T1, . . . , TL exists such that Ti and Ti+1, i ∈ {1, . . . , L−1}, differ by one exchange

and each Ti is a supported tree. For each facet of the convex hull exist a µ such that all trees

whose weight-cost vector lie on this facet are optimal for ce + µwe for all e ∈ E (see Theorem

7.3). We denote this set Oµ.

Theorem 11.2

If there exist two supported trees T1 and TK with c(T1) = c(TK) and w(T1) = w(TK) and their

image is an extreme point of the convex hull then there exists a sequence T1, . . . , TK such that

Tk and Tk+1 are adjacent for all k ∈ {1, . . . ,K − 1} and c(T1) = c(T2) = · · · = c(TK) and

w(T1) = w(T2) = · · · = w(TK).

Proof

We know for T1 and T2 that both trees are optimal for the costs ce + µ1we and ce + µ2we for

all e ∈ E where µ1 and µ2 corresponds to the two facets having the extreme point in common.

For all µ ∈ (µ1, µ2) only the trees whose images correspond to the extreme point are optimal

for ce + µwe. We know from the ranking algorithm of Katoh, Ibaraki, Mine [31] that the kth

minimal cost spanning tree can be obtained by performing edge exchanges outgoing from one of

the k − 1th minimal cost spanning trees (for more information see Section 11.3). So if we search

for all optimal trees for ce + µwe we find by this idea all trees whose costs are c(T1) and whose

weight is w(T1). Therefore, in the search also T1 and T2 appear. Both trees are obtained by

sequences of optimal trees T0, . . . , T
p = T1 and T0, . . . , T

l = T2 where T0 is the first found tree

and the trees in the sequence are pairwise adjacent. If we combine both sequences, we have the

desired result.

�

Unfortunately this result holds not for arbitrary trees on a facet of the convex hull. This can be

seen in the next example.

Example 11.1 ?>=<89:;1
(2,1)

(0,0)

?>=<89:;2

(0,0)

(1,2) ?>=<89:;3

(0,0)?>=<89:;4
(1,2) ?>=<89:;5

(2,1) ?>=<89:;6
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Obviously the trees

T1 = {{1, 4}, {2, 5}, {3, 6}, {4, 5}, {5, 6}}

and

T2 = {{1, 2}, {1, 4}, {2, 3}, {2, 5}, {3, 6}}

are optimal for ce + 1we and therefore supported. We have also that c(T1) = 3 = c(T2) and

w(T1) = 3 = w(T2) and the information that T1 and T2 are not adjacent. As you can see there

exists no tree which is adjacent to T1 with costs 3 and weights 3 and Theorem 11.2 holds not for

arbitrary trees on the convex hull.

If we perform an exchange [e, f ] from T ∈ Oµ the tree T \{e}∪{f} is element of Oµ if ce +µwe =

cf + µwf .

Let us consider such a set Oµ. We will show that if we start with an arbitrary T 1
µ ∈ Oµ the edge-

exchange rule (11.1) delivers a sequence T 1
µ , T 2

µ , . . . , TK
µ ∈ Oµ with c(T 1

µ) > c(T 2
µ) > · · · > c(TK

µ )

and c(TK
µ ) ≤ c(T ) for all T ∈ Oµ. This TK

µ is therefore an extreme point and optimal for other

costs ce + µ̄we for all e ∈ E with c(TK
µ ) ≥ c(T ) for all T ∈ Oµ̄.

Lemma 11.3

Let T1 and T2 be in Oµ with c(T1) = c(T2). Let T1 and T2 differ only in one T -exchange. If a

tree T3 ∈ Oµ exists which can be obtained by one T−exchange from T2 and c(T3) < c(T2), we can

also construct a tree T ∈ Oµ with c(T ) < c(T1) by one T−exchange from T1.

Proof

Since T1, T2, T3 ∈ Oµ:

c(T1) + µw(T1) = c(T2) + µw(T2) = c(T3) + µw(T3)

From the definition we have for our trees T1 and T2

c(T1) = c(T2) > c(T3) and w(T1) = w(T2) < w(T3).

We have T1 \ {i} ∪ {j} = T2 and T2 \ {g} ∪ {h} = T3.

Since c(T1) = c(T2) and T1, T2 ∈ Oµ

ci + µwi = cj + µwj (11.2)

and ci = cj , wi = wj (11.3)

must hold. Since T3 ∈ Oµ and c(T2) > c(T3) we have

cg + µwg = ch + µwh (11.4)

and cg > ch, wg < wh (11.5)

We have to make a case differentiation:
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1. T1 \ {g} ∪ {h} is a tree.

Denote this tree with T4. By (11.4) we see that T4 ∈ Oµ and by (11.5) that c(T4) =

c(T1) − cg + ch < c(T1).

2. T1 \ {g} ∪ {h} is no spanning tree

Therefore

g /∈C(T1, h) = C(T1 ∩ T2 ∪ {i}, h) and (11.6)

g ∈C(T2, h) = C(T1 ∩ T2 ∪ {j}, h) (11.7)

Both cycles differ only in i and j. We can conclude that

j, g ∈ C(T2, h) = C(T3, g). (11.8)

This result can be seen easily, since otherwise g ∈ C(T2 \ {j}, h) = C(T1 ∩ T2, h) and

g ∈ C(T1, h) which contradicts to the assumption of this case.

Claim 1: g ∈ C(T1, j).

A general result is that the for two cycles C1, C2 which have at least one edge in common

(C1 ∩ C2 6= ∅), C1 * C2 and C2 * C1 the set (C1 ∪ C2) \ (C1 ∩ C2) is also a cycle. We

know C(T1, j) = C(T2, i) and g, j ∈ C(T2, h) = C(T1 \ {i} ∪ {j}, h). Let us assume that

g /∈ C(T1, j). Then for C(T1, j) and C(T1 \{i}∪{j}, h) the conditions for the general result

are satisfied and we can construct a cycle D := (C(T1 \ {i} ∪ {j}, h) ∪ C(T1, j)) \ (C(T1 \
{i} ∪ {j}, h) ∩C(T1, j)) with g, h ∈ D and j /∈ D. So D ⊂ (T1 ∪ {h}) and T1 \ {g} ∪ {h} is

a tree. This is a contradiction to our assumption and thus g ∈ C(T1, j).

From the claim we can conclude that T5 := T1 \ {g} ∪ {j} is a tree.

Claim 2: i ∈ C(T1, h)

We use again the argument of the previous claim: In this case we know that i, j ∈ C(T1, j)

and j ∈ C(T2, h) = C(T1 \{i}∪{j}, h) also g /∈ C(T1, h) but g ∈ C(T2, h) and i /∈ C(T2, h).

So we can get a cycle by D := (C(T1, j)∪C(T1\{i}∪{j}, h))\(C(T1 , j)∩C(T1\{i}∪{j}, h))

with i, h ∈ D. Then i ∈ C(T1, h).

So T6 := T1 \ {i} ∪ {h} is a tree.

By these claims our tree T1 has the following structure:/.-,()*+
i

. . . /.-,()*+
h

g . . . /.-,()*+
j/.-,()*+ . . . /.-,()*+ . . . /.-,()*+

Claim 3: cj + µwj ≤ ch + µwh(= cg + µwg)

Let us consider otherwise (cj + µwj > ch + µwh) the tree T := T2 \ {j} ∪ {h}. (Since j, h
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are elements of the cycle C(T2, h), T is a spanning tree.) Then

c(T ) + µw(T ) = c(T2) + µw(T2) − (cj + µwj) + (ch + µwh)

< c(T2) + µw(T2)

which contradicts T2 ∈ Oµ.

Claim 4: cj + µwj ≥ ch + µwh(= cg + µwg)

We consider otherwise (cj + µwj < cg + µwg) the tree T5.

c(T5) + µw(T5) = c(T1) + µw(T1) − (cg + µwg) + (cj + µwj)

< c(T1) + µw(T1)

This contradicts the fact that T1 ∈ Oµ. So we know that

ch + µwh = cg + µwg = ci + µwi = cj + µwj . (11.9)

From this equation we can conclude that the trees T5 and T6 are contained in Oµ.

Claim 5: At least c(T5) < c(T1) or c(T6) < c(T1) hold.

We assume otherwise that c(T5) ≥ c(T1) and c(T6) ≥ c(T1). This means that

c(T5) = c(T1) − cg + cj ≥ c(T1)

with leads to

cj ≥ cg (11.10)

and

c(T6) = c(T1) − ci + ch ≥ c(T1)

which leads to

ch ≥ ci (11.11)

We combine (11.3), (11.10) and (11.11) and get

ch ≥ ci = cj ≥ cg

This is a contradiction to the fact that cg is strictly greater than ch which we know from

(11.5). So Claim 5 is valid and at least one of the two trees has lower costs than T1.

In both cases a tree can be constructed by one edge exchange from T1 which is optimal for

ce + µwe and has lower costs than T1.

�

The question is now which relation between the obtained trees exists.
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Lemma 11.4

In each case the obtained trees - proposed they exist - are adjacent.

Proof

We consider each of the three possible pairs separately.

1. T3 and T4

From definition we know that T3 = T2\{g}∪{h} = T1\{g, i}∪{h, j} and T4 = T1\{g}∪{h}.

Obviously

T3 = T4 \ {i} ∪ {j}.

2. T3 and T5

We know that T5 := T1 \ {g} ∪ {j} and so

T3 = T5 \ {i} ∪ {h}.

3. T3 and T6

We know that T6 := T1 \ {i} ∪ {h} and so

T3 = T6 \ {g} ∪ {j}.

In all three cases the obtained trees - proposed they exist - are adjacent.

�

Corollary 11.5

Let T1 and TK in Oµ with c(T1) = c(TK) and w(T1) = w(TK) and their image is an extreme

point of the convex hull. If there exists a tree T̂K ∈ Oµ which can be obtained by an edge-exchange

from TK and c(T̂K) < c(TK) then there exists a tree T̂1 ∈ Oµ which can be obtained by an edge

exchange starting from T1 with c(T̂1) < c(T1).

Proof

According to Theorem 11.2 a sequence (obviously in Oµ) T1, . . . , TK exists where Tk and Tk+1

differ by one edge-exchange for k ∈ {1, . . . ,K − 1}. Since we can construct a tree T̂K ∈ Oµ

with c(TK) > c(T̂K) by an edge exchange from TK we can also construct a tree T̂K−1 ∈ Oµ with

c(T̂K−1) < c(TK+1) by an edge exchange from TK+1. We use this property iteratively and can

construct a tree T̂1 ∈ Oµ with c(T̂1) < c(T1).

�

Lemma 11.6

Let T1 and T2 be two adjacent trees in Oµ with c(T2) > c(T1) and we can obtain a tree T3 ∈ Oµ

from T2 by one edge exchange such that c(T2) > c(T3) and c(T1) > c(T3). Then we can construct

a tree T ∈ Oµ by an exchange outgoing from T1 with c(T3) ≥ c(T ).
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Proof

This proof works very close to the proof of Lemma 11.3: We use the same denotation: T2 :=

T1 \ {i} ∪ {j} and T3 := T2 \ {g} ∪ {h} = T1 \ {g, i} ∪ {h, j}. In this case it must hold that

c(T1) < c(T2) = c(T1) − ci + cj

which leads to

cj > ci (11.12)

and

c(T2) > c(T3) = c(T2) − cg + ch

which leads to

cg > ch. (11.13)

Now we can proceed the same case distinction:

1. T1 \ {g} ∪ {h} is a tree.

Define T4 := T1 \ {g} ∪ {h} then we know that

c(T4) = c(T1) − cg − ch < c(T1).

2. T1 \ {g} ∪ {h} is no tree.

Analogously to Lemma 11.3 we construct trees T5 := T1 \{g}∪{j} and T6 := T1 \{i}∪{h}
(The proof that both subgraphs are trees and elements of Oµ works analogously to the

proof in Lemma 11.3). Let us assume that both trees have costs greater or equal than T1:

c(T5) = c(T1) − cg + cj ≥ c(T1)

which leads to

cj ≥ cg (11.14)

and

c(T6) = c(T1) − ci + ch ≥ c(T1).

This is valid if and only if

ch ≥ ci (11.15)

Now we sum up the inequalities (11.14), (11.15) and get

ch + cj ≥ cg + ci (11.16)

From the assumption that c(T3) is less than c(T1) we know that

c(T3) = c(T1) − (cg + ci) + (cj + ch) < c(T1)
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which is equivalent to

cj + ch < cg + ci (11.17)

which contradicts (11.16). At least one of the trees T5, T6 must have costs less than c(T1).

We can notice again that the tree T3 is also adjacent to T4, respectively T5 and T6.

�

Lemma 11.7

Let T1, TK ∈ Oµ be given with c(T1) > c(TK) and let c(TK) < c(T ) for all T ∈ Oµ. Then, there

exists a sequence (T1, . . . , TK) in Oµ with Tk and Tk+1 being adjacent and satisfying c(Tk) >

c(Tk+1) for all k ∈ {1, . . . ,K − 1}.

Proof

It is clear that there exists a sequence (T1, . . . , TK) in Oµ with Tk and Tk+1 being adjacent since

all trees in Oµ are connected. If c(Tk) < c(Tk+1) for all k ∈ {1, . . . ,K − 1}, there remains

nothing to show. Therefore, we assume that there is at least one index k ≤ K − 1 such that

c(Tk) > c(Tk+1) or c(Tk) = c(Tk+1). We call these cases ’conflicts’. We denote the number of

these indices by K∗ and we suppose that k∗ is the maximum among them. We refer to k∗ as the

largest index of conflict.

• Let us consider first the case c(Tk∗) < c(Tk∗+1). Due to Lemma 11.6 we can construct a

tree T ∈ Oµ adjacent to Tk∗ and Tk∗+2 with c(T ) < c(Tk∗). For this tree, it holds that

c(T ) < c(Tk∗+2), c(T ) = c(Tk∗+2), or c(T ) > c(Tk∗+2).

– Suppose c(T ) > c(Tk∗+2).

Then we substitute the subsequence (T ∗
k , Tk

∗ + 1, Tk∗+2) by (T ∗
k , T, Tk∗+2) and it holds

that c(T ∗
k ) < c(T ) < c(Tk∗+2).

– Suppose c(T ) = c(Tk∗+2) or c(T ) < c(Tk∗+2).

Then we substitute the subsequence (T ∗
k , Tk∗+1, Tk∗+2) by (T ∗

k , T, Tk∗+2). For the new

sequence we decreased the largest index of conflict k∗ by one.

• Let us now consider the case c(Tk∗) = c(Tk∗+1). Due to Lemma 11.3 we can construct a

tree T ∈ Oµ adjacent to Tk∗ and Tk∗+2 with c(T ) < c(Tk∗). A similar analysis as above

either resolves the ’conflict’ or decreases the largest index of conflict by one.

The proof relies on the fact that a conflict is pushed towards the end of the sequence and,

eventually, the application of Lemma 11.3 or Lemma 11.6 resolves this conflict and we proceed

with the treatment of the next conflict.

�
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Lemma 11.8

Let (T 1
1 , . . . , T 1

L) be a sequence in Oµ with T 1
l and T 1

l+1 being adjacent and satisfying c(T 1
l ) >

c(T 1
l+1) for all l ∈ {1, . . . , L − 1}. Suppose there does not exist a tree T 1

L+1 ∈ Oµ with T 1
L and

T 1
L+1 being adjacent and satisfying c(T 1

L) > c(T 1
L+1) i.e., we suppose that T 1

L is the last element

of the decreasing sequence.

Let (T 1
1 = T 2

1 , . . . , T 2
K) be a sequence in Oµ with T 2

k and T 2
k+1 being adjacent and satisfying

c(T 2
k ) > c(T 2

k+1) for all i ∈ {1, . . . ,K − 1}. Suppose that there does not exist a tree T 2
K+1 ∈ Oµ

with T 2
K and T 2

K+1 being adjacent and satisfying c(T 2
K) > c(T 2

K+1), i.e., we suppose that T 2
K is

the last element of the decreasing sequence.

Then

c(T 2
K) = c(T 1

L).

Proof

Note that both sequences start with the same element since T 1
1 = T 2

1 . It is sufficient to find a

contradiction only for the case c(T 2
K) > c(T 1

L). We show this by induction over K.

• Basis: K = 2

We proof this by a second induction over L.

– Basis: L = 2

Assume c(T 2
2 ) > c(T 1

2 ). Due to Lemma 11.6 there exists an adjacent tree T of T 2
2 with

c(T ) ≤ c(T 2
2 ) which is a contradiction to the assumption that the sequence stops in

T 2
K . So equality must hold.

– Induction hypothesis: Let the claim be valid for an arbitrary L − 1.

– Induction step: According to Lemma 11.6 we can construct a tree T ∈ Oµ from T 1
2

which is adjacent to T 1
2 and T 2

2 with costs c(T ) ≤ c(T 2
2 ). Assume that c(T ) < c(T 2

2 ).

Since T and T 2
2 are adjacent, this contradicts the assumption that T 2

2 is the last tree

in the sequence. Therefore, c(T ) = c(T 2
2 ). Then we consider the sequence T 1

2 , . . . , T 1
L

having L− 1 elements and the sequence (T 2
2 , T ) consisting of two trees. We apply the

induction hypothesis and conclude that c(T 1
L) = c(T ) = c(T 2

2 ).

• Induction hypothesis: Let the claim be valid for an arbitrary K − 1.

• Induction step: To be able to apply the induction hypothesis, we start our considerations

in the tree T 2
2 . Note that T 2

2 and T 1
1 are adjacent. Thus, there exists a tree T 3

2 ∈ Oµ with

c(T 3
2 ) ≤ c(T 2

2 ) due to Lemma 11.3 and Lemma 11.6. We apply this argument iteratively

and construct a sequence (T 3
2 , . . . , T 3

H) with c(T 3
H) = c(T 1

L). Now, we consider the sequences

(T 2
2 , T 3

2 , . . . , T 3
H) and (T 2

2 , . . . , T 2
K). Since the latter sequence has K − 1 elements and since

c(T 3
H) = c(T 1

L), we apply the induction hypothesis and c(T 2
K) = c(T 3

H) = c(T 1
L).

�
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The lemma says that if such a sequence (T 1
1 , . . . , T 1

L) exists, then a sequence of pivots according

to (11.1) starting at T 1
1 yields a tree whose costs are equal to c(T 1

L). It should be emphasized

that this is independent of the choice of (11.1). We have shown that starting with an arbitrary

tree in Oµ the pivot sequence leads to a tree T ′ ∈ Oµ with c(T ′) ≥ c(T ) for all T ′ ∈ Oµ i.e., T ′

is an extreme point and therefore also element of another Oµ̂. We combine this fact to the next

theorem.

Theorem 11.9

Starting in an arbitrary supported tree T , pivoting according to (11.1) leads to a sequence of

adjacent trees (with decreasing costs) on the nondominated frontier which contains all breakpoints.

Proof

This follows from the fact that the set of supported trees is connected, the Lemma 11.7 and

Lemma 11.8 and the considerations above.

�

Corollary 11.10

Let O0 the set of all trees which have minimal weight. If we start with an arbitrary T1 ∈ O∞

with c(T1) ≤ c(T ) for all T ∈ O∞ and perform edge-exchanges as described in 11.1 we get a

sequence such that T1, . . . , TK are (TK
µ ) with c(TK

µ ) ≤ c(T ) for all T ∈ Oµ and c(TK) ≤ c(T ) for

all T ∈ T .

Proof

This follows directly from Theorem 11.12.

�

To apply these results to a branch and bound procedure we mention that the properties also hold

for the frontier of the more restrictive problem {(w(T ), c(T ))|TAB} where T ∈ TAB if and only if

A ⊂ T and B ∩ T = ∅ (as defined in the previous sections).

Since TAB ⊂ T we can state the following property:

Property 11.11

If T is a supported tree and T ∈ TAB, then T is also a supported tree for the problem

min{(c(T ), w(T ))|T ∈ TAB}.

We also need the performing of edge exchanges by solving

f := arg min{ cf − ce

we − wf

|we > wf f /∈ T, e ∈ T, T \ {e} ∪ {f} ∈ T }. (11.18)

From the considerations for the edge-exchange rule (11.1) we can conclude the following theorem

whose proof works analogously to the proof of Theorem 11.12.
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Theorem 11.12

Starting in an arbitrary supported tree T , pivoting according to (11.18) leads to a sequence of

adjacent trees (with increasing costs) on the nondominated frontier which contains all extreme

points.

The branch and bound scheme works in the following manner: If we start with an arbitrary

feasible supported tree T for a problem PAB , we can pivot as mentioned in (11.1) until a weight

infeasible tree is found. All intermediate trees are pairwise adjacent and located on the nondom-

inated frontier. In each pivot the currently best upper bound for the subproblem is improved

since we require cf − ce < 0. Alternatively, a weight infeasible solution is found and we have

determined a feasible tree T and an infeasible tree T ′ where T ′ = T \ {e} ∪ {f}. From the tree T

we search for an alternative pivot under the condition that {f} is not contained in the new tree

(i.e. we search in the subproblem PA,B∪{f}) (we call this Case 1). From T ′, the infeasible tree,

we perform pivots described as in (11.18) under the condition that {f} is in the tree until we

have found a feasible solution T ′′ (Case 2). This T ′′ is therefore a supported tree for PA∪{f}B .

w(T)

c(T)

T

T ′

T{f},∅
T ′

W

b

b

b

b

b

b

b

b

b

b

b

b

T∅,{f}

T ′′

Figure 11.3: Partition into several subproblems

A subproblem PAB need not be considered further if by (11.1) no pivot can be found i.e., the

current tree is a minimal costs tree for PAB. The weight of the current tree is equal W or a pivot

leads to an infeasible tree such that the all trees on the frontier connecting these trees have costs
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larger than a current upper bound, i.e

UB >
cf − ce

wf − we
W − c(T ) +

cf − ce

wf − we
w(T ). (11.19)

In detail our algorithm looks in this form:

Algorithm 11.4 Branch- and Bound-Scheme of Ruzika and Henn: Main

Call Initialization (Procedure 11.5)

while stack is not empty do

Take an element [A,B, T,ic,x] from the stack

if ic < UB then

5: if x = Case 1 then

Call Case1 (Procedure 11.6)

else

Call Case 2 (Procedure 11.7)

end if

10: end if

end while

OPT is the optimal solution
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Algorithm 11.5 Branch- and Bound-Scheme of Ruzika and Henn: Initialization

Solve lex min{(c(T ), w(T ))|T ∈ T }. Call this tree T

if w(T ) ≤ W then

OPT = T is an optimal solution

else

5: Solve lex min{(w(T ), c(T ))|T ∈ T }. Call this tree Tw

if w(Tw) = W then

Tw is an optimal solution

else if w(Tw) > W then

the problem is infeasible

10: stopp = false

repeat

Find a tree T ′ outgoing from T by (11.1) where T ′ = T \ {e} ∪ {f}
if w(T ′) > W then

stopp = true

15: else

UB := c(T ′)

T := T ′

end if

until stopp = true

20: if w(T ) = W then

T is an optimal solution

else

ic :=
cf−ce

wf−we
W − c(T ) +

cf−ce

we−wf
w(T )

add [∅, {f}, T, ic, Case 1] to the stack

25: add [{f}, ∅, T ′, ic, Case 2] to the stack

end if

end if

end if
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Procedure 11.6 Branch- and Bound-Scheme of Ruzika and Henn: Case 1
Require: Problem [A,B, T, ic, Case 1]

stop = false

repeat

if c(T ) < UB then

UB := c(T ), OPT := T

5: end if

Find a tree T ′ outgoing from T by 11.1 where T ′ = T \ {e} ∪ {f} and T ′ ∈ TAB

if no pivot can be found then

stop = true case b)

else if w(T ′) ≥ W then

10: stopp = true case a)

else

T := T ′

end if

until stop = true

15: if w(T ) = W then

if c(T ) < UB then

UB = c(T ), OPT = T

end if

else if stop = true case a) and UB > ⌈− cf−ce

we−wf
W − c(T ) +

cf−ce

we−wf
w(T )⌉(=: ic) then

20: push [A,B ∪ {f}, T, ic, Case 1] to the stack

push [A ∪ {f}, B, T ′, ic, Case 2] to the stack

end if
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Procedure 11.7 Branch- and Bound-Scheme of Ruzika and Henn: Case 2
Require: Problem [A,B, T, ic, Case 2]

stop = false

repeat

Find a tree T ′ outgoing from T by 11.18 where T ′ = T \ {e} ∪ {f} and T ′ ∈ TAB

if no pivot can be found then

5: stop = true case b)

else if w(T ′) ≤ W then

stop = true case a)

else

T := T ′

10: end if

until stop = true

if w(T ) = W then

if c(T ) < UB then

UB = c(T ), OPT = T

15: end if

else if stop = true case a) and UB > ⌈− cf−ce

we−wf
W − c(T ) +

cf−ce

we−wf
w(T )⌉(=: ic) then

push [A,B ∪ {f}, T, ic, Case 1] to the stack

push [A ∪ {f}, B, T ′, ic, Case 2] to the stack

end if
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11.1.4 The Algorithm of Yamada, Watanabe and Kataoka [39]

In the publication of Yamada, Watanabe and Kataoka [39] one can find a branch and bound

algorithm for the weight-constrained maximum spanning tree problem which can easily be trans-

formed to the weight-constrained minimal spanning tree problem.

We start with an arbitrary feasible tree T = {ek1
, . . . , ekn−1

} and construct a branch and bound

algorithm like in the algorithm of Aggarwal, Aneja and Nair: The i-th subproblem is to find an

optimal solution that includes e1, . . . , ei−1 and does not include ei.

Procedure 11.8 Branch- and bound-scheme of Yamada, Watanabe and Kataoka

Require: Two sets A, B

if PAB is infeasible or a lower bound on this problem is larger than the incumbent then

prune

else if PAB is solved and the solution is smaller than the incumbent then

update the incumbent

5: Update the upper bound if necessary

else

Find a feasible tree T ′
AB and partition from this tree

(Update the incumbent if necessary)

end if

We partition from a tree T ′
AB = A ∪ {ek+1, . . . en−1} with B ∩ {ek+1, . . . , en−1} = ∅ in PAi,Bi

where Ai := A ∪ {ek+1, . . . , ei−1} and Bi := B ∪ {ei}.

In order to find a feasible tree in Line 7 the local search method given in the Section 12.3 is

proposed. This is the main difference to the algorithm of Aggarwal, Aneja and Nair.

Yamada, Watanabe and Kataoka mention also a shooting method to reduce the time complexity

of the algorithm: In a standard branch and bound scheme we set at the beginning the objective

value of the incumbent solution to infinity. In a shooting method we will take some value C. We

need that C ≥ OPT to determine a solution. In the case that C < OPT the algorithm fails.

Procedure 11.9 Branch- and bound-scheme of Yamada, Watanabe and Kataoka: Shooting

Method

Start with an interval [C,C]

repeat

C := αC + (1 − α)C

Run Algorithm 11.8 for C

5: C := C

until an optimal solution is found
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11.2 The Algorithm of Hong, Chung and Park [27]

Matrix tree theorem

The main ingredient for this algorithm is the Matrix Tree Theorem which was first stated in a

special case by Kirchhoff in 1847. Since then many generalizations and different versions have

been formulated. For this algorithm we need only a simple version. Hong, Chung and Park do

not prove the theorem and refer to the paper of Chaiken and Kleitman [7]. We give a slightly

modified proof in this thesis.

First, we have to define a cost matrix c ∈ Rn × Rn with cij = cji = ce if an edge in E ex-

ists with the end-nodes i and j. Also we define a cost matrix w ∈ Rn × Rn with wij = wji = we

if an edge in E exists with the end-nodes i and j. This is analogous to Problem 5.

Definition 11.1

Let K = (kij) ∈ Mat(n, n, R) be a matrix defined as

kij =























∑

1≤l≤n, i6=l

kil, if j = i

−cij , if i 6= j and e = {i, j} ∈ E

0 otherwise.

This leads (in case of a complete graph) to

K =





































n
∑

i=1,i6=1

c1i −c12 . . . −c1l . . . −c1n

−c21

n
∑

i=1,i6=2

c2i . . . −c2l . . . −c2n

. . . . . . . . . . . .

−cl1 −c2l . . .
n
∑

i=1,i6=l

cil . . . −cln

. . . . . . . . . . . .

−cn1 −cn2 . . . −cnl . . .
n
∑

i=1,i6=n

cin





































We notice that this matrix is symmetric. So we can formulate the important result for this

section.

Theorem 11.13 Matrix Tree Theorem

Let Ǩ[n, n] denote a matrix obtained from K by deleting the n-th row and column. Then

det Ǩ[n, n] =
∑

T∈T

∏

e∈T

ce.

Proof

As mentioned in Chapter 3 we can interpret each undirected spanning tree as directed spanning
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tree by orienting all edges to a root n. So

∑

T∈T

∏

e∈T

ce =
∑

T∈Tn

∏

(i,j)∈T

cij

and it is sufficient to prove

det Ǩ[n, n] =
∑

T∈Tn

∏

(i,j)∈T

cij .

We consider the matrix K({zq}) by

k{zq}ij =























∑

(l,i)∈E

clizi, if j = i

−cijzj , if i 6= j and (i, j) ∈ E

0 otherwise.

Obviously, this matrix is not symmetric.

K({zq}) =





















∑

(1,i)∈E

c1izi −c12z2 . . . −c1nzn

−c21z1
∑

(2,i)∈E

c2izi . . . −c2nzn

. . . . . . . . .

−cn1z1 −cn2z2 . . .
∑

(n,i)∈E

cnizi





















K is a special case of this matrix K({zq}) with zq = 1 for all 1 ≤ q ≤ n. If we prove the theorem

for this matrix, then the theorem is valid. The claim is now:

det Ǩ(zq)[n, n] =
∑

T∈Tn

∏

(i,j)∈T

cijzj (11.20)

Claim 1: Both sides of the inequality (11.20) are polynomials of degree n − 1 in the zq.

left hand side: By definition it holds

det Ǩ(zq)[n, n] =
∑

σ∈Σ

k{zq}1,σ(1) . . . k{zq}n−1,σ(n−1)

where Σ is the set of all permutations on {1, . . . , n − 1}. All these products have n − 1 factors.

In each of this factors there is either a single zq or a sum of different zq. Consider without loss

of generality a term with a sum in the first element:

(
∑

(1,j)∈E

c1jzj)k{zq}2,σ(2) . . . k{zq}n−1,σ(n−1) =
∑

(1,j)∈E

(c1jzjk{zq}2,σ(2) . . . k{zq}n−1,σ(n−1))

The summands now have only degree one in the first factor. Repeating this step for other factors

yields to terms with only n − 1 elements with only one zq for each element. And each term has

a degree of n − 1.

right hand side: In a spanning tree only n − 1 edges occur. So the degree of one spanning tree
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in the zq is n − 1.

Claim 2: Every term of each side of (11.20) is of degree zero in some zq for q 6= n.

left hand side: Since the left hand side is a polynomial of degree n−1 each term is of degree zero

in at least one zq. Assume that there exists a term of degree zero only in zn. We can evaluate

the sum of all such terms by setting zn = 0. Then the matrix Ǩ(zq) is of the form





















∑

(1,i)∈E

c1izi −c12z2 . . . −c1,n−1zn−1 0

−c21z1
∑

(2,i)∈E

c2izi . . . −c1,n−1zn−1 0

. . . . . . . . .

−cn1z1 −cn2z2 . . .
∑

(n−1,i)∈E

cn−1,izi

∑

(n,i)∈E

cnizi





















In the sums on the diagonal there is no zn. Since we have zero row sums and the determinant of

K is zero, det Ǩ(zq)[n, n] has to be zero. This is contradiction to the assumption.

right hand side: By the orientation of the tree at least one edge (i, n) and one factor cinzn have

to exist. Since each term has a degree of n − 1 the claim holds.

We prove the claim for terms independent of zl for l 6= n. This follows by induction over

the number of vertices in a graph.

Start Consider a graph with 2 vertices.

K =

(

c12z2 −c12z2

−c21z1 c21z2

)

Since c12z2 is the only possible tree

det Ǩ(zq)[2, 2] = c12z2 =
∑

T∈T2

∏

(i,j)∈T

cijzj

holds.

Assumption: Let the claim hold for a graph with n − 1 vertices.

Step: Consider the terms on the right hand side and left hand side with degree zero on zl: On

the right hand side there are no edges (i, l) in the tree. (Only an edge (l, i).) So l is a leaf for a

tree T . The set of all trees with leaf l is the set of all trees in the n−1 remaining vertices (denote

this set T ′
n) where each of this trees can be combined with only one edge (l, i). Therefore

∑

T∈Tn,zl=0

∏

(i,j)∈T

cijzj =
∑

(l,i)∈E

clizi(
∑

T ′∈T ′
n

∏

(i,j)∈T

cijzj).
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In Ǩ(zq)[n, n] all the terms with degree zero in zl can be evaluated by setting zl = 0. This sets

every term in the l-th row except the diagonal term equal to zero.

det Ǩ(zq)[n, n]|zl=0

= det































∑

(1,i)∈E

c1izi . . . −c1,l−1zl−1 0 −c1,l+1zl+1 . . . −c1,n−1zn−1

−c21z1 . . . −c2,l−1zl−1 0 −c2,l+1zl+1 . . . −c2,n−1zn−1

. . . . . . . . . . . . . . . . . .

−cl1z1 . . . −cl,l−1zl−1
∑

(l,i)∈E

clizi −cl,l+1zl+1 . . . −cl,n−1zn−1

. . . . . . . . . . . . . . . . . .

−cn1z1 . . . −cn−1,l−1zl−1 0 −cn−1,l+1zl+1 . . .
∑

(n−1,i)∈E

cn−1,izi































(Developing by the l-th row)

=(−1)l+l
∑

(l,i)∈E

clizi det

















∑

(1,i)∈E

c1izi . . . −c1,l−1zl−1 −c1,l+1zl+1 . . . −c1,n−1zn−1

−c21z1 . . . −c2,l−1zl−1 −c2,l+1zl+1 . . . −c2,n−1zn−1

. . . . . . . . . . . . . . . . . .

−cn1z1 . . . −cn−1,l−1zl−1 −cn−1,l+1zl+1 . . .
∑

(n−1,i)∈E

cn−1,izi

















=
∑

(l,i)∈E

clizi det

















∑

(1,i)∈E

c1izi . . . −c1,l−1zl−1 −c1,l+1zl+1 . . . −c1,n−1zn−1

−c21z1 . . . −c2,l−1zl−1 −c2,l+1zl+1 . . . −c2,n−1zn−1

. . . . . . . . . . . . . . . . . .

−cn1z1 . . . −cn−1,l−1zl−1 −cn−1,l+1zl+1 . . .
∑

(n−1,i)∈E

cn−1,izi

















(This determinant represents a graph with n − 1 vertices and by the assumption:)

=
∑

(l,i)∈E

clizi(
∑

T ′∈T ′
n

∏

(i,j)∈T

cijzj)

=
∑

T∈Tn,zl=0

∏

(i,j)∈T

cijzj

This computation can be done for all terms in Ǩ(zq)[n, n] with degree zero in some zl.

det Ǩ(zq)[n, n] =

n−1
∑

l=1

det Ǩ(zq)[n, n]|zl=0 =

n−1
∑

l=1

∑

T∈Tn,zl=0

∏

(i,j)∈T

cijzj =
∑

T∈Tn

∏

(i,j)∈T

cijzj .

So (11.20) is valid and from the first part of the proof the theorem follows.

�

The proof of the matrix tree theorem implies that it is also valid for directed trees. If we only

set cij = 1 if the edge (i, j) is in E, the determinant will deliver the total number of possible

spanning trees in the graph.
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Definition 11.2

Let Kx = (kx
ij) ∈ Mat(n, n, R) a matrix defined as

kx
ij =























∑

(l,i)∈E

xcli , if j = i

−xcij , if i 6= j and (i, j) ∈ E

0 otherwise.

Theorem 11.14

Let Ǩx[n, n] denote a matrix obtained from K by deleting the n-th row and column. Then

det Ǩx[n, n] =
∑

p

apx
p

where ap is the number of trees with costs a.

Proof

If we substitute the ce in the matrix tree theorem by xce . We get

det Ǩx[n, n] =
∑

T∈T

∏

e∈T

xce =
∑

T∈T

x

∑

e∈T

ce

=
∑

p

apx
p

�

Definition 11.3

Let Kxy = (kxy
ij ) ∈ Mat(n, n, R) be a matrix defined by

kxy
ij =























∑

(l,i)∈E

xcliywli , if j = i

−xcijywij , if i 6= j and (i, j) ∈ E

0 otherwise.

Theorem 11.15

Let Ǩxy[n, n] denote a matrix obtained from K by deleting the n-th row and column. Then

det Ǩxy[n, n] =
∑

p,q

apqx
pyq

where apq is the number of trees with costs p and weights q.

Proof

Analogously to the proof of the previous theorem.

�

Example 11.2

Let us consider the following problem where W = 13 with costs and weights:
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(2,6)

(4,7)
(1,8) ??????????????????

???????? ?>=<89:;2

(4,1)?>=<89:;3
(2,3) ?>=<89:;4

The corresponding matrix to this graph is:













x2y6 + x4y7 + x1y8 −x2y6 −x4y7 −x1y8

−x2y6 x2y6 + x4y1 0 −x4y1

−x4y7 0 x4y7 + x2y3 −x2y3

−x1y8 −x4y1 −x2y3 x1y8 + x4y1 + x2y3













If we delete the fourth row and column:

det Ǩxy[4, 4] = det







x2y6 + x4y7 + x1y8 −x2y6 −x4y7

−x2y6 x2y6 + x4y1 0

−x4y7 0 x4y7 + x2y3







=(x2y6 + x4y7 + x1y8)(x2y6 + x4y1)(x4y7 + x2y3) − (−x2y6)(−x2y6)(x4y7 + x2y3)−
(−x4y7)(−x4y7)(x2y6 + x4y1)

=x8y19 + x10y14 + x20y20 + x12y15 + x9y16 + x6y15 + x8y10 + x8y16 + x10y11 + x7y12

− x8y19 − x6y15 − x10y20 − x12y15

=x7y12 + x8y10 + x8y16 + x9y16 + x10y11 + x10y14

Since W = 13 our optimal solution is a tree with costs 8 and total weight 10.

Pseudo-polynomial Algorithm

This result enables us to find the value of an optimal solution. The main question now is how to

compute the determinant efficiently and how to construct the corresponding tree. There are algo-

rithms with running time O((n3 +p2)p2 log p) where p is the highest degree of the polynomial. A

good approach was developed by Mahajan and Vinay with time complexity O(n4τ(C,D)) where

τ(C,D) is the time to multiply polynomials where C and D are upper bounds on the degrees

of x and y respectively. This algorithm has the advantage that it can be modified such that

degrees exceeding a limit on the degrees of x and y can be ignored. In our problem all degrees of

y greater than W are not interesting. If we find an upper bound C on OPT , also larger degrees

on x can be ignored. For instance we can set C = (n − 1) maxe∈E ce. Let det(Kxy, C,W, c,w)

denote this polynomial. If det(Kxy, C,W, c,w)=0 there is no feasible spanning tree.
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The next goal is to construct a algorithm to compute the optimal tree T . Hong, Chanc and

Park give only the remark that this can be done by a recursion approach. We pick this remark

up and show a possibility to construct an optimal solution: We fix an edge e = (i, j) ∈ E and

compute the determinant to see whether there is a tree with costs OPT − ce and weight at

most W − we. If this is true go on with the recursion. Unfortunately, we cannot consider a

reduced graph obtained from G by contracting e ∈ E which was already mentioned in Chapter

9 concerning the exclusion tests. Therefore we need the following algorithm:

Algorithm 11.10 Constructing an optimal solution

Compute det(Kxy, (n − 1) max cij ,W, c, w) and find OPT and the corresponding weight W̄ .

while |T | < n − 1 do

Choose e = (i, j) ∈ E such that T contains no cycle.

E := E \ {e}
5: Set cij = cji = wij = wji = 0 and actualize Kxy.

if det(Kxy, OPT − ce, W̄ − we, c, w) = 0 then

kxy
ij := 0

kxy
ji := 0. (Update also the diagonal)

else

10: T := T ∪ {e}
OPT := OPT − ce

W̄ := W̄ − we

end if

end while

15: T is optimal

Theorem 11.16

The algorithm finds an optimal solution in O(mn4τ(C,D)).

Proof

In the algorithm we set the costs and weights of an edge equal to zero such that xcijywij = 1. So

on the right hand side of the theorem all the degrees of terms corresponding to a tree containing

e reducing by ce in x and we in y. All the other terms remain unchanged. For the edge e ∈ E

we have to study two cases:

1. There exists an optimal solution which contains e and the edges already identified. In this

case a term on the right hand side of the theorem exists which has a degree of OPT − ce

and W̄ − we and the determinant is not zero. So we can add e to T , update OPT and W̄

and go to the next edge.

2. There exists no optimal solution which contains e and the edges already identified: For all

these trees the costs and weights are by setting the edge costs and weights of e to 0 strictly

greater than OPT − ce or W̄ − we. So the determinant is zero. Thus, we can exclude the
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edge e and set the entry of the matrix equal to zero which might improve the computation

time of the determinant in the next iterations.

The algorithm stops if a tree is found which is optimal. The time complexity follows by the fact

that the computation of the determinant has a time complexity of O(n4τ(C,D)) and at least

m − 1 edges have to considered.

�

The paper claims that the number of iterations is O(nm) and therefore an optimal tree can be

found in O(mn5τ(C,W )).

Outlook

The algorithm can also be used for an approximation scheme which is explained in Section 12.4.

11.3 Ranking Algorithm

In literature there are several ranking algorithms to find the K best minimal spanning trees.

For example Hamacher and Querente [25] give two approaches for finding the K best solutions

to combinatorial optimization problems and, in detail, an algorithm to find the K best bases of

a matroid. From the observations of Chapter 4 this algorithm can be used to find the best K

spanning trees. This algorithm works similar to the algorithm of Katoh, Ibaraki and Mine [31]

who find the K-th minimum spanning trees for a graph G. To this algorithm it is also referred

in [26]. We use here this algorithm to find an optimal solution for the WCMST.

Finding K minimal spanning trees

In Chapter 2 we have seen that a spanning tree has minimal costs if and only if no T -exchange

has negative costs. Recall that the costs of a T -exchange are c[e, f ] = cf − ce. Katoh, Ibaraki

and Mine use this property to obtain a sequence of minimal spanning trees in a graph:

Lemma 11.17 [31]

Let T be a spanning tree for the given sets A ⊂ E and B ⊂ E the condition A ⊂ T and B∩T = ∅
holds. A minimum spanning tree T ′ which is different from T and satisfy A ⊂ T ′ and B ∩T ′ = ∅
is given by T \{e}∪{f} where [e, f ] is a minimum T -exchange with e ∈ T \A and f ∈ E\(T ∪B).

Proof

For the required property of T ′, edges in A cannot be replaced by edges in B. So only the edges

in T \ A and E \ (T ∪ B) have to be considered. To obtain a minimum tree which is different

from T ′ the minimum T -exchange with e ∈ T \ A and f ∈ E \ (T ∪ B) has to be found.

�
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The idea of the algorithm is to start with a minimal spanning tree T0 and find a minimal T0-

exchange [e, f ]. The obtained tree T1 has minimal costs in T \ {T0}. Compute now a minimal

T1-exchange and a minimal T0-exchange in the set of all T0-exchanges without the exchange [e, f ]

and take the minimum of both. The obtained tree T2 is a minimal spanning tree in T \ {T0, T1}.

Now compute a minimum T2-exchange and minimum exchanges for T0 and T1 without the real-

ized exchanges. In this way we compute the K minimum spanning trees. More formal:

Definition 11.4

Assume that the first j minimum spanning trees are generated. Then a partition for the remaining

trees is defined as

P j−1
i = {Tk|k > j − 1, Ai ⊂ Tk, B ⊂ (E \ Tk)} for i = 0, 1, . . . , j − 1

For i = 0, 1, 2, . . . , j − 1 let the set of minimum exchanges denotes

Qj−1
i = {([e, f ], r)| for each f ∈ E \ (Ti ∪ Bi), e ∈ Ti \ Ai

gives the minimum Ti-exchange [e, f ] with r=c[e, f ]}.

The sets Ai and Bi are initialized as follows:

A0 := ∅ and B0 := ∅

Let i⋆ be the index of the Qj−1
i with the minimal exchange under all i and [e⋆, f⋆] be this

exchange. So Tj := Ti⋆ \ {e⋆} ∪ {f⋆}. We define

Aj := Ai⋆ ∪ {f⋆}, Bj := Bi⋆ .

From Qj−1
i⋆ we have to exclude the minimal exchanges with the edge f⋆ for the next iterations:

Bi⋆ := Bi⋆ ∪ {f⋆}.

Lemma 11.18 [31]

Let j ∈ {1, 2, . . . ,K − 1}.

1. For any i = 0, 1, . . . , j − 1, Ti is a minimum spanning tree satisfying Ai ⊂ Ti and Bi ⊂
(E \ Ti) and no other Tk(k = 0, 1, 2, . . . , i − 1, i + 1, . . . , j − 1) satisfies this constraint.

2. Any spanning tree T satisfies Ai ⊂ T and Bi ⊂ (E \T ) for exactly one i with 0 ≤ i ≤ j−1.

Proof

This lemma follows from the definition of Ti and the construction of Ai and Bi.

�
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The lemma implies that for known T1, T2, . . . , Tj−1 the tree Tj is given as a minimum spanning

tree in
⋃j−1

i=0 P j−1
i . By both lemmas a minimum spanning tree in P j−1

i is given by Ti \ {e′} ∪ f ′,

where ([e′, f ′], r′) is a label in Qj−1
i with smallest r. Therefore, ([e⋆, f⋆], r⋆) is a label in

⋃j−1
i=0 Qj−1

i

with smallest c(Ti) + r = c(Ti) − ce + cf , Tj is given by Tj = Ti⋆ \ e⋆ ∪ f⋆.

In the algorithm the P j−1
i are represented in a tuple

P j−1
i = (T ′, [e′, f ′], Ai, Bi, i)

where ([e′, f ′], r′) is the label in Qj−1
i with smallest r, and T ′ := c(Ti) + r′.

Procedure 11.11 Enumeration of Katoh, Ibaraki, Mine: Procedure GENK(G=(V,E),K)

Compute Q0
0

Find minimum weight exchange ([e′, f ′], r′) in Q0
0

P 0
0 := (c(T0) + r′, [e′, f ′], ∅, ∅, 0)

j := 1

5: while j < K do

GEN(P j−1
i , Qj−1

i |i = 0, 1, 2, . . . , j − 1)

j := j + 1

end while

Procedure 11.12 Enumeration of Katoh, Ibaraki, Mine: (GEN(P j−1
i , Qj−1

i |i = 0, 1, 2, . . . , j−1)

Find P j−1
i⋆ = (c⋆, [e⋆, f⋆], Ai⋆ , Bi⋆ , i

⋆) with the smallest costs c′ among all P j−1
i = (c(Ti) +

r′, [e′, f ′], Ai, Bi, i) for i = 1, 2, . . . , j − 1

if c⋆ = ∞ then

STOP (G has only j − 1 trees)

end if

5: Qj
i⋆ := Qj−1

i⋆ \ {([e⋆, f⋆], c⋆ − ci⋆)}
compute Qj

j with Ai⋆∪{f⋆} and Bi⋆

Qj
i := Qj−1

i for i 6= i⋆, j

if Qj
i⋆ = ∅ then

P j
j := (∞, ∅, ∅, ∅, i⋆)

10: else

P i
j := (c⋆ + r′′, [e′′, f ′′], Ai⋆ ∪ f⋆, Bi⋆ , j) here ([e′′, f ′′], r′′) is a label in Qj

j with minimal r

end if

P j
i := P j−1

i for i 6= i⋆, j
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In [31] a procedure can be found which computes the set Qj
j . In total this procedure has the

complexity O(Km + min(n2,m log log n)).

Extension to our Problem

Can this algorithm be modified to solve our problem? Surely, a simple approach is to run the

procedure GEN for the costs c until a tree is generated with w(T ) ≤ W . In particular:

Algorithm 11.13 Exact ranking

Compute Q0
0

Find minimum cost exchange ([e′, f ′], r′) in Q0
0

P 0
0 := (c(T1) + r′, [e′, f ′], ∅, ∅, 0)

j := 0

5: repeat

j:=j+1

GEN(P j−1
i Qj−1

i |i = 0, 1, 2, . . . , j − 1)

until w(Tj) ≤ W

Tj is the optimal solution.

Remark

Since this is an enumeration the validity of the algorithm is clear. In the worst case all spanning

trees have to be computed. Because of the structure of the algorithm it is not possible to compute

all trees starting by an arbitrary tree.
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c(T)
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T0

T ⋆
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b
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r

Figure 11.4: Searching for minimal cost spanning trees
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Let all points describe a spanning tree. Then the algorithm starts with an optimal solution and

finds all trees on the parallel line to the w-axes. If all trees are found, the algorithm moves to

the next parallel line (see Figure 11.4).

The idea to compute all spanning trees under the costs ce + µ⋆we for all e ∈ E until the first

feasible tree was found is not a possibility to solve the problem.

Example 11.3

Let the following graph be given:/.-,()*+ (0,0)

(5,5)

/.-,()*+ (0,0)

(7,4)

/.-,()*+
(8,0)/.-,()*+ (0,0) /.-,()*+ (0,0) /.-,()*+

We consider the three trees with lowest costs: T1, T2, T3 with c(T1) = 5, w(T1) = 5, c(T2) =

7, w(T2) = 4, c(T3) = 8, w(T3) = 0 and let W = 4. Obviously µ⋆ = 3
5 and T2 is the optimal

solution for the WCMST. If we start with T1 which is optimal for c+ 3
5w, the algorithm computes

T3 as the next tree under this cost function. T3 is feasible but not the optimal solution.

So this modification will not lead to the optimal tree if we take the first feasible spanning tree

which was found by the algorithm. Therefore we have to modify the algorithm:

Algorithm 11.14 Search via Lagrangian Dual

T ⋆ := TUB

Compute µ⋆ and for each edge the costs ce + µ⋆we

Compute a minimal spanning tree Tµ⋆ for the costs ce + µ⋆we ∀e ∈ E

T0 := Tµ⋆

5: Compute Q0
0

Find minimum exchange for the costs ce + µ⋆we ([e′, f ′], r′) in Q0
0

P 0
0 := (c(T0) + µ⋆w(T0) + r′, [e′, f ′], ∅, ∅, 0)

j := 1

repeat

10: GEN(P j−1
i , Qj−1

i |i = 0, 1, 2, . . . , j − 1) (for the costs ce + µ⋆we)

if w(Tj) ≤ W and c(Tj) ≤ c(T ⋆) then

T ⋆ := Tj

end if

j := j + 1

15: until −µ⋆W + c(Tj) + µ⋆w(Tj) > UB

T ⋆ is optimal
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Theorem 11.19

The algorithm finds an optimal solution.

Proof

If we try to find a minimum spanning tree for the cost function ce+µ⋆we for all e ∈ E we search on

parallels to the facet of the convex hull corresponding to µ⋆. The extension of this segment can be

described as the linear function f : R → R with x 7→ −µ⋆x + (c(Tµ⋆) + µ⋆w(Tµ⋆)). This function

passes through (c(Tµ⋆), (w(Tµ⋆ )). The algorithm searches now for all trees lying on this function

i.e., c(T ) = −µ⋆w(T )+(c(Tµ⋆)+µ⋆w(Tµ⋆)) (which has the same costs under ce+µ⋆we for all e ∈ E

like Tµ⋆ . See Figure 11.5) If all spanning trees on this function are evaluated, the algorithm finds

the next tree T with smallest ǫ > 0 such that c(T ) + µ⋆w(T ) = c(Tµ⋆) + µ⋆w(Tµ⋆) + ǫ. We search

now on the function fǫ : R → R with x 7→ −µ⋆x+(c(Tµ⋆)+µ⋆w(Tµ⋆))+ǫ = −µ⋆x+c(T )+µ⋆w(T ).

This is the function which has the smallest possible distance to f .

We know that the optimal solution has costs and weights such that (c(T ⋆), w(T ⋆), ) is contained

in the triangle (c(Tµ⋆), w(Tµ⋆), (UB,w(TUB)) and (UB,W ). So, if the function fǫ lies outside

the triangle we can stop. We test whether fǫ(W ) ≥ UB. If this is true the function does not

intersect with the triangle and we can stop. The optimal solution is the current solution T ⋆.

�
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Figure 11.5: Search via Lagrangian Dual

11.4 CNOP-Software

In [32] Mehlhorn and Ziegelmann present their approach to solve constrained network optimiza-

tion problems. They developed a software package which is able to solve the WCMST. They do

not give an explicit insight in their algorithm. Only the main idea is published. This is
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1. Compute with the Lagrangian relaxation the closest segment of the convex hull as in the

algorithm of Xue.

2. Start with the lower bound solution and use a ranking algorithm to close the gap to the

optimal solution.

For the ranking they refer for instance to the algorithm of Katoh, Ibariki and Mine.

103



12 Approximations

Approximation algorithms are an approach to handle optimization problems predominantly NP-

hard problems. Since it is unlikely that there can ever be found efficient exact algorithms, one

settles for non-optimal solutions, but requires them to be found in polynomial time. In this

chapter we analyze the existing approximation algorithms for the weight-constrained minimal

spanning tree problem and use the method of decomposition to obtain a further approximation

scheme. For the sake of completeness we firstly recall the definition of an approximation.

Definition 12.1 Approximation

1. A tree T is called an α-approximation if and only if T is feasible and c(T ) ≤ αOPT .

2. A tree T is called an (α, β)-approximation if and only if c(T ) ≤ αOPT and w(T ) ≤ βW .

In the literature we can find four approximation ideas to our problem. We use a similar charac-

terization of these approximation schemes like in the previous chapter. We present first the idea

of Goemans and Ravi [18] which uses the Lagrangian relaxation to construct an approximation.

This idea was refined by the approximation of Hassin and Levin [23]. Then we focus on an

algorithm of Yamada, Watanabe and Kataoka [39] which uses like the branch and bound scheme

of Ruzika and Henn the neighborhood-structure of adjacent trees. The last algorithm from the

literature is the idee of Hong, Chung and Park [27] to use their Algorithm 11.10 for an approxi-

mation. The last section is the application of the idea of approximation through decomposition

to our weight-constrained minimal spanning tree problem.

12.1 Approximation of Goemans and Ravi [18]

The main ingredient for the approximation scheme of Goemans and Ravi [18] is again the La-

grangian relaxation and the Lagrangian dual:

C⋆(MST ; µ) := min (c(T ) + µw(T ))

s.t. y ∈ T

and

C⋆(D1) := max C⋆(MST ; µ) − µW ≤ OPT

s.t. µ ≥ 0

Let µ⋆ be the optimal Lagrangian multiplier. Without loss of generality we consider for the

following a graph where we ≤ W for all e ∈ E.

104



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Theorem 12.1

Let Oµ⋆ be the set of all optimal trees with respect to the costs ce +µ⋆we for all e ∈ E. Then there

exists a T ∈ Oµ⋆ with c(T ) ≤ C⋆(D1) ≤ OPT and w(T ) ≤ W +wmax where wmax := maxe∈E we.

Proof

Let T ∈ Oµ⋆ then

c(T ) = c(T ) + (µ⋆w(T ) − µ⋆W ) − µ⋆(w(T ) − W ) = C⋆(D1) − µ⋆(w(T ) − W )

The costs c(T ) have at least the value C⋆(D1) if and only if w(T ) ≥ W .

From the proof of Theorem 7.4 it follows that for µ = µ⋆ + ǫ or µ = µ⋆ − ǫ for sufficiently small

ǫ > 0 the optimal tree with respect to ce + µwe for all e ∈ E is an element of Oµ⋆ . A tree

T≤ ∈ Oµ⋆ has to exist with w(T≤) ≤ W , because otherwise:

C⋆(D1) =c(T≤) + µ⋆(w(T≤) − W )

<c(T≤) + (µ⋆ + ǫ)(w(T≤) − W )

=C⋆(MST,µ⋆ + ǫ) − (µ⋆ + ǫ)W

which is a contradiction to the optimality of C⋆(D1). (Remark: The tree T≤ is feasible for the

weight-constrained minimal spanning tree problem, but not necessarily optimal.) On the other

hand a tree T≥ with w(T≥) ≥ W in Oµ⋆ exists. It remains to show that a tree in Oµ⋆ with a

weight between W and W + wmax exists. We need again the property that Oµ⋆ is adjacent i.e.,

a sequence between to optimal trees T and T ′ with T = T0, T1, T2, . . . , Tn = T ′ exist, such that

Ti and Ti+1 differ only in one edge-exchange. In this case we set T = T≤ and T ′ = T≥. Since

w(T≥) ≥ W and w(T≤) ≤ W there exists a pair Ti and Ti+1 in Oµ⋆ such that w(Ti) ≤ W and

w(Ti+1) ≥ W , and Ti and Ti+1 differ only in one exchange. We have

w(Ti+1) = w(Ti) + wi+1 − wi ≤ w(Ti) + wmax ≤ W + wmax

Since all edges with weight greater than W have been pruned

w(Ti+1) ≤ W + wmax ≤ 2W.

�

Algorithm 12.1 Approximation of Goemans and Ravi

Ensure: Tree T with c(T ) ≤ OPT and w(T ) ≤ 2W

Discard all edges e with we > W

Compute µ⋆ by solving the Lagrangian dual

Among all optimal trees for c + µ⋆w find a tree T satisfying w(T ) ≤ W + wmax
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Sketch of an implementation

In the algorithm we have to find µ⋆. As mentioned in Theorem 7.4 at least m2 possible values

have to be considered. For every breakpoint we compute a minimal spanning tree with respect

to c+µw. This can be found easily for every fixed µ. For all optimal trees for c+µw we can find

trees Tmin and Tmax with smallest and largest weights. Therefore, we use a lexicographic ordering

of the edges. From the proof follows that µ ≤ µ⋆ if w(Tmin) > W and µ ≥ µ⋆ if w(Tmax) < W

and µ is a possible value. So we found upper and lower bounds for µ⋆ by computing this for the

breakpoints.

(In an easy approach we have a time complexity O(m2m log m), since we have to compute the

m(m − 1) breakpoints and for each breakpoint we have to compute a minimum spanning tree

which has the time complexity O(m log m). We can improve this result by a binary search over

the possible values for µ and get a time complexity of O(m2 log m2m log m) = O(m3 log m3).)

Goemans and Ravi claim without explanations, that a faster MST algorithm and the use of

parallel sorting lead to O(m log2 n + n log3 n).

Procedure 12.2 Approximation of Goemans and Ravi: Lagrangian Relaxation

Order the edges in a lexicographical order {j1, . . . , jm}.

Start with k := 1

µ := 0

µ := 1000

5: while k < m − 1 do

l := k + 1

compute µ =
cjk

−cjl

wjl
−wjk

if µ ∈ (µ, µ) then

Compute Tmax and Tmin under the costs c + µw

10: if w(Tmin) > W then

µ := µ

end if

if w(Tmax) < W then

µ := µ

15: end if

end if

k:=k+1

end while

Choose µ⋆ ∈ (µ, µ)

The goal is to find a tree satisfying the theorem. From line 9 we know Tmin and Tmax which are

optimal for µ⋆ and w(Tmin) ≤ W ≤ w(Tmax). We start with Tmax and swap an edge f in the

tree with a minimal cost edge not in Tmax but in a cycle closed by f . (The paper states without

proof that the time complexity can be reduced to O(n log n).) In this publication Goemans and
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Ravi do not mention how the trees Ti and Ti+1 can be found. One possibility is to perform edge

exchanges as described in Section 11.1.3.

Graphical interpretation

The graphical interpretation of the approach is very easy. From further considerations we know

that the trees on the convex hull are adjacent. So we move along the facet of the convex hull

which is next to the optimal solution until the two closest trees Ti and Ti+1 next to the weight

constraint are found.

w(T)

c(T)

b

b

b

b

b

b

b

rT ⋆

T≤

T≥

Ti

Ti+1

Figure 12.1: Finding adjacent trees

A polynomial-time approximation scheme

In the algorithm we discard all edges with weight greater than W . This guarantees the (1,2)-

approximation. To reduce this, it is possible to prune all edges with weight greater then ǫW .

This leads to a final tree with weights less than (1 + ǫ)W . By this procedure we might discard

some edges that could be in the optimal solution. In an optimal solution at least 1
ǫ

of these edges

can be contained in an optimal solution. There are only O(nO( 1

ǫ
)) choices for those subsets. For

each of these combinations we fix these edges and start our algorithm with the value W minus

the length of all chosen edges and get a tree with weights at most (1 + ǫ)W . We take the best of

all these trees.

Application to the WCMST

In general, the algorithm above does not yield a feasible solution to our problem. The idea to

use this algorithm is to change the roles of costs and weights and to run the algorithm for all
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possible integral costs C and find a tree with, approximately, minimum length. In detail (not

mentioned in the paper):

Problem 21

W (C) := min
∑

e∈T

we

s.t.
∑

e∈T

ce ≤ C

T ∈ T

Algorithm 12.3 Approximation of Goemans and Ravi: MAIN

Solve Problem 21 with the algorithm and denote C as the costs of this solution.

C := (n − 1) maxe∈E ce

C := C+C
2

Solve Problem 21 for C with the algorithm, let ( ˜W (C), C̃) the given approximation

5: repeat

if ˜W (C) ≤ W then

C := C̃

else

C := C

10: end if

until C − C ≤ ǫ

C is the desired result

Theorem 12.2

The algorithm finds a 2(1 + ǫ)-approximation in O(log(n − 1) maxe∈E cem
3 log m) time.

Proof

The binary search has a time complexity of O(log(n−1) maxe∈E ce) and in each step the algorithm

of the previous paragraph has to run. So the claimed time complexity is valid. In each iteration

we get a solution which has costs at least 2 times the optimal costs corresponding to the W (C).

So, at the end of the algorithm we have a tree which has a weight at least (1+ ǫ) times the weight

of the optimal solution and has costs which is 2 times the optimal costs corresponding to this

weight.

�

If we know a better upper bound than (n− 1) maxe∈E ce, the algorithm can be started with this

bound. By the suggested time complexity at the end of the paragraph about the implementation

we can find the approximation in O(log(n − 1) maxe∈E cr(m log2 n + n log3 n)).
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Graphical interpretation

In each step we find for C two trees Ti and Ti+1 (see Figure 12.1) and know that c(Ti+1) < 2C

and check whether w(Ti+1) ≤ W . If this is true, we will search between C and C, otherwise in C

and C. The important step in this algorithm is the discarding of edges which have costs greater

than 2C in each run to solve Problem 21. So, we may change the frontier of the convex hull.

w(T)W

c(T)

b

b
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b

b

b

b
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C

T≤

T≥

Ti

Ti+1

Figure 12.2: Graphical interpretation of Algorithm 12.3

The idea of Goemans and Ravi allow us now to make a new statement of the approximation

quality of supported trees:

Theorem 12.3

Let us consider a graph where ce < (n−1) minf∈E cf for all e ∈ E. Then at least for one (feasible)

supported tree T ∈ T it holds that c(T ) ≤ 2(1 + ǫ)OPT .

Proof

This follows from the fact that by running the Algorithm 12.3 no edge will be discarded by calling

Algorithm 12.1 and the convex hull remains unchanged. The algorithm delivers a tree T which

is feasible and c(T ) ≤ 2(1 + ǫ)OPT . Also T is optimal for ce + µ⋆we for all e ∈ E and, therefore,

a supported tree in the bicriterial problem.

�
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12.2 Approximation of Hassin and Levin [23]

The algorithm of Hassin and Levin published in [23] is an improvement of the algorithm of

Goemans and Ravi since it has a lower time complexity by using matroid intersection. The

corresponding paper is the most difficult one on the weight-constrained minimal spanning tree

problem. The algorithm and underlying theory have the same structure and ideas like the al-

gorithm of Goemans and Ravi but the advantage is to consider, as announced in Chapter 4,

the weight-constrained matroid optimization problem instead of the weight-constrained minimal

spanning tree problem.

A first remark to improve the algorithm of Goemans and Ravi is to use a geometric-mean binary

search instead of the suggested binary-mean search which reduces the number of iterations to

log2 log1+ǫ
UB
LB

with upper and lower bounds UB and LB on OPT .

Preliminaries

For a given ǫ ≤ 1
4 we compute a 2(1 + ǫ)-approximation by using the algorithm of Goemans

and Ravi. We can now remove the set {e ∈ E : ce > C} from E where C are the costs of the

approximated solution.

Partition

For given ǫ > 0 and C we partition E in the following way

E0 := {e ∈ E : ce < ǫC}

and for 1 ≤ i ≤ I := ⌈1−ǫ
ǫ2

⌉ we set

Ei := {e ∈ E : (ǫ + (i − 1)ǫ2)C ≤ ce < (ǫ + iǫ2)C}.

We have to enumerate all possible vectors with I + 1 non-negative entries (n0, n1, . . . , nI) such

that
I
∑

i=0

ni = n − 1 (12.1)

I
∑

i=1

ni ≤
1

ǫ2
(12.2)

Interpretation: The ni denotes the number of edges chosen from the set Ei. Note that such a

vector exists, since an optimal solution may have at most 1
ǫ

edges with costs at least ǫOPT .

Suppose we omit (12.2) and consider vectors with more than 1
ǫ

elements in Ei for 1 ≥ i ≥ I,

then we have total costs which are greater than (ǫC 1
ǫ
) = C which is greater than the given upper

bound and useless.

Theorem 12.4

There are O(I
1

ǫ ) vectors that satisfy (12.1) and (12.2).
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Proof

Consider a set for each Ei, i ≥ 1 and a set for i = 0 that collects 1
ǫ
−∑I

i=1 ni items, since in

n1, . . . , nI only 1
ǫ

items can appear. Therefore, 1
ǫ

items have to be placed in the I + 1 sets. The

number of possibilities is at most (I + 1)
1

ǫ = O(I
1

ǫ ).

�

Now we define two matroids. Like in Example 4.1 a partition matroid and the already known

graphic matroid from Section 4.3:

The graphic matroid where a set E′ ⊂ E is called independent if and only if (V,E′) does not

contain a cycle and the partition matroid over E such that a set E′ ⊂ E is independent in this

matroid if and only if |E′ ∩ Ei| ≤ ni for all i = 0, . . . , I. The goal is now to search for a subset

of E which is a basis of both matroids.

We have seen that for a given matroid with an element cost function, the greedy algorithm finds

a minimum cost basis on M .

Definition 12.2

A polynomial time algorithm that checks for a given S ⊂ F whether S ∈ F is called a polynomial

time independence oracle.

For an algorithm with polynomial time independence oracle, the problem of finding a minimum

cost base is polynomial solvable. For a pair of matroids M = (E,F) and M ′ = (E,F ′) with

common polynomial time independence oracle and cost function, there exists a polynomial time

algorithm computing a minimal cost common base of M and M ′. For our two matroids we

can compute a minimal cost base for M and M ′. Both of the independence tests and the rank

computations in these matroids need O(n). So we find a minimum cost basis in the intersection

in O(mn2) time.

Let S ′ denote the set of incidence vectors of common bases of both matroids with cardinality

n − 1. By definition of S ′ it follows that every S ∈ S ′ corresponds to a T ∈ T . Since the

optimal solution of our weight-constrained minimal spanning tree problem is contained in S, we

can formulate:

Problem 22

OPT = min
∑

e∈S

ce

s.t.
∑

e∈S

we ≤ W

S ∈ S ′

where S ′ is the set of common bases of both matroids.

And the corresponding relaxation:
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Problem 23

C⋆(S ′; µ) := min
∑

e∈S

(ce + µwe)

s.t. S ∈ S ′

As stated above this is easy to solve by concerning the cost function ce + µwe for all e ∈ E for

two matroids. This can be done in O(mn2). A lower bound on OPT is given by

C⋆(D3) := maxC⋆(S; µ) − µW

s.t. µ ≥ 0

Let again µ⋆ denote the maximum. This can analogously be done by computing the breakpoints

mentioned in the previous algorithm. This leads to O(m3n2).

Theorem 12.5

Let (n0, n1, . . . , nI) be the number of edges from E0, E1, . . . , EI in an optimal solution. Let Oµ⋆

denote the set of minimum cost common bases in the matroid intersection with respect to ce+µ⋆we

for all e ∈ E, if the partition matroid is defined with n0, n1, . . . , nI . Let T, T ′ ∈ Oµ⋆ . In this case

there exist a series of trees T = T0, T1, . . . , Tl = T ′ with

1. Tj ∈ Oµ⋆ for all j ∈ {0, . . . , l}

2. Let Ej := Tj \Tj+1 and Ej′ = Tj+1 \Tj. Then |Ej ∩Ei| = |Ej′ ∩Ei| ≤ 1 for every i and j.

Proof by induction over |T \ T ′|
Basis:

For |T ′ \ T | = 1 we have |E0′ | = 1 and the claim holds.

Induction hypothesis:

Assume the claim holds for |T \ T ′| = p − 1.

Induction step:

Consider a cost function

c′e =































∞, if e /∈ T ∪ T ′

ce + µ⋆we + ǫ′, if e ∈ T \ T ′

ce + µ⋆we − ǫ′, if e ∈ T ′ \ T

ce + µ⋆we, if e ∈ T ∩ T ′

Since obviously T ′ is a better solution with respect to c′ than T , the tree T is not the optimal

solution with respect to the costs c′. A matroid intersection algorithm finds a negative cycle in

an auxiliary bipartite directed graph B(T ) = (V̄ , V̄ ′, Ē).Where B(T ) is defined as: for all e ∈ T

exists a v ∈ V̄ and for all e′ ∈ E \T exists a v ∈ V̄ ′. Construct for every ei ∈ T and e′j ∈ E \T an

arc (ei, e
′
j) with costs cei,e

′

j
= c′ei

− c′
e′j

under the condition that (T \ {ei}) ∪ {e′j}) is independent
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in the graphic matroid (which guarantees the tree structure). And construct an arc (e′j , ei) with

costs ce′j ,ei
= 0 under the condition that (T \ {ei})∪{e′j} is independent in the partition matroid

(which guarantees that the costs are less than the upper bound.)GFED�ABCek1

cek1
−cekn // GFED�ABCekn

0~~||||||||||||||||||GFED�ABCek2

For e /∈ T ∪ T ′, c′e = ∞, therefore a negative cycle does not contain e. From this B(T ) we

construct a graph B by identifying the elements from (E \ T ) ∩ Ei (which are nodes in V̄ ′) to a

single vertex vi for all i ∈ {0, . . . , I} (Parallel edges can be removed).

It can be shown that a common base T ′′ with smaller costs than T with respect to c′ exists

such that T ′′ is obtained from T by swapping edges along a negative cycle L in B where the

number of arcs among all negative cycles is minimized by L. Let the nodes along the cycle L

correspond to edges (e1, e
′
1, e2, e

′
2, . . . el, e

′
l, e1) such that ek ∈ Eik for k = 1, . . . , l. Assume that

there exists a k 6= 1 with ik = i1. Then there are two cycles L′ = (e1, e
′
1, e2, e

′
2, . . . , ek−1, e

′
k−1, e1)

and L′′ = (ek, e
′
k, ek+1, . . . , el, e

′
l, ek) such that the costs of L are the sum of the costs of L′

and L′′. Either L′ or L′′ has negative costs, this contradicts the minimality of L. This leads

to T1 := T ′′ ∈ Oµ⋆ . We know T ′′ ⊂ T ∪ T ′ and T ′′ 6= T . Therefore we can conclude that

|T ′′ ⊂ T ′| < |T \ T ′| = p. By the induction assumption the claim holds.

�

Theorem 12.6

Let n0, . . . , nI be the number of edges from E0, E1, . . . , EI in an optimal solution for WCMST. Let

Oµ⋆ denote the set of minimum cost common bases in the intersection of the two matroids with

respect to ce +µ⋆we for all e ∈ E, in case that the partition matroid is defined with n0, n1, . . . , nI .

Then there exists T ∈ Oµ⋆ such that

c(T ) ≤ C⋆(D3) +
∑

{i|ni>0}

(max
e∈Ei

ce − min
e∈Ei

ce)

and

w(T ) ≤ W.

Proof

Let µ = µ⋆ − ǫ′ where ǫ′ > 0. There exists a T≥ ∈ Oµ⋆ which is also optimal with respect to

ce + µwe for all e ∈ E for sufficiently small ǫ′. Since µ⋆ is the optimal value the following holds

c(T≥) + (µ⋆ − ǫ′)(w(T≥) − W ) ≤ c(T≥) + µ⋆(w(T≥ − W )) = C⋆(D3).
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It holds that w(T≥) ≥ W and c(T≥) ≤ C⋆(D3). Similarly, there exists for µ = µ⋆ + ǫ′ a tree

T≤ ∈ Oµ⋆ with w(T≤) ≤ W and c(T≤) ≥ C. With the theorem above there exists a series

T≤ = T0, . . . , Tl = T≥ in O. Since c(T≥) ≤ C⋆(D3) and c(T≤) ≥ C⋆(D3) we can find an index j

with c(Tj) ≤ C⋆(D3) and c(Tj+1) ≥ C⋆(D3) and w(Tj+1) ≤ W . It holds

c(Tj+1) ≤ c(Tj) +
∑

{i|ni>0}

(max
e∈Ei

ce − min
e∈Ei

ce).

�

Remark
∑

{i|ni>0}

(max
e∈Ei

ce − min
e∈Ei

ce) ≤ 4(1 + ǫ)ǫOPT ≤ 5ǫOPT

Proof

∑

{i|ni>0}

(max
e∈Ei

ce − min
e∈Ei

ce) = max
e∈E0

ce − min
e∈E0

ce +
∑

{i|ni>0,i≥1}

(max
e∈Ei

ce − min
e∈Ei

ce)

≤ ǫC − min
e∈E0

ce +
∑

{i|ni>0,i≥1}

(max
e∈Ei

ce − min
e∈Ei

ce)

≤ ǫC +
∑

{i|ni>0,i≥1}

(max
e∈Ei

ce − min
e∈Ei

ce)

≤ 2(1 + ǫ)OPT +
∑

{i|ni>0,i≥1}

(max
e∈Ei

ce − min
e∈Ei

)

In the summation there are at most 1
ǫ

elements. Each of them is not greater than ǫ2C ≤
2(1+ǫ)ǫ2OPT . Together this gives the result. The second inequality follows from the assumption

that ǫ ≤ 1
4 .

�

Procedure 12.4 Approximation of Hassin, Levin: Procedure

Require: T≥ and T≤

repeat

construct B by identifying the set {e′j ∈ T ′ : (T \{ei})∪{e′j} is independent in the graphic

matroid}
Find a negative cycle with a minimum number of edges.

Identify the next tree T

5: until w(T ) ≤ W

The construction of B (contains O(n) vertices and O(n
ǫ
) edges) can be done in O(n2

ǫ
) by identi-

fying for each ei the set {e′j ∈ T ′ : (T \ {ei}) ∪ {e′j} is independent in the graphic matroid}. The

second step can be done in O(n2

ǫ
) by the Bellman-Ford algorithm. The number of trees in the

series is O(n). Therefore, we have O(n) steps and get a complexity of O(n3

ǫ
).

114



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Algorithm 12.5 Approximation of Hassin, Levin: MAIN

Compute C̃ with OPT ≤ Ĉ ≤ 2(1 + ǫ)OPT by Goemans and Ravi (Algorithm 12.3)

Enumerate all possible vectors (n0, n1, . . . , nI)

Compute for each of them µ⋆

Find for this µ⋆ a tree with satisfies the condition of the theorem

5: Take the next vector (n0, n1, . . . nI) and compute for them Procedure 12.4

Over all these trees pick the tree with minimal c(T )

For the correct (n0, n1, . . . , nI) we have a minimal cost base of OPT and this leads by the

algorithm to a feasible tree with costs at most (1 + 5ǫ)OPT . The computing of C̃ takes

O((m+n log n) log2 n log log1+ǫ n). The enumeration takes, by the consideration above, O(( 1
ǫ2

)
1

ǫ ).

The solution of the Lagrangian relaxation can be done in O(m2n2 + n4

e2 ) and the finding of the

spanning tree in O(n3

ǫ
). The total complexity is O( 1

ǫ2

1

ǫ
(m2n2)

). This leads in total to the next

theorem.

Theorem 12.7

A (1 + ǫ)-approximation can be found in O((O 1
ǫ2

)O( 1

ǫ
)(m2n2)).

Improve Complexity

For solving of the Lagrangian relaxation we can make the following improvement: For every

µ ≥ 0 and i ≥ 0 an edge e ∈ Ei that participates in the minimum cost base of two matroids

belongs to a minimum cost (respect to ce + µwe for all e ∈ E) spanning forest Fi(µ) of (V,Ei).

We define a set of potential breakpoints as {µ|∃e, e′ ∈ E, ce + µwe = ce′ + µwe′}. In a first step

we compute all breakpoints. Then we apply a binary search over this set and find an interval

(µ1, µ2) containing µ⋆ and such that no Fi(µ) has a breakpoint in this interval besides µ⋆. Then

we compute Fi(µ̄) for every i with ni > 0 for some µ̄ ∈ (µ1, µ2). Remove from the matroids all

the edges not lying in
⋃

i|ni>0 Fi(µ̄). In this set there are O(n
ǫ
) elements. The total complexity

is O(mn log n
ǫ

). In general our complexity reduces to O((O 1
ǫ2

)O( 1

ǫ
)(n4)).

12.3 Neighborhood-Search of Yamada, Watanabe and Kataoka [39]

In the publication of Yamada, Watanabe and Kataoka [39] also a heuristic for the weight-

constrained maximum spanning tree problem is described which can easily be transformed to

the weight-constrained minimal spanning tree problem. The goal is to find a feasible solution

obtained from the Lagrangian dual. Furthermore, they only claim without proof that this al-

gorithm is a 2-approximation. Therefore we present the algorithm in this chapter and not in

Section 6.3.
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Definition 12.3 Neighborhood

A spanning tree T ′ is called a neighbor of T if T and T ′ are adjacent. We call N(T ) := {T ′|T ′

is a feasible neighbor of T} the neighborhood.

Let Tµ̃ is represented by an extreme point on the border of the convex hull which is feasible and

has smallest costs. We start from this Tµ̃ and search in the neighborhood for a better solution.

Algorithm 12.6 Yamada, Watanabe, Kataoka: Local Search

Start with T := Tµ̃

while There exists T ′ ∈ N(T ) such that c(T ′) < c(T ) do

T := T ′

end while

It is easy to see that the algorithm does in general not find the optimal solution since we have

seen in Example 6.1 that the set of efficient solutions is not necessarily connected and no edge

exchange can lead to the optimal solution. The remaining question is whether this fact can

destroy the claimed 2-approximation.

12.4 Fully Polynomial Bicriteria Approximation [27]

In the exact algorithm using the Theorem 11.13 we have the time complexity of O(mn5τ(UB,W ))

which is for large values of UB and W not very useful. Hong, Chung and Park [27] published an

approximation scheme by scaling the costs and weights to improve τ(UB,W ).

Scaling costs and weights

Lemma 12.8

Let T̂ ⋆ be an optimal solution of the WCMST with each ce scaled to ĉe = ⌊ce(n− 1)/(ǫC)⌋ where

C ∈ N.

1. c(T̂ ⋆) < OPT + ǫC

2. If ĉ(T̂ ⋆) > ⌊n−1
ǫ

⌋, then we have OPT > C.

3. If ĉ(T̂ ⋆) ≤ ⌊n−1
ǫ

⌋, then we have OPT < (1 + ǫ)C.

Proof

1. The definition

ĉe = ⌊ce(n − 1)

ǫC
⌋

implies that

ĉe ≤ ce(n − 1)

ǫC
.
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This can be formulated to

ce ≥ ĉe
ǫC

n − 1
.

And we can conclude that

0 ≤ ce − ĉe
ǫC

n − 1
We know further from the definition of ĉe that

ĉe < ce
n − 1

ǫC
+ 1.

This leads to

ce − ĉe
ǫC

n − 1
<

ǫC

n − 1
.

In total we have

0 < ce − ĉe
ǫC

n − 1
<

ǫC

n − 1
.

Since every T ∈ T has n − 1 edges we have

0 ≤ c(T ) − ĉ(T )
ǫC

n − 1
< ǫC (12.3)

and

c(T̂ ⋆) < ĉ(T̂ ⋆)
ǫC

n − 1
+ ǫC

By definition of the optimal solution we get

c(T̂ ⋆) < ĉ(T ⋆)
ǫC

n − 1
+ ǫC

For T ⋆ inequality (12.3) leads to

ĉ(T ⋆)
ǫC

n − 1
≤ c(T ⋆) = OPT (12.4)

This gives

c(T̂ ⋆) < OPT + ǫC

2. Let

ĉ(T̂ ⋆) > ⌊n − 1

ǫ
⌋.

Since ĉ(T ⋆) ≥ ĉ(T̂ ⋆) and ĉ(T̂ ⋆) ∈ N we get

ĉ(T ⋆) ≥ ĉ(T̂ ⋆) >
n − 1

ǫ

If we insert T ⋆ in (12.3), we get

ĉ(T ⋆) ≤ c(T ⋆)
n − 1

ǫC

We combine these two results to

n − 1

ǫ
< c(T ⋆)

n − 1

ǫC

and the claim

C < c(T ⋆) = OPT

holds.
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3. Let

ĉ(T̂ ⋆) ≤ ⌊n − 1

ǫ
⌋

If we insert T̂ ⋆ in (12.3), we get

c(T̂ ⋆) < ĉ(T̂ ⋆)
ǫC

n − 1
+ ǫC

With the assumption

OPT = c(T ⋆)

≤ c(T̂ ⋆)

≤ ĉ(T̂ ⋆)
ǫC

n − 1
+ ǫC

≤ ǫC

n − 1
⌊n − 1

ǫ
⌋ + ǫC

≤ C(1 + ǫ)

�

Theorem 12.9

If there exist some upper and lower bounds U and L, respectively, with U
L
≤ ρ for some constant

ρ ≥ 1, then a (1, 1 + ǫ)-approximation can be computed in O(mn5τ(⌊n−1
ǫ
⌋, B)).

Proof

We consider again a scaled problem with costs

ĉe = ⌊ce
n − 1

ǫL
⌋.

Notice that we can apply the previous lemma. Let as above T̂ ⋆ be the optimal tree to the scaled

costs.

ĉ(T ⋆) =
∑

e∈T ⋆

⌊ce
n − 1

ǫL
⌋ ≤ ⌊

∑

e∈T ⋆

ce
n − 1

ǫL
⌋ = ⌊OPT (n − 1)

ǫL
⌋ ≤ ⌊U(n − 1)

ǫL
⌋ ≤ ⌊ρ(n − 1)

ǫ
⌋.

This has the complexity O(⌊n−1
ǫ

⌋)! From the previous chapter we know that ĉ(T̂ ) can be

found in O(n4τ(⌊n−1
ǫ

⌋, B)) by computing det(⌊ρ(n−1)
ǫ

⌋, B, ĉ, w). So we can determine T̂ ⋆ in

O(mn5τ(⌊n−1
ǫ

⌋,W )).

By the lemma we know that c(T̂ ) < OPT + ǫL ≤ (1 + ǫ)OPT .

�

The advantage of considering the scaled problem is the polynomial time complexity. Remaining

question is how to find appropriate bounds and reduce the time complexity further.

We can reduce the time complexity if we scale the weights to ŵe := ⌊we
n−1
δW

⌋. In the follow-

ing we compute determinants for the scaled weights only up to Ŵ = ⌊n−1
δ

⌋ in the degree of

y.
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Lemma 12.10

1. Every feasible solution for the original solution is also feasible for the scaled problem (i.e.

{T ∈ T |w(T ) ≤ W} ⊂ {T ∈ T |ŵ(T ) ≤ n−1
δ

})

2. If ŵ(T ) ≤ ⌊n−1
δ

⌋ then we have w(T ) < (1 + δ)W .

Proof

1. Let T ∈ T with w(T ) ≤ W .

ŵ(T ) =
∑

e∈T

ŵe =
∑

e∈T

⌊we
n − 1

δW
⌋ = ⌊n − 1

δW
⌋
∑

e∈T

we ≤ ⌊n − 1

δW
⌋W = ⌊n − 1

δ
⌋

2. This follows from Lemma 12.8 if we replace c, ĉ, C and ǫ by w, ŵ,W and δ.

�

The w-scales problem has a larger feasible solution set than the original problem and a (1, 1+ δ)-

approximation for this problem is a (1+ǫ, 1+δ)-approximation for the WCMST. So we can state

the Algorithm 12.7.

Algorithm 12.7 Approximation of Hong, Chung, Park: Bicriteria FPTAS

Require: G = (V,E), c, w,W, ǫ, δ

Ensure: A spanning tree T̂ with c(T̂ ) ≤ (1 + ǫ)OPT and w(T̂ ) ≤ (1 + δ)W

ŵe := ⌊we
n−1
δW

⌋
Ŵ := ⌊n−1

δ
⌋

while U
L

> 2 do

C :≈
√

LU

5: ĉe = ⌊ce
n−1
ǫC

⌋
if det(⌊n−1

ǫ
⌋, Ŵ , ĉ, ŵ) = 0 then

L := C

else

U := (1 + ǫ)C

10: end if

end while

ce := ⌊ce
n−1
ǫL

⌋
Find optimal ĉ(T̂ ⋆) by computing det(K̂xy⌊2(n−1)

ǫ
⌋, Ŵ , ĉ, ŵ)

Construct T̂ ⋆ with the Algorithm 11.10

Remark and explanations

The usage of the geometric search guarantees that U
L
≤ 2 can be found in O(log log(U0

L0
)) where U0

and L0 are initial bounds. If the determinant in line 6 is 0, there exists no tree with ĉ(T ) ≤ ⌊n−1
ǫ

⌋
and from the lemma it follows that OPT > C. Therefore we replace the lower bound by C.
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Complexity of the algorithm

The given algorithm finds a (1 + ǫ, 1 + δ)-approximate solution of the constrained minimum

spanning tree problem in O(log log(U0

L0
)n4τ(⌊n−1

ǫ
⌋, ⌊n−1

δ
⌋) + mn5τ(⌊n−1

ǫ
⌋, ⌊n−1

δ
⌋)). This results

is obtained from the fact, that the binary search has a complexity O(log log(U0

L0
)) and in each

iteration one determinant has to be computed which has the complexity O(n4τ(⌊n−1
ǫ

⌋, ⌊n−1
δ

⌋))
and the Algorithm 11.10 needs O(mn5τ(⌊n−1

ǫ
⌋, ⌊n−1

δ
⌋)). As one can see, the time complexity

depends on good initial bounds U0

L0
. Some easy upper bounds are U0 := (n − 1) max ce and

L0 := 1. An other approach is the following one:

Algorithm 12.8 Approximation of Hong, Chung, Park: Starting solution

Sort the edges in nondecreasing order

Let C1 < C2 < · · · < Cl be the distinct edge costs. Define Gi as the subgraph with costs of

at most Ci.

Find the minimum index î such that G
î

has a spanning tree with weights in ŵ of at most Ŵ .

L0 := Cî

5: U0 := (n − 1)C
î
.

By using a binary search on the Ci’s we can found the î in O(n2 log m) by computing in each

step a spanning tree in O(n2). This procedure leads to a ratio U0

L0
= n− 1. In our algorithm the

computational effort of the binary search reduces to O(log log n).

12.5 Approximation through Decomposition

We show in this section a further approximation approach by using the packing algorithm for

spanning trees of Gabow and Manu [16] to obtain a set of (directed-in-)trees and constructing from

this set an approximation based on the idea of multicriteria approximation through decomposition

of Burch, Krumke, Marathe, Phillips and Sundberg [6]. This approximation is more of theoretical

interest.

LP - Relaxation

For this algorithm we need directed-in-trees rooted at node n which correspond according to

Lemma 3.2 to undirected minimal spanning trees. Firstly, we need the LP - Relaxation for our

problem outgoing from our formulation Problem 5.
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Problem 24 (LP)

CLP = min
∑

(i,j)∈
−→
E

cijyij (12.5)

s.t.
∑

j∈V

(i,j)∈
−→
E

yk
ij −

∑

j∈V

(j,i)∈
−→
E

yk
ji =



















1 if i = k

−1 if i = n

0 else

∀i ∈ V,∀k ∈ V \{1} (12.6)

yk
ij ≤ yij ∀(i, j) ∈ −→

E ∀k ∈ V \{n} (12.7)

yk
ij ≥ 0 ∀(i, j) ∈ −→

E ∀k ∈ V \{n} (12.8)
∑

j∈V

(i,j)∈
−→
E

yij = 1 ∀i ∈ V \{n} (12.9)

∑

(i,j)∈
−→
E

wijyij ≤ W (12.10)

yij ≤ 1 ∀(i, j) ∈ −→
E (12.11)

yij + yji ≤ 1 ∀(i, j) ∈ E (12.12)

yij ≥ 0 ∀(i, j) ∈ E (12.13)

yij ∈ [0, 1]∀(i, j) ∈ −→
E (12.14)

We denote this solution T̃LP with ỹij.

Remark

Since for X := {x ∈ Zm|(3.2) − (3.5)} it holds that conv(X) = {x ∈ Rm|(3.2) − (3.5)} we

conclude from a fundamental result of integer programming that CLP = C⋆(D1) where C⋆(D1)

is the objective value of the Lagrangian dual.

Edmonds Decomposition

From this ỹij we construct now a so called Edmonds decomposition of Tn: A set of trees
−→
T 1, . . . ,

−→
T K ∈ Tn with factors α1, . . . , αK ≥ 0 such that

∑K
k=1 αk = 1: First we delete all

edges from the graph with ỹij = 0. Here we have to distinguish between ỹij and ỹji which might

be both positive. Before starting we have to introduce some technical definitions.

Definition 12.4

1. Two sets A and B are called intersecting if A ∩ B 6= ∅, A \ B 6= ∅ and B \ A 6= ∅.

2. A family F of subsets of V is called laminar if for every pair A,B ∈ F either A ∩ B = ∅,
A ⊂ B or B ⊂ A holds.
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w(T)

c(T)

b

b

b

b

b

T̃LP

Figure 12.3: LP - relaxation

Definition 12.5

Let
−→
G = (V,

−→
E ) and for each e = (i, j) exist a capacity rij with 0 ≤ rij ≤ 1.

1. For a set D ⊂ V we denote pG(D) :=
∑

e=(i,j)∈E,i∈D,j∈V \D rij.

2. We define for a graph g(G) := min{pG(D)|∅ 6= D ⊂ V \ {1}}.

3. For a tree
−→
T we define r(

−→
T ) := min{rij | (i, j) ∈ −→

T }.

4. Let
−→
G −β

−→
T denote the graph with capacity rij −βij for (i, j) ∈ −→

T and rij for all edges not

in
−→
T .

5. For a tree
−→
T the capacity of

−→
T is defined as

α(
−→
T ) := {max α|s.t. α ≤ r(

−→
T ), g(

−→
T ) − α = g(

−→
G − α

−→
T ), α ≥ 0}.

Let us start with rij := ỹij for all (i, j) ∈ −→
E . For understandability of these definitions we give

an example.
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Example 12.1

Let in this example n = 7. ?>=<89:;i
rij //?>=<89:;j?>=<89:;1 oo 0.3

0.8

��
0.2

��1111111111111
11111111111111

111 ?>=<89:;2 oo 0.3

0.6

��
0.1 ''PPPPPPPPPPPPPPPPPPPPPPPPPPPP

PPP ?>=<89:;3

0.7 ��>>>>>>>>>>>>>>>>> ?>=<89:;4

?>=<89:;5
1 // ?>=<89:;6

0.6 //0.4

77nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ?>=<89:;7
�� 1.0

�����������������
For the set D = {1, 2, 3} we have pG(D) = 0.8 + 0.2 + 0.6 + 0.1 + 0.7 = 2.4. Let us consider the

following tree
−→
T . ?>=<89:;1

0.8

��
?>=<89:;2 oo 0.3

0.1 ''OOOOOOOOOOOOOOOOOOOOOOOOOO
OOO ?>=<89:;3

?>=<89:;4

?>=<89:;5
1 // ?>=<89:;6

0.4

77ooooooooooooooooooooooooooooo ?>=<89:;7
�� 1.0

�����������������
In this tree we have r(

−→
T ) = 0.1 and G − 0.1

−→
T leads to the following graph.?>=<89:;1 oo 0.3

0.7

��
0.2

��/////////////
//////////////

// ?>=<89:;2 oo 0.2

0.6

��
?>=<89:;3

0.7 ��>>>>>>>>>>>>>>>>> ?>=<89:;4

?>=<89:;5
0.9 // ?>=<89:;6

0.6 //0.3

77ooooooooooooooooooooooooooooo ?>=<89:;7
�� 0.9

�����������������
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By equation (12.9) we have for every set D ⊂ V \ {n} with |D| = 1 that pG(D) = 1. For every

set D ⊂ V \ {n} with |D| > 1 that pG(D) ≥ 1 since a unit of flow has to be send from i to n for

each i ∈ D. So g(G) = 1.

Next we define to construct our decomposition a so called uncrossing step. Let F a laminar

family of sets each of them not containing the vertex n. This F contains at most 2n−3 elements

(the sets

{1}, {2}, . . . {n − 1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n − 1}).

Let U ⊂ V \ {n} and pG(U) = g(G).

Procedure 12.9 Gabow, Manu: Uncross

Require: U ⊂ V \ {n} with pG(U) = g(G)

X := arg min{|B||B ∈ F ∪ {V \ {n}}, U ⊂ B}
Y I := maximal subsets of X in F intersecting with U

Z := U ∪⋃{Y |Y ∈ Y I}
F := F ∪ Z

Lemma 12.11 [16]

The obtained F ∪ Z is laminar.

Proof

Let A ∈ F before the uncrossing step. We have to show that either A∩Z = ∅, A ⊂ Z or Z ⊂ A.

Therefore we consider a case distinction for the relation of A and U .

1. case: A ∩ U = ∅: Then we have

A∩Z = A∩ (U ∪
⋃

{Y |Y ∈ Y I}) = (A∩U)∪
⋂

({Y |Y ∈ Y I}∩A) =
⋂

({Y |Y ∈ Y I}∩A)

Since all Y are elements of F we know that either A ∩ Y = ∅ or A ⊂ Y . The case Y ⊂ A

cannot occur. Otherwise, this contradicts A ∩ U . Now, if one Y exists with A ⊂ Y then

A ⊂ Z. Otherwise A ∩ Z = ∅.

2. case: A ∩ U 6= ∅ and A \ U = ∅. Then A ⊂ U and A ⊂ Z.

3. case: A ∩ U 6= ∅ and U \ A = ∅ then U ⊂ A. Then for all Y ∈ Y I it must either hold

that A intersects with Y or A ⊂ Y or Y ⊂ A. The first case cannot occur since A and

Y are elements of F and therefore non intersecting. The last case cannot occur since Y is

maximal. If the second case holds for at least one Y , we have A ⊂ Z.

4. case: Let A and U be intersecting. Then A is equal to a Y or A is a subset of a Y and so

A ⊂ Z.

So F ∪ Z is laminar.

�
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If Z was already element of F , the uncrossing procedure does not change F . Next we have to

make a statement concerning pG(D).

Lemma 12.12

For A,B ⊂ V \ {n} we have

pG(A) + pG(B) = pG(A ∪ B) + pG(A ∩ B) + dG(A,B) (12.15)

where dG(A,B) is the total capacity of all edges having one end in A \B and the other in B \A.

Proof

1. Let A ∩ B = ∅. Then pG(A) + pG(B) is the sum of all capacities of edges (i, j) with i ∈ A

and j ∈ V \A and the capacities of edges having one node in B and the other in V \B. This

is equal to the capacities of edges having one node in A ∪ B and the other in V \ (A ∪ B)

and the capacities of edges between A and B. And thus the claim holds.

2. Let A ⊂ B. Then pG(A ∩ B) = pG(A) and pG(A ∪ B) = pG(B) and dG(A,B) = dG(A \
B,B \ A) = dG(∅, B \ A) = 0. And the claim holds.

3. Let A and B be intersecting. Then the capacity of A and B is the sum of the capacities of

the union of both sets. In this union the capacities of edges between A \ B and B \ A are

not contained, so we need dG(A,B). Additionally, in this set no capacities between A and

A ∩ B are included such that the term pG(A ∩ B) is necessary.

�

Now we need a lemma which becomes relevant in the proof of the validity of the decomposition

algorithm.

Lemma 12.13 [16]

Let Y and Y ′ be two sets in Y I in the uncrossing procedure for U . Then

pG(Z) = pG(Y ∩ U) = g(G) and dG(Y,U) = dG(Y \ U, Y ′ \ U) = 0.

Proof

Let us consider (12.15) for Y ∪ U and U , we get since pG(U) = g(G)

pG(Y ∪ U) + g(G) = pG(Y ∪ U) + pG(U) = pG(Y ∪ U ∩ U) + pG(Y ∪ U ∪ U) + dG(U ∪ Y,U)

This leads to

pG(Y ∪ U) + pG(U) = pG(Y ∩ U) + pG(Y ∪ U) + dG(Y,U)

Finally, we have

g(G) = pG(U) = pG(Y ∩ U) + dG(Y,U).
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Since g(G) is minimal g(G) = pG(U) = pG(Y ∩U) and dG(Y,U) = 0. Analogously, pG(Y ∪U) =

g(G) and the same properties for Y ′ hold. We consider Y ∪ U and Y ′ ∪ U

2g(G) = pG(Y ∪ U) + pG(Y ′ ∪ U)

= pG(Y ∪ U ∪ Y ′ ∪ U) + pG((Y ∪ U) ∩ (Y ′ ∪ U)) + dG(Y ∪ U, Y ′ ∪ U).

The last term is equal to dG(Y \U, Y ′ \U) since all edges from U to U are not considered. This

leads to

2g(G) = pG(Y ∪ Y ′ ∪ U) + pG(U ∪ (Y ∩ Y ′)) + dG(Y \ U, Y ′ \ U).

By the minimality property of g(G) we have dG(Y \ U, Y ′ \ U) = 0. Since pG(Y ∪U) = g(G) we

can repeat the same considerations for Y ∪U and any element of Y I. By repeating this procedure

we get

pG(Z) = pG(U ∪
⋃

{Y |Y ∈ Y I}) = g(G).

�

With this result we can state the decomposition algorithm.

Algorithm 12.10 Gabow, Manu: Decomposition-algorithm (Greedy - approach)

F := {{v}|pG(v) = g(G)}
k := 0

while g(G) > 0 do

k := k + 1

5:
−→
T k := spanning tree of G with p−→

T
(X) = 1 for every X ∈ F

αk := capacity of
−→
T

G := G − αk
−→
T k

if αk(
−→
T k) = r(

−→
T k) then

U := minimal set in U ⊂ V \ {n} with pG(U) = g(G) and p−→
T

(U) > 1

10: end if

uncross F ∪ U

g(G) := g(G) − αk

end while

Lemma 12.14 [16]

It is always possible to construct a
−→
T k in the algorithm.

Proof

For any X ∈ F ∪ {V } let GX denote the subgraph induced by the set of vertices X. We start

with a spanning tree
−→
T in GV . For every maximal set X of F the tree

−→
T has an unique edge

directed to a node b ∈ X. Now we proceed recursively for each X \ b.

For every set S in GX there exists with b /∈ S exists an edge (i, j) with i ∈ X \S and j ∈ S. This
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is clear for X = V since g(G) > 0. For X 6= V we know that pG(S) ≥ g(G) = pG(X) therefore,

such an (i, j) has to exist.

�

The validity of the Algorithm 12.10 which constructs the Edmonds decomposition can be seen

in the next theorem.

Theorem 12.15 [16]

The algorithm finds a decomposition with at most m distinct trees.

Proof

If αk = r(
−→
T k) then G − αk

−→
T k deletes one edge from G. This occurs at most (m − (n − 1) + 1)-

times. Since after deleting m− (n− 1) edges only one possible tree can be chosen which vanishes

in the last step. We know that F contains at most 2n − 3 elements and by initialization n

elements. So F can be enlarged only (n − 2)-times. Therefore, the number of iterations is at

most (m−n + 2) + (n− 2) = m. We have to show that in each run with αk < r(
−→
T k) the uncross

operation enlarges F i.e., Z /∈ F where Z is found by Procedure 12.9.

Claim: p−→
T

(Z) ≥ p−→
T

(U) where Z is the result of the uncrossing procedure and U was found in

the decomposition algorithm.

We know by definition of U that p−→
T

(U) > 1 and p−→
T

(X) = 1 for all X ∈ F . So if the claim holds

Z could not be in F , since otherwise this contradicts the minimality property of U .

We consider a set Y ∈ Y I. From Lemma 12.13 we know that pG(Y ∩U) = g(G). Since p−→
T

(U) > 1

p−→
T

(Y ∩ U) = 1, otherwise the minimality of U would be violated.

We have also for Y, Y ′ ∈ Y I

d−→
T

(Y,U) = d−→
T

(Y \ U, Y ′ \ U) = 0.

This follows by the fact that this relation holds for dG in Lemma 12.13 and every edge of
−→
T is

element of G.

To prove the claim it is sufficient to show that an edge (i, j) leaving U corresponds to an unique

edge leaving Z. If (i, j) leaves both sets, the correspondence is clear. Consider an edge (i, j)

with i ∈ U and j ∈ V \ U but i /∈ Z. By construction of Z, (i, j) enters Y \ U . Since

d−→
T

(Y \ U, Y ′ \ U) = d−→
T

(Y,U) = 0 this edge can only enters Y ∩ U . Since p−→
T

(Y ∩ U) = 1 this

edge is unique. Some edge (l, v) ∈ −→
T must exist with l ∈ Y and v /∈ Y . Since dT (Y,U) = 1 the

edge (l, v) has a node in V \ Y and in Y \ U . From dT (Y,U) = dT (Y − U, Y ′ − U) = 0 we know

that (l, v) has a node in V \Z. Since (l, v) has a node in Z we can let (i, j) correspond to (l, v).

This corresponding is unique. So the claim holds and the theorem is valid.

�

Corollary 12.16 [16]

The decomposition algorithm runs in O(n3 log(n2

m
)).
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Proof

A tree
−→
T can be found by the recursion of 12.14 in O(m). Suppose αk(

−→
T k) = r(

−→
T k) the capacity

can be found in O(nm log(n2

m
)). Since there are at most m ≤ n2 iterations, the time complexity

holds for these iterations. For the case αk < r(
−→
T k) the capacity can be found in O(n2m log n2

m
).

Also the computing of U can be done in O(n2) by enumeration (test each X ∈ F). There are at

most n iterations with αk < r(
−→
T k). So this is O(n3m log(n2

m
)) and the claim holds.

�

We make now a statement for the computation of the capacity. An alternative definition of the

capacity is that it is the largest value α ≤ r(
−→
T ) such that for each set U ∈ V \ {n},

p
G−α(

−→
T )

(U) ≥ g(G) − α. (12.16)

The left side is obviously equal to pG(U) − αp−→
T

(U). If p−→
T

(U) > 1 then the inequality holds if

and only if

αU :=
pG(U) − g(G)

p−→
T

(U) − 1
≥ α.

If p−→
T

(U) = 1, inequality (12.16) holds for every α. So we can formulate a procedure for computing

the capacity.

Procedure 12.11 Gabow, Manu: Capacity

α := r(
−→
T )

while g(G − α
−→
T ) < g(G) − α do

U := arg minU⊂V \{n} p
G−α

−→
T

(U)

α := αU

5: end while

α is the required capacity

Lemma 12.17 [16]

The procedure is valid.

Proof

We know that p
G−α

−→
T

(U) ≥ g(G) − α for α ≤ αU . In each iteration the value αU changes to a

smaller αU . So the sequence of the values α is strictly decreasing during the procedure.

Claim: For all sets X ⊂ V \ {n} with p−→
T

(X) ≥ p−→
T

(U) where U is found in an iteration we have

αX ≥ α−→
T

.

Let α be given and U be computed. From the definition of U we have

pG(X) − αp−→
T

(X) ≥ pG(U) − αp−→
T

(U).

Since αU < α and p−→
T

(X) ≥ p−→
T

(U)

pG(X) − αUpT (X) ≥ pG(U) − αpT (U) = g(G) − αU .
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We can reformulate this inequality to

αU ≤ pG(X) − g(X)

pT (X) − 1
= αX .

This implies that the sequence of the p−→
T

(U) is strictly decreasing. Otherwise, the claim leads to

a contradiction to the fact that the values for α are strictly decreasing. Since p−→
T

(U) ≤ |−→T | at

most n − 1 iterations are needed.

�

Gabow and Manu state that the capacity α of
−→
T can be computed in O(n2m log n2

m
). For the proof

of this statement the authors refer to a global minimum cut algorithm of Hao and Orlin which

finds U in O(nm log n2

m
)). Since n−1 iterations are needed the time complexity is O(n2m log n2

m
).

Approximation

The decomposition delivers a set {−→T 1, . . . ,
−→
T K} ⊂ Tn with coefficients α1, . . . , αK with

∑n
k=1 αk =

1. We use our Lemma 3.2 and skip the orientation of our edges and get a set {T1, . . . , TK} ⊂ T .

We know further that if an edge (i, j) ∈ −→
T k the edge (j, i) is not element of this tree. Otherwise

−→
T is not spanning. If we define x̃e := ỹij + ỹji for all e ∈ E where e = {i, j}, we know from the

construction of the αk that

∑

k|e={i,j}∈Tk

αk =
∑

k|(i,j)∈
−→
Tk

αk +
∑

k|(i,j)∈
−→
Tk

αk ≤ ỹji + ỹji = x̃e.

It holds also that c(T̃LP ) =
∑

e∈E cex̃e and w(T̃LP ) =
∑

e∈E wex̃e. We apply now the more

general result of Burch, Krumke, Marathe, Phillips and Sunberg [6] to our decomposition.

Theorem 12.18

For our decomposition {T1, . . . , TK} ⊂ T with
∑

k|e∈Tk
αk ≤ x̃e and

∑K
k=1 αk = 1 we have

1.
K
∑

k=1

αkc(Tk) ≤ c(T̃LP )

2.
K
∑

k=1

αkw(Tk) ≤ w(T̃LP )

Proof

1.

K
∑

k=1

αkc(Tk) =

K
∑

k=1

αk

∑

e∈Tk

ce =
∑

e∈E

∑

k|e∈Tk

αkce ≤
∑

e∈E

cex̃e = c(T̃LP )
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2.

K
∑

k=1

αkw(Tk) =
K
∑

k=1

αk

∑

e∈Tk

we =
∑

e∈E

∑

k|e∈Tk

αkwe ≤
∑

e∈E

wex̃e = w(T̃LP )

�

Theorem 12.19 [6]

For the decomposition {T1, . . . , TK} ⊂ T and corresponding ’coefficients’ αk ≥ 0 and
∑K

k=1 αk = 1

with
∑K

k=1 αkc(Tk) ≤ c(T̃LP ) and
∑K

k=1 αkw(Tk) ≤ w(T̃LP ) where T̃ is the solution of the linear

program we can find a solution T such that

w(T )

W
+ γ

c(T )

OPT
≤ 1 + γ.

Proof

We can interpret the αk as probabilities for the ’events’ Tk. Consider the choice of a T from the

α distribution

E[
w(T )

W
+ γ

c(T )

c(T̃LP )
] =

E[w(T )]

W
+ γ

E[c(T )]

c(T̃LP )

≤ w(T̃LP )

W
+ γ

c(T̃ )

c(T̃LP )

= 1 + γ.

By a basic principle of the probalistic method we know that there exists a realization which is

less or equal than the expectation. (Provided that the expectation exists.) So there is a tree T

with
w(T )

W
+ γ

c(T )

c(T̃ )
≤ 1 + γ

Since OPT ≥ c(T̃ ) the claim holds.

�

Corollary 12.20

A solution given by the previous theorem is either a (1 + 1
γ
, 1)-approximation or a (1, 1 + γ)-

approximation.

Proof

• The theorem leads to

c(T )

OPT
≤ 1 + γ − w(T )

W

γ
=

1

γ
+ 1 − 1

γ

w(T )

W
≤ 1 +

1

γ

The last inequality follows from the fact that γ > 0, w(T ) ≥ 0 and W ≥ 0.
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• On the other hand the theorem leads to

w(T )

W
≤ 1 + γ − γ

C(T )

OPT
≤ 1 + γ

The last inequality follows from the fact that γ ≥ 0, c(T ) ≥ 0 and OPT ≥ 0.

• Suppose we have found a tree T that satisfies the theorem with w(T )
W

= 1+a and c(T )
OPT

= 1+b

where a and b are strictly positive.

w(T )

W
+ γ

c(T )

OPT
≤ 1 + γ

By the definition above this is

1 + a + γ(1 + b) ≤ 1 + γ,

which is equivalent to

a + γb ≤ 0.

This contradicts the assumption that a, b, γ are greater than zero. Therefore, in one com-

ponent we have an 1-approximation.

�

Remark

We do not know which of these two approximations our T satisfies. We only know that one tree in

the decomposition satisfies the approximation. A feasible tree with lowest costs in {T1, . . . , TK}
is not necessarily a 1

γ
-approximation.
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13 Numerical Results

The main goal in this chapter is to compare the existing branch and bound schemes of Aggarwal,

Aneja and Nair (Algorithm 11.2) and Shogan (Algorithm 11.3) with the new algorithm of Ruzika

and Henn (Algorithm 11.4). Additionally, we make some statements on the exact algorithm of

Hong, Chung and Park (Algorithm 11.10) and on the quality of the approximation algorithm of

Goemans and Ravi (Algorithm 12.3) with ǫ = 1. We combine this algorithm with the idea of

finding the adjacent trees on the border of the convex hull by performing pivot operations. We

forgo to implement the approximation of Hassin and Levin (Algorithm 12.5) since this was only

an improvement of Algorithm 12.3, the decomposition-algorithm described in Section 12.5 since

this idea is more relevant from a theoretical point of view and the exact ranking Algorithm 11.14.

13.1 Implementation

We realize our tests with C++ using the Boost Graph Library (BGL) [36]. For computing a

minimal spanning tree for a parametric cost function we use the algorithm of Kruskal which

was already implemented in the BGL. Since in the algorithm of Hong, Chung and Park we need

to calculate a determinant of a matrix with polynomial entries (which can be interpreted as

elements of the ring Z[x, y]) the software SINGULAR, a computer algebra system for polynomial

computations with special emphasis on the needs of commutative algebra, algebraic geometry,

and singularity theory developed at the University of Kaiserslautern Department of Mathematics

and Center for Computer Algebra by Greuel, Pfister and Schönemann [20] is used. All tests are

carried out on a 2x 86 64 AMD Opteron workstation.

13.2 Test Structure

Four parameters effect the result of an optimal solution: the number of nodes n in the graph,

the number of edges m, the distribution of costs and weights and the choice of the constraint W .

For n we choose 10, 50, 100, 150, 200, 250, 300, 350 and 400 nodes. For the number of edges in the

graph we considered a complete graph with m = n(n − 1)/2, a graph with m = n(n − 1)/4 and

a graph with m = n(n − 1)/8. For the costs and weights we use four different distributions:

• uniform: We choose uniformly distributed costs and weights in {1, . . . , 100}.

• outliers: We choose costs and weights with probability 0.9 in {101, . . . , 200} and with

probability 0.1 in {1, . . . , 100}.
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• weak correlation: In the third option the costs are uniformly distributed in {1, . . . , 100}
and we = max{1,X − 0.5ce} where X is uniformly distributed in {1, . . . , 100}. This leads

to a correlation of circa -0.4.

• high correlation: Our costs are again uniformly distributed in {1, . . . , 100} and we = −ce +

110 + β where β is uniformly in {−10, . . . , 10}. This leads to a correlation of circa -0.9.

Also we choose the same distributions with data in {1, . . . , 1000}. In detail:

• uniform: We choose uniformly distributed costs and weights in {1, . . . , 1000}.

• outliers: Our costs and weights lie with probability 0.9 in {1001, . . . , 2000} and with prob-

ability 0.1 in {1, . . . , 1000}.

• weak correlation: The costs are uniformly distributed in {1, . . . , 1000} and we = max{1,X−
0.5ce} where X is uniformly distributed in {1, . . . , 1000}.

• high correlation: The costs are again uniformly distributed in {1, . . . , 1000} and we =

−ce + 1020 + β where β is uniformly in {−20, . . . , 20}.

To obtain our constraint we compute first the weight of the lexicographical weight minimum W2

and the weight of the lexicographical cost minimum W1. For our constraint we choose a low limit

(W1 + W2)/4, a medium limit (W1 + W2)/2 and a high limit 3(W1 + W2)/4. Together this leads

to 9 × 3 × 4 × 2 × 3 = 648 different problem settings. Since the results for instances with data

distributed in {1, . . . , 100} are not very meaningful we do not run our algorithms for settings with

more than 150 nodes, and consider only 468 settings. For each setting we generate 40 different

graphs.

13.3 Results

We have to mention that a time difference need not only be caused in the advantage of the

underlying algorithmic ideas but also in a lack of implementation.

The algorithm of Shogan (Algorithm 11.3) runs for one ’easy’ setting with n = 20 and m = 190

uniformly distributed costs and weights in {1, . . . , 100} more than 15 minutes and we ignore

the algorithm for larger settings. The Algorithm 11.10 implemented with SINGULAR does not

deliver comparable results since it runs for an instance with n = 10 and m = 45 and uniformly

distributed costs and weights in {1, . . . , 100} more than 20 minutes and further computations are

not useful. So we focus our considerations on the algorithm of Ruzika and Henn, the algorithm

of Aggarwal, Aneja and Nair and the approximation scheme of Goemans and Ravi. For larger

problems we omit running an algorithm for a problem setting if the algorithm in the next smaller

setting has instances with more than 10 minutes run time. In total we have more than 523 hours

of simulation.

A first result which can be seen in all settings is that our own algorithm has a significant smaller
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run time than the algorithm of Aggarwal, Aneja and Nair (the time advantage is not less than

one order of magnitude and for complex settings the advantage exceeds two orders of magnitude).

The main reason for this advantage is the fact that in each branching of Algorithm 11.2 a large

number of minimal spanning trees has to been established. More precisely, the algorithm has

to spend a lot of time in sorting all edges in each computation of a minimal spanning tree. In

contrast the algorithm of Ruzika and Henn updates in each iteration already existing trees. The

run time of the algorithm of Shogan where a much larger number of spanning trees has to been

computed and the approximation of Goemans and Ravi where we compute also a large number of

spanning trees flesh out this observation. A second factor for the time advantage is the number

of branchings in the Algorithm of Ruzika and Henn which is in the most cases smaller than the

number of branchings of the Algorithm of Aggarwal, Aneja and Nair. Remember, Aggarwal,

Aneja and Nair branch from an extreme point, Ruzika and Henn from a supported tree which

is next to the weight constraint. The Algorithm of Goemans and Ravi delivers in our test an

excellent approximation quality of circa 1.01. An open question is whether this quality can also

be guaranteed by instances with a breather distribution of costs and weights. The large run time

on this approximation is caused in the large number of running the algorithm again for different

C, which does not change the approximation value in the most cases (see Theorem 12.3).

Further problems with data in {1, . . . , 1000} are more complicated than problems with data in

{1, . . . , 100}: In a setting with data distributed in {1, . . . , 100} the initial triangle and the whole

convex hull is smaller than for a problem in the corresponding setting with data distributed in

{1, . . . , 1000}. The polyhedra is dispersed. Here our duality gap is larger and our algorithms has

to spend more time in the computation. We investigate for graphs with more than 150 vertices

only our problem settings where costs and weights are distributed in {1, . . . , 1000}. Theses graphs

are as announced in the previous section more significant.

By classifying the complexity of our different distributions we see that the distribution with out-

liers has the largest run time. The second complicated setting is the setting with highly correlated

data. The problems with weakly correlated costs and weights have the lowest run time since a

large set of edges with costs and respectively weights equal to 1 making the problem easier. We

notice that this relation is reflected in the run time of every algorithm, we consider here. The

Figure 13.1 visualizes this behavior in the settings with data in {1, . . . , 1000} for the medium

weight constraint and the algorithm of Ruzika and Henn.

We number our settings for this figure in the following way:

Vertices Edges Vertices Edges Vertices Edges

1 50 307 7 150 2794 13 250 6219

2 50 612 8 150 5588 14 250 12438

3 50 1225 9 150 11175 15 250 24875

4 100 1238 10 200 4975 16 300 11213

5 100 2475 11 200 9950 17 300 22425

6 100 4950 12 200 19900 18 300 44850
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Figure 13.1: Average run time of the Algorithm of Ruzika and Henn for medium constraint in

the different settings

It is not very useful to visualize our results in diagrams since we have a great dispersion be-

tween the different results for the algorithms and settings. Therefore, we present our results only

in 24 tables. In the following we use these abbreviations:

tr : The average time of the Algorithm of Ruzika and Henn in seconds.

Br : The average number of branchings of the Algorithm of Ruzika and Henn.

ta : The average time of the Algorithm of Aggarwal, Aneja and Nair in seconds.

Ba : The average number of branchings of the Algorithm of Aggarwal, Aneja and Nair.

ta/tr : The quotient of the average time of the Algorithm of Aggarwal, Aneja and Nair and the

average time of the Algorithm of Ruzika and Henn.
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Ba/Br : The quotient of the average number of branchings of the Algorithm of Aggarwal, Aneja

and Nair and the average number of branchings of the Algorithm of Ruzika and Henn.

tg : The average time of the Approximation of Goemans and Ravi in seconds.

α : The average approximation quality.

tg/tr : The quotient of the average time of the Algorithm of Goemans and Ravi and the average

time of the Algorithm of Ruzika and Henn.

Uniformly Distributed Costs and Weights

A very interesting result is that we observe in our algorithm for small n a smaller run time for

a complete graph than for a graph with the same number of nodes but only n(n − 1)/4 edges.

This is clear since a complete graph has a closer distribution of the images in the c − w-space.

The probability that the facets of our convex hull have a slope of -1 is much greater and we have

more trees with weight equal W . This property of a complete graph can also be seen in the

number of branchings in the algorithm of Aggarwal, Aneja and Nair. This advantage deflagrates

in the run time since we have to sort more edges by the computing of minimal spanning trees.

In the Algorithm of Ruzika and Henn and in the Algorithm of Goemans and Ravi we start with

the weight minimal solution and pivot along the frontier of the convex hull until we reach the

weight-constrained. In the low-weight limit case this occurs sooner than in the high-weight limit

case and we have to spend more time for finding a solution.

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 16.3 0.00 11.8 0.72 0.00 1.0287 -

10 45 0.00 29.9 0.01 19.6 51.0 0.66 0.00 1.0414 -

50 307 0.01 148.2 1.31 293.0 95.6 1.98 0.02 1.0146 1.31

50 612 0.03 124.3 1.35 163.6 42.9 1.32 0.08 1.0153 2.50

50 1225 0.04 56.5 2.23 146.0 55.8 2.59 0.21 1.0151 5.24

100 1238 0.11 154.5 13.43 590.8 121.5 3.82 0.37 1.0087 3.33

100 2475 0.16 59.4 16.85 348.6 106.5 5.87 1.39 1.0089 8.79

100 4950 0.30 30.1 24.52 215.1 80.9 7.16 3.20 1.0075 10.54

150 2794 0.44 142.5 61.59 768.8 140.8 5.40 2.51 1.0060 5.73

150 5588 0.61 39.0 95.80 429.6 156.5 11.02 6.68 1.0048 10.90

150 11175 1.39 10.1 179.79 405.4 129.0 40.34 15.48 1.0030 11.11

Table 13.1: Low-weight limit for uniformly distributed costs and weights in {1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 14.2 0.01 12.7 - 0.90 0.00 1.0380 -

10 45 0.00 23.3 0.01 19.5 - 0.84 0.00 1.0214 -

50 307 0.01 78.1 0.97 195.3 120.8 2.50 0.02 1.0092 2.88

50 612 0.02 52.5 1.05 107.4 63.4 2.05 0.10 1.0130 5.97

50 1225 0.03 22.0 1.87 85.0 65.0 3.87 0.25 1.0131 8.69

100 1238 0.08 72.1 13.48 399.3 177.9 5.54 0.47 1.0059 6.16

100 2475 0.16 34.7 15.82 205.1 96.4 5.92 1.67 1.0068 10.18

100 4950 0.33 6.8 30.72 139.3 93.6 20.63 3.69 1.0040 11.24

150 2794 0.30 29.1 44.49 339.0 150.6 11.67 3.10 1.0037 10.50

150 5588 0.67 9.7 121.66 378.6 182.5 39.03 7.94 1.0038 11.92

150 11175 1.67 5.3 222.59 245.6 133.5 46.05 17.92 1.0027 10.75

Table 13.2: Medium-weight limit for uniformly distributed costs and weights in {1, . . . , 100}

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 9.7 0.00 7.8 - 0.81 0.00 1.0182 -

10 45 0.00 14.5 0.01 11.5 27.0 0.79 0.00 1.0197 -

50 307 0.01 49.3 0.47 80.5 55.7 1.63 0.03 1.0080 3.15

50 612 0.02 52.5 0.79 81.1 53.6 1.54 0.11 1.0090 7.36

50 1225 0.03 13.9 1.17 49.5 38.9 3.56 0.27 1.0056 9.01

100 1238 0.05 21.2 6.67 179.4 125.3 8.48 0.53 1.0040 9.86

100 2475 0.17 10.1 13.30 116.3 80.6 11.51 1.81 1.0039 10.98

100 4950 0.37 3.6 30.09 89.5 82.5 25.22 3.97 1.0029 10.89

150 2794 0.31 11.4 49.20 267.1 157.2 23.53 3.41 1.0027 10.90

150 5588 0.74 5.9 119.00 269.3 160.5 45.64 8.55 1.0021 11.53

150 11175 1.83 2.2 252.43 248.1 137.9 112.75 19.09 1.0010 10.43

Table 13.3: High-weight limit for uniformly distributed costs and weights in {1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 17.1 0.00 10.6 - 0.62 0.00 1.0273 -

10 45 0.00 37.4 0.01 19.8 - 0.53 0.00 1.0314 -

50 307 0.03 287.2 1.18 265.6 34.47 0.92 0.03 1.0157 0.88

50 612 0.11 337.0 2.63 343.9 23.33 1.02 0.10 1.0194 0.86

50 1225 0.23 308.0 3.34 221.3 14.81 0.72 0.30 1.0164 1.30

100 1238 0.81 865.5 17.19 891.6 21.28 1.03 0.56 1.0089 0.69

100 2475 1.55 680.4 30.54 766.2 19.74 1.13 1.78 1.0089 1.14

100 4950 1.48 320.5 56.91 634.3 38.50 1.98 4.54 1.0083 3.07

150 2794 2.92 1047.5 87.70 1562.6 30.05 1.49 3.42 1.0061 1.17

150 5588 5.43 787.7 188.23 1458.4 34.65 1.85 8.91 1.0060 1.64

150 11175 4.40 378.4 - - - - 23.96 1.0052 5.44

200 4975 4.28 794.6 286.66 2202.4 67.06 2.77 10.89 1.0349 2.55

200 9950 6.95 527.3 757.75 2334.4 109.08 4.43 29.11 1.0045 4.19

200 19900 9.10 211.8 1701.22 2767.6 186.98 13.07 71.924 1.0041 7.91

250 6219 7.83 763.4 - - - - 27.055 1.0023 3.46

250 12438 10.45 419.7 - - - - 69.605 1.0034 6.66

250 24875 17.04 184.3 - - - - 165.02 1.0038 9.69

300 11213 14.62 184.3 - - - - 56.99 1.0028 3.90

300 22425 15.97 187.4 - - - - 144.30 1.0034 9.04

300 44850 25.01 123.9 - - - - 326.88 1.0027 13.07

350 15269 16.86 528.2 - - - - 106.19 1.0023 6.30

350 30538 20.94 178.3 - - - - 259.32 1.0021 12.38

350 61075 46.19 74.6 - - - - - - -

400 19950 29.30 649.1 - - - - - - -

400 39900 35.36 147.9 - - - - - - -

400 79800 73.07 45.7 - - - - - - -

Table 13.4: Low-weight limit for uniformly distributed costs and weights in {1, . . . , 1000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 15.8 0.00 12.0 - 0.76 0.03 1.0324 -

10 45 0.00 36.1 0.02 26.7 - 0.74 0.00 1.0417 -

50 307 0.02 189.9 1.00 212.6 42.72 1.12 0.04 1.0135 1.63

50 612 0.05 175.1 1.66 186.5 32.22 1.06 0.12 1.0110 2.36

50 1225 0.20 260.8 4.01 252.6 20.07 0.97 0.35 1.0134 1.76

100 1238 0.43 463.1 15.55 692.9 36.44 1.50 0.72 1.0089 1.68

100 2475 1.46 567.5 30.99 651.0 21.17 1.15 2.17 1.0067 1.48

100 4950 1.72 278.5 94.05 961.7 54.77 3.45 5.33 1.0071 3.10

150 2794 1.92 700.6 120.73 1715.6 62.92 2.45 4.19 1.0056 2.19

150 5588 4.15 460.1 274.62 1430.0 66.20 3.11 10.66 1.0047 2.57

150 11175 3.80 200.2 - - - - 27.30 1.0049 7.20

200 4975 7.38 927.1 409.65 2581.4 55.48 2.78 13.30 1.0052 1.80

200 9950 3.53 183.0 2041.31 4714.2 578.89 25.77 34.40 1.0043 9.76

200 19900 15.15 215.8 - - - - 77.96 1.0039 5.14

250 6219 4.81 392.5 - - - - 32.25 1.0036 6.71

250 12438 7.83 183.2 - - - - 81.28 1.0033 10.39

250 24875 13.81 66.5 - - - - 186.98 1.0031 13.55

300 11213 12.19 574.1 - - - - 67.13 1.0024 5.51

300 22425 12.57 110.0 - - - - 165.06 1.0028 13.13

300 44850 25.43 23.0 - - - - 366.77 1.0020 14.42

350 15269 10.15 110.3 - - - - 143.18 1.0020 12.31

350 30538 21.81 100.9 - - - - 297.11 1.0022 13.62

350 61075 50.45 30.6 - - - - - - -

400 19950 19.90 251.2 - - - - - - -

400 39900 37.46 39.3 - - - - - - -

400 79800 83.68 31.0 - - - - - - -

Table 13.5: Medium-weight limit for uniformly distributed costs and weights in {1, . . . , 1000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 11.8 0.00 7.4 - 0.62 0.00 1.0165 -

10 45 0.00 13.0 0.01 16.0 - 1.23 0.00 1.0376 -

50 307 0.02 165.8 0.78 169.2 40.47 1.02 0.05 1.0065 2.35

50 612 0.05 159.4 1.18 138.9 22.14 0.87 0.14 1.0071 2.55

50 1225 0.11 128.8 2.99 150.9 28.25 1.17 0.38 1.0089 3.60

100 1238 0.22 59.4 15.57 550.1 70.54 9.26 0.81 1.0089 3.65

100 2475 0.45 159.7 30.72 504.4 68.38 3.16 2.39 1.0039 5.31

100 4950 0.69 106.2 75.91 473.4 110.13 4.46 5.74 1.0046 8.33

150 2794 2.31 493.9 100.60 1196.9 43.54 2.42 4.65 1.0033 2.01

150 5588 5.90 328.7 211.81 899.7 35.92 2.74 11.63 1.0041 1.97

150 11175 2.10 33.0 - - - - 29.26 1.0034 13.92

200 4975 3.44 401.0 607.85 2616.6 176.92 6.53 14.59 1.0024 4.25

200 9950 3.22 81.4 3566.86 5270.6 1107.81 64.79 37.26 1.0024 11.57

200 19900 6.14 21.9 - - - - 80.45 1.0025 13.11

250 6219 4.91 284.7 - - - - 35.17 1.0021 7.16

250 12438 6.53 71.0 - - - - 87.45 1.0021 13.39

250 24875 14.02 18.1 - - - - 198.48 1.0023 14.15

300 11213 5.71 101.8 - - - - 73.21 1.0020 12.83

300 22425 12.70 51.6 - - - - 177.38 1.0022 13.97

300 44850 27.36 9.4 - - - - 388.38 1.0020 14.19

350 15269 10.15 110.3 - - - - 135.22 1.0015 13.32

350 30538 22.56 41.7 - - - - 318.83 1.0015 14.13

350 61075 55.83 16.7 - - - - - - -

400 19950 17.53 72.2 - - - - - - -

400 39900 41.11 34.6 - - - - - - -

400 79800 89.98 9.0 - - - - - - -

Table 13.6: High-weight limit for uniformly distributed costs and weights in {1, . . . , 1000}
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Uniformly Distributed Costs and Weights with Outliers

This distribution is the most time expensive one in relation to our other distributions. We

guess that our algorithm runs slower in this setting since we have a disadvantageous adjacency-

structure, where it was not possible to exchange edges with small costs and weights by edges

with small costs and weights. Also the outliers may make the frontier of the convex hull more

complicated which enlarges the run time. Additionally, in the cases with higher weight limit we

have a lower number of branchings since we can choose more edges with cheap costs, the outliers,

which does not effect the feasibility than in the low-limit case.

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 16.8 0.00 9.6 - 0.57 0.00 1.0160 -

10 45 0.00 25.6 0.00 16.6 - 0.65 0.00 1.0289 -

50 307 0.02 211.9 0.98 209.7 43.70 0.99 0.02 1.0090 0.86

50 612 0.13 476.0 2.29 277.5 17.12 0.58 0.40 1.0122 3.00

50 1225 0.37 597.3 8.31 592.6 22.34 0.99 0.15 1.0115 0.40

100 1238 0.63 901.9 24.44 1210.2 38.55 1.34 0.28 1.0063 0.44

100 2475 1.72 972.6 35.60 859.0 20.68 0.88 0.91 1.0073 0.53

100 4950 4.22 1154.1 125.26 1575.4 29.69 1.37 2.41 1.0074 0.57

150 2794 1.49 692.4 150.13 2588.1 100.88 3.74 1.70 1.0059 1.14

150 5588 3.39 790.0 419.80 3410.2 123.83 4.32 4.69 1.0053 1.38

150 11175 8.66 781.6 - - - - 12.32 1.0049 1.42

Table 13.7: Low-weight limit for costs and weights with outliers in {1, . . . , 200}

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 12.1 0.00 8.5 - 0.70 0.00 1.0101 -

10 45 0.00 27.1 0.00 17.7 - 0.65 0.00 1.0218 -

50 307 0.02 197.3 0.86 174.5 46.61 0.88 0.02 1.0090 1.04

50 612 0.13 517.1 2.65 331.7 20.31 0.64 0.08 1.0115 0.59

50 1225 0.32 579.8 6.48 442.8 20.56 0.76 0.20 1.0144 0.64

100 1238 0.46 667.9 19.70 907.5 43.27 1.36 0.37 1.0055 0.82

100 2475 2.26 1271.7 52.04 1369.6 23.02 1.08 1.25 1.0072 0.55

100 4950 3.84 1003.3 131.34 1633.6 34.21 1.63 3.07 1.0106 0.80

150 2794 1.13 578.6 130.14 2056.0 114.99 3.55 2.36 1.0052 2.09

150 5588 3.29 756.2 439.65 3332.1 133.75 4.41 6.24 1.0063 1.89

150 11175 4.34 373.3 - - - - 15.94 1.0085 3.68

Table 13.8: Medium-weight limit for costs and weights with outliers in {1, . . . , 200}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 7.2 0.00 5.3 - 0.74 0.00 1.0044 -

10 45 0.00 14.3 0.01 11.4 - 0.80 0.00 1.0108 -

50 307 0.01 111.8 0.47 100.3 36.71 0.90 0.03 1.0040 2.22

50 612 0.04 163.1 1.25 151.5 28.75 0.93 0.09 1.0088 2.05

50 1225 0.24 328.7 3.97 264.4 16.33 0.80 0.24 1.0196 0.99

100 1238 0.22 227.5 8.22 331.4 37.03 1.46 0.43 1.0038 1.95

100 2475 1.55 572.1 36.30 823.3 23.42 1.44 1.52 1.0092 0.98

100 4950 4.16 341.6 43.60 454.0 10.49 1.33 3.81 1.0090 0.92

150 2794 1.21 423.8 74.85 1190.8 62.08 2.81 2.84 1.0047 2.36

150 5588 4.70 562.1 156.22 1182.1 33.24 2.10 7.60 1.0072 1.62

150 11175 2.13 110.1 - - - - 19.58 1.0055 9.20

Table 13.9: High-weight limit for costs and weights with outliers in {1, . . . , 200}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 16.9 0.03 7.8 - 0.46 0.00 1.0119 -

10 45 0.00 48.0 0.10 16.1 40.00 0.34 0.00 1.0199 3.00

50 307 0.07 521.9 1.12 233.1 15.58 0.45 0.03 1.0094 0.42

50 612 0.48 1514.0 8.03 955.3 16.81 0.63 0.07 1.0124 0.15

50 1225 1.75 2788.3 26.27 1790.7 15.02 0.64 0.19 1.0139 0.11

100 1238 2.93 3150.8 84.76 3530.8 28.95 1.12 0.42 1.0089 0.14

100 2475 12.01 4747.1 210.05 4682.1 17.49 0.99 1.16 1.0089 0.10

100 4950 96.11 45146.7 - - - - 3.22 1.0092 0.03

150 2794 19.81 5023.5 - - - - 2.16 1.0053 0.11

150 5588 164.59 36453.9 - - - - 6.34 1.0054 0.04

150 11175 1060.87 179253.9 - - - - 15.60 1.0098 0.01

200 4975 55.79 7565.0 - - - - 6.58 1.0041 0.12

200 9950 708.38 92323.9 - - - - 19.16 1.0045 0.03

200 19900 796.72 53079.8 - - - - 48.91 1.0102 0.06

Table 13.10: Low-weight limit for costs and weights with outliers in {1, . . . , 2000}

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 12.7 0.00 6.8 - 0.54 0.01 1.0038 -

10 45 0.00 30.8 0.01 14.7 18.00 0.48 0.00 1.0118 0.50

50 307 0.04 326.5 1.38 281.1 32.65 0.86 0.04 1.0092 0.91

50 612 0.29 1185.7 10.42 1288.1 35.40 1.09 0.10 1.0179 0.32

50 1225 1.82 3534.9 51.85 3353.1 28.46 0.95 0.24 1.0169 0.13

100 1238 1.74 2330.6 125.02 5058.9 71.98 2.17 0.57 1.0089 0.33

100 2475 8.09 5292.9 275.06 6085.3 33.99 1.15 1.51 1.0124 0.19

100 4950 53.91 20968.3 - - - - 4.05 1.0177 0.08

150 2794 14.70 6181.9 - - - - 3.01 1.0072 0.20

150 5588 39.95 7590.4 - - - - 8.13 1.0089 0.20

150 11175 46.27 2602.1 - - - - 19.58 1.0088 0.42

200 4975 41.94 7793.0 - - - - 8.69 1.0058 0.21

200 9950 205.26 19259.8 - - - - 23.68 1.0095 0.12

200 19900 114.40 3140.7 - - - - 60.95 1.0068 0.53

Table 13.11: Medium-weight limit for costs and weights with outliers in {1, . . . , 2000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 9.1 0.00 5.7 - 0.62 0.00 1.0043 -

10 45 0.00 22.3 0.01 11.8 - 0.53 0.00 1.0077 1.00

50 307 0.02 143.1 0.59 132.6 32.94 0.93 0.05 1.0025 2.50

50 612 0.19 659.0 7.81 952.5 40.79 1.45 0.11 1.0173 0.59

50 1225 0.71 59.4 19.90 1332.7 27.89 22.44 0.29 1.0089 0.41

100 1238 0.92 998.0 29.19 1332.6 31.66 1.34 0.68 1.0089 0.74

100 2475 4.73 2.048.8 173.91 3828.4 36.78 1.87 1.82 1.0039 0.38

100 4950 4.47 896.8 - - - - 5.06 1.0148 1.13

150 2794 5.14 1837.2 - - - - 3.70 1.0094 0.72

150 5588 8.41 1095.3 - - - - 10.17 1.0053 1.21

150 11175 23.07 1377.3 - - - - 23.31 1.0069 1.01

200 4975 35.42 3891.0 - - - - 10.54 1.0106 0.30

200 9950 46.95 2045.9 - - - - 29.96 1.0066 0.64

200 19900 86.99 1739.0 - - - - 71.10 1.0069 0.82

Table 13.12: High-weight limit for costs and weights with outliers in {1, . . . , 2000}

144



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Weakly Negatively Correlated Costs and Weights

As announced in the beginning this problems are relatively easily to solve since we have a large

set of edges with a weight equal to 1. This effects also the sequence of decreasing number of

branchings by increasing the number of edges for a fixed number of vertices. Furthermore this

instances underlines that our own algorithm has a much smaller run time than the algorithm of

Aggarwal, Aneja and Nair.

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 21.0 0.01 19.0 - 0.91 0.00 1.0230 -

10 45 0.00 43.7 0.02 31.1 - 0.71 0.00 1.0406 -

50 307 0.02 225.0 1.85 433.0 86.80 1.92 0.02 1.0130 1.04

50 612 0.04 143.1 1.67 206.0 41.11 1.44 0.07 1.0144 1.80

50 1225 0.06 106.6 2.48 157.9 40.71 1.48 0.15 1.0128 2.44

100 1238 0.10 143.0 14.81 691.9 156.35 4.84 0.34 1.0066 3.58

100 2475 0.17 65.5 14.24 254.3 84.37 3.89 0.99 1.0069 5.89

100 4950 0.23 29.5 32.62 253.3 142.61 8.60 2.08 1.0083 9.10

150 2794 0.22 51.2 - - - - 1.81 1.0255 8.23

150 5588 0.41 16.5 - - - - 4.02 1.0062 9.89

150 11175 0.88 13.1 - - - - 8.54 1.0042 9.73

Table 13.13: Low-weight limit for weakly negatively correlated costs and weights in {1, . . . , 100}

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 16.5 0.01 15.6 - 0.94 0.00 1.0333 -

10 45 0.00 29.5 0.02 25.1 - 0.85 0.00 1.0261 -

50 307 0.02 225.0 1.85 433.0 86.80 1.92 0.02 1.0130 1.04

50 612 0.02 77.4 1.21 122.9 52.45 1.59 0.09 1.0131 3.89

50 1225 0.02 20.5 1.64 68.8 72.74 3.36 0.18 1.0126 8.16

100 1238 0.13 127.8 11.63 371.2 86.98 2.91 0.43 1.0073 3.24

100 2475 0.13 23.6 19.46 241.9 153.19 10.25 1.25 1.0065 9.87

100 4950 0.25 8.2 37.09 209.5 150.32 25.71 2.53 1.0043 10.25

150 2794 0.24 34.0 - - - - 2.34 1.0046 9.69

150 5588 0.51 9.4 - - - - 5.20 1.0033 10.28

150 11175 1.10 5.3 - - - - 10.65 1.0037 9.68

Table 13.14: Medium-weight limit for weakly negatively correlated costs and weights in

{1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 12.2 0.01 10.2 - 0.83 0.00 1.0230 -

10 45 0.00 17.1 0.01 14.6 - 0.85 0.00 1.0273 -

50 307 0.42 70.5 0.01 34.7 0.01 0.49 0.03 1.0064 0.07

50 612 0.01 23.8 0.78 72.9 58.55 3.06 0.10 1.0079 7.64

50 1225 0.02 9.5 1.29 51.4 57.11 5.41 0.20 1.0044 8.99

100 1238 0.05 24.9 7.01 171.5 132.83 6.90 0.49 1.0046 9.33

100 2475 0.14 9.6 13.80 117.9 102.59 12.34 1.39 1.0027 10.30

100 4950 0.28 3.5 30.10 92.6 108.18 26.46 2.78 1.0024 10.00

150 2794 0.25 12.5 - - - 2.61 1.0030 10.29

150 5588 0.58 4.8 - - - 5.72 1.0021 9.93

150 11175 1.24 2.7 - - - - 11.63 1.0013 9.35

Table 13.15: High-weight limit for weakly negatively correlated costs and weights in {1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 22.2 0.01 16.8 - 0.76 0.00 1.0236 -

10 45 0.00 52.0 0.00 52.0 1.00 1.00 0.00 1.0455 3.00

50 307 0.05 458.9 2.34 442.4 43.61 0.96 0.03 1.0154 0.60

50 612 0.13 423.6 3.19 345.5 24.68 0.82 0.09 1.0172 0.73

50 1225 0.29 394.7 4.37 258.1 14.86 0.65 0.21 1.0464 0.72

100 1238 1.04 1099.1 24.04 1007.6 23.21 0.92 0.54 1.0190 0.52

100 2475 1.61 706.8 31.33 737.8 19.50 1.04 1.27 1.0372 0.79

100 4950 4.80 679.2 60.03 688.3 12.50 1.01 2.92 1.0087 0.61

150 2794 3.23 1122.5 145.28 2471.0 45.03 2.20 2.79 1.0207 0.86

150 5588 4.83 779.1 - - - - 6.03 1.0062 1.25

150 11175 4.38 370.5 - - - - 12.91 1.0063 2.95

200 4975 7.09 1117.7 - - - - 7.56 1.0054 1.07

200 9950 5.09 467.7 - - - - 17.27 1.0043 3.39

200 19900 8.33 248.3 - - - - 38.31 1.0037 4.60

250 6219 10.52 889.3 - - - - 19.64 1.0033 1.87

250 12438 11.48 502.4 - - - - 44.71 1.0032 3.89

250 24875 9.93 140.0 - - - - 97.62 1.0035 9.83

300 11213 12.23 783.2 - - - - 39.23 1.0025 3.21

300 22425 17.85 450.0 - - - - 93.80 1.0024 5.26

300 44850 15.93 78.3 - - - - 194.73 1.0022 12.22

350 15269 16.94 683.0 - - - - 70.95 1.0023 4.19

350 30538 18.65 245.4 - - - - 162.84 1.0023 8.73

350 61075 28.27 110.0 - - - - 335.85 1.0026 11.88

400 19950 15.48 350.0 - - - - 123.87 1.0017 8.00

400 39900 23.16 148.1 - - - - 266.28 1.0020 11.50

400 79800 44.26 89.3 - - - - 554.45 1.0024 12.53

Table 13.16: Low-weight limit for weakly negatively correlated costs and weights in {1, . . . , 1000}

147



Sebastian T. Henn: Weight-Constrained Minimum Spanning Tree Problem

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 19.2 0.01 18.5 - 0.97 0.00 1.0367 -

10 45 0.00 27.2 0.01 21.7 50.00 0.80 0.00 1.0310 1.00

50 307 0.03 269.6 1.29 233.5 39.34 0.87 0.04 1.0124 1.33

50 612 0.12 371.1 2.82 293.4 23.78 0.79 0.12 1.0137 1.01

50 1225 0.42 459.1 4.54 262.2 10.87 0.57 0.27 1.0149 0.64

100 1238 0.61 642.3 17.57 706.5 28.83 1.10 0.69 1.0087 1.13

100 2475 0.74 374.6 22.89 520.2 31.11 1.39 1.63 1.0076 2.21

100 4950 1.09 260.2 39.04 424.3 35.89 1.63 3.63 1.0061 3.33

150 2794 1.76 719.5 156.99 2168.1 89.22 3.01 3.51 1.0052 2.00

150 5588 1.48 253.4 - - - - 7.45 1.0058 5.02

150 11175 2.60 181.9 - - - - 15.77 1.0058 6.07

200 4975 3.29 582.6 - - - - 9.56 1.0043 2.90

200 9950 3.62 254.3 - - - - 21.63 1.0047 5.97

200 19900 5.24 111.5 - - - - 47.06 1.0037 8.99

250 6219 10.78 713.3 - - - - 24.50 1.0035 2.27

250 12438 5.55 153.8 - - - - 54.81 1.0043 9.88

250 24875 9.78 59.0 - - - - 120.12 1.0031 12.28

300 11213 14.22 598.8 - - - - 48.48 1.0028 3.41

300 22425 9.95 125.8 - - - - 114.62 1.0020 11.52

300 44850 18.25 42.4 - - - - 232.02 1.0023 12.71

350 15269 9.48 229.9 - - - - 88.93 1.0025 9.38

350 30538 17.91 139.7 - - - - 199.29 1.0026 11.12

350 61075 31.13 34.4 - - - - 401.93 1.0021 12.91

400 19950 15.01 222.4 - - - - 153.34 1.0025 10.22

400 39900 24.65 53.4 - - - - 326.68 1.0020 13.25

400 79800 50.68 26.7 - - - - 662.17 1.0016 13.07

Table 13.17: Medium-weight limit for weakly negatively correlated costs and weights in

{1, . . . , 1000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 11.8 0.00 9.9 - 0.84 0.00 1.0204 2.00

10 45 0.00 23.5 0.01 18.0 - 0.76 0.00 1.0323

50 307 0.03 185.0 0.85 153.5 33.00 0.83 0.05 1.0093 1.87

50 612 0.05 125.4 1.25 131.4 25.99 1.05 0.13 1.0065 2.74

50 1225 0.09 108.5 2.16 115.5 23.78 1.06 0.29 1.0117 3.21

100 1238 0.40 401.6 11.50 466.9 28.95 1.16 0.77 1.0050 1.94

100 2475 0.74 264.1 17.27 381.7 23.44 1.45 1.82 1.0048 2.47

100 4950 0.65 114.5 27.87 277.3 42.60 2.42 4.03 1.0056 6.16

150 2794 1.83 384.1 121.77 1461.4 66.42 3.80 3.93 1.0031 2.14

150 5588 1.24 182.1 - - - - 8.29 1.0034 6.67

150 11175 1.58 46.6 - - - - 17.24 1.0038 10.92

200 4975 2.45 318.8 - - - - 10.70 1.0029 4.38

200 9950 2.85 156.1 - - - - 23.96 1.0033 8.41

200 19900 4.52 37.7 - - - - 51.72 1.0031 11.43

250 6219 3.50 233.0 - - - - 27.48 1.0024 7.86

250 12438 4.95 66.1 - - - - 60.53 1.0020 12.23

250 24875 10.22 22.5 - - - - 131.38 1.0025 12.28

300 11213 5.59 183.5 - - - - 54.13 1.0014 9.69

300 22425 12.19 574.1 - - - - 67.13 1.0024 11.52

300 44850 19.72 13.6 - - - - 253.77 1.0010 12.87

350 15269 8.38 91.2 - - - - 99.34 1.0018 11.85

350 30538 17.27 45.2 - - - - 220.25 1.0016 12.76

350 61075 34.66 14.3 - - - - 441.11 1.0014 12.73

400 19950 12.74 60.5 - - - - 169.97 1.0013 13.34

400 39900 27.22 27.3 - - - - 358.87 1.0012 13.18

400 79800 56.20 10.7 - - - - 717.87 1.0012 12.77

Table 13.18: High-weight limit for weakly negatively correlated costs and weights in {1, . . . , 1000}
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Highly Negatively Correlated Costs and Weights

In contrast to uniformly distributed data our lexicographical cost minimum has a much larger

weight under highly negatively correlated costs and weights which causes the larger run time for

these problems.

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 65.6 0.02 37.0 - 0.56 0.00 1.0536 -

10 45 0.00 220.0 0.07 93.8 35.5 0.43 0.00 1.0398 0.25

50 307 0.02 253.4 4.65 634.4 204.5 2.50 0.04 1.0082 1.74

50 612 0.03 161.0 5.75 352.1 185.6 2.19 0.13 1.0090 4.22

50 1225 1.76 3517.8 146.78 7455.3 83.5 2.12 0.34 1.0085 0.19

100 1238 0.16 327.3 90.15 1205.3 565.2 3.68 0.77 1.0038 4.84

100 2475 1.25 1956.2 197.44 958.5 157.7 0.48 2.10 1.0042 1.68

100 4950 0.43 85.5 - - - - 4.43 1.0033 10.36

150 2794 8.47 10238.4 - - - - 4.10 1.0025 0.48

150 5588 0.85 92.2 - - - - 9.85 1.0028 11.62

150 11175 1.67 108.8 - - - - 20.23 1.0029 12.15

Table 13.19: Low-weight limit for highly negatively correlated costs and weights in {1, . . . , 100}

Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 88.8 0.03 48.3 - 0.54 0.00 1.0561 -

10 45 0.00 180.3 0.05 70.1 30.4 0.39 0.00 1.0540 0.71

50 307 0.02 188.9 4.23 628.3 228.5 3.33 0.06 1.0113 3.16

50 612 0.04 177.8 7.62 573.9 181.5 3.23 0.18 1.0134 4.39

50 1225 0.15 219.7 39.38 1362.4 271.0 6.20 0.47 1.0221 3.25

100 1238 0.16 247.5 183.82 2434.0 1136.5 9.84 1.08 1.0194 6.68

100 2475 0.30 80.6 248.99 1517.5 834.83 18.84 2.91 1.0042 9.76

100 4950 0.56 65.7 - - - - 5.98 1.0051 10.72

150 2794 0.82 488.3 - - - - 5.84 1.0049 7.13

150 5588 1.10 58.6 - - - - 13.64 1.0026 12.40

150 11175 2.10 63.0 - - - - 26.26 1.0037 12.50

Table 13.20: Medium-weight limit for highly negatively correlated costs and weights in

{1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.01 68.8 0.02 38.2 - 0.55 0.00 1.0667 0.50

10 45 0.02 133.5 0.05 65.6 33.7 0.49 0.01 1.0858 0.67

50 307 0.02 181.4 2.69 417.6 115.5 2.30 0.07 1.0151 3.06

50 612 0.04 102.1 2.06 160.2 52.0 1.57 0.22 1.0145 5.65

50 1225 0.13 176.8 8.86 369.7 66.1 2.09 0.57 1.1074 4.28

100 1238 0.14 115.5 31.91 818.6 227.1 7.09 1.32 1.0096 9.36

100 2475 0.41 188.4 191.49 4041.9 171.36 2.13 3.74 1.0105 9.12

100 4950 1.39 653.8 - - - - 8.44 1.0105 6.06

150 2794 0.64 169.1 - - - - 6.91 1.0064 10.78

150 5588 5.40 2.393.2 - - - - 18.32 1.0053 3.39

150 11175 3.09 73.8 - - - - 38.64 1.0062 12.49

Table 13.21: High-weight limit for highly negatively correlated costs and weights in {1, . . . , 100}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 184.3 0.04 76.6 - 0.42 0.00 1.0538 -

10 45 0.01 809.4 0.21 280.6 20.48 0.35 0.00 1.0452 0.13

50 307 0.38 2981.4 29.71 4733.3 78.55 1.59 0.06 1.0074 0.17

50 612 1.52 4772.0 90.64 6771.9 59.52 1.42 0.19 1.0063 0.12

50 1225 0.69 1568.3 97.01 3656.4 140.80 2.33 0.51 1.0077 0.73

100 1238 1.12 1897.7 191.50 4041.9 171.36 2.13 1.077 1.0041 0.96

100 2475 3.44 2385.4 - - - - 3.08 1.0037 0.90

100 4950 3.00 1757.0 - - - - 7.02 1.0032 2.34

150 2794 4.32 2245.1 - - - - 5.86 1.0024 1.36

150 5588 7.19 3021.0 - - - - 15.36 1.0027 2.14

150 11175 54.40 16514.5 - - - - 34.26 1.0019 0.63

200 4975 3.67 1273.9 - - - - 18.47 1.0017 5.03

200 9950 39.32 10067.6 - - - - 43.98 1.0017 1.12

200 19900 41.62 5256.7 - - - - 100.80 1.0020 2.42

250 6219 14.86 3035.7 - - - - 46.73 1.0013 3.14

250 12438 665.82 103813.4 - - - - 114.27 1.0012 0.17

250 24875 23.95 604.8 - - - - 240.13 1.0015 10.03

300 11213 67.81 10322.3 - - - - 91.12 1.0011 1.34

300 22425 1622.20 159124.3 - - - - 224.71 1.0013 0.14

300 44850 45.02 827.0 - - - - 460.06 1.0012 10.22

350 15269 549.94 64875.0 - - - - 168.90 1.0007 0.31

Table 13.22: Low-weight limit for highly negatively correlated costs and weights in {1, . . . , 1000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 306.1 0.07 146.1 - 0.48 0.000 1.0619 0.33

10 45 0.01 1014.1 0.25 340.8 32.65 0.34 0.002 1.0558 0.19

50 307 0.42 3535.7 32.85 5405.3 77.57 1.53 0.084 1.0111 0.20

50 612 0.69 2515.7 64.50 5631.2 93.45 2.24 0.269 1.0147 0.39

50 1225 0.42 1148.2 201.52 6965.5 475.00 6.07 0.697 1.0136 1.64

100 1238 0.87 1425.5 434.21 9403.9 501.25 6.60 1.538 1.0173 1.78

100 2475 1.26 1114.1 - - - - 4.18 1.0055 3.31

100 4950 2.21 919.3 - - - - 9.44 1.0048 4.27

150 2794 2.09 1341.8 - - - - 8.19 1.0041 3.92

150 5588 3.42 879.6 - - - - 20.48 1.0043 5.99

150 11175 6.27 773.2 - - - - 46.17 1.0049 7.36

200 4975 5.53 1646.6 - - - - 25.32 1.0020 4.58

200 9950 6.88 668.3 - - - - 59.35 1.0026 8.62

200 19900 13.73 598.6 - - - - 136.68 1.0022 9.96

250 6219 6.89 797.6 - - - - 62.99 1.0021 9.15

250 12438 15.59 854.6 - - - - 154.22 1.0020 9.89

250 24875 26.62 588.2 - - - - 318.55 1.0022 11.97

300 11213 10.82 635.6 - - - - 122.17 1.0020 11.29

300 22425 26.39 654.7 - - - - 302.52 1.0013 11.46

300 44850 46.46 548.6 - - - - 596.44 1.0015 12.84

350 15269 21.09 861.1 - - - - 227.71 1.0014 10.80

Table 13.23: Medium-weight limit for highly negatively correlated costs and weights in

{1, . . . , 1000}
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Ruzika, Henn Aggarwal, Aneja, Nair Goemans, Ravi

n m tr Br ta Ba ta/tr Ba/Br tg α tg/tr
10 22 0.00 246.4 0.06 122.4 - 0.50 0.00 1.0857 0.20

10 45 0.01 771.7 0.25 329.1 39.52 0.43 0.00 1.1203 0.28

50 307 0.63 4444.7 29.55 4474.5 46.66 1.01 0.10 1.0201 0.16

50 612 1.30 3407.5 120.54 10224.9 92.60 3.00 0.33 1.0160 0.25

50 1225 1.18 1822.0 40.56 1584.8 34.38 0.87 0.83 1.0189 0.70

100 1238 1.64 2251.7 152.24 3670.7 93.07 1.63 1.88 1.0101 1.15

100 2475 2.79 1702.2 - - - - 4.94 1.0064 1.77

100 4950 2.15 854.5 - - - - 11.13 1.0072 5.18

150 2794 2.93 1450.9 - - - - 9.73 1.0064 3.32

150 5588 6.76 2478.0 - - - - 23.93 1.0057 3.54

150 11175 56.94 14497.9 - - - - 57.32 1.0066 1.01

200 4975 4.27 925.1 - - - - 29.95 1.0043 7.01

200 9950 35.99 5941.8 - - - - 70.79 1.0053 1.97

200 19900 142.32 21245.2 - - - - 178.58 1.0050 1.25

250 6219 18.73 3258.5 - - - - 73.71 1.0043 3.94

250 12438 205.21 26416.4 - - - - 185.43 1.0033 0.90

250 24875 64.14 2549.8 - - - - 422.55 1.0043 6.59

300 11213 54.86 7182.4 - - - - 143.82 1.0027 2.62

300 22425 386.37 36494.7 - - - - 397.18 1.0035 1.03

300 44850 57.17 392.3 - - - - 788.43 1.0024 13.79

350 15269 198.71 20474.2 - - - - 266.93 1.0029 1.34

Table 13.24: High-weight limit for highly negatively correlated costs and weights in {1, . . . , 1000}
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14 Conclusion

This chapter summarizes the results of this diploma thesis and gives an outlook of possible further

research topics.

14.1 Summary of the Main Results

In this diploma thesis we have discussed the NP-hard problem of finding a minimal cost spanning

tree under the restriction that the weight of this tree does not exceed a given value. We have

approached this problem from a spanning tree problem without restrictions (Chapter 2) and from

a multicriterial optimization problem (Chapter 6). Also we have noticed that the Lagrangian

relaxation is a very usual method to handle this problem (Chapter 7) and stated some in- and

exclusion tests (Chapter 9). In the Chapters 11 and 12 we gave an overview over all solution and

approximation approaches to our problem which can be found in literature and carried out a few

refinements. Also we applied two more general methods (ranking and approximation through

decomposition) to our problem. Main part of this thesis was the designing of an alternative

solving algorithm using the tree structure of supported trees. Our detailed numerical results has

shown that this algorithm was the best way to solve a weight-constrained minimal spanning tree

problem. The Algorithm of Aggarwal, Aneja and Nair needed much more time to find the exact

tree and the algorithms of Shogan and Hong, Chung and Park were not applicable ways to solve

the weight-constrained minimal spanning tree problem.

14.2 Further Research

The weight-constrained minimal spanning tree problem and the work of this thesis offer a lot of

possible topics.

In- and Exclusion for Supported Trees

Based on the chapter concerning in- and exclusion tests and the section 11.1.3 where we made

some statements for the adjacency structure of the supported trees the question occurs whether

for two supported trees T1, TK with an edge e ∈ T1∩TK a sequence of adjacent trees T1, T2, . . . , TK

like in Theorem 11.12 exists such that e is contained in each tree of this sequence.
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Alternative Problem Settings

It is possible to evaluate the behavior of the algorithm tested in Chapter 13 with other problem

settings, like uniform distributed data in {1, . . . , 10000} or other distributions. Another field of

interest is which effect a faster minimal spanning tree algorithm (see Section 2.4) implemented

in the algorithm of Aggarwal, Aneja and Nair will have.

Directed Case

In Chapter 3.5 we have introduced the weight-constrained minimal arborescence problem

min
∑

(i,j)∈B

cij

s.t.
∑

(i,j)∈B

wij ≤ W

B ∈ B

where B is the set of all arborescence. For this problem can be investigated which results from our

undirected graph problem can be transformed to this directed case. In principle our Algorithm

11.4 can easily be modified to solve this kind of problem.

Special Cases

A further idea is to go one with the treatment of special relations between costs and weights

(already started in Chapter 10) and the considering of a special graph structure (for instance

grid graphs or bipartite graphs).

Multidimensional

A next field of work is the dealing with two- or more dimensional constraints the resource-

constrained minimal spanning tree problem (Problem 2).

min
∑

e∈T

ce

s.t.
∑

e∈T

wl
e ≤ Wl for 1 ≤ l ≤ L

T ∈ T

This problem was stated in the article of Shogan [37] and Algorithm 11.3 can be used to solve

this problem. Can other ideas of our WCMST be applied to this problem? Unfortunately, we

may lose some nice properties we have in the one-dimensional case like the adjacency property

of the convex hull.
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Combination with other Restrictions

It is also possible to combine a weight constraint with several other constraints for instance flow

requirements, degree constraints or hop constraints (see for more possibilities [11]).

Matroid

In Chapter 4 we have seen the connection between a spanning tree in a graph and basis of a

matroid. Since the set of extreme points in a bicriterial matroid optimization problem can be

obtained by a sequence of elementary basis operations we complete our outlook with the idea of

applying our results from Section 11.1.3 to the theory of matroids.
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Appendix

Part of this Diploma Thesis is a compact disk which contains the C++ - Files of the implemen-

tation, the SINGULAR source code for Algorithm 11.10, a random generator, all testfiles and

MicrosoftExcel sheets with the test results.
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