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Abstract

In this article a new data-adaptive method for smoothing of bivariate functions is developed.
The smoothing is done by kernel regression with rotational invariant bivariate kernels. Two or
three local bandwidth parameters are chosen automatically by a two-step plug-in approach. The
algorithm starts with small global bandwidth parameters, which adapt during a few iterations
to the noisy image. In the next step local bandwidths are estimated.

Some general asymptotic results about Gasser-Miiller-estimators and optimal bandwidth se-
lection are given. The derived local bandwidth estimators converge and are asymptotically

normal.
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1 Introduction

In this paper smoothing of bivariate functions is investigated. It can be applied e. g. for image
processing or spatial data like geographical data. There exist bivariate smoothing methods like
wavelet denoising, diffusion filtering, Gauss filtering with a Nadaraya-Watson estimator, nonlinear
Gauss filtering by Godtliebsen et al. (1997) and modal regression by Scott (1992), but they are either
not completely data-adaptive and the user needs a lot of experience to specify suitable parameters
or they are not flexible enough to adapt to inhomogeneities. Polzehl and Spokoiny (1998) developed
a completely data-adaptive procedure, but it works only for piecewise constant functions.

Another important class of nonparametric estimators are kernel estimators with global or local band-
widths. If the underlying true function is inhomogenous, then local bandwidths allow a better fit.
However, an automatic data-adaptive procedure for the bandwidth selection is necessary, e. g. as in
Fan and Gijbels (1995) for local polynomials or in Brockmann (1993); Brockmann et al. (1993) for
Gasser-Miiller-kernel-estimators (both for the one-dimensional case). Mammen and Gijbels (1995)
have shown, that plug-in estimators do not achieve optimal rates of convergence for certain classes of
functions, but, nevertheless, for finite samples they work well. Here, data-adaptive algorithms for two
or three bandwidth parameters based on plug-in rules for Gasser-Miiller-estimators are developed.
In section 2 general asymptotic results for Gasser-Miiller-estimators are obtained and the pros and
cons of local or global parameters and the number of bandwidth parameters are discussed. The
algorithms are introduced in Chapter 3. In Chapter 4 asymptotic properties of the bandwidth

estimators are considered.

2 Theory of Bivariate Kernel Regression

2.1 Definitions and Assumptions

A bivariate regression model of the form

Zy, =r(Tk, Yr) + €,



k =1,...,n, is considered, where Z; are the data, r the unknown real-valued regression function on
a compact subset A C R? (w.l.o.g. A(A) = 1, X the Lebesgue-measure on IR?) and ¢ the errors.
If (x,y) is deterministic on a compact set A C IR?, the design is called fixed. It is assumed, that
the design is generated by a density f, that means that there is a partition Ai,..., 4, of A with
(zk,yk) € Ak, supy [N(Ar) = mrm| = o5) and supysup, yeq, |lz = yll = O(). The design
density f is called regular, if f is two times continuously differentiable on the interior of A and
bounded away from 0. The errors €; are independent with mean 0, finite variance o (2, yx) and all
moments exist. The variance function o2(z,y) is positive and two times continuously differentiable.

Many regression estimators like kernel estimators, smoothing splines, orthogonal series estimators,

local polynomials are at least asymptotically localized weighted averages of the data

n

Pa,y) =Y Wile,y)Z,
k=1

and they differ only in the weights W},. For kernel estimators the weights W} depend on a dilation

and rescaling of a kernel.

Definition 2.1 A function K, ., : R*> — R with

0 0<ar+a <k and (a1,as) # (v1,19)
/Km,ug (@, y)z™y** de dy = ,
Hyyvs (041,042) = (V15V2)
where [, v, = (1)1 7201l is called kernel (for estimating the (v1,v2)-th derivative) of order k,

E>vi+uva+1, aq,a2 € NU{0}, vy, € {0,1,2,...}.

In the following a kernel K,, ,, is always assumed to be Lipschitz continuous and has compact sup-
port T, T the unit ball in R?. Here, only K (short for Kop), K2, Ko2 and K; 1 are considered.
Ko,0, K2, and Ky 2 are assumed to be symmetric in both directions, i.e. Ky, v, (2,y) = Ky v, (—2,9)
and Ky, v, (z,y) = Ky, 4, (z,—y). Moreover, K(z,y) = K(y,z). It follows for K¢, K29 and Ko,
that [, 27" 252Ky, 1, (21,22) dz1dze = 0, if at least one integer a; is odd. Therefore, K is of

order k¥ > 2 and Ky and Ky are of order £ > 4. K; is assumed to be antisymmetric in



both directions, i.e. Kji(z,y) = —Ki1(—2,y) and K 1(z,y) = —K;i1(z,—y). It follows, that
fT 21292 K1 1 (21, 22) dz1 dzo = 0, if at least one integer «y; is even. Later, it is required, that K ; is
of order k > 4, so it has automatically order k > 5. For more details on kernels see Miiller (1988).
In the bivariate case the dilation is a vector and the rescaling is done by a so called bandwidth matrix
B.

The bandwidth matrix can consist of up to three parameters. The sets

by 0
Dl = : b1 > 0 )
0 b
by O
D = :b1,00 >0
0 b
and
bit b1z 9
P = : bll,bgz > 0,b11b22 > b12
b12 b22

are considered. In D are diagonal matrices and in P symmetric positive definite matrices. If B € D,
then B~! (Z) means, that the support of K (B_1 (Z)) is not the unit ball any more, but an ellipse
with axes parallel to the coordinate axes and lengths b; and by. If the matrix B € P, then the
axes of the ellipse are not parallel to the coordinate axes any more, but rotated with an angle a.

This geometric interpretation can be formalized by a diagonalization step. Since B is symmetric and

positive definite, B can be diagonalized by
B = C'B,C,

where By is a diagonal matrix with entries b; and by and C is an orthogonal transformation matrix

which can be written in the Form

cosa —sina
C =
sina¢  cosa
with some «a € [0, 27].
_ 2 -2
bi1 = bjcos®a+ bysin® a



bia = (by —by)sinacosa (1)
bys = bysin?a+ bycos® a

det B = b1 b2

There are three bandwidth parameters: two axes of the ellipse and a rotation angle. In the following

this parametrisation is used.

B may depend on (z,y) (local bandwidth) or may be independent of (x,y) (global bandwidth).

Definition 2.2 If K, ,, is a kernel and B a bandwidth matriz, then kernel estimators of convolution

type (to estimate the (v1,ve2)-th derivative) are defined as

e for Be D

1 - T —u
)@y By = g Y | K B! dudv Z,
r (ZIZ,Z/, ) b;1+1b52+1 Z /Ak v1,V2 ( y— v udav 4y,

e for Be P

. RS T —u
#(z,y; B) = detBkX:;/AkK<B (y_v» dudv Zy,

and if Kag, Koo and K11 are the derivatives of the same kernel K (e.g. Krp(z,y) =

> -
5K (2,y)),

A R e o G
7'(2’0)(1‘,%3) = W Z/A b3, Ko (B 1<y —1})) + b7, Ko <B L (y _v))
k=1 k

—2b12b22 K1 1 <B1 <a: B u)) dudv Zy,
Y —v

1 i T—u r—u
A(072) . — - 2 -1 2 -1
Py B) (det B)? kz;: /Ak 2t (B <y - v)) +hnkos <B (y - v))

—2b11b12K1 1 <B—1 <g:j : Z)) dudv Zy,

A . n  r—u fr—u
e = s et (37 (0) (52
k=1 k

+(by1bay + %) K1 1 (Bl (Z - :j)) dudv Zy.

Kernel estimators of convolution type have better asymptotical properties concerning the bias and

the variance than e.g. the Nadaraya-Watson estimator or the Priestley-Chao estimator. For fixed



design they achieve the same rates as local polynomials (see Simonoff (1998)). For finite sample sizes

they look smoother then most other estimators.

Multivariate kernel estimators were considered in Miiller (1988) and the references therein.

2.2 Convergence of the Kernel Estimator

As criterion for optimality only the mean squared error (MSE) and a weighted version of the inte-
grated mean squared error (MISE) (or the sample MSE and MISE) are considered. But the results

of the simulation are also comparable in other distances, especially the visual impression.

MSE:(z,y; B) == E(#(x,y; B) — r(z,y))*

MISE;(B) := /v(a:,y)MSEf,(a:,y;B)da?dy
= [ @By B) e drdy

The function v(z,y) is a nonnegative, continuous weight function with support in A (to weaken
boundary effects) and v integrates to one. If A is rectangular (w.l.o.g. [0,1]?), then v can be chosen
to have support [61,1 — 61] x [62,1 — d2] € [0, 1], 61,02 >0 .

The mean squared error consists of two parts, the sqared bias and the variance of the estimator
MSE;(z,y; B) = [Bi(z,y; B) — r(z,y)]” + var i (z,y; B).
Proposition 2.3 a) Let r be twice continuously differentiable, by +by — 0, \/nby — 00, \/nby —

00, if n —» 00, and the general assumptions made above, then for any B in D or P (with the proposed

parametrisation)

o for equidistant design (f = 1) and constant o>

1
MSE;(z,y;B) = AMSE;(z,y; B)+ o(b] +b3) + O <_> 40 <b1 +b2> ,

3
n nzb2b2

e for equidistant design (f = 1) and o non-constant

2 4 p2
MSE;(z,y;B) = AMSEf(x,y;B)+o(b‘11+b%)+O(%)+O<b1+b2>+O<bl+b2>,

n3b2b2 nbibs



o for arbitrary fized design

1 1
MSE;:(z,y;B) = AMSE;(z,y;B) + o0} +b3)+0 (=] +o0 ,
n nb1b2
with asymptotic MSE
AMSE;(z -B)—”—2(trace(BHB))2+ M_o*(,y)
Y B =y nbibs f(x,y)’
where
r@0(z,y) b (z,y)
H =
rD (@) 02 (2,y)
is the Hessian of r, M = fTKQ(zl,ZQ)dzlsz, and p = fTK(Zl,ZQ)Z%dZ]dZQ =
[ K (21, 22)23 dz1 dzy constants depending on K only.
b) Equivalently
2 2
AMSE; (2,5 B) = £ (53029 (@,) + 53109 (@,)? + - Z00)

4 nbiby f(z,y)

if B is diagonal and

2
AMSE;(w,y;B) = o (03¢ + 20 @, y) + (s + 03 (a, )

M o*(z,y)
nbiby f(x,y)’

2
+2(b3 — bf)scr(l’l)(aj,y)) +
for arbitrary symmetric and positive definite B, where ¢ = cosa and s = sin a.

A lemma before the proof:

Lemma 2.4 If B is arbitrarily symmetric and positive definite, then

0)

é/A Koy <B1 (”; - Z)) dudv r(z,yr)
_ /AK <B1 (j::j)) r(u,v) dudv + O <bl—\/i’€2) 2)



b) if \/nby — 00 and \/nby — oo for n — oo,

for arbitrary design

Z/ Ko, ( (y:“)) d“d”/Ak Koo, (Bl (z:z)) dudv o (22, y2)
- /A%KV (B—l (;:“)) Kyy, <B_1 <§:Z>> du dv
+0 (bl:%b“") +o <b1—ri’2) (3)

for equidistant design

Z Kul,u2 ( B! <x—u>> dudv/ Kys v, (Bl <x—u>> dudv o*(z, yi)
y—v Ap Yy—v
2 — —
:/ o (u,) Ko, (B—l (w “)) Koy, <B_1 (m “)) dudv + O (b1 +3b2> .(4)
A n y—v y—v nz2

Proof: First the proof of a)

Z N KV1,V2 < 1<$ > d’LLdUT xk,yk)
k=1 k

Y-

= 3 [ K (5 (221 oniand + ) = rlu o)) dudo
k=17 4% y—v

= Z Ky v, <B_1 . —u)) r(u,v) du dv
=17 Ax y—v

+zn:/ Koo (B‘IG:Z)) (r(@, yi) — (u,0)) dudv

_ /K,,( (“’::)) (uv)dudv+0<b1\/l;_j>,

because

(B‘l ("Z B Z)) (r(zx, yx) — r(u,v)) du dv

[ r(@kyx) — r(u,v)] dudv
Ap

< max |K (z
> (,y)ET| V1,V y

NAR) | (zr, yk) — 7(Cry &)

= max |Ky, .,(z,y)]
(z,y)€T

Ms IIM:

?~
I
-

= O(b1b2)0<

<o)

7)



with A, = A, N {(z,y) € A: K, ,, (B*l(Z:‘;)) £0,(u,0) € A}, TP A(Ar) = MAN {(z,y) €
A:K, ., (B*1 (z::f)) # 0, (u,v) € A}) = O(b1b2) and according to the mean value theorem, there

exist such ((x, &) € Ay. 1 is Lipschitz continuous and by the definition of Ay

Ir(xr, yr) — r(Ck» &)l

IN

L||(zk, yr) — (Ck» &)

- of3)

The proof of b)

According to the mean value theorem there exist (ug,vy) € Ay such that

Z/ Koy v, (B_l <$ - U)) du dv Kus v, <B_1 <CU ~ U)) du dv o (g, yr)
k=17 A% y—v A y—v
3 02 (@ ye) M AR Koy <B—1 (5” B “’“)) Koy, <B—1 (5” B “>> du dv
k=1 Y — Uk Ay y—v
Z U2(£kayk)A(Ak) / Kug,y4 <B1 <x B U))
k=1 Ap y—v
. |}ﬂ/1,l@ <B1 (37 B U)) + KV1,V2 <B1 <CU B Uk>> - KU17V2 (Bl (iU B U)) ] du dv
y—v Y — Vg y—v

K,, ., is Lipschitz continuous, B~! = C*B}'C (see equation (1)), the euclidian norm is not changed

by orthonormal transformations and all norms are eqivalent in IR?, therefore for all (u,v) € Ay

1 [T — Ug (T —Uu
‘KUW <B 1<y—vk>> e <B 1<y—v>> ‘

< LH < R

B U vk H
= 0
<\/_ <b1 b2>>
AAp) = m +o(i) = m(l + 0(1)) and for equidistant design A(4;) = * and f = 1.
n 2 _
Z M(l +0o(1)) Ky, (Bl <33 “))
= nf(xk yr) A y—v

o (12 2) (0[5 (3 +2)
o (23 e ()



 sem (ol )
- %E [T~ T+ o)
o () ()
(oot

For equidistant design the term o(1) is not necessary.

02 and f are Lipschitz continuous, and therefore "72 is also Lipschitz continuous, and therefore (similar

to above calculations) for all (u,v) € A

02($kayk) UQ(UaU)

f(xr, yr) f(u,v)

1
—0(—
()
1 B (0 T
O(\/ﬁ) converges faster than O (\/ﬁ (b1 + b2)) and o(1), therefore
S K (B—1<’“°_“>) Ky (B—1 (““)) du dv
k=1 Ar y—v y—v
o2 (zx yk)( (1 <1 1)) )
1+ 0 | —=(—+—) ) +o(1
nf(Tk, yr) Vvn\bi = b M)
e () ()
nJa y—v y—v

0'2(U, 1)) 1 1 1 blbg blbg
Ty o0 (G () ) +o (5

The proof of the Proposition:

Proof: According to Lemma 2.4 (2), because r is Lipschitz continuous, there is

1 & r—u
E#(z,y;B) = —— / K(B—1< )) dudv r(zy, yi
( ) b1b2; N Y (Tk, Yk)

_ ﬁ AK(B_1<:;:Z>> r(u,v)dudv—%O(%).

b1,bs > ﬁ, because for bandwidths that small the regression is almost interpolation and there
is almost no smoothing (exact interpolation for equidistant, quadratic design). To avoid boundary

effects, by and by are chosen small enough, that supp K (Bfl (z:g)) C A. After transforming the

10



coordinates the region for integration is T.

Ei(z,y; B) = /TK(Z“ZW ((5) - B(Z)) Tt O <%>

After a Taylor expansion
() -#(2)
Y 22
ICR
_ _ Z1 T z,y 1 21 <1 2 2 2
= et (5(0) Conio) ) +3(2(2) #2(2) )+ e

r(z,y) — r(1:0) (z,y)(b1121 + bi222) — r(O1) (z,y)(b1221 + b222z2)

1
+§ [7”(2’0) (z,y)(br121 + braza)? + 702 (2, 4) (b1221 + baaz)?

+2T(1’1)(33a Y)(b1121 + b1222)(b1221 + b2222)] + O(bfl + b%2 + b§2),

E7(z,y; B)
= r(z,y) /T K (21, 2) dzy dzy (5)
—r(10) () (bn /Tle(zl, 29) dzy dzy + b1o /Tzﬂ((zl, z9) dz; d22) (6)
—rOD (2, 1) (b12 /T 21K (21, 22) dz1 dzo + bao /Tzﬂ((zl, z9) dz; d22) (7)
+%r(2’0) (z,y) (bfl /T 22K (21, 22) dz1 dza + 2b11 12 /T z120K (21, 22) dz1 dzo
+b%, /T 2K (21, 22) dz1 dZQ) (8)
+%r(072) (z,y) (b%2 /T 22K (21, 22) dz1 dza + 2b12bas /T z120K (21, 22) dz1 dzo
+b§2 /T Z%K(zl, 29) dz dZQ) (9)
+r(1’1)(a:, y) (b11b12 /T z%K(zl, 22) dz1 dza + b12bao /ngK(zl, 22) dz1 dzo
+(b11baz + b2,) /T z2122K (21, 29) dz1 dz2) (10)
+o(b7; + b7, + b3y) (11)

()

Because of the assumptions on K, (5) is r(z,y), (6) and (7) are 0, (8) is £ (b3, + b2,)r>% (z,y) =
L1 +b357)r20 (,y), (9) is & (bYy + b32)r*2) (z,y) = £(b7s” + b5¢*)r(®?) (2, y), (10) is pu(bi1brs +

biobaz)rMY (z,y) = p(b — b7)scr™V (z,y) and (11) is o(b7 + b3).

11



If B is a diagonal matrix, then

. 1z 1
Bile.iB) = e = (9@ + B0 ) +o03 + ) 40 (2 ).
N 2 w 2 (2,0 2..(0,2) 2 4 4 1
i,y B) —r(0y)]” = (520 (0,y) + 8O (@,y) + ol +4) +0 ().

2 2
The term O (%) is not necessary, because one of the other terms is always dominating.

If B is arbitrarily symmetric and positive definite, then

[Ef(z,y; B) — r(z,y)]”

12 (s 9 490 (2,0) 2.2 | 72 2\ (0,2) 2 32 (1,1) 2
= Z((bﬂ + bys7)r' 5 (z,y) + (b7s” + bye”)r'™ Y (z,y) 4+ 2(by — by)scr' (357?/))

1
+o(b} + b3) + O (ﬁ) .
Together,
2 1
(e B) = r(o)]” = race(BHBY + 000} 49 +0 ()

According to Lemma 2.4 (3)

var 7 (z,y; B)
1

n

b2 Z /AkK (Bl <z::j>> dUdU]2U2($k,yk)

2 =1

1 o2 (u,v) o 1fr—u b1 + by b1by
= K*|B
nb?bg/A f(u,v) ( y—v)) OO e ) T G

o e (@-BR) by + b |
= nb1b2/T f ((z) _B(zl)) K*(21,22) dz1 dzz + O (n%%b%) +o <—nb1b2> .

Z2

For equidistant design the term o( ;=) is not necessary (Lemma 2.4 (4)), otherwise o (nb;m) is

dominating.

If the design is equidistant and o>

M 2
var#(z,y; B) ? +0 (bl +b2> .

~ nbibs n3b2b2

constant, then

12



If not, then, after a Taylor expansion,
() - B(2)
£(C) - B))

2(z, (g2)(1,0) _ 52 £(1,0)
= Uf((:n 5)) — (b1121 + b1222) (@7) 7 o f (z,y)
L (+2Y(0,1) _ 2 £(0,1)
—(b12z1 + bazz2) ) 72 oS (z,y)

+%[(511Z1 + b1222)°Vi((, €) + (br221 + baz22)?Va((, €)

+2(b1121 + bi222)(b122z1 + ba222)V3((, €)],

with V7, Vs, V3 bounded functions of f, o2 and their derivatives, (¢, £) according to the mean value

theorem (for a simpler notation the same symbol is used for possibly different values), then

var 7#(z,y; B)

1 2(x,
= nb1b2 Ol-f((;j ;”)) /TK2(2’1;2’2) le dz2 (12)
. 0’2 (170) _ 0-2 (170)
_f o) ! (l’,y)(bn/ Z1K2(zl,z2) dz, dzo
T

nb1bs f?
+b12/ Z2K2(Zl,22) le dZQ) (13)
T
F(02)O _ 52 f(0.1) )
_ nb1b2f2 (l',y) (b12/Tle (21,22) d21 dZQ
+b22/ Z2K2(Z1,22) dz1 dZQ) (14)
T
1
oo (5%1‘/'1(@5) + 03,V (¢, €) + anbuVs(C,ﬁ)) / ZK?(21,2) dz1 dzs (15)
n0102 T

t (RGO + 1309 + 2abta(,9) [ SR Grm)dandn (1)

g (PabiaVi(C.€) 4 buabml(C.€) + (s + B2 (C.))

/ ZIZQKQ(Zl,ZQ) le dZQ (17)
T

by + bs ( 1 >
+0 +o
(n%bfl%) nb1 by

(12) is - ‘}2((;;%), (13) and (14) are 0, because K? is symmetric, (15) is O(%), (16) is

b%2+b§2 H 2 ; b%1+b%2+b§2 — b%+b§ 3
O(2722), and (17) is 0, because K* is symmetric. O(=353=22) = O(7;52) is smaller than

1
0( nble )

13



For equidistant design with non-constant o2 there is no term o(m). Therefore, there is the addi-

b +b3 ).

tional term O( 43

The result for arbitrary fixed design is

varf(z,y; B) = +0< L )

If the design is equidistant, then

2 2, 2
var#(z,y; B) = M+O<bl+b2>+0<bl+b2>,

nb by n%bfbg nby by

MSE:(z,y; B) = B (z,y; B) — r(z,y)]” + var#(z,y; B).

Notation 2.5

2
I = [ o) Y ddy,

Iij = /v(wa y)r®D (a2, y)r®D (2, y) de dy,

fori,j,k,l €{0,1,2}.

Proposition 2.6 Let r be twice continuously differentiable, by +by — 0, \/nb; — 00, /nby — o,
if n — o0, and the general assumptions made in section 2.1, then for any B in D or P (with the

proposed parametrisation)

e for equidistant design (f = 1) and constant o>

1
MISE;(B) = AMISE;:(B) + o(b! + b%) + O <—> +0 blf b2
n n2bib3

o for equidistant design (f = 1) and o non-constant

1 2 2
MISE;(B) = AM[SE?(B)‘FO(b%-i-b%)-i—O(E)+O<b1+b2>+O<b1+b2>’

n3b2b2 nbibs

e for arbitrary fized design

1 1
MISE;(B) = AMISE:(B)+ o] +b3)+0(~]+o :
n nb1b2

14



with

2 M
AMISE:(B) = B 6420 4 03102 + 202031072 | + ———1,
4 ? ’ ’ nb1b2
if B is diagonal and with
2
AMISE;(B) = MZ [(b% +035%)2 050 + (b1s® + b3c?) Iys + 2(bic® + b3s®) (bis® + b3c*) gy

+4(b3 — b7)$%C I + 4(bTe + b3s”) (b3 — bY)sclyy

M

+4(b3s? + b3c?) (b3 — b%)sc]é”; +—I
nb1b2

for arbitrary symmetric and positive definite B, with ¢ = cosa, s =sina, u = fT K (21,29)2} dz1 dzs

and M = [ K?(z1,2) dz1 dz,.
Proof: B is global, [v(z,y)dzdy = 1 and the results of Proposition 2.3 are uniformly in (z,y),
therefore integration changes only AM SE;(x,y; B) in Proposition 2.3.

For B diagonal

AMISE:(B) = v(z,y)AMSE;:(z,y; B) dx dy

M
—1,
nbiby o7

4;|’;w ISES \

M
/ v(z,y)( b2 20)(1. y) +b27'(0 2)(1- y)) dx dy + m-[a,f
{ o +b3lg + 2073000 | +

For arbitrary B

AMISE;(B) := v(z,y)AMSE;:(z,y; B) dx dy

= B [ o (@6 + B0 ) + 0357 + B0 @)

. T

M
—IJ
nb1 b2 of

2
+2(b% — b%)scr(l’l)(a:,y)) dz dy +
2
= MI [(bfcz' +b35°) I3 + 2(b7¢” + b3s%) (b5” + b3 ) I5'g
+4(b3 — b7)? 7P Iy + (bs® + b3c?)2 15 + A(bTc® + b3s?) (b3 — b7)scly)y

M
+4(b3s% + b3c?) (b3 — bf)sclé:; +—1I,
nb1b2
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Proposition 2.7 If r is four times continuously differentiable, the rate of convergence in the bias

part of the MSE and MISE in Proposition 2.3 and 2.6 is O(b% +bS) + O (%) instead of o(b] +b3).

Proof: The Taylor expansion in the proof of Proposition 2.3 can be written like

" <<w> P <Z1>> = r(,y) =@, y) (birz1 + biaza) — 1O (2, ) (braz1 + baozo)

Yy 22

1
+§ |:’I"(2’0) (ZIZ, y)(bHZl + b122’2)2 + 7“(0’2) (ZIZ, y)(b122’1 + b222’2)2

+2’I"(1’1) (CU, y)(b11Z1 + blng)(blgzl + b2222):|

1 0 0
6 [((51121 + 51222)% + (b1221 + b2222)8—y)37“(33ay)]
1 0 0
+t21 |:((b1121 + b1222)% + (1221 + b2222)8—y)4r(c,§)] ,
with (¢,€) € 4,
Er(z,y; B)
= T(ﬂfyy)/K(zlab)le dzy (18)
T
_T.(LO)(:L-,y) (bll/ ZlK(Zl,ZQ) le d22+b12/ Z2K(21,Z2) d21 dZQ) (19)
T T
_T.(OJ)(:L-,y) (b12/ ZlK(Zl,ZQ) le d22+b22/ Z2K(21,Z2) d21 dZQ) (20)
T T
1
+§r(2’0)(:n,y)(bfl/ 21K (21, 22) dz d22+2b11b12/ z122K (21, 22) dz1 d2s
T T
+b%2/ 23K (21, 20) dz d2'2) (21)
T
1
+§T(072)($,y) (b%2/ Z%K(Zl,ZQ)dzl d2’2+2b12b22/ 2’12’2K(2’1,2’2)d2’1 dzs
T T
+b§2/ 22K (21, 22) dzy dZQ) (22)
T
+T(1’1)($,y) (b11b12/ Z%K(Zl,ZQ)le dzs +b12b22/ Z%K(Zl,ZQ) dz1 dzs
T T
+(b11b22+b%2)/ Z1Z2K(z1,Z2)dz1 dZQ) (23)
T
—E/K(z z)((b z1+b z)3+(b z1+b 2)2)37“(3: )dzy dz (24)
6 . 1,%2 11<1 1242 8:5 1241 2242 ay Y 1 2
+i/K(z z )((b 21 + biaz )£+(b 21 + baaz )3)47“@ &) dz dz (25)
24 - 1,%2 11<1 1228(1} 12<1 2228:[/ ) 1 2
1
+0(—=).

Jn

Because of the assumptions on K, (18) is r(z,y), (19) and (20) are 0, (21) is £(b%, 4 b3,)r>0 (z,y) =
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L1362 +132)r 20 (a,y), (22) is % (b +B3,)r02) (m,y) = L (B2s2 + b3c)r®) (z,y), (23) is p(byrbrz +

biabas)r(bY) (z,y) = p(by — b2)scr™D (z,y), (24) is 0 and (25) is O(b? + b3).

. 2 6 . 16 b3 + b3 1
[Ef(z,y; B) —r(z,y)]” = AMSE;(z,y; B) + O] +b3) + O Tn +O{~)-

2.3 Optimal Bandwidth Parameters

The leading terms in AMSE and AMISE consist of the squared bias and the variance. The squared

bias is increasing and the variance is decreasing in b; and bs. The minimum of AMSE is the balance

of the squared bias and the variance.

Proposition 2.8 AMSE;(z,y; B) is minimized by the following bandwidth parameters

e if B is diagonal and r>° (z,y)r®?) (z,y) > 0

s (M) T IO (@) (26)
lasy 22 f(z, y) |r(270) (z, y)|%
(M) \F O,y -
2o 22 f(m,y) ) (02 (a,y)|
e if B is arbitrary and uz > 0
0 if r®0 (z,y) —r®) (z,y) = 0

aasy =
2r(Y (2,y)

1 .
5 arctan O (2 =G0 (79 otherwise

1
_ <MU2(w,y) )6 |27

b
lasy 2nu2f(x,y) |’U,|%
L ( Mo?(z,y) ) Jul =
20 fw,y) ) |2 f
with
u = 0@, y) +r0(z,y)s* — 2rY (2, y)sc,
z o= r@O,y)s? + 70D (2,y)? + 2rHD (2, y)sc,

17



where s = sina and ¢ = cos a.

Let Ig,’g # 0, Ig”g # 0 and \/Ig,’gfg”g + Ig,’g # 0. The global bandwidth parameters which minimizes

AMISE;(B) are, if B is diagonal,

Mo\ (I
biiasy = n—ugLﬂf W
2.0

~—
0]
/-~
%
[=h=)
~
— Lof =
N o
+
o
=3
v
D=
—~
[\
(0]
A

o
=)
~
L
[\v]
+
o
=S
SN————
D=
—~
N
Nej
SN

1
M AN
bQIASY = n—lL2107f @ BN
’ ,070,2 )

Proof: If B is diagonal, then in the minimum

aiblAMSE,:(a?,y; B)=0
2
=020 a,3) + B0 ) n,9) — g e (30)
and
0
g AMSE; (2,4 B) = 0
= 2B (2,y) + BrO (2, ))bor®? (g, y) - A0 (31)

B blb%nf(xay)
have to be fulfilled.
Equating (30) and (31)

b r®0 (@, y)| = b3|r ) (2, y),

and taking square-root

Plugging in (30)

wlw

Mo*(z,y) 21 (0,2 2,0 2. (0,2 4. (2,0 7"(0’2)(%?;’)
iy (03172 (z, ) sgn(r® (2, y)) + b5r 2 (2,y)) - b3r >0 (z, ) T ()|
rearrange the formula
Mo?(z,y) 6 (2,0) (0,2) (2,0) |T(0’2) (z, ?J)|%
m = by(sgn(r (z,y)) + sgn(r (z,y))) - sgn(r (x,y))m

18



yielding

- (Ma%,y))% r®0 (@, )| =
> \enf(a,y)

where a = 1 4 sgn(r®9 (z,y))sgn(r®? (z,y)).
If B is arbitrary, then in the minimum

0
aAMSE,:(a:,y, B)=0

= 12 (esr®0 (w,y) = ser® (2, ) + (¢ = 2)r (2,y))

03 =) (03¢ + B2 (2,9) + (057 + B (@) + 203 — B)serD (2,1)). (32)

It is sufficient to consider only the first term.

0 = serC0(z,y) — ser®(a,y) + (& — s)r (a, )
1
= 5(7“(2’0) (z,y) —r(®? (z,y)) sin 2a 4+ Y (2, ) cos 2a

This is equivalent to

sin 2« (D) (z, )

cos2a  r(20)(z,y) — r02)(z,y)

and

a= 1 arctan 2rD (@, y)
= 3O ) — e )

if 729 (z,9) — r(®2) (z,y) # 0, otherwise a = 0 solves (32).

aiblAMSE,a(m,y;B) =0
= 12((B3 + B30 (@) + (682 + B3e)r O (a,y) + 2065 — B)ser ) (a,y))
M_o(z,y)
b (2 r?0 (z,y) + 22 (z,y) — 2scrtV (z, - S 33
(@0 (a,y) (,v) ©9) = o T (33)
0
= 12((B3¢ + 1320 (@) + (4757 + B3O () + 205 - B)ser ()
M o*(z,y)
by (5220 (2, y) + & r®?(z,y) + 2scrtV (z, - L 34
o (52120, ) (,9) ©0) = o ) (34)

The last term in (32) occurs also in (33) and (34). If it is zero, it is not possible to solve (33) and

(34).
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Equating (33) and (34)

b (¢* r®0 (z,y) + 80 (2, y) — 2s¢ 70V (2, y))

= b3(s7 0 (@, y) + & rO? (z,y) + 2scrD (2, y)),

and taking square-root

Plugging in (33)

Mo2(z,y) AW (o U] 5 o s (2,0) N .
) el — _ s b b (072) ,
2 f(,y) B | 2|7 (83 |2] ¢+ 8320 ) + (83 |Z] 8 + B3O (@)
+2(63 — 1 | ser ()
(C r0 (z,y) + 8% (z,y) - 2scr(1’1)(ar,y)),
rearranging
MO’2(ZIZ’y) __ 16 u % u
npa? f(z,y) =82 (3 ur 2
yielding
6 Mo?(z,y) |U|%

¥ = o (e DIFE

by ( Mo (z,y) ) Jul =
22 f(x,y) ) |2|t
This ends the part for AMSE.

0 2 (1372, 2 70,2 M
N ’ ’ — —I =
55 AMISE(B) = 4 (b11270+b1b21270) gy e =0
6 2 3 70,2 2 0,2 M _
S AMISE;(B) = (83153 + 130137 gl =0

Equating (35) and (36)

Taking fourth root



Plugging in (35)

2,0 , 2,0
L Iy,
2,0\ %
M I3 1
6 ,
< bQ:nu2 ol \ 702 20702 , 70,2
0,2 V20 loy + 1)

D=

The rate of the optimal local and global bandwidths b, and b, is always n & under the assumptions

of Proposition 2.8.

Remark 2.9 If b = O(n_%), by = O(n_%) and the assumptions of Proposition 2.8 hold, then the

error terms

emse = |MSE;i(z,y; B) — AMSE;(x,y; B)|

and

emise = |MISE;(z,y; B) — AMISE;:(x,y; B)|
are of the same order e and
e for r two times continuously partial differentiable

— for equidistant design and constant o>

e= O(TL_%) + O(n_%) + O(n_%) = o(n_%)
— for equidistant design and non constant o>

e=o(n )+ 0 8)+0(n 8)+0(n 8) =o(n3)

— for arbitrary fized design

e= o(n_%) + O(n_%) + o(n_%) = o(n_%)
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e for r four times continuously differentiable
— for equidistant design and constant o>
e=0(n"%)+0n"%) +0(n~%) =0n"?)
— for equidistant design and non constant o>
e=0Mm 8)+0n 8)+0n ) +0m 8)=0n3)
— for arbitrary fized design
e=0(n %) +0n &) +0(n ) +on ¥)=on 7

Remark 2.10 If r is twice continuously differentiable or four times continuously differentiable with

arbitrary fized design and the assumptions of Proposition 2.8 hold, then

1

blMISE = blIASY + O(TL 6)7

_1
b2MISE = b2IASY + O(TL 6)7

blMSE = blAsy + O(n 6 )a

1

borise = b2asy + O(n g)

and if B is not diagonal

amse = aasy +o(1),

where Bysg := ming MSE;:(z,y; B) and Byrsg := ming MISEx(B). If r is four times partial
differentiable with equidistant design, then

1

blMISE = blIAsy + O(n_z)v
bQMISE = bQIASY + O(n_z)v
bilrise =biasy + O(n E

b2rise = b2asy + O(nii)a



and if B is not diagonal

QAMSE = QASY + O(n_%)

Proof: If by = O(n %), by =O(n %) and o € (=%, %), then, according to Remark (2.9),

According to Proposition (2.8)

n

o=

blasy = Clasy

and

baasy = C2,a5¢y 0 ©,

o=

Clasy1C24sy > 0 and independent of n. Therefore

_1 _1
bivise = Clysen © +O(n 6)

and
1 1
bQMSE = CapyspM &+ O(n 6)7

Cluses C2use > 0 and independent of n, because otherwise the rates of MSE are getting worse.

Therefore
AMSE;(z,y; Busg) — AMSE;(z,y; Basy)

= MSE;(z,y; Busg) — MSE;(z,y; Basy) +

The lefthandside is positive, because AM SFE is minimized by B4gy, the righthandside is negative,

therefore

AMSE;(z,y; Busg) — AMSE;(x,y; Basy) =
O(n=%)

A Taylor expansion of AMSFE;(x,y; Busgk), differentiated with respect to b1, 5, b2y 65 a0nd arpsy

gives
AMSE;(z,y; Busg) = AMSE;(z,y;Basy)
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blMSE - blASY

+ Z DY AMSE;(z,y; Basy)

lv|=1

b2MSE - b2ASY

OMSE — QASY

blMSE - blAsy

b2MSE - b2ASY

1 , .
+5 |2_2D AMSE;(z,y; B)

OMSE — QASY

where |v| :== vy + vo +v3, DV := % and there exist 61,62,6, € [0, 1] such that
b1 blAsy 61 (blMSE - blASY)
BQ = b2A5Y + 62(b2MSE - b2ASY)
@ aASY 0o(anse — aasy)

and therefore by = é;n"% + o(n"8), by = &n~"8 +o(n"¢) and & € (-3, %)

DYAMSE;:(z,y; Basy) =0 for |v| = 1, because B4gy minimizes AMSE;(z,y; B).

Now AMSE;(z,y; B) is differentiated.
D20 AMSE;(z,y; B) = en” & (1 + o(1))
DYYOAMSE; (x,y; B) = en™ 8 (1 + o(1))
DYl AMSEs(z,y; B) = en” 5 (1 + o(1))
D**PAMSE;(z,y; B) = en” & (1 + o(1))
DY AMSE; (z,y; B) = en” 8 (1 + o(1))
D2 AMSE;(z,y; B) = en” 5 (1 + o(1))

For a simpler notation ¢ stands for possibly different constants not equal to zero.

Equation (37) gives

AMSE;(z,y; Busi) — AMSE;(z,y; Basy)
= en (14 0(1)Brase —biasy)® +en (L4 0(D)Brysr — brasy) Baursr = beasy)

24
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+en” 5 (14 0(1) (b1yrss — brasy )(@nrse — aasy) +en” 8 (1+0(1) (bayrap — b2sy)?

+cn7% (1 + 0(1))(b2M5E - b2ASY)(aMSE - aASY) + cnié (1 + 0(1))(aMSE - OlASY)2

o(n=7%)
— _ (38)
O(n=%)
Equation (38) is equivalent to
(blMSE - blASY)2 + 2(b1MSE - blAsy)(bQMSE - bQASY)
+TL_% (blMSE - blAsy)(aMSE - aASY) + (b2MSE - bQASY)2
4078 (baygp — b2asy ) (@arsE — aasy) + 178 (ase — aasy)?
2
o(n=#%)
— (39)
O(n~%)

-
le

Every term has to be o(n™8) or O(n~

).

Therefore
o(n=%)
blMSE - blAsy = )
O(n~7)
o(n_%)
b2MSE - b2ASY =
O(n~%)
and

OMSE — QASY =

The proof for the global bandwidths follows the same lines, but without the parts dealing with «. B

2.3.1 Global versus Local Bandwidth Parameters

The most crucial part in kernel estimation is the bandwidth selection. There arise two main questions:
local or global bandwidth parameters and how many parameters.
Global parameters are easier to select and the estimation is more stable. And for a first impression

they could be chosen by hand. But they are not able to adapt to spatial inhomogeneities. For the

25



selection of local parameters an automatical procedure is necessary. Within certain ranges the exact
size of the parameter does not matter (see Hall et al. (1995)for related ideas in the onedimensional
case). So, for some inhomogenous functions the MISE can be reduced, if an automatical, stable

procedure selects the parameter(s).

2.3.2 Number of Bandwidth Parameters

The next question is the number of parameters. With more parameters the estimator is more flexible

to adapt to the underlying function and to reduce the variance of the noise. For three parameters
AMSE;(z,y; Basy)
1
2 Mo?(x, 5 (25 ul®
[ ) (o 1 2 oo,
4 [ \2np2 f(z,y) luls |z|&

> 3 § s
i <M> <|Z|z s% + w@) r(©2) (z,y)

2np? f(, y) ¢

|ul® g
1
M 2 3 1 1 2
+2 < i (a:,y) ) |u|: _ |Z|Z SCT(l’l)(l‘,y)]
2np f(z,y) 2|8 Jul®

Mo?(z,y) (Ma?(:n,y) )
+ nf(z,y) 2np f(z, y) (12]|ul)
(i) [rere e + 0y ~ 200 )
5 2
+%(527‘(2’0) (z,y) + r®? (z,y) + 2ser™Y (2, y))]
~|&
M)g 2\ 3 1
+< nf(z,y) (2/~L ) (I2]lu))
2 ( Mo(z, N Mo?(z, z -
— o (o) st sento) + s + () (o) s

- (e et ((3)" 2

under the assumptions of Proposition 2.8. For two parameters it is almost the same except that uz
is 729 (z,4)r(%2 (z,y). The order of the terms of higher order in the MSE does not depend on the

number of parameters. Plugging in the definition for u, z and « yields

luz| = [r®O(z,y)r®? (z,y) — ("D (z,))?| < [r20) (2,y)r "D (z,y)|
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for 729 (z,9)r(2) (2,y) > 0, so AMSE;(z,y; Basy) with three parameters is always less or equal
to the case for two parameters.

There is another nice interpretation of the parameter « : The diagonalization of a 2 x 2-matrix is a

cosa —sina
rotation and can be expressed by a matrix and its transposed. Applying this

sina  cosa

to the Hessian of r(z,y) yields as rotation angle the optimal bandwith parameter «. This can be
seen by calculating the eigenvalues of the Hessian and using similar equations as for the bandwidth
parametrization (see equations (1)). That means a good rotation angle (in terms of MSE) is a angle,
which rotates the ellipse in such a way that one axis points in the direction of the smallest curvature
and the other one in the direction of the largest curvature. Therefore, the support of the kernel can
be increased (to reduce the variance), but the bias is not getting much larger. The ellipse is “long

and thin”.

3 Iterative Local Plug-in Bandwidth Selection

3.1 Two Bandwidth Parameters

This algorithm is a generalization for two dimensions of the algorithm of Brockmann et al. (1993);
Brockmann (1993).

The bandwidth selection is based on the formulas for AMSE- and AMISE-optimal bandwidths ((26),
(27), (28) and (29)). All unknown quantities are replaced by estimators.

The estimation of the design density and the variance of the noise has to be calculated in advance.
The estimators of I, ; and % have to be O(n=5) + Op(n_%) and O(n™%) + Op(n_%) resp. In
the simulations the design ist equidistant and the variance constant.

The estimation of the second derivatives of r(z,y) is a little bit more complicated, because kernel
estimators can be used, but again the right bandwidths are not known. The idea is to start with

small bandwidths, plug the derivatives obtained with the starting bandwidths inflated by a factor

cen® (because for the estimation of derivatives bandwidths need to be larger) in the formulas for the
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AMSE-optimal bandwidths, get a new bandwidth estimation, inflate it again, obtain derivatives and
SO on.

It is not possible to start directly with the formula for the AMSE-optimal bandwidths, because for
small bandwidths the variances of the estimators for the second derivatives are dominating (see proof
of Theorem 4.1), so the estimators try to fit the noise rather than the underlying function. To stabilize
the procedure it is better to start with global bandwidths. But once the bandwidth estimators have

reached the right order n=#s during the iteration steps, it is possible to switch to local bandwidths.

Step 1 estimate I, 5 = fv(m,y)‘f((z—zy)) d(z,y) and ‘}2((96—3”;))

Initial values for by, bs: Bgo) = n’%, 5;0) =n %,

Step 2 fori=1,...,i* repeat

1
1 3 8
Bgz) — ( M fg‘ f) 5 { 1
np? " Iy 2002 | jo

,0d0,2 ,0

o3
o

where Ikl is approximated by I%! by the evaluation and weighted summation of

P (2, y; clnﬁl;gi_l), 02n632i_1)) 8D (2, y; clnﬂggi_l),02n5i)gi_1))v(aj,y) on a fine grid

Step 3 for j =1,..,j* repeat

D=

b0 (2, y)

(Mﬁmmg)
np?f(z,y) S1
Ma&%(z,y) 1 )6

B (gy) = (ey) 1
2 ) (nu2f(w,y)52

)

(2,0) 2
where S; is the maximum of 2% itself or its smoothed version (with the band-
7(0:2) (z,y)|2
(0,2) 3
widths of the previous iteration step) and Ss is the maximum of 2% itself or its
ri=%(z,y)|2

smoothed version

1
2y/n

In step 2 and 3 bandwidths are restricted to the interval [

,3)- If they are outside, then their

S

1 1

or % resp. Regression with bandwidths of size === is almost interpolation, so

values are set to 5/m

2

5
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there is no need for smaller bandwidths. An upper bound of % is somewhat arbitrary, but it prevents
the rescaled kernel to be out of the range of the image on opposite sides.

1
2

Starting with initial bandwidths n~2 is motivated by simulations in the one-dimensional case, where
sometimes bandwidth estimators starting with large values are trapped in local minima and do not
get close to the optimal bandwidth (see Herrmann (1997)).

The number i* of global steps to drive the bandwidths to the optimal order n~% is fixed and depends
on the inflation factor n (see Chapter 4.2).

In step 3 local bandwidth estimators are calculated. But pure local bandwidths have drawbacks. If the
signs of 7(29) and r(%2) are not the same, then the bandwidth estimators are infinite. If 7(2:0) or r(0:2)
are close to zero, then the bandwidth estimators are very large. The estimation of the bandwidths are
based on a certain neighbourhood of (z,y) depending on the previous bandwidths and the inflation
factor, so it is not sensible to let it be much larger. Simulations for one dimension can be found in
Brockmann (1993); Brockmann et al. (1993). So, for some points (z,y) the estimated bandwidth

function has small, high peaks, which produce strange peaks in the estimated function 7(z,y). The

peaks in the bandwidth functions have to be smoothed a little bit. There are many possibilities how

(2,0) 3
to do this and the results are quite similar. Here, it is done by smoothing 2% for b; and
r(0:2) (z,y)|2
(0,2) 3
2% for by with the previous bandwidths, but the non-smoothed value is kept if it is larger.
r(2:0)(z,y)|2

Another possibility is to smooth the resulting bandwidth functions, or to mix the local and the global

formulas
L /02)02)\ F
) _ M&*(z,y) T (z.y)
by (z,y) = om Qf(m ) .(2,0)(2,0)
H Y T (x.)
1
6
1
(2,0)(2,0) ~(0,2)(0,2) | (0,2)(2,0)
\/ i@y Titew) 1oy
£(2,0)(2,0) T
0@y = | s | W @y
ACEN)
where f](.ié)gj?l) is the smoothed estimator for r(44) (z, y)r*!) (z,y) with bandwidths c;n®b{" /="
and 02n65g*+j_1).
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The constants ¢; and ¢y in the inflation factor are chosen to be one, but they are an additional
possibility to control the behaviour of the bandwidth estimators during the iteration steps.

This algorithm involves no numerical minimization procedure with all its problems.

3.2 Three Bandwidth Parameters

For three bandwidth parameters the algorithm remains unchanged for the first and second step,
because they are only necessary to obtain pilot estimators of the right order.
In step 3 estimators for a, by and by are obtained using the AMSE-optimal formulas. Again, smooth-

ing is necessary.

4 Asymptotic Properties of the Proposed Bandwidth Esti-

mators

4.1 Convergence of the Bandwidth Estimators

Theorem 4.1 Under the assumptions of Chapter 2.1, if r is four times continuously differentiable

and the inflation factor is nﬁ, then the following rates are obtained for the estimators of Chapter

3.1

o 0 £0, 103 £0 and (RO + 122 £ 0

o=

Bg) = biyisn (1-}-0(77,7

)+on o)

07 = boyres (140 (n78) +0p (n7F)),
o if 20 (z,)r®2 (2,9) > 0,

B @9) = brse(ey) (140 (n74) +0p (n 1))

07 @,y) = baysp(@y) (140 (n7F) +0p (n7¥)).
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A sketch of the proof for the global bandwidth estimator can be found in Herrmann et al. (1995).
Proof: The proof goes along the following lines: First, expansions are shown for the square of the
second derivatives, which are used in step 2 and 3 of the algorithm. Then the effect of the iteration
steps is considered giving the desired results.

In the proof, bandwidths b; and b, are considered which are random variables and have values in
the interval [ﬁ,&], such that there are no boundary effects to be considered. In some places it is
assumed that nonrandom bandwidths l~)1 and l~)2 exist which approximate the random b; and by in

the following way

by = b1 (14 0p(n~7)) (40)
by = by(1+ 0p(n~7)) (41)

for some v > 0. Further, it is assumed that b; and by are of the same order and converge to zero.
The existence of such l~)1 and 52 and all other assumptions on b; and b, will be ensured during the
iteration steps.

First consider

[F20) (2,y; by, by)]?

_ lb3b2k1/AkK ( < Z) du dv (r a:k,yk)+€k)2
b3b2zn:/AkK< < Z)

)
) du dv r(zy, yk)] 2 (42)
(0

k=1
K
bﬁb%k 1i= I/Ak 20( >>
Ko (B 1(;_1))) dudvdudvr(ze,yr)e (43)
T—1U o
beb%,;;//;k/ K20< ( —v>>K20<B 1<y_v>> dudvdadiere; (44)

Denote (42) by B2(z,y; b1, b2), (43) by M(z,y; b1, bs) and decompose it in two parts M (z,y; by, bo)

and Mo (z,y; by, be) with

Mi(@,y; b1, b2) = b6b2ZZ/Ak/ K20< (w:Z>>

2 p=1i=1
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K <B_1 < B g)) (r(zk, yx) — r(u,v)) dudvdidoe;
and

Mo (z,y;b1,b2)

_ bﬁgzn:i:/A/ K20< <y_ >>K20<B 1<§:z>>r(u,v)dudvdﬂd1‘;ei.

k=1 i=1

Denote (44) by V(z,y; b1,bs) and decompose it in two parts V; and Vs with

u
Vi@, y3bibe) - = bebQZ/Ak/AkK2O< <—v>>

2 k=1
K <B1 (ar a u)) du dv dii dv o* (zy, i)

y—v

and
1 n n r—u
. = K B_l
Va(x,y; b1, ba) b?b% ;;/Ak/ 2,0 < <y - U))
K ( < >> du dv du dv (€k€z — dip0? (mkayk)) :

Now the parts B2, M1, My, Vi and V, are treated separately.

First, according to the last lines of the proof of Lemma 2.4b (3)

Vi(x,y; b1, b2)

_ 1{T—Uu PN
= bﬁbg,;//xk /AkK20< (y— >>K20 (B <y—17>> du dv du dv o*(z,, yr)

- e () (0 (G () )

% can be expanded in a Taylor series as in the proof of Proposition 2.3
Vi (z,y;b1,b2)
_ nb%bQ /T f(((g)j((;))) K2 (21, 22) dzy dzs <1 +0 <\1F <bi + %)) + 0(1)>
nbib2 ‘}2(( )) Mo (14 O(b] +b3)) <1 +0 (\/1_ (bll + bi>> + o(1)> ,

where My o = [ K3 (21, 22) dz; dzs.
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If 3 = op (), 3; = op(v) and by, by are op(1), then

Mo 02(37ay)

Vi(z,y;b1,b2) = (1+op(1)).

The treatment of Vs is a little bit more complicated, because there is a mixture of two random

structures: the errors €; and the bandwidths by, bs.

Va(z,y;b1,02) = 952 Xn:i:/Ak/K2°< <z:Z>>

2 =1 i=1
'K2,0 (Bl (.’L‘ B u)) du dv du dv (ekei — 6ik0'2(-rkayk))
y—v

n n

Zazk z,y;b1,b2) (exe; — 050> (Th, yi))

k=1 i=1

where

air(,y; b, by) = b6b2[4/K20< <y_ >>K20<B—1<”;:Z)> du dv dit db.
k

Therefore we need a discrete approximation of the bandwidths by, by :

B;”;l, j =1,2,is a set of bandwidths with the following properties:

#B% =nfi  max min |b; —b;| <n7.
o bj€l5=3] b;eB -
2v/n’2 J in

During the iteration steps it is ensured that b; € [ﬁ, %]

nbibs Z Zaik (z,y; b1, ba) (erei — 5ik02(xkayk))‘

k=1 i=1
< sup nb3bs Z Z air(x,y; b1,b2) (er€; — Eeier) (45)
b;eB}? k=1 i=1
+ 1nf nb bQZZaM (z,y;b1,b2) (exe; — FEeier)
BB, k=1 =1
—nb‘;’bg Zzaik(l‘,y;bl,b2) (ekei - Eeiek) (46)
k=1 i=1

First consider (46).
K> is Lipschitz continuous with respect to b; and by. Therefore a;; is continuously differentiable
_1 1

3, 5]_

and also Lipschitz continuous with respect to by and bs on [in
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The number of nonzero a;; is O(b3b3n?) (similar to the considerations in the proof of Lemma 2.4).

If p1 and p2 are chosen large enough.

lim P( inf "Z Z (5?52 aik (%15 b1, ba) — bYb aik(xay;51752)) (erei — Eejer)| > €> =0,
T NbEB L 1 kD i
because
n n o B B
n Z Z (b?b2 air(z,y;b1,b2) — bYbo ajk (z,y; b1, b2))
k=1 i=1

= O (n(bib3n® +b7b3n%) (n~"* +n=%)) = o(1).

Therefore (46) is op(1).

Now consider (45). For all positive, real numbers € and 7 and for all positive integers «

P( s futth 303 o) e~ Been)| 2
b; EB k=11i=1
nl_)‘;’bg n n 2a
= P< sugj s ZZalk 2,y;b1,02) (epei — Eeger)| > 1>
bjeB;", k=1 i=1
n n 2ce
< E Z _152zzaik($,y;51,52) (exe; — Eejer)|
5;€B% k=1 i=1

because instead of taking the supremum the sum is taken and Markov’s inequality is applied.
n

E Z b3bs Z Z air(z,y;b1,b2) (ere; — Eeiey,)

7. cRPi =1 i=1
bJ'ij,]n k=11

— Z —2a, —2om

5. J
b;eB,

2a

2a

Z Z nbibaaik (z,y; b1, b2) (exei — Eejer)

Now an inequality of Whittle (1960) is required which can be stated as follows (a simplified version):

E (chzk (XiX; — E(Xin))> < Cq <chfk> ;

k=1 i=1 k=1 i=1

where « is a positive integer, c;;, real numbers and X;, ¢ = 1,...,n, independent random variables
with expectation zero. The constant C, is positive and depends on the moments of X;. The moments

have to exist up to order 2a.

Z —20, —20m |pn

'y
b;eB,

< Z e2ap2ong, (ZZnQbmbﬂm T y,bl,b2)>

BB, k=1 14=1

2a

Z Z nbibaaik (z,y; b1, b2) (exei — Bejer,)
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1 2
i 5 ;b ,b < —_— K 5 )\ Aa /\ A,
ot < g ((zfgzgcg yolen Z2>> (A)A(A)

1
= O(W@@)

The number of nonzero a;, is O(b7b3n?).
- 1
22n2b10b2a1k z,y:b1,by) = O ( 2p2b2n 2l;lObQW) =0(1)
k=1 i=1
Z 20, 72(1770 (Zzn2b10b2a’zk T y,bl,b2)> =0 (n01+02n72a77) 50
BjGB;)‘jn k=1 i=1

for n — oo and if « is chosen large enough. Therefore (45) is op(n") and hence
Va(z,y;b1,b2) = op (n71+’7b1_5b2_1) =op (n*H"bfe) )

The treatment of M (z,y; b1, bs) is analogously to Va(z,y; b1, b2).

Mi(z,y;b1,b2) = bebQZZ/Ak/ K”( (wiz»

2 p=1i=1

Ko <B1 (5; B Z)) (r(@x, y) — r(u,v)) dudodudoe;

= Zdi(l‘,y;bl,bﬁeia

i=1

where

d (l‘ y)blabZ

_ b6b2/ Z/A K20< @:Z»K“ (Bl (Z:g))(r(wk,yk)—r(u,v)) du dv dii do.

lkl

Here another inequality of Whittle (1960) is used:

n 2a n a
E (Z BiXi> < (Z 53) ;
i=1 i=1

where « is a positive integer, ; real numbers and X;, i = 1, ..., n, independent random variables with
expectation zero. The constant C, is positive and depends on the moments of X;. The moments

have to exist up to order 2a.

|di(x,y;b1,b2)]
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IA

0 / / K> < (y 3 u>> Ksp (B1 <z:z>>‘ r(zr, ye) — r(u,v)| dudv dado
Ai =1 7 Ar

b6b2 (Z)\ (Ap) >maxK20( YLsup sup ||w—z|

k w,z€A
B 1 biby 1 1
- 0<b6b2 n \/ﬁ>_0<b§b2n%>’

A}, as in the proof of Lemma 2.4a.

IN

The number of nonzero d; is O(byban).
Therefore
My (z,y;b1,b2) = op (n_1+"b;%b;%) =op (n_1+”b1_5) )
This is a better rate than for V5.
The terms B2 and M are dominating Vi, V» and M, so a more careful investigation is necessary.
First, B(z,y; b1, bs) is considered.

According to Lemma 2.4 and the Taylor expansion as in the proof of Proposition 2.7,
1 T—u
B(z,y;b1,b2) TN Z/A K> ( (y—v)) dudvr(zk, yi)

L / Ksp <B1 <z:Z>> r(u,v) dudv+0(b1b2n’%)

b3 b>

= b2 / KQ() Zl,ZQ ((y) —B(j:)) le dZQ+O(b1_2TL_%)

= b2 (20)(33 y)2b2+0(b2+2—2+b 273

= r2O(z,y) + O(b3 + b *n %)

= @z y)+ 002 + b0 2)+0p(b1n Y +b;%n %_7),

with b; as in (40).

Therefore

Blayibib) = [(®0@y)] +0 (5 +57nF 4 i)
+op (n Y02 + b~ T4 brin Tt + 51_41171*7))
The last part is the investigation of My(z,y;b1,b2). It is split in

Mo (2,y;b1,b2) + (Ma(@,y; b1, b2) — Ma(2,y; b1, b2)),
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with by, by as in (40) and (41).

Mo (z,y;bi, bs)

2 n n B :I:_u R :I;_a
= 367 K. B! K <B_1< >>ru,v du dv da dv €;
2, S (B (5 20) ) e (57 (5 27) ) r

=1
where
(l‘ y)blabZ
T — T—u
= Koo (B! 0, 0) di do
b6b2/l;/,4 K20< <y— >> 20( <y_1_}>>r(u,v)dudvdudv
= == /K270<Bl<x u))dude(a? y; by, by),
b1b2 A; y—v
where

o 1 - T—Uu
S(xz,y;b1,b = 7/ K <B1< ))ru,v du dv
(2,95 b1, b2) b, 2o Y (u,v)

1 T 5 (21
= E /TK270(21,ZQ)’I" <<y> — B<Z2>> le dZQ

= O (z,y) + 007 + b3)

analogously to the calculations of B(z,y; by, bs).

s = 1
i\Ly 7b 7b =0 a7 .
|ci(@,y; b1, b)) (nb:fb2>

The number of nonzero ¢; is O(byban).

Therefore, with similar calculations as for Vs (z, y; b1, b2)

Ms(z,y; b1, b)) = op (n_%+"l~);%l~);%) =op (n_%+"l~)1_3) )

Mo (@, y;b1,b2) — Mo (2, y; b1, bo) = > (cil®,y;b1,b2) — ci(@,y; b, ba))ei
i=1

= > (eilm,y;bisbo) = cilw,y;bi, b))
i=1

+ Z(Q(Cﬂ,y, Bla b2) - Ci(%?/; 517 52))6i

i=1
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Combining (47) and (48), then, for two different pairs of bandwidths by, bs and by, bo

|ci(x,y; b1, b2) — ci(x,y; b1, ba)|

2

_ @/Ai K5 0(c) dudv (51)

1 ~
{b_z/ K30(21,22) [r(a) — r(a)] dz1 dzp (52)

1Jr
L_ 1k q) d
WA 2,0(21,22)r(a) d(z1, 22) (53)
1
1 ~
+/ = Ko0(21,22)r(a) d(z1, 22) (54)
T b}
2 A
'{bSb / K2,0(C)—K2,0(C)dudv (55)
102 J 4,
(22 /K (é)dudv} (56)
by 53by ) Ja ’
where a = (5) = B(2), 4= (5) - B(2), o= B4 (j78) and e = B4 ().
First, consider (56).
2 2 R — P35 _ 13
‘ TN / Kap (B—1<5” “>> dqudo| < cltibzbibel (57)
b1 b2 b%bz A; y—v nb:szb:sz

for an appropriate constant C (for short notation C' is used for different constants).

For (55) consider first

/ K270 <B_1 <CU—U>> —K270 (B_l (l'_'U/)) dudv.

A; y—v y—v

This expression is always zero, if B_l(Z::f) and B_I(Z:Z) are outside 7' (the unit ball) for all
(u,v) € 4;, e.g. if

ly — v

u , —Y > 1 and —— > 1, i.e.
b1 bl b2 b2

|z — u| > max(by, by) and |y — v| > max(by, by) for all (u,v) € A;.

Ky (B’1 (“_“)) is Lipschitz continuous in b; and by, therefore

y—v
/ K2,0 <B1< >> _KQ’O <B 1<$ )) du dv
A; y—v y—v
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< L/ T-—u T—u ‘y—v Y= bdo
Al b b1 b 2
1 1 1
= L/ |z —u|l|———|+ |y —v||— — =~ | dudv
A; bl b1 b2 bQ
L maxb,g “ max(bs, b
< L(maxtbnbi)y g, maxonbe)y, g,
n 101 baba

= L( bl bl )
nmin(b;,by) nmin(by,bs)
Later, these results are only used in (49) and (50). In these equations either by = by or by = by.
Under these conditions both terms in (58) can be bounded by (57), therefore (55) can be bounded
by (57).
(54) is r20) (z,y) + O(b? + b2) (see (48)), so the combination of (54), (55) and (56) is also bounded
by (57).

For (52) a Taylor expansion of r ((z) - B(zl)) around () — B(Z) =:a is used:

Z2

< (@) + @) (by — by)z + rOY (@) (by — by)z

1 . .
+3(r { @0 (@) (by — b1)227 + O (@) (by — bo)?23 + 29D (@) (by — b1)(by — ba) 2125

1 1% .

5 { (b1 — b1) Z1— + (by — b2)22)8y r(a)

+C((by = b1)" + (ba = ba)" + (b — 1) (bs — b2)?)
For r(”l”’2)( ) expansions around (z,y) are plugged in. The kernel properties delete all odd terms.

/ Ky 0(z1,22) [r(a) —r(a)] dzy dzy
T

a0 (=22 (1) < sz (1) - stiteeo (0))
T y , .
+ZQ(I32 —bs) < - Zg@g%ﬂ(m (g) _ Zgggr(m) (5))

L o T 1 ,- ¢ 1 .n ¢

L2, 1 o7 3 1 - ¢
+§z§(b2 — b2)2 <§szfr(2’2) <n> + §z§b§r(4’°) <n>>

b b 1 Popo(2,2) 3
+(b1 - bl)(bQ - b2)2’12’2 52;12;2[)1[)27. ) ,
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0l - ( 40 (6)) # 06 - 2 (sro (€))

C(b1 — b1 by — bo) 2122 ))
)
by

Z2b27‘

m 3

+C(81 - b1 2 - b2 2122 <Zlb17' (2:2) ( >:|d21 d22

+C((by — by)* + (ba — ba)* + (by — b1)2(by — b2)?)

< =2(by — by)byr®? <z> %(bl ~by)22r(20) (y)
+C((br — b1)(B103 + B2) + (b — b2) (Bbo + B3) + (B — b1)> (B2 + B2) + (ba — bo)* (B3 + B3)
(b1 = b1)(ba — ba)biba 4 (br — b1)3b1 + (b — b2)*bs + (b1 — b1)? (bs — ba)bo
+(b1 — 1) (ba — b2)?b1 + (by — b1)* + (b2 — bo)* + (by — b1)?(bs — b2)?)
< (bf - b (jj) + O b = ba] + [ba = bal) (1B — bl + [bo — bl + b} + B3)
< (B2 = b0 (;) + C(|by — by |+ |by — bo]) (B3 + B3)

The mean values (£,7) and the constants C' are not necessarily the same.

For (53) a Taylor expansion of r ((z) - B(z;)) around () is used:

/ K20 21,22 )le d22

1, .
- / K2’°(Zl’z2)<—Zfb?r(2’°> <x>+0211b‘11r(4’0) <5>
T 2 y "

+C’zfz§?)%l;§r(2’2) <f7> + ngi)%r(o"l) (i) > dzy dzs

h2(20) (y) L@+

IN

The combination of (51), (52) and (53)

2 1 ~ T ~ « R R
e [ Kao@ dudo- {62 =309 (7) & €y =l + i = bal) 5+ )
192 JA; 1 Yy

1 1]/ x S
+|l5 - b2r(2’0)<>+0b4+b4>}
[b% b%] <1 y (1 2)

o O IB =BGy by = b+ e — b 4 B2
> nb?bg b%i)% 1 2 b% 1 1 2 2 1 >
1 C A A PURRIN - A A -
< TT{(“’l_b1|(b%+b§)(b1+b1))+(|b1_b1|+|b2_b2|)(b?+bg)}
ST
1 Cf(.» A - - A A - -
< —5— 54 by = by (BT 4 b5 + (b + b3)b1) + |by — bo|(bF + b3) ¢
SETNE
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For bandwidth parameters as in (49)

|67 — b} |b b1 — by
c U2 4 c
nb3b2h3 nbibab?

< Clby — b |Tu(by),

AN

i, i s ba) — iy s be) | < - {6% Rt b%)bl}

where
b? + b3 1

T, (b)) := =
1(b1) nbibobd | nbjbab?

-{E§+b§+(?€+b§)b1},

and for bandwidth parameters as in (50)

cia, i) — ciwib b < claztl plaobel [ g
1 , Y501, 02 i\ L, Y, 01,02 >~ n5?525?b2 nf)iszf)% 1 >

< Clby — ba|Th(bs),

where

1

To(by) 1= ——— + ——— - E3+B3}.
2(b2) nb3babs | nbbeb? {1 ?

Consider (49).

1 & -
T (ci(z,y;b1,b2) — ci(x,y; b1, b2))e;
=1
1 — ~ -
< sup |z (i@, i) — cil, y; bi, bo))es
Bler.ln i=1
. 1 .
+ inf 1= ) (ci(z,y3b1,b2) — iz, y5 01, b2))es
blervl" T =1
1 — - -
7 D (eil®,y3b1,b2) — cilw, y; b, bo))es
i=1
where
T := nb2(51 + b1)|51 — b1|T1(b1)
and

T := nbg(?~)1 +Bl)|l~71 _61|T1(61)‘

First consider (58).

The treatment of (58) is similar to Va(z,y; b1, b2) and My (z,y; b1, b2).
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The number of nonzero c¢;(z,y; by, bs) and ¢;(z,y; l~)1, by) is O(nbibs + n51b2),
lei(@, y; b1, b2) — ci(@,y; b1, b2)| < Clby — be|Ti(br),

o (58) is op(n™).

For (59) it has to be shown that

ci(x,y;b1,b2) — c;(,y; b1, b2)
b1 — b1

(60)

is Lipschitz continuous as a function of by . % is also Lipschitz continuous, because the denominator is
bounded away from zero, if b, b, b, are bounded away from zero, so (59) is Op((nb1ba +nb; by)(n—Pr+4
n=*?)) = op(1), if n™?* and n™"2 are chosen large enough and if by, by < .

(60) is differentiable with respect to by. Consider the absolute value of the derivative of (60) with

respect to by for by # b :

0 ci(m,y;b1,b2) — ci(w, y; b1, bs)

abl |l~)1 — bl|
N aiblci(xa Y; bla b2)(51 - bl) - (Ci(.’L‘, Y; bla b2) - Ci(l‘, Y; Ela b2))
b1 — b1 [?
_ s-ci(x,y; b1, ba)sgn(by — b)) — z-ci(x, y;m, ba)sgn(by — by)
by — b |
_ | 5-ci(, 43 b1, b2) — go=ci(w, y; 7, bo)|
b1 — b1
ol —nl by —nl
< |b1 — b1| <
with a mean value n between bl and b;. Here, it has been used that cl(a? y; b1, bo) is Lipschitz

continuous with respect to b; due to the Lipschitz continuity of K .
5.1
So, (49) is op(Tn") = op(n~2= 7+, 2b, ).

The treatment of (50) is similar to (49).

1 & -
EZ ci(z,y; 01, b2) — ci(, 5 b1, b2) e
i=1
1 & S -
< sup = (eilm,yibi,ba) — cila,ys by, b))e (61)
b2€B5?, U=
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1< - .o
+ _inf 7 AT )b 7b — G\, ab 7b 7
8 | e ba) — i B
1 & e o
T > (eil@, y; b1, bo) — cilw, y; b, bo))es
i=1
where
U:= nl~)1(l~)2 + b2)|l~)2 — b2|T2(b2)
and

U = TLEI(BQ + 52)|52 - 62|T2(52)

(61) is op(n") and (62) is op(1).
So, (50) is op(Un") = Op(n—a—’v-i-ni)l E;%)
Hence,

Mo (z,y;b1,b2) = 0p(n_%+”5f3).

Together,

2 ~ -
[P0 (@, y; b, bo)* = [r(“) (x,y)] +0 (bf FOTn bt *1)
+0p(n_7(l~)% + ?)1_2n_% + l~)1_4n_1 + l~)1_4n_1_7))
+0p(n_%+’7?~)f3) + oP(n_H”lN)fG)

For I3 (b1,b2) = [ v(z,y) [#>0) (:U,y)]2 dz dy some improvements are possible.

First, consider V.

/ 'U(l',y)aik (mayv b17 b2) dx dy
A

- /Ak// :UyKQ()( (y_“))KQ,()(B—l(z:Z)) dz dy du dv da do
= g LS L () £ () maotes
K20<<> ( ))dzldz'2dudvdudv

T MADAA max Ko o(a.1)?

1
0 <n2b?b2> '

IN
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The number of nonzero [, v(z,y)aik(z,y;b1,bs) dx dy is O(n?byby).

Therefore

9 1
/v(m,y)vz(ar,y;bl,b2)da:dy = op (n_1+nb1 b, 2)
A

= op (n_H‘"bfs) .

Mo(z,y; b1, ba) is again split in Mo (x,y; b1, ba) — Ma(x,y;b1,b2) and Ma(z,y; b1, bs).

First, consider My (z,y: b1, bs).

‘/ v(z,y)ei(@,y; bi, be) do dy‘
A

b7b / / / V(e 8} ( 7 < —Z>> Reolon,2)
7 <<;> - B(Z)) dzy dzy du dv dz dy‘
S L) () ot
r <B Cl) + (Z) - B(Z)) dzy dzs dty dty du dv
i (2() () wote
- {rm) ( ( ) ( )) b2 + O(bf +b4)} dt, dty du dv
2 f,

4
v)r(“ (u, U)](20 du dv + ¢ ( %) ‘

(u
n 1
4
1+b
)
= o(3)
n

A Taylor expansion of r ( (tl) + (u) — 3(2)) around B(g) + (’:) and kernel properties are used.

to v

IA

¢
n

IA

The number of nonzero [, v(x,y)ci(z,y; by, bo) daz dy is O(n), therefore

/ v(a:,y)/\/l2(a:,y;l~)1,l~)2) drdy = op (n_%ﬂ) .
A

The same holds for Ms(z, y; by, bo) — Ma(x,y; by, by).

slQ

[ v et by dedy — | v(x,mci(x,y;él,bg)dmdy‘ <
A A
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and

/ v(z,y)ei(z, y; 51, by) dx dy — /
A

A

S1Q

v(w,y)ci(w,y;ﬁl,gg)dwdy‘ <

because b; and b; are of the same order for i = 1,2 (similar splitting as in the local case). So,

Mo (z,y;b1,b2) = op (n_5+’7) )

Together,

L

I2%(by,b
2,0( 1 2) nb?bg

Molsy (1+o0p(1)) + I35 + O (5? +b 2073 4 5;4n‘1)

+op (n*”(?ﬁ Fhn bt 4 5;4n*1*7)) +op (nF°) +op (n*%“?) :

2
Where Ms = fTKS,O(:U,y)da:dy, I, s = fTv(a:,y)‘}((;;Jy)) drdy and 1227’8 =
Jpv(a,y) [r®0 (@,y)]” drdy.

The considerations for [#(%2) (z, y; by, bs)]? and fg”g (b1, b2) are similar to above calculations, but with

by instead of by and vice versa and K » and 7(®?) instead of K5 and (3. So,

2 . -

FOD (b, )P = [0 (@,y)] +0 (B 45+ b )
+0p(n*7(l~)f + l~)1_2n*% + l~)1_4n*1 + l~)1_4n*17”))
+0p(n7%+’7l~)1_3) + Op(n71+nl~)1_6)

and

A 1 ~ ~ -
B3bib) = e Mosles (1+0p(1) + 153 +0 (B8 + 57t 4+ br'n )
2

where Moo = [ K§ o (2, y) dz dy.
. 220 o 220 70,2
The lines of thoughts for Iy, are similar to those for Iy and Iy, so

1

f270(b1,b2) = —a=
0.2 nb3b3

M(?;Slo,f (1+o0p(1)) + 133 +0 (g% + 51—27{% + 51—47171)
+op (nfﬂ’(g% + l;l_Qn*% + l;l_4n71 + l~)1_4n7177)) +op (n71+”b1_5) +op (n7%+’7) ,

where M§;§ = [ Ka20(z,y) Ko 2(z,y) dz dy.
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Now the behaviour of the bandwidth estimators during the iteration steps can be investigated.

The initial bandwidths are b\*) = b’ = n=%, I, ; and ‘T;((x—m;)) estimators with

fo’f =1Isy (1 +0 (n_%) +Op (n_%))

and

T = Ty (07 +00 (178)).

First, global steps are performed.

During the first iteration step

f22,7g(b§0)n%abg0)né) = n%MzoIa,f (14 o0p(1))
130600 0Pnm) = nMoal, (14 0p(1))
200, 6n) = pdMEIL ¢ (14 0p(1)),
SO
1
N 1 /M, B
i = ok (312) nEason)
M
1
R 1 /M g
B = cé( 27") n~1 (1 +op(1)),
M0,2
where Cg = M

MQ(\/M2,0M0,2+M§,’3) ’

All the assumptions made at the beginning of the proof are fulfilled.

For the second iteration step

1
) . M 2
YO0tz 0 0ntE) = nMol, ;Cxt <—> (1+o0p(1))
’ Mo 2
1
N ~ N M, 2
1300t bnts) = nMo,ﬂa,fCI_(l( 0’2> (1+o0p(1))
’ M2,0
Ip9bInt 0 nt) = nMySI, Cit (1+0p(1)),
SO
N 2 M, 8
Y = 0;%( ) n (1 + op(1))
M
N 2 M. 8
i = cf (32) s on)
M0,2



and so on until

1
~ 3 (M, 3
AR C}é{ <M072> n~1 (1 + op(1))
2,0
1
. s [ Moa\F
B = C}%( 2,0) n=12 (14 op(1)).
My o

Now, the constant terms are coming into account.

1
o N M. 2
Lo 0=, b nt2) = Maol, O’ (—M2’0'> (1+op(1) + 135
0,2
Moo\ 2
BEOME 600k = MoalerOFF (312) (1 op(1) + 185
2,0
30t 68 0t = ML sCR* (1+op(1)) + I3,
SO
B = Cin (1 +op(1))
Y = Con (1 +0p(1)),

where C and C5 are constants depending on kernel constants, second derivatives of r(z,y), o2(z,y)
and f(z,y).

After 4 global steps the bandwidth estimators have reached the right order n~%. Now other terms in
the expansion are dominating.

The procedure can be continued like the first 4 steps to obtain global bandwidth estimators or can
use the formulas for the local case.

First, the global branch is considered. The order of the terms in IE:S, IR’; and fg”g is such, that v is

becoming important. After 4 steps ~ is now zero.

355) = baasy (1 +0 (n_%) +op (n_% +n_%+’7)) .



This means, that now v = %.

BOGPn %=, b7n%) = Bi+0(n¥) +op (n 4 i)
BEOPnE 60n%) = 10340 (nt) +op (nt4n )
B30I ® ) = 17340 (nF) +op (n 8 4540,
B = biasy (140 (n71) +0p (n7F 4 07440))
B = by (140 (578) +op (ud +07H0)).
Now, 7 = L.
Bt b)) = 18 +0 (n7F) +op (n7547)
RO, b)) = 19340 (n7F) +op (n7547)
BTt b0n%) = 12940 (nt) +op (nEH),
B = biraer (140 (n78) +0p (n7357))
B = by (140 (178) +0p (17417)).

No further improvement is possible, so the iteration stops after 7 steps. b;,,s, can be replaced by

biyss for i = 1,2 according to Remark 2.10.

Now, the local branch is considered.

1

[f(270) (z,y; ?)54)11% , ?)54)71

[r(0’2) (z, y)] ’ +0 (n*

b1 sy (2,Y) (1 +0 (n_

b2 sy (2,Y) (1 +0 (n_

[T(Q,O) (m,y)r L0 (n_%) +op (n—% +n—i+n)

1
6

) +op (n’% +n’i+")

1
6

) +or (n”



B, y) = biyey(2,y) (1 +0 (n*%) +op (n7i+n))

~

0 (@,y) = bauey (@y) (140 (n78) +op (n517)).

No further improvement is possible, so the iteration stops after 4 global and 2 local steps. b;, .y (z,9)

can be replaced by b;,, ., (z,y) for i = 1,2 according to Remark 2.10. ]

4.2 The Inflation Factor

The inflation factor n? influences strongly the number of iteration steps and the rate of convergence
of the bandwidth estimators in Theorem 4.1. Some arguments for the choice of the inflation factor

1
niz

are given and alternatives discussed.
It is distinguished between the global and the local case. For the global case the terms O (n_%) and

Op (n*%) in Theorem 4.1 come from the terms

0(#) =0 ()

(the bias term B) and

Op (n"167%) = Op (n"*)

(the variance term V) for by = n=55. The first is increasing in 8 and the second decreasing.

If both terms are balanced, then g = 21—4, leading to O (n’%) and Op (n’i) . But with the re-
placement of b;, ., (x,y) by bi,,sx(z,y) a term o (n’%) for arbitrary fixed design and O (n*%) for
equidistant design is introduced. So, for arbitrary fixed design it is not necessary to balance both
terms, but the variance term can be decreased to Op (n*%) by choosing g = % This choice is
variance optimal.

In the local case the variance term is Op (n_%bﬁ) = Op (n™%%) . So, in the balanced situation

1 . 1 . . . . . 1
B = {z. Again, 8 = 15 is variance optimal, reducing the variance term to Op (n 4) .
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The rate of bl(.j ), i = 1,2, is increased in each step by [, the rate of the inflation factor. Therefore,

2

steps are necessary to drive the bandwidth estimators from the initial order nz to the optimal order

n?%. These are 4 steps for 3 = - and 8 steps for 8 = 3.

After these steps op (nﬁ)f) (stemming from the bias part B) is becoming important. Now v = 0. In
the balanced situation (8 = i for the global or 8 = % for the local case) no further improvement
is possible. So, after one additional step the optimal order is achieved. In the variance optimal
situation the order of the op-term can be reduced by increasing « until it reaches Op (n*%) . in the
global case or Op (n_%) in the local case. So, there are 2 additional steps in the local case and 3

additional steps in the global case increasing ~ from 0 to % and finally % (see the proof of Theorem

41).

4.3 Generalizations
4.3.1 Three Bandwidth Parameters

In the algorithm in Chapter 3.1 two bandwidth parameters are estimated. But it is also possible to
estimate the third parameter as described in Chapter 3.2.

There is an additional term [#("'Y) (2, y; by, by)]?. Similar to above calculations, it is
2 ~ ~ ~
[P0 (@, y3 b1, b)) = [r(“)(m,y)] +0 (b% +b%n7E b;4n—1)
+op(n (B2 + b0 T + bt + bt )

+0p(n’%+’75f3) +op(n =1, %),

Actually, the rates can be improved, if K7 ; is of order 5. But then other rates in v and z are
dominating.

The quantities v and z are estimated by
i = [r20(, ) + 10 (2, )5 — 200 (2, y)se] - (1 +0 (B +b7%n bt
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+op (n_”’(b% +027F bt 4 B;‘*n—l‘”)) +op (n‘%”l}ﬁ) +op (n‘1+’75;6) )
and

z = [r(270) (z,y)s> + r(0:2) (z,y)c® + 27"(171)(3:,;1/)50] . <1 + 0 (IN)% + l;f n"t + l;f4n_1)
+op (n*”(?)% +07 b+ 5;4n*1*7)) +op (n*%“??)ﬁ) +op (n*”"i);ﬁ) >

So, the estimators for b; and bs achieve the same rate as in the case with two parameters. The third

parameter helps to get better results for finite sample sizes and reduces the leading term of the MSE.

4.3.2 Additional smoothing

In step 3 of the algorithms in Chapter 3.1 and 3.2 there is an additional smoothing of the pure local
bandwidth estimators. It does not change the rates, because the smoothing is done with a smaller

bandwidth, so only smaller additional terms occur.

4.4 Asymptotic Normality of the Estimator

It is not only possible to derive rates of convergence of the bandwidth estimator, but the distribution

can also be calculated.

Theorem 4.2 Under the assumptions of Theorem 4.1, equidistant design and constant variance of
the noise the bandwidth estimators IA)gﬁ) (z,y) and l;gﬁ) (z,y) are asymptotically normal with expectation

b1,y and by, ., and bias terms of order O (n*%) .

Proof: Let AM?EAB) denote the estimator obtained by substituting the second derivatives and
the variance by their estimators. The dependence on (z,y) is omitted for a simpler notation. Let
denote the bandwidth estimator of Chapter 3.1 by B. The estimators for the second derivatives are
1
2.

obtained by using Bn1

0

0 = 5 AMSE(B)
= iAMSE»(B)—iAMSEA(B )+iA]\?§EA(B)—iAMSEA(B)
T ob g by PEASYTT B, g by g

o1



A Taylor expansion of 8‘2 AMSE;(B) around Busy, the fact that D” ;- AMSE:(B B) and

a%lAMSE,z(BASy) are of order =% for |v| = 2 and (from Theorem 4.1 and Remark 2.10)

(by — biysy)’ =0 (n_%'Q) +Op (n_%'Q) (63)
and
(b2 = b2s0y)? = O (n82) + Op (n ?) (64)
yield
. 0 0 -
= Y D"a—blAMSE #(Basy)(B — Basy)” + B_blAMSE #(B) - B_blAMSE #(B)
lv[=1
+0 (nfg) + Op (nfl) .
With
iAMSE (B) - iAMSE (B)
Oby oby
= b [5? (r® (2, )% — () (@, y; binT=, by %))2)
53 (10 2 )r 2 (@,y) =70 (2,5 bin bon )i (@, y; bin s, bon ) ) |
M
~ Mg
nb%b2
and
1 1 2
|:7§(270) (ZIZ, Y; blAsynE 5 bQASYnE)]
2 n 1 1 1 1
= [r(270) (a:,y)] + Zci(w,y; biasy N2, b2, 6y 172 )e; + O (n‘g) + 0p (n‘g)
i=1
and

~(0,2 . L
|:7“( )(wa Y; b5y 012, b2, 50T

Sk

2

)

= [7"(072)(9%21)]2 + ici(wvy; blASYnéﬂbQASY 11_2)61 +0 (n 6) +op (n_%)
i=1

(see proof of Theorem 4.1) and equation (63) and (64) it is

Z D"—AMSE (Basy)(B — Basy)”
|lv|=1

n
1

+u’2b1ASY [b%ASY + b2ASY:| Z Ci (CU, Y; blAsYnE ) b2Asy
i=1

ml"‘

)el+0(n 6) +op (n_%).
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The term with 0 — 62 is of smaller order and has been neglected, since var6? = O(n™1!).

With similar considerations for %AM?EAB)

a A
Z D”WAMSEf(BASY)(B — Basy)”

v|=1 2

1

n
2 2 ==
+u b2ASY |:b1A5y 2Asy] E Cl T y)blASY 127b2ASY
i=1

Nl"'

2)e; + O ( *%) +0p (n*%) .

op (n_%) is smaller then the middle term (with similar calculations as in the proof of Theorem 4.1),
so it can be omitted.

Solving this system of equations leads to

lA)l = blASY -I-O(n_%)
0? 0?
<b1ASY 5.0 AMSE;:(Basy) — b, gy 8b2AMSE (BAsy)>
1 9 = L L
Nﬂ |:b1A5y + b2ASy] Z ci(wv Y; blASYn12 ) b2ASYn12 )ei
i=1
and
ZA)Q = bQASY -I-O(n_%)
0? 0?
<b2ASY 5.0 AMSE;:(Basy) — b1 44y 8b2AMSE (BAsy)>
1 9 - L L
Nﬂ |:b1A5y + b2ASy] Zci(wvy; blASYn12 ) b2ASYn 2)617
i=1
where
i i i ?
N = —SAMSE;(B AMSE;(B — AMSE;(B .
o SE;( ASY)Bb% SE;(Basy) <8b18b2 SE;( ASY))
So, b, and b, are asymptotic normal as weighted sums of independent random variables. [ |
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