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Chapter 0

Zusammenfassung

Eingebettete Systeme sind in vielen Bereichen unseres heutigen Alltags mittlerweile unersetzlich.

Ein sehr wichtiger Anwendungsbereich ist unter anderem die Automobilindustrie. Moderne Fahr-

zeuge sind nicht mehr nur das Werk ausgefeilter Maschinenbaukunst, sondern beinhalten auch

komplexe Computersysteme, die manchmal aus mehr als 50 interagierenden Geräten bestehen.

Der Entwurf dieser Systeme wird durch neue Anwendungen und Anforderungen vor neue Her-

ausforderungen gestellt. So besteht der Wunsch nach Systemen zur Situationsanalyse, die die Um-

gebung von Autos überwachen. Diese basieren im Allgemeinen auf Modellen und Algorithmen der

algorithmischen Geometrie. Üblicherweise wird die Umgebung als Euklidische Ebene modelliert,

in der Polygone verschiedene Objekte der Umgebung repräsentieren. Grundlegende Operationen

der algorithmischen Geometrie können nun zur Darstellung des räumlichen Verhaltens verwendet

werden. So kann zum Beispiel eine Kollision zweier Objekte durch einen nichtleeren Schnitt der

korrespondieren Polygone festgestellt werden.

Übliche Implementierungen von Algorithmen der algorithmischen Geometrie sind nicht ohne

weiteres für den Einsatz auf sicherheitskritischen eingebetteten Systemen geeignet. Zum einen for-

dern die hohen Sicherheitsanforderungen eine genaue Untersuchung der Korrektheit der Algorith-

men. Zum anderen müssen nichtfunktionale Eigenschaften betreffend der begrenzten Ressourcen

berücksichtigt werden.

Diese Dissertation schlägt ein schichtbasiertes Polygonverarbeitungssystem vor. Auf der Basis

von rationalen Zahlen, wird ein Geometrie-Kernel formalisiert. Darauf aufbauend bilden geome-

trische Primitive eine weitere Abstraktionsebene, die für Plane-Sweep-Algorithmen und Polygone

benutzt werden. Die Aufteilung in Schichten unterteilt das System nicht nur in handhabbare Teile,

sondern ermöglicht es auch, auftretende Probleme auf den jeweils geeigneten Abstraktionsniveau

zu betrachten. Dabei wird die Struktur konsequent in der Verifikation wie auch in der Implemen-

tierung der entwickelten Polygonverarbeitungsbibliothek eingesetzt.

Der Verwendung in sicherheitskritischen Systemen wird durch ein Verifikationsframework

Rechnung getragen. Die innerhalb des interaktiven Theorembeweisers HOL entwickelten Theorien

stellen verschiedene Abtraktionsebenen dar und bieten dafür jeweils eine Reihe von Hilfsmitteln

an, die zum Spezifizieren und Verifizieren von Polygonverarbeitunsalgorithmen genutzt werden

können: Neben einem formalisierten Geometrie-Kernels sind häufig im Anwendungsgebiet ge-

nutzte Operationen definiert und Eigenschaften dafür bewiesen, auf denen bei der Verifikation

von Algorithmen aufgebaut werden kann.

Die Implementierung profitiert ebenfalls von der Schichtenarchitektur. So orientiert sie sich an

der Formalisierung und ähnelt sehr den entwickelten Theorien: Auf dem verifizierten Geometrie-
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Kernel sind geometrische Primitiven implementiert, die die Basisbausteine für die Softwarebiblio-

thek bilden.

Um die entwickelte Bibliothek in eingebetteten Systemen nutzen zu können, sind zusätzliche

nichtfunktionale Anforderungen in der verschiedenen Schichten des Systems berücksichtigt. Kon-

servative Heuristiken zur Vereinfachungen des Modell sind ein integrales Bestandteil der Biblio-

thek: Sie begrenzen die Komplexität der Probleme und damit der Laufzeit, so dass die Algorithmen

auf eingebetteten Systemen mit eingeschränkten Ressourcen lauffähig sind. Besonderer Wert wur-

de darauf gelegt, dass alle Algorithmen so einfach wie nur möglich sind.

Das Ergebnis ist eine verlässliche Softwarebibliothek zur Polygonverarbeitung für eingebettete

Systeme. Ein Prototyp wurde in der Programmiersprache C implementiert und im Kontext eines

Situationsanalysesystems für autonome mobile Roboter evaluiert.



Chapter 0

Abstract

Embedded systems have become ubiquitous in everyday life, and especially in the automotive

industry. Modern cars are not only the result of mechanical engineering, but they also contain

complex computer systems, which sometimes consist of more than 50 interacting embedded de-

vices.

New applications challenge their design by introducing a new class of problems that are based

on a detailed analysis of the environmental situation. This situation analysis relies on models

and algorithms of the domain of computational geometry. The basic model is usually an Euclidean

plane, which contains polygons to represent the objects of the environment. Primitive operations of

computational geometry are used to model the spatial behaviour: For example, checking whether

two objects collide is equivalent to checking whether their corresponding geometric objects have

a non-empty intersection.

Usual implementations of computational geometry algorithms cannot be directly used for

safety-critical systems. First, a strict analysis of their correctness is indispensable and second, non-

functional requirements with respect to the limited resources must be considered.

This thesis proposes a layered approach to a polygon-processing system. On top of rational

numbers, a geometry kernel is formalised at first. Subsequently, geometric primitives form a sec-

ond layer of abstraction that is used for plane sweep and polygon algorithms. These layers do not

only divide the whole system into manageable parts but make it possible to model problems and

reason about them at the appropriate level of abstraction. This structure is used for the verification

as well as the implementation of the developed polygon-processing library.

The application area of safety-critical systems is paid attention by the development of a ver-

ification framework based on the interactive theorem prover HOL. Its main goal is to provide

different levels of abstraction for verification tasks and to give a tool set that can be generally ap-

plied for specifying and verifying polygon-processing algorithms: Besides a formalised geometry

kernel, other common geometric operations of the application domain are defined, and various

theorems for them are proven so that future work can be built on this basis.

The implementation also benefits from the layered approach. Its structure is closely related to

the formalisation and resembles the developed theories: On top of the verified geometry kernel,

geometric primitives are implemented that are used for the software library.

To apply the developed polygon-processing library in embedded systems, additional nonfunc-

tional requirements are implemented by the different layers of the system: Conservative simplifi-

cation heuristics to limit the problem sizes and thus the execution time, while retaining the cor-

rectness, are an inherent part of the library. Moreover, in contrast to general-purpose implementa-
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tions, all algorithms are designed to be as simple as possible to cope with the limited resources of

embedded systems.

The result is a dependable polygon-processing software library for safety-critical embedded

systems. A prototype implemented in the programming language C is evaluated with the help of a

situation-analysis system for autonomous mobile robots.



Chapter 1

Introduction

1.1 Motivation

Embedded systems have become ubiquitous in everyday life. Albeit hidden from the user, most

electronic devices contain small controllers with a remarkable amount of software, which primarily

contributes to the functionality, comfort and safety. In recent years, these systems are more and

more responsible for the economic success of industrial products.

A very important application domain of embedded systems is the automotive industry. Modern

cars are not only the result of mechanical engineering, but they also contain complex computer

systems, which sometimes consist of more than 50 interacting embedded devices. On one side,

these systems are responsible for the majority of innovations, and sometimes car models only

differ in features realised by them. On the other side, with their increasing complexity they are

meanwhile responsible for the majority of break-downs.

So far, embedded systems have been used to monitor and optimise the function of internal

components of cars like fuel injection and anti-lock braking systems. With the improvement of

radar and optical sensors, which are already available in many cars, new applications came in

the focus of development. Since cars are now aware of the objects in their environments, future

systems will be able to analyse the current environmental situation in order to assist the driver and

even to actively take control over some of his tasks: As already reality in avionics, these systems

can undertake routine tasks or supervise human actions to avoid serious accidents.

These new applications challenge the design of embedded systems by introducing a new class

of problems that are based on a detailed analysis of the environmental situation. This situation

analysis relies on models and algorithms of the domain of computational geometry. In industrial

applications, there is no experience in such problems — quite in contrast to robotics, where these

problems have been considered from the beginnings.

For example, dynamic motion planning or collision avoidance for mobile autonomous robots

are similar problems, which essentially rely on geometric computations. The basic model is usu-

ally an Euclidean plane, which contains polygons to represent the objects of the environment.

Primitive operations of computational geometry are used to model the spatial behaviour: For ex-

ample, checking whether two objects collide is equivalent to checking whether their corresponding

geometric objects have a non-empty intersection.

The systems previously developed in robotics demonstrate the concepts, but they can be merely

seen as prototypes, which lack essential properties for an integration into industrial systems: First,

industrial systems in the automotive domain are highly safety-critical, hence errors are intolera-
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ble in real-world applications. Second, as industrial applications are always subject to economic

constraints, the algorithms must be run on less powerful computing devices, which involves opti-

misation and abstraction problems.

1.2 Contribution

This thesis proposes a layered approach to a polygon-processing system. These layers do not only

divide the whole system into manageable parts but make it possible to model problems and reason

about them at the appropriate level of abstraction. This structure is used for the verification as well

as the implementation of the developed library:

First, the thesis contributes a framework1 that can be generally used to specify and verify

polygon-processing algorithms. Its main goal is to provide different levels of abstraction for ver-

ification tasks and to give a tool set that can be generally applied for specifying and verifying

polygon-processing algorithms. Basic geometric operations that are common elements of algo-

rithms are formalised, and various theorems for them are proven so that future work can be built

on this basis. On top of the analytic geometry basics, primitives are the first abstraction layer,

followed by common data and control structures for polygon-processing algorithms.

Second, the layers are used to modify computational geometry algorithms that are the basis

of motion planning and collision avoidance procedures so that they can be used in safety-critical

embedded devices. On top of a verified geometry kernel, a dependable software library for polygon

processing is built from the same layers, which are augmented by additional nonfunctional tasks.

Heuristics to limit the problem sizes and thus the execution time are an inherent part of the library.

Moreover, in contrast to general-purpose implementations as provided by common libraries like

CGAL [20] or LEDA [98], all algorithms are designed to be as simple as possible to cope with the

limited resources of embedded systems.

The results are both a general reusable structure of a polygon-processing framework and a

concrete implementation of a polygon-processing software library for safety-critical embedded

systems. The prototype was implemented in C and was evaluated with the help of a situation-

analysis system for autonomous mobile robots.

The rest of the introduction gives an overview of the two domains of computer science that

form the basis of the work: computational geometry and embedded systems. In addition, each

section discusses the requirements of the developed software library with respect to the character-

istics of the respective domain.

1.3 Related Areas

1.3.1 Computational Geometry

Problem Classes

Computational geometry [36] denotes the field of computer science that deals with problems

stated in terms of geometry. Basically, it considers three problem classes.

1 available through the author’s webpage
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The first one is the classification problem: a situation is given, and the algorithm has to classify

the problem up to a predefined number of cases. For example, the point-in-polygon problem is

to decide whether a point is inside or outside a given polygon. Or, given two line segments, an

algorithm determines whether there is a line intersection or not.

These algorithms are usually the basis of the second class of problems, where some geometric

objects are given as inputs and the output should be some other geometric object that is in a

certain relation to the given ones. The convex hull problem consists in finding the smallest polygon

that contains all the points of other polygons. As another example, the triangulation of a polygon

is a partition of its interior into triangles by connecting the vertices.

The third class of problems focuses on data structures. A given input is organised in a way

that some kind of query can be processed efficiently. The problem may involve other operations,

like the modification, insertion or removal of some input objects. For example, the range searching

problem processes a set of points, in order to efficiently count the number of points inside a query

region. For the nearest neighbour problem, a set of points is preprocessed to efficiently find which

point is closest to a query point.

The algorithms discussed in this thesis basically belong to the first two groups of algorithms.

Applications

Since its beginning in the 1970s, a lot of research was done in the area of computational geometry.

A lot of algorithms and data structures that have been developed are applied in various domains,

among them the following ones [36]:

• Computer graphics: Generally, computer graphics [49] deal with bringing an image of a mod-

eled scene on a computer device, such as a screen or a printer. The model is usually either two

or three dimensional and may contain thousands or millions of vertices, edges and faces. An

exemplary problem for a correct display is the removal of hidden parts of the model, which are

invisible from a particular viewpoint. More complex problems deal with light sources, textures

or the computation of shadows. All applications of the domain require the efficient implemen-

tation of geometric algorithms.

• Geographic information systems: These systems [17, 31] consist of databases that store geo-

graphical data, e. g. the location of cities or the shape of roads and countries. The typical

problem is to extract information about stored objects and to analyse the relation between

different types of data. The main problem is the design of efficient data structures to store and

later retrieve geographical information. Another problem is the combination of maps, which is

usually known as the map overlay problem, which will be discussed in detail in Chapter 6.

• CAD: In our days, a lot of products are designed with the help of a computer [48, 76, 103];

examples are circuit boards, machine parts, furniture or complete buildings. Each of these

products can be seen as a geometric entity, which has certain properties. The model can be

used for simulations and supports engineers to design products that can be assembled in an

easy way.

• Robotics: Robots [55, 79, 88, 96, 117] that are aware of their environment usually model it

with objects in the Euclidean plane or space. An example are industrial robots that use an arm

for their operations. Questions whether (or how) a certain point can be reached with the arm

can be reduced to geometric problems. If the robot itself is a mobile object, interactions with
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Fig. 1. Polygon Processing Algorithms

the environment are even more interesting. Typical problems are motion planning or collision

detection, which again have a geometrical basis.

As already stated previously, the last application area is considered here.

Polygon Processing

In this thesis, the considerations are restricted to two-dimensional, linear objects like lines, seg-

ments, and polygons, as they are the basis for the target applications. Related algorithms (see

Figure 1), e. g. to determine the convex hull (a), to triangulate a polygon (b), and to compute

set operations on a given set of polygons (c), are the the main object of study. In principle, the

limitation to two dimensions is not severe, since all considerations could be generalised to higher

dimensions and other geometric objects.

1.3.2 Safety-Critical Embedded Systems

In computational geometry, much effort has been spent in developing algorithms to efficiently

solve the fundamental problems of this domain. Seemingly every aspect of these problems has

been studied in detail and great efforts have been made to transform the initial ideas into ro-

bust and efficient implementations as available in the LEDA system [98] or in the CGAL library

[20]. In particular, there are solutions to the problems given in Figure 1 [36]. However, these im-

plementations cannot be directly deployed in safety-critical embedded systems, since additional

non-functional requirements have to be considered. In the following, these aspects are discussed,

which are related to the domain of safety-critical embedded systems [95, 129].

Industrial Context

Embedded systems are found in many modern industrial products. Hidden from the actual user

interface, they have specialised components that have been always designed for a particular appli-

cation. They are usually heterogeneous containing software as well as hardware parts (see Figure

2). Latter ones may be built from standard architectures, but custom components are quite com-

mon if high-performance computing is required, e. g. for digital signal processing. On the other

side, their software has to be very efficient to keep hardware costs as low as possible.

Custom hardware and the integration in a surrounding system make modifications to an em-

bedded system a very difficult task so that errors usually have severe consequences on the eco-

nomic success of a system.
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Correctness

Industrial embedded systems are often found in safety-critical areas, and thus, they must meet

high quality standards like functional correctness and dependability in a general sense. The stakes

are exceedingly high, and design errors potentially lead to severe damages including even the

loss of human lives. So, they must be developed with great care. It is therefore problematic that

computational geometry algorithms usually impose many tricky cases and, with them, unforeseen

problems that challenge the design of robust embedded systems. Their complexity is commonly

underestimated due to their seemingly intuitive nature. As a consequence, the difficulty of ge-

ometric algorithms is often underestimated and the algorithms are often only loosely described

by means of pictures. However, at a second glance, even simple definitions turn out to be much

more complicated than expected: For example, what is the intersection point of two lines, if both

lines are identical? For this reason, most algorithms sketched in literature only work under certain

preconditions like ‘all points are pairwise distinct’ or ‘no three points are collinear’. Finding con-

sistent definitions that also hold for degenerate input data is surprisingly difficult, which makes it

inherently difficult to develop a polygon-processing library for safety-critical embedded systems.

In the area of embedded systems, formal verification is already routinely performed as a com-

plementary technique to testing and simulation in order to ensure the correctness of the system.

Only formal methods provide languages whose meaning is clear enough to reason about required

definitions and algorithms without ambiguity. In order to also apply verification to new applica-

tions that have their origins in computational geometry, critical parts must be formalised so that

relevant specifications can be checked with theorem provers like the HOL [60] system. This rigor-

ously formal approach ensures that subtle cases will not be overseen and that all definitions are

consistently used.

The verification guarantees the correctness of the algorithmic part of the system. However,

implementation details, in particular the sensor part, remain unverified.

Simplification

Many embedded systems belong to the class of reactive systems, which are characterised by their

non-terminating, continuous interaction with their environment. In contrast to interactive systems,

the interaction points with the environment are not determined by the system. Instead, they must

context

actuators

sensors

embedded

system

hardware part

software part
system

Fig. 2. Schematic Structure of an Embedded System
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situation analysis

polygons and maps

algorithmic infrastructure

geometric primitives

geometry kernel

rational numbers

Fig. 3. Structure of the Polygon-Processing Library

react to the environment within a fixed response time. Systems that operate under these conditions

are usually called real-time systems.

Moreover, embedded systems are subject to economic constraints. Computation and memory

resources are dimensioned to an absolutely required minimum. hence, all algorithms must be

implemented very efficiently. Moreover, in order to cope with hard real-time constraints, the re-

source requirements must be limited. Conservative simplification techniques, which do not impair

the safety of the overall system, are a key component to meet the real-time requirements.

Rounding

The limited precision of the arithmetic operations of microprocessors leads to a loss of information.

For safety-critical systems, this loss of information may be fatal, since it may lead to inconsistent

situations that may consecutively lead to unexpected reactions of the system. In particular, using

the usual rounding methods as provided by the IEEE-754 standard for floating point numbers may

even lead to completely wrong results in geometric computations.

For this reason, some researchers propose the use of arbitrarily precise arithmetic or interval

arithmetic [63, 113, 123] to circumvent these problems. As these solutions are too complex for

small embedded devices, there is a need for explicit rounding functions that approximate the

results in a conservative manner according to the specific needs of the particular algorithms.

1.4 Structure of the Thesis

The structure of the thesis follows the structure of the developed system (see Figure 3). Each

chapter describes one of its layers — beginning with the basis of rational numbers and ending

with polygons and maps. Additionally, a system for analysing the environmental situation that

uses the polygon-processing library will be presented.

Chapter 2 starts with the verification foundations. It introduces the HOL system, an interactive

theorem prover and proof checker that has been used for all formalisations of this thesis. It features

an extensive library of mathematical theories and proof tools, which is extended by a theory of

rational numbers.

On top of this basis, a geometry kernel is developed in Chapter 3. Arbitrary-precision ratio-

nal numbers as considered before are used as the underlying arithmetric. All operations are for-

malised within a theory of two-dimensional analytic geometry and are implemented accordingly.
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So, reasoning about the correctness of geometric computations becomes possible. Arbitrary preci-

sion rational numbers are provided to the polygon-processing C library by the GNU Multiprecision

package [54].

Chapter 4 establishes an abstraction layer formed by geometric primitives. Hiding the details

of analytic geometry, higher-level programming and verification becomes possible. The definition

of these primitives is not straightforward: even simple cases pose tricky problems: For instance,

what is the interior of a general polygon? The theorem prover HOL is used to reason about the

formalisations and perform a comprehensive analysis in order to guarantee that all possible cases

are handled consistently and that computational geometry algorithms work as expected in all

possible cases. Three-valued logic is used from this layer upwards for concise definitions and

algorithms.

A fundamental approach that is used in many computational geometry algorithms is the subject

of Chapter 5: It presents the class of plane sweep algorithms. Its general paradigm is integrated

in the polygon-processing library by providing functions and data structures. Moreover, the plane

sweep is analogously integrated in the verification framework.

Chapter 6 introduces maps as data structures to describe areas in the plane. They form the

basis for polygon processing, the application considered in this thesis. Especially, the definitions of

the interior and exterior of regions are crucial points for the verification of map overlay algorithms.

A new algorithm for this problem is given, which respects the non-functional requirements of the

developed library.

On top of the polygon-processing library Chapter 7 constructs a situation-analysis systems for

autonomous mobile robots. It illustrates some new applications that become available with the

developed library. Furthermore, its efficiency is compared to other libraries that meet the same

(functional) requirements.

Finally, Chapter 8 sums up the results and draws some conclusions.





Chapter 2

Formal Foundations

As already stated in the introduction, the verification of the polygon-processing library is a very

important task of this thesis. This chapter lays the necessary foundations for this work.

In the following, an overview of the HOL System is given in Section 2.1. Its logical foundations

are presented, and it is explained how the system can be used to make definitions and to reason

about them. In Section 2.2, a theory of rational numbers and related tools are developed. First, this

illustrates the usage of the theorem prover, and second, the rational numbers theory and library

are used as a basis for all layers of the polygon-processing library. Although not all details are

important for the understanding of the rest of the thesis, the description of the theory gives a good

impression about the work with a theorem prover.

2.1 The HOL System

The HOL system [60, 77] is an interactive theorem prover for higher order logic with polymorphic

types. HOL has been developed by various researchers around the world for more than twenty

years. The system provides many data types, mathematical theories and proof tools, which can

be extended by users to adapt the system to personal needs. HOL has been used in many areas,

including hardware design and verification, reasoning about security, semantics of programming

languages, reasoning about real-time systems and software verification. For an (outdated by nev-

ertheless excellent) overview, see the paper by Kalvala [83].

The roots of the HOL family of theorem provers reach back to the LCF (Logic of Computable

Functions) system [61] developed by Milner, Gordon and others in Stanford and Edinburgh in

the early 70s. Like many other theorem provers (Coq[34], Isabelle[81, 108], NuPRL[109]), it

still follows the philosophy and main design principles of LCF, e. g. the protection of theorems

with an abstract data type. HOL evolved from LCF when Gordon developed a proof system for

hardware verification [19, 58]. Higher order logic is then a natural choice for description: Signals

are mapped to functions from a time data type to Booleans, and hardware components are just

relations from signals to signals.

2.1.1 Overview

The HOL logic is based on Church’s theory of simple types [30], which is extended by two signifi-

cant aspects: First, polymorphic types developed by Milner for the PCF logic PPλ [61] are added.

Second, it contains formal rules of definition for new constants and new types.
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In HOL, theorems are of the form

THEOREM NAME t1, . . . , tn ⊢ t

where the assumptions t1, . . . , tn and the conclusion t are Boolean terms. Such a theorem asserts

that if its assumptions are true, then also its conclusion is true. Hence, such a theorem is equivalent

to the validity of the formula t1 =⇒ . . . =⇒ tn =⇒ t, which will be used in the following. So,

theorems are simply written as

THEOREM NAME ⊢ t1 =⇒ . . . =⇒ tn =⇒ t

HOL’s calculus consists of five axioms and eight primitive inference rules (see Section 2.1.2):

This deductive system is shown to be sound, and all extensions of theories by definitions of types

and constants are conservative, i. e. they preserve the consistency of the theory, since their ex-

istence has to be proven in advance. Thus, all HOL theories are guaranteed to be consistent by

construction.

HOL is implemented in Moscow ML [104], a light-weight implementation of the strict func-

tional programming language ML [69, 110]. HOL’s open structure allows the users to implement

special proof rules and tactics in ML on top of HOL’s functions for their particular application1.

Types and terms of higher order logic are thereby implemented as data types in ML together with

corresponding constructors. Theorems are represented by an ML data type thm. As there is no

primitive constructor for this data type, the system is protected from creation of arbitrary theo-

rems. The only way to create them is by presenting the system a proof, which can be achieved by

forward (see Section 2.1.2) and backward reasoning (see Section 2.1.3).

As higher order logic is a very powerful logic, automated theorem proving is only possible in

a limited way. For the proof construction the system either requires hints from a human user in

an interactive session, or tactics that have been previously defined by the user. HOL’s meta lan-

guage can be used for programming and extending the theorem prover: New and more powerful

inference rules can be obtained by combining simpler rules, and definitions and theorems can be

aggregated to form new theories for later use. In this way, the metalanguage makes efficient proofs

consisting of millions of derivation steps possible. For many types (including the naturals, integers

and reals), HOL has so-called simplifiers, which feature contextual rewriting with conditions and

embedded decision procedures. Moreover, resolution and model elimination for first-order reason-

ing are integrated.

The HOL system comes with dozens of theories providing hundreds of theorems, inference

rules, tactics and other useful functions. As each theorem is derived from the core of the system,

i.e. the axioms and the primitive inference rules, the HOL system ensures that only consistent

theories are created. In this way, a large system can be built on top of a small trusted kernel.

2.1.2 System Kernel

As a theorem prover is intended to check other systems, it must be very reliable. The HOL system

achieves this by restricting to a very small kernel. Naive and pure implementations of the central

part fit on a few pages and can be easily inspected by hand. All things outside this kernel are

designed to be checked by the kernel, so that the correctness of the system can never be affected

1 This was the original purpose of the ML programming language, a meta language for the LCF theorem

prover [61].
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by programming errors. The following paragraphs present the core types and key concepts of the

HOL system, which are implemented in the system kernel. For a detailed description, especially

the semantics, refer to [60] or the HOL reference [77].

Types

The HOL logic is based on Church’s theory of simple types [30]. Its syntax contains categories that

denote certain sets and elements of them. These are taken from the universe U , which is defined

as follows [60, 77]:

Definition 1 (Universe). The universe U is a fixed set of sets that has the following properties:

• Each element X ∈ U of the universe is non-empty.

• If a set in the universe X ∈ U has a non-empty subset Y ⊆ X, then the subset is also in the

universe Y ∈ U .

• If X ∈ U and Y ∈ U , then the Cartesian product is also in the universe X ×Y ∈ U . The set X ×Y

consists of the ordered pairs (x, y), where x ∈ X and y ∈ Y .

• If X ∈ U , then the powerset ℘(X) = {Y : Y ⊆ X} is also in the universe U .

• The universe U contains a distinguished infinite set I.

• There is a distinguished element ch ∈ ΠX∈UX. The elements of the product ΠX∈UX are depen-

dently typed functions: Thus, for all X ∈ U , X is non-empty by the first property and ch(X) ∈ X

is the witness.

From these properties, it follows that the universe U contains the set of functions X → Y ∈ U (if

X ∈ U and Y ∈ U) and a distinguished two-element set B.

Definition 2 (HOL Types). Types of the HOL logic are expressions that determine elements of the

universe U . Basically, there are four different kinds:

• Atomic types denote fixed sets of the universe U . In each theory, a particular collection of atomic

types is determined. For example, the standard atomic type bool denotes the two-element set B.

• Compound types are built from other types σ1, . . . σn. For a given operation, (σ1, . . . , σn)op is a

type denoting the set resulting from the application of op to the sets σ1, . . . , σn. For example, prod

is a type operator of arity 2 that denotes the Cartesian product operation.

• Function types are built from two other types σ1 and σ2: σ1 → σ2 is the function type with domain

σ1 and range σ2. It denotes the set of total functions from the set denoted by its domain to the set

denoted by its range. In principle, → is simply a distinguished type operator of arity 2. However,

it is singled out in the definition of HOL types, since it always denotes the same operation in any

model of the HOL theory.

• Type variables: They stand for arbitrary sets in the universe.

Terms

Terms in the HOL logic are expressions that denote elements of the sets denoted by types. Thus,

each term t is associated with a unique type σ that is expressed by tσ. As the definition of types in

HOL is relative to a particular type structure Ω, the formal definition of terms is relative to a given

collection of typed constants over Ω. A signature over Ω is just a set ΣΩ of such constants.
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HOL notation standard notation description

Truth T T true

Falsity F F false

Negation ~t ¬t not t

Disjunction t1\/t2 t1 ∨ t2 t1 or t2

Conjunction t1/\t2 t1 ∧ t2 t1 and t2

Implication t1==>t2 t1 =⇒ t2 t1 implies t2

Equality t1=t2 t1 = t2 t1 equals t2

∀-quantification !x.t ∀x.t for all x : t

∃-quantification ?x.t ∃x.t for some x : t

ε-term @x.t εx.t an x such that t

Fig. 4. Logical HOL Constants [60]

Definition 3 (HOL Terms). The set of terms over ΣΩ is defined to be the smallest set closed under

the formation rules:

• Constants: A constant cσ over Ω is a pair (c, σ) where c ∈ Names and σ ∈ Typesω.

(Assume that an infinite set Names of names is given.)

• Variables: If x ∈ Names and σ ∈ TypesΩ then the variable var xσ is a term over ΣΩ .

• Lambda-abstractions: The lambda-abstraction (which denotes a function) (λxσ1
.tσ2

)σ1→σ2
is a

term if var xσ1
∈ TermsΣΩ

and tσ2
∈ TermsΣΩ

.

• Function applications: If tσ ∈ TermsΣΩ
and t′σ′ ∈ TermsΣΩ

then (tσ′→σ t′σ′)σ ∈ Terms. An

application t t′ denotes the result of applying the function denoted by t to the value denoted by t′.

Standard structures

A standard type structure Ω contains the atomic types B of Boolean values and P of individu-

als. Logical formulas are then identified with terms of type B. In addition, for being standard a

signature must contain various logical constants with interpretation given by a standard model M :

• Implication: =⇒ of type (B → B → B) represents the implication. The intended interpretation

M(⇒, B → B → B) is as follows: b =⇒ b′ is 0, if b = 1 and b′ = 0; otherwise b =⇒ b′ is 1.

• Equality: = of type (α → α → B) denotes equality on the set denoted by α. The intended

interpretation M(=, α → α → B) is as follows: x = x′ is 1 if and only if x is equal to x′;

otherwise it is 0.

• Choice function: ε of type ((α → B) → α) is Hilbrt’s choice function. The intended interpreta-

tion M(ε, (α → B) → α) is as follows: εP selects an element x of type α such that P (x) holds.

If no such element exists, εP denotes an arbitrary element of type α (see Definition 1).

The minimal theory of HOL consists only of these standard items without any axioms. In the next

step, the standard set of logical constants (see Figure 4) is constructed with the help of these basic

primitives. There are several possibilities, e. g. the following one:



2.1 The HOL System 21

EXISTS ⊢def ∃ = λP.P (εP )

TRUTH ⊢def T = ((λx.x) = (λx.x))

FORALL ⊢def ∀ = λP.(P = (λx.T))

FALSITY ⊢def F = ∀x.x

NEGATION ⊢def ¬ = λx.x =⇒ F

DISJUNCTION ⊢def ∨ = λ(x, y).¬x =⇒ y

CONJUNCTION ⊢def ∧ = λ(x, y).¬(¬x ∨ ¬y)

Deductive System

So far, only types and terms have been defined. For the creation of proofs, the deductive system

has to be added. This system basically defines which formulas are theorems. This is either done

explicitly by giving a term, which is then called an axiom. Or, the theorem can be derived by

other theorems and inference rules. The deductive system of HOL is shown to be sound: Theories

constructed on top of the initial HOL theory are guaranteed to be consistent.

Primitive Inference Rules

Inference rules are constructed by the following eight primitive rules [77]:

• Assumption Introduction

ASM INTRO
t ⊢ t

• Reflexivity

REFLEX
⊢ t = t

• Beta conversion: Let t1[t2/x] be the result of substituting t2 for x in t1, with suitable renaming

of variables to prevent free variables in t2 becoming bound after substitution.

BETA CONV
⊢ (λx.t1)t2 = t1[t2/x]

• Substitution: Let t[t1, . . . , tn] denote a term t with some free occurrences of subterms t1, . . . , tn

singled out, and let t[t′1, . . . , t
′
n] denote the result of replacing each selected occurrence of ti

by t′i (for 1≤i≤n), with suitable renaming of variables to prevent free variables in t′i becoming

bound after substitution.

SUBST
Γ1 ⊢ t1 = t′1 · · · Γn ⊢ tn = t′n Γ ⊢ t[t1, . . . , tn]

Γ1 ∪ · · · ∪ Γn ∪ Γ ⊢ t[t′1, . . . , t
′
n]

• Abstraction: Let x be not free in Γ .

ABS
Γ ⊢ t1 = t2

Γ ⊢ (λx.t1) = (λx.t2)
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• Type instantiation: Let t[σ1, . . . , σn/α1, . . . , αn] be the result of substituting the types σ1, . . . , σn

for type variables α1, . . . , αn in t, and let none of the type variables α1, . . . , αn occur in Γ , and

no distinct variables in t become identified after the instantiation.

TYPE INST
Γ1 ⊢ t1 = t′1 · · ·Γn ⊢ tn = t′n Γ ⊢ t[t1, . . . , tn]

⊢ Γ1 ∪ · · · ∪ Γn ∪ Γ ⊢ t[t′1, . . . , t
′
n]

• Discharging an assumption

DISCH
Γ ⊢ t2

Γ − {t1} ⊢ t1 =⇒ t2

• Modus ponens

MP
Γ1 ⊢ t1 =⇒ t2 Γ2 ⊢ t1

Γ1 ∪ Γ2 ⊢ t2

Axioms

The initial theory of HOL logic contains the following five axioms. All other theorems are based

on these axioms through the inference rules presented above.

BOOL CASES AX ⊢def ∀t. (t = T) ∨ (t = F)

IMP ANTISYM AX ⊢def ∀t1 t2. (t1 =⇒ t2) =⇒ (t2 =⇒ t1) =⇒ (t1 = t2)

ETA AX ⊢def ∀t. (λx. t x) = t

SELECT AX ⊢def ∀Pα→B.∀x. Px =⇒ P (εP )

INFINITY AX ⊢def ∃fI→I .OneOne(f) ∧ ¬Onto(f)

where OneOne and Onto are defined as follows:

ONE ONE DEF ⊢def OneOne(f) = (∀x1 x2.(f(x1) = f(x2)) =⇒ (x1 = x2))

ONTO DEF ⊢def Onto(f) = (∀y.∃x. y = f(x))

2.1.3 Using the Theorem Prover

The HOL system provides an environment for writing specifications and creating formal proofs of

their properties. The work with a theorem prover is almost like programming. The role of modules

is taken by theories in HOL. Each of the theories contains related types, constants, definitions and

theorems, which can be reused. Like in programming, the design of a clean interface is the key to

a good system structure.

The role of testing is taken by constructing proofs: When trying to show properties, all problems

are discovered: definitions can be erroneous, proof tools may not not powerful enough, or the

specification does not hold. In contrast to testing, a proof is always complete for the given property.

Additionally, there are libraries that contain custom proof tools. This part of the theorem prover

is real programming: ML functions that manipulate terms, apply rules to theorems, or automati-

cally construct proofs can be written to ease the proof development.

In this section, the user interface of the theorem prover is shown, i. e. how the user can extend

existing theories and proof tools for his own needs to adapt the theorem prover to his application.
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Fig. 5. Definition of New Types

Definition of Types

New types are always derived from existing ones (see Figure 5). Although the HOL library also

provides other possibilities (inductive or algebraic definitions, quotients, records) to define new

types, they are always reduced to the basic constructions presented in the following: From the

set of existing types, a base type R is selected. With the help of a predicate P that is defined on

elements of R, a subset is fixed that is the basis of the new type A. Each element inside P is

mapped by the so-called abstraction function abs to an element of the new type. In the reverse

direction, rep can be used to get the representative of a new element in the old type R.

New HOL types A are nonempty (as required by the base logic), i. e. there must always be an

element for the new type. This must be explicitly proven for each new type when it is constructed,

which is accomplished by proving ∃r ∈ R. P (r).

For example[60], a type containing three elements THREE can be derived from the product

of two Booleans B × B. In order to get only three elements (and not the four possible ones of the

base type), the predicate P (x, y) = ¬(x ∧ y) is used to restrict the range. The result is a new type

THREE, which consists of the element set {abs(F,F), abs(F,T), abs(T,F)}. For the non-emptiness

proof, an arbitrary element of the three representatives is used as witness.

Definition of Terms

New functions and operators can be defined by the user as expected. The definition can either

be an abbreviation or a (primitive or well-founded) recursive function. For recursive functions,

termination must be proven if it is not obvious for the system2. Beside the condition that the right-

hand side of the definition must not contain free variables, all occurrences of the defined term

must have the same type (for recursive functions).

For example, the sign function for integers can be defined as follows:

sgn ⊢def sgn(x) = if x = 0 then 0 else (if x < 0 then −1 else 1)

An interesting question arises when functions are redefined. As HOL does not require that the

left-hand side of a definition is unbound, a function can be given a new behaviour. Thus, theorems

containing the old definitions generally do not hold for the new definition. However, they are

not invalidated, but the identifier of the function is changed in all old theorems. Hence, several

incarnations of a single function are possible, where only the last one is accessible by the specified

name.

2 As an example for a termination proof, see the Cohen-Sutherland line clipping algorithm presented in

Section 4.5.2.
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Theorems and Proofs

For a logician, a formal proof is a sequence, which contains as elements either axioms or proposi-

tions that follow from earlier members of the sequence by a rule of inference. The result of a proof

is a theorem, which is given by the last element of the sequence.

In HOL, theorems are represented by instances of the ML data type thm, and rules are ML

functions that take a number of these theorems as inputs and combine them to a new one. As

there is no primitive constructor for the thm data type, rules are the only possibility to create new

theorems. Thus, every value of type thm in the HOL system can be obtained by repeatedly applying

primitive inference rules to axioms. 3

The previous section listed the primitive inference rules, which are very low-level. To illustrate

the rules, consider the following exemplary four rules, which are commonly used in proofs:

• Undischarging (UNDISCH): The left-hand side of an implication can be removed from the goal

and added to the assumptions.

Γ ⊢ t1 =⇒ t2

Γ, t1 ⊢ t2

• Symmetry of equality (SMY): Both sides of an equation in a theorem can be exchanged.

Γ ⊢ t1 = t2

Γ ⊢ t2 = t1

• Transitivity of equality (TRANS): If a theorem states that if t1 is equal to t2, which is in turn

equal to t3, then t1 is equal to t3.

Γ1 ⊢ t1 = t2 Γ2 ⊢ t2 = t3

Γ1 ∪ Γ2 ⊢ t1 = t3

• Rewriting (REWRITE RULE): One of the most important and most powerful inference rules is

rewriting, which does a limited amount of automatic theorem-proving. It uses a list of equa-

tional theorems (Γ ⊢ t1 = t2) to replace any subterms of an object theorem that match t1 by

the corresponding instance of t2. Conditional and recursive rewriting is also supported.

Tactics

The style that is described in the last section is commonly referred to as a forward proof. For many

applications, it is quite unnatural and too low-level to construct proofs in this way. Therefore,

Milner invented the notion of tactics in the early 1970s, which represents an important advance

in proof generating methodology.

Tactics are used in a goal-oriented proof. These proofs start with a goal Γ ⊢? t, which consists

of the same components as a theorem: Γ denotes the assumptions, whereas t represents the actual

goal. A tactic is a program that takes such a goal Γ ⊢? t1 and splits it into a set of simpler subgoals

Γ1 ⊢? t1, . . . , Γ ⊢? tn:

3 In principle, there is another possibility, the function mk thm, which can be used to arbitrarily create new

theorems. However, these theorems are tagged, and these tags are propagated to all proofs that such

theorems are used in. This mechanism allows the integration of external tools, like model checkers or sat

solvers. Nevertheless, for each theorem, its origins are traceable, and the user knows on which tools he

must trust for each theorem.
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Γ ⊢? t

Γ1 ⊢? t1 . . . Γ ⊢? tn

Tactics keeps track why solving the subgoals will solve the complete goal. If all subgoals match

already proven theorems, the proof can be constructed by them and the rule associated with the

tactic.

So, a proof can be structured in a tree: In the root node, the original goal is specified. Tactics

insert new nodes below the one containing the goal that the tactic is applied. When all leaves

of the tree contain already proven theorems, these theorems are combined bottom-up in the tree

with help of the rules associated with each tactic until the original goal is proven.

For instance, suppose the goal is to prove A ∧B. Thus, it is sufficient to prove A and B, which

is stated in the the ∧-introduction, which corresponds to the HOL rule CONJ:

Γ1 ⊢ t1 Γ2 ⊢ t2

Γ1 ∪ Γ2 ⊢ t1 ∧ t2

Therefore, this justification can be used for the reduction of the goal A∧B to the two subgoals A,

as the HOL tactic CONJ TAC implements:

Γ ⊢? t1 ∧ t2

Γ1 ⊢? t1 Γ ⊢? t2

Libraries

Tactics are just one tool to construct proofs. Other important tools are simplification sets and

conversions.

So-called simplification tactics define a general proof strategy based on simplification sets,

which contain (amongst other components) rewriting theorems, associativity and commutativity

theorems and decision procedures for a number of operations and definitions that are the scope

of the simplification.

Conversions are ML functions that construct a theorem from a given term. For instance, the

HOL library contains a conversion that takes a term describing an expression over the integers,

reorders all parts of it to a normal form according to associativity and commutativity laws and

finally proves the equivalence of the initial and the normal form. Conversions are very handy if

some tactic should be only applied to a part of the goal. The conversion is given the desired part

of the goal, for which it will generate an appropriate theorem. This can then be used for rewriting.

The HOL system features much more proof tools, which, however, will not discussed here. In

the following, the formalisation of rational numbers is presented, which illustrates the descriptions

of the HOL system given in this section.

2.2 Rational Numbers

The basis of all the verification work presented in this thesis are rational numbers. As the stan-

dard HOL library does not provide a theory for them, the first step with the theorem prover is

their formalisation. Based on the theory of integers, fractions are introduced as pair of integers.
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Subsequently, rational numbers are constructed as equivalence classes of them. The following

paragraphs give an overview of the theory by showing its design goals and the most important

theorems and tactics. In the meantime, the theory has been contributed to the standard HOL li-

brary, and is used in various other theories of the current version of the HOL system as e. g. in the

embedding of the ACL2 theorem prover [57].

2.2.1 Definition of Fractions

The first step towards rational numbers is the definition of fractions. It is a matter of common

knowledge that a fraction f consists of a pair of integers (a, b), whose components are known as

the numerator (a) and the denominator (b) of f . The latter of the two components must not be

zero; otherwise the fraction does not have a clear meaning. To make things easier, the sign of a

fraction is always moved to the numerator. Thus:

f =
a

b
with a, b ∈ Z, b > 0

The fractions theory introduces two constants 0frac and 1frac. Furthermore, it defines some basic

operations on fractions: fnmr(f) returns the numerator, fdnm(f) the denominator and fsgn(f) the

sign of a f , respectively. Two inverses are defined: the additive one fainv(f) and the multiplica-

tive one fminv(f). Note that the domain of the multiplicative inverse is not restricted to non-zero

fractions: fminv(0frac) = 1
0 is possible, albeit expressions containing this subexpression are almost

unreducible. Addition fadd(f1, f2) and multiplication fmul(f1, f2) are defined intuitively. Subtrac-

tion fsub(f1, f2) and division fdiv(f1, f2) use these definitions and the additive and multiplicative

inverse elements. In the following definitions, fst(p) denote the first component and snd(p) the

second component of the underlying pair, respectively.

frac 0 ⊢def 0frac = 0
1

frac 1 ⊢def 1frac = 1
1

frac nmr ⊢def fnmr(f) = fst(repfrac(f))

frac dnm ⊢def fdnm(f) = snd(repfrac(f))

frac sgn ⊢def fsgn(f) = sgn(fnmr(f))

frac ainv ⊢def fainv(f) = −fnmr(f)
fdnm(f)

frac minv ⊢def fminv(f) = fsgn(f)·fdnm(f)
|(fnmr(f))|

frac add ⊢def fadd(f1, f2) = fnmr(f1)·fdnm(f2)+fnmr(f2)·fdnm(f1)
fdnm(f1)·fdnm(f2)

frac mul ⊢def fmul(f1, f2) = fnmr(f1)·fnmr(f2)
fdnm(f1)·fdnm(f2)

frac sub ⊢def fsub(f1, f2) = fadd(f1, fainv(f2))

frac div ⊢def fdiv(f1, f2) = fmul(f1, fminv(f2))

In the pair library, there are theorems to access the components of a pair. Since fractions are

derived from ordered pairs, similar theorems are provided by the fractions library: NMR and DNM

reduce the terms fnmr(a
b
) and fdnm(a

b
). Both of them require that the denominator of the in-

cluded fraction is positive. Otherwise, the simplification step cannot be performed. To show the

required precondition, the conversions FRAC POS CONV and the tactic FRAC POS TAC can be used:

they exploit that the denominators of fractions are positive (FRAC DNMPOS) and the product of two

positive numbers is positive (INT MUL POS SIGN). Similarly, FRAC NOT0 CONV(t) shows that a given

term does not equal zero.
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operator precedence description

− prefix additive inverse
−1 postfix multiplicative inverse

+ 500 addition

− 500 subtraction

· 600 multiplication

/ 600 division

< 450 less than

> 450 greater than

≤ 450 less or equal

≥ 450 greater or equal

Fig. 6. Operators Defined over the Rationals

FRAC NMR CONV extracts the numerator of a fraction (with the help of NMR). If this conversion is

given the term fnmr(a1

b1
), it will return the theorem 0 < b1 ⊢ fnmr(a1

b1
) = a1. FRAC DNM CONV works

analogously. As it is very exhausting to do these simplification steps by hand, the fractions library

provides FRAC NMRDNM TAC, which repeatedly applies the conversions to all appropriate terms of

the goal.

Finally, FRAC EQ TAC is a tactic that is used in almost every proof involving fractions: To show

that two fractions are equal, it is sufficient to show that both their numerators and denominators

are equal.

2.2.2 Definition of Rational Numbers

Rational numbers are constructed as equivalence classes of fractions induced by the following

relation ≃rat:

rat equiv ⊢def f1 ≃rat f2 = (fnmr(f1) · fdnm(f2) = fnmr(f2) · fdnm(f1))

Two fractions f1 and f2 are equivalent under ≃rat, if and only if the fractions f ′
1 and f ′

2 that are

obtained by the cancelling of f1 and f2 are equal. The following theorem asserts this intended

meaning:

RAT EQUIV ALT ⊢ ≃rat a =

λx.(∃bc.0 < b ∧ 0 < c ∧ (fmul(a, b
b
) = fmul(x, c

c
)))

After ≃rat is proven to be an equivalence relation, the quotient type of rational numbers is defined

with the help of the quotient theory [78]. Then, for each function defined over the fractions, a

corresponding one for the rationals is defined. Figure 6 lists all functions with their corresponding

operator symbols.

The following list gives the definition of all basic functions for the rationals. mkRat(f) denotes

the abstraction of a fraction to a rational number, where repRat(r) is the inverse, i. e. it returns the

representing fraction of a rational number.



28 2 Formal Foundations

rat 0 ⊢def 0 = mkRat(0frac)

rat 1 ⊢def 0 = mkRat(1frac)

rat nmr ⊢def nmr(r1) = fnmr(repRat(r1))

rat dnm ⊢def nmr(r1) = fdnm(repRat(r1))

rat sgn ⊢def nmr(r1) = fsgn(repRat(r1))

rat ainv ⊢def −r1 = mkRat(fainv(repRat(r1)))

rat minv ⊢def r−1
1 = mkRat(fminv(repRat(r1)))

rat add ⊢def r1 + r2 = mkRat(fadd(repRat(r1), repRat(r2)))

rat sub ⊢def r1 − r2 = mkRat(fsub(repRat(r1), repRat(r2)))

rat mul ⊢def r1 · r2 = mkRat(fmul(repRat(r1), repRat(r2)))

rat div ⊢def r1/r2 = mkRat(fdiv(repRat(r1), repRat(r2)))

The equivalence relation ≃rat is proven to be a congruence relation for these operations. This is

a very important precondition for the proof of all arithmetic rules. For instance, the theorems for

the addition are as follows:

RAT ADD CONG1 ⊢ mkRat(fadd(repRat(mkRat(x)), y)) = mkRat(fadd(x, y))

RAT ADD CONG2 ⊢ mkRat(fadd(x, repRat(mkRat(y)))) = mkRat(fadd(x, y))

2.2.3 Arithmetic Rules for Rational Numbers

The rational numbers together with their operations form a field. In particular, they also form a

ring. With these properties, various arithmetic rules are proven. Moreover, the conversions and

tactics to simplify ring terms [60] of the ringLib can be used. They allow to transform ring terms

in a normal form so that the equality of two expressions can be reduced to a syntactic equality

test.

RAT ADD ASSOC ⊢ r1 + (r2 + r3) = (r1 + r2) + r3

RAT MUL ASSOC ⊢ r1 · (r2 + r3) = (r1 + r2) · r3

RAT ADD COMM ⊢ r1 + r2 = r2 + r1

RAT MUL COMM ⊢ r1 · r2 = r2 · r1

RAT LDISTRIB ⊢ r3 · (r1 + r2) = r3 · r1 + r3 · r2

RAT RDISTRIB ⊢ (r1 + r2) · r3 = r1 · r3 + r2 · r3

RAT ADD LID ⊢ 0 + r1 = r1

RAT ADD RID ⊢ r1 + 0 = r1

RAT MULT LID ⊢ 1 · r1 = r1

RAT MULT RID ⊢ r1 · 1 = r1

RAT ADD LINV ⊢ −r1 + r1 = 0

RAT ADD RINV ⊢ r1 + −r1 = 0

RAT MUL LINV ⊢ (r1 6= 0) =⇒ r−1
1 · r1 = 1

RAT MULRINV ⊢ (r1 6= 0) =⇒ r1 · r
−1
1 = 1

RAT 1 NOT 0 ⊢ 1 6= 0

The relations ≤ and ≥ are proven to be a total order, and < and > are shown to be the strict and

total orders induced by them.
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RAT LEQ REF ⊢ r1 ≤ r1

RAT LEQ ANTISYM ⊢ r1 ≤ r2 ∧ r2 ≤ r1 =⇒ (r1 = r2)

RAT LEQ TRANS ⊢ r1 ≤ r2 ∧ r2 ≤ r3 =⇒ r1 ≤ r3

RAT LEQ TOTAL ⊢ r1 ≤ r2 ∨ r2 ≤ r1

RAT LES REF ⊢ ¬r1 < r1

RAT LES ANTISYM ⊢ r1 < r2 =⇒ ¬r2 < r1

RAT LES TRANS ⊢ r1 < r2 ∧ r2 < r3 =⇒ r1 < r3

RAT LES TOTAL ⊢ r1 < r2 ∨ (r1 = r2) ∨ r2 < r1

Various properties of the sign function sgn are proven, e. g. that the sign of a product is the product

of the signs of the factors. With their help, the sign of an expression can be computed by the sign

of the partial expressions.

RAT SGN 0 ⊢ sgn(0) = 0

RAT SGN AINV ⊢ −sgn(−r1) = sgn(r1)

RAT SGN MINV ⊢ (r1 6= 0) =⇒ (sgn(r−1
1 ) = sgn(r1))

RAT SGN MUL ⊢ sgn(r1 · r2) = sgn(r1) · sgn(r2)

The classical transformation of equations are proven to be correct. The first group of theorems

describes modifications of both sides of an equation, while the second group deals with moving

operations or terms from one side to another. For instance, the theorem RAT AINV EQ states that a

minus sign in front of the left-hand side of the equation can be transferred to the right-hand side.

With these theorems, equation transformations can be performed within the theorem prover.

RAT EQ AINV ⊢ (−r1 = −r2) = (r1 = r2)

RAT EQ RADD ⊢ (r1 + r3 = r2 + r3) = (r1 = r2)

RAT EQ LADD ⊢ (r3 + r1 = r3 + r2) = (r1 = r2)

RAT EQ RMUL ⊢ (r3 6= 0) =⇒ ((r1 · r3 = r2 · r3) = (r1 = r2))

RAT EQ LMUL ⊢ (r3 6= 0) =⇒ ((r3 · r1 = r3 · r2) = (r1 = r2))

RAT AINV EQ ⊢ (−r1 = r2) = (r1 = −r2)

RAT LSUB EQ ⊢ (r1 − r2 = r3) = (r1 = r2 + r3)

RAT RSUB EQ ⊢ (r1 = r2 − r3) = (r1 + r3 = r2)

RAT LDIV EQ ⊢ (r2 6= 0) =⇒ ((r1/r2 = r3) = (r1 = r2 · r3))

RAT RDIV EQ ⊢ (r3 6= 0) =⇒ ((r1 = r2/r3) = (r1 · r3 = r2))

Similar theorems are created for inequations. In contrast to the equations, there is the double

number of theorems for the multiplication, since the sides of the equation must be swapped for

negative factors.
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RAT LES AINV ⊢ −r1 < −r2 = r2 < r1

RAT LES LADD ⊢ (r3 + r1) < (r3 + r2) = r1 + r2

RAT LES RADD ⊢ (r1 + r3) < (r2 + r3) = r1 + r2

RAT LES LMUL POS ⊢ 0 < r3 =⇒ (r3 · r1 < r3 · r2) = r1 < r2)

RAT LES LMUL NEG ⊢ r3 < 0 =⇒ (r3 · r2 < r3 · r1) = r1 < r2)

RAT LES RMUL POS ⊢ 0 < r3 =⇒ (r1 · r3 < r2 · r3) = r1 < r2)

RAT LES RMUL NEG ⊢ r3 < 0 =⇒ (r2 · r3 < r1 · r3) = r1 < r2)

RAT AINV LES ⊢ −r1 < r2 = −r2 < r1

RAT LSUB LES ⊢ (r1 − r2) < r3 = r1 < (r2 + r3)

RAT RSUB LES ⊢ r1 < (r2 − r3) = (r1 + r3) < r2

RAT LDIV LES POS ⊢ 0 < r2 =⇒ ((r1/r2 < r3) = (r1 < r2 · r3))

RAT LDIV LES NEG ⊢ r2 < 0 =⇒ ((r1/r2 < r3) = (r2 · r3 < r1))

RAT RDIV LES POS ⊢ 0 < r3 =⇒ ((r1 < r2/r3) = (r1 · r3 < r2))

RAT RDIV LES NEG ⊢ r3 < 0 =⇒ ((r1 < r2/r3) = (r2 < r1 · r3))

The rational numbers are proven to be dense, i. e. between two rational numbers that are not

equal, a third number can always be found in between. For the proof, the average of the two given

numbers is used as a witness.

RAT DENSE THM ⊢ r1 < r3 =⇒ ∃r2. r1 < r2 ∧ r2 < r3

2.2.4 Proof Tools

Moreover, conversions and tactics are provided that calculate normal forms of rational ring terms.

With a simple syntactic test, the equality of two rational polynomials can be proven [64]. As

an alternative, tactics are given that reduce expressions between rational numbers to expression

between integers that can be handled by the integer decision procedures of the HOL system.

This heart of this reduction is the tactic RAT CALCTERM TAC(t): It transforms the expression t,

which must be constructed by the rational arithmetic operators (see Figure 6) to a plain rational

number of the form mkRat(f). Hence, a rational equation can be transformed to the normal form

mkRat(f1) = mkRat(f2). The fractions f1 and f2 can now be tested for equivalence by compar-

ing the mutual numerator-denominator product. The following rewrite rules are the core of this

process:
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RAT AINV CALCULATE ⊢

−mkRat(f1) = mkRat(fainv(f1))

RAT MINV CALCULATE ⊢

fnmr(f2) 6= 0 =⇒ mkRat(f1)
−1 = mkRat(fminv(f1))

RAT ADD CALCULATE ⊢

mkRat(f1) + mkRat(f2) = mkRat(fadd(f1, f2))

RAT SUB CALCULATE ⊢

mkRat(f1) − mkRat(f2) = mkRat(fsub(f1, f2))

RAT MUL CALCULATE ⊢

mkRat(f1) · mkRat(f2) = mkRat(fmul(f1, f2))

RAT DIV CALCULATE ⊢

fnmr(f2) 6= 0 =⇒ mkRat(f1)/mkRat(f2) = mkRat(fdiv(f1, f2))

RAT EQ CALCULATE ⊢

(mkRat(f1) = mkRat(f2)) = (fnmr(f1) · fdnm(f2) = fnmr(f2) · fdnm(f1))

RAT LES CALCULATE ⊢

(mkRat(f1) < mkRat(f2)) = (fnmr(f1) · fdnm(f2) < fnmr(f2) · fdnm(f1))

While RAT CALCTERM TAC(t) applies the calculation rules to the term t only, RAT CALC TAC applies

it to all terms of type Q in the goal. If some of the rewrite rules above yield preconditions (i. e. pos-

itive denominators), the tactic automatically tries to prove them. In the case of failure, the proof

obligations are added to the goal. Finally, RAT CALCEQ TAC performs all calculations and tries sub-

sequently to prove all equalities by applying integer decision procedures.

The library rat3Lib defines two simplification sets: the first one RAT3 ss contains the usual

arithmetic rules. The second simplification set LOG3 ac ss also includes the associativity and com-

mutativity theorems of the addition and multiplication. To ease transformations based on the as-

sociativity and commutativity of rational addition and multiplication, RAT AC TAC(e1 = e2) takes

an equation between two rational expressions e1 and e2. It tries to prove that both sides of the

equation are equivalent using the associativity and commutativity laws and uses this obtained

theorem to substitute e1 by e2 in the current goal.

This concludes the presentation of the rational numbers theory. The presented theorems and

proof tools make it possible to reason about functions that use rational numbers as the geometry

kernel, which is presented in the following. Further theories in this thesis will be given with less

details. Similar to program code in C, they always contain a lot of technical details that are not

needed for the understanding. Instead, the descriptions sum up the main results.





Chapter 3

Analytic Geometry

Classical geometry can be formalised in two ways: The first one is the axiomatic approach: All

theorems about geometry are derived from Euclid’s five axioms. The second approach is the con-

struction of geometry with the help of a coordinate system. For the problem considered here,

several points argue for the second way: the goal is the specification and verification of compu-

tational geometry algorithms, and these algorithms are generally based on a coordinate system.

Moreover, the constructive way of introducing new types reflects the usual way followed in the

HOL system. This may not have the beauty of the axiomatic way, but consistency is automatically

guaranteed.

The second approach is often referred to as analytic geometry. In this domain, all geometric

objects (like vectors, points, segments, rays, lines, curves, planes, circles, spheres etc.) have an

algebraic counterpart: Points v are represented by n-tuples of numbers, and a set of points is

described by a predicate P such that P (v) holds whenever v belongs to the represented set. This is

the viewpoint that computational geometry algorithms have. The work also follows this approach

and builds a theory of geometry on top of basic algebraic structures.

The following section focuses underlying numbers, which are used for the components of vec-

tors. Various issues with regard to the formalisation and implementation are discussed. Then,

Section 3.3 presents the analytic geometry theory, which was created as a formal basis of the ge-

ometry kernel. Section 3.4 shows how this theory can be used for theorem proving, and Section

3.5 sketches the implementation of the geometry kernel.

3.1 Underlying Arithmetic

In mathematics, geometric problems are usually examined by the means of vectors, where points

are given by tuples of real numbers. Nevertheless, this representation will not be used in the

following for two reasons:

First, the gap between formalisation and implementation should be kept as small as possible.

Although they can be formalised with a theorem prover [72], exact reals are far from any imple-

mentation. Thus, there would be a break between formalisation and implementation. Second, all

problems in this thesis are related to polygons: Thus, all relevant objects can be represented by

rational numbers — The only exception is the length of a vector. However, since the actual length

of a vector is usually not of interest, but rather the comparison of distances, comparing the rational

squares is sufficient. Other uses of real numbers are very rare in the domain of polygon-processing

[98].
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Fig. 7. Effects of Imprecise Floating Point Arithmetic

Rational numbers with arbitrary precision are used for the formalisation. They are imple-

mentable with the help of general purpose multiprecision libraries, like the GNU Multiprecision

Library (GMP) [54]. All computations are then guaranteed to be correct, even though an order

of magnitude slower than ordinary single-precision arithmetic, which is usable for prototypes.

However, for real systems, this loss cannot be accepted. Thus, a reasonable efficiency requires

approximations, which will be presented in Chapter 6.

The classical way to approximate reals or rationals in computers are floating-point numbers.

Their fixed precision affects all computations and causes round-off errors that are due to over-

flows and numerical imprecisions. By restricting input data to single-precision numbers and using

double-precision floating point numbers for intermediate results, the number of numerical errors

can be reduced, but cannot eliminated in general. Thus, the use of the floating point kernel is

unreliable and bears a certain amount of risk.

The basic problem is that the rounding of numbers follows fixed rules (round towards zero,

round to nearest etc.) that are fatal for some algorithms. For example, due to rounding errors, the

convex hull of a set of collinear points may consist of more than two points, or non-collinear lines

may have more than one intersection point, which is illustrated by the following example [98]:

Consider the lines l1 and l2 given by the equations:

l1 : y =
9833

9454
· and l2 : y =

9366

9005
· x

Obviously, the slope of l1 is larger than the slope of l2, since at x = 0, yl1 = 0 = yl2 and at

x = 9454 · 9005, yl1 = 9833 · 9005 = 9366 · 9454 + 1 = yl2 + 1. l1 and l2 intersect in the origin

and l1 is above l2 for all positive values of x. However, calculating the coordinates for all multiples

of 0.001 between 0 and 1 with the help of single precision floating point arithmetic leads to an

astonishing result: The lines seem to be braided. Figure 7 illustrates this result.

As another example, consider the problem to find out whether the sequence of three points

〈p1, p2, p3〉 is collinear or defines a left turn or a right turn. Rounding errors and overflows may

lead the algorithms to believe that both sequences 〈p1, p2, p3〉 and 〈p3, p2, p1〉 define a left turn – a

fact that is impossible.

Hence, special care must be taken when approximations are made in the implementation. In

this chapter, arbitrary-precision numbers are used, and limited precision will be considered later.

One reason for this is that a general approximation scheme cannot be fixed in this layer, since it

depends on the geometric applications on top of it. Moreover, even if such a scheme existed, an

inherent representation would complicate the formalisation by far and would make proof obliga-
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tions very difficult. A distinction between the geometric part of an algorithm and the arithmetic

part separates the concerns and limits the complexity of the verifications. The formalisation should

be independent of the choice of arithmetic in the implementation.

So, all details that are related to arithmetic are factored out initially. They can be changed

without affecting the correctness proof of the actual geometric algorithm (but not its implemen-

tation!). In the course of the verification of the algorithms, constraints can be determined for the

involved computations to restrict the arbitrary arithmetic to a fixed-precision one.

3.2 Analytic Geometry Basics

This section introduces the basic analytic geometry [33] that will be used in the rest of the thesis.

The terminology is fixed, and basic definitions and notions are given.

3.2.1 Basic Notions

The first thing that needs to be fixed in analytic geometry is the coordinate system. It maps a tuple

of scalars to a point in an n-dimensional space. There are various systems, and each one is more

or less appropriate for a particular problem. Two coordinate systems play an important role in

computational geometry:

• Cartesian Coordinates: The Cartesian coordinate system is due to René Descartes, a French

mathematician and philosopher, who published his ideas in 1637 in his book La géométrie. The

modern Cartesian coordinate system in two dimensions is defined by two axes, at right angles

to each other, forming a plane. The horizontal axis is labeled x, and the vertical axis is labeled

y. After choosing a unit length and marking it off along each axis, a grid is obtained. With its

help, a particular point p in the plane can now be specified by an ordered pair (X(p),Y(p)).

• Homogeneous coordinates: Homogeneous coordinates were originally introduced by August Fer-

dinand Möbius to make calculations possible in projective space. With their help, the basic

transformations tranlation, scaling, rotation, shear and any combinations can be all expressed

by a simple matrix multiplication. The homogeneous coordinates of a point p of projective

space of dimension n are given by a n+1-tuple (px, py, pz, . . . , pw), where all components must

not be zero at the same time. Homogeneous coordinates of a point are not unique: the same

point can be specified by two triples that are multiples of each other.

In this thesis, the Cartesian Coordinates are used, because they are simpler in the formalisation of

geometry.

Now that the coordinate system is fixed, the basic building block can be defined: A vector

v ∈ R2 in the plane

v =

(

X(v)

Y(v)

)

consists of a tuple of scalars, which are usually called its components. X(v) is its x-coordinate and

Y(v) its y-coordinate. The length and the norm of a vector |v| are defined as follows:

vec length ⊢def |v| =
√

X(v)2 + Y(v)2

vec norm ⊢def ||v|| = X(v)2 + Y(v)2
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The orthogonal vector orth(v) to another vector v is defined to be the vector of equal length that is

turned clockwise by 90 degrees, which can be determined by

vec orth ⊢def orth(v) =

(

Y(v)

−X(v)

)

The dot product of two vectors v1 and v2 is the sum of the component-wise product:

vec dprod ⊢def v1 ◦ v2 = X(v1) · X(v2) + Y(v1) · Y(v2)

and has the following properties:

• cos(α) = v1◦v2

|v1|·|v2|
(α is the angle between from v1 to v2)

• v1 × v2 = 0 if and only if v1 and v2 are orthogonal

The cross product of two vectors v1, v2 ∈ R3 is defined as follows:

v1 × v2 =







Y(v1)Z(v2) − Z(v1)Y(v2)

Z(v1)X(v2) − X(v1)Z(v2)

X(v1)Y(v2) − Y(v1)X(v2)






with v1, v2 ∈ R3

The length of the cross product v1×v2 can be interpreted as the unsigned area of the parallelogram

having v1 and v2 as sides. A variant of it can be defined for the two-dimensional case. To this end,

the z-component of each input vector is set to 0. The x and the y components of the cross product

are 0, and the z-component is equal to the area of parallelogram denoted by v1 and v2. This

operation can be abbreviated as follows:

vec cprod ⊢def v1 × v2 = X(v1) · Y(v2) − Y(v1) · X(v2)

A point p in the plane R2 is given by its position vector. Although there is a difference between

vectors and points, they are not distinguished anymore, since they have the same base type (pairs

of coordinates) and can be simply converted.

Lines are given by two different points p1 and p2 that the line crosses. Lines have an orientation,

which will become interesting when talking about left or right of a line.

g : y(t) = p1 + t · vg with t ∈ R

vg = (p2 − p1) is the direction vector of the line l. A segment p1p2 can be specified analogously by

its two endpoints p1 and p2:

p1p2 : y(t) = p1 + t · (p2 − p1) with t ∈ [0, 1]

3.2.2 Intersection of Two Lines

Consider the computation of the intersection of two lines as an example. This problem is used

throughout the chapter to illustrate the presented definitions and concepts. Moreover, this prob-

lem is a basic building block of many algorithms. It directly relies on the algebraic basis of compu-

tational geometry, and in the spirit of algebraic geometry, the geometric problem is transformed

to an algebraic one in the following.

To compute the intersection point, it must be first checked whether such a point exists. Figure

8 shows the three cases: If the lines are parallel, they either do not share a common point (b) or
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(a) (c)(b)

Fig. 8. Intersections of Two Lines

they are identical (c). Otherwise, there is a unique intersection point (a), which can be computed

by solving the following equation system:

g1 : y1(t) = p1 + t · (p2 − p1) with t ∈ R

g2 : y2(t) = q1 + t · (q2 − q1) with t ∈ R

which can be transformed to

p1 + αP (p2 − p1) = q1 + αQ(q2 − q1)

αP and αQ can now be calculated as follows:

αP =
(X(q1) − X(p1)) + αQ(X(q2) − X(q1))

X(p2) − X(p1)
=

(Y(q1) − Y(p1)) + αQ(Y(q2) − Y(q1))

Y(p2) − Y(p1)

⇔ (X(q1) − X(p1))(Y(p2) − Y(p1)) + αQ(X(q2) − X(q1))(Y(p2) − Y(p1))

= (Y(q1) − Y(p1))(X(p2) − X(p1)) + αQ(Y(q2) − Y(q1))(X(p2) − X(p1))

⇔ αQ [(X(q2) − X(q1))(Y(p2) − Y(p1)) − (Y(q2) − Y(q1))(X(p2) − X(p1))]

= (Y(q1) − Y(p1))(X(p2) − X(p1)) − (X(q1) − X(p1))(Y(p2) − Y(p1))

⇔ αQ =
(p2 − p1) × (q1 − p1)

(q2 − q1) × (p2 − p1)

This leads to the following result for the intersection point S

S = (1 − αQ)q1 + αQq2

Thus, the line intersection test returns two results: first, a Boolean value stating whether an inter-

section point exists and second, the intersection point itself (if it exists).

After a closer look to the equations, it becomes apparent that for the case that the two lines

are collinear, the denominator of the fractions becomes zero and thus, they are undefined. Special

cases like this one are typical for geometric computations and will be investigated more deeply in

Chapter 4.

3.3 Formalisation of Analytic Geometry

3.3.1 Definitions

In the previous section, some basic notions of analytic geometry were introduced. In this section,

it is shown how they can be formalised within the HOL system. Since the constructive approach
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of analytic geometry is used, the theory is based on the rational number theory of Section 2.2 and

a vector is given by an ordered pair of rational numbers Q × Q, encapsulated in a new HOL type

Q2.

For this type, the following definitions are made:
−→
0 denotes the zero vector,

−→
1x and

−→
1y denote

the unit vectors of the x- and y-direction. The components of a vector v = (X(v);Y(v)) can be

accessed by X(v) and Y(v), respectively. A vector can be mirrored, rotated and multiplied by a

scalar. A pair of vectors can be added and subtracted:

vec mir ⊢def −v = (−X(v);−Y(v))

vec orth ⊢def orth(v) = (Y(v);−X(v))

vec scale ⊢def r · v = (r · X(v); r · Y(v))

vec add ⊢def v1 + v2 = (X(v1) + X(v2);Y(v1) + Y(v2))

vec sub ⊢def v1 − v2 = (X(v1) − X(v2);Y(v1) − Y(v2))

The dot product and the cross product of vectors are frequently used operations:

vec sprod ⊢def v1 ◦ v2 = X(v1) · X(v2) + Y(v1) · Y(v2)

vec cprod ⊢def v1 × v2 = X(v1) · Y(v2) − Y(v1) · X(v2)

The vectors Q2 form a vector space over the rational numbers Q. As consequence of this, various

arithmetic laws can be derived. For example, among these theorems are the following basic ones:

VEC ADD ASSOC ⊢ v1 + (v2 + v3) = v1 + v2 + v3

VEC SCALE ASSOC ⊢ v1 · (v2 · v3) = v1 · v2 · v3

VEC ADD COMM ⊢ v1 + v2 = v2 + v1

VEC ADD LID ⊢
−→
0 + v1 = v1

VEC ADD RID ⊢ v1 +
−→
0 = v1

VEC SCALE ID ⊢ 1 · v1 = v1

VEC ADD LINV ⊢ −v1 + v1 =
−→
0

VEC ADD RINV ⊢ v1 + −v1 =
−→
0

VEC ADD LDISTRIB ⊢ r1 · (v1 + v2) = r1 · v1 + r1 · v2

VEC ADD RDISTRIB ⊢ (r1 + r2) · v1 = r1 · v1 + r2 · v1

Vector operations can be reduced to operations on rational numbers by calculation theorems of

the following form:

VEC ADD CALC ⊢ (r1; r2) + (r3; r4) = (r1 + r3; r2 + r4)

VEC SUB CALC ⊢ (r1; r2) − (r3; r4) = (r1 − r3; r2 − r4)

VEC SCALE CALC ⊢ r1 · (r2; r3) = (r1 · r2; r1 · r3)

VEC SPROD CALC ⊢ (r1; r2) ◦ (r3; r4) = r1 · r3 + r2 · r4

VEC CPROD CALC ⊢ (r1; r2) × (r3; r4) = r1 · r4 − r2 · r3

For the cross product, the following rules (among others) can be used:

CPROD RDISTRIB ⊢ (v1 + v2) × v3 = (v1 × v3) + (v2 × v3)

CPROD LSUM ⊢ (v1 + v2) × v2 = v1 × v2

CPROD RSUM ⊢ v1 × (v1 + v2) = v1 × v2

CPROD AINV ⊢ −(v1 × v2) = v2 × v1

The cross product is a very important operation. For example, the linear dependency of two vectors

is easily defined with it. For the linear dependency relation it is proven that it is an equivalence

relation and that it commutes with various vector operations.
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vec lindep ⊢def lindep(v1, v2) = (v1 × v2 = 0)

VEC LINDEP REF ⊢ lindep(v1, v1)

VEC LINDEP SYM ⊢ lindep(v1, v2) = lindep(v2, v1)

VEC LINDEP TRANS ⊢ v2 6=
−→
0 =⇒ lindep(v1, v2) ∧ lindep(v2, v3) =⇒ lindep(v1, v3)

The area of a triangle and a quadrangle can also be defined with the cross product:

area3 ⊢def triArea(v1, v2, v3) = 1
2 · (v2 − v1) × (v3 − v2)

area4 ⊢def quadArea(v1, v2, v3, v4) = triArea(v1, v2, v3) + triArea(v1, v3, v4)

Finally, the analytic geometry theory also includes important theorems of linear algebra like the

two-dimensional case of Cramer’s rule for the solution of a system of linear equations.

CRAMERS RULE ⊢ ¬(v1 × v2 = 0) =⇒

((v0 = r1 · v1 + r2 · v2) =

(r1 = (v0 × v2)/(v1 × v2)) ∧ (r2 = (v1 × v0)/(v1 × v2)) )

Similarly, to the rational numbers, various tactics and conversions are provided for simplifying

and deciding vector expressions. For instance, VEC CALCEQ TAC transforms equations on rational

vectors to two equations on vectors (or simplifies rational equations involving vector operations)

and subsequently invokes the rational numbers decision tactic RAT CALCEQ TAC.

3.4 Algebraic Geometry Theorem Proving

Formal reasoning about geometric problems has a long tradition in automated theorem proving.

Hilbert already gave a general proof strategy for affine geometry in his classic book [74]. A deci-

sion procedure for analytic geometry using quantifier elimination was presented in 1951 by Tarski

[128]. However, it was merely a theoretical result without any practical relevance. The improve-

ments made by Collins [32] moved the decision procedure a bit more into practice, but did not

change the situation significantly.

The fact that geometry is one of the most successful areas of automated theorem proving is

due to Wu [25, 132, 133, 134]. His algebraic method became very popular and allowed the proof

of hundreds of geometry theorems [26]. It is based on the general reduction of geometric proofs

to algebraic ones on base of analytic geometry, which is presented in the following.

For the verification of polygon processing algorithms, geometry theorem proving can be used

as a basic building block. Algorithms are often based on certain geometric properties that must be

checked for a correct execution of the overall algorithm. However, it is important to distinguish

between geometry theorem proving and reasoning about geometric algorithms, which involves in

addition to the geometry dynamic parts, e. g. control and data structures, of the algorithms.

3.4.1 Reduction to Algebraic Problems

For instance, consider a parallelogram given by the points p1, p2, p3 and p4 as shown in Figure 9.

The diagonals intersect in a point p5. Apparently, p5 is in the middle of each diagonal, which

should be the proof obligation in the following.

In the classical analytic proof, the geometric situation is first expressed in an algebraic way:

Assume without loss of generality that p1 = (0; 0), p2 = (u1; 0) and p3 = (u2;u3) are fixed. The



40 3 Analytic Geometry

p1 p2

p3p4

p5

Fig. 9. Parallelogram and its Diagonals

fourth point p4 = (x2;x1) is dependent, since the resulting object forms a parallelogram1. This

dependency can be formalised by the following two equations that become assumptions of the

proof goal:

h1 : u1x1 − u1u3 = 0

h2 : u3x2 − (u2 − u1)x1 = 0

The equation h1 states that p1p2 is parallel to p4p3, and h2 states that p4p1 is parallel to p3p2. After

x1 and x2 are defined, the positions of the point p5 = (x4;x3) is fixed analogously. Hence, two

further assumptions are obtained:

h3 : x1x4 − (x2 − u1) − u1x1 = 0

h4 : u3x4 − u2x3 = 0

The proof goal is also encoded in an algebraic form. The length of both halfs of the diagonal from

p1 to p3 is equal if and only if the following equation g holds. This is expressed as follows:

g : 2u2x4 + 2u3x3 − u2
3 − u2

2 = 0

With the help of basic algebraic methods or Cramer’s rule (see 3.3), the goal can be easily proven.

From the first two equations, x1 = u3 and x2 = u2−u1 are derived, the last two ones give x3 = 1
2u3

and x4 = 1
2u2. These parameters can be substituted in g, which results to g = 0, the proof goal.

The theorem, however, is not generally valid. In the course of the proof, when applying

Cramer’s rule or transforming the equations, several side conditions are assumed. The problem

has already appeared in Section 2.2: Some transformations, e. g. the multiplication of both sides

of an equation, requires that the factor used is not zero. Analogously, Cramer’s rule can be only

applied if both equations are not linearly dependent (leading to a zero in the denominator of the

rule). For the parallelogram, the solutions of x1 and x4 require that neither u1 nor u3 are zero. For

these situations, the parallelogram would be flat, without a meaningful definition of the diagonals.

When using the arithmetic rules presented in the previous chapter, these degenerate conditions

become automatically apparent and show under which conditions the conclusion of the theorem

is really valid.

3.4.2 Wu’s Approach

Wu realised the importance of the nondegenerate conditions [132] and developed an approach

that automatically deals with them. He generalised the approach presented in the previous section

and developed a generally applicable scheme for all properties based on equations.

1 To distinguish free and dependent parameters, their names are given either given by ui or xi.
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Assumptions h1 to hn and the proof goal g are given by polynomial equations over free param-

eters u1 to ud and dependent parameters x1 to xt:

h1(u1, . . . , ud, x1, . . . , xt) = 0

h2(u1, . . . , ud, x1, . . . , xt) = 0
...

hn(u1, . . . , ud, x1, . . . , xt) = 0

g(u1, . . . , ud, x1, . . . , xt) = 0

As a first step, these equations are triangulated so that each one introduces only one new de-

pendent variable, i. e. each assumption hi only depends on the variables x1 to xi. By consecutive

pseudo divisions the validity of the goal is checked and simultaneously, nondegenerate conditions

are automatically derived.

The proofs produced by Wu’s approach are very low-level and are thus not traceable. In an

interactive theorem prover they are only suited for a decision procedure. However, for the polygon

processing verification, Wu’s method was not used, since its implementation inside the theorem

prover would involve a lot of underlying mathematics. Complicated polynomial operations like the

pseudo divisions and remainders must be formalised and properties for them have to be proven.

This effort is not justified for the polygon-processing library, as many goals can be also solved

manually without much effort. This is even more the case if proof tools for constructive proofs

(see Section 4.6) are available. These proof tools are more suited in the context of interactive

theorem proving, as they generate proofs at a higher level of abstraction.

3.5 Implementation of a Rational Geometry Kernel for a Software Library

All the definitions of this chapter are implemented in a geometry kernel, which is used as the core

of the polygon-processing library. In the following code fragments, all types and functions of the

library can be recognised by the prefix epp.

The basic building block is again a vector. It is implemented as a structure containing two

rationals of type epp rat. This type encapsulates the rational numbers, which are implemented

preliminarily (before rounding is discussed later) with arbitrary precision rationals as provided by

the GNU Multiprecision Library (GMP) [54].

struct epp_vec_t { epp_rat x; epp_rat y; };

typedef struct epp_vec_t epp_vec;

The library contains all vector function that are formalised above, among them for example the

following ones:

void epp_vec_norm( epp_rat *r0, const epp_vec *v1 );

void epp_vec_add( epp_vec *v0, const epp_vec *v1, const epp_vec *v2 );

void epp_vec_sub( epp_vec *v0, const epp_vec *v1, const epp_vec *v2 );

void epp_vec_scale( epp_vec *v0, const epp_vec *v1, const epp_rat *r1 );

void epp_vec_orth_ccw( epp_vec *v0, const epp_vec *v1 );

void epp_vec_orth_cw( epp_vec *v0, const epp_vec *v1 );

void epp_vec_sprod( epp_rat *r0, const epp_vec *v1, const epp_vec *v2 );

void epp_vec_cprod( epp_rat *r0, const epp_vec *v1, const epp_vec *v2 );
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void epp_vec_solve_eqns( epp_rat *r0, epp_rat *r1,

const epp_vec *v0, const epp_vec *v1, const epp_vec *v2 );

All these functions are implemented straightforwardly. The results of an operation are not returned

by the function, but are written to the first argument. This has technical reasons: To avoid memory

leaks, the memory to store the result is allocated by the calling function. Although the polygon-

processing library runs with static memory, the prototype implementation with the GMP data

structures needs dynamic memory.

Similarly to the interface, the implementation of the operations follows the analytic geometry

formalisation of Section 3.3.



Chapter 4

Geometric Primitives

The line intersection computation, which was presented in Section 4.1.2, is a typical example of

a basic operation that is used in many geometric problems. Many computational algorithms rely

on a small number of so-called primitives, i. e. basic operations of very limited functionality that

can be commonly reused. Like the line intersection problem, they generally use the foundations

of computational geometry and solve the geometric problem by transforming it into an algebraic

one. For this reason, these primitives form an abstraction layer on top of the algebraic founda-

tions. Hiding the details for higher-level algorithms is not only desired for an implementation: It

also becomes very important when reasoning about the correctness of algorithms, since low-level

proofs are both unreadable and unmaintainable for non-trivial algorithms.

This chapter first introduces in Section 4.1.1 geometric primitives as they are usually given in

the literature. Section 4.2 describes the problem of degenerate cases and previously proposed solu-

tions. Section 4.3 introduces three-valued logic, and Section 4.4 shows how it can be applied to the

problem. The next sections focus on the verification. Symmetries and how they can be exploited

in proofs are the topic of Section 4.5. Section 4.6 presents how the constructions of dependant

objects can be exploited. Finally, Section 4.7 sketches the implementation of the primitives in the

developed polygon-processing library.

4.1 A First Approach

4.1.1 Two-Valued Primitives

This section defines some primitives that deal with linear geometric objects. A special class of the

primitives, which will be called topological primitives in the following, tests some input objects

and classifies them according to a predefined number of cases. For example, the simplest class

compares the position of two points:

Definition 4 (Relative Position of Two Points). A point p is left from another point q if and only

if the x-coordinate of p is less than the x-coordinate of q, formally χLeft(p, q) := X(q) − X(p) < 0.

Analogously, a point p is below q if and only if the corresponding condition holds for the y-coordinates:

χBelow(p, q) := Y(q) − Y(p) < 0.

Another very important primitive in computational geometry algorithms is the orientation of three

points, i. e. whether a sequence of three points forms a left or a right turn.
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Fig. 10. Orientation of Three Points

Definition 5 (Orientation of Three Points). The points p, q and r form a left turn (left-hand side

of Figure 10) if and only if the following determinant is positive:

χlturn(p, q, r) :=

∣

∣

∣

∣

∣

∣

∣

X(p) Y(p) 1

X(q) Y(q) 1

X(r) Y(r) 1

∣

∣

∣

∣

∣

∣

∣

Three points p, q and r are said to be collinear if and only if χlturn(p, q, r) = 0.

In the previous chapter, linear dependency was already defined. However, for the sake of com-

pleteness, the definition is restricted here:

Definition 6 (Linear dependency). Two vectors v1 and v2 are linearly dependent if their cross prod-

uct is zero:

χlindep(v1, v2) = (v1 × v2 = 0)

Two lines are parallel if their direction vectors are linearly dependent.

4.1.2 Intersection of Two Line Segments

Line segment intersection is a very important primitive for many computational geometry algo-

rithms. In the following, the approach is illustrated by the line intersection example: For two given

lines l1 and l2, it should be checked whether they intersect or not, and if so, the intersection point

should be calculated.

Specification of Line Intersection

The intersection point of two line segments l1 and l2 is characterised in that it belongs to both

lines:

is line int ⊢def isLineIntersect(l1, l2, v1) = onLine(l1, v1) ∧ onLine(l2, v1)

However, such an intersection point does not always exist. Thus, the following predicate only

states whether such a point exists or not.

exists line int ⊢def existsLineIntersect(l1, l2) = ∃v1.isLineIntersect(l1, l2, v1)
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Implementation of Line Intersection

The following functions give an implementation of the check and the calculation: Two lines have

a single intersection point if and only if they are linearly independent, which is formalised in the

function doLineIntersect :

line parallel ⊢def parallel(l1, l2) = lindep(dirvec(l1), dirvec(l2))

do line int ⊢def doLineIntersect(l1, l2) = ¬parallel(l1, l2)

If an intersection point exists, it is calculated by the function lineIntersect(·, ·) for both lines and

segments.

vec on line ⊢def vecAt (l1, r1) = beg(l1) + r1 · dirvec(l1)

line intersect ⊢def

lineIntersect(l1, l2) = vecAt

(

l2,
(beg(l1)) − beg(l2) × dirvec(l1))

dirvec(l2) × dirvec(l1)

)

Verification of Line Intersection

To verify the implementation, the following theorems must be checked:

LINEINT EXIST CORRECT ⊢ parallel(l1, l2) =⇒

existsLineIntersect(l1, l2) = doLineIntersect(l1, l2)

LINEINT CALC CORRECT ⊢ existsLineIntersect(l1, l2) =⇒

(∀v.(isLineIntersect(l1, l2, v) = T) = (v = lineIntersect(l1, l2)))

They state that if two lines are not parallel, v is the intersection of two lines if and only if v is the

result of the line intersection function. The proofs for these theorems are done by rewriting with

the definitions and finally applying theorem CRAMERS RULE.

By an analogous proof with swapped line arguments, the symmetry of the line intersection

procedure can be additionally derived. The assumption is necessary. Otherwise, the intersection

point would not be defined, since its computation involves a division by zero.

LINE INTERSECT SYM ⊢

¬parallel(l1, l2) =⇒ (lineIntersect(l1, l2) = lineIntersect(l2, l1))

Now, consider the problem of computing the intersection of two line segments. It is clear that

the two segments only have an intersection point if the corresponding two lines have an inter-

section point. Additionally, it must be checked whether the endpoints of both segments are on

different sides of the other segment. This can be done with the help of the primitives defined

above.

In general position, two segments do either not intersect or they intersect at a point interior

to both segments. Additional special cases must be considered: Two intersecting segments may

also touch, overlap, share a common endpoint or have one segment endpoint interior to the other

segment – and each case exists in different variations. Figure 11 lists some of the possible cases.

In addition to the complexity of the high number of different cases, it is not clear what a good

definition should be for some cases: Consider cases (c) and (d): Should two touching segments

count as an intersection or not? This clearly depends on the algorithm that uses this primitive:

Some algorithms assume segments to be open, others use closed segments. This example illustrates

that establishing consistent definitions is difficult even for simple operations.
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Fig. 11. Cases for the Intersection of Two Line Segments

Hence, two definitions of each primitive presented in Section 4.1.1 are needed. Alternatively,

since the primitives are somehow antisymmetric, they can be used with negation or different

parameter orderings; e. g. lturn(v1, v2, v3) states that the sequence 〈v1; v2; v3〉 forms a left turn,

whereas ¬lturn(v3, v2, v1) says that the same sequence 〈v1; v2; v3〉 is collinear or forms a right turn.

4.2 Degenerate Cases

4.2.1 Challenges by Degenerate Cases

The line segment intersection problem is a good example for degenerate cases. Algorithms that

can be found in textbooks about computational geometry usually neglect special cases: Depending

on the algorithm, several preconditions are assumed, e. g. that no points coincide, that given lines

are not parallel or that no three lines intersect in a common point. Especially in research papers,

authors abstract from some or all of these so-called degenerate cases, which pose a well-known

problem to computational geometry algorithms. There are several reasons for this: Either, the

researchers want to focus on the core of their algorithms not bothering the reader with (in their

eyes) tedious details or they are not aware of all the special cases that may appear. From the

theoretical point of view, this approach is generally justified, as the degenerate cases do neither

change the general structure of a geometric algorithm nor its asymptotic complexity.

Regardless which reason leads to the sketchy definitions of the algorithms, the degenerate cases

cannot be neglected when implementing the algorithms. A precise handling of all the tedious

details is a fundamental point in real world applications. This is even more the case for safety-

critical embedded systems, which are the application domain of this thesis.

Degenerate cases have been a subject for many researchers in the area of computational ge-

ometry. Since they often require a substantial amount of additional effort, it is not be desirable to

explicitly refer to all degenerate cases of complex algorithms. The main problem is that non-trivial

algorithms may have high numbers of degenerate cases due to the combination of several basic

ones. It is clear that this number correlates with the length of the implementation and the amount

of time to maintain it.

4.2.2 Symbolic Perturbations

Considering this problem, some researchers try to completely eliminate the problem of degenerate

cases by perturbing inputs, so that all predicates are guaranteed to be evaluated for general cases
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Fig. 12. Resolving Degenerate Cases

only. For example, situation (a) in Figure 12 is either mapped to (b) or (c). Analogously, the

common point of both sequences in (d) is moved to resolve the situation like in (e) or (f).

This approach is motivated by the fact that the set of degenerated cases has always a smaller

dimension than the actual problem. There are always infinitly many points in the ǫ-sphere of

a degenerate point p that have nondegenerate positions. Otherwise, these cases would not be

degenerate. A slight change of the inputs allows the algorithms to neglect degenerated cases. The

resulting programs are then smaller and more robust: The tedious treatment of many special cases

can be replaced by a single perturbation step before the computation.

However, this approach is not a real solution: As the algorithm is not really able to handle

degenerate cases, instead it solves a similar problem. This may be acceptable, if the new problem

is irrelevant w. r. t. a given application. For example, in the domain of computer graphics, modifi-

cations that lead to an error less than a pixel can be seen to be irrelevant. Nevertheless, such an

upper bound for a tolerable error cannot be defined in general - and in particular for safety-critical

embedded systems.

A solution to this problem are symbolic perturbations [39, 43, 45, 135, 136, 137, 138]: Such

perturbations are only conceptual and do not really modify the inputs. They are given in terms

of an infinitesimally small ǫ, which does not need to be fixed exactly. Only the following two

conditions must be met [39]:

• The perturbation must lead to nondegenerate results of the primitives.

• The perturbation must be small enough to retain all nondegenerate properties of the original

inputs.

Formally, these conditions require the perturbation to be strictly monotonic if the degenerate case

is seen to be smaller than all other cases. Clearly, the result of an operation on perturbed inputs

should be the same as on original data, since the perturbation is intended to be only symbolical.
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Edelsbrunner and Mücke

In [39] Edelsbrunner and Mücke defined a perturbation scheme that fulfils the conditions above.

Moreover, they designed it with runtime performance in mind: Its computational overhead is kept

as low as possible (or negligible as they say).

They handle degenerate cases transparently by modifying the basic geometric primitives to

operate on perturbed input data instead of the original one. With the help of this modification,

ties are consistently broken. Intuitively, each point is replaced with a symbolically perturbed point,

given by a vector of polynomials of an infinitesimal small number ǫ. For example, consider n

geometric points with d parameters each:

{p0, p1, . . . , pn−1} with pi = (πi,1, πi,2, . . . , πi,d) for 0 ≤ i ≤ n − 1

Thus, each point is attributed a unique index between 0 und n− 1. The perturbation for a point pi

is given by the following tuples of polynomials:

pi(ǫ) = (πi,1(ǫ), πi,2(ǫ), . . . , πi,d(ǫ)) for πi,j(ǫ) = πi,j + ǫ(i, j) with 0 ≤ i ≤ n − 1, 1 ≤ j ≤ d

ǫ(i, j) must be a polynomial, which goes to 0 if ǫ also goes to zero (limǫ→0 = 0). Edelsbrunner and

Mücke choose the following concrete value:

ǫ(i, j) = ǫ2
i·δ−j

for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ d, δ ≥ d

All primitives of Section 4.1.1 can be formulated as the computation of a matrix sign. Substitution

of the symbolically perturbed points in a topological primitive results in a polynomial in the vari-

able ǫ with coefficients determined by the original points. As a consequence of the elegant choice

of the perturbation, the sign of the expression is given by the sign of the first nonzero coefficient,

where coefficients are taken in increasing order of powers of ǫ.

The perturbation is illustrated with the help of the following matrix:

∆2 =

(

πi,1 πi,2

πj,1 πj,2

)

The perturbation extends the components of the matrix to

∆2(ǫ) =

(

πi,1 + ǫ(i, 1) πi,2 + ǫ(i, 2)

πj,1 + ǫ(j, 1) πj,2 + ǫ(j, 2)

)

To abbreviate, define ǫ(·) = 1 and ǫ((i1, j1), . . . , (ik, jk)) =
∏k

ν=1 ǫ(iν , jν) to be the k-ary ǫ product.

Moreover, let i < j. The determinant of the matrix can be computed as follows:
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det ∆2(ǫ) = + det

(

πi,1 πi,2

πj,1 πj,2

)

· ǫ() (1)

− πj,1 · ǫ(i, 2) (2)

+ πj,2 · ǫ(i, 1) (3)

+ πi,1 · ǫ(j, 2) (4)

+ 1 · ǫ((j, 2), (i, 1)) (5)

− πi,2 · ǫ(j, 1) (6)

− 1 · ǫ((j, 1), (i, 2)) (7)

The terms are ordered in decreasing order of ǫ. In the course of the computation, the first term

that is not zero determines the result of the primitive, since the absolute value of the sum of all

following terms are guaranteed to be smaller. The fifth part guarantees that such a term exists: It

is always 1, regardless of the inputs. Therefore, all following parts do not have an influence on

the sign of det ∆s(ǫ). Moreover, the first part of the determinant is equal to the determinant of the

unperturbed matrix. This ensures that the perturbation does not change the result of the general

situation.

t size det M∆2

t ǫt

0 2 · 2 det

 

πi,1 πi,2

πj,1 πj,2

!

ǫ(·)

1 1 · 1 −πj,1 ǫ(i, 2)

2 1 · 1 +πj,2 ǫ(i, 1)

3 1 · 1 +πi,1 ǫ(j, 2)

4 1 · 1 +1 ǫ((j, 2), (i, 1))

Fig. 13. Relevant Terms for det ∆2(ǫ) [39]

Implementations can precompute these coefficients and store them in a table. Figure 13 shows

such a table for the quadratic matrix of size 2. Similar ones can be constructed for other dimen-

sions ([39] also gives tables for dimensions 3 and 4). To compute the sign of a topological primi-

tive, the implementation uses the table for a stepwise computation: The partial terms det M∆2

t are

computed row by row. If the result is different is zero, the appropriate sign is returned.

Other perturbation schemes

The work of Emiris and Canny [43, 45] is based on the work of Edelsbrunner and Mücke. They

improved the runtime efficiency by using other perturbations:

ǫ(i, j) = ǫ · ij

ǫ(i, j) = ǫ · (ij mod q)

ǫ(i, j) = ǫ · 1
i+j−1

With them the handling of degenerate cases can be limited to a constant overhead.

In contrast to that, Yap [135, 136, 137, 138] proposed a different approach. It is more general

and allows to perturb the input data in a controlled way. Thus, other perturbation schemes can
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Fig. 14. Duplicated Vertices by Perturbation
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Fig. 15. Distinguishing Situations after Perturbations

be emulated so that they can be seen as special cases of Yap’s scheme. However, the underlying

mathematics is complicated, and the runtime is much worse than the ones of the other approaches

presented above.

4.2.3 Critics

While symbolic perturbations are certainly a useful tool for the implementation of geometric algo-

rithms, existing perturbation schemes have not shown to be as applicable as desired [16].

First, symbolic perturbations force the programmer a rather unsatisfactory choice: first, either

to find an approximation of the original problem, or second, to find a precise solution of an ap-

proximation of the original problem. In some applications, both choices might be inappropriate,

and a post-processing step is then required that determines the exact solution of the original prob-

lem. Besides its negative impact on the runtime, the complexity of the solution can be significantly

increased.

To illustrates these drawbacks, consider the example shown in Figure 14. Although the per-

turbations are symbolic, the result is changed by them. If the intersection of both polygons of

Figure 14 (a) is computed, the situation may be perturbed to the situation shown in part (b).

The result polygon (c) contains two vertices with the same position. Without using perturbations,

only one vertex would have been created. This difference must be corrected in an additional post-

processing step.

Second, objects that are constructed by the algorithm (e. g. intersection points) are often for-

bidden in the computation, because their perturbation function must depend on the construction

of the object. Hence, the new perturbation is either outside the definitions of primitive objects or

it is much more complicated.

For instance, consider three line segments that intersect in a single point as shown in Figure 15.

The perturbations of Edelsbrunner and Mücke (as well as the ones by Emiris and Canny) resolve
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the degeneracy of situation (a) by presenting either situation (b) or (c) to the user. However,

the user has no chance to detect which situation has been chosen: If the algorithm needs to

know whether the line segment between p1 and p2 is first crossed by the one between p3 and

p4 or the one between p5 and p6, the perturbations are not usable. Equivalently, it cannot be

decided whether the intersection point of the two crossing segments is above or below the first

line segment. Actually, there is a solution for the problem presented in Figure 15, when seen in

isolation. However, another incompatible perturbation must be used. So, it may be possible to

compute a result, which is not consistent to the situation presented by the orientation predicate.

Third, symbolic perturbations need to be worked out in detail, a task that is generally very

complex. This has been done only for a few geometric primitives. Moreover, since this task is

very complex, its must be definitely verified if primitives based on it are used in safety-critical

systems. This involves very complicated verification goals, which are based on a broad mathemat-

ical fundament. For instance, the formalisation depends on real numbers and many theorems that

are currently not in the library of standard theorem provers. The necessary work for underlying

mathematical theorems are out of all proportion to the verification results for this thesis.

Therefore, perturbation schemes do not play a role in the rest of the thesis. The polygon-

processing library handles degenerate cases explicitly as the following section shows.

4.3 Three-Valued Logic

Three-valued logic has already proven to be useful in many areas, e. g. for the analysis of asyn-

chronous circuits [14], in compiler analyses [116] or for causality analysis [5, 94, 118, 119, 124].

As it can be seen in the following, it allows one to describe geometric properties and algorithms

more compactly and at the same time more precisely without having the need to enumerate many

tedious cases. Clearly, degenerate cases do not disappear, but three-valued logic makes it possible

to structure them and to treat them in a systematic and concise way.

Section 4.2.1 illustrated the problem of degenerated cases and showed that a reduction to

two truth values is not an acceptable solution. Hence, for a degenerate case it is not decided

to which basic case the situation is finally mapped. Instead, a third value is used to leave this

case unspecified and to use this result for further computations. An intuitive view on the third

truth value is obtained by the analogy to exception handling in some programming languages:

At the point of time where an error occurs, it is not clear how to handle it. Thus, an exception

is thrown, which is finally caught by a function that has the necessary knowledge to handle the

error. Analogously, the degenerate case is passed through all functions until the knowledge of the

context is sufficient to decide what to do.

As an example, consider the problem to check whether a point is on the edge, inside, or outside

a polygon. Assume that the points on the edge are considered to be outside the polygon (i. e. poly-

gons are ‘open’ sets of points). However, if the difference of two polygons is calculated by a set

difference, the result is possibly a polygon that contains points on its edge. There are two ways to

solve the problem: The first one is to modify the definition of the difference. The second one is not

to decide whether points on the edge are inside or outside, and therefore using an undetermined,

third value for these predicates.
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Fig. 16. Truth Tables of Basic Three-Valued Operators

∗̈ F U T

F F F F

U F U T

T F T T

։ F U T

F T T T

U T T F

T T F T

Fig. 17. Truth Tables of ∗̈ and ։

4.3.1 Definition of Three-Valued Logic

Thus, the area of a polygon is described by a function that maps each point of the plane to one of

the three truth values: true (T) is assigned to all points inside, false (F) to all points outside, and

degenerate (U) is assigned to all points on the edge of the polygon. These considerations give rise

to the definitions of the basic three-valued connectives ¬̈, ∧̈ and ∨̈ shown in Figure 16, which

have already been used by Kleene [7, 84]. Further operators are defined (see Figure 16) like

implication →̈ , equivalence ↔̈ and exclusive-or ⊕̈ .

imp3 ⊢def t1 →̈ t2 = ¬̈t1 ∨̈ t2

equ3 ⊢def t1 ↔̈ t2 = t1 ∧̈ t2 ∨̈ ¬t1 ∧̈¬t2

xor3 ⊢def t1 ⊕̈ t2 = ¬t1 ∧̈ t2 ∨̈ t1 ∧̈¬t2

The operators ∗̈ (a modified conjunction) and ։ (a modified implication) are well suited for the

description of transitivity laws. This will be become clear in the following subsection. Their truth

tables are given in Figure 17.

Moreover, the theory is extended by existential and universal quantification:

exists3 ⊢def ∃̈P =

if (∃x.Px = T) then T else

(if (∀x.Px = F) then F else U)

forall3 ⊢def ∀̈P =

if (∀x.Px = T) then T else

(if (∃x.Px = F) then F else U)

A closer inspection of the truth tables of the basic connectives ¬̈, ∧̈ , and ∨̈ reveals that these

operations imply a natural ordering by the degree of truth: F < U < T. In the context of this

ordering, ¬̈ just reverses the values, ∧̈ chooses the least one of its two operands and ∨̈ analogously

the greatest one. Moreover, existential quantification ∃̈x computes the maximum of a function

P : Dx → T, whereas universal quantification ∀̈x computes the minimum. The relation ⊏̈ : T ×
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F U F U

U T U T
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⊲̈ F U T
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Fig. 18. Truth Tables of ⊏̈, ⊐̈, ⊳̈ and ⊲̈

≤ F U T

F T T T

U F T T

T F F T

≥ F U T

F T F F

U T T F

T T T T

Fig. 19. Truth Tables of ≤ and ≥

T → T is defined that compares two truth values (see Figure 18). Consistently with the other

operators, it will return U if both arguments are identical. The relation ⊐̈ is obtained by swapping

the operands. Besides this ordering, there is yet another natural ordering which is given by the

amount of knowledge: U < F and U < T. Figure 18 gives the truth tables of ⊳̈ and ⊲̈.1

The two-valued theorem prover HOL is used to reason about the three-valued geometry pred-

icates. Introducing three-valued formulas into such a two-valued environment poses the problem

to integrate both logics. The conversion of three-valued expressions to Boolean domain depends

on the proposition: In some situations, T should be the only designated truth value; in other cases,

it suffices that a proposition P is ‘at least U’. Although, this can be expressed by ¬(P = F), two

new relations ≤ and ≥ are introduced to improve the readability. By their help, all relevant cases

(P = F, P ≤ U, P ≥ U, P = T) can be described concisely (see Figure 19).

In two-valued algorithms, conditionals are frequently used. The three-valued couterpart is the

following definition. With its help, definitions can be made with a three-valued predicate as a

guard.

switch3 ⊢def switch3(t, t1, t2, t3) =

∃ x. ((t = T) =⇒ x = t1) ∧ ((t = U) =⇒ x = t2) ∧ ((t = F) =⇒ x = t3)

4.3.2 Proof Tools

For proof obligations, special support is required in two areas: First, expressions involving three-

valued logic should be handled efficiently. A collection of basic theorems and tactics that are

natural extensions of the two-valued cases form in combination with an automatic reduction to

two-valued expressions form a convenient tool set to cope with three-valued proof obligations,

which will be presented in the following.

1 Kleene postulated that the third truth value should be compatible with the increase in information. That

means: if the value of some expression is changed from U to either T or F (gaining information), then the

value of any formula containing this expression must not change from T to F or vice-versa. On the other

hand, the formula may change from U to one of F or T (i.e. gaining information). Today, the regularity

would be described in terms of monotonicity and lattices; assuming the order ⊳̈.
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The system 〈T, ∨̈ , ∧̈ , ¬̈,F,T,U〉 is a ternary algebra [14]: In addition to the laws of commuta-

tivity, associativity, distributivity, absorption and de Morgan as known from a Boolean algebra, the

following theorems can be used for the transformation of three-valued terms:

NOT CLAUSES ⊢ ¬̈¬̈a = a ∧ (¬̈U = U)

AND CLAUSES ⊢ (T ∧̈ t = t) ∧ (t ∧̈T = t) ∧ (F ∧̈ t = F) ∧ (t ∧̈F = F) ∧ (t ∧̈ t = t)

OR CLAUSES ⊢ (F ∨̈ t = t) ∧ (t ∨̈F = t) ∧ (T ∨̈ t = T) ∧ (t ∨̈T = T) ∧ (t ∨̈ t = t)

CONJ COMM ⊢ a ∧̈b = b ∧̈a

DISJ COMM ⊢ a ∨̈b = b ∨̈a

CONJ ASSOC ⊢ (a ∧̈b) ∧̈c = a ∧̈b ∧̈c

DISJ ASSOC ⊢ (a ∨̈b) ∨̈c = a ∨̈b ∨̈c

CONJ ABSORP ⊢ a ∧̈ (a ∨̈b) = a

DISJ ABSORP ⊢ a ∨̈a ∧̈b = a

LEFT AND OVEROR ⊢ a ∧̈ (b ∨̈c) = a ∧̈b ∨̈a ∧̈c

LEFT OR OVERAND ⊢ a ∨̈b ∧̈c = (a ∨̈b) ∧̈ (a ∨̈c)

RIGHT AND OVEROR ⊢ (a ∨̈b) ∧̈c = a ∧̈c ∨̈b ∧̈c

RIGHT OR OVERAND ⊢ a ∧̈b ∨̈c = (a ∨̈c) ∧̈ (b ∨̈c)

DE MORGAN THM ⊢ (¬̈(a ∧̈b) = ¬̈a ∨̈ ¬̈b) ∧ (¬̈(a ∨̈b) = ¬̈a ∧̈ ¬̈b)

CONJ TERNARY ⊢ a ∧̈ ¬̈a ∧̈U = a ∧̈ ¬̈a

DISJ TERNARY ⊢ a ∨̈ ¬̈a ∨̈U = a ∨̈ ¬̈a

However, the complement laws of Boolean algebras are not satisfied:

CONJ BOOLCOMP 0 a ∧̈ ¬̈a = F

DISJ BOOLCOMP 0 a ∨̈ ¬̈a = T

For interactive proofs, the theory offers several tactics that are adapted from the two-valued do-

main:

• LOG3 GEN TAC strips the outermost universal quantifier from the conclusion of a goal. When

applied to A ⊢? ∀̈x.P , it reduces the goal to A ⊢? P [x′/x] where x′ is a variant of x chosen

to avoid clashing with any variables free in the assumption list of the goal. This tactic reduces

both ∀̈x.P (x) = T and ∃̈x.P (x) = F, since both express universal goals.

• LOG3 EXISTS TAC reduces an existentially quantified goal to one involving a specific witness.

When applied to a term u and a goal ∃̈x.P , LOG3 EXISTS TAC reduces the goal to P [u/x] (sub-

stituting u for all free instances of x in P , with variable renaming if necessary to avoid free

variable capture).

• LOG3 DISCH TAC moves the antecedent of a (three-valued) implicative goal into the assump-

tions.

• LOG3 CONJ TAC reduces a conjunctive goal to two separate subgoals. When applied to a goal

A ⊢? t1 ∧̈ t2, the tactic reduces it to the two subgoals corresponding to each conjunct separately.

• LOG3 DISJ1 TAC and LOG3 DISJ2 TAC select the left and the right disjuncts of a disjunctive

goal, respectively.

• LOG3 EQ TAC reduces a goal of equivalence of three-valued terms to forward and backward

implication. When applied to the goal A ⊢? t1 ↔̈ t2, this tactic EQ TAC returns the subgoals

A ⊢? t1 →̈ t2 and A ⊢? t2 →̈ t1.
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• Given a term u, LOG3 CASES TAC applied to a goal produces three subgoals, one with u = T

as an assumption, one with u = U, and one with u = F. A simple and very effective tactic

to automatically prove simple theorems about the three-valued logic is LOG3 EXPLORE TAC: It

performs a case distinction on all free variables of the type T and then uses the simplifier.

A powerful tactic to prove goals specified in three-valued logic is the transformation to two-valued

terms with a subsequent application of the traditional tactics for two-valued goals. For this pur-

pose, a number of rewrite rules are provided that split up a three-valued proposition into positive

atomic sub-proposition of the form P = c, P ≤ c or P ≥ c (where c ∈ {F,U,T}) connected by

two-valued operators. The complete reduction step is implemented by the tactic LOG3 CALC TAC

and involves the following steps:

• Elimination of non-constant expressions on the right hand side of equations and inequations:

LOG3 CASES EQ ⊢ (a = F) ∧ (b = F)∨

(a = U) ∧ (b = U)∨

(a = T) ∧ (b = T)

= (a = b)

LOG3 CASES LEQ ⊢ (a = F) ∧ (b = F)∨

(a ≤ U) ∧ (b = U)∨

(b = T)

= a ≤ b

LOG3 CASES GEQ ⊢ (b = F) ∨ a ≥ U ∧ (b = U)∨

(a = T) ∧ (b = T)

= a ≥ b

In order to eliminate non-constant expressions on the right hand side, these rules must be

applied from the right to the left. Of course, unconditional rewriting with these rules does not

terminate.

• Elimination of propositions of the form P = U: As the following theorems only consider the

cases P = F, P = T, P ≤ U and P ≥ U, rewriting (from right to left) with the following

theorem eliminates propositions of the form P = U.

LOG3 LEQ GEQ UU ⊢ a ≤ U ∧ a ≥ U = (a = U)

• Elimination of macro connectives: By rewriting with the definitions of →̈ , ↔̈ , ⊕̈ and ∃̈, all

terms only consist of basic connectives.

• Elimination of basic connectives: All basic three-valued connectives can be reduced to two-

valued connectives by the rewriting with theorems of the following form:
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LOG3 NOT CALC ⊢ ((¬̈t = F) = (t = T))∧

((¬̈t = T) = (t = F))∧

(¬̈t ≤ U = t ≥ U)∧

(¬̈t ≥ U = t ≤ U)

LOG3 AND CALC ⊢ ((a ∧̈b = F) = (a = F) ∨ (b = F))∧

((a ∧̈b = T) = (a = T) ∧ (b = T))∧

((a ∧̈b) ≤ U = a ≤ U ∨ b ≤ U)∧

((a ∧̈b) ≥ U = a ≥ U ∧ b ≥ U)

LOG3 OR CALC ⊢ ((a ∨̈b = F) = (a = F) ∧ (b = F))∧

((a ∨̈b = T) = (a = T) ∨ (b = T))∧

((a ∨̈b) ≤ U = a ≤ U ∧ b ≤ U)∧

((a ∨̈b) ≥ U = a ≥ U ∨ b ≥ U)

LOG3 EXT CALC ⊢ ((△̈a = F) = ¬a)∧

((△̈a = T) = a)∧

(△̈a ≤ U = ¬a)∧

(△̈a ≥ U = a)

LOG3 EXISTS CALC ⊢ ((∃̈x.Px = F) = ∀b.P b = F)∧

((∃̈x.Px = T) = ∃b.P b = T)∧

((∃̈x.Px ≤ U) = ∀b.P b ≤ U)∧

((∃̈x.Px ≥ U) = ∃b.P b ≥ U)

LOG3 FORALL CALC ⊢ ((∀̈x.P (x) = F) = ∃b.P (b) = F)∧

((∀̈x.P (x) = T) = ∀b.P (b) = T)∧

((∀̈x.P (x) ≤ U) = ∃b.P (b) ≤ U)∧

((∀̈x.P (x) ≥ U) = ∀b.P (b) ≥ U)

• Elimination of negative terms: All two-valued negations in front of subterms can be eliminated,

leaving better understandable expressions.

LOG3 NOT2 CALC ⊢ (¬(a = F) = a ≥ U)∧

(¬(a = T) = a ≤ U)∧

(¬(a = U) = (a = F) ∨ (a = T))∧

(¬(a ≤ U) = (a = T))∧

(¬(a ≥ U) = (a = F))

LOG3 ABS NOT ⊢ (△̈¬a) = ¬̈(△̈a)

4.4 Three-Valued Primitives

Section 4.2 illustrated the problem of degenerated cases and showed that their explicit handling

leads to an unmanageable number of cases computational geometry algorithms. Descriptions with

three-valued operations reduce the complexity by consistently covering more cases with shorter

descriptions as the following section shows.

4.4.1 Geometric Objects

Based on the analytic geometry theory and the three-valued logic, geometric objects and primitives

can be defined. They are all formed by solution sets of points. To cope with endpoints and other
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extremal issues, three-valued inequations between rational numbers are used: For equal numbers,

the inequation is neither false nor true, it is undefined. Hence, the three-valued less-than relation

r1 ≺ r2 over the rationals Q is defined as follows:

les3 ⊢def r1 ≺ r2 =

if (r1 < r2) then T else (if (r2 < r1) then F else U)

Using this relation, geometric objects as sets of points can be defined in the following. A line is

usually defined by its parametric equation. To convert the classic definition of a line to a three-

valued one, all two-valued operators are exchanged by their three-valued counterparts:

onLine ⊢def onLine(l1, v) =

∃̈λ. (v = beg(l1) + λ · dirvec(l1))

The term dirvec(l1) denotes the direction vector of the line, which is the difference between the

endpoint end(l1) and the startpoint beg(l1). For a line l, there is no difference between the two-

valued and three-valued case: l contains all points (x; y) that are a solution of the traditional, two-

valued equation. For a ray and a line segment, the range of λ is restricted. Thus, the endpoints are

degenerate cases:

onRay ⊢def onRay(l1, v) =

∃̈λ. (v = beg(l1) + λ · (end(l1) − beg(l1))) ∧̈ (0 ≺ λ)

onSeg ⊢def onSegment(l1, v) =

∃̈λ. (v = beg(l1) + λ · (end(l1) − beg(l1))) ∧̈ (0 ≺ λ ≺ 1)

Two-dimensional objects can be defined analogously. A very important object is a rectangle that is

aligned to the coordinate grid: If its lower, upper, left and right borders are given by S(w1), N(w1),

W(w1) and E(w1) respectively, a point is inside this so-called window w1 if it satisfies the following

condition:

inWindow ⊢def inWindow(w1, v) =

W(w1) ≺ X(v) ∧̈X(v) ≺ E(w1) ∧̈S(w1) ≺ Y(v) ∧̈Y(v) ≺ N(w1)

4.4.2 Geometric Predicates

Degeneracies with respect to a predicate P are inputs x that cause the characteristic function to

become zero χP (x) = 0. 2 Following the approach presented in Section 4.2, the result U is returned

in these cases. Since all predicates defined at the beginning of the chapter compare their result

with zero, the relation pos is additionally introduced:

rat pos ⊢def pos (r) = r ≺ 0

With its help, the primitive left(v1, v2) and below(v1, v2) can be defined as follows:

left ⊢def left(v1, v2) = pos (X(v2) − X(v1))

right ⊢def right(v1, v2) = left(v2, v1)

below ⊢def below(v1, v2) = pos (Y(v2) − Y(v1))

above ⊢def above(v1, v2) = below(v2, v1)

2 The fact that a primitive results to zero usually leads to problems in the layer below (analytic geometry),

where these functions may be used in the denominator of an other definitions. For example, the line

intersection has this problem for parallel lines.
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The primitive left makes use of the three-valued relation ≺, and thus, it has similar properties: The

following theorems prove some sort of reflexivity, antisymmetry, and transitivity laws.

LEFT REF ⊢ left(v1, v1) = U

LEFT ASYM ⊢ left(v1, v2) = ¬̈left(v2, v1)

LEFT TRANS ⊢ left(v0, v1) ∗̈ left(v1, v2) ։ left(v0, v2)

LEFT_TRANS makes use of the connectives ∗̈ and ։ , which usually appear together in a proposition.

They are especially well-suited for the description of transitive properties. For instance, the last

theorem covers the following cases:

• If left(v0, v1) = T and left(v1, v2) = T, then left(v0, v2) = T.
• If left(v0, v1) = T and left(v1, v2) = U or vice versa, then left(v0, v2) = T.
• If left(v0, v1) = U and left(v1, v2) = U, then left(v0, v2) = U.
• If left(v0, v1) = F or left(v1, v2) = F, then nothing is said about left(v0, v2).

The orientation primitives can be analogously defined:

area3 ⊢def triArea(v1, v2, v3) = (v2 − v1) × (v3 − v2)

lturn ⊢def lturn(v1, v2, v3) = pos (triArea(v1, v2, v3))

rturn ⊢def rturn(v1, v2, v3) = lturn(v3, v2, v1)

Again, various properties can be proven for the orientation primitive:

LTURN REF ⊢ lturn(v1, v1, v2) = U

LTURN SYM ⊢ lturn(v1, v2, v3) = lturn(v2, v3, v1)

LTURN ASYM ⊢ lturn(v1, v2, v3) = ¬̈(lturn(v2, v1, v3))

LTURN TRIAN ⊢

lturn(v1, v2, v4) ∗̈ lturn(v2, v3, v4) ∗̈ lturn(v3, v1, v4) ։

lturn(v1, v2, v3)

LTURN TRANS ⊢

lturn(v1, v2, v3) ∧̈ lturn(v1, v2, v4) ∧̈ lturn(v1, v2, v5) ≥ U =⇒

lturn(v1, v3, v4) ∗̈ lturn(v1, v4, v5) ։ lturn(v1, v3, v5)

LTURN MOD1 ⊢

onRay(mkLine(v2, v3), v4) = T =⇒

lturn(v1, v2, v3) = lturn(v1, v2, v4)

LTURN MOD2 ⊢

onRay(mkLine(v4, v3), v2) = T =⇒

lturn(v1, v2, v4) = lturn(v1, v3, v4)

These theorems are three-valued reformulation of the ones that can be found in [111]. The first

three theorems (LTURN_REF, LTURN_SYM and LTURN_ASYM) state that a sequence in which a point

appears at least twice is a degenerate case. Moreover, a sequence can be rotated without changing

the orientation, and two points can be interchanged with negating the orientation of the sequence.

LTURN_TRIAN describes the situation depicted in Figure 20 (a): If a point is on the positive side of

three pairwise connected segments, they form a triangle with positive orientation. LTURN_TRANS

proves the transitivity of the lturn predicate under the condition that the three points v3, v4 and

v5 lie on the positive side of a segment from v1 to v2 (see Figure 20 (b)). The last two theorems

(Figure 20 (c) and (d)) are used in [111] to handle degenerate cases. Actually, they are not

needed here, since LTURN_TRIAN already covers these cases. This illustrates the advantages of this
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Fig. 20. Properties of the Left-Turn Predicate

approach: General and degenerate cases are always addressed at the same time, which makes the

description succinct and readable. The same holds for software implementations that are made

with three-valued data types.

4.4.3 Line Segement Intersection

This section gives some fundamental definitions and verifies some basic solutions, which can be

found in various publications, e. g. in the article of Blinn [6].

An intersection primitive should test whether two given segments l1 and l2 intersect, and if so,

the intersection point should be calculated. To address the problem of degenerate cases, i. e. touch-

ing and overlapping segments, three-valued predicates are used. Moreover, since the intersection

can be again a segment, the type of the result of an intersection depends on the situation.

The existence of an intersection point is denoted by the following predicate doSegmentIntersect:

Two line segments have a single intersection point if and only if the endpoints of one line are

located on different sides of the other line. If doSegmentIntersect evaluates to U, the segments are

either collinear or touch.

left of line ⊢def leftOfLine(l1, v1) = lturn(beg(l1), end(l1), v1)

right of line ⊢def rightOfLine(l1, v1) = rturn(beg(l1), end(l1), v1)

do seg int ⊢def doSegmentIntersect(l1, l2) =

(leftOfLine(l1, beg(l2))↔̈ rightOfLine(l1, end(l2))) ∧̈

(leftOfLine(l2, beg(l1))↔̈ rightOfLine(l2, end(l1)))

In practice, the existence of an intersection point can be often excluded before an actual check by

the simple bounding box check. For two line segments l1 and l2, the predicate bboxCheck(l1, l2)

must be true if an intersection point exists. In the case of U, they can only touch.
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vecXint ⊢def vecXint(v1, v2, v3) = (X(v1) ≺ X(v2)) ∧̈ (X(v2) ≺ X(v3))

vecYint ⊢def vecYint(v1, v2, v3) = (X(v1) ≺ X(v2)) ∧̈ (X(v2) ≺ X(v3))

bbox check ⊢def bboxCheck(l1, l2) =

(vecXint(beg(l1), beg(l2), end(l1)) ∨̈vecXint(beg(l1), end(l2), end(l1)) ∨̈

vecXint(beg(l2), beg(l1), end(l2)) ∨̈vecXint(beg(l2), end(l1), end(l2)) ) ∧̈

(vecYint(beg(l1), beg(l2), end(l1)) ∨̈vecYint(beg(l1), end(l2), end(l1)) ∨̈

vecYint(beg(l2), beg(l1), end(l2)) ∨̈vecYint(beg(l2), end(l1), end(l2)) )

If an intersection point exists, it is calculated by the following function:

vec on line ⊢def vecAt (l1, r1) = beg(l1) + r1 · dirvec(l1)

line intersect ⊢def

lineIntersect(l1, l2) = vecAt

(

l2,
(beg(l1) − beg(l2)) × dirvec(l1)

dirvec(l2) × dirvec(l1)

)

In order to see that these definitions make sense, they are integrated in the theorem prover frame-

work. The intersection point of two line segments l1 and l2 should be on both lines.

exists seg int ⊢def existsSegmentIntersect(l1, l2) = ∃̈v1.isSegmentIntersect(l1, l2, v1)

is seg int ⊢def isSegmentIntersect(l1, l2, v1) = onSegment(l1, v1) ∧̈onSegment(l2, v1)

Based on the results of Section 4.1.2, the definitions can be checked now:

SEGINT CALC CORRECT ⊢

leftOfLine(l1, beg(l2))↔̈ rightOfLine(l1, end(l2)) ∧̈

leftOfLine(l2, beg(l1))↔̈ rightOfLine(l2, end(l1)) =⇒

(∀v.(isSegmentIntersect(l1, l2, v) = T) = (v = lineIntersect(l1, l2)))

BBOX CHECK CORRECT ⊢ parallel(l1, l2)

(bboxCheck(l1, l2)→̈existsSegmentIntersect(l1, l2) = T)

In the proof of the first theorem, LINEINT CALC CORRECT can be used to substitute the expression

with lineIntersect by isLineIntersect. Now, the backward implication of the equation is obvious. It

remains to prove that the ‘crossing’ property of the segments implies that the parameter λ of the

parametric forms of both segments remains between 0 and 1. This can be done by rewriting and

by using the order properties of the rational numbers (see Section 2.2). Analogously, the bounding

box check is verified.

Overlay

Another important definition is the overlay of two line segments. In contrast to the intersection of

two lines, it covers the case of overlapping line segments. The overlay of two line segments is a set

of segments with the following two properties: First, the resulting segments neither intersect nor

overlap — they may only contain common endpoints. Second, they cover the two input segments.

Third, no point not belonging to the two given segments belongs to the overlay:
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conditional line ⊢def optLine(v1, v2) =

if v1 6= v2 then {mkLine(v1, v2)} else {}

conditional intersect ⊢def optIntersect(l1, l2) =

if segDoIntersect(l1, l2) = T then {lineIntersect(l1, l2)} else {}

seg overlay ⊢def segOverlayLines(l1, l2) =

if segDoOverlap(l1, l2) = T then

let 〈v1, v2, v3, v4〉 = flatLexOrder({beg(l1), end(l1), beg(l2), end(l2)}) in

optLine(v1, v2) ∪ optLine(v2, v3) ∪ optLine(v3, v4)

else if segDoIntersect(l1, l2) ≥ U then

let v = lineIntersect(l1, l2) in

optLine(beg(l1), v) ∪ optLine(beg(l2), v) ∪ optLine(v, end(e1)) ∪ optLine(v, end(l2))

else {l1, l2}

seg overlay points ⊢def segOverlayPoints(l1, l2) =

{beg(l1), end(l1), beg(l2), end(l2)} ∪ optIntersect(l1, l2)

The definitions above satisfy the intended conditions as the following theorems assert.

SEG OVERLAY CORRECT ⊢

l0 ∈ segOverlayLines(l1, l2) =⇒

onSegment(l0, v) ≤ (onSegment(l1, v) ∨̈onSegment(l2, v))

SEG OVERLAY COMPLETE ⊢

l0 ∈ segOverlayLines(l1, l2) =⇒

onSegment(l0, v) ≥ U =⇒

onSegment(l1, v) ∨̈onSegment(l2, v) ≥ U

4.4.4 Convex Hull Algorithm

As an example to illustrate the approach with three-valued primitives, consider a convex hull

algorithm. The convex hull of a set of points is a subset that, when connected, contains all other

input points.

The formalisation follows the implementation presented in [36]. It divides the computation

of the convex hull into two symmetric parts: the upper part and the lower part of the hull (see

Figure 21 (a)). In this section, the focus is on the construction of the lower part. The upper part is

handled absolutely analogously.

Formalisation

The algorithm takes a list of points L, which is sorted lexicographically (denoted as lexSorted(L)),

i. e. points are first sorted by their x-coordinates and then by their y-coordinates. The points are

iteratively added to the lower part of the convex hull. After each addition, it is checked whether the

last three points form a left turn. If this is not the case, the middle point is deleted. These steps are

repeated until the last three points make a left turn, or there are only two points left (the leftmost

point and the added point). Figure 21 (b) illustrates this procedure. Formally, the construction

of the lower hull can be described by the following functions, where 〈〉 denotes the empty list,

〈e1; e2〉 a list containing the two elements e1 and e2, and e :: L denotes the concatenation of a new

leftmost element e to an existing list L:
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Fig. 21. Computation of the Convex Hull

normalize lower ⊢def

(NormLow(〈〉) = 〈〉)∧

(NormLow(〈e1〉) = 〈e1〉)∧

(NormLow(〈e1; e2〉) = 〈e1; e2〉)∧

(NormLow((e1 ::e2 ::e3 ::L)) =

if lturn(e1, e2, e3) = T then e1 ::e2 ::e3 ::L

else NormLow((e1 ::e3 ::L)))

hull lower ⊢def

(LowerHull(L0, 〈〉) = L0)∧

(LowerHull(L0, e ::L1) = NormLow(LowerHull(e ::L0,L1)))

If L has at least three elements, NormLow(L) deletes the second element if the first three elements

should not form a left turn, and hullLow applies this function to all sublists of a list L.

Specification

A sequence of points is part of the convex hull if for two consecutive points, all other points lie

on the left hand side of the line between these points. The corresponding predicate leftConvex is

defined recursively: A sequence of no elements or one element is always convex. Each additional

point that is added must lie on the left of all former edges of the constructed convex hull (leftPoint),
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and all points must lie on the left side of the edge that is created by the insertion of the new point

(leftEdge).

left edge ⊢def

(leftEdge(e1, e2, [ ]))∧

(leftEdge(e1, e2, e :: L) =

(lturn(e, e1, e2) = T) ∧ leftEdge(e1, e2,L))

left point ⊢def

(leftPoint(e, [ ]))∧

(leftPoint(e, [e1]))∧

(leftPoint(e, e1 :: e2 :: L) =

(lturn(e, e2, e1) = T) ∧ leftPoint(e, e2 :: L))

left convex ⊢def

(leftConvex([ ]))∧

(leftConvex([e1]))∧

(leftConvex(e1 :: e2 :: L) =

leftEdge(e1, e2,L) ∧ leftPoint(e1, e2 :: L) ∧ leftConvex(e2 :: L))

Verification

The verification is done in several steps. First, by applying the definitions, it is proven that every

sublist of three points in the result makes a left turn.

left chain ⊢def

(leftChain([ ]))∧

(leftChain([e1]))∧

(leftChain([e1; e2]))∧

(leftChain(e1 :: e2 :: e3 :: L) =

(lturn(e1, e2, e3) = T) ∧ leftChain(e2 :: e3 :: L))

LEFT CHAIN HULL LOWER ⊢

leftChain(L0) ⇒ leftChain(LowerHull(L0,L1))

Then, under the condition of a lexicographic ordering a kind of transitivity (see Figure 21 (c)) is

derived. To prove this, the lexicographic conditions are translated to left turn conditions before the

transitivity of the left-turn predicate LTURN_TRANS is used. With the help of this lemma, an induction

proves the desired theorem CVX_LOWER.

CVX TRANS LOWER ⊢

(lturn(v1, v2, v3) = T) ∧ (lturn(v2, v3, v4) = T)∧

(v1 ≺ v2 = T) ∧ (v2 ≺ v3 = T) ∧ (v3 ≺ v4 = T)

⇒ (lturn(v1, v3, v4) = T)

CVX LOWER ⊢

lexSorted(L) ∧ leftChain(L) ⇒ leftConvex(L)

Note that in the proofs, degenerate cases do not have to be addressed explicitly. Instead, it is ex-

ploited that theorems like LTURN_TRANS subsume many cases. Thus, the correctness of the algorithm

is guaranteed for all cases: in particular for the situation that two subsequent input points have

the same y-coordinate or there are collinear points in the input set.
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Fig. 22. Affine Transformations

4.5 Symmetries

Very often, various situations in geometry seem to be very similar. For instance, it is easy to see that

for all the theorems defined with the help of the left-turn predicate analogous theorems can be

defined for the right-turn predicate. Similarly, a point remains above (or below) another one if the

whole plane is mirrored at the y-axis. Since the underlying problems are more or less equivalent,

some transformations of the geometric situation do not really change a problem. In particular

for the verification tasks, it is very tedious to prove theorems that have been proven in a similar

way before. In contrast to textual proof descriptions, where similar situations are usually skipped

by stating that a proof is analogous to another one, the theorem prover must be given a formal

definition what similar means and where it can apply analogous proof techniques.

4.5.1 Transformations

To this end, basic transformations are defined. For linear geometry, affine transformations form

such an important class. Figure 22 illustrates the operations that belong to this class: translation

(a), mirroring (b), scaling (c), rotating (d) and shearing (e). In the following, not exactly this

group of operations but a slightly modified set of operations is used: Mirroring and rotating will

be restricted aligned to the coordinate system, and shearing will not be considered at all. Instead,

scaling can be done coordinate-wise. These transformations have a practical relevance for the

polygon-processing library, even though all others can be used in principle for the symmetry ap-

proach. Thus, the following primitive transformations are used, which can be combined in later

proofs:

translate ⊢def trans(v, t) = v + t

xmirror ⊢def xmir(v) = (−X(v);Y(v))

ymirror ⊢def ymir(v) = (X(v);−Y(v))

xscale ⊢def xscale(v, r) = (r · X(v);Y(v))

yscale ⊢def yscale(v, r) = (X(v); r · Y(v))

cwrotate ⊢def cw(v) = orth(v)

ccwrotate ⊢def ccw(v) = orth(−v)



4.5 Symmetries 65

With the theorem prover, it is now analysed what properties can be derived for all the standard

predicates defined in this chapter. For instance, for the left-turn predicate, the following theorems

have been proven:

LTURN TRANSLATE ⊢ lturn(trans(v1, t), trans(v2, t), trans(v3, t)) = lturn(v1, v2, v3)

LTURN XMIRROR ⊢ lturn(xmir(v1), xmir(v2), xmir(v3)) = rturn(v1, v2, v3)

LTURN YMIRROR ⊢ lturn(ymir(v1), ymir(v2), ymir(v3)) = rturn(v1, v2, v3)

LTURN XSCALE ⊢ (r 6= 0) =⇒

(lturn(xscale(v1, r), xscale(v2, r), xscale(v3, r)) = lturn(v1, v2, v3))

LTURN YSCALE ⊢ (r 6= 0) =⇒

(lturn(yscale(v1, r), yscale(v2, r), yscale(v3, r)) = lturn(v1, v2, v3))

LTURN CWROTATE ⊢ lturn(cw(v1), cw(v2), cw(v3)) = lturn(v1, v2, v3)

LTURN CCWROTATE ⊢ lturn(ccw(v1), ccw(v2), ccw(v3)) = lturn(v1, v2, v3)

Analogous theorems can be derived for all other predicates. To raise the abstraction level, trans-

formations are not only defined on vectors, but also on composed objects like lines and windows.

For example, the translation is defined as follows:

translate line ⊢def lineTrans(l1, t) = mkLine(trans(beg(l1), t), trans(end(l1), t))

translate window ⊢def winTrans(l1, t) = mkWin(trans(SW(l1), t), trans(NE(l1), t))

4.5.2 Cohen-Sutherland Line Clipping

The Cohen-Sutherland example demonstrates how the primitives can be used to verify a simple

algorithm from computer graphics. It shows how three-valued primitives are finally mapped to

two-valued primitives in the context of a concrete application, and how symmetries can be used

to handle many similar goals.

Description

A frequent operation in many graphic applications is the line clipping to an upright rectangular

window. To this end, the Cohen-Sutherland algorithm divides the plane into nine regions: Each of

the edges of the clip window defines an infinite line that divides the plane into inside and outside

half-spaces (see Figure 23 (a)). The resulting regions can be described using a four bit outcode.

The four bits of this code denote whether this region is situated above (north), below (south), left

(west) and right (east) of the window, respectively.

1001

0001

0101 0100

0000

1000 1010

0010

0110

Fig. 23. Cohen-Sutherland: Outcodes

With the help of the outcodes, necessary conditions can be formulated to check whether the

line segment is inside or outside the window: The line segment is inside the window if and only if
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no bit of the outcodes of the endpoints is set. On the other side, if a common bit in each outcode

of the endpoints is set, then both endpoints are outside the same side of the window, and thus,

the entire line segment is outside the window. In most cases, a line segment will have been either

accepted or rejected by these conditions.

In all other cases, the line segment is split into two pieces at one of the four clipping edges.

Assume that the considered endpoint (x1; y1) is above the window w (see Figure 24 (b)). Removing

the portion of the line that is above the window results in a new line segment with the old endpoint

(x2; y2) and the new endpoint (x′
1; y

′
1). Since the new endpoint is on the top border of the window,

y′
1 = N(w) holds. The other coordinate x′

1 can be computed as follows:

x′
1 = x1 + (x2 − x1) ·

N(w) − y1

y2 − y1

Once the line segment is identified, the outcode of the new endpoint is computed. After this, the

algorithm is restarted with the new values.

Formalisation

The formalisation of the algorithm in HOL starts with the definition of the outcodes. Let SW(w) be

the lower left corner of w and NE(w) the upper right corner of the window w, respectively. These

corners are just the components of the underlying representation.

outcode ⊢def

Outcode(w, v) =











below(v,SW(w)) = T,

above(v,NE(w)) = T,

left(v,SW(w)) = T,

right(v,NE(w)) = T











Based on this, the outcode predicates are defined for an arbitrary outcode c as follows:

INSIDE ⊢def Inside(c1) = (c1 = (F,F,F,F))

BOTTOM ⊢def South(c1) = c1[0]

TOP ⊢def North(c1) = c1[1]

LEFT ⊢def West(c1) = c1[2]

RIGHT ⊢def East(c1) = c1[3]

ACCEPT ⊢def Accept(c1, c2) = Inside(c1) ∧ Inside(c2)

REJECT ⊢def

Reject(c1, c2) =

(

c1[0] ∧ c2[0] ∨ c1[1] ∧ c2[1]∨

c1[2] ∧ c2[2] ∨ c1[3] ∧ c2[3]

)

The actual algorithm is taken from [49], where the loop is replaced by a recursive call. Moreover,

as the algorithm does not return an edge in all cases, an option type is used for the result, returning

None if the line is rejected, and Some(e) if the edge e is accepted.
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Fig. 24. Cohen-Sutherland: computing the intersection

csa clip ⊢def CSAClip(w, (vb, ve)) =

if Accept(Outcode(w, vb),Outcode(w, ve)) then Some((vb, ve))

else if Reject(Outcode(w, vb),Outcode(w, ve)) then None

else if Inside(Outcode(w, vb)) then CSAClip(w, (ve, vb))

else CSAClip(w,ShortenedLine(w, (vb, ve)))

shortened line ⊢def ShortenedLine(w, (vb, ve)) =

let

x1 = X(vb) and y1 = Y(vb) and

x2 = X(ve) and y2 = Y(ve) and

c1 = Outcode(w, vb)

in

if North(c1) then

((

x1 + (x2 − x1) ·
N(w) − y1

y2 − y1
;N(w)

)

, ve

)

else if South(c1) then

((

x1 + (x2 − x1) ·
S(w) − y1

y2 − y1
;S(w)

)

, ve

)

else if West(c1) then

((

W(w); y1 + (y2 − y1) ·
W(w) − x1

x2 − x1

)

, ve

)

else

((

E(w); y1 + (y2 − y1) ·
E(w) − x1

x2 − x1

)

, ve

)

Outcode Lemmas

As outcodes play a central role in the Cohen-Sutherland algorithm, they are the starting point for

some initial lemmas: If a point is inside the window, it can neither be below, above, left nor right

of the window. If it is outside, it cannot be outside at either side. A line is accepted if both points

are inside, and it is rejected if both endpoints are outside at a common side.

INSIDE NOTBTLR ⊢ Inside(c1) = ¬South(c1) ∧ ¬North(c1) ∧ ¬West(c1) ∧ ¬East(c1)

OUTSIDE BTLR ⊢ ¬(Inside(c1)) = South(c1) ∨ North(c1) ∨ West(c1) ∨ East(c1)

ACCEPT INSIDE ⊢ Accept(c1, c2) = Inside(c1) ∧ Inside(c2)

REJECT BTLR ⊢ Reject(c1, c2) =

South(c1) ∧ South(c2) ∨ North(c1) ∧ North(c2)∨

West(c1) ∧ West(c2) ∨ East(c1) ∧ East(c2)

CSA OUTCODE TOTAL ⊢

Inside(Outcode(w1, v1))∨

North(Outcode(w1, v1)) ∨ South(Outcode(w1, v1))∨

West(Outcode(w1, v1)) ∨ East(Outcode(w1, v1))
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B

A

A’

Fig. 25. Counterexample for Proposed Variant

Moreover, if a line segment is not rejected and its first endpoint is outside the window, the other

endpoint cannot be outside the window on the same side. On the other hand, if both endpoints

are outside the same side of the window, the line segment is rejected.

NOTREJECT BOTTOM ⊢ ¬Reject(c1, c2) =⇒ South(c1) =⇒ ¬South(c2)

BOTTOM REJECT ⊢ South(c1) =⇒ South(c2) =⇒ Reject(c1, c2)

At this point, the symmetry theorem of Section 4.5 are used to derive analogous theorems for the

other three edges of the clipping window. As transformations, the two mirroring of the clipping

window are used.

csa xmirror ⊢def csaXmir(v1, w1) =

(−X(v1) + X(CornerSW(w1)) + X(CornerNE(w1));Y(v1))

csa ymirror ⊢def csaYmir(v1, w1) =

(X(v1);−Y(v1) + X(CornerSW(w1)) + X(CornerNE(w1)))

Termination

Since the definition csa clip is not primitive recursive, its termination is not obvious to the HOL

system. On the other side, the number of possible cut operations is obviously limited. At closer

inspection of the clipping algorithm, it can be noticed that lines are always cut off in the same

order: first at the top, then at the bottom and at the left, and finally at the right. The second

remarkable point is the interchange of the endpoints, which is done when the first point of the

segment is located inside the window, while the other is outside. The two insights give rise to the

following variant:

ordered weight ⊢def orderedWeight(w1, (vb, ve)) =

let

c1 = Outcode(w1, vb) and c2 = Outcode(w1, ve)

in

(if North(c1) then 128 else 0) + (if South(c1) then 64 else 0)+

(if West(c1) then 32 else 0) + (if East(c1) then 16 else 0)+

(if North(c2) then 8 else 0) + (if South(c2) then 4 else 0)+

(if West(c2) then 2 else 0) + (if East(c2) then 1 else 0)

Unfortunately, this function does not have the desired properties. Consider the example shown in

Figure 25: According to the definition of orderedWeight, the weight of this situation is 32 + 8 = 40

After the truncation of the line segment, the TOP bit of the outcode of A is set, and orderedWeight
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results 128 + 8 = 136, which is not smaller as required. Hence, the following definition is used

instead:

line weight ⊢def lineWeight(w1, (vb, ve)) =

let

c1 = Outcode(w1, vb) and c2 = Outcode(w1, ve)

in

( if (¬Inside(c2) then 1 else 0)+

( if (North(c1) ∨ North(c2)) then 1 else 0)+

( if (South(c1) ∨ South(c2)) then 1 else 0)+

( if (West(c1) ∨ West(c2)) then 1 else 0)+

( if (East(c1) ∨ East(c2)) then 1 else 0)

The function lineWeight is used as well-ordering function for the termination proof. This yields

two subgoals, which correspond to the two recursive calls of the clipper function. The first one is

quite simple: After swapping the endpoints, if ¬Inside(c2) then 1 else 0 changes from 1 to 0, and

thus, the variant becomes smaller. For the second subgoal, some more effort is needed: With the

predicate CodeMono for an arbitrary outcode predicate C defined above, it is proven that for a

given window and a line segment, if the shortened line segment is outside one side, the original

line was outside, too. Thus, the weighting function does not become greater.

code mono ⊢def CodeMono(C,w1, (vb, ve)) =

let

(v′
b, v′

e) = ShortenedLine(w1, (vb, ve))

in

C(Outcode(w1, v
′
b)) ∨ C(Outcode(w1, v

′
e)) =⇒

C(Outcode(w1, vb)) ∨ C(Outcode(w1, ve))

CSA CODE MONO BOTTOM ⊢

¬Accept(Outcode(w1, vb),Outcode(w1, vb)) =⇒

¬Reject(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬Inside(Outcode(w1, vb)) =⇒

CodeMono(South, w1, (vb, ve))

With the help of theorems of the following form, it is finally shown that the well-ordering function

actually becomes smaller. In each recursive call, one part is cut off.

BOTTOM CUT ⊢ ¬North(Outcode(w1, vb)) =⇒

South(Outcode(w1, vb)) =⇒ ¬South(Outcode(w1,ShortenedLineBeg(w1, (vb, ve))))

Correctness

As a first step of the verification, a formal specification of the algorithm is set up: Given a line

segment (by its two endpoints vb and ve) and a rectangular window (given by its lower left and

its upper right corners), return the line segment that is inside the window, where all points on

the edge are considered to be inside. To keep the specification concise, the following two predi-

cates are used: CSAInWin(w1, v) holds if the point v is inside or on the edge of window w1, and

CSAOnSeg((vb, ve), v) holds if the point v is on the line segment whose endpoints are vb and ve

(including the endpoints). Note that degenerate inputs and outputs are possible, since the input

and the output segments may consist of a single point.
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csa in win ⊢def CSAInWin(w1, v) =

(inWindow(w, v) ≥ U)

csa on seg ⊢def CSAOnSeg((vb, ve), v) =

if (vb = ve)

then vb = v

else onSegment(mkLine(vb, ve), v) ≥ U

In any case, the result is a value of an option type: it is either None (if the line segment is outside

the window) or it represents a pair of points defining the clipped line segment.

CSA CORRECTNESS ⊢

let r = CSAClip(w1, (vb, ve))in

if isNone(r) then

¬(∃v.CSAOnSeg((vb, ve), v) ∧ CSAInWin(w1, v))

else

∀v.CSAOnSeg(The(r), v) =

(CSAOnSeg((vb, ve), v) ∧ CSAInWin(w1, v))

The correctness of the above specification is proven by induction over the recursive calls of the

clipping function CSAClip(w1, (vb, ve)). There are two base cases: In the first case, the line segment

is accepted, since both endpoints are inside the window. It must be proven that every point of the

segment is then also in the window (ACCEPT SEGMENT INWINDOW).

ACCEPT SEGMENT INWINDOW ⊢

Accept(Outcode(w1, vb),Outcode(w1, ve)) =⇒

CSAOnSeg((vb, ve), v) =⇒

CSAInWin(w1, v)

The Cohen-Sutherland algorithm calculates the intersection point of the clipped line segment and

a horizontal or vertical line, respectively.

CSA XLINE INTERSECT ⊢ ¬(X(beg(l1)) = X(end(l1))) =⇒

lineIntersect(xLine(rx), l1) =

let

x1 = X(beg(l1)) and y1 = Y(beg(l1)) and

x2 = X(end(l1)) and y2 = Y(end(l1))

in
(

rx; y1 + (y2 − y1) ·
rx−x1

x2−x1

)

The second base case results from the rejection of the line segment in the first recursive call. For

the proof, a modified bounding box check CSABoundingBox is used: If the Reject predicate holds,

it is proven that the window that is defined by the endpoints of the line segment and the clipping

window have no intersection. Thus, the segment does not have an intersection with the clipping

window and it is correctly rejected.
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csa bbox ⊢def CSABoundingBox(v1, v2, v3, v4) =

( vecXint(v1, v3, v2) ∨̈vecXint(v1, v4, v2) ∨̈

vecXint(v3, v1, v4) ∨̈vecXint(v3, v2, v4) ≥ U )∧

( vecYint(v1, v3, v2) ∨̈vecYint(v1, v4, v2) ∨̈

vecYint(v3, v1, v4) ∨̈vecYint(v3, v2, v4) ≥ U )

REJECT BBOX CHECK ⊢

Reject(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬CSABoundingBox(SW(w1),NE(w1), vb, ve)

CSA BBOX CHECK ⊢

¬CSABoundingBox(v1, v2, v3, v4) =⇒

(CSAInWin(mkWin(v3, v4), v) ≥ U) =⇒

¬CSAInWin(v1, v2)

The first recursive call swaps the endpoints. Provided that the induction hypotheses holds, the

algorithm is correct, because swapping the endpoints does not change the set of points of the

segment (CSA ONSEG SYM).

CSA ONSEG SYM ⊢

CSAOnSeg((vb, ve), v) = CSAOnSeg((ve, vb), v)

The second recursive call is the hardest part of the proof. The line segment is shortened. Two things

must be proven: First, the shortened segment is a subset of the original one (CSA CUT CORRECT).

Second, points on the segment that are inside the window are not cut off (CSA CUT COMPLETE).

CSA CUT CORRECT ⊢

¬Accept(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬Reject(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬Inside(Outcode(w1, vb)) =⇒

CSAInWin(w1, v) =⇒

CSAOnSeg(ShortenedLine(w1, (vb, ve)), v) =⇒

CSAOnSeg((vb, ve), v)

CSA CUT COMPLETE ⊢

¬Accept(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬Reject(Outcode(w1, vb),Outcode(w1, ve)) =⇒

¬Inside(Outcode(w1, vb)) =⇒

CSAInWin(w1, v) =⇒

CSAOnSeg((vb, ve), v) =⇒

CSAOnSeg(ShortenedLine(w1, (vb, ve)), v)

LINE SPLIT ⊢

(onSegment(l1, vm) = T) =⇒

¬(vm = end(l1)) =⇒

((onSegment(l,) 1v ≥ U) =

(v = beg(l1))∨

(onSegment(mkLine(beg(l1), vm), v) = T)∨

(onSegment(mkLine(vm, end(l1)), v) ≥ U))

The key to prove the remaining part is to show that the line segment is split into two partitions

(LINE SPLIT). This concludes the correctness proof that holds for all cases (including that end-
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points are on the edges of the window, or that both endpoints are the same). Hence, it is proven

that the algorithm terminates and that it returns the specified result.

4.6 Dependent Objects

Some computational geometry algorithms only classify a given set of input objects, while some

other create new objects. These output objects are usually constructed from other objects. Prop-

erties for these derived objects can be determined by only considering the previously existing

objects. This is extremely useful for verification procedures: Considering the construction of an

object increases the abstraction level in proofs, since properties do not have to be proven from

scratch. Instead, they can be derived from the original objects and the construction. Thus, read-

able proofs for complicated examples can be derived and general proof strategies can be applied

to find a solution in the proof space. However, in order to benefit from the constructions, the proof

goals must follow a special form: First, the property to be shown must be given in terms of some

primitives that can be applied in this approach. Second, the geometric situation must be defined

with some free points and constructions on top of these points. Under these preconditions, proofs

can follow the constructions in reverse order and eliminate occurrences of the constructed points

in the goal, until it only contains general points.

4.6.1 Proofs with Dependent Objects

There are existing proof procedures that exploit this construction principle. The most important

among them is certainly the one by Chou, Gao and Zhang [29, 139], which has been already im-

plemented within the general theorem prover Coq by Narboux [107]. The verification approach

presented in this section is inspired by this work. However, in contrast to it, constructions are not

seen as a basis of the formalisation of geometry, which lead to the freedom to consider other con-

structions and predicates. Moreover, three-valued definitions and lemmas are used in compliance

with the verification framework.

The resulting tactic is not implemented as a fully automated decision procedure. However,

with the general high-level tactics of the HOL system, which are used to identify the appropriate

elimination lemmas, most goals can be automatically reduced to an equality between two rational

expressions, which was described in Section 2.2.

Polygon processing generally deals with lines and points. In the following, their construction

from existing ones is considered. In particular, the following operations are used:

vec on line ⊢def vecAt (l1, r1) = beg(l1) + r1 · dirvec(l1)

line intersect ⊢def

lineIntersect(l1, l2) = vecAt

(

l2,
(beg(l1) − beg(l2)) × dirvec(l1)

dirvec(l2) × dirvec(l1)

)

parallelLine ⊢def parallelLine(l1, v1) = mkLine(v1, v1 + dirvec(l1))

The term vecAt (l1, λ) returns a point on the line l1 at a position that is specified by λ. The intersec-

tion of l1 and l2 is returned by lineIntersect(l1, l2) if it exists. The application of parallelLine(l1, v1)

generates a line parallel to l1 through the point v1.

A very important primitive that can be used with constructions are the area primitives triArea

and quadArea. They have been used to define the lturn predicate. Other predicates of Section 4 can

be also formulated with them as the following theorems assert:
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Fig. 26. Constructions of Dependent Points

AREA COLINEAR ⊢

collinear(v1, v2, v3) = (triArea(v1, v2, v3) = 0)

AREA PARALLEL ⊢

parallel(l1, l2) = (triArea(beg(l1), end(l1), beg(l2)) = triArea(beg(l1), end(l1), end(l2)))

AREA MIDPOINT ⊢ onLine(l1, v2) =⇒

isMidpoint(l1, v1) = (triArea(beg(l1), v1, v2) = triArea(v1, end(l1), v2))

Another important primitive is the ratio between the length of two line segments. As there is no

length function, a relative distance is defined, which equals to the intended meaning for parallel

segments.

relDist ⊢def relDistance(l, a, b) =
(b − a) ◦ dirvec(l)

dirvec(l) ◦ dirvec(l)

In principle, the sets of primitives and constructions can be arbitrarily defined. For a universal

proof method, both should be kept small, since for each element of the Cartesian product of both

sets, a lemma must be proven, which reformulates the primitive by substituting the derived object

by its construction. This lemma is used to eliminate the constructed point

The proof generally follows the following scheme: To eliminate a point from the goal, all

primitives containing it are rewritten by an elimination lemma. Finally, an expression using only

free points, which can be arbitrarily chosen, is derived. This expression must be proven with a

decision procedure or the help of lemmas, e. g. the ones presented in Section 4 for the orientation

and position predicates.

Figure 26 shows the constructions which are considered in the following: (a) a point on a line

at position λ, (b) the intersection of two lines, (c) a point on a parallel line, (e) the intersection of

a parallel line and an input line and (e) the intersection of parallel lines of input lines.
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A triangle primitive triArea that contains a dependent point y in its arguments can be sub-

stituted by area primitives with only free points as the following elimination state. In all these

lemmas, y is the third argument, which can be generally assumed, since the arguments can be

rotated by the LTURN SYM property (see Section 4.4).

TRI ELIMINATION A ⊢

let p = beg(l1) and q = end(l1) in

y = vecAt (l1, λ) =⇒

triArea(a, b, y) = (1 − λ) · triArea(a, b, p) + λ · triArea(a, b, q)

TRI ELIMINATION B ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

y = lineIntersect(l1, l2) =⇒

triArea(a, b, y) =
triArea(p, u, v) · triArea(a, b, q) + triArea(q, v, u) · triArea(a, b, p)

quadArea(p, u, q, v)

TRI ELIMINATION C ⊢

let p = beg(l1) and q = end(l1) in

l2 = parallelLine(l1, r) =⇒

y = vecAt (l2, λ) =⇒

triArea(a, b, y) = triArea(a, b, r) + λ · quadArea(a, p, b, q)

TRI ELIMINATION D ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

¬parallel(l1, l2) =⇒

l3 = parallelLine(l1, r) =⇒

y = lineIntersect(l2, l3) =⇒

triArea(a, b, y) =
quadArea(p, u, q, r) · triArea(a, b, u) − quadArea(p, v, q, r) · triArea(a, b, u)

quadArea(p, u, q, v)

TRI ELIMINATION E ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

¬parallel(l1, l2) =⇒

l3 = parallelLine(l1, p3) =⇒

l4 = parallelLine(l1, p4) =⇒

y = lineIntersect(l3, l4) =⇒

triArea(a, b, y) =
quadArea(p,w, q, r) · quadArea(a, u, b, v)

quadArea(p, u, b, v)
+ triArea(a, b, w)

Similar elimination lemmas can be given for the relative distance. The relDistance primitive for

a constructed and a free point can be replaced by triArea primitives according to the following

lemmas.
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DIST ELIMINATION A ⊢

let p = beg(l1) and q = end(l1) in

¬onLine(l1, a) =⇒

y = vecAt (l1, λ) =⇒

relDistance(l0, a, y) =
triArea(a, p, q)

quadArea(c, p, d, q)

DIST ELIMINATION B ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

¬onLine(l2, a) =⇒

y = lineIntersect(l1, l2) =⇒

relDistance(l0, a, y) =
triArea(a, u, v)

quadArea(c, u, d, v)

DIST ELIMINATION C ⊢

let p = beg(l1) and q = end(l1) in

¬onLine(l2, a) =⇒

l2 = parallelLine(l1, r) =⇒

y = vecAt (l2, λ) =⇒

relDistance(l0, a, y) =
quadArea(a, p, r, q)

quadArea(c, p, d, q)

DIST ELIMINATION D ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

¬onLine(l2, a) =⇒

¬parallel(l1, l2) =⇒

l3 = parallelLine(l1, r) =⇒

y = lineIntersect(l2, l3) =⇒

relDistance(l0, a, y) =
triArea(a, u, v)

quadArea(c, u, d, v)

DIST ELIMINATION E ⊢

let p = beg(l1) and q = end(l1) and u = beg(l2) and v = end(l2) in

¬onLine(l3, a) =⇒

¬parallel(l1, l2) =⇒

l3 = parallelLine(l1, p3) =⇒

l4 = parallelLine(l1, p4) =⇒

y = lineIntersect(l3, l4) =⇒

relDistance(l0, a, y) =
quadArea(a, p, r, q)

quadArea(c, p, d, q)

In the algebraic geometry theorem proving approach of Section 3.4 nondegenerate conditions

play an important role. This is also the case for the above constructive approach here. These

conditions are given in the assumptions, either explicitly as by ¬parallel(l1, l2) or implicitly by the

properties of each line (beg(l1) 6= end(l1)).

4.6.2 Diagonals of a Parallelogram

The example of Section 3.4 is considered here once again. However, a higher level of abstraction

is taken now. With help of the above constructions, the diagonal theorem can be proven without

the analytic geometry foundations.
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Fig. 27. Parallelogram and its Diagonals

It should be proven that the intersections of the diagonals intersect each other in their middle,

i. e. the ratio between the lengths of the segments p1p5 and p1p3 is 1
2 . The first step to prove this

fact is to construct the dependent objects from independent ones with the operations defined in

the previous section.

In the parallelogram, three points are free p1, p2 and p3. The fourth one p4 is dependent and

is constructed as the intersection of two parallels of the segments induced by p1, p2 and p3. The

point p5 in the middle is the intersection of the diagonals. Thus, the goal is as follows:

PARALLELOGRAM DIAGONALS ⊢?

(beg(l1) = p1) =⇒ (end(l1) = p2) =⇒

(beg(l2) = p2) =⇒ (end(l2) = p3) =⇒

¬parallel(l1, l2)) =⇒

(l3 = parallelLine(l1, p3)) =⇒

(l4 = parallelLine(l2, p1)) =⇒

(p4 = lineIntersect(l3, l4)) =⇒

(d1 = mkLine(p1, p3)) =⇒

(d2 = mkLine(p2, p4)) =⇒

(p5 = lineIntersect(d1, d2) =⇒

relDistance(d1, p1, p5) = 1
2

This goal is solved by applying DIST ELIMINATION B to eliminate p5 from the goal. Subsequently,

p4 can be removed by TRI ELMINATION E.

4.7 Implementation of Three-Valued Primitives

For the implementation, the definitions of the previous sections are translated one-to-one. To use

the same techniques for the specification and the implementation has various obvious advantages:

First, the specification and the actual implementation are as close as possible, since all primitives

are implemented in software in the same way as they were defined in the HOL theories. Second,

algorithms can also benefit from the same advantages of the three-valued primitives: They are

more compact, since several cases of the two-valued formalisation can be merged in the three-

valued setting.

4.7.1 Three-valued Predicates

Before three-valued primitives can be implemented, the three-valued logic must be integrated in

the polygon library. The main design decision in this context is the choice of the underlying data

type.
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x ∈ B2 ǫ(x) ∈ T

(0, 1) F

(0, 0) U

(1, 0) T

Fig. 28. Dual-Rail Encoding

Dual-rail encoding, which was originally presented [12], is a wide-spread possibility for this

purpose. It uses two Booleans to encode a ternary value so that binary decision diagrams and other

data structures and algorithms can be used for ternary values as well. [13, 125]. The mapping of

the three truth values is done according to the table shown in Figure 28.

Using dual-rail encoding, a ternary function f : Tn → T is represented by two Boolean func-

tions (g(x1, x2), h(x1, x2)), as

• ¬2(x1, x2) = (x2, x1)
• (x1, x2) ∧2 (y1, y2) = (x1 ∧ y1, x2 ∨ y2)
• (x1, x2) ∨2 (y1, y2) = (x1 ∨ y1, x2 ∧ y2)

Thus, all operations are reduced to two-valued ones. However, this encoding is not optimal for the

polygon-processing library. A better representation of the three truth values are signed numbers: F

is mapped to −1, U to 0 and T to 1, where the smallest supported type is chosen as a base (which

is usually char in C).

typedef signed char log3;

#define FF -1

#define UU 0

#define TT 1

Negation ¬̈ is implemented by reversing the sign, conjunction ∧̈ is the minimum of two argu-

ments, disjunction ∨̈ the maximum, and equivalence ↔̈ can be computed by multiplying the

arguments. Implication →̈ and antivalence ⊕̈ are reduced with the help of negation to disjunc-

tion and equivalence. All other operators like ∗̈ or ։ are implemented by their respective truth

tables as follows:

log3 awa3_table[] = {{FF,FF,FF},{FF,UU,TT},{FF,TT,TT}};

log3 awa3( log3 a, log3 b ) { return awa3_table[a+1][b+1] }

All topological primitives can be computed straightforwardly. For instance, the existence of an

intersection point of two line segments is implemented as follows:

log3 seg_do_intersect( line l1, line l2 )

{

return and3(

equ3(

lturn( l1.beg,l1.end,l2.beg ),

rturn( l1.beg,l1.end,l2.end )

),(

lturn( l2.beg,l2.end,l1.beg ),

rturn( l2.beg,l2.end,l1.end )

))

}
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Fig. 29. Winding Number Algorithm

If both segments truly intersect, T is returned. If they only touch or have a common line segment,

U is returned, since this is a degenerated case. If there are no common points, F is returned.

So far, the encoding of the truth values has not been exploited. The reason for this encoding

becomes clear when sequences of objects are processed. Then, the results of individual primitives

can be simply added. For instance, consider the winding number algorithm: It calculates the wind-

ing number of a point v relative to a polygon P , i.e. how often the directed sequence of connected

line segments of P turns around v (see Section 6.1). To this end, it counts the intersections of

an arbitrary ray starting in v with edges of the polygon P . If the intersected edge runs from the

bottom to the top, it is counted positively - in the opposite direction negatively. Figure 29 shows

the possible cases, where the ray is drawn with a dotted line and some edges of polygon P are

drawn with straight lines: (a) and (b) show simple cases without problems, while (c) to (f) show

degenerate cases, i.e. a vertex or an edge of the polygon is on the ray. Depending on the position

of the adjoining edges of the polygon, the situation must be counted as an intersection or not. In

the presented examples, cases (c) and (e) are counted as an intersection, whereas cases (d) and

(f) are not counted as intersections.

A classic implementation of this algorithm that directly deals with degenerate cases cannot

avoid the case distinctions shown in Figure 29. The position of the previous and following points

must be taken into account, which leads to even more subcases. With the help of a three-valued

intersection, the algorithm can be formulated much simpler, since the addition and three-valued

primitives hide all degeneracies.

Provided that e[i] denotes the i-th of n edges of a polygon and xRay(v) is the ray from v to the

right, the following C fragment calculates the winding number w of a point v:

w = 0;

for( i = 0 ; i < n ; i++ )

if( ray_do_intersect( xRay(v),e[i] ) >= UU ) {

w += below( v, e[i].beg );
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w += above( v, e[i].end );

}

w = w / 2;

4.7.2 Geometric Objects

The following header fragment gives an impression about the implementation of geometric ob-

jects. It describes the most important functions defined for lines and segments. They are both

represented by the C type epp_line. As for every object of the polygon-processing library, there are

constructors and destructors to allocate memory and initialise the components or free the memory

afterwards. Moreover, lines can be copied — either to a given or a newly created target. The next

group of functions implements the predicates and the constructions that are defined for lines and

segments in this chapter.

struct epp_line_t { epp_vec *beg; epp_vec *end; };

typedef struct epp_line_t epp_line;

void epp_line_init( epp_line *l1 );

epp_line* epp_line_create();

void epp_line_cleanup( epp_line *l1 );

void epp_line_destroy( epp_line *l1 );

void epp_line_set( epp_line *l0, const epp_line *l1 );

epp_line* void epp_line_copy( const epp_line *l1 );

log3 epp_line_lturn( const epp_vec *v1, const epp_vec *v2, const epp_vec *v3 );

log3 epp_line_lofline( const epp_line *l1, const epp_vec *v1 );

unsigned char epp_line_parallel( const epp_line *l1, const epp_line *l2 );

unsigned char epp_line_equiv( const epp_line *l1, const epp_line *l2 );

log3 epp_line_on_line( const epp_line *l1, const epp_vec *v1 );

log3 epp_line_on_seg( const epp_line *l1, const epp_vec *v1 );

void epp_line_veconline( epp_vec *v0, const epp_line *l1, const epp_rat *r1 );

log3 epp_line_intersect( epp_vec *v0, const epp_line *l1, const epp_line *l2 );

log3 epp_line_seg_intersect( epp_line *l0, const epp_line *l1, const epp_line *l2 );

4.7.3 Arithmetics

As discussed in Section 3.1, imprecisions of the underlying arithmetic must be considered when

implementing geometric primitives.

Extending the Precision of Computations

Various researchers have already addressed the precision problem, and some general remedies

have been proposed: For geometric predicates, a common approach is to extend the precision

of the computations in up to the point where a precise answer can be given. Floating point filters

[51, 52, 53] or adaptive-precision arithmetic [123] are two ways to implement this principle. They
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are based on the fact that it is frequently possible to determine the sign of an expression without

computing its precise value. By using some kind of interval arithmetic, the result can be approx-

imated, and the intervals are iteratively refined. Compared to arbitrary-precision arithmetic, the

runtime for the computation of a geometric predicate is only moderately increased.

However, there are some drawbacks: First, formal verification within a theorem prover is not

practical for this work, since the additional effort to implement all the required mathematics for

them is substantial. Hence, one must rely on the paper and pencil proofs by the original authors.

Second, they do not give an answer to constructed objects, similar to symbolic perturbations.

For instance, intersection points of two lines that are given by two points with precision n each,

require about 4n precision. Without falling back to arbitrary precision primitives, there is only one

solution: to restrict the precision of input objects.

Restricting the Precision of Inputs

If geometric objects are given in terms of fixed-precision rationals, their position is based on finitely

many points in the plane. These points form a fixed grid that represents all representable positions.

New objects, which have been constructed in the course of an algorithm, must be aligned to this

grid.

On this level, however, objects cannot be aligned to a grid. Since a modification of positions

should not change the topological situation, the geometric context must be respected. Thus, this

problem is deferred again to an upper layer of the system that is aware of the whole situation.

It can decide how input objects can be aligned without compromising the topological structure

of a geometric situation. In this layer, arbitrary-precision rational numbers are assumed and the

problem will be reconsidered in Chapter 6.



Chapter 5

Plane Sweep Algorithms

A lot of computational geometry algorithms follow some common execution schemes. One of these

schemes is the plane sweep paradigm, which computes the results while sweeping a line from left

to the right over the plane. 1 While moving the line, the algorithm keeps track of all changes that

result from objects that currently intersect the sweep line. Therefore, it belongs to the class of

incremental algorithms, which compute their results in discrete steps that are induced by their

inputs. These algorithms tend to be simpler and more efficient, since each of these steps only

affects the local context. Decisions are made with a limited scope, and modifications only affect

this scope.

Section 5.1 presents the general paradigm. After presenting a verification framework for plane

sweep algorithms in Section 5.2, it is applied to the network overlay in Sections 5.3 and 5.4.

Finally, Section 5.5 presents some implementation details.

5.1 General Paradigm

Generally, plane sweep algorithms use two data structures. First, they maintain a status structure,

which reflects the situation at the current position of the sweep line. Usually, this is an ordered

sequence of the objects that intersect the sweep line. Initially, when the sweep line is left of all

objects that are processed, it is empty. Every time, the sweep line detects a change, the status

structure is updated.

These changes are detected by the second basic data structure, the event queue. Initially, the

queue contains some information about the input objects. Each of its elements q = (v, e) consists

of an event e and its geometric position v = position(e), which gives the element its place in the

queue: The elements are sorted in the order that the sweep line touches them when sweeping the

plane. Events should be defined in a way that the geometric situation with respect to the given

problem only changes at these event points so that the algorithm can update the status structure.

Degenerate cases for the plane sweep algorithm are events that have the same x-coordinate.

This is usually solved, by arranging the event in lexical ordering, which arranges events like in a

dictionary, i. e. events are first sorted by their x-coordinates, and ties are resolved by comparing

the y-coordinates:

vec lex ⊢def v1 ≺ v2 = if (X(v1) 6= X(v2)) then (X(v1) ≺ X(v2)) else (Y(v1) ≺ Y(v2))

1 The plane sweep algorithm can be generalised to higher dimensions by e. g. sweeping a plane in some

direction through the space.
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function EventQueueEmpty(Q)

return Q = 〈〉;

function EventQueuePop(Q)

Q = TL (Q) ;

return HD (Q) ;

function EventQueuePush(Q, (v1, e1))

switch

case Q = 〈〉 :

return 〈(v, {e1})〉;

case Q = (v0, E0) ::Q :

switch

case v0 ≺ v1 :

return (v0, E0) ::EventQueueInsert(Q, (v1, e1));

case v0 = v1 :

return (v, E0 ∪ {e1}) ::Q;

case v0 ≻ v1 :

return (v, {e1}) :: (v, {e1}) ::Q;

Fig. 30. Operations on Event Queues

With this ordering, vertical line segments can be seen as perturbed, so that their lower endpoint are

a little bit further left than their corresponding upper endpoints. In contrast to other publications,

this is not considered as a perturbation in the sense of Section 4.2.2, but as a well-defined order.

However, this ordering does not solve all problems. Two event points can still have the same

position. Therefore, a three-valued approach is used again, and the event queue is extended:

Instead of events, it contains sets of events q = (v,E), where two events are in the same set if and

only if their positions are equal:

Q = 〈q0, . . . , qn〉 where qi = (vi, {e
0
i , . . . , e

m
i })

with position(ej
i ) = position(ek

i ) for 0 ≤ i ≤ n and 0 ≤ j, k ≤ m

The event queue offers three operations (see Figure 30): First, there is EventQueueEmpty, which

checks whether the event queue is empty. Second, EventQueuePop can be used to obtain the top

element of the queue and remove it from the queue. This set contains the leftmost events right

from the current position of the sweep line. If the queue is empty, this function fails. Third, new

events that are determined in the course of the computation, can be inserted with respect to the

event queue order by EventQueuePush. It can be seen that this operation distinguishes three cases:

A position v0 can be either smaller, greater or equal to another position v1. If other events with

the same position exist in the event queue, the new event is inserted in their set. Otherwise, a new

element in the event queue is inserted.

The status structure, on the other side, has also to support insertion and deletion operations,

but the actual set of operations depends on the used algorithm. However, each status structure is

based on a invariant order, which must be kept when performing any changes on the structure.

Figure 31 shows the general structure of a plane sweep algorithm. First, the event queue Q

is filled with input elements I1, . . . ., In, and the status structure S is initialised. In each iteration
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function PlaneSweep(I1, . . . , In)

Q = InitialiseEventQueue(I1, . . . , In);

S = 〈〉;

while (Q 6= 〈〉)

E = HD (Q) ;

Q = TL (Q) ;

HandleEvent(E, S);

Fig. 31. General Structure of Plane Sweep Algorithms

of the main loop, the first element of the event queue is removed. The handling of the event

changes the status structure and may generate new events, which are inserted at the appropriate

position of the event queue. Note that the skeleton shown in Figure 31 omits the computation

of the result of the algorithm, which is given by actual algorithm implementing the plane sweep

approach. These computations are triggered by the events and thus, they are implemented in the

HandleEvent function.

The complexity of the plane sweep algorithms tends to be better than equivalent naive ap-

proaches, provided that the operations on the main data structures are implemented efficiently.

This is usually done with the help of balanced trees, which offer all the needed operations with

complexity O(log n). If all the events can be handled in constant time, an optimal run-time com-

plexity of O(n log n) is obtained.

5.2 Reasoning About Plane Sweep Algorithms

5.2.1 Formalisation

The previous section presented the general concepts of the plane sweep approach. They cannot

only be reused as a pattern for the algorithm design or as functions in a computational geometry

library, but also basic definitions can be integrated in the verification framework. Related proof

tools like theorems, tactics and conversions to automate parts of the reasoning about these objects

are then provided so that formalisations of new algorithms can use them.

The event queue is the first structure that is integrated. It always consists of a list of lexically

ordered points and a number of events that are associated with these points. The event queue is

derived from the type (R2 × α list) list, where α is the type of events 2. Not all lists are valid event

queues, so the new type is restricted to sorted event queues.

equeue compare ⊢def

equeueCompare(e1, e2) = let (v1, E1) = e1 and (v2, E2) = e2 in v1 ≺ v2

equeue sorted ⊢def

(equeueSorted(〈〉) = T) ∧

(equeueSorted(〈e〉) = T) ∧

(equeueSorted(e1 ::e2 ::Q) = (equeueCompare(e1, e2) = T) ∧ equeueSorted(e2 ::Q))

2 Although the order of the events of single event point is not relevant, they are stored in a list instead of a

set, since lists are usually more friendly for theorem proving.
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Inserting and removing elements from the event queue are frequent operations for many algo-

rithms. The definitions follow the description given in the previous section (see Figure 30). Ba-

sic list operations are transferred to event queues as shown in equeue empty, equeue make and

equeue cons. (absQ and repQ denote the abstraction and the representation function for event

queues.)

equeue empty ⊢def 〈〉 = absQ(〈〉)

equeue make ⊢def 〈E〉 = absQ(〈E〉)

equeue cons ⊢def E ::Q = absQ(E :: repQ(Q))

equeue empty ⊢def (equeueEmpty(〈〉) = T) ∧

(equeueEmpty(e ::Q) = F)

equeue push ⊢def equeuePush((v1, e1), 〈〉) = 〈(v1, 〈e1〉)〉

equeuePush((v1, e1), (v0, E0) ::Q) =

switch

case v0 ≺ v1 = T : (v0, E0) ::equeuePush(e1, Q)

case v0 ≺ v1 = U : (v0, e1 ::E0) ::Q

case v0 ≺ v1 = F : (v1, 〈e1〉) ::Q)

equeue pop ⊢def equeuePop(q0 ::Q) = (q0, Q)

To use these definitions, it must be proven that they comply with the type definition, i. e. neither

insertion nor removal destroy the order of the event queue but result to a valid event queue. This

may be seen as an unnecessary overhead caused by the type definition, but the integration of the

invariant in the type has the advantage that the conditions do not have to be mentioned in each

definition or goal. With the help of these theorems, it is proven that pop and push operations

maintain the order of the event queue.

EQUEUE PUSH SORTED ⊢ equeueSorted(repQ(equeuePush(E,Q)))

EQUEUE POP SORTED ⊢ equeueSorted(repQ(SND(equeuePop(Q))))

The definition of the status structure is more complicated. In contrast to the event queue, the

order is not invariant: It changes at each event. Thus, the compare function has three arguments;

in addition to the two elements that are compared, the position where the comparison is made

must be given. As the elements of the status structure are specific to the algorithm, only the

signature is fixed, and the requirements for a total order are defined for a valid status structure

order O.

status ref ⊢def statusRef(O) = (O(p, s1, s1) = U)

status antisym ⊢def statusAntisym(O) = (O(p, s1, s2) = ¬̈O(p, s2, s1))

status trans ⊢def statusTrans(O) = (O(p, s1, s2) ∗̈O(p, s2, s3) ։ O(p, s1, s3))

status valid ⊢def statusValid(O) = statusRef(O) ∧ statusAntisym(O) ∧ statusTrans(O)

The following definition states when a status structure is sorted with respect to a given order O at

position p:

status sorted ⊢def

(statusSorted(O, p, 〈〉) = T) ∧

(statusSorted(O, p, 〈s〉) = T) ∧

(statusSorted(O, p, s1 ::s2 ::S) = (O(p, s1, s2) = T) ∧ statusSorted(s2 ::S))
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5.2.2 General Verification Approach

Since the main procedure of plane sweep is essentially the repeated handling of event points, it

gives rise to a general proof strategy: With the help of invariants, the proof goals can be reduced to

goals based on the handling of a single event point. Thus, similar advantages as for the implemen-

tation can be drawn from the plane sweep approach. The description of the general verification

approach does not contain concrete definitions or theorems and is not very detailed, as it highly

depends on the actual algorithm to verify.

Using an inductive argument, a correctness of an algorithm is divided in two parts: First, an

invariant must be shown for the initial creation of the event queue. Then, the proof follows the

plane sweep by verifying that each step of the plane sweep maintains the invariant.

A plane sweep algorithm does the following in each step: It takes the first element of the event

queue and uses it to compute an event queue and a new (necessarily different) status structure

that is well-ordered up to the next x-interval, i. e. between the current event point and the next

one (which is the first one of the resulting event queue).

Naturally, the invariant used in the proof must imply the correctness of the algorithm. In gen-

eral, it states that the constructed result left from the sweep line is correct. When the algorithm

reaches the right end of the processed objects, the correctness for the whole plane can be deduced.

Finally, as the algorithm may add events in course of the plane sweep, the termination must

also be shown explicitly.

5.3 Network Overlay

5.3.1 Problem

Networks are an important structure in computational geometry. They are the basis of the maps,

which will be considered in Chapter 6. Before describing the overlay, the network is defined:

Definition 7 (Network). A network consists of a pair N = (vertices(N), edges(N)), where:

• vertices(N) is the set of vertices vertices(N), which exactly consists of the endpoints of the edges:

endpoints(edges(N)) = vertices(N).

• edges(N) is the set of edges. They must be planar, i. e. free of any intersections. Two different edges

may share only a common endpoint.

The network overlay operation transforms a set of networks N = {N1, . . . , Nn} to a single network

N by overlaying the edges of all networks in the following way: vertices(N) contains all input

vertices
⋃

i=1...n vertices(Ni) as well as all the intersections of the edges. The set of edges edges(N)

is constructed by taking all input edges
⋃

i=1...n edges(Ni) and then iteratively replacing all pairs

of intersecting and overlapping edges with their overlays. Figure 32 shows a naive algorithm that

represents a reference for the developed one: For all possible combinations of edges of the input

networks, the overlay is computed. This operation is reiterated until no further intersections or

overlaps are found.

Section 4.1.2 already showed how to compute the overlay of two line segments, and a slightly

improved version of the naive approach is to take each pair of these segments and to check whether

they intersect. If they intersect, they are replaced by their overlay. Since there are O(n2) of such
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function NetworkOverlay(N )

N = newNetwork();

E =
S

Ni∈N
edges(Ni);

do

edges(N) = E;

E = {};

forall(e1, e2 ∈ edges(N))

E = E ∪ segOverlayLines(e1, e2);

while(E = edges(N));

vertices(N) = endpoints(edges(N));

return N ;

Fig. 32. Naive Implementation of Network Overlay

Fig. 33. O(n2) Intersections of n Line Segments

pairs, the algorithm needs O(n2) time. Theoretically, this approach is optimal, since each combi-

nation can result to an intersection. The example in Figure 33 illustrates this situation.

However, in most cases the number of actual intersections is relatively small compared to

the number of possible ones. Hence, an algorithm that can exclude a lot of combinations before

checking them, would be much faster in most cases. Thus, its complexity depends not only on

the size of the inputs but also on the size of the output. Algorithms that show this behaviour are

commonly called output-sensitive.

5.3.2 Algorithm

In the following, a solution to this problem is presented, which is based on the classic algorithm

of Bentley and Ottmann [4]. This algorithm computes the intersection of n line segments with

a plane sweep. The algorithm is extended and modified to compute the overlay by handling all

degenerate cases with the help of the three-valued definitions of Chapter 4.

As a first version, consider the following algorithm: In the event queue, the left and right

endpoints of each segment are stored, and the status structure contains all line segments that

are intersected by the sweep line (theoretically in an arbitrary order, but here the segments are

ordered by the y-coordinate of the intersection points). Only with this information, the number of

test can be significantly reduced: Each time a new segment is inserted in the status structure, it is

checked whether there are intersections with the other segments of the status structure. Generally,

only a small number of the n segments are in the status structure at the same time, so that the

average run-time can be reduced. For checking the correctness of the algorithm it must be verified

that there can be no combination that results to an intersection and that the algorithm skips in

the course of the computation. Considering Figure 34, it is seen that segments are at the same

time in the status structure, if they have an overlapping x-interval, which is a necessary condition
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for the existence of an intersection. The proof can be derived from the bounding box check (see

Section 4.4.3): An intersection point is in the x-intervals of both line segments — if a common

interval does not exist, there cannot be an intersection point. Thus, the algorithm still computes

all intersections, while reducing the number of intersections to be checked.

However, the algorithm can be still improved. In the first version, exclusions are performed

only on the x-intervals of the segments. This approach can also be transformed in some way to

y-intervals. When a new segment s1 is inserted into the status structure, it is not needed to check

for intersection with all other segments in the structure, but only with the neighbours. If an other,

non-adjacent segment s2 in the status structure has an intersection with s1, all segments between

them must either have an intersection point with s1, s2 or they end before the sweep line reaches

the intersection between s1 and s2. In both cases, the segments s1 and s2 become eventually

adjacent in the course of the plane sweep. For example, consider the segment s5 in Figure 34. A

check for an intersection with s4 is not needed as long as s2 is between both segments.

To implement this idea, the segments in the status structure must be sorted by the y-coordinate

of their intersection point with the sweep line. Besides the insertion and removal of segments,

intersection points change the order in the status structure. For this reason, they must be stored

in the event queue, too. The general procedure is as follows: When a segment starts at the current

event point, it is inserted into the status structure and it is checked for intersections with its

neighbours. When a segment ends, it is removed from the status structure, and it is tested whether

the two old neighbours of the segment (which have become adjacent) intersect. In both cases, if

an intersection is detected, it is inserted into the event queue if it is on the right-hand side of

the current event point.3 When such an event is hit during the plane sweep, both segments are

swapped in the status structure and are checked for intersections with their new neighbours. This

is the general principle of the whole algorithm, which is often presented in textbooks. However,

degenerated cases have not considered yet here.

To handle degenerate cases, some generalisations and modifications must be made to the orig-

inal algorithm. Figure 35 shows an algorithm that considers all special cases, which were found

while implementing the algorithm and reasoning about it with a theorem prover. In particular, the

following situations have been considered:

3 Note that this is necessary, since an intersection can be detected more than once. If the event had been

already handled and was reinserted with a position left from the current event point, it would be processed

twice — with incorrect results.

s5

s3 s4s2s1 s6s5

s6

s1
s2

s3
s4

Fig. 34. Overlapping x-Intervals of Active Segments
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function NetworkOverlay(e1, . . . , en)

N = newNetwork();

Q = InitialiseEvents(e1, . . . , en);

S = 〈〉;

while (not EventQueueEmpty(Q))

(vlast, Ebegin, Eend) = EventQueuePop(Q);

if (SegLowmst(S) 6= 〈〉)

NetworkEdgesEnd();

S = StatusRemoveSet(S, Eend);

S = StatusInsertSet(S, Ebegin);

CheckIntersections(Q, S);

if (SegLowmst(S) 6= 〈〉)

NetworkEdgesBegin();

return N ;

Fig. 35. Network Overlay Plane Sweep

First, an arbitrary number of segments can intersect at an intersection point, not only two.

Hence, the swapping of segment pairs cannot be done as described above, but all segments that

intersect in the event point are reversed in the status structure. In the algorithm, this is emulated

by removing and reinserting the segments to be reversed.

Second, events can have the same position, e. g. a segment can start at the point where another

one ends. In this case, events are merged, and all parts must be handled. Although an arbitrary

execution order is possible, ending segments are removed first, then intersecting ones are reversed,

and finally starting ones are inserted. In this order, not only the status structure is kept as small as

possible, but it also follows the topological order: Ending segments come from the left-hand side

of the sweep line, intersecting ones can be found on both sides, while starting segments are on the

right-hand side of the sweep line.

Third, two segments can intersect the sweep line at the same position. This is always the

case for intersection event points. Thus, the order function of the status structure S must be

refined. Segments are first ordered by the y-value of their intersection point with the current

sweep line, then by their slope. Segments that are equal under both criteria are put in a list.

Hence, the status structure stores a list of lists, where the elementary sublists contain collinear

segments. These segments are ordered by the position of their right endpoints, which makes the

detection of intersection points in CheckIntersection simpler - in principle, any other order would

be generally possible. The last case for the order of the status structure are vertical segments: They

are considered to be greater than any other segment, in the sublist sorted by the y-value of the

right (i. e. upper) endpoint. The function StatusCompare implements all these rules.

Fourth, segments can touch or share common endpoints. These degenerated cases are handled

without effort provided that the intersection check does not consider these cases as real intersec-

tions.

Before going into details about the network overlay algorithm, some helper functions are

defined that are used in the following paragraphs. The most important ones are SegBelow(S),

SegLowmst(S), SegUpmst(S), and SegAbove(S): SegBelow(S) returns the list of edges below the

event point, SegAbove(S) the list of the edges above. These functions determine the position

of the event point in the current status structure: SegLowmst(S) denotes the first list of edges
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s0’

s2

s1

s3

s0

s3’

s2’

s1’

Fig. 36. Border Segments Functions

that contains the event point, and SegUpmst(S) is the last list. SegBelow(S) is the predecessor

of SegLowmst(S), and SegAbove(S) is the successor of SegUpmst(S). If no corresponding list can

be found, the empty list 〈〉 will be returned. Figure 36 illustrates the definitions. Just before the

marked point, SegBelow(S) = s0, SegLowmst(S) = s1, SegUpmst(S) = s2 and SegAbove(S) = s3

hold — after the event point: SegBelow(S) = s′0, SegLowmst(S) = s′1, SegUpmst(S) = s′2 and

SegAbove(S) = s′3 hold.

Event Queue

The left-hand side of Figure 37 shows the event queue functions. The event queue contains pairs

E = (v, (E1, E2)) with the following meaning: The vector v denotes the position of the event.

The sets E1 and E2 contain the edges that start and end at the event point, respectively. The

function InsertEvent(Q,E) inserts the event E to the queue Q. The position of E in the queue

is determined by its geometric position v (lexical order). If an event with the same geometric

position already exists in the event queue, both events are merged by merging the edge sets. The

event queue is initialised by InitialiseEvents by taking the edges of all input networks M1, . . . ,Mn

and inserting their both endpoints to the event queue. When adding the segment to the event

queue, the orientation of the edge must be considered so that the beginning of the edge is in front

of its ending in the event queue.

The functions CheckIntersections and CheckIntersection, which are shown on the right-hand side

of Figure 37, insert intersection events in the event queue during the plane sweep. The function

CheckIntersections first determines which lists of the status structure must be checked. If there are

segments that start at the current event point, the lowermost list passing the event point and the

list below it are checked for intersections. Analogously, the uppermost list passing the event point

and the list above are checked. If there are no segments that start at the event point, the lists above

and below the event point become adjacent, and are checked for intersections. CheckIntersection

distinguishes four cases: The first three ones cover the situations where one list or both of them do

not exist. In the last case, the intersection point is computed. If it is an intersection point (neither

a common segment nor a touching point), which is indicated by t = T, all segments that contain

the intersection point are added with an intersection event to queue.
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function InsertEvent(Q, (v, E1, E2))

switch

case Q = 〈〉 :

return 〈E〉;

case Q = q ::Q :

(v′, E ′
1, E

′
2) = q;

switch

case v′ ≺ v :

return q :: InsertEvent(Q, (v, E1, E2));

case v′ = v :

return (v, E1 ∪ E ′
1, E2 ∪ E ′

2) :: Q;

case v′ ≻ v :

return (v, E1, E2) :: q :: Q;

function InitialiseEvents(N1, . . . , Nn)

Q := 〈〉;

forall (i ∈ {1 . . . n})

forall (e ∈ edges(Ni))

if (src(e) ≺ dest(e) = T)

Q = InsertEvent(Q, (src(e), {e}, {}));

Q = InsertEvent(Q, (dest(e), {}, {e}));

else

Q = InsertEvent(Q, (dest(e), {e}, {}));

Q = InsertEvent(Q, (src(e), {}, {e}));

return Q;

function CheckIntersections(Q, S)

if (SegLowmst(S) 6= 〈〉)

CheckIntersection

(Q, SegBelow(S), SegLowmst(S));

CheckIntersection

(Q, SegUpmst(S), SegAbove(S));

else

CheckIntersection

(Q, SegBelow(S), SegAbove(S));

function CheckIntersection(Q,S1,S2)

switch

case (S1,S2) = (〈〉, 〈〉) :

return Q;

case (S1,S2) = (s1 ::S1, 〈〉) :

return Q;

case (S1,S2) = (〈〉, s2 ::S2) :

return Q;

case (S1,S2) = (s1 :: S1, s2 :: S2)

(t, v1, v2) = StatusIntersection(s1, s2);

if (t = T)

forall(e ∈ s1, s2)

if (onEdge(v, e) = T)

Q = InsertEvent(Q, (v1, {e}, {e}));

return Q;

Fig. 37. Network Overlay Algorithm: Event Queue and Intersection Detection

Status Structure

Figure 38 shows the functions for the status structure. Its core structure is the order function

StatusCompare(p, e1, e2). It compares two edges e1 and e2 at the position p according to the order

described above. StatusInsertSet(S, E) inserts all edges of the set E in the status structure, which

is implemented by StatusInsert(S, e): In the case that two segments are equal with respect to

the order function, they are put in the same sublist ordered by their right endpoints. With this

ordering, the intersection for collinear line segments can be implemented more efficiently. The

removal of segments is handled analogously by StatusRemoveSet(S, E) and StatusRemove(S, e).

The handling of an event point is divided into three steps: First, the function NetworkEdgesEnd()

processes all edges that end at the current event point or pass it. These edges are determined by

SegLowmst(S) and SegUpmst(S). For each edge list s, a new edge in the output network is created

from the startpoint stored in curStart(s) to the current event point vlast. This point is set as the

startpoint for all edge lists that start at this event point in the function NetworkEdgesBegin().
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function StatusInsertSet(S, E)

forall (e ∈ E)

S = StatusInsert(S, e);

return S;

function StatusInsert(S, e)

switch

case S = 〈〉 :

return 〈〈e〉〉;

case S = s ::S :

switch

case StatusCompare(vlast, s, e) = T :

return s ::StatusInsert(S, e);

case StatusCompare(vlast, s, e) = U :

return StatusCollinear(s, e) ::S;

case StatusCompare(vlast, s, e) : F :

return 〈e〉 ::s ::S;

function StatusCollinear(s :: S, e)

if (RightEnd(e) ≺ RightEnd(s) = T)

return s ::StatusCollinear(S, e);

else

return s ::S;

function NetworkEdgesEnd()

for (s = SegLowmst(S) . . . SegUpmst(S))

elast = newEdge();

edges(N) = edges(N) ∪ {elast};

src(elast) = curStart(s);

dest(elast) = vlast;

function StatusCompare(p, e1, e2)

y1 = yValueAt(e1, X(p));

y2 = yValueAt(e2, X(p));

if (y1 = U and y2 = U)

return U;

if (y1 = U and y2 6= U)

return (y2 < Y(p) ⇒ T|F) ;

if (y1 6= U and y2 = U)

return (y2 < Y(p) ⇒ F|T) ;

if (y1 6= y2)

return (y1 < y2 ⇒ T|F) ;

δ1 = slope(e1);

δ2 = slope(e2);

if (y1 < Y(p))

return (δ2 < δ1 ⇒ T|F) ;

else

return (δ1 < δ2 ⇒ T|F) ;

return U;

function NetworkEdgesBegin()

for (s = SegLowmst(S) . . . SegUpmst(S))

curStart(s) = vlast;

Fig. 38. Network Overlay: Status Structure and Edge Handling

5.4 Network Overlay Verification

The verification of the network overlay algorithm is based on the general definitions of Section

5.2.2. In addition to the general descriptions, the formalisations are specialised for the network

overlay.

The description of the algorithm is taken from the previous section with some exceptions:

Sequences and loops, which are not available in a functional style, are eliminated by substitution

and recursion. Lists are used instead of sets, since they are more convenient for proofs. Vertices

are seen to be equivalent to points, and line segments are substituted for edges.

5.4.1 Event Queue

The first step in the verification is the formalisation of the event queue initialisation:
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NetworkInitialiseEvents ⊢def

(InitialiseEvents(Q, 〈〉) = Q)∧

(InitialiseEvents(Q, l ::L) = if beg(l) ≺ end(l) = T then

equeuePush(equeuePush(InitialiseEvents(Q,L),

end(l), (〈〉, 〈l〉)), beg(l), (〈l〉, 〈〉))

else

equeuePush(equeuePush(InitialiseEvents(Q,L),

beg(l), (〈〉, 〈l〉)), end(l), (〈l〉, 〈〉))

In addition to the general restrictions that apply to the content of the event queue, the following

properties must hold for the network overlay event queue: For each startpoint of an edge, there is

exactly one endpoint at a position that is greater. Moreover, intersection events only occur between

the start and the endpoint of a segment (which is encoded by first removing and then inserting

new segments).

ovQueueValid ⊢def

(ovQueueValid(〈〉, L) = (L = {}))∧

(ovQueueValid((v, (〈〉, 〈〉)) ::Q, L) = ovQueueValid(Q,L))∧

(ovQueueValid((v, (l : L1, 〈〉)) ::Q, L) =

if l ∈ L then F else ovQueueValid((v, (L1, 〈〉)) ::Q, L ∪ {l}))∧

(ovQueueValid((v, (L1, l : L2)) ::Q, L) =

if l 6∈ L then F else ovQueueValid((v, (L1,L2)) ::Q, L \ {l}))

It is proven that the initial event queue is valid and that a single step in the network overlay

algorithm maintains the validity. This property is needed as an invariant for the correctness proof.

5.4.2 Status Structure

As the first step, the status structure ordering is formalised according to the definition in Figure 38.

However, two details differ from the algorithm:

The status structure only contains single segments and not lists of segments to keep the proof

goals manageable, which are already hard to view as a whole. This involves a modification of

the insert and remove operation: When inserting, the maximum of both segments is taken, and

removing is only done if the maximum position is reached at the event point.

status insert ⊢def statusInsert(p, s1, 〈〉) = 〈s1〉∧

statusInsert(p, s1, s0 ::S) =

switch3

(StatusCompare(p, s0, s1),

(s0 ::statusInsert(p, s1, S)),

((mkLine(beg(s0), vMax(end(s0), end(s1)))) ::S),

(s1 ::s0 ::S)

)

Second, the order is defined in two steps: First, the y-coordinates of the segments are compared

and then the slope. This has some advantages for the later proof, since later formalisations can

state the fact that a segment passes an event point. With regard to the statusCompareY, all segment

in an event point are equal, but they may differ with regard to statusCompareSlope. Furthermore,

statusValid is proven to be a valid order as defined in Section 5.2.
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statusCompare ⊢def StatusCompare(p, s1, s2) =

if statusCompareY(p, s1, s2) 6= U

then statusCompareY(p, s1, s2)

else statusCompareSlope(p, s1, s2)

OV STATUS VALID ⊢ statusValid(StatusCompare)

The next step is to prove that the status compare function StatusCompare(p, l1, l2) changes at an

intersection p of two line segments l1 and l2. Based on this theorem, it is proven that a constant

StatusCompare implies the non-existence of an intersection point between both points. For this

theorem, the uniqueness of the intersection point is used in the course of the proof.

OV STATUS COMPARE CHANGE ⊢

isLineIntersect(p, l1, l2) =⇒

(p1 ≺ p = T) =⇒ (p ≺ p2 = T) =⇒

(StatusCompare(p, l1, l2) = ¬̈StatusCompare(p, l1, l2))

OV STATUS COMPARE CONSTANT ⊢

isLineIntersect(p, l1, l2) =⇒

(p1 ≺ p2 = T) =⇒

(StatusCompare(p1, l1, l2) = StatusCompare(p2, l1, l2)) =⇒

((p ≺ p1 = T) ∨ (p2 ≺ p = T))

Another function that is needed for the prove is definition of the last event point for a given

status structure. Since right endpoints of segments cannot be reconstructed from the current status

structure, it gives the last insertion or intersection point (which is equivalent due to the encoding

of the intersection points). For an empty status structure, the function remains undefined.

statusLast ⊢def

(statusLast(〈s1〉) = beg(s1))∧

(statusLast(s1 ::s2 ::S) = vMax(beg(s1), statusLast(s2 ::S)))

5.4.3 Algorithm

The termination of the network overlay algorithm is not obvious to the theorem prover, as it is not

a primitive recursive function over the event queue: New elements may be inserted in the event

queue in each step. To avoid this problem, the verification makes a modified induction over the

actual event queue of the network overlay algorithm. In this proof-friendly version, all events are

computed in advance, i. e. the event queue initially contains events for all endpoints as well as all

intersections, ordered according to their position. The modified event queue has a big advantage:

New elements do not need to be inserted in the course of the plane sweep and thus, termination

of the plane sweep does not need to be proven.

Instead of directly using an induction to prove the goal, the crucial property of the network

overlay is analysed first: It must be checked that the algorithm really detects all intersections.

As the event queue contains all intersections by construction, there cannot be any intersections

between two events. It must be checked whether all intersections have been added by the network

overlay before, i. e. that the two intersecting segments have been neighbours at a previous event

point. Since intersection points are not explicitly stored in the event queue, this property is checked

for all segment pairs that end at a common event point. These points are clearly a superset of the



94 5 Plane Sweep Algorithms

intersection points, as intersections are encoded by an ending and a starting of the respective

segments.

statusNeighbour ⊢def

(statusNeighbour(〈〉, sa, sb) = F)∧

(statusNeighbour(〈s1〉, sa, sb) = F)∧

(statusNeighbour(s1 ::s2 ::S, sa, sb) =

(s1 = sa) ∧ (s2 = sb) ∨ (s1 = sb) ∧ (s2 = sa) ∨ statusNeighbour(s2 ::S, sa, sb)

Assume that the algorithm is at an intersection event point for two segments l1 and l2. In principle,

it is enough to look at the previous event point. This is very convenient, as it does not require an

additional induction step. Two cases can then be distinguished: If this point was a point, where

only segments end, both segments were tested for an intersection, as they evidently became neigh-

bours at that event point.

If a segment starts there, it must be still between them, as there cannot be an intersection in

the x-interval in between. At the current event point, all points intersect as stated by the following

theorem: If two non-parallel segments have the same y-value at an event point, this point is the

intersection point. Moreover, the segment cannot be parallel, since they had different y-values at

the previous event point.

YVALUE EQUAL INTERSECT ⊢

¬parallel(l1, l2) =⇒

statusCompareY(p, s1, s2) = U =⇒

isLineIntersect(p, l1, l2)

Finally, there is a third case: The last event point cannot be between the two segments. Then, it

would be irrelevant for the detection of the intersection and the point before must be considered,

and possibly the one before that one, and so on. To avoid an backward induction of the event

points (which is difficult), a stripping function is defined, which removes event points outside

the considered segments. statusStrip returns the status structure without the irrelevant segments,

whereas statusStripped returns the stripped elements.

statusStrip ⊢def

(statusStrip(〈〉, sa, sb, v) = 〈〉)∧

(statusStrip(s1 ::S, sa, sb, v) =

if (StatusCompare(v, sa, s1) = T) ∨ (StatusCompare(v, s1, sb) = T)

then s1 :: (statusStrip(S, sa, sb, v))

else (statusStrip(S, sa, sb, v))

statusStripped ⊢def

(statusStripped(〈〉, sa, sb, v) = {})∧

(statusStripped(s1 ::S, sa, sb, v) =

if (StatusCompare(v, sa, s1) = T) ∨ (StatusCompare(v, s1, sb) = T)

then s1 ∪ (statusStripped(S, sa, sb, v))

else (statusStripped(S, sa, sb, v))

The strip function must be proven not to remove relevant intersection test as shown by the follow-

ing theorem:
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OV STRIPPED CORRECT ⊢

s ∈ statusStripped(S, sa, sb, v) =⇒

v0 = statusLast(S) =⇒

¬∃v. v0 ≺ v ∧ (isLineIntersect(v, s, sa) ∨ isLineIntersect(v, s, sb))

If this strip function is applied to the above situation, the third case cannot occur and the network

overlay algorithm is guaranteed to detect all line intersections.

5.5 Implementation Details

5.5.1 Intersection Test Reduction

The number of intersection tests can be significantly reduced by the following two considerations:

First, input networks can be assumed to be planar. For each element in the status structure,

it is stored, which maps contribute to the segment. As each element may be built from several

overlapping edges of different input maps, a list of maps is associated with each entry. Before an

intersection check, these lists are compared: If they are equal, the intersection test must fail due

to the planarity of the input networks.

Second, a bounding-box check is used for a fast line segment intersection test. The plane

sweep approach inherently contains a half of the bounding-box check. As already discussed, only

segments with overlapping x-intervals are checked. The other half can be integrated as follows:

Before the actual intersection test, it is checked whether the respective two segments have a com-

mon y-interval. Since the vertical ordering of the segments can be derived from status structure,

the algorithm only needs to determine the upper vertex of the lower segment v1 and the lower ver-

tex of the upper segments v2 and check whether above(v1, v2) ≥ U. Only if this test is successful,

the actual intersection check is needed.

5.5.2 Event Queue Ordering

Algorithms that follow the plane sweep approach first construct an event queue. As all events

are ordered, this involves a sorting of all the events induced by the inputs. Thus, for m networks

containing each O(n) vertices, the asymptotic complexity of the event queue construction in the

network overlay is generally O(n · m · log(n · m)).

However, if the input is a construction by a previous network overlay algorithm, this fact can

be exploited. The network overlay algorithm constructs the vertices in lexical order. So, the ver-

tices are stored in a list instead of a set to keep their order. With the help of this property, the

constructing the initial event queue can be done in O(n · m · log m).

Furthermore, when inserting an edge in the event queue, its orientation must be normalised

that the overlay algorithm can assume that the destination of an edge is its right endpoint. When

edges are guaranteed to have this order by construction, the check can be skipped and the edge is

inserted without a comparison.

For the polygon-processing library, the theoretical complexity is not the significant number.

However, tests have shown that these modifications speed up the run-time of the overlay algorithm

by 5 – 40 % depending on the number of vertices and networks. Some care must be taken when

networks are created from scratch. Their vertices must be sorted. Otherwise, the overlay algorithm

returns (if the inputs are not checked) a completely useless result.
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Usually, trees or similar data structures are used for the event queue and the status structure

of the plane sweep, since they guarantee a good asymptotic complexity. For the problem sizes usu-

ally considered for the polygon-processing library (about 100–200 segments per overlay), simple

double-linked lists have shown to be a bit more efficient. Moreover, they are better with respect to

the memory usage, which will be explained in the following subsection.

5.5.3 Static Memory

A special requirement for many embedded systems is the restriction to static memory. This re-

quirement is due to several reasons: First, dynamic memory libraries may not be available for the

embedded device. Second, allocation of memory is always a source of bugs. Memory leaks are

among the most frequent programming errors, which should be avoided for safety-critical sys-

tems. Third, only statically reserved memory may be efficient enough. In particular, this is the case

if real-time requirements must be met, where the size of the data structures must be bounded a

priori to give a guaranteed worst-case execution time.

All data structures for the plane sweep algorithm are implemented with a fixed upper bound

of memory usage. Clearly, this implies restrictions to the size of the inputs, which will be discussed

in detail in Section 6.5.



Chapter 6

Polygons and Maps

So far, only one-dimensional objects like lines, segments and their intersections have been studied.

Based on them, this chapter introduces polygons and maps as the main two-dimensional struc-

tures, which are the core of the developed polygon-processing library. They are able to describe

areas in the plane, which may be intepreted differently by single applications.

First, Section 6.1 defines polygons and their interior. The more general concept of maps will

be discussed in Section 6. Based on this data structure, the overlay of a set of maps is presented

in Section 6.3. Sections 6.4 and 6.5 show how the algorithm can be adapted to the needs of

embedded systems: Conservative rounding and map simplification limit the problem size in a

well-defined way so that real-time requirements can be met.

6.1 Polygons

6.1.1 Boundary

A general polygon consists of a number of contours, where each one is usually defined by a se-

quence of vertices V = 〈v1, . . . , vn〉. The boundary then consists of the edges that connect these

vertices, where consecutive edges share a common endpoint: E = 〈e1, . . . , en〉, where ei connects

vi and vi+1 for 1 ≤ i < n, and en connects vn and v1.

(e)

(b) (c)

(d)

(a)

Fig. 39. Different Kinds of Polygons: Convex, Concave, With Hole, Self-Intersecting, Multi-Contour



98 6 Polygons and Maps

v

C(t)

ϕ (t)

Fig. 40. Winding Number Definition

Figure 39 shows several examples of polygons. Polygons can be convex (a), concave (b) or

contain holes (c). Contours can be self-intersecting as in polygon (d), or a polygon can consist of

several unconnected contours.

6.1.2 Interior of a Polygon

The general definition of the interior of a polygon is not straightforward. There are a lot of anoma-

lies that have to be considered when the interior is defined: contours of the polygon may be self-

intersecting, consecutive vertices may be identical, or some edges may overlap. A practical way

to cope with all these issues is the definition of a winding number of a point p with regard to a

contour C [80]: It is given by the integrated angle ϕ and basically describes how often a point

winds around the point p when following the contour C (see Figure 40):

Definition 8 (Winding Number). For a contour C in parametric form

c : [a, b] 7→ C ⊂ R2 with c(t) =

(

x(t)

y(t)

)

and a point p, which is not on the contour, the winding number wC(p) is the oriented line integral of

the angle ϕ(t) = arctan y(t)−Y(p)
x(t)−X(p) :

ωC(p) =
1

2π

∫

dϕ

dt
(t) dt =

1

2π

∫

ẏ(t)x(t) − y(t)ẋ(t)

x(t)2 + y(t)2
dt

For closed contours, the winding number associates an integer to all points that are not on a

contour. Based on this number, the interior can be defined: A usual choice is to define all points

that have an odd winding number as inside, whereas other choices (positive, non-zero) are also

possible. Figure 41 shows three exemplary polygons with winding numbers.

w=−1

w=1

w=2

w=1w=1

Fig. 41. Winding Number Examples
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The usual choice of selecting all points with an odd winding number corresponds to the odd-

even rule that was implemented by the parity algorithm in Section 4.3.1. This algorithm also

complies with the three-valued setting of the geometry kernel by assigning U to all points on the

edges of a polygon.

In the following, polygons will not be considered anymore, since they can be subsumed by

more general structures: in particular by maps. Since these maps are planar by definition, they are

guaranteed to be free of all the mentioned anomalies, which is an optimal setting for algorithms

based on them.

6.2 Maps

As the name suggests, maps and the map overlay problem have their origin in the domain of

geographic information systems. In polygon-processing and situation analysis applications, they

can be used to describe polygonal regions or objects, e. g. vehicles, obstacles, dangerous or safe

areas. Although maps are planar by definition, they are able to store a set of (possibly overlapping)

polygons by using various labellings.

In general, there are two kinds of maps: bounded and unbounded maps. In unbounded maps,

edges with an infinite length are possible, e. g. a line that separates the plane into two subdivisions.

In contrast to this, bounded maps only contain finite edges, which are all fixed by two endpoints.

Although all algorithms in the following can be extended to unbounded maps, unbounded maps

are not considered here. Since they are not relevant for the considered embedded applications,

unbounded maps would unnecessarily increase the complexity.

Definition 9 (Map). A bounded map in the plane consists of a triple M = (V, E ,F), where:

• V = vertices(M) ⊆ Q2 is a finite set of vertices.

• E = edges(M) ⊆ V × V is the set of edges. An edge e = (vi, vj) connects two different vertices

vi, vj ∈ V. A point v can belong to more than one line segment induced by an edge e = (vi, vj)

only if it is one of the vertices vi or vj . Since edges do therefore not intersect, a map is always a

planar graph.

• The edges of a map induce a partition of the plane into a set of faces F = faces(M). Each face

is a polygonal region bounded by one outer component (sequence of edges) and possibly several

inner components, which are commonly referred to as holes. Moreover, a map has exactly one

unbounded face unbdFace(M), which has only inner components.

In the following, all faces are assumed to be labelled. The multiset labels(f) associated with a face

f ∈ F contains the attribute information, i. e. it describes the properties of f on application level.

For instance, this information can describe the membership to a polygon.

Figure 42 gives an example map and illustrates the data structure, which is used in the algorithms.

Maps are represented as doubly connected edge lists: In this data structure, edges consist of pairs

of half-edges representing both directions of an edge. Two half-edges forming a pair are called

twins, and each one has a references to the adjacent face. For the sake of simplicity, this detail is

hidden in the following, and only edges are used in the descriptions of the algorithms.

Thus, each edge e has references (dashed lines) to the two vertices src(e) and dest(e) that

it connects. The face that lies on its left-hand side (as seen from source to destination) is its

leftFace(e), the opposite one is its rightFace(e). A face f has references to its outer component
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outerComp(f) and the set of its inner components innerComp(f). They point to an arbitrary edge

of the component, from where the whole component can be traversed. Finally, each map M has a

reference to its unbounded face unbdFace(M).

6.3 Map Overlay

6.3.1 Problem

In the previous chapter, the overlay for a network was computed. In this section, an algorithm for

the analogous operation on maps is described. The map overlay operation can be used to combine

a set of inputs maps (sometimes called layers) into a single map. It covers a lot of other geometric

problems by means of simple reductions (see Section 6.3.3). It is defined as follows:

Definition 10. The overlay of a set of maps M = {M1, . . . ,Mn} where each map is given by Mi =

(vertices(Mi), edges(Mi), faces(Mi)) is the map M = (vertices(M), edges(M), faces(M)):

• The set of vertices vertices(M) and the set of edges edges(M) correspond the result of the network

overlay of the maps in M.

• The set of faces faces(M) is induced by the set of edges edges(M) of the new map, as in the

definition of a single map.

The labels labels(f) for a face f ∈ faces(M) of the overlay is defined as expected: Each face is

labelled with the sum of labels of the faces that contribute to this face. To determine the set of

contributing faces, choose an arbitrary point inside the face and locate in each input layer the face

that contains it.

Since the significant information is the labelling of the faces, redundant vertices and edges are

removed after a map overlay: Edges are redundant if the faces on both of its sides have the same

labelling. Consecutively, vertices are removed if no edge is connected to them.

6.3.2 Algorithm

The network overlay algorithm, which is presented in Section 5.3 is the basis of the map overlay

algorithm. It also copes with degenerate inputs and thus, it handles all maps. Again, the handling

e11

e9 e10

A

v2v1 v3

v4

v5

v6 v7

e1 e2

e3 e4

e6

e7

f2

f1

A

e5

v8 v9e8

v10 v11

B
rightFace

f3

src

dst

f0

leftFace

innerComp

labels
twin(e9)

outerComp

unbdFace

Fig. 42. Example Map and Map Data Structure
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function MapOverlay(M1, . . . , Mn)

M = newMap();

curFace(⊥) = unbdFace(M);

curRaw(⊥) =
Pn

i=1
labels(unbdFace(Mi));

curLabels(⊥) = computeLabels(curRaw(⊥));

labels(unbdFace(M)) = curLabels(⊥);

InitialiseEvents(M1, . . . , Mn);

S = 〈〉;

while (Q 6= 〈〉)

(vlast, Ebegin, Eend) = head(Q);

vertices(M) = vertices(M) ∪ {vlast};

Q = tail(Q);

fabove = curFace(prev(SegAbove(S)));

fbelow = curFace(SegBelow(S));

nend = 0;

nbegin = 0;

if (SegLowmst(S) 6= ⊥)

HandleEdgesEnd();

S = StatusRemoveSet(S, Eend);

S = StatusInsertSet(S, Ebegin);

CheckIntersections(Q, S);

if (SegLowmst(S) 6= ⊥)

HandleEdgesBegin();

HandleMerge();

if (nend = 0 and nbegin = 0)

vertices(M) = vertices(M) \ {vlast};

outerComp(unbdFace(M)) = ⊥;

return M ;

Fig. 43. Map Overlay Algorithm

of degeneracies is by far the most tricky part of the algorithm. While implementing the algorithm

a lot of imprecise explanations and forgotten cases in other descriptions have been found, al-

though many authors claim to care about degenerate cases: e. g. the authors of [36] do not handle

overlapping edges in the map overlay algorithm.

Instead of removing redundant parts after the overlay, the presented algorithm only constructs

the significant parts with respect to a given operation on the labeling: Redundant vertices and

edges (with respect to the labeling), isolated vertices are immediately removed in the course of the

plane sweep, and new edges are only created if the labels of the faces on both sides are different.

This optimisation leads to a remarkably better performance while additionally decreasing the

memory usage in the course of the algorithm.

The main loop of the algorithm is shown in Figure 43: For the input maps M1 to Mn, the algo-

rithm computes the overlay M . It basically follows the structure of the network overlay algorithm

presented in Section 5.3. Event queue and status structure used there are also the basis of the map

overlay algorithm.

In addition to the border segment functions (SegBelow(s) and others), the algorithm keeps

track of the face (of the output map M) that is below and above the current event point. As this
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function InsertEvent(Q, (v, E1, E2))

switch

case Q = 〈〉 :

return 〈E〉;

case Q = q ::Q :

(v′, E ′
1, E

′
2) = q;

switch

case v′ ≺ v :

return q :: InsertEvent(Q, (v, E1, E2));

case v′ = v :

return (v, E1 ∪ E ′
1, E2 ∪ E ′

2) :: Q;

case v′ ≻ v :

return (v, E1, E2) :: q :: Q;

function InitialiseEvents(N1, . . . , Nn)

Q := 〈〉;

forall (i ∈ {1 . . . n})

forall (e ∈ edges(Ni))

if (src(e) ≺ dest(e) = T)

Q = InsertEvent(Q, (src(e), {e}, {}));

Q = InsertEvent(Q, (dest(e), {}, {e}));

else

Q = InsertEvent(Q, (dest(e), {e}, {}));

Q = InsertEvent(Q, (src(e), {}, {e}));

return Q;

function CheckIntersections(Q, S)

if (SegLowmst(S) 6= 〈〉)

CheckIntersection

(Q, SegBelow(S), SegLowmst(S));

CheckIntersection

(Q, SegUpmst(S), SegAbove(S));

else

CheckIntersection

(Q, SegBelow(S), SegAbove(S));

function CheckIntersection(Q,S1,S2)

switch

case (S1,S2) = (〈〉, 〈〉) :

return Q;

case (S1,S2) = (s1 ::S1, 〈〉) :

return Q;

case (S1,S2) = (〈〉, s2 ::S2) :

return Q;

case (S1,S2) = (s1 :: S1, s2 :: S2)

(t, v1, v2) = StatusIntersection(s1, s2);

if (t = T)

forall(e ∈ s1, s2)

if (onEdge(v, e) = T)

Q = InsertEvent(Q, (v1, {e}, {e}));

return Q;

Fig. 44. Map Overlay Algorithm: Event Queue and Intersection Detection

information is stored for each segment in the status structure, it is simply retrieved by a look-up

and stored in fabove and fbelow.

Event Queue

The event queue contains the same elements as the line intersection algorithm: Q contains triples

(v,E1, E2), where v denotes the event point position, and E1 contains edges that start (lexically

smaller endpoint is v) and the edges E2 that end (lexically greater endpoint is v) there. The

functions that modify the event structure are given in Figure 44. Initially, InitialiseEvents inserts

all vertices of the input maps in this event queue, whereas intersections are added in the course

of the plane sweep: Each time an edge is inserted or removed in the status structure S, it is

checked whether the new neighbor edges intersect (CheckIntersections). If this is the case, a new

intersection event is inserted in the event queue Q, encoded as a start and end event of all edges

that run through the vertex (as in the network overlay).

Status Structure

The status structure is very similar to the one used in the network overlay. In particular, it uses

the same order function. In addition to the information that is stored in the network overlay, more
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function StatusInsertSet(S, E)

forall (e ∈ E)

S = StatusInsert(S, e);

return S;

function StatusInsert(S, e)

switch

case S = 〈〉 :

return 〈〈e〉〉;

case S = s :: S :

switch

case StatusCompare(s, e, =)T :

return s :: StatusInsert(S, e);

case StatusCompare(s, e, =)U :

return StatusCollinear(s, e) :: S;

case StatusCompare(s, e, =)F :

return 〈e〉 :: s :: S;

function StatusCollinear(s :: S, e)

if (RightEnd(e) ≺ RightEnd(s) = T)

return s ::StatusCollinear(S, e);

else

return s ::S;

function StatusCompare(p, e1, e2)

y1 = yValueAt(e1, X(p));

y2 = yValueAt(e2, X(p));

if (y1 = U) and y2 = U)

return U;

if (y1 = U) and y2 6= U))

return (y2 < Y(p) ⇒ T|F) ;

if (y1 6= U) and y2 = U))

return (y2 < Y(p) ⇒ F|T) ;

if (y1 6= y2)

return (y1 < y2 ⇒ T|F) ;

δ1 = slope(e1);

δ2 = slope(e2);

if (y1 < Y(p))

return (δ2 < δ1 ⇒ T|F) ;

else

return (δ1 < δ2 ⇒ T|F) ;

return U;

Fig. 45. Map Overlay Algorithm: Status Structure

attributes are stored for the map overlay: curRaw(s) denotes the sum of all labels from all input

maps for the area above the segment s. The set of actual output labels curLabels(s) is derived

from this set according to the label overlay operation computeLabels. The field curFace(s) is used

to store the output face above the segment, which is used to determine the variables fbelow and

fabove. The function calls curRaw(⊥), curLabels(⊥) and curFace(s) return the labels and the face

for the unbounded face, respectively.

The edge handling, which will be explained in the following, is completely different to previous

approaches [36] (see Figure 46):

For each segment s that ends in or passes through the event point (HandleEdgesEnd), a new

edge e is created and it is linked to the vertex. With the help of curFace(s) it can be linked to

the adjoining output faces by setting the fields leftFace(e) and rightFace(e). The first segment is

handled separately, since it does not need to set a outerComp(f) information. This linking of the

face to its outer boundary must be done once (at least), when its right end is reached in the plane

sweep1. The counter nend keeps track of the number of created edges on the left-hand side of the

event point.

1 As this information may be also set for the unbounded face of the map (if the lowermost segment is

redundant with respect to the labelling), the main function of the map overlay resets this information

after the plane sweep to outerComp(unbdFace(M)) = ⊥. Previous checks that prevent this setting would

be more expensive.
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function HandleEdgesEnd()

s = SegLowmst(S)

if (curFace(prev(s)) = curFace(s))

elast = newEdge()()

edges(M) = edges(M) ∪ {e}

src(e) = curStart(s)

dest(e) = v

leftFace(e) = curFace(s)

rightFace(e) = curFace(prev(s))

nend = nend + 1

for(s = next(SegLowmst(S)) . . . SegUpmst(S))

if (curFace(prev(s)) = curFace(s))

elast = newEdge()()

edges(M) = edges(M) ∪ {e}

src(e) = curStart(s)

dest(e) = v

leftFace(e) = curFace(s)

rightFace(e) = curFace(prev(s))

nend = nend + 1

f = curFace(prev(s))

outerComp(f) = elast

function HandleEdgesBegin()

s = SegLowmst(S)

slast = SegLowmst(S)

flast = fbelow

curStart(s) = vlast

curRaw(s) = curRaw(prev(s)) + Labels(s)

labels(s) = computeLabels(curRaw(s))

if (curLabels(s) 6= curLabels(prev(s)))

nbegin = nbegin + 1

for(s = next(SegLowmst(S)) . . . SegUpmst(S))

curStart(s) = vlast

curRaw(s) = curRaw(prev(s)) + Labels(s)

curLabels(s) = computeLabels(curRaw(s))

if (curLabels(s) 6= curLabels(()prev(s)))

nbegin = nbegin + 1

if (labels(flast) 6= curLabels(prev(s)))

flast = newFace()

faces(M) = faces(M) ∪ {flast}

labels(f) = curLabels(prev(s))

for (t = slast . . . prev(s))

curFace(t) = flast

slast = s

for (t = slast . . . SegUpmst(S))

curFace(t) = fabove

Fig. 46. Map Overlay Algorithm: Handling Edges

If at least two edges start at the current event point (HandleEdgesBegin), a new face is created

in between. Its labels are computed by taking the labels of the adjacent face and adding the

differences caused by the edge in-between. The multiset curRaw(s) stores the sum of all labels,

whereas curLabels(s) gives the actual labeling that is defined by the desired operation (see Section

6.3.3). A tricky detail is the setting of the face information curFace(s) of each segment. As the

current face is not known when passing a segment of the status structure, the setting is done

blockwise after the creation of a new face (or at the end of the handling function) beginning at

the last processed segment slast. Analogously to the left side, the counter nbegin keeps track of the

number of created edges on the right-hand side of the event point.

The handling of the starting and ending edges almost accomplishes all tasks of the map overlay

algorithm. In addition, one event must be handled separately (HandleMerge): It may be the case

that there may be no edges starting at the current event point (indicated by nbegin = 0). At these

points, the face above and below the event point must be the same, since there is no division

between them on the right-hand side of the event point. Two cases must be distinguished for the

consecutive merge: First, the faces may be independently created by the algorithm. In this case,

the two branches are merged by deleting the face fabove and all references to it. This can be done

very efficiently if indirect references are used for the face pointers. In the second case, the current

event point marks a right end of an inner component, to which the face f can be linked at this

point by setting the innerComp(f) field.



6.3 Map Overlay 105

function HandleMerge()

if (nend > 0 and nbegin = 0)

if (fbelow = fabove)

innerComp(fbelow) :=

innerComp(fbelow) ∪ {elast}

else

innerComp(fbelow) :=

innerComp(fbelow) ∪ innerComp(fabove)

faces(M) := faces(M) \ {fabove}

/* relink all fabove pointers to fbelow */

Fig. 47. Overlay Algorithm: Face Merging

6.3.3 Adaption

The map overlay algorithm is a powerful tool that can be used to solve a lot of other problems.

For example, the computation of Boolean operations on polygons can be reduced to it: First, each

polygon is transformed to an input map with a different labelling. Then, the overlay is computed

with the desired Boolean function over the labels of the input maps.

Using the same labels in several input maps and adding them by the labelling overlay function

makes it possible to implement an operation that compute areas that are covered by a given

number of input polygons. The computation of the output labels in computeLabels is completely

separated from the rest of the algorithm; only its interface is fixed.

Hence, the map overlay in the polygon-processing library can be adapted to particular needs

for the computation of the actual labels from the input labels.

6.3.4 Verification

The network overlay algorithm was verified within the theorem prover. A similar proof can also

be constructed for the map overlay, since both algorithms share a lot of common concepts. For

the construction of the vertices and the edges, the verification of the network overlay can be even

taken as a basis. However, the map overlay algorithm is not formalised in the HOL system, since

the mathematical basis is not available in the theories of the theorem prover.

Certainly, it would be interesting to integrate the map overlay into the system, and this is

theoretically no problem, but the effort to build the underlyings theories is too high for a simple

thesis: A comprehensive theory of planar graphs would be one of a number of prerequisite, which

are currently not available.

Hence, the crucial part of map overlay algorithm is only checked here: the labelling of the faces.

To see that the faces are correctly labelled, a closer look at the handling of the starting edges is

needed. A face should be labelled by the sum of all labels that are associated with the edges, a

ray from the face to the exterior crosses — similar to the parity algorithm of Section 4.7. Hence,

when the ray that leads from a point inside the face to the bottom is considered, it is evident that

the map overlay algorithm computes the right set of labels. The computation of the actual labels

can be easily checked, as the operation computeLabels just corresponds to the specification of the

overlay operation.
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6.4 Conservative Rounding

While degenerate cases are a major pitfall for the design of computational geometry algorithms,

even more problems arise for their implementation: Geometric primitives must be efficiently com-

puted with limited-precision arithmetic, and limited memory may lead to the situation where the

result of an algorithm cannot be exactly represented. This section presents particular solutions to

problems that appear for map overlay algorithms used in a safety-critical environments.

Without further modifications to the map overlay algorithm, arbitrary-precision arithmetic

would be required for its implementation, which is too complex for non-trivial examples: Con-

sider the sequence of overlay operations O1, O2, . . . , On, where the results of Oi is a map Mi that

is taken to build the inputs of the following step Oi+1. Assume that the positions of the vertices

Vi in step i are represented by an integer of n bits. Then, the vertices Vi+1 have either been in

one of the sets of vertices before or a new vertex is created at the position of an intersection of

two edges, which requires about 4n bits (2n for both the numerator and the denominator) for its

representation. As a consequence, the size of the results grows exponentially (about n · 4i bits are

needed in step i). This exponential blow-up fills the available main memory after a few steps as

experienced with an implementation based on the GNU Multiprecision library [54].

A better approach is to limit the precision of the numbers after each step in a way that complies

with the application requirements. If the position of all vertices are rounded to values of the initial

precision and all geometric predicates of a step can be computed correctly for this precision, a

solution for the problem is found. This process can be visualised by some kind of grid snapping,

where the cross-over points represent all positions that are representable in the initial precision.

In contrast to general-purpose solutions, the safety-critical context requires that approxima-

tions are not made arbitrarily. The loss of information that is caused by the limited precision

may be fatal, since it may lead to unwanted reactions of the system. For instance, consider a

situation-analysis system: Faces are used to describe inaccessible regions in the environment. If

a path were chosen that leads through the exact faces but not through the rounded ones, the

rounding would cause a potential crash. Hence, traditional snap-rounding or similar approaches

[56, 65, 68, 75, 99] cannot be used for the approximation in safety-critical applications. They are

merely an inspiration for the development of the conservative rounding functions.

As all positions must be rounded in a way that the labelled areas of the rounded map cover

at least the original area, the algorithm cannot simply choose one of the neighbor grid points as

shown in Figure 48 (since for all neighbors a part of the original area is cut off). Instead, some

vertex at a further distance must be chosen (case (b) of Figure 48). Thus, the problem can be

defined as follows:

Definition 11 (Conservative Grid Snapping). For a given map M , the conservative grid snapping

problem consists of finding an approximation M ′ with the following properties:

• The set of vertices vertices(M) only contains vertices on the grid.

• For each label ℓ, all faces of faces(M ′) that are labelled with ℓ cover at least the area that has been

labelled by the ℓ faces of faces(M).

Needless to say, grid snapping involves some error that should be kept as small as possible by the

rounding algorithm. Moreover, it should be clear that finding the optimal solution is very complex.

Hence, for the embedded domain, only a fast and simple heuristic is acceptable.
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Fig. 48. Rounding a Vertex
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Fig. 49. Entry/Exit Codes Example

To solve this problem, a vertex that is not on the grid is approximated by several vertices that

lie on the grid around the original vertex. Despite this simple idea, the actual algorithm is a bit

more complicated, since all inputs must be considered. In the following, the considerations are

limited (w.l.o.g.) to maps that have only one label: Multi-labelled maps can be handled as well by

rounding the vertices for each label separately.

The algorithm given in Figure 50 does not round all vertices separately. For each rounding step,

a chain of vertices that are within the same grid box are processed simultaneously. The algorithm

first identifies the vertices that precede and follow the chain that is rounded (with the face to

be conservatively rounded to the left). For them, an outcode similar to the one of the Cohen-

Sutherland-algorithm (see Section 4.5.2) is computed. Based on this outcode, an entry code and

an exit code are determined for both of the two adjoining vertices. Depending on these codes, a
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function RoundVertices(w, e1, e2)

v1 := src(e1)

v2 := dest(e1)

v3 := src(e2)

v4 := dest(e2)

(c0, c1) := EntryExit(w, v1, v4)

if (c0 = c1 and rturn(v1, v2, v3)∨

collinear(v1, v2, v3) ∧ rturn(v1, v3, v4)))

return 〈v1, v4〉

else

switch (c0)

case NORTH :

if (c1 = WEST)

return 〈v1, NW(w), v4〉

else if (c1 = SOUTH)

return 〈v1, NW(w), SW(w), v4〉

else if (c1 = EAST)

return 〈v1, NW(w), SW(w), SE(w), v4〉

else

return 〈v1, NW(w), SW(w), SE(w), NE(w), v4〉

case EAST : . . .

case SOUTH : . . . /* other cases analogously */

case WEST : . . .

Fig. 50. Vertex Rounding Algorithm

E/E

N/E

S/S E/SS/W

W/W

W/N N/N

A

Fig. 51. Entry/Exit Codes Example

sequence of corner points of the grid box is taken to approximate the map, where the basic idea is

to walk around the grid box in counter-clockwise direction. Figure 49 shows the mapping between

the corner points and the entry and exit codes.

However, there are two special cases that cannot be handled by this approach and therefore

require a separate consideration: The first case occurs when there are no preceding and following

vertices, i. e. the contour is completely inside a grid box. In this case, this grid box is the approxi-
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mation. In the second case, the preceding and following vertices have the same code, and the part

describes a concave part of the face (see Figure 51). Then, no local approximation is possible. A

very simple solution is to just remove all intermediate vertices and to insert an edge that directly

connects the preceding vertex to the following vertex.

Although tests have shown that this leads to good results (see the experimental results in

Section 7.4), the error caused by this rounding might be unacceptable. Therefore, the following

alternative can be integrated: Assume that the edges both cross the right border of the grid box

(w.l.o.g.), then the rounding point is chosen as follows: First, slopes of the incoming and outgoing

edges sin and sout are determined and the x-value where both edges have at least a distance of

the height of the grid box xNE − xSW is calculated. Assuming the worst case, i. e. the edges almost

touch at the right border of the grid box, the vertex v can be approximated by v = (x′, y′) by

x′ = ⌈xNE + xNE−xSW

sin−sout

⌉

y′ = ⌈yValueAt(ein, x′)⌉

With the exception of the last optimisation, the algorithm does not rely on a specific grid. In

particular, the grid does not need to be equidistant. Hence, it can be used for integers, and also

for rational and floating point numbers with limited precision. In particular, it can be used for

floating points with a quarter of the available precision for the input vertices positions and round

the results, which need quadruple precision. Another possibility is to use a double or quadruple-

precision arithmetic as already described in detail by Knuth [86].

Unfortunately, vertices cannot be simply moved or replaced in a map as done in the algorithm

above, since the planarity property of the map may be lost by overlapping faces. Therefore, after

the rounding step, another overlay of the rounded map must be computed.

6.5 Map Simplification

Embedded systems generally possess very limited resources with respect to computation power

and memory. As they often have to meet real-time requirements, the simplification of maps is

an integral part of the design of an overlay algorithm for embedded devices. The simplification

operation aims at the elimination of vertices, edges or faces to reduce the overall computation

complexity. Similar to the rounding of vertices, the simplification of the maps [37] must be con-

servative, i. e. labelled areas must not become smaller. Clearly, the simplified map should resemble

the old map while using less vertices and edges.

Generally, any bounded labelled area of a map can be approximated with three vertices forming

a triangle that covers the colored area. A very simple approximation requiring four vertices is the

bounding box. Moreover, if the map has a lot of jagged areas, the convex hull of them is good

simplification. All these approximations can be efficiently calculated, but they are too coarse for

practical use.

Therefore, a local approach is used again to simplify maps iteratively. It is based on the follow-

ing two operations (see Figure 52):

(a) Remove a vertex at a concave position of a labelled area (including redundant vertices that

connect two collinear edges). The error of this operation is

ε =
1

2
e1 × e2 (8)
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e1

(a) (b)

e2
e3

e1

e2

ex

Fig. 52. Basic Simplification Operations

(b)Replace two vertices by a single one at a convex position of a colored area. The position of the

new vertex is the intersection of the lines through the two adjoining edges e1 and e3, which

can be computed as follows: Since λe1 − µe3 = e2 (for λ, µ ∈ Q with λ > 0, µ < 0), Cramer’s

rule can be applied to compute λ, µ and ex:

λ = e2×e3

e1×e3

µ = − e1×e2

e1×e3

ex = e1×e2

e1×e3

· e3

Hence, the error of the simplification step is

ε =
1

2

(

e1 × e2

e1 × e3
· e3 × e2

)

The simplification of a map can be either performed with respect to an upper bound of the error or

w.r.t. to a projected number of vertices. Whereas the first strategy is good for a general speed-up of

the computation, the second approach is chosen here. Since embedded systems must usually hold

tight deadlines, the worst case execution time of the map overlay, which is primarily affected by

the input complexity, should be restricted. Moreover, an unlimited number of vertices may cause

that the embedded system runs out of memory. Needless to say, the results may become less useful

after the simplification. However, for hard real-time systems, violating the deadline is worse than

any approximated result. In order that other components of the system can judge how trustworthy

the results of a map overlay are, the simplification procedure additionally returns the computed

error.

However, even if the above operations for the simplification are considered, finding the optimal

map with a minimal number of vertices that covers a given map is still a complex problem. Since

the removal of a vertex changes the errors that are made by the removal of other vertices, the

problem apparently falls into the class NP. Hence, a simple heuristic is used again, which follows

a greedy approach: Among all vertices, the one with the least error is selected. This is repeated

until the desired number of vertices is reached. With this approximation process, the best solution

for a given system and a situation is calculated.

Unfortunately, the simplification suffers from the same problem as the rounding. After each

approximation step, the map may no longer be planar: The overlay must be computed again after

the simplification. Even worse, new vertices may not be on the grid, so that the rounding must be

done as well. This leads to the natural sequence of operations: First, simplify the polygons, then

align them to the grid and finally planarise them with an additional map overlay.
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Situation-Analysis Systems

To demonstrate the polygon-processing library presented in the previous chapters, it is applied to

an embedded situation-analysis system for autonomous mobile robots. With its help, the parame-

ters of the algorithms can be adjusted, and the performance of the algorithms can be evaluated.

The adaptation step is specific for the application, since the overall performance highly depends

on the interaction between system parameters and environment conditions.

A situation-analysis system generally monitors the environment and tracks objects in its neigh-

bourhood. Speed and the direction of other objects are detected by sensors and are given as inputs

to the system. Depending on their movement, regions are classified according to some application

logic, and some decisions are taken on this base. For instance, collision detection and motion

planning systems [87, 90, 120] as applied in robotics fall into this class of applications.

In Section 7.1, three-valued regions are proposed as the basis for situation-analysis systems.

Section 7.2 presents the propagation, the fundamental operation for area calculations in these sys-

tems. Section 7.3 illustrates various algorithms that can be implemented with the presented prim-

itives. Finally, Section 7.4 gives an impression about the performance of the developed polygon-

processing library and compares it to other implementations.

7.1 Three-Valued Regions

Motion planning and collision avoidance algorithms involve various objects in an observed area.

Often, there is a designated object whose viewpoint is taken and for which a path should be

planned. This object will be denoted by the term ego-object in the following. Moreover, there are

other objects in its environment that may cause collisions and therefore restrict its mobility. They

will be called obstacles in the following.

The observed area is modelled as an Euclidean plane, and objects can be represented by poly-

gons there. However, more important than the actual objects are the estimated regions where the

objects are expected. As this involves some amount of uncertainty, these regions are described by

three-values characteristic functions, i. e. the plane is divided in a number of subdivisions, where

each subdivision is labelled with on of the tree truth values T, U or F.

There are two reasons for the three-valued modelling of areas: First, the sensoric systems may

not be very precise, which leads estimations of the position of the obstacles. Second, if situations in

the future are considered, the behaviour of the obstacles must be guessed. The three truth values

are interpreted differently for the ego-object and the obstacles:
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U

T

F

Fig. 53. Must-Region (T) and Can-Region (U)

For the ego-object, regions labelled with T are unconditionally reachable, i. e. independent

from the movement of the obstacles, there is a trajectory to each point in areas marked with T.

For points in the conditionally reachable areas, which are marked by U, there are only trajectories

that may be interrupted by obstacles, depending on their movement. Finally, areas labelled with F

are unreachable, whatever movements the obstacles make.

For the obstacles, regions labelled with T denote positions where the object must be, while U

denotes positions where it can be. F is assigned to areas where the object cannot be.

In the following, the regions for both groups of objects will be called can-regions (where the

characteristic function results to U or T) and must-regions (where the characteristic funtion results

to T), which is illustrated in Figure 53. Obviously, the can-region always contains the must-region

by construction. In the case that the position of an object is absolutely sure, both regions are

equal and denote the actual position. In particular, this is the case for immobile obstacles. Usually,

there is a difference between both areas, which has shown to be very moderate for realistic input

parameters. High speeds and limited steering angles of the objects make the estimated position

relatively precise.

Since must-regions and can-regions are approximations, the conservative rounding and sim-

plification scheme presented in Sections 6.4 and 6.5 can be applied for them. What a conservative

rounding means for the regions depends on the particular application. As a general rule of thumb,

can-regions are over-estimated and must regions are usually underestimated.

7.2 Propagation

The algorithms presented in the next section examine the state of the environment at discrete

instances. Computations and estimations are performed in steps. This requires that the moving of

the objects towards each other is not too fast relative to their distance and size. Otherwise, inter-

sections of them may be missed, which is sometimes referred to as temporal aliasing, following to

aliasing in digital signal processing, which is a result of undersampling.

The areas defined in the previous paragraphs change over time. In general, the longer the

algorithm looks into the future, the uncertainty increases, and the difference between can-regions

and must-regions increases. The modification of an area from one step to another is computed

by a process called propagation. It takes the vertices of the regions and translates them according
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(b)

(a)

Fig. 54. Propagation of Can-Regions

to some estimations. Naturally, can-regions are enlarged, and must-regions are made smaller by

propagation. In the following, the propagation of the can-regions is described; must-regions are

processed analogously.

A propagation step can be described by movements of the edges of a region. They are moved

orthogonally in the length of the maximal distance that the object can cover (see Figure 54 (a)).

For a precise solution, the gaps between the moved edges must be filled with arcs. Within the

linear framework of the polygon-processing library, the arc is approximated with a number of

vertices1. In the simplest form, one vertex is taken at the intersection of the extended edges (see

Figure 54 (b)), although this causes a big error for acute angles. Hence, algorithms that compute

the propagation can determine for each vertex of the old map a number of new vertices.

However, it is not possible just to move the vertices, since self-intersections may occur as al-

ready seen when simplifying polygons. Without an overlay operation, the resulting map would not

be planar any more. Therefore, the propagated area must be computed by unifying the old region

and the new parts, which are given by the propagation vectors and the old and new edges. These

quadrangles form a ring around the old area as shown in Figure 54 (b).

Thus, the propagation can be basically implemented as follows: The algorithm iterates over the

vertices of the map. For each of them, it determines the propagation vector and adds it to the old

position. The old and the new positions of two consecutive vertices are taken to form a propagation

triangle that is added to the old area. One problem causes some more work: As the propagation

is computed in steps and not continuously, the propagation vectors may intersect as shown in

Figure 55. For this propagation quadrangle, the new part must be planarised by computing the

intersection and adding both triangles. Another possibility is to add a quadrangle covering the

original one by swapping the outer points.

1 Note that the approximation must be always conservative.
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This naive implementation is quite slow. The reason for this is that the map overlay algorithm,

which is used for the area addition, has relatively high fixed costs, which do not depend on the

input size. Thus, the number of overlay operations should be reduced to a minimum. This can be

simply done by adding all quadrangles at once.

Another possibility to reduce the execution time is to reduce the number of inputs. Considering

the propagation operation, there are a lot of input edges that can be discarded a priori:

• The propagation quadrangles always have one edge in common with the old region. Since

the direction of the respective two edges is in opposite direction to each other, they can be

eliminated in advance. The overlay algorithm would do the same thing, but this approach

decreases the number of event points as well as the number of edges. Otherwise, they would

have to be inserted and removed, which involves to find a position in the status structure, etc.

• Two adjoining propagation quadrangles also have an edge in common. However, its must be

checked whether both of them are not self-intersecting. For this case, the optimisation cannot

be done.

The propagation function can be implemented with the algorithm sketched in Figure 56. It creates

a set of edges that are given to the map overlay algorithm as an input. The call of PropEdge(v1, v2)

creates an edge between the vertices v1 and v2, where the face of its left is set to the inner face

of the propagated area. The swapping in the case of the intersection of the propagation edges is

done in the else-part by constructing a sequence of edges with the same start and end vertex as

for the simple case.

7.3 Situation-Analysis Algorithms

In the previous section, the propagation operation was described. If several of these operations

are concatenated, situation-analysis systems can be derived. They simulate the movements of the

objects in the environment with respect to the possibilities of the ego-object. Depending on the

actual properties of the objects, the regions can be computed for a reasonable time span in the

future and decisions can be derived from this information.

All these systems require velocity and steering information of the objects to compute the de-

velopment of the regions. The descriptions abstract from this, as this is not the scope of the work.

They just provide the infrastructure for real systems, which can provide the actual parameters.

Moreover, the following algorithms are not constructive. They only check whether paths exist.

The actual construction would require to store trajectories with various positions of the computed

areas. As this is not the scope of the work, it is abstracted from this.

Fig. 55. Self-Intersecting Propagation Quadrangles
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function PropagateBeginContour()

prevOut = prevIn + pn−1

function PropagateVertex()

curOut = curIn + p0;

if (¬doSegmentIntersect(mkLine(prevIn, prevOut), mkLine(curIn, curOut)))

PropEdge(prevOut, curOut);

else

PropEdge(prevOut, prevIn)

PropEdge(prevIn, curOut)

PropEdge(curOut, prevOut)

PropEdge(prevOut, curIn)

PropEdge(curIn, curOut)

prevIn = curIn;

prevOut = curOut;

for (i = 0 . . . n − 1)

curOut = curIn + pi;

PropEdge(prevOut, curOut)

prevOut = curOut;

Fig. 56. Propagation Algorithm

7.3.1 Motion Planning and Collision Avoidance

The collision avoidance problem consists of determining a path from a starting position to an

end position respecting the obstacles in the environment. Classically, only static objects are con-

sidered [93]. With the help of the propagation, movement can be considered as follows: The

can-region and the must-region of the ego-object in the next step is computed. Analogously, the

regions for all obstacles are determined. These pieces of information are then combined to a new

three-valued description of the ego-object’s position (see Figure 57):

U

T

F

ego obstacle

Fig. 57. Ego-Region Constraint
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Fig. 58. Ego-Object Constraint Operation

• Regions that lie in the reachable area of the ego object and that are not in the can-region of

any obstacle are surely reachable.

• Regions that lie in the reachable area of the ego-object and that are in the can-regions of the

obstacles are potentially reachable.

• Regions that lie in the reachable area of the ego-object and that are in the must-regions of the

obstacles are not reachable without a collision.

• All other regions are not reachable at all.

After each step, the overlay of the maps is computed to get the new region of the ego-object. This

is done according to the function f = x ∧̈ ¬̈y shown in the table of Figure 58. After the overlay,

the regions are rounded according to the following scheme: can-regions of the obstacles are over-

estimated, must-regions also, regions of the ego-object are under-estimated.

The process is reiterated until the endpoint is in the reachable area of the ego-object. If this

is the case, there is a path from the start to the end that is statically computable to reach the

endpoint without any collision. If for each region, a path has been recorded in the course of

the computation, this can be simply taken. If, after the observation interval, the endpoint is in

the potentially reachable region, there may be a route within the observable time frame to the

endpoint, but it depends on the movement of the obstacles. If the point is not in the regions, it

may be reachable outside the considered timeframe. The existence of a path can be excluded, if

there is no potentially reachable region left at a point in the future.

The collision avoidance problem is completely identical to the motion planning problem. The

only distinction is that no target is fixed in advance. Instead, the ego-object should be controlled

in a way that no collision occurs for a given time interval.

7.3.2 Collision Expectation

The collision expectation is a similar problem. The ego-object is controlled by another system. The

situation-analysis system just has the task to identify situations where a collision with other objects

is unavoidable. When such a collision is expected, safety-measures can be taken — for example,

shutting down systems that are in danger in the case of an collision.

For the collision expectation problem, the computations are made like in the motion planning

algorithm, with one exception: The area of the ego-object is over-estimated, while the area of the

obstacles are under-estimated. Hence, a collision is only detected if the system can be absolutely

sure that it is unavoidable. Furthermore, the must-region of the ego-object is not interesting as

well as the can-regions of the obstacles. Hence, only the can-region of the ego-object and the

must-region of the obstacles are computed for a better performance.



7.4 Experimental Results 117

Fig. 59. First Scenario: A Single Mobile Obstacle

7.4 Experimental Results

A prototype of the collision expectation algorithm was implemented in the program language

C. For the propagation and the constraint operation it uses the developed polygon-processing

library, in particular its map overlay algorithm. The collision expectation system was given inputs

of various situations and its outputs as well as its run-time was recorded.

Figure 59 shows a scenario with one moving obstacle (black). The ego object (grey) start at the

left-hand side of the plane and moves straight to the right. The obstacle, albeit mobile, remains

at its position. In the course of the scenario, the can-region of the ego objects moves to the right

while steadily getting wider and wider. In contrast to this, the must-region of the obstacles gets

smaller to the same extent. When the can-region of the ego object hits the must-region of the

obstacles, it gets split up. Behind the obstacles, both parts finally reunite.

Figure 60 shows a much more complex scenario with two moving and 17 immobile obstacles.

The ego object again starts at the left-hand end of the plane and moves straight to the right. The

two moving obstacles approach from the right. Their must-regions soon get smaller and smaller

and finally, they disappear (between frame 5 and 6). The can-region of the ego-object gets bigger

and bigger and flows around the fixed obstacles. On the right side of these objects, there is at first

a shadow.

For a performance comparison, these two and other scenarios were executed on a Pentium IV

(2.8 GHz) with hyperthreading disabled. All programs were compiled under an Ubuntu Linux 6.6

LTS with the GNU C Compiler in version 4.1 at optimisation level 3.

For all scenarios, the speed and the direction of the ego-object and the obstacles were arbi-

trarily chosen, and the analyses were based on a prediction of 300 steps. Table 61 shows the

execution time for 1000 consecutive runs with different parameters. The second row corresponds

the scenario of Figure 59, the fourth row corresponds to the one of Figure 60.
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Fig. 60. Second Scenario: 2 Mobile and 17 Immobile Obstacles
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obstacles GPC Library (EPP w/o simplification) EPP (with simplification)

0 120 sec 224 sec 293 sec

1 mobile 132 sec 311 sec 223 sec

7 immobile + 2 mobile 1210 sec 1345 sec 980 sec

17 immobile + 2 mobile 6757 sec 3987 sec 2565 sec

Fig. 61. Measured Run-Time for Collision Avoidance Scenarios

As a reference, the GPC polygon clipping library [105] was chosen, a freely available (and

known to be efficient) polygon clipping library. It can be also used to implement the underlying

geometric computations for the situation-analysis systems. Naturally, it does not support conser-

vative rounding and simplifications. Hence, the comparison cannot be really fair. The first column

shows the run-time for 1000 runs with this library.

The second and third columns list the run-times for the developed polygon-processing library.

The scenarios are run twice: once with simplifications disabled and once with simplifications en-

abled. It is seen that the GPC library is significantly faster for small examples. For larger examples

however, the EPP library tends to be more efficient, especially with enabled simplifications. This is

due to the fact that the map overlay algorithm has rather high fixed costs that are only amortised

with bigger problem sizes.
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Summary

This thesis described the development of a polygon-processing library for safety-critical embedded

systems. In this scope, three main problems have been tackled:

First, algorithms that solve fundamental problem of polygon processing like convex hull or map

overlay were refined. Starting from applications like motion planning and collision detection, basic

geometric objects and predicates of analytical geometry are constructed. Three-valued logic and

primitives are proposed as fundamental building blocks of dependable algorithms to be used in

embedded systems. The use of a third truth value allows one to make degenerate cases explicit so

that they can be appropriately handled by different algorithms. Since they are succinctly described

by three-valued predicates, the derived algorithms are both robust and compact.

A new solution to the map overlay, which can handle all degenerate cases, was explained in de-

tail. Due to its flexible structure, it can be applied for various other problems like the computation

of Boolean functions on polygons.

The second problem that was tackled is the verification of polygon-processing algorithms. An-

alytic geometry and the kernel of the software library were formalised in the interactive theorem

prover HOL. Subsequently, the HOL system was used to reason about the geometric primitives in

order to assure consistent definitions. Various proof tools were created, among them a compre-

hensive theorem library for the defined primitives as well as the integration of tactics based on

dependent objects and geometric transformations. With this framework, computational geometry

algorithms were verified so that required correctness properties can be formally proven.

Third, implementation problems were considered that are posed by the limited precision of

arithmetic and limited resources of embedded systems. Based on a map overlay algorithm two sig-

nificant extensions were made: First, conservative rounding and an algorithm were defined that

take care of limited precision arithmetic to comply with the safety requirements of the system.

The results are to a large extent independent of the numeric precision of the underlying micropro-

cessors. Second, conservative map simplification limits the time and space complexity of the map

overlay algorithm to guarantee the execution with predefined execution time and memory limits.

Finally, all develeped elements were grouped in several layers that represent different levels of

abstraction. They do not only divide the whole system into manageable parts but make it possible

to model problems and reason about them at the appropiate level of abstraction. Nevertheless,

some limitations should be mentioned that remain after the work:

First, the verification could be much more detailed. Only the design of the algorithms is verified

in this thesis. Although the primitives are designed to keep the distance between formalisation

and code as small as possible, there can be errors in the translation to the C code, beside the
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usual implementation errors. For a safety-critical system, the situation would be improved if some

verification is done on the implementation level, which is however not possible with the current

state of art.

Second, more data structures and computational geometry algorithms can be integrated. In

this thesis, all algorithms up to the network overlay were integrated in HOL system, whereas

the map overlay algorithm was only partially formalised. A full formalisation of a map overlay

algorithm would need more infrastructure that is currently not available in the HOL system. A lot

of tedious work to formalise the data structures and the underlying theory of planar graphs would

be needed for a complete integration in the theorem prover. The work here restricts to only model

and verify some crucial parts of the algorithm.

Third, verification is still a very time-consuming task, which can be only accomplished by

expert users of the HOL system. The constructions of proofs requires a deep knowledge of both

the domain and theorem proving, which is not very widespread.
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