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Abstract

The Super-Peer Selection Problem is an optimization problem in network
topology construction. It may be cast as a special case of a Hub Location Prob-
lem, more exactly an Uncapacitated Single Allocation p-Hub Median Problem
with equal weights. We show that this problem is still NP-hard by reduction
from Max Clique.

1 Problem Description

The Super-Peer Selection Problem (SPSP) is the problem of finding a Super-Peer
topology in a Peer-to-Peer network with minimal total communication cost. It may
be cast as a special case of a well known NP-hard Hub Location Problem, the Un-
capacitated Single Allocation p-Hub Median Problem (USApHMP) [3, 5, 6, 8].
In both problems, p nodes are to be selected out of n nodes to serve as hubs (or

super-peers). The remaining nodes are assigned to one hub, respectively. Hubs are
assumed to be assigned to themselves. Denoting the assignment of node i to hub j
by a binary variable xij = 1, the transportation costs for the link between i and j by
dij, and the amount of flow from i to j by wij, the cost of such a hub location can be
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defined as

C(X) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

(

dik + dkl + djl
)

· wij · xik · xjl. (1)

This cost is to be minimized. There are a number of constraints:

xij ≤ xjj i, j = 1, . . . , n (2)
n

∑
j=1

xij = 1 i = 1, . . . , n (3)

n

∑
j=1

xjj = p (4)

xij ∈ {0, 1} i, j = 1, . . . , n (5)

The set of constraints (2) ensures that nodes are assigned only to hubs, while (3)
enforces the allocation of a node to exactly one hub. Due to constraint (4), there will
be exactly p hubs. Now, the SPSP is the special case of the USApHMP, where all
flow is wij = 1.
The general USApHMP is known to be NP-hard. In fact, even when the set of

hubs is fixed, the remaining assignment problem is still NP-hard, as soon as p ≥ 3
[8], but polynomial time algorithms exist for p = 2 or p = 1 [7]. The proof for
NP-hardness in [8] reduces the NP-hard 3-Terminal Cut to USApHMP. It needs the
weights to be arbitrarily selectable from wij ∈ {0, 1}. Since SPSP fixes the weights to
wij = 1, the proof cannot be reused, and it is still unclear whether SPSP is NP-Hard.

2 NP-Hardness

The SPSP is NP-hard. We show this by reducing Max Clique [4, problem GT19] to
a special SPSP.
Max Clique problem: Given a graph G = (V, E) and a number k > 0, does there

exist a subset V ′ ⊆ V with cardinality |V ′| ≥ k, such that every two vertices in
i, j ∈ V ′ are joined by an edge (i, j) ∈ E? Max Clique is NP-hard [4].
Max Clique can be transformed to an SPSP by introducing a new vertex a /∈ V,

setting V ′ := V ∪ {a}, the number of hubs to p := k+ 1, and the distance function
dij to:

dij =











0 if i = a ∨ j = a ∨ i = j

1 else, if (i, j) ∈ E

2 else

(6)

Theorem 2.1. The decision problem whether there is a super-peer selection X with cost
C(X) ≤ Z = (p− 1) · (p− 2) in the weighted graph G′ = (V ′,V ′ ×V ′, d) is equivalent
to the Max Clique decision problem in the original graph G = (V, E).
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Proof. We first show that a solution for the Max Clique Problem is also a solution
for the SPSP. We then show that every solution for the SPSP is a solution for Max
Clique.
Consider a solution for the Max Clique problem, i. e. a subset V ′ ⊂ V, |V ′| = k,

such that every two vertices i, j ∈ V ′ are joined by and edge (i, j) ∈ E. The super-
peer selection Xa(V ′) that chooses all p = k + 1 nodes from the set V ′ ∪ {a} to be
hubs, and assigns the remaining nodes to hub a, only creates costs on the inter-hub
links. Since all distances to and from node a are zero, its links to the non-hub nodes
and the other p− 1 hub nodes again adds nothing to the total cost. The cost for the
super-peer selection Xa(V ′) is just the sum of the remaining inter-hub links between
the p− 1 hubs V ′:

C(Xa(V
′)) = ∑

k∈V ′
∑
l∈V ′

dkl · xkk · xll = ∑
k∈V ′

∑
l∈V ′\{k}

1 = (p− 1) · (p− 2) ≤ Z (7)

Thus, every solution for the Max Clique Problem is a solution for the SPSP.
Consider an arbitrary assignment Xb that selects p hubs and assigns the non-

hub nodes to hubs. We will consider the following non-disjoint cases, and show
that in each case the assignment Xb does not give a solution to the SPSP, i. e. its cost
is larger than Z:

1. Node a is not selected as a hub in Xb.

2. A non-hub node is not assigned to a in Xb.

3. A set of nodesV ′ is selected as the hub-set in Xb, such that two of them i, j ∈ V
′

are not joined by an edge (i, j) ∈ E.

If node a is not selected as a hub, all inter-hub links between the p hubs will have
distances dij ≥ 1, creating a cost of C(Xb) ≥ p · (p− 1) > Z. Thus, every solution to
the SPSP must select a as a hub. Since all other distances are dij ≥ 1, the remaining
inter-hub links create a cost of H ≥ (p− 1) · (p− 2) = Z.
If a non-hub node i is not assigned to a, its link to the hub j 6= a creates additional

cost of at least dij ≥ 1. The total cost is then C(Xb) ≥ H + dij > Z. Thus, every
solution to the SPSP must assign all non-hub nodes to hub a.
If two of the selected hubs i, j ∈ V ′ are not joined by an edge (i, j) ∈ E, the

corresponding distance is dij = 2. This increases the cost for the inter-hub links and
thus the total cost to C(Xb) ≥ H + 1 > Z.
In all cases 1, 2 and 3, the assignment Xb is not a solution to the SPSP, thus, every

solution to the SPSP must select node a as a hub, assign all non-hub nodes to a, and
select a fully connected set of nodes V ′ as hubs, which is also a solution to the Max
Clique problem.

Note, that if Xb selects a different set of fully connected nodes than Xa as hub-
set, it only constitutes a solution to the SPSP if node a is also selected as a hub and
all non-hub nodes are assigned to a. However, the chosen hubset minus node a is
again a solution to the Max Clique problem.
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3 Other Results

The proof can be reused to show the NP-hardness of the p-hub center problem with
equal weights (minC(X) = maxi,j,k,l∈V(dik + dkl + djl) · xik · xjl, s. t. (2), (3), (4), (5)),
by using the same distance function dij as in (6) and setting Z = 1.
TheMax Clique problem is also known to be NP-hard if k = r · |V|, for any fixed

r with 0 < r < 1 [4]. Thus, the SPSP with p = r · |V|+ 1 is also NP-hard.
For the special case of p ∈ O(1), however, the remaining assignment problem

when all hubs are fixed becomes solvable in polynomial time for the SPSP, but is
still NP-hard for a constant p ≥ 3 for the general USApHMP [8]. Since there are
only (np) ∈ O(np) different selections of hubs, the full SPSP becomes solvable in

polynomial time in this case.
The SPSP uses equal weights wij = 1, thus the weight on the inter-hub link (i, j)

only depends on the number of nodes assigned to i and j, but not on the actual
node assignment. Let Ei = {j | xji = 1} denote the set of nodes assigned to hub i.
Now, the cost for the inter-hub link (i, j) is cij = 2 · |Ei| · |Ej| · dij, and the cost for the
link between a non-hub node i and its hub j is cij = 2 · n · dij. There are only O(np)
different combinations of the numbers of nodes assigned to the p hubs.
Given a set of hubs and the number of nodes assigned to each hub |Ei|, the

remaining assignment problem can be cast as a special case of the Linear Sum As-
signment Problem (LSAP) [1, 2]. The LSAP can be modelled as follows:

min
n

∑
i=1

n

∑
j=1

cij · xij (8)

s. t.:

n

∑
j=1

xij = 1 i = 1, . . . , n (9)

n

∑
i=1

xij = 1 j = 1, . . . , n (10)

xij ∈ {0, 1} i, j = 1, . . . , n (11)

The binary variables xij implicate a one-to-one assignment of the rows and columns.
Consider a partition of the set {1, . . . , n} in p disjoint subsets Fi, such that each
subset is as large as the number of nodes assigned to hub i (|Fi | = |Ei|), and a cost
function that assigns the cost cij = dik to all j ∈ Fk. Now, the solution to the LSAP
minimizes the total cost for the links between non-hub nodes and their hubs.
Since all hubs and the numbers of nodes for each hub are fixed, the cost for the

inter-hub link is also fixed. Thus, the total cost C(X) is minimized by the LSAP.
Since there exist several algorithms for the LSAP with time complexity O(n4) [2],
the SPSP with p ∈ O(1) fixed hubs is solvable in polynomial time, by solving the
O(n2p) many LSAPs for fixed hubs and fixed numbers of nodes assigned to the
hubs.
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