
On Translation Validation for System
Abstractions?

Jan Olaf Blech, Ina Schaefer, Arnd Poetzsch-Heffter

{blech, inschaef, poetzsch}@informatik.uni-kl.de

Technical Report

No. 361/07

July 2007

Computer Science Department

University of Kaiserslautern

Abstract. Abstraction is intensively used in the verification of large,
complex or infinite-state systems. With abstractions getting more com-
plex it is often difficult to see whether they are valid. However, for using
abstraction in model checking it has to be ensured that properties are pre-
served. In this paper, we use a translation validation approach to verify
property preservation of system abstractions. We formulate a correctness
criterion based on simulation between concrete and abstract system for
a property to be verified. For each distinct run of the abstraction proce-
dure the correctness is verified in the theorem prover Isabelle/HOL. This
technique is applied in the verification of embedded adaptive systems.
This paper is an extended version of our work published as [5].

? supported by the Rheinland-Pfalz Cluster of Excellence ‘Dependable Adaptive Sys-
tems and Mathematical Modelling’ (DASMOD)

1 Introduction

Recently, a large amount of research has addressed the verification of large,
complex or infinite-state systems using model checking. Due to inherent limita-
tions model checkers are unable to deal with such systems directly. So research
concentrated on finding abstractions reducing the state space sufficiently while
preserving necessary precision. However, since abstraction procedures are getting
more complex it is not always clear if they are valid, i.e. that properties veri-
fied for the abstract system also hold in the concrete system. In principle, there
are two approaches to guarantee correctness of abstractions: Abstraction algo-
rithms (and their implementations!) are verified once and for all. Alternatively,
abstraction results of each distinct run of the abstraction procedure are proved
correct. In this work, we will propose a technique for guaranteeing abstraction
correctness using the second approach.

The overall structure of our approach is depicted in Figure 1. For verify-
ing a system abstraction, the abstraction procedure is given a concrete system
comprising a property to be checked. As output an abstract system with a cor-
responding abstract property is produced. Furthermore, a proof script is gen-
erated capturing the actual proof that the abstraction preserves the considered
property. In this direction, a correctness criterion based on simulation between
abstract and concrete system is formalized. Using the proof script this criterion
is checked for the considered concrete and abstract systems and properties in
the theorem prover Isabelle/HOL [15]. Thus the correctness of an abstraction is
verified for each run of the abstraction procedure. Note that the correctness of
the technique does not depend on the proof script provided. An incorrect proof
script may never lead to an incorrect proof but rather to no proof at all.

Our work towards runtime verification of system abstractions is inspired by
a translation validation [16] based approach for compilers [11,4,17]. In the area
of compiler verification, it has turned out that runtime verification of compilers
is often the method of choice for achieving guaranteed correct compilation re-
sults. As for compilers, correctness proofs for distinct abstractions are usually
less complex and easier to establish than proofs for a general abstraction proce-
dure. An additional advantage is that the abstraction procedure can be tailored
to a particular system and property under consideration and thus match the

Modeling
Model CheckerAbstraction

Isabelle/HOL

proof script

additional theories

system descriptionsystem description

Environment

abstract

Fig. 1. Our Translation Validation Infrastructure

2

requirements of the concrete problem very closely while still being proved cor-
rect. Also note, that in our approach the correctness of abstractions is proved
formally using a theorem prover instead of a paper-and-pencil-proof.

The proposed technique is applied in verification of embedded adaptive sys-
tems [19]. Beside potentially unbounded data domains the size of the considered
systems is huge. For efficient verification by model checking, these systems have
to be abstracted in a property-preserving way. We have successfully applied run-
time verification of the necessary abstractions in this domain.

This paper is structured as follows: Section 2 describes the application do-
main of our work. In Section 3, we present a theorem on property preservation.
This is used in the implementation and proving strategies in Section 4. A short
evaluation is given in Section 5. We discuss related work in Section 6 before
concluding in Section 7. In the appendix A, a alternative construction for the
proof of the property preservation theorem can be found.

2 Adaptive System Verification

Our approach is applied to adaptive systems as used in the automotive sector.
Adaptation is particularly important in the safety-critical automotive domain to
meet the high demands on dependability and fault-tolerance. For example, if the
sensor measuring the yaw rate of a car fails, the vehicle stability control system
may adapt to a configuration, where the yaw rate is approximated by steering
angle and vehicle speed. In this way, it can be guaranteed that the system is still
operational even if some of the components fail in order to provide a maximum
degree of safety and reliability. However, adaptation significantly complicates
the development of embedded systems. The integration of formal verification
into the model-based development process is important to rigorously prove that
adaptation behaviour meets critical requirements. However, adaptive systems
developed in a modelling environment also used for other purposes such as code
generation contain a level of detail not amenable for automatic verification. This
makes system abstractions indispensable and requires support for automatically
verifying their correctness.

In this section, we firstly propose a model that formally captures the se-
mantics of adaptive systems at a high level of abstraction. Secondly, we propose
a temporal specification logic such that desired system properties can be for-
mulated in a semantically exact manner. Finally, we show at an example how
abstractions facilitate verification.

2.1 A Formal Model for Synchronous Adaptive Systems

Synchronous adaptive systems are composed from a set of modules where each
module has a set of predetermined behavioural configurations it may adapt to.
The selected configuration depends on the status of the module’s environment
and is determined by an adaptation aspect defined on top of the functional

3

behaviour. The modules are connected via links between input and output vari-
ables. However, data and adaptation flow are decoupled and do not follow the
same links. Adaptations in one module may trigger adaptations in other mod-
ules by internal adaptation signals via the adaptation links. That may lead to
a chain reaction of adaptations through the system. The systems are assumed
to be open systems with non-deterministic input provided by an environment.
Furthermore, they are modelled synchronously as then simultaneously invoked
actions are executed in true concurrency.

2.2 Syntax of SAS

We define a synchronous adaptive system (SAS) [19]over a set of values Val and
a set of variables Var . The smallest construction element of an SAS is a module.
It contains a set of different predetermined configurations the module can adapt
to. Adaptation is realised by an adaptation aspect. Before the execution of the
actual functionality the adaptation aspect evaluates the configuration guards
and determines the configuration to use. Note that the configuration guards
may only depend on the adaptive variables in order to have a clean syntactic
separation between functional and adaptive behaviour. This enables reasoning
about purely adaptive properties by projecting the model onto its adaptive parts.

Definition 1 (Module and Adaptation). An SAS module m is a tuple
m = (in, out, loc, init, confs, adaptation) with

– in ⊆ Var, the set of input variables, out ⊆ Var, the set of output variables,
loc ⊆ Var, the set of local variables and init : loc→ Val their initial values

– confs = {(guardj , next statej , next outj) | j = 1, ..., n} the configurations
of the module, where
• guardj: the Boolean closure of constraints on {adapt in, adapt loc} de-

termining when configuration j is enabled with adapt in and adapt loc
as defined below

• next statej: (in ∪ loc→ Val) → (loc→ Val) the next state function for
configuration j

• next outj: (in ∪ loc → Val) → (out → Val) the output function for
configuration j

The adaptation aspect is defined as a tuple adaptation = (adapt in, adapt out,
adapt loc, adapt init, adapt next state, adapt next out) where

– adapt in ⊆ Var, the set of adaptation in-variables, adapt out ⊆ Var, the
set of adaptation out-variables, adapt loc ⊆ Var, the set of adaptation local
state variables and adapt init : adapt loc→ Val their initial values

– adapt next state : (adapt in ∪ adapt loc → Val) → (adapt loc → Val) the
adaptation next state function

– adapt next out : (adapt in ∪ adapt loc → Val) → (adapt out → Val) the
adaptation output function

4

A SAS system is composed from a set of modules that are interconnected
with their input and output variables. The system is an open system with an
environment providing non-deterministic input. For technical reasons, we have
to assume that the variable names of all modules in a composed system are
pairwise disjoint. This can be easily achieved by indexing module variables with
the respective module index.

Definition 2 (SAS). A synchronous adaptive system SAS is a tuple

S = (M, inputa, inputd, outputa, outputd, conna, connd)

where

– M = {m1, . . . ,mn} is a set of SAS modules with mi = (ini, outi, loci, initi,
confsi, adaptationi)

– inputa ⊆ Var are adaptation inputs and inputd ⊆ Var functional inputs to
the system

– outputa ⊆ Var are adaptation outputs and outputd ⊆ Var functional outputs
from the system

– conna is a function connecting adaptation outputs to adaptation inputs, sys-
tem adaptation inputs to module adaptation inputs and module adaptation
outputs to system adaptation outputs, i.e. conna :

⋃
j,k=1,...,n(adapt outj ∪

inputa) → (adapt ink ∪ outputa) where conna(inputa) ⊆ adapt ink

– connd is a function connecting outputs of modules to inputs, system inputs to
module inputs and module outputs to system outputs, i.e. connd :

⋃
j,k=1,...,n

(outj ∪ inputd) → (ink ∪ outputd) where connd(inputd) ⊆ ink.

2.3 Semantics of SAS

The semantics of SAS is defined in a two-layered approach. We start by defining
the local semantics of single modules similar to standard state-transition sys-
tems. From this, we define global system semantics. A local state of a module
is defined by a valuation of the module’s variables, i.e. input, output and local
variables and their adaptive counterparts. A local state is initial if its functional
and adaptation variables are set to their initial values and input and output
variables are undefined. A local transition between two local states evolves in
two stages: First, the adaptation aspect computes the new adaptation local state
and the new adaptation output from the current adaptation input and the pre-
vious adaptation state. The adaptation aspect further selects the configuration
with the smallest index that has a valid guard with respect to the current input
and the previous functional and adaptative state. The system designer should
ensure that the system has a built-in default configuration ‘off’ which becomes
applicable when no other configuration is. The selected configuration is used to
compute the new local state and the new output from the current functional
input and the previous functional state.

5

Definition 3 (Local States and Transitions). A local state s of an SAS
module m is defined as variable assignment:

s : in ∪ out ∪ loc ∪ adapt in ∪ adapt out ∪ adapt loc→ Val

A local state s is called initial if s|loc = init, s|adapt loc = adapt init and
s|V = undef for V = in∪out∪adapt in∪adapt out1. A local transition between
two local states s and s′ is defined as s s′ iff the following conditions hold:

s′|adapt loc = adapt next state(s′|adapt in ∪ s|adapt loc)
s′|adapt out = adapt next out(s′|adapt in ∪ s|adapt loc)

∀ 0 < j < i . s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc 6|= guardj

s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc |= guardi

s′|loc = next statei(s′|in ∪ s|loc) and s′|out = next outi(s′|in ∪ s|loc)

The state of an SAS is the union of the local states of the contained modules
together with an evaluation of the system inputs and outputs. A system state
is initial if all states of the contained modules are initial and the system input
and output is undefined. A transition between two global states is performed in
three stages. Firstly, each module reads its input either from another module’s
output of the previous cycle or from the system inputs in the current cycle.
Secondly, each module synchronously performs a local transition. Thirdly, the
modules directly connected to system outputs write their results to the output
variables.

Definition 4 (Global States and Transitions). A global state σ of an SAS
consists of the local states {s1, . . . , sn} of the contained modules, where si is the
state of mi ∈ M , and an evaluation of the functional and adaptive inputs and
outputs, i.e. σ = s1 ∪ . . .∪ sn ∪ ((inputa ∪ inputd ∪ outputa ∪ outputd) → Val).
A global state σ is called initial iff all local states si for i = 1, . . . , n are initial
and the system inputs and outputs are undefined. Two states σ and σ′ perform
a global transition, written σ →glob σ

′, iff

– for all x, y ∈ Var \ (inputd ∪ inputa) with connd(x) = y or conna(x) = y it
holds that σ′(y) = σ(x), for all x ∈ inputa and y ∈ Var with conna(x) = y it
holds that σ′(y) = σ′(x) and for all x ∈ inputd and y ∈ Var with connd(x) =
y it holds that σ′(y) = σ′(x)

– for all sj ∈ σ and for all s′j ∈ σ′ it holds that sj s′j
– for all x ∈ Var and y ∈ outputd with connd(x) = y it holds that σ′(y) =
σ′(x) and for all x ∈ Var and y ∈ outputa with conna(x) = y it holds that
σ′(y) = σ′(x)

This definition of SAS semantics induces a transition system. In the following
defintion we fix the notion of an SAS transition system.

1 For a function f and a set M ⊆ Var , f |M = {(x, f(x)) | x ∈ M} is the restriction of
f to the domain M .

6

Definition 5 (SAS Transition System). The transition system induced by
an SAS model is defined as TSAS = (Σ, Init , glob) where

– Σ is the set of global SAS states
– Init ist the set of initial SAS states
– glob is the global SAS transition relation

The SAS semantics is now defined by the set of possible paths of a transition
system. In each step system input is provided from the environment.

Definition 6 (Paths). A path of TSAS is defined as a sequence of global states
σ0σ1 . . . where σ0 ∈ Init and for all 0 ≤ i we have σi σi+1. The set Paths(TSAS) =
{σ0σ1 . . . a path of TSAS} is the set of possible paths of TSAS and defines the SAS
semantics. Let πj denote the suffix of path π = σ0σ1σ2 . . . starting in state σj.

2.4 Specification Logic

We define LSAS as the language to express properties over a SAS with a set of
Variables Var and a domain of values Val . LSAS is a variant of the computational
tree logic CTL* in order to express temporal properties of SAS system paths.

For reasoning about the configuration a SAS module uses in each cycle a
special variable useconf is added to the set of Variables Var . It is assigned only
to the indices of the configurations a module mi implements. For a module mi

in a transition from state si to state s′i useconf is assigned as follows:

si(useconf) = k iff s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc |= guardk

∀ 0 < j < k, s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc 6|= guardj

However, for our formal treatment, useconf can be treated as an ordinary
variable taking values from Val which includes the configuration indices. In the
definition of LSAS , we only allow equality between variables and values as basic
relational symbol. However, this can be extended to more general terms build up
by arithmetic operations. Furthermore, other relations like less or greater could
be used.

Definition 7 (LSAS). Let x, y ∈ Var and v ∈ V al.

Atomsa ::= x = v | x = y
StateFormulaϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | E ψ
PathFormulaψ ::= ϕ | ¬ψ |ψ1 ∧ ψ2 |X ψ |ψ1 U ψ2

We define the other CTL* operators with the usual abbreviations as follows:

Fψ ≡ true U ψ
Gψ ≡ ¬F¬ψ
Aψ ≡ ¬E¬ψ

The fragment of LSAS where only the universal path quantifier A is used
is called the universal fragment ALSAS . Now we define satisfiability of LSAS-
formulas over SAS models

7

Definition 8 (Satisfaction). Let TSAS be a SAS transition system. For a state
formula ϕ, (TSAS , σ) |= ϕ is defined inductively on the structure of ϕ.

– (TSAS , σ) |= true always
– (TSAS , σ) |= (x = v) iff σ(x) = v and (TSAS , σ) |= (x = y) iff σ(x) = σ(y)
– (TSAS , σ) |= ¬ϕ iff (TSAS , σ) 6|= ϕ
– (TSAS , σ) |= ϕ1 ∧ ϕ2 iff (TSAS , σ) |= ϕ1 and (TSAS , σ) |= ϕ2

– (TSAS , σ) |= Eψ iff there exists a path π = σσ1σ2 . . . such that (TSAS , π) |= ψ.

For a path formula ψ, (TSAS , π) |= ψ is defined inductively on the structure of
ψ.

– (TSAS , π) |= ϕ iff π = σσ1σ2 . . . and (TSAS , σ) |= ϕ
– (TSAS , π) |= ¬ψ iff (TSAS , π) 6|= ψ
– (TSAS , π) |= ψ1 ∧ ψ2 iff (TSAS , π) |= ψ1 and (TSAS , π) |= ψ2

– (TSAS , π) |= X ψ iff π = σπ1 and (TSAS , π1) |= ψ
– (TSAS , π) |= ψ1 U ψ2 iff ∃k ≥ 0 such that (TSAS , πk) |= ψ2 and ∀ 0 ≤ j ≤ k

(TSAS , πj) |= ψ1

Satisfiability of a universal state formula Aψ can also be defined directly by:
(TSAS , σ) |= Aψ iff for all paths π = σσ1σ2 . . . it holds that (TSAS , π) |= ψ. For a
state formula ϕ we define TSAS |= ϕ if for all σ0 ∈ Init we have (TSAS , σ0) |= ϕ
and for a path formula ψ we define TSAS |= ψ if (TSAS , π0) |= ϕ for all π0 ∈
Paths(TSAS) starting in initial states σ0 ∈ Init .

2.5 SAS Verification using Abstraction

Synchronous adaptive systems are in general to complex to be verified directly.
Therefore, a number of transformations on SAS models must be applied to reduce
this verification complexity. Abstractions are one technique used in this direc-
tion. As example how abstraction facilitates verification of synchronous adaptive
systems, consider a system that consists of one module with two different con-
figurations. If the input is bigger than a certain threshold, say 50, the module
switches to its first configuration. This configuration uses a specific algorithm for
computing the output. If the input is smaller than 50, the module uses configu-
ration 2 computing the output in a different way. An important property of this
example system is that everytime the input exceeds 50 configuration 1 is used
in order to make sure that the appropriate algorithm is applied. This property
can be stated in LSAS as ϕ ≡ AG(input ≥ 50 → useconf = 1)2 with the used
configuration denoted by useconf . For ϕ, the actual functionality of the system
is not relevant.

Because the input domain in the example system is unbounded ϕ cannot be
model checked directly. However, we can abstract the system by mapping the
infinite domain of input values to a finite abstract domain while preserving the

2 input ≥ 50 is understood as an abbreviation for
W

v≥50 input = v and a → b as
¬a ∨ b.

8

Fig. 2. Illustration of the example system

property ϕ. We choose the abstract domain V̂al = {low, high}. The abstraction
function h : Val → V̂ al is defined as h(v) = low if v < 50 and h(v) = high if
v ≥ 50. Then the abstract system will use configuration 1 if the input is high and
configuration 2 if it is low. Figure 2 depicts the concrete and abstract system as
automata. The property ϕ is abstracted to ϕ̂ ≡ AG(input = high → useconf =
1). With the approach presented in this paper we will be able to verify at runtime
of the abstraction procedure that the abstraction preserves ϕ. This means that
if we are able to verify ϕ̂ for the abstract system ϕ also holds for the concrete.

3 Property Preservation by Simulation

In this section, we present the basis for the correctness criterion used in our
translation validation approach. We use the fact that a property is preserved
under abstraction if there is a consistent simulation between abstract and con-
crete system. Although our work originates from SAS in this presentation we will
use general transition systems as SAS can be represented this way. Futhermore,
it allows to extend the approach to a broader range of systems expressible as
transition systems.

We need the notion of simulation between two transition systems to formulate
a criterion for property preservation. A transition system TSAS is simulated by an
abstract transition system T

ŜAS
if we can find a simulation relation R between

the two sets of states such that firstly for all initial states of TSAS there exists a
related initial state in T

ŜAS
and secondly that for any pair of related states with

a transition in TSAS there is also a transition in T
ŜAS

such that the resulting
states are related.

Definition 9 (Simulation between SAS). Let TSAS and T
ŜAS

be two SAS
systems. We say that T

ŜAS
simulates TSAS, written as TSAS � T

ŜAS
iff there

exists a simulation relation R ⊆ Σ × Σ̂ such that

1. for all initial states σ0 ∈ Init there exists σ̂0 ∈ ˆInit such that R(σ0, σ̂0)

9

2. for 0 ≤ i and σi, σi+1 ∈ Σ and σ̂i ∈ Σ̂ with R(σi, σ̂i) and σi σi+1 the
exists σ̂i+1 ∈ Σ̂ such that σ̂i ̂σ̂i+1 and R(σi+1, σ̂i+1).

If a transition system TSAS is simulated by T
ŜAS

we can show that for each
path in TSAS there is a corresponding path in T

ŜAS
. This result is important for

the preservation of temporal operators in a LSAS formula. The proof proceeds
by induction on the length of a path and holds for finite paths. It can easily be
lifted via a contradiction proof to infinite paths as well.

Lemma 1 (Corresponding paths in TSAS and T dSAS
). Let TSAS and T

ŜAS
be two transition systems such that TSAS � T

ŜAS
with simulation relation R.

Then for every path π = σ0σ1 . . . ∈ Paths(TSAS) there exists a corresponding
path π̂ = σ̂0σ̂1 . . . ∈ Paths(T

ŜAS
) such that R(σi, σ̂i) for all i ≥ 0.

Proof. By induction on length of path.

– Base case: For a path of length one we have π = σ0 where σ0 ∈ Init . Since
TSAS � T

ŜAS
for all initial states there exists a corresponding initial state

in the abstract system σ̂0 ∈ ˆInit such that R(σ0, σ̂0)
– Induction hypothesis: For a path up to length n πn = σ0σ1 . . . σn−1 ∈

Paths(TSAS) there exists a corresponding path
π̂n = σ̂0σ̂1 . . . σ̂n−1 ∈ Paths(T

ŜAS
) such that R(σi, σ̂i) for i = 0, . . . n− 1.

– Induction step n → n + 1: Let now πn+1 = σ0σ1 . . . σn ∈ Paths(TSAS).
Then there exists a transition in TSAS σn−1 σn. Furthermore, by in-
duction hypothesis, we know that there exists a corresponding path π̂n =
σ̂0σ̂1 . . . σ̂n−1 ∈ Paths(T

ŜAS
) such that R(σi, σ̂i) for i = 0, . . . n − 1. As

TSAS � T
ŜAS

there also exists a transition σ̂n−1 ̂σ̂n such that R(σn, σ̂n).
Thus, there exists a corresponding path of length (n + 1)

ˆπn+1 = σ̂0σ̂1 . . . σ̂n−1σ̂n ∈ Paths(T
ŜAS

). �

Now we are in the position to justify the criterion that allows to conclude
TSAS |= ϕ from T

ŜAS
|= ϕ̂ for ϕ and ϕ̂ in ALSAS . Liveness properties (using the

existential path quantifier E) are typically lost under abstraction. The preserva-
tion result is based on simulation between the concrete and the abstract system
and an additional consistency condition between concrete and abstract property.
The consistency criterion intuitively expresses that the atomic propositions must
be preserved under abstraction. In order to state the consistency condition we
need a concretization function C that maps an abstract property ϕ̂ to a corre-
sponding property ϕ over the concrete system TSAS . This reflects the potentially
different interpretations of variables and values in concrete and abstract system.

Definition 10 (Concretization function). The concretization function

C : ALSAS [T
ŜAS

] → ALSAS [TSAS]

is defined inductively on the structure of a LSAS formula by:

– C(x = v) = f(x = v) and C(x = y) = f(x = y)

10

– C(¬ϕ) = ¬C(ϕ)
– C(ϕ1 ∧ ϕ2) = C(ϕ1) ∧ C(ϕ2)
– C(Xϕ) = X C(ϕ)
– C(ϕ1Uϕ2) = C(ϕ1) U C(ϕ2)
– C(Aϕ) = A C(ϕ)

The function f maps atomic propositions of the abstract system to atomic propo-
sitions of the concrete system and is chosen dependant on the concrete abstrac-
tion performed.

The following theorem now summarizes under which conditions properties
from the universal fragment of LSAS are preserved under abstraction. The first
two conditions state that the concrete system must be simulated by the abstract.
The third condition denotes that atomic propositions must be preserved in the
simulation relation. The fourth condition forces the concretisation of the abstract
property to imply the original property.

Theorem 1 (Property-Preservation of ACTL*). Let TSAS = (Σ, Init ,)
and T̂SAS = (Σ̂, Înit , ̂) be two transition systems, ϕ a ALSAS formula over
TSAS and ϕ̂ an ALSAS formula over T

ŜAS
. Then it holds that

T
ŜAS

|= ϕ̂ implies TSAS |= ϕ

if there exists a simulation relation R ⊆ Σ × Σ̂ and a concretization mapping
C : ALSAS [T

ŜAS
] → ALSAS [TSAS] such that the following conditions hold:

1. Initial Simulation: for all σ0 ∈ Init there exists σ̂0 ∈ Înit such that R(σ0, σ̂0)
2. Step Simulation: for all i ≥ 0, σi, σi+1 ∈ Σ and σ̂i ∈ Σ̂ with R(σi, σ̂i) and

σi σi+1 there exists σ̂i+1 ∈ Σ̂ such that σ̂i ̂σ̂i+1 and R(σi+1, σ̂i+1).
3. Consistency: for all â ∈ Atoms(ϕ̂) if R(σ, σ̂) and (T

ŜAS
, σ̂) |= â

then (TSAS , σ) |= C(â)
4. Implication: TSAS |= C(ϕ̂) → ϕ.

Proof. The proof proceeds in two steps: Firstly, we show that if conditions (1) -
(3) are satisfied it holds that T

ŜAS
|= ϕ̂ implies TSAS |= C(ϕ). By condition (4),

we will obtain the overall theorem. The proof of the first step is by induction
of the structure of the formula ϕ̂. The base case uses the consistency condition.
The induction step for temporal operators and path quantifiers uses the path
lemma.

For state formulas:

– ϕ̂ = â where â atomic: directly by consistency condition as for all initial
states R(σ0, σ̂0).

– ϕ̂ = ¬ϕ1: TŜAS
|= ϕ̂ implies that T

ŜAS
6|= ϕ1. By induction hypothesis

TSAS 6|= C(ϕ1) and thus TSAS |= C(ϕ).
– ϕ̂ = ϕ1 ∧ ϕ2: TŜAS

|= ϕ̂ implies that T
ŜAS

|= ϕ1 and that T
ŜAS

|= ϕ2. By
induction hypothesis TSAS |= C(ϕ1) and TSAS |= C(ϕ2). This implies that
TSAS |= C(ϕ).

11

– ϕ̂ = Aϕ1: Assume T
ŜAS

|= ϕ̂. Then for all paths π̂0 ∈ Paths(T
ŜAS

) we have
that (T

ŜAS
, π̂0) |= ϕ1. It holds that (TSAS , σ0) |= C(Aϕ1) if for all paths π0 ∈

Paths(TSAS) starting in σ0 have the property that (TSAS , π0) |= C(ϕ1). By
Path Lemma 1, for each path π0 ∈ Paths(TSAS) there exists a corresponding
paths π̂0. By assumption (T

ŜAS
, π̂0) |= ϕ1 and by induction hypothesis we

have that (TSAS , π0) |= C(ϕ1) which yields (TSAS , σ0) |= C(Aϕ1). Thus, we
conclude TSAS |= C(ϕ).

For path formulae:

– ϕ̂ = ϕ1, where ϕ̂ is a path formula and ϕ is a state formula: T
ŜAS

|= ϕ̂
implies that (T

ŜAS
, σ̂0) |= ϕ1. By induction hypothesis (TSAS , σ0) |= C(ϕ1)

and thus TSAS |= C(ϕ).
– ϕ̂ = ¬ψ1 where ψ1 path formula: T

ŜAS
|= ϕ̂ implies that T

ŜAS
6|= ψ1. By

induction hypothesis TSAS 6|= C(ψ1) and thus TSAS |= C(ϕ).
– ϕ̂ = ψ1 ∧ψ2 where ψ1, ψ2 path formulae: T

ŜAS
|= ϕ̂ implies that T

ŜAS
|= ψ1

and that T
ŜAS

|= ψ2. By induction hypothesis TSAS |= C(ψ1) and TSAS |=
C(ψ2). This implies that TSAS |= C(ϕ).

– ϕ̂ = X ψ: T
ŜAS

|= ϕ̂ implies that (T
ŜAS

, π̂1) |= ψ1. It holds that (TSAS , π0) |=
C(Xϕ1) if (TSAS , π1) |= C(ϕ1). By Path Lemma 1, for each path π1 ∈
Paths(TSAS) there exists a corresponding paths π̂1. If (T

ŜAS
, π̂1) |= ψ1 by

induction hypothesis (TSAS , π1) |= C(ϕ1). This yields TSAS |= C(ϕ).
– ϕ̂ = ψ1 U ψ2: As ϕ̂ is a path formula (T

ŜAS
, π̂0) |= ψ1 U ψ2. By definition

of the until operator there is a k such that (T
ŜAS

, π̂k) |= ψ2 and for all
0 ≤ j < k (T

ŜAS
, π̂j) |= ψ1. It holds that (TSAS , π0) |= C(ψ1 U ψ2) if there

is a k such that πk |= ψ2 and for all 0 ≤ j < k πj |= ψ1. By Path Lemma
1, for each path π ∈ Paths(TSAS) there exists a corresponding paths π̂ and
in particular for each πk there exists a corresponding π̂k. By assumption
(T

ŜAS
, π̂k) |= ψ2 and for all 0 ≤ j < k (T

ŜAS
, π̂j) |= ψ1. By induction

hypotheses (TSAS , πk) |= C(ψ2) and for all 0 ≤ j < k (TSAS , πj) |= C(ψ1).
This yields TSAS |= C(ψ1 U ψ2) �

In order to see that existentially quantified path formulae are not preserved
under abstraction we construct a counter example: We have a concrete system
TS = (Σ, Init ,) where Σ = {σ1, σ2}, Init = {σ1} and = {(σ1, σ2), (σ2, σ2)}.
The set of paths of TS is given by Paths(TS) = {π = σ1σ2 . . .}. The abstract
system is defined by TS′ = (Σ′, Init ′, ′) where Σ′ = {σ′1, σ′2, σ′3}, Init ′ =
{σ′1} and ′= {(σ′1, σ′2), (σ′2, σ′2), (σ′1, σ′3), (σ′3, σ′3)}. The set of paths is given by
Paths(TS′) = {π1′ = σ′1σ

′
2 . . . , π

2′ = σ′1σ
′
3 . . .}. The two systems are depicted in

Figure 3 with the valid atomic propositions in each state.
The concrete system is simulated by the abstract TS � T ′

S which can be
shown as follows: Let R ⊆ Σ × Σ′ denote the simulation relation with R =
{(σ1, σ

′
1), (σ2, σ

′
2}. For the initial states of TS we have R(σ1, σ

′
1). For the tran-

sition σ1 σ2, we have R(σ1, σ
′
1) and there is σ′2 such that σ′1

′ σ′2 and
R(σ2, σ

′
2). For the transition σ2 σ2, we have R(σ2, σ

′
2) and there is σ′2 such

that σ′2
′ σ′2 and R(σ2, σ

′
2).

12

Fig. 3. Graphical Representation of Example Systems

With respect to property preservation, the following can be observed: As the
atomic propositions of both systems are the same, the concretization function
is the identity function. The abstract system satisfies the properties AG(y = 2)
and EF(x = 4). However, for the concrete system TS |= AG(y = 2) and TS 6|=
EF(x = 4). The reason for this lies in the corresponding paths. From Lemma
1, we know that for each path in TS there is a corresponding path in TS′ . In
this example, π corresponds to π1′. As AG(y = 2) holds on all paths of TS′ it in
particular holds on the corresponding path π1′. Hence, AG(y = 2) also holds in
the concrete system. For the existential path property EF(x = 4), we have that
(TS′ , π2′) |= F(x = 4). However, there is no path in TS that corresponds to π2′.
Hence, EF(x = 4) does not hold in the concrete system.

Theorem 1 constitutes the necessary conditions for the correctness criterion
in our translation validation approach. It differs from other approaches using
property-preservation by simulation [7,2,10] therein that states of the underly-
ing system model are characterized by variable assignments and that atomic
propositions in the applied logic are constraints over these assignments. This re-
quires a concretization function but simplifies to work with systems where states
are described by valuations of variables such as in SAS. The same result can also
be proved by giving a transformation of SAS to labeled Kripke structures and
applying results from [7]. This construction can be found in Appendix A.

Furthermore, Theorem 1 is formulated in a very general fashion that allows to
instantiate it with a number of different kinds of abstractions. In this direction,
it can be used to justify the domain abstraction approach proposed in [6]. The
concrete transition system is defined over a concrete data domain D, either very
large or infinite. Thus, the system can only be model checked very inefficiently
if at all. So the concrete domain is abstracted to an abstract domain D̂ by an
homomorphic abstraction function h : D → D̂. In order to prove that a property
ϕ is preserved under this form of domain abstraction we have to establish a
simulation relation between Σ and Σ̂ satisfying the conditions of Theorem 1.
This is the relation defined by (σ, σ̂) ∈ R if σ̂(x) = h(σ(x)) for all x ∈ Var . The

13

concretization function C for an atomic proposition maps the formula x = v̂ for
x ∈ Var and v̂ ∈ D̂ to the disjunction over all concrete values that are mapped
to the abstract value v̂, i.e

C(x = v̂) =
∨

h(v)=v̂

(x = v)

The concretization function is further defined by induction on the formula struc-
ture preserving it. This form of abstraction is also applied in the example of
Section 2.
Another abstraction procedure that can be handled with Theorem 1 is the omis-
sion of variables that are not necessary for the considered property, similar to
dead code elimination in compiler optimization. Here, the abstract system T

ŜAS

only contains a subset of the variables of TSAS , i.e. V̂ar ⊆ Var while the rest of
the system remains the same. The simulation relation between two states can be
defined as R(σ, σ̂) iff σ(x) = σ̂(x) for all x ∈ V̂ar . The concretization function
is simply the identity function since the interpretation of the atomic proposi-
tions does not change if the abstraction is carried out correctly. Beside these two
abstraction procedures we aim at extending our work to more complicated and
powerful abstractions (cf. Future Work in Section 7).

4 The Translation Validation Infrastructure

In this section, we describe the different steps that have to be accomplished in
order to verify a system abstraction correct in Isabelle/HOL[15]. Firstly, we have
to generate an Isabelle/HOL description of both the concrete and the abstract
system. Secondly, we have certain properties to be preserved in the abstracted
system. These properties have to be represented in Isabelle as well. This com-
prises the formalization of atomic propositions for both concrete and abstract
system and the formalization of the concretization function from Definition 10.
Thirdly, we have to formalize a criterion stating the correctness of an abstrac-
tion in Isabelle corresponding to the conditions of Theorem 1. Finally, we need
a proof script that proves that the concrete and abstract system description
fulfill the correctness criterion. Note that instead of the more general transition
relation in Theorem 1 we use explicit state transition functions in the Isabelle
formalization corresponding to the SAS system specification (cp. Definitions 1
and 2).

4.1 Representing Systems in Isabelle

In our implementation, Isabelle representations of concrete and abstract system
are generated right before and after a run of the abstraction procedure. Con-
crete and abstract systems are represented using the same datatypes. We use
a shallow embedding of our system description language into the Isabelle/HOL
theorem prover. This means that we formalize the semantics of a system directly

14

within Isabelle’s Higher Order Logic constructs. Since the semantics is basically
defined via state transition functions we use Isabelle syntax to directly encode
these functions. In contrast, a deep embedding would require to formalize the
syntax of the system description language in Isabelle3 and define a semantics on
top of the syntactical elements. Some of the SAS specifications are not entirely
formulated as executable programs. Instead the functionality of a single config-
uration may only be characterized via pre- and postconditions. Due to the more
abstract nature of shallow embeddings such issues are much easier to deal with
in our approach. We also believe that we can adopt to changes in the underlying
datatypes faster if we do not formalize them in Isabelle directly.

Thus, to generate Isabelle system semantics representations we need to con-
vert a SAS description directly into Isabelle (state transition) functions. Further-
more, we generate datatypes representing system states to serve as arguments
for these functions. Due to the finite number of variables in each system we
encode states as tuples of values rather than in a mapping function. This simpli-
fies conducting the proofs. Variable references are encoded as selectors to such
tuples. We do not distinguish between different kinds of variables (like e.g. in-
put, output, adaptation and ordinary variables in Definitions 1 and 2) in the
state encoding. Input is implicitly regarded as a stream of input elements. One
element after the other is consumed during system execution. Initial states are
encoded as functions assigning initial values to an arbitrary state.

A SAS module is divided into an adaptation aspect for adaptive behavior
and functional configurations. Before evaluating the functionality of a config-
uration the adaptive part is evaluated (cp. Definition 1: adapt next state and
adapt next out). The actual functionality of a configuration (next statej and
next outj) is selected using a guard formula. In our semantics framework we en-
code this behavior by evaluating the Isabelle representation for adapt next state
and adapt next out first. Then we make a case distinction on the guard formu-
las (several if-clauses) selecting the appropriate Isabelle representation for the
configuration functions next statej and next outj to be evaluated. Connectors
between different modules are encoded as copy operations between variables of
different modules within the state transition functions.

The generation of the system state transition function is done using a visitor
pattern on the datatypes representing the input systems. While visiting parts
of the system description corresponding parts for the state transition function
are emitted in Isabelle/HOL syntax. These parts are composed to a large state
transition function representing a system’s semantics within Isabelle/HOL.

In systems with more than one module, we generate Isabelle representations
for each module. Since we deal with synchronous systems, modules do not affect
each other during a single transition. Hence, we can evaluate the modules’ state
transition functions one after the other. Evaluation order does not matter. An
addition to this, we generate Isabelle representations for the connections between
modules which are functions themselves. All these functions are composed into a

3 see e.g. [20] for a comparison between deep and shallow embedding in an Is-
abelle/HOL environment

15

single state transition function representing a system’s semantics. This technique
works for concrete and abstract systems equally well.

A generated example Isabelle representation of a module is depicted in Fig-
ures 4, 5 and 6. It describes a wheel speed sensor. Figure 4 shows the datatype
the module’s state transtion function opperates with. It defines a record which
is realized in Isabelle as a tuple representation with named components. The
initialization function for formalizing initial states is shown in Figure 5. The
%f.f is an Isabelle notation for a lambda-style function definition. In this case
it defines a function that takes an argument f and returns the f thus defining
an identity function. With this function, we define an arbitrary initial state.
Figure 6 shows the state transition function for this module. It comprises two
configurations: V WheelCalculation where the vehicle speed is calculated from
the speed of the wheels and the default configuration Off. In the first configu-
ration V WheelCalculation also the values for the two adaptive output variables
wheel revolution measuredRR 7 available resolution and v wheelRR 7
calculated slipProbability specifying parameters for this configuration are
computed. The o operator composes different independently generated functions
to the state transition function.The complete system description containing this
module consists of 24 modules and implements a traction control system used
as case study.

record v_wheelRR_params =

aux :: int

useCONFIG :: int

wheel_revolution_measuredRR_7::"int"

wheel_revolution_measuredRR_7_quality::"int"

wheel_revolution_measuredRR_7_available_resolution::"int"

v_wheelRR_7::"int"

v_wheelRR_7_quality::"int"

v_wheelRR_7_calculated_slipProbability::"int"

v_wheelRR_7_calculated_resolution::"int"

Fig. 4. Generated Datatype for State Representation

constdefs init_v_wheelRR:: " v_wheelRR_params => v_wheelRR_params"

"init_v_wheelRR == (% f. (f))"

Fig. 5. Generated Initialization Function

16

constdefs v_wheelRR :: " v_wheelRR_params => v_wheelRR_params => v_wheelRR_params "
"v_wheelRR == (% g . (
if (
(wheel_revolution_measuredRR_7_quality g) =

wheel_revolution_measuredRR_7_quality_available)
then (

(* Priority 1 *)
(% f. f (|useCONFIG := v_wheelRR__V_WheelCalculation|))

o
((% f . f (| v_wheelRR_7_quality := v_wheelRR_7_quality_calculated|)) o

(*Begin Cascade *) (
if (
(wheel_revolution_measuredRR_7_available_resolution g) =

wheel_revolution_measuredRR_7_available_resolution_low)
then
(

((% f . f (| v_wheelRR_7_calculated_resolution :=
v_wheelRR_7_calculated_resolution_low|)))

)
else if (
(wheel_revolution_measuredRR_7_available_resolution g) =

wheel_revolution_measuredRR_7_available_resolution_middle)
then
(
((% f . f (| v_wheelRR_7_calculated_resolution :=

v_wheelRR_7_calculated_resolution_middle|)))
)
else if (
(wheel_revolution_measuredRR_7_available_resolution g) =

wheel_revolution_measuredRR_7_available_resolution_high)
then
(
((% f . f (| v_wheelRR_7_calculated_resolution :=

v_wheelRR_7_calculated_resolution_high|)))
)
else
(
((% f . f))

)
)

(*End Cascade *)
o

(% f . f (| v_wheelRR_7_calculated_slipProbability :=
v_wheelRR_7_calculated_slipProbability_none|))

)
) (* end conf *)
else
(

(% f. f (|useCONFIG := v_wheelRR__Off|))
o

((% f . f (| v_wheelRR_7_quality := v_wheelRR_7_quality_unavailable|)))
)
))"

Fig. 6. Generated State Transition Function

17

4.2 System Properties and Concretization Function

System properties are represented using the specification logic from Defini-
tion 7. Due to its definition as context free grammar a deep embedding using
Isabelle/HOL’s datatype constructors is an adequate choice. We leave the set of
atoms from Definition 7 parametric to the syntax definition of the specification
logic in Isabelle. The deep embedding requires to define a semantics on top of the
datastructures representing specification logic formulas. This is done defining a
function taking a system, a formula representing a property in the specification
logic and a function stating whether a certain atomic property is fulfilled at a
given state of the system. The defined semantics function returns a truth value
indicating whether the system fulfills the given propertiy. Since the formalized
logic is parameterized with a set of atoms and a function interpreting atoms in
a given state it can be used for both concrete and abstract system properties
using different instantiations.

The concretization function between atomic propositions of the abstract sys-
tem and atomic propositions of the concrete system is defined in Isabelle/HOL
corresponding to Definition 10. In most cases this function may be automatically
generated from a given simulation relation and vice versa.

4.3 Formalizing Abstraction Correctness in Isabelle

For proving that an abstraction is valid we need a formalization of property
preservation in Isabelle/HOL. Such a formalized correctness criterion (Figure 7)
has to fulfill the conditions stated in Theorem 1. The first two conditions (in
both the theorem and the figure) correspond to the simulation between the two
systems. These first two conditions are formalized once for all systems. With
a slight generalization they can also be applied for the verification of compiler
optimization phases (cf. [4,11]).

constdefs systemequivalence ::

(state => state) => (state’ => state’) => state => state’ =>

(state => state’ => bool) => concprop => absprop => concfun => bool

"systemequivalence nextstate nextstate’ s0 s0’ R c a C ==

R s0 s0’ &

ALL s s’. R s s’ --> R (next s) (next s’) &

consistency(R,C) & implies(C (a),c)"

Fig. 7. Correctness Criterion

The third condition in Theorem 1 requires that the simulation relation pre-
serves consistency. We are free to chose the notion of consistency by instantiating
the concretization function C. However, we have to ensure that the fourth condi-
tion of Theorem 1 still holds. In order to establish condition 4 in Theorem 1, one

18

can formulate properties to be checked in terms of the abstractions in the first
place. In our case studies, however, properties are usually formulated in terms
of the concrete system. Hence, one has to verify that the concretization of the
abstract property implies the concrete property. Note that conditions (1) and (2)
do not depend on concrete properties to be checked. Conditions (3) and (4) are
independent of a concrete system. Only the first three conditions depend on the
simulation relation. This allows to reprove only parts of the overall correctness
proof if we have minor changes in either the system description or the properties
that shall be preserved during abstrations.We found it especially usefull to prove
the condition (4) independent of the first three conditions.

Figure 8 shows a small extract from a typical simulation relation for a domain
abstraction. It takes two states A and B of concrete and abstract system, respec-
tively, and ensures that whenever the variable in1 in the concrete system has a
value less than 50 then the value of in1 in the simulating abstract system must
be low. In the complete simulation relation for a system, we encode a condition
for every variable abstraction being performed. In contrast to this fragment of a
simulation relation for domain abstractions the simulation relation for omission
of variables is even simpler. Here, no condition is put on an omitted variable in
the relation.

constdefs inputequivalence :: "S1 => S2 => bool"

"inputequiv A B == (((in1 A = low) = (in1 B <= 50)) & ..."

Fig. 8. Simulation Relation

The simulation relation for a concrete system can be generated by the ab-
straction procedure or adjusted by hand. It reflects the performed abstractions.
Note that the concretization function C in Theorem 1 directly corresponds to
the simulation relation. In our example simulation relation, the abstract value
on the left side of the equation is the argument of C whereas the concrete value
on the right side refers to the result of the concretization.

4.4 Proving Abstractions Correct

To conduct the correctness proof we still need a proof script. In our current
implementation we first prove additional lemmata implying the actual correct-
ness criterion. The simu step helper lemma for abstraction of variable domains
and omission of variables as well as its proof is depicted in Figure 9. It is generic
for many systems. The formalization of the lemma is shown in the first line.
The rest is the proof script computing the proof for this lemma. A proof script
can be considered as a kind of program that tells the theorem prover how to
conduct a proof. It comprises the application of several tactics (apply) which
can be regarded as subprograms in the proving process. In the proving process
the theorem prover symbolically evaluates state transition functions (M1,M1’) on

19

lemma simu_step_helper: "(funequiv A B) & (inputequiv A B) & (funequiv’ A B)

--> (funequiv (M1’ A A) (M1 B B))"

apply (clarify, unfold funequiv_def inputequiv_def, clarify)

apply (unfold M1_def, unfold M1’_def)

apply (erule subst)+

apply (unfold funequiv’_def funequiv_def inputequiv_def)

apply clarify

apply (rule conjI, simp) +

apply simp

done

Fig. 9. Proof Script

symbolic states. These symbolic states are specified by their relation to each
other. The theorem prover checks that the relation between the states still holds
after the evaluation of the transition functions. The predicates funequiv and
inputequiv together imply system equivalence and in general do highly depend
on the chosen simulation relation. In the scenarios examined so far, however, we
have developed a single highly generic proof script that proves the correctness in
all scenarios. For more complicated scenarios the proof script might need adap-
tation. This was the case in the original compiler scenario where adaptations
could be done fully automatically [4].

5 Evaluation of our Framework

The AMOR (Abstract and MOdular verifieR) tool prototypically implements
the technique proposed in this paper for domain abstractions and omitting vari-
ables. We have successfully applied it in several case studies in the context of
the EVAS project [1] and proved that interesting system properties were pre-
served by abstractions. Our largest example with domain abstractions contained
amongst others 39 variables with infinite domains. We generated Isabelle rep-
resentations for systems consisting of up to 2600 lines of Isabelle code. In some
of these scenarios, model checking was not possible without abstractions. Thus,
our technique bridges a gap in the verification process between a system model
representation in a modelling environment (used e.g. for code generation) and
an input representation for verification tools.

6 Related Work

While previously correctness of abstractions was established by showing sound-
ness for all possible systems, for instance in abstract interpretation based ap-
proaches [8,9], our technique proves an abstraction correct for a specific system
and property to be verified. In this direction, we adopted the notion of translation
validation [16,21] to correctness of system abstractions. Translation validation

20

focuses on guaranteeing correctness of compiler runs. After a compiler has trans-
lated a source into a target program a checker compares the two programs and
decides whether they are equivalent. In our setting, we replace the compiler by
the abstraction mechanism, the source program by the original system and the
target program by the abstract system. Isabelle/HOL[15] serves as checker in
our case. In the original translation validation approach[16] the checker derives
the equivalence of source and target via static analysis while the compiler is
regarded as a black box. In subsequent works, the compiler was extended to
generate hints for the checker, e.g. proof scripts or a simulation relation as in
our case, in order to simplify the derivation of equivalence of source and tar-
get programs. This approach is known as credible compilation [18] or certifying
compilation [11]. Translation validation in general is not limited to simulation
based correctness criteria. However, also for compiler and transformation algo-
rithm verification simulation based correctness criteria can be used (see e.g. [3]
for work with a similar Isabelle formalization of simulation).

Simulation for program correctness was originally introduced by [12]. Since,
property preservation by simulation has been studied also for different frag-
ments of CTL* and the µ-calculus. The authors in [7,2,10] use Kripke structures
as their underlying system model where either states are labelled with atomic
propositions or atomic propositions are labelled with states. This reduces the
consistency condition to checking that the labelling of two states in simulation
is the same. However, this complicates the treatment of systems defined by valu-
ations of variables such as SAS. In [6], the authors use a system model similar to
ours, but this work is restricted to data domain abstraction while our technique
can be applied for different abstraction mechanisms. Abstract interpretation
based simulations as used in [2,10] are also less general than generic simulation
relations considered here.

Related work on formalizing state transition systems (I/O automata) in Is-
abelle is done by Müller and Nipkow in [14,13]. Reasoning about combining
model checking and theorem proving techniques is done in [14]. In [13], a method-
ology is presented to prove abstractions correct with respect to preservation of
formulas. They use a notion of correctness based on output trace inclusion which
is equivalent to simulation for abstractions. Correctness with respect to trace in-
clusion is proved for a class of abstraction functions. In contrast, we provide a
methodology to prove that concrete abstractions fall into a well established class
of correct abstractions whereas their work concentrates on establishing such a
class.

7 Conclusion

In this paper, we presented a technique for proving correctness of system abstrac-
tions using a translation validation approach. Based on property-preservation
by simulation we formalized a correctness criterion in Isabelle. With the help of
generic proof scripts we are able to verify abstractions correct at runtime of the

21

abstraction procedure. Our technique was successfully applied in various case
studies verifying data domain abstractions and omission of variables.

For future work, we want to apply our technique to further and more com-
plex abstraction procedures. In particular, we want to focus on abstractions of
hierarchical systems where simple stepwise simulation relations will no longer
be sufficient. Additionally, we are planning to investigate the interplay between
modularisation and abstraction in order to further reduce verification effort.

References

1. R. Adler, I. Schaefer, T. Schuele, and E. Vecchie. From model-based design to
formal verification of adaptive embedded systems. In 9th International Conference
on Formal Engineering Methods (ICFEM 2007), Boca Raton, FL, LNCS. Springer,
November 2007.

2. S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving simu-
lations. In Proc. of CAV ’92, pages 260–273, London, UK, 1993. Springer-Verlag.

3. J. O. Blech, L. Gesellensetter, and S. Glesner. Formal Verification of Dead Code
Elimination in Isabelle/HOL. In Proc. of SEFM, pages 200–209, September 2005.

4. J. O. Blech and A. Poetzsch-Heffter. A certifying code generation phase. In Proc.
of COCV 2007, Braga, Portugal, ENTCS, March 2007.

5. J. O. Blech, I. Schaefer, and A. Poetzsch-Heffter. Translation validation for sys-
tem abstractions. In 7th Workshop on Runtime Verification (RV’07), Vancouver,
Canada, March 2007.

6. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM TOPLAS, 16(5):1512–1542, September 1994.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.
of POPL, pages 238–252. ACM Press, January 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. of POPL, pages 269–282. ACM Press, January 1979.

10. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

11. M. J. Gawkowski, J. O. Blech, and A. Poetzsch-Heffter. Certifying Compilers based
on Formal Translation Contracts. Technical Report 355-06, TU Kaiserslautern,
November 2006.

12. R. Milner. An algebraic definition of simulation between programs. In Proc. of
IJCAI, pages 481–489, 1971.

13. O. Müller. I/O Automata and Beyond: Temporal Logic and Abstractions in Is-
abelle. In Theorem Proving in Higher Order Logics, LNCS. Springer, 1998.

14. O. Müller and T. Nipkow. Combining model checking and deduction for I/O-
automata. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of LNCS, pages 1–16. Springer, 1995.

15. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

16. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS, volume
1384 of LNCS. Springer, 1998.

17. A. Poetzsch-Heffter and M. J. Gawkowski. Towards proof generating compilers.
Electronic Notes in Theoretical Computer Science, 132(1):37–51, 2005.

22

18. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the FLoC Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

19. I. Schaefer and A. Poetzsch-Heffter. Using Abstraction in Modular Verification of
Synchronous Adaptive Systems. In Proc. of ”Workshop on Trustworthy Software”,
Saarbrücken, Germany, May 18-19, 2006.

20. M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep
embedding. In Theorem Proving in Higher Order Logics, LNCS. Springer, 2004.

21. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the
translation validation of optimizing compilers. Journal of Universal Computer
Science, 9(3):223–247, March 2003.

23

A Proof of Property Preservation with Kripke Structures

Another way to justify Theorem 1 is by reducing SAS to Kripke structures
(labeled transition systems) and applying the results from [7]. So let us first
recall the results used in [7]. Systems are modelled by Kripke structures as
transition systems where states are labeled by atomic propositions of the logic.
The labeling denotes the atomic propositions valid in a state.

Definition 11. A Kripke structure M = (AP , S, S0, R, L) is defined as a five
tuple where

– AP is the set of atomic propositions
– S the set of states and S0 the initial states
– R ⊆ S × S the transition relation
– L : S → P(AP) the labeling function assigning sets of atomic propositions

to states.

The syntax of a CTL* formula ϕ over M is defined analogously to Defini-
tion 7. However, the atoms used in this formulas are taken from the set of atomic
propositions AP . The satisfiablitiy of CTL* formulas over Kripke structures is
defined analogosly to Defintion 8 with a difference for the atomic propostions.
An atomic proposition p ∈ AP is true in a state s if it is contained in the set
of labels: For a state s ∈ S and an atomic proposition p ∈ AP it holds that
(M, s) |= p iff p ∈ L(s).

Simulation between two Kripke structures is defined in a similar manner as
for SAS. However, besides requirements on the transition relation also conditions
are imposed on the labeling of states. Firstly, the set of atomic propositions of
the original system must be a subset of the atomic propositions of the abstracted
system. Secondly, the labeling of two states included in the simulation relation
must coincide on the common set of atomic propositions.

Definition 12 (Simulation Relation). Given two Kripke structures M and
M ′ with AP ⊇ AP ′, a relation H ⊆ S × S′ is a simulation relation between M
and M ′ iff for all states s ∈ S and s′ ∈ S′ with H(s, s′) the following conditions
holds:

1. L(s) ∩AP ′ = L′(s′)
2. For every state s1 such that R(s, s1), there is a state s′1 with property that

R′(s′, s′1) and H(s1, s′1).

Adding a condition on the initial states of the two considered systems gives
the notion of simulation between two Kripke structures.

Definition 13 (Simulation between Kripke structures). M ′ simulates M
(M �M ′) if there exists a simulation relation H such that for every initial state
s0 in M there is an initial state s′0 in M ′ for which H(s0, s′0) holds.

The following theorem states the property preservation result for universal
CTL* formulae based on simulation from [7].

24

Theorem 2 (Property Preservation on Kripke structures [7]). Let M �
M ′. Then for every ACTL* formula f with atomic propositions in AP’, M ′ |= f
implies M |= f .

Our proof for property preservation by simulation for SAS now proceeds as
follows: For a given concrete system TSAS and an abstract system T

ŜAS
and a

property ϕ̂ over T
ŜAS

and a concretization C(ϕ̂) of the abstract property over
TSAS we perform the following steps:

1. We define the atomic propositions AP of a Kripke structure as pairs con-
sisting of an atom of the abstract property ϕ̂ and its concretisation via C.
We call this set of atomic propositions AP(ϕ̂).

2. We show how to map the property ϕ̂ to a property f using pairs of atomic
propositions from AP(ϕ̂) as atomic propositions.

3. We show how to map the concrete SAS TSAS and the abstract SAS T
ŜAS

to a Kripke structures M and M ′ where the states are labeled with atomic
propositions from AP(ϕ̂)

4. We show that if the abstract system T
ŜAS

satisfies the abstract property ϕ̂
also the Kripke structure M ′ satisfies the property f .

5. We show that if the Kripke structure M satisfies the property f the concrete
system TSAS satisfies the concretized property C(ϕ̂).

6. We show that if the concrete system TSAS and the abstract system T
ŜAS

consistently simulate each other with respect to the atomic propositions of ϕ̂
alsoM andM ′ simulate each other. Consistent simulation means that atomic
propositions are preserved by the simulation relation. This is important in
order to conclude simulation for Kripke structures which requires coinciding
labels of similar states.

7. Using the result from [7] and our previous considerations we can prove the
overall theorem.

We start by defining the atomic propositions. The concretization function
maps a property over the abstract system T

ŜAS
defined in terms of V̂ar and V̂al

to a property ϕ over the concrete system defined in terms of Var and Val , i.e. C :
ALSAS [T

ŜAS
] → ALSASCTL∗[TSAS] as defined in Definition 10. Those formulas

are equivalent in the sense of the abstraction. The following definition formalizes
the operator Atoms returning the set of atoms of a formula ϕ ∈ ALSAS .

Definition 14 (Atoms). Let ϕ be a formula form ALSAS over a set of variables
Var and values Val. We define the Atoms(ϕ) on the structure of ϕ as

– Atoms(a) = a , for a an Atom of LSAS

– Atoms(¬ϕ) = Atoms(ϕ)
– Atoms(ϕ1 ∧ ϕ2) = Atoms(ϕ1) ∪Atoms(ϕ2)
– Atoms(Xϕ) = Atoms(ϕ)
– Atoms(ϕ1Uϕ2) = Atoms(ϕ1) ∪Atoms(ϕ2)
– Atoms(Aϕ) = Atoms(ϕ)

25

The set of atomic propositions AP(ϕ̂) generated from a property ϕ̂ is now
defined as the set of pairs consisting of an atom from the abstract property ϕ̂
and its concretization via C.

Definition 15 (Definition of atomic propositions as pairs). Let ϕ̂ be a
CTL* property over the abstract system T

ŜAS
and C : ALSAS [T

ŜAS
] → ALSAS [TSAS]

a concretization function for properties over T
ŜAS

to properties over TSAS. The
set of atomic propositions AP(ϕ̂) induced by ϕ̂ is defined as

AP(ϕ̂) =
⋃

â∈Atoms(ϕ̂)

(â, C(â))

As an example for this construction of pair of corresponding atomic propo-
sitions consider data domain abstraction where a set of concrete values V ⊆ Val
is mapped to an abstract value v̂ ∈ V̂al . An abstract atomic proposition is for
instance ϕ̂ ≡ (x = v̂). The concretization is C(x = v̂) =

∨
v∈V(x = v). The set

of atomic propositions induced by ϕ̂ is then AP(ϕ̂) = {(x = v̂,
∨

v∈V x = v)}.
We can now define the abstract property ϕ̂ in terms of the atomic propositions

defined by AP(ϕ̂) by substituting each atomic proposition by the corresponding
pair of this atomic proposition and its concretization.

Definition 16 (Construction of f over AP (ϕ̂) from ϕ̂). Let ϕ̂ be a LSAS

formula and let AP (ϕ̂) be the set of atomic propositions consisting of pairs of
atomic propositions and their conretization. The mapping trans transforms the
property ϕ̂ into a property f over AP (ϕ̂) as follows:

– trans(a) = (a, C(a)) , for a ∈ Atoms(ϕ̂).
– trans(¬ϕ) = ¬ trans(ϕ)
– trans(ϕ1 ∧ ϕ2) = trans(ϕ1) ∧ trans(ϕ2)
– trans(Xϕ) = X trans(ϕ)
– trans(ϕ1Uϕ2) = trans(ϕ1) U trans(ϕ2)
– trans(Aϕ) = A trans(ϕ)

A SAS transition system T can be encoded as a labeled Kripke structure over
an appropriately chosen set of atomic propostions. For the property preservation
result we instantiate the set of atomic propositions with the set of pairs of
corresponding propositions AP(ϕ̂) induced by the abstract property ϕ̂. However,
we have to define, when a state σ of T satisfies such a pair of propositions. For
this purpose, we introduce the satisfaction relation |=×.

Definition 17. A state σ : V ar → V al of a transition system T satisfies a pair
of atomic prospositions (a, C(a)), i.e. σ |=× (a, C(a)) iff either a is defined on σ
and σ |= a or C(a) is defined on σ and σ |= a where for variables x, y and values
v an atomic proposition (x = v) is defined on σ if x ∈ Dom(σ) and v ∈ V al and
an atomic proposition (x = y) is defined on σ if x, y ∈ Dom(σ).

We can now encode SAS transition systems as labeled Kripke structures over
AP(ϕ̂) for an abstract property ϕ̂ as follows:

26

Definition 18 (Encoding of SAS as Kripke structures). We define the en-
coding trans of a SAS transition system TSAS = (Σ, Init ,) as a Kripke struc-
ture trans(TSAS) = (AP , S, S0, R, L) over a set of atomic propositions AP(ϕ̂)
by

– S = Σ

– S0 = Init
– R =
– for s ∈ S: L(s) = {p ∈ AP (ϕ̂)} iff (TSAS , s) |=× p

The following lemma states that if the abstract system T
ŜAS

satisfies the
abstract property ϕ̂ the transformed system M ′ = trans(T

ŜAS
) satisfies f in

terms of a Kripke structure.

Lemma 2. Let M ′ = trans(T
ŜAS

) and f = trans(ϕ̂). If T
ŜAS

|= ϕ̂
then M ′ |= f

Proof. As the structure of the formula is preserved in the translation from ϕ̂
to f it suffices to consider satisfaction of atomic propositions. For each atomic
proposition in a ∈ Atoms(ϕ̂) it can easily be seen by construction of M ′ that if
a state σ̂ |= a the corresponding pair of atomic propositions is contained in the
labeling of this state, i.e. (a, C(a)) ∈ L(σ̂). �

In the following lemma we prove that if the encoding of the concrete system
M = trans(TSAS) satisfies the property f = trans(ϕ̂) the concrete system TSAS

itself satisfies the concretization of the abstract property C(ϕ̂).

Lemma 3. Let M = trans(TSAS) and f = trans(ϕ̂). If M |= f
then TSAS |= C(ϕ̂)

Proof. The proof proceeds by induction on the structure of the formula f and
follows almost immediately by construction of f and M . For an atomic proposi-
tion of M , we know that it is a pair (a, C(a)). If a state s of M satisfies (a, C(a)),
(a, C(a)) ∈ L(s). Then by construction of M , s |=× (a, C(a)) in TSAS . By defini-
tion of |=×, (TSAS , s) |= C(a). The induction step follows from the fact the the
structure of the formula is not changed by the applied transformations. �

In order to apply the property preservation results from [7], it now remains
to show that the transformed Kripke structures M and M ′ simulate each other.
While for simulation between Kripke structures it is required that similar states
have coinciding labels simulation between SAS models does not consider proper-
ties in the first place. Therefore, we introduce the notion of consistent simulation.
Two SAS models consistently simulate each other, if the simulation relation pre-
serves the atomic propositions. As we consider an abstract and a concrete system,
we refine the notion such that if an abstract state satisfies an abstract atomic
proposition a similar concrete state must satisfy its concretization.

27

Definition 19 (Consistent Simulation). Let TSAS and T
ŜAS

be two SAS
such that TSAS � T

ŜAS
and C : ALSAS [T

ŜAS
] → ALSAS [TSAS] a concretization

function. We say that T
ŜAS

consistently simulates TSAS with respect to a set
of atomic propositions AP , denoted as TSAS �[AP] TŜAS

, if for all σ ∈ Σ and
σ̂ ∈ Σ̂ with R(σ, σ̂) and for all a ∈ AP it holds that if (T

ŜAS
, σ̂) |= a then also

(TSAS , σ) |= C(a).

The following lemma states that if T
ŜAS

consistently simulates TSAS then
M ′ simulates M in terms of labeled Kripke structures.

Lemma 4 (Simulation Lemma). Let TSAS and T
ŜAS

be two SAS and
M = trans(TSAS) and M ′ = trans(T

ŜAS
) the Kripke structure encoding with

respect to a property ϕ̂ over T
ŜAS

. Then it holds: If TSAS �[Atoms(ϕ̂)] TŜAS
then

M �M ′.

Proof. By assumption TSAS �[Atoms(ϕ̂)] TŜAS
. Hence there exists a simulation

relation R between Σ and Σ̂. As the states of M and M ′ are by definition equal
to Σ and Σ̂, respectively, it only remains to show that the labeling of a state s in
M and a state s′ in M ′ with R(s, s′) satisfies L(s) = L′(s′). As TSAS �[Atoms(ϕ̂)]

T
ŜAS

is a consistent simulation, we know that for (s, s′) ∈ R it holds that if
s′ |= a implies s |= C(a). By construction of M we have L(s) = {p ∈ AP (ϕ̂)}
iff (TSAS , s) |=× p and by construction of M ′ we have L′(s′) = {p ∈ AP (ϕ̂)} iff
(T

ŜAS
, s′) |=× p. This yields L(s) = L′(s′). �

From the previous lemmata, we can now conclude Theorem 1. For a given
concrete SAS TSAS and a given abstract SAS T

ŜAS
and a given property ϕ

over TSAS and a given abstract property ϕ̂ over T
ŜAS

we construct the Kripke
structures M = trans(TSAS) and M ′ = trans(T

ŜAS
) and the property f =

trans(ϕ̂). Assuming that TSAS and T
ŜAS

consistently simulate each other with
respect to the atomic propositions of ϕ̂, i.e. TSAS �[Atoms(ϕ̂)] TŜAS

, we conclude
by Lemma 4 thatM �M ′. The first three conditions in Theorem 1 correspond to
the definition of consistent simulation with respect to Atoms(ϕ̂). By assumption
the abstract system satisfies the abstract property T

ŜAS
|= ϕ̂. Thus, Lemma 2

gives that M ′ |= f . Now we can apply Theorem 2 from [7] yielding M |= f . From
Lemma 3, we conclude that TSAS |= C(ϕ̂). The final thing to show is that the
concretized property C(ϕ̂) implies the concrete property ϕ which is assumed in
the fourth condition of Theorem 1 and we are done.

28

