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1 Introduction

Due to the importance of elastomer components in engineering applications the accurate

prediction of the mechanical behavior under operational conditions is a relevant subject

in industry. Especially the designing with advanced or new materials necessitates the

knowledge of their exact stress and strain properties. Therefore, – with the increasing

performance of computers – increasingly more complex material models can be applied

whose material parameters must be identified for the respective material in order to

establish reliability of the simulation. Often the material is exposed to different short– and

long–time loads simultaneously. Thus the requirement is to provide one set of parameters

for a material law which represents the material behavior over the entire time range of

interest sufficiently accurate. Moreover, in many cases the mechanical properties of the

applied material scatters for different charges of the production. Then, the requirement for

a simulation might be to predict the mechanical behavior by means of averaged material

parameters for these different material charges.

This work presents the procedures for the parameter identification for multiple experi-

ments in which all parameters are identified simultaneously. Based on a least squares sum

we aim at minimizing the discrepancies between measured and simulated inhomogeneous

displacement fields.

Despite the Mullins effect – the stress softening in the first load cycle(s) –, in most elas-

tomeric materials no further damage can be observed even at large deformations. More-

over vulcanized rubber, its synthetic substitutes and most other elastomeric materials do

not exhibit considerable permanent (irreversible) deformations. Considering pre–damaged

material which is in a stable stationary state with respect to the Mullins effect, this leads

to the choice of a viscoelastic material model at large strains. Generally the choice of

the material law is a very important issue. For the achievement of a good agreement be-

tween simulated and measured data, the model and its structure has to be chosen so that

the considered relaxation processes of the material can be described properly. Moreover,

in order to simulate the viscoelastic material behavior of typical rubber–like materials,

large deformations and large deviations away from thermodynamic equilibrium have to be

considered. In 1998 Reese and Govindjee [65] proposed a continuum formulation which

is, in contrast to many other theories, not restricted to viscoelastic response for states

near the thermodynamic equilibrium (for further elaborations see, e.g. Reese and Govin-

djee [64], Govindjee and Reese [18], Lion [34], [35], Haupt [21], Holzapfel [23] and Huber

and Tsakmakis [25]).

In recent years the identification of the material parameters for viscoelastic constitutive

laws has additionally been investigated. Naming but a few research groups which placed

emphasis on these aspects, the reader is referred to the contributions by, for instance,

Haupt and Sedlan [22], Miehe and Keck [57] Scheday and Miehe [67], Keck [28] as well as

to Hartmann et al. [20]. A micromechanically motivated model for viscoelastic response
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1 Introduction

has been elaborated in the work by Scheday [66], wherein material parameters have been

identified for inhomogeneous deformation fields based on nonlinear finite–element tech-

niques combined with experimental measurements by image correlation photogrammetry.

The common technique for the parameter identification for modular constitutive laws is to

split the parameters into different sets which are each identified individually by one test.

In doing so, in order to identify the parameters of the equilibrium part, the experiments

have to deliver test data with fully completed stress relaxation. Thereafter the material

parameters of the non–equilibrium term(s) often are identified by a single test where the

viscous stress relaxation is investigated over a chosen time period while the parameters

of the equilibrium term are fixed.

The reason for the simultaneous identification for multiple tests arises from different facts.

First an insufficient number of testing data can cause instable or non–unique parameter

estimates. If the data is incomplete it cannot cover the whole range of intended model

applications (see Mahnken [40]). Secondly the identification process shall average the pa-

rameters respecting different sources of error. Parameter identification is an optimization

problem where the discrepancies between test data and simulated data might not vanish

completely which is due to two main problems: On the one hand, the chosen mathematical

model cannot completely describe the mechanical behavior of a material, thus the model

error (see Mahnken [40]) has to be taken into account. On the other hand, uncertainties

in laboratory tests occur. This means – as mentioned above – that in addition to possible

errors in the measurements themselves, scattering of data due to varying properties of the

samples might occur. Therefore, by simultaneous identification an optimal set of param-

eters in the sense of an optimal adjustment of the constitutive model – being subject to

a model error itself – to all tests is achieved. Moreover, the consideration of all tests in

one optimization iteration leads to an improved adjustment of the imbalances which arise

from scattering of experimental data.

For representative simulations, the viscoelastic material law introduced by Reese and

Govindjee [65] with multiple relaxation mechanisms (see Govindjee and Reese [18]) is ap-

plied by means of the finite–element method (FEM). Following the approach advocated by

Mahnken and Stein ( [48], [47], [49], and Mahnken [40], [42]), a sensitivity analysis which

respects the inhomogeneity of the displacement fields is performed. The displacement

fields in the experiments are determined by means of optical contactless measurement

techniques. The simulation of the experiments is force–controlled with the force–time

data measured in the experiments.

The work is organized as follows: In chapter 2 essential equations for the description of

finite deformation hyperelasticity for isotropy by means of nonlinear continuum mechanics

are listed. Considering isotropic hyperelasticity in terms of principle stretches Ogden–type

functions (see Ogden [59]) are discussed briefly.

The Ogden strain energy function is applied for the constitutive routine for finite viscoelas-

ticity (see Reese and Govindjee [65]). The basic constitutive equations of this inelastic

material law are reviewed in chapter 3.

The objective of chapter 4 is to present the basic methods within a parameter identification

process. First, the definition of the inverse problem is discussed. Afterwards, optical

measurement techniques for the measurement of displacement fields and the interpolation

of measured displacement fields are described. Then the methods, which are used for

2



the numerical solution of the inverse problem in this work, are presented and stability

problems – usually occurring during the identification process – are investigated. In the

following chapter 5, the computation of the derivatives required for a sensitivity analysis

is presented.

In order to estimate the stability behavior of the viscoelastic law within parameter identi-

fications, two numerical examples for re–identification problems are presented in chapter

6.

In chapter 7 the experimental observations on different elastomeric materials and the

respective parameter identification for the finite viscoelastic material are considered.

In section 7.1 the parameter identification for a cured polyurethane adhesive is presented,

whereby only the short time viscoelastic behavior – with one relaxation term for the

material model – shall be investigated by taking into account the experimental data of a

single relaxation test.

In section 7.2 we present an algorithm for the identification of material parameters for

the viscoelastic material law with one relaxation term, in which data of three different

experiments are considered. The material is a polyurethane foam which is investigated

for compression tests.

Section 7.3 is concerned with the parameter identification for a compact polyurethane

within different time ranges. The basic observations made in a short–time and a long–

time relaxation test and a short–time test with one load cycle motivate the choice of the

material model structure with two relaxation modules for the simulation. Applying the

method of simultaneous identification for multiple tests, the experimental loading intervals

for long–time experiments can be shortened in time and the parameter identification

procedure is now referred to experimental data of tests under short– and long–time loads

without separating the parameters due to these different time scales. By verification

it can be shown that the proposed procedure delivers a very good agreement between

experimental and simulated data for all investigated tests. Moreover, as the viscoelastic

behavior for long–time intervals is considered, with this approach time–consuming tests

with fully completed stress relaxation are no longer required (see also Kleuter et al. [30]).

In order to show the general applicability of the identification method for multiple tests,

in chapter 8 the parameter identification for small strain plasticity is presented. Thereby

three similar test programs on three specimen of the aluminum alloy AlSi9Cu3 are an-

alyzed, and the parameter sets for the respective individual identifications, and for the

combination of all tests in one identification, is compared.
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Einleitung

Aufgrund der großen Bedeutung von Elastomer–Komponenten im Maschinenbau und der

Bauindustrie ist die genaue Vorhersage ihres mechanischen Verhaltens unter Betriebsbe-

dingungen eine wichtige Aufgabenstellung in der Industrie. Besonders die Bauteilausle-

gung mit hochentwickelten oder neuen Materialien erfordert die Kenntnis ihres genauen

Spannungs– und Verzerrungsverhaltens. Für die Simulation der Bauteile werden – vor

allem aufgrund der zunehmenden Rechenleistung – immer komplexere Materialmodelle

eingesetzt. Um die Zuverlässigkeit der Simulation gewährleisten zu können, müssen die

zugehörigen Materialparameter identifiziert werden. Oftmals wird das Elastomermate-

rial verschiedenen Kurz– und Langzeitbelastungen gleichzeitig ausgesetzt. Somit ist die

Anforderung an die Parameteridentifikation, einen Parametersatz zu liefern, so dass die Si-

mulation das Materialverhalten über den gesamten zu betrachtenden Zeitraum genügend

genau beschreiben kann. Oftmals soll bei der Simulation berücksichtigt werden, dass das

mechanische Verhalten über verschiedene Produktionschargen streut. Dann ist die An-

forderung an die Identifikation, einen Satz von Materialparametern zu liefern, der eine

Mittelung bezüglich dieser Streuungen darstellt.

Diese Arbeit stellt die Prozeduren dar, die für die Parameteridentifikation für mehrere Ver-

suche bei gleichzeitiger Identifikation aller Materialparameter notwendig sind. Basierend

auf der Methode der kleinsten Fehlerquadrate ist es das Ziel, die Unterschiede zwischen

gemessenen und simulierten inhomogenen Verschiebungsfeldern zu minimieren.

Neben dem Mullins–Effekt, dem Spannungsentfestigungseffekt in den ersten Lastzyklen,

kann bei den meisten Elastomer–Materialien – sogar bei sehr großen Deformationen

– kein weiterer Einfluß von Schädigungseffekten bemerkt werden. Weiterhin weisen

vulkanisierter Kautschuk, synthetisches Gummi und die meisten weiteren Elastomere

keine nennenswerten permanenten (irreversiblen) Deformationen auf. Wird bezüglich

des Mullins–Effekts vorgeschädigtes Material untersucht, führt dies zu der Auswahl eines

viskoelastischen Materialmodells. Generell ist die Auswahl des Materialgesetzes eine

sehr wichtige Problemstellung. Um eine gute Übereinstimmung zwischen simulierten

und gemessenen Daten zu erhalten, muß das Materialgesetz und die zugehörige Struktur

so gewählt werden, dass die betrachteten Relaxationsprozesse des Materials hinreichend

genau beschrieben werden können. Darüber hinaus müssen für die Simulation des vis-

koelastischen Materialverhaltens typischer gummiähnlicher Materialien große Deforma-

tionen und große Abweichungen vom thermodynamischen Gleichgewicht berücksichtigt

werden. Von Reese and Govindjee [65] wurde 1998 eine neue Kontinuumsformulierung

vorgeschlagen, die im Gegensatz zu vielen anderen Theorien nicht auf kleine Abweichungen

vom thermodynamischen Gleichgewicht beschränkt ist, siehe auch Reese und Govind-

jee [64], Govindjee und Reese [18], Lion [34], [35], Haupt [21], Holzapfel [23] sowie Huber

und Tsakmakis [25].

In den letzten Jahren wurde ebenfalls die Identifikation von Materialparametern für visko-
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1 Introduction

elastische konstitutive Gesetze untersucht. Um einige Forschungsgruppen zu nennen, die

auf diesem Gebiet gearbeitet haben, sei der Leser auf die Arbeiten von zum Beispiel

Haupt und Sedlan [22], Miehe und Keck [57], Scheday und Miehe [67], Keck [28] sowie

auf Hartmann et al. [20] verwiesen.

Ein mikromechanisch motiviertes Modell für viskoelastisches Antwortverhalten wurde in

der Arbeit von Scheday [66] betrachtet, wobei Materialparameter für inhomogene Ver-

schiebungsfelder – basierend auf nichtlinearen Finite–Elemente Techniken in Verbindung

mit experimentellen Messungen mit dem Objektrasterverfahren – identifiziert wurden.

Die gewöhnlich zur Parameteridentifikation für modular aufgebaute Stoffgesetze verwen-

dete Technik ist, die Parameter in verschiedene Sätze zu trennen, die separat voneinander

jeweils anhand eines Experiments identifiziert werden. Um die Parameter des Gleichge-

wichtsterms zu identifizieren, müssen die Experimente bei dieser Vorgehensweise Meß-

daten für vollständig abgeschlossene Relaxationsvorgänge liefern. Danach werden die

Parameter der Nichtgleichgewichtsterme oftmals anhand eines einzigen Experiments iden-

tifiziert, wobei die viskose Spannungsrelaxation über eine gewählte Zeitspanne betrachtet

wird und die Parameter des Gleichgewichtsterms festgehalten werden.

Der Grund dafür, alle Parameter für mehrere Experimente gleichzeitig zu identifizieren,

ergibt sich aus verschiedenen Tatsachen. Erstens kann eine unzulängliche Menge an

experimentellen Daten instabile oder uneindeutige Parameterschätzungen hervorrufen.

Wenn die experimentellen Daten unvollständig sind, können diese nicht die gesamte Band-

breite an vorgesehenen Modellfunktionen abdecken (siehe Mahnken [40]). Zweitens soll

der Identifikationsprozess die Parameter bezüglich verschiedener Fehlereinflüsse mitteln.

Die Parameteridentifikation ist ein Optimierungsproblem, bei dem die Unterschiede zwi-

schen experimentellen und simulierten Daten in der Regel nicht vollständig verschwinden.

Diese Tatsache hat zwei verschiedene Hauptursachen: Einerseits kann das gewählte Ma-

terialmodell in der Regel nicht allumfassend das mechanische Verhalten eines Materials

beschreiben, somit muß der Modellfehler berücksichtigt werden (siehe Mahnken [40]). Auf

der anderen Seite treten Ungewißheiten bei experimentellen Versuchen auf. Das bedeutet,

dass – wie oben bereits erwähnt – zusätzlich zu möglichen Fehlern in den Messungen eben-

falls Streuungen von Meßdaten aufgrund unterschiedlicher Materialbeschaffenheiten der

Probekörper auftreten können. Deshalb wird mit der gleichzeitigen Identifikation aller

Parameter ein optimaler Materialparametersatz im Sinne einer optimalen Anpassung des

konstitutiven Gesetzes – welches selber einem Modellfehler unterliegt – an alle Experi-

mente erreicht. Darüber hinaus führt die Berücksichtigung aller Experimente innerhalb

einer einzigen Optimierungsroutine zu einer verbesserten Anpassung der Materialsimula-

tion an die Streuungen von experimentellen Daten.

Für die repräsentativen Simulationen wird das viskoelastische Materialgesetz, welches von

Reese und Govindjee [65] mit mehreren Relaxationstermen vorgeschlagen wurde (siehe

Govindjee und Reese [18]), mit Hilfe der Finite–Elemente Methode (FEM) eingesetzt.

Unter Befolgung des Ansatzes von Mahnken und Stein ( [48], [47], [49], und Mahnken

[40], [42]), wird eine Sensitivitätsanalyse durchgeführt, welche die Inhomogenität der Ver-

schiebungsfelder berücksichtigt. Die Verschiebungsfelder der Proben in den Experimenten

werden mit Hilfe berührungsloser optischer Meßverfahren bestimmt. Die Simulation der

Experimente ist kraftgesteuert mit den in den Experimenten gemessenen Kraft–Zeit Kur-

ven.
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Die vorliegende Arbeit ist wie folgt gegliedert: In Kapitel 2 werden die grundlegenden

Gleichungen für die Beschreibung finiter Hyperelastizität bei Isotropie mit Hilfe nicht-

linearer Kontinuumsmechanik aufgeführt. Nach der Betrachtung isotroper Hyperelas-

tizität in Eigenrichtungen werden Verzerrungsenergiefunktionen vom Ogden–Typ kurz

dargestellt.

Die Ogden–Verzerrungsenergiefunktionen werden für die konstitutive Routine für finite

Viskoelastizität (siehe Reese und Govindjee [65]) verwendet. Die grundlegenden konsti-

tutiven Gleichungen dieses inelastischen Materialgesetzes werden in Kapitel 3 zusammen-

fassend dargestellt.

Die Zielsetzung in Kapitel 4 ist, die allgemein angewendeten Methoden für die

Durchführung einer Parameteridentifikation zu erläutern. Zuerst wird die Defini-

tion eines inversen Problems diskutiert. Anschließend erfolgt die Beschreibung op-

tischer Feldmeßmethoden und die Vorgehensweise bei der Interpolation experimentell

gemessener Verschiebungsfelder. Daraufhin werden die in dieser Arbeit verwendenden Op-

timierungsmethoden erläutert und die allgemein innerhalb einer Parameteridentifikation

auftretenden Stabilitätsprobleme angesprochen. Im darauf folgenden Kapitel 5 werden

die für eine Sensitivitätsanalyse notwendigen Ableitungen präsentiert.

Um das Stabilitätsverhalten des konstitutiven viskoelastischen Gesetzes innerhalb des

Identifikationsalgorithmus’ einschätzen zu können, wurden numerische Voruntersuchun-

gen mit Hilfe von Re–Identifikationen vorgenommen, deren Ergebnisse in Kapitel 7 disku-

tiert werden.

In Kapitel 7.1 folgen numerische Beispiele auf der Basis von realen Meßdaten verschiedener

Elastomer–Materialien.

Abschnitt 7.1 zeigt die Parameteridentifikation für einen Polyurethanklebstoff im aus-

gehärteten Zustand, wobei nur das viskoelastische Kurzzeitverhalten – mit einem Re-

laxationsmodul innerhalb des Materialmodells – anhand eines Zeitversuches untersucht

wird.

In Abschnitt 7.2 wird ein Algorithmus für die Identifikation der Materialparameter des

viskoelastischen Materialgesetzes präsentiert, in dem die Meßdaten von drei verschiedenen

Experimenten eingehen. Das Material ist ein Polyurethanschaum, der in Druckversuchen

untersucht wird.

Die Parameteridentifikation für einen kompakten Polyurethanwerkstoff für mehrere Zeit-

bereiche wird in Abschnitt 7.3 beschrieben. Die grundlegenden Beobachtungen, die in

einem Kurz– und Langzeit–Relaxationsversuch und einem Kurzzeitversuch mit einem

Lastzyklus gemacht werden, motivieren die Wahl einer Modellstruktur mit zwei Re-

laxationstermen für die Simulation. Unter Anwendung der Methode der gleichzeiti-

gen Identifikation für mehrere Versuche können hierbei die experimentellen Lastauf-

bringungszeiten in Langzeitversuchen zeitlich abgekürzt werden und die Prozedur zur

Parameteridentifikation bezieht sich nun auf experimentelle Daten von Kurz– und

Langzeitversuchen, ohne dass die Parameter entsprechend dieser Zeitbereiche separiert

werden müssen. Anhand einer Verifikation kann gezeigt werden, dass die vorgeschla-

gene Verfahrensweise eine sehr gute Übereinstimmung zwischen experimentellen und

simulierten Verschiebungsdaten für alle betrachteten Experimente liefert. Darüber hinaus

sind durch den Einsatz dieser Methode zeitaufwendige Langzeitversuche bis zur völligen

Spannungsrelaxation nicht weiter notwendig (siehe auch Kleuter et al. [30]).
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1 Introduction

Um die generelle Anwendbarkeit der Identifikationsmethode für mehrere Experimente zu

zeigen, wird in Kapitel 8 die Parameteridentifikation für Plastizität bei kleinen Verzer-

rungen präsentiert. Dabei wird für drei Versuche das selbe Versuchsprogramm an drei

Versuchsproben einer Aluminium–Gusslegierung untersucht und die Parametersätze für

die jeweiligen individuellen Identifikationen und für die Kombination aller Experimente

in einer Identifikationsroutine verglichen.
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2 Finite deformation hyperelasticity

In this chapter essential equations for the description of finite deformation hyperelasticity

by means of nonlinear continuum mechanics are listed (see also, e.g. Ogden [59], Haupt

[21], Holzapfel [23], Betten [8] Bonet and Wood [10] and Marsden and Hughes [51]).

2.1 Kinematics

Consider the motion x = ϕ(X, t) of a body in three dimensions so that a continuum point

X in the material configuration B0 occupies position x in the spatial configuration Bt at

current time t. The deformation gradient of the motion is defined by F = ∂Xϕ. A strain

C b

ϕ

F

B0 Bt

Figure 2.1: Motion x = ϕ(X, t) and corresponding deformation gradient F = ∂Xϕ.

measure over the cotangent space to B0 is the right Cauchy–Green tensor C = F T · g · F .

Thereby C = ϕ∗(g) is the pullback of the covariant metric g in the spatial configuration

Bt. Pushforward operation of the contravariant material metric G−1 with b = ϕ∗(G
−1)

renders the left Cauchy–Green tensor b = F · G−1 · F T which is a strain measure over

the tangent space to Bt.

2.1.1 Eigenvalues and eigenvectors of strain tensors

The polar decomposition of the deformation gradient F into a proper orthogonal rotation

tensor R (with R−1 = RT, det R = 1) and the symmetric stretch tensors yields

F = R · U = v · R . (2.1)

Due to the orthogonality of R one obtains for the right Cauchy–Green tensor

C = F T · g · F = UT · RT · g · R · U = UT · g · U = U 2 . (2.2)

The latter result follows from the symmetry of U . Analogously the left Cauchy–Green

tensor yields

b = v2 . (2.3)
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2 Finite deformation hyperelasticity

The orthogonal and normed set of eigenvectors N a and its corresponding eigenvalues λa

(a = 1, 2, 3; no summation) of the material tensor U are introduced with (see Ogden [59])

U · N a = λa N a , (2.4)

where ‖N a‖ = 1. All eigenvalues λa are real and positive. The solution of the eigenvalue

problem (2.4) delivers the characteristic equation

λ3 − J1 λ2 + J2 λ − J3 = 0 , (2.5)

whose solutions are the eigenvalues λa. The invariants of U are Ja(U) which yield

J1(U) = λ1 + λ2 + λ3 (2.6)

J2(U) = λ1 λ2 + λ1 λ3 + λ2 λ3 (2.7)

J3(U) = λ1 λ2 λ3 . (2.8)

By utilizing equation (2.2) with (2.4) the eigenvalue problem for C yields

C · N a = U 2 · N a = λ2
a N a . (2.9)

The tensors U and C have the same eigenvectors, but different eigenvalues. The eigen-

values of the symmetric tensor U are λa and are also called principal stretches.

Taking into account the relations RT ·R = I and v = R ·U ·RT and equation (2.4) one

obtains the eigenvalue problem for v

v · [R · N a] = R · URT · [R · N a] = R · U · N a = λa [R · N a] . (2.10)

Equations (2.3) and (2.10) lead –in analogy to expression (2.9)– to the eigenvalue problem

for b

b · [R · N a] = v2 · [R · N a] = λ2
a [R · N a] (2.11)

which means that both tensors v and b possess the same eigenvectors R · N a while the

corresponding eigenvalues are λa and λ2
a.

The eigenvectors of v and b are the eigenvectors of U and C rotated by R. Thus it

follows that the eigendirections in the initial configuration N a are mapped to the spatial

eigendirections na via

na = R · N a (2.12)

with ‖na‖ = 1. Thus the two–point tensor R rotates the material vectors N a to the

spatial vectors na.

The introduced symmetric tensors can be represented in the corresponding spectral de-

compositions by

U 2 = C =
3∑

a=1

λ2
a N a ⊗ N a , (2.13)

v2 = b =

3∑

a=1

λ2
a na ⊗ na . (2.14)

10



2.2 Isotropic hyperelasticity in terms of invariants

Note that both the eigenvalues and eigenvectors are dependent of the position and the

time t.

In order to describe the two–point tensors F and R in terms of the corresponding eigen-

vectors and eigenvalues one utilizes the polar decomposition F = R ·U and the equations

(2.12) and (2.13). Therefore, the deformation gradient yields

F = R ·
3∑

a=1

λa N a ⊗ N a =

3∑

a=1

λa [R · N a] ⊗ N a =

3∑

a=1

λa na ⊗ N a . (2.15)

Since the identity tensor I can be expressed as I =
∑3

a=1 N a⊗N a, together with equation

(2.12) it follows that

R = R · I =
3∑

a=1

[R · N a] ⊗ N a =
3∑

a=1

na ⊗ N a . (2.16)

Both tensors are two–point tensors and have eigendirections in the reference configuration

B0 and in the spatial configuration Bt. Moreover, F and R are not symmetric in general so

that the representations (2.15) and (2.16) cannot be considered as spectral representations

in the sense of a typical symmetric eigenvalue problem. Thus the eigenstretches λa in

equation (2.15) cannot be interpreted as eigenvalues of the deformation gradient F .

2.2 Isotropic hyperelasticity in terms of invariants

The requirement for isotropy is that the constitutive behavior has to be identical in

every material direction. If the free energy function Ψ as scalar valued tensor function is

invariant respecting the superposition of orthogonal transformations it can be expressed

via the invariants of its arguments. Therefore, Ψ can be expressed via the invariants of

C or b so that

Ψ (C) = Ψ (I1(C) , I2(C) , I3(C)) = Ψ (I1(b) , I2(b) , I3(b)) , (2.17)

whereby the invariants of C and accordingly b base on the associated eigenvalue problem.

Since C and b have the same eigenvalues, for the invariants Ia = Ia(C) and Ia = Ia(b)

(a = 1, 2, 3) it holds

Ia(C) = [C : G−1]a = Ia(b) = [g : b]a . (2.18)

Due to the isotropic restriction the second Piola–Kirchhoff stresses result in

S = 2
∂Ψ

∂C
= 2 ∂IaΨ ∂CIa . (2.19)

For the Kirchhoff stresses this leads to

τ = F · S · F T = 2
∂Ψ

∂g
= 2 ∂IaΨ ∂gIa , (2.20)

and with the partial derivatives of the invariants one obtains

τ = 2
[ ∂Ψ

∂I1
b + 2

∂Ψ

∂I2
b · g · b + 3

∂Ψ

∂I3
b · g · b · g · b

]
. (2.21)
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2 Finite deformation hyperelasticity

Now the following relation can be seen: If the partial derivatives of the first invariant I1

with respect to g and b are taken

∂(g : b)

∂g
= b ,

∂(g : b)

∂b
= g , (2.22)

then it follows that (equivalent computations for the partial derivatives of the invariants

I2 and I3 can be made)

∂(g : b)

∂g︸ ︷︷ ︸
b

· g = b · ∂(g : b)

∂b︸ ︷︷ ︸
g

. (2.23)

As Ψ only depends on the invariants one obtains

∂Ψ

∂g
· g = b · ∂Ψ

∂b
, (2.24)

and due to the symmetry of g and b

g · ∂Ψ

∂g
=

∂Ψ

∂b
· b . (2.25)

Hence for the Kirchhoff stresses it follows

τ = 2
∂Ψ

∂g
= 2 g−1 · ∂Ψ

∂b
· b . (2.26)

This constitutive equation is an important relation in the theory of isotropic finite hyper-

elasticity.

2.3 Isotropic hyperelasticity in terms of principle
stretches

As already mentioned the free energy function of an isotropic material only depends on

the invariants of the right (or left) Cauchy–Green tensor. Accordingly, the free energy

function can be formulated as a function of the principal stretches (see Ogden [59]). Often

this kind of formulation is computationally more convenient. This also holds for the Ogden

materials which proved to be very suitable for the modeling of the mechanical behavior

of, e.g. rubberlike materials.

2.3.1 Constitutive equations in terms of the principal stre tches

If the free energy function Ψ is an isotropic tensor function which is invariant to super-

imposed invertible mappings, it is possible to consider Ψ as a function of eigenvalues (see

Ogden [59]). Therefore Ψ can be expressed via

Ψ = Ψ (C, G−1) = Ψ (λ1, λ2, λ3) . (2.27)
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2.3 Isotropic hyperelasticity in terms of principle stretches

For the stress free reference configuration it should hold that Ψ (1, 1, 1) = 0. The second

Piola–Kirchhoff stresses are calculated by

S = 2
∂Ψ (λa)

∂C
= 2

3∑

a=1

∂Ψ

∂λa

∂λa

∂C
. (2.28)

If Ψ is a function of the principal stretches, the derivative ∂Ψ/∂λa can be computed

directly. The partial derivative ∂λa/∂C appearing in the chain rule in equation (2.28)

can be determined with equation (2.13) so that

∂λa

∂C
=

∂λa

∂λ2
a

∂λ2
a

∂C
=

1

2 λa

N a ⊗ N a . (2.29)

By this one obtains for the second Piola–Kirchhoff stresses

S =
3∑

a=1

1

λa

∂Ψ

∂λa
N a ⊗ N a =

3∑

a=1

Sa N a ⊗ N a . (2.30)

The comparison with the spectral decomposition of the right Cauchy–Green tensor (see

equation (2.13)) shows that S and C possess the same eigenvectors which is a consequence

of the restriction to isotropic material behavior. Since the eigenvectors in the spatial

configuration are computed by pure rotation of the eigenvectors N a with na = R ·Na =

λ−1
a F · N a, for the Kirchhoff stress tensor it follows with τ = F · S · F T

τ =
3∑

a=1

λa
∂Ψ

∂λa

na ⊗ na =
3∑

a=1

τa na ⊗ na , (2.31)

which means that for the principal values τa = λ2
a Sa holds.

Here it is to be mentioned that a further approach for the determination of equation

(2.31) is also possible by the following consideration: Consider the left stretch tensor

v = b1/2 which describes the deformed state of the isotropic hyperelastic material. It

is known from the eigenvalue problem (see equation (2.10)) that λa describe the three

real eigenvalues (eigenstretches) of v. Since the eigendirections of v coincide with the

eigendirections of b they also coincide with the eigendirections of the Kirchhoff stress

tensor τ (see representation in equation (2.21)).

2.3.2 Ogden material model

This class of Ogden material models (see Ogden [59]) is a generalized free energy func-

tion which plays an important role in the theory of finite elasticity. Especially for the

description of rubber elasticity these Ogden–type functions are used most extensively due

to their good approximation of the experimental observations.
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2 Finite deformation hyperelasticity

In this model the postulated free energy is a function of the eigenstretches λa with

Ψ =

NT∑

r=1

µr

αr
[[λ

4/3
1 λ

−2/3
2 λ

−2/3
3 ]αr/2 + [λ

−2/3
1 λ

4/3
2 λ

−2/3
3 ]αr/2 + [λ

−2/3
1 λ

−2/3
2 λ

4/3
3 ]αr/2 − 3]

︸ ︷︷ ︸
Ψdev

+
κ0

4
[[λ1 λ2 λ3]

2 − 2 ln[λ1 λ2 λ3] − 1]
︸ ︷︷ ︸

Ψvol

(2.32)

= Ψdev + Ψ vol . (2.33)

The positive integer NT describes the number of terms in the isochoric part of Ψ . More-

over, µr are shear moduli and αr are dimensionless constants for r = 1, ..., NT. In the

volumetric part of Ψ the compression modulus is described by κ0.

For the later computations considering nonlinear viscoelasticity the free energy function

is described as a function of the eigenvalues ba = λ2
a of the left Cauchy-Green tensor (see

equation (2.14)). With an additive split of Ψ into parts which contain the isochoric and

volumetric strain measures separately one obtains

Ψ = Ψdev(b̄1, b̄2, b̄3) + Ψ vol(J) . (2.34)

The determinant of F is referred to as

J = λ1 λ2 λ3 . (2.35)

Consequently, the eigenvalues of the isochoric left Cauchy–Green tensor yield 1

b̄a = J−2/3 ba . (2.37)

Finally the free energy function can be expressed as

Ψ =

NT∑

r=1

µr

αr

[b̄
αr/2
1 + b̄

αr/2
2 + b̄

αr/2
3 − 3]

︸ ︷︷ ︸
Ψdev

+
κ0

4
[J2 − 2 ln J − 1]

︸ ︷︷ ︸
Ψvol

. (2.38)

1A volumetric/isochoric multiplicative decomposition of the deformation gradient F yields

F = F̄ · F vol , (2.36)

with F vol = J1/3 I and F̄ = J−1/3 F . Hence the isochoric left Cauchy–Green tensor yields

b̄ = F̄ · G−1 · F̄ T
= J−2/3 F · G−1 · F T

= J−2/3 b

= J−2/3
3∑

a=1

λ2
a na ⊗ na = J−2/3

3∑

a=1

ba na ⊗ na

=

3∑

a=1

[λ1λ2λ3]
−2/3λ2

a na ⊗ na

=

3∑

a=1

b̄a na ⊗ na .
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2.3 Isotropic hyperelasticity in terms of principle stretches

Here for the isochoric part of the free energy the notation Ψdev is applied, since for isotropy

the deviatoric Kirchhoff stresses are computed by this part. The deviatoric and volumetric

part of the principal Kirchhoff stresses take the form (see equation 2.31)

τa =
3∑

b=1

∂Ψdev

∂b̄b

∂b̄b

∂λa

λa

︸ ︷︷ ︸
[τa]dev

+
∂Ψ vol

∂J
J

︸ ︷︷ ︸
1
3
τ :g

(2.39)

with

∂Ψdev

∂b̄b

=

NT∑

r=1

µr

2
b̄

[[αr/2]−1]
b ,

∂Ψ vol

∂J
=

κ0

2

[
J − J−1

]
(2.40)

and

∂b̄a

∂λa
=

4

3
J−[2/3] λa , (2.41)

and for a 6= b

∂b̄b

∂λa
= −2

3
J−[2/3] λ2

b λ−1
a , (2.42)

which yields for a 6= b, a 6= c, b 6= c :

τa =

NT∑

r=1

µr

2

[
b̄[[αr/2]−1]

a

4

3
J−[2/3] λ2

a︸ ︷︷ ︸
b̄a

− b̄
[[αr/2]−1]
b

2

3
J−[2/3] λ2

b︸ ︷︷ ︸
b̄b

− b̄[[αr/2]−1]
c

2

3
J−[2/3] λ2

c︸ ︷︷ ︸
b̄c

]
+

κ0

2

[
J2 − 1

]

=

NT∑

r=1

µr

[2

3
b̄αr/2

a − 1

3
b̄

αr/2
b − 1

3
b̄αr/2

c

]

︸ ︷︷ ︸
[τa]dev

+
κ0

2

[
J2 − 1

]

︸ ︷︷ ︸
1
3
τ :g

.
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2 Finite deformation hyperelasticity
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3 Finite deformation viscoelasticity in
principal directions

In order to establish a simulation tool for the precise prediction and the appropriate

design of elastomer components, a suitable constitutive law – being able to simulate all

characteristic material behaviors like relaxation, creep, frequency–dependent stiffness and

damping properties – is necessary.

The stress-strain response of most elastomers can be described by two different character-

istics. First the Mullins effect, a stress softening occurring in the first load cycle(s) and

second a viscoelastic material behavior.

Detailed descriptions of the classical theory of rate dependent materials can be found for

instance in Findley [17], Eringen [16], Lemaitre and Chaboche [32], Haupt [21], Holzapfel

[23], Kaliske and Rothert [27] as well as Simo and Hughes [70].

Constitutive laws which describe the stress softening due to the Mullins effect have been

elaborated by, e.g. Govindjee and Simo [19], Böl [9] and Ogden and Roxburgh [60].

Considering pre–damaged filled elastomers, which are in a stable stationary state respect-

ing the Mullins effect, for this work a viscoelastic material model at large strains is chosen.

In the material theories of Simo [68], Holzapfel and Simo [24] and Simo and Hughes [70] the

evolution laws are expressed as phenomenological linear differential equations of overstress.

In 1998 Reese and Govindjee [65] proposed a continuum formulation which is in contrast

to many other theories not restricted to viscoelastic response for strain rates near the

thermodynamic equilibrium, see also Govindjee and Reese [18], Reese and Govindjee [64],

Lion [34], [35], Lundin and Klarbring [39], Haupt [21], Holzapfel [23] and also Huber and

Tsakmakis [25].

In this chapter the theory of the viscoelastic material model proposed by Reese and Govin-

djee [65] is reviewed and the numerical implementation is discussed. This compressible

viscoelasticity law is formulated for isotropy within the theory of finite deformations.

Considering multiple relaxation mechanisms a set of internal variables based on the mul-

tiplicative split of the deformation gradient (see also Lubliner [37]) into elastic and viscous

parts is introduced. Each relaxation mechanism can be represented by a viscous damper

and an elastic spring connected consecutively. The strains in the dampers and by this

the inelastic and accordingly viscous parts of the deformation gradient yield the internal

variables for which nonlinear rate dependent evolution equations are introduced. The

derivation of the model is made so that the second law of thermodynamics – given by

the Clausius–Duhem inequality – is satisfied for every admissible process. A flow rule for

the viscous strain rate, which is valid far from thermodynamic equilibrium, is assumed to

apply. Using logarithmic strain measures, the integration for the viscous evolution law is

made using an exponential time integration method (see also Weber and Anand [73]).
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3 Finite deformation viscoelasticity in principal directions

3.1 Kinematics of finite viscoelasticity

For the case of several relaxation mechanisms (k = 1, ..., N) the deformation gradient

F = F k
e · F k

v (3.1)

(Reese and Govindjee [65]) is split into elastic and non–reversible viscous parts by mul-

tiplicative decompositions. Each relaxation mechanism can be represented by a viscous

damper and an elastic spring connected consecutively. For the following theory this basic

assumption gives the kinematical foundation. As illustrated in figure 3.1 for each viscous

damper separately Bk
v is viewed as defining a local stress–free intermediate configuration

whereby F k
v is the associated internal variable defining its current state. The following

F

F 1
v

F k
v

F 1
e

F k
e

B0

Bt

B1
v

Bk
v

Figure 3.1: Multiplicative decomposition.

strain measures – being associated with the multiplicative decomposition – are intro-

duced. The elastic right Cauchy-Green tensor Ck
e in the intermediate configuration Bk

v

is the pullback of the spatial covariant metric g and accordingly the pushforward of the

right Cauchy–Green tensor C from B0 to Bk
v with

Ck
e = [F k

e ]
T · g · F k

e = [F k
v]

−T · C · [F k
v]

−1 . (3.2)

The spatial elastic left Cauchy-Green tensor bk
e is computed by pushforward operation of

the contravariant metric G−1
v from Bk

v to Bt or by pushforward operation of the inverse

viscous right Cauchy–Green tensor [Ck
v]

−1 from B0 to Bt with

bk
e = F k

e · G−1
v · [F k

e ]
T = F · [Ck

v]
−1 · F T . (3.3)
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3.2 Constitutive model

3.1.1 Time derivatives

The expression Dt{•} = ∂t{•}|X defines the material time derivative Dt of an arbitrary

quantity {•} at fixed material placement X. The material time derivative of the motion

map ϕ yields the spatial velocity v with

v = Dtϕ(X, t) . (3.4)

Therefore, the material gradient of v yields the material time derivative of the spatial

deformation gradient F with

DtF = ∂Xv , (3.5)

and the spatial gradient of v is denoted as the spatial velocity gradient l with

l = ∂xv = DtF · F−1. (3.6)

The material time derivative of spatial quantities is not objective in general. However,

the principle of frame indifference requires constitutive equations to be invariant under

superposition of spatial rigid body motions. This motivates the introduction of an objec-

tive time derivative – the Lie derivative – which is the material time derivative of a spatial

tensor field considering the deformed basis as being constant. Considering a spatial tensor

field f the Lie derivative Ltf is defined as follows

Lt = ϕ∗(Dt(ϕ
∗(f))) . (3.7)

Thereby, first the pull–back operation ϕ∗(f ) of f to the reference configuration is com-

puted. Then the result of the material time derivative Dt(ϕ
∗(f)) is pushed forward to

the spatial configuration.

3.2 Constitutive model

In this section the constitutive equations are reviewed for the general case of multiple

relaxation mechanisms (see Govindjee and Reese [65]).

3.2.1 Free energy function

It is assumed that the free energy for the nonlinear viscoelastic material model is a function

of C and Ck
e as follows

Ψ = Ψ (C , F k
v) = Ψ eq(C) +

N∑

k=1

Ψ k(Ck
e = [F k

v]
−T · C · [F k

v]
−1) . (3.8)

Considering a rheological model consisting of N Maxwell elements in parallel with an

auxiliary spring, the equilibrium part Ψ eq(C) of the free energy is computed by the strain

in the auxiliary spring whereas the k non–equilibrium parts of the free energy depend on

the strain in the spring of the corresponding Maxwell element k. Moreover, for Ψ eq and

Ψ k it should hold that if F and F e and F k
v are the identity tensors, the tensors S and

Seq and Sk vanish and also Ψ = 0 and Ψ eq = 0 and Ψ k = 0 hold, respectively.

19



3 Finite deformation viscoelasticity in principal directions

3.2.2 Notes on thermodynamics

The isothermal Clausius–Duhem inequality is given by

D =
1

2
S : DtC − DtΨ ≥ 0 , (3.9)

whereby D is the difference between the stress power P int = 1
2
S : DtC and the rate of

change in free energy DtΨ . Substituting the material time derivative of equation (3.8)

into the inequality equation (3.9) yields

D =
1

2
S : DtC − DtΨ

=
1

2
S : DtC − ∂Ψ

∂C
: DtC −

N∑

k=1

∂Ψ

∂F k
v

: DtF
k
v

=
[1

2
S − ∂Ψ eq

∂C
−

N∑

k=1

∂Ψ k

∂C

]
: DtC −

N∑

k=1

∂Ψ k

∂F k
v

: DtF
k
v ≥ 0 . (3.10)

A standard argument of Coleman and Noll then yields the state equation defining the

elastic law as follows

1

2
S − ∂Ψ eq

∂C
−

N∑

k=1

∂Ψ k

∂C
= 0 . (3.11)

Thus the second Piola–Kirchhoff stresses result in

S = 2
∂Ψ

∂C
= Seq +

N∑

k=1

Sk (3.12)

with the equilibrium part and the non–equilibrium parts

Seq = 2
∂Ψ eq

∂C
, Sk = 2

∂Ψ k

∂C
. (3.13)

By transforming the non–equilibrium parts Sk into functions depending on the variables

F k
e one obtains

Sk = 2
∂Ψ k

∂C

= 2
∂Ψ k

∂Ck
e

:
∂Ck

e

∂C

= 2
∂Ψ k

∂Ck
e

:
1

2
([F k

v]
−T ⊗ [F k

v]
−T + [F k

v]
−T ⊗ [F k

v]
−T )

= 2 [F k
v]

−1 · ∂Ψ k

∂Ck
e

· [F k
v]

−T , (3.14)

with
[
[F k

v]
−T ⊗ [F k

v]
−1 + [F k

v]
−T ⊗ [F k

v]
−1

]IJKL
=

[
[F k

v]
−T

]IK [
[F k

v]
−1

]JL

+
[
[F k

v]
−T

]IL [
[F k

v]
−1

]JK
. (3.15)
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3.2 Constitutive model

Therefore, the second Piola–Kirchhoff stresses yield

S = 2
∂Ψ

∂C

= 2
∂Ψ eq

∂C
+

N∑

k=1

2 [F k
v]

−1 · ∂Ψ k

∂Ck
e

· [F k
v]

−T . (3.16)

Applying the standard arguments to equation (3.10) leaves also the reduced dissipation

inequality to be satisfied for every individual mechanism so that

[Dred]k = − ∂Ψ k

∂F k
v

: DtF
k
v ≥ 0 . (3.17)

In order to describe the latter equations in terms of expressions defined on the intermediate

configuration the transformation

∂Ψ k

∂F k
v

=
∂Ψ k

∂Ck
e

:
∂Ck

e

∂F k
v

= − ∂Ψ k

∂Ck
e

: [Ck
e ⊗ [F k

v]
−T + [F k

v]
−T ⊗Ck

e ]

= −2 Ck
e ·

∂Ψ k

∂Ck
e

· [F k
v]

−T (3.18)

is considered. Noting that

S̄
k

= 2
∂Ψ k

∂Ck
e

(3.19)

are second Piola–Kirchhoff stress tensors relative to the intermediate configuration, the

modified form of the dissipation inequality becomes

[Dred]k = [Ck
e · S̄

k · [F k
v]

−T] : DtF
k
v

= [Ck
e · S̄

k
] : [DtF

k
v · [F k

v]
−1]

= [Ck
e · S̄

k
] : Lk

v ≥ 0 . (3.20)

Here the viscous velocity gradient in the intermediate configuration is defined as

Lk
v = DtF

k
v · [F k

v]
−1 . (3.21)

Since S̄
k

and Ck
e commute for isotropy the expression M k = Ck

e · S̄
k

must be symmetric

and represents a stress of Mandel type which is work conjugate to Lk
v. Since S̄

k
is

symmetric, [Dred]k may also be written as

[Dred
v ]k = [Ck

e · S̄
k
] : Lk

v

= S̄
k

: [Ck
e · Lk

v]
sym ≥ 0 . (3.22)

The viscoelastic model shall be described in the current configuration. Pushforward op-

eration of the reduced inequality (3.20) renders

[Dred
t ]k = F e⋆

(
[Ck

e · S̄
k
] : Lk

v

)

=
[
[F k

e ]
−T · [[F k

e ]
T · g · F k

e · S̄
k
] · [F k

e ]
T
]

: [F k
e · Lk

v · [F k
e ]

−1] , (3.23)
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3 Finite deformation viscoelasticity in principal directions

with the corresponding viscous velocity gradient

lkv = F k
e · Lk

v · [F k
e ]

−1 . (3.24)

In terms of the spatial Kirchhoff stresses τ k and alternatively the spatial Mandel stresses

mk = g · τ k one obtains,

[Dred
t ]k = [g · F k

e · S̄
k · [F k

e ]
T] : lkv = 2

[
g · F k

e ·
∂Ψ k

∂Ck
e

· [F k
e ]

T
]

: lkv

= 2
[
g · ∂Ψ k

∂g

]
: lkv

= [g · τ k] : lkv

= mk : lkv . (3.25)

Using the elastic left Cauchy–Green tensor bk
e = F k

e · G−1
v · [F k

e ]
T it follows that

[Dred
t ]k = mk : lkv

= [mk · [bk
e ]

−1] : [lkv · bk
e ]

= [mk · [bk
e ]

−1] : [lkv · bk
e ]

sym , (3.26)

since mk and bk
e commute for isotropy.

Remark 3.2.1 Since isotropy is assumed it follows that

mk = g · ∂Ψ k

∂g
=

∂Ψ k

∂bk
e

· bk
e . (3.27)

(see equation (2.25)).

Now it shall be shown that the following relation holds

[lkv · bk
e ]

sym = −1

2
Ltb

k
e , (3.28)

whereby Ltb
k
e is the Lie–derivative of the elastic left Cauchy–Green tensor along the

velocity field of the material motion.

Proof 3.2.1 Pullback operation of bk
e to the reference configuration is computed which

yields [Ck
v]

−1, whereon the material time derivative is taken and the result pushed forward

to the spatial configuration. This is the definition of the Lie–derivative of the tensor bk
e

(see subsection 3.1.1)

Ltb
k
e = F · Dt(F

−1 · F k
e · G−1

v · [F k
e ]

T · F−T) · F T

= F · Dt([F
k
v]

−1 · G−1
v · [F k

v]
−T) · F T . (3.29)

Taking into account equation (3.21), the computation of the material time derivatives

[F k
v]

−1 and [F k
v]

−T is done using

Dt(F
k
v · [F k

v]
−1) = 0

⇒ DtF
k
v · [F k

v]
−1 = −F k

v · Dt[F
k
v]

−1 = Lk
v

⇒ Dt[F
k
v]

−1 = − [F k
v]

−1 · Lk
v . (3.30)
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3.2 Constitutive model

With definition (3.24) it follows that

Dt[F
k
v]

−1 = − [F k
v]

−1 · [F k
e ]

−1 · lkv · F k
e . (3.31)

The substitution of equation (3.31) into equation (3.29) leads to

Ltb
k
e = −F · [F k

v]
−1 · [F k

e ]
−1 · lkv · F k

e · G−1
v · [F k

v]
−T · F T

−F · [F k
v]

−1 · G−1
v · [F k

e ]
T · [lkv]T · [F k

e ]
−T · [F k

v]
−T · F T

= − lkv · bk
e − bk

e · [lkv]T

= − 2[lkv · bk
e ]

sym , (3.32)

q.e.d..

Using equation (3.28) the expression (3.29) for the reduced dissipation takes the form

[Dred
t ]k = [mk · [bk

e ]
−1] : [lkv · bk

e ]
sym

= −1

2
[mk · [bk

e ]
−1] : Ltb

k
e

= −1

2
mk : [Ltb

k
e · [bk

e ]
−1]

= −[g · τ k] :
1

2
[Ltb

k
e · [bk

e ]
−1] ≥ 0 . (3.33)

3.2.3 Evolution equations for multiplicative viscoelasti city

In order to specify the proportionality between the viscous strain rates and the correspond-

ing stresses, evolution equations are required (see Reese and Govindjee [65]). Thereby the

criterion of thermodynamic admissibility has to be fulfilled which means that inequality

(3.17) must be fulfilled.

Intermediate configuration

The desired evolution equation must guarantee that the dissipation inequality for the

intermediate configuration (see equation (3.20))

[Dred]k = M k : Lk
v ≥ 0 (3.34)

is satisfied for all possible Lk
v. Such a choice is afforded if the evolution equation for Lk

v

renders equation (3.34) a positive quadratic form which is done as follows

Lk
v

.
= [Wk]−1 : M k , (3.35)

whereby W
k is a 4th order viscosity tensor that is chosen to be symmetric and positive

definite.
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3 Finite deformation viscoelasticity in principal directions

Spatial configuration

Since isotropy is assumed a spatial description for the states of stresses and strains is

preferred. The dissipation inequality in Bt (see equation (3.33)) takes a positive quadratic

form by choosing the following evolution equation

− 1

2
Ltb

k
e · [bk

e ]
−1 .

= [wk]−1 : [g · τ k] . (3.36)

Equivalent to equation (3.35) the 4th order viscosity tensor wk is chosen to be symmetric

and positive definite with

[wk]−1 =
1

2 ηk
D

i
dev

i︷ ︸︸ ︷[
ii −

1

3
i ⊗ i

]
+

1

3 ηk
v

i
vol

i︷ ︸︸ ︷
1

3
i ⊗ i , (3.37)

ηk
D and ηk

v are viscosity parameters which are chosen to be constant in this work. The 4th

order symmetric identity tensor ii = i
dev
i + i

vol
i is computed by

2 ii = i⊗ i + i⊗ i , (3.38)

whereby i is the 2nd order identity tensor.

3.3 Algorithmic formulation

With regard to the implementation in a finite element code the algorithmic equations are

described in this section. The implicit time integration on the basis of an operator split

method and the later choice of Ogden type free energy functions for isotropy lead to a

description of the stresses and strain measures in principal directions. In consequence of

equation (3.12) the Kirchhoff stresses allow representation as

τ = F · S · F T = τ eq +

N∑

k=1

τ k . (3.39)

Since isotropy is assumed, – as shown in chapter 2.2 and mentioned in equation (3.27) –

the non–equilibrium terms can be expressed as

τ k = 2 F k
e ·

∂Ψ k

∂Ck
e

· [F k
e ]

T = 2 g−1 · ∂Ψ k

∂bk
e

· bk
e . (3.40)

As mentioned in section 2.3, for isotropy the free energy function can be formulated as a

function of the principle stretches of the left Cauchy–Green tensor

b =

3∑

a=1

ba na ⊗ na =

3∑

a=1

λ2
a na ⊗ na (3.41)

and of the elastic left Cauchy–Green tensor

bk
e =

3∑

a=1

bk
ae

na ⊗ na =

3∑

a=1

[λk
ae

]2 na ⊗ na (3.42)
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3.3 Algorithmic formulation

which leads to

τ eq =

3∑

a=1

τ eq
a na ⊗ na =

3∑

a=1

λa
∂Ψ eq

∂λa
na ⊗ na (3.43)

and

τ k =

3∑

a=1

τk
a na ⊗ na =

3∑

a=1

λk
ae

∂Ψ k

∂λk
ae

na ⊗ na . (3.44)

Note that due to isotropy τ eq is coaxial to τ k, b and bk
e . The determinant of F k

e is referred

to as

Jk
e = λk

1e
λk

2e
λk

3e
. (3.45)

Consequently, the eigenvalues of the isochoric elastic left Cauchy–Green tensor are given

by

b̄k
ae

= [Jk
e ]−2/3 bae

= [Jk
e ]−2/3 [λk

ae
]2 (3.46)

with

b̄
k
e = [Jk

e ]−2/3 bk
e , (3.47)

so that the deviatoric and volumetric part of the principal Kirchhoff stresses take the form

τk
a =

3∑

b=1

∂[Ψ k]dev

∂b̄k
be

∂b̄k
be

∂λk
ae

λk
ae

︸ ︷︷ ︸
[τk

a ]dev

+
∂[Ψ k]vol

∂Jk
e

Jk
e

︸ ︷︷ ︸
1

3
τ k : g

. (3.48)

3.3.1 Exponential time integration

In this subsection the local computation of the non–equilibrium stresses by integration of

the evolution equation is shown. Thereby, the finite time interval with t ∈ [tn−1, tn] and

∆t = tn − tn−1 ≥ 0 is considered and it is supposed that the actual deformation gradient

F at time t = tn is given.

Predictor–corrector–split of bk
e

Taking into account that ϕ∗ bk
e = F−1 · bk

e · F−T = [F k
v]

−1 · [Gk
v]

−1 · [F k
v]

−T = [Ck
v]

−1

holds, the material time derivative of the internal variable 1 is considered

Dtb
k
e = Ltb

k
e + l · bk

e + bk
e · lT

= F · Dt([C
k
v]

−1) · F T + DtF · [Ck
v]

−1 · F T + F · [Ck
v]

−1 · DtF
T , (3.50)

1

Remark 3.3.1 : With DtF
−1 = −F−1 · l it follows that

Ltb
k
e = F · Dt(F

−1 · bk
e · F−T) · F T

= F · Dt(F
−1) · bk

e + Dtb
k
e + bk

e · Dt(F
−T) · F T

= Dtb
k
e − l · bk

e − bk
e · lT , (3.49)
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3 Finite deformation viscoelasticity in principal directions

which motivates the use of a predictor–corrector integration method (see also Weber and

Anand [73]). The elastic predictor

Dtb
k
e = DtF · [Ck

v]
−1 · F T + F · [Ck

v]
−1 · DtF

T (3.51)

has as solution the trial values,

[bk
e ]tr = [F ]t=tn · [[Ck

v]
−1]t=tn−1

· [F T]t=tn (3.52)

where n denotes the actual time step. The elastic predictor physically means an elastic

step at time tn in which the viscous flow is frozen. Thus the inverse viscous right Cauchy–

Green tensor [Ck
v]

−1 is a field in which the load history – as the irreversible part of

the viscoelastic deformation – is stored. Now a viscous corrector step follows in which

DtF = 0 holds with

Dtb
k
e = F · Dt([C

k
v]

−1) · F T = Ltb
k
e , (3.53)

and together with the viscous flow function (see equation (3.36)) one obtains

Dtb
k
e = − [2 [wk]−1 : [g · τ k]] · bk

e , (3.54)

which can be solved by means of an implicit Euler backward method with exponential

shift to result in

[bk
e ]t=tn ≈ exp

(
− 2 [tn − tn−1]

[
[wk]−1 : [g · τ k]

]
t=tn

)
· [bk

e ]tr . (3.55)

Since for isotropy the principal axes are the same for τ k, bk
e , and [bk

e ]tr with

[bk
e ]tr =

3∑

a=1

[bk
ae

]tr na ⊗ na =
3∑

a=1

[λk
ae

]2tr na ⊗ na , (3.56)

this leads to the relation

[λk
ae

]2 = exp

(
−∆t

[
1

ηk
D

[τk
a ]dev +

2

9 ηk
v

τ k : g

])
[λk

ae
]2tr . (3.57)

In terms of logarithmic stretches εk
ae

= ln λk
ae

the evolution equations read

εk
ae

= −∆t

[
1

2 ηk
D

[τk
a ]dev +

1

9 ηk
v

τ k : g

]
+ [εk

ae
]tr . (3.58)

These nonlinear equations are solved by a local Newton scheme, see algorithm 3.3.1 for

further details.
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3.3 Algorithmic formulation

Algorithm 3.3.1 Local Newton–iteration.

(1) Nonlin. eq. rka = εk
ae

+ ∆t
[

1
2ηk

D

[τk
a ]dev + 1

9ηk
v

τ k : g
]
−

[
εk
ae

]
tr

= 0

(2) Linearization rka ≈ rka|[εk
ae ]l︸ ︷︷ ︸

[̄rka]l

+
3∑

b=1

∂rka
∂εk

be

∣∣∣∣∣
[εk

ae ]l︸ ︷︷ ︸
[Kk

ab]l

[
∆εk

be

]
l

= 0

(3) Solution
3∑

b=1

[
Kk

ab

]
l

[
∆εk

be

]
l

= −
[
r̄ka

]
l

(4) Update
[
εk
ae

]
l+1

=
[
εk
ae

]
l

+
[
∆εk

ae

]
l
, l = l + 1

repeat (1–4) until |rka| < tol

Since ηD and ηv are constants, the matrix Kk
ab in the local Newton–iteration is calculated

by

Kk
ab =

∂rk
a

∂εk
be

= δab + ∆t
1

2 ηk
D

∂[τk
a ]dev

∂εk
be

+ ∆t
1

9 ηk
v

∂τ k : g

∂εk
be

. (3.59)

3.3.2 Free energy functions

The equilibrium term and the non–equilibrium terms are chosen as Ogden free energy

functions described in subsection 2.3.2. For the equilibrium term it is defined as

Ψ eq =

NT∑

r=1

[µeq]r
[αeq]r

[
b̄

[αeq]r/2
1 + b̄

[αeq]r/2
2 + b̄

[αeq]r/2
3 − 3

]

︸ ︷︷ ︸
[Ψ eq]dev

+
κeq

4

[
J2 − 2 ln J − 1

]
︸ ︷︷ ︸

[Ψ eq]vol

, (3.60)

with J = λ1 λ2 λ3 and b̄a = J−2/3 ba. Therefore, for a 6= b, a 6= c, b 6= c the principal

Kirchhoff stresses are computed by (see subsection 2.3.2)

τ eq
a =

NT∑

r=1

[µeq]r

[2

3
b̄[αeq]r/2

a − 1

3
b̄

[αeq]r/2
b − 1

3
b̄[αeq]r/2

c

]

︸ ︷︷ ︸
[τ eq

a ]dev

+
κeq

2

[
J2 − 1

]

︸ ︷︷ ︸
1

3
τ eq : g

. (3.61)
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3 Finite deformation viscoelasticity in principal directions

For the non–equilibrium terms the free energy function is equivalently chosen as

Ψ k =

Nk
T∑

r=1

[µk
neq]r

[αk
neq]r

[
[b̄k

1e
][α

k
neq]r/2 + [b̄k

2e
][α

k
neq]r/2 + [b̄k

3e
][α

k
neq]r/2 − 3

]

︸ ︷︷ ︸
[Ψ k]dev

+
κk

neq

4

[
[Jk

e ]2 − 2 ln Jk
e − 1

]
︸ ︷︷ ︸

[Ψ k]vol

, (3.62)

which leads to a calculation of the principal Kirchhoff stresses for a 6= b, a 6= c, b 6= c by

τk
a =

Nk
T∑

r=1

[µk
neq]r

[2

3
[b̄k

ae
][α

k
neq]r/2 − 1

3
[b̄k

be
][α

k
neq]r/2 − 1

3
[b̄k

ce ]
[αk

neq]r/2
]

︸ ︷︷ ︸
[τk

a ]dev

+
κk

neq

2

[
[Jk

e ]2 − 1
]

︸ ︷︷ ︸
1

3
τ k : g

.

(3.63)

Note that NT and Nk
T are positive integers, [µeq]r and [µk

neq]r are constant shear moduli,

and [αeq]r and [αk
neq]r are dimensionless constants.

With the material parameters τ̂k as relaxation times, the deviatoric and volumetric vis-

cosities ηk
D and ηk

v – introduced in equation 3.37 – are calculated by

ηk
D = τ̂k

Nk
T∑

r=1

[µk
neq]r [αk

neq]r (3.64)

and

ηk
v = τ̂k κk

neq . (3.65)

For the calculation of the matrix Kk
ab needed in the local Newton–iteration it remains to

determine the derivatives (∂[τk
a ]dev)/(∂εk

be
) and (∂τ k : g)/(∂εk

be
) for the used Ogden type

free energy function. Taking into account that

∂b̄k
ae

∂εk
ae

=
∂b̄k

ae

∂λk
ae

λk
ae

=
4

3
b̄k

ae
, (3.66)

∂b̄k
ae

∂εk
be

=
∂b̄k

ae

∂λk
be

λk
be

= −2

3
b̄k

ae
, (a 6= b) , (3.67)

∂Jk
e

∂εk
ae

= Jk
e , (3.68)

for the applied Ogden material law these derivatives yield (a 6= b, a 6= c, b 6= c)

∂[τk
a ]dev

∂εk
ae

=

Nk
T∑

r=1

[µk
neq]r [αk

neq]r

[
4

9
[b̄k

ae
][α

k
neq]r/2 +

1

9
[b̄k

be
][α

k
neq]r/2 +

1

9
[b̄k

ce ]
[αk

neq]r/2

]
, (3.69)
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3.3 Algorithmic formulation

∂[τk
a ]dev

∂εk
be

=

Nk
T∑

r=1

[µk
neq]r [αk

neq]r

[
− 2

9
[b̄k

ae
][α

k
neq]r/2 − 2

9
[b̄k

be
][α

k
neq]r/2 +

1

9
[b̄k

ce ]
[αk

neq]r/2

]
, (3.70)

∂(τ k : g)

∂εk
ae

= 3 κk
neq [Jk

e ]2 . (3.71)

3.3.3 Tangent operator

The application of a nonlinear material law in the context of a Finite Element formulation

requires the derivation of a material tangent operator used in a global Newton–Raphson

iteration algorithm (see, e.g. Ogden [59], Hughes [26], and Zienkewicz and Taylor [76]).

In the spatial configuration the total tangent operator conjugate to the Kirchhoff stresses

is defined by

c = c
eq +

N∑

k=1

c
k . (3.72)

In the following this operator is computed for the isotropic tensor functions Ψ eq and Ψ k

presented in equations (3.60) and (3.62), respectively.

Equilibrium tangent operator

For the material formulation the equilibrium term yields (see Ogden [59] or Holzapfel [23])

C
eq = 2

∂Seq

∂C
= 4

∂2Ψ eq

∂C ⊗ ∂C
(3.73)

=

3∑

a,b=1

1

λb

∂Seq
a

∂λb
N a ⊗ N a ⊗ Nb ⊗ N b

+
3∑

a,b=1
a 6=b

Seq
b − Seq

a

λ2
b − λ2

a

N a ⊗ Nb ⊗ [N a ⊗ Nb + Nb ⊗ N a] , (3.74)

whereby Seq
a are the principal stresses of the second Piola–Kirchhoff stress tensor Seq with

Seq =

3∑

a=1

1

λa

∂Ψ eq

∂λa
N a ⊗ N a =

3∑

a=1

Seq
a N a ⊗ N a , (3.75)

and N a is the set of orthogonal eigenvectors of the right Cauchy–Green tensor (see equa-

tion (2.30)). By isotropy it follows that if two or all three eigenvalues λ2
a of C (and thus

also of b) are equal, the corresponding principal stresses Seq
a are equal, too. For these

cases the application of l’Hôpital’s rule on the difference [Seq
b − Seq

a ]/[λ2
b − λ2

a] in equation
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(3.74) yields 2

lim
λb→λa

Seq
b − Seq

a

λ2
b − λ2

a

=
∂Seq

b

∂λ2
b

− ∂Seq
a

∂λ2
b

. (3.77)

Thereby, also for the cases λ1 6= λ2 = λ3 and λ1 = λ2 = λ3 the tangent operator is

defined properly. Pushforward operation renders the spatial equilibrium tangent operator

ceq with

c
eq = ϕ∗C

eq

=

3∑

a,b=1

λ2
a λb

∂Seq
a

∂λb
na ⊗ na ⊗ nb ⊗ nb

+

3∑

a,b=1
a 6=b

τ eq
b λ2

a − τ eq
a λ2

b

λ2
b − λ2

a

na ⊗ nb ⊗ [na ⊗ nb + nb ⊗ na] . (3.78)

The principal Kirchhoff stresses τa is described in equation (3.43) and na is the correspond-

ing set of normed eigenvectors. Also here a consideration of the limit of the difference

[τbλ
2
a − τaλ

2
b]/[λ2

b − λ2
a] for λa = λb for λa = λb has to be considered. The application of

l’Hôpital’s rule yields

lim
λb→λa

τ eq
b λ2

a − τ eq
a λ2

b

λ2
b − λ2

a

=
1

2
λa

[∂τ eq
b

∂λb

− ∂τ eq
a

∂λb

]
− τ eq

a . (3.79)

Non–equilibrium tangent operator

For the calculation of the non–equilibrium part of the tangent operator (see Reese and

Govindjee [65])

c
k = ϕ∗C

k = ϕ∗

(
2
∂Sk

∂C

)
= ϕ∗

(
4

∂2Ψ k

∂C ⊗ ∂C

)
, (3.80)

the stress tensor

S̃
k

= [F k
e ]

−1
tr · τ k · [F k

e ]
−T
tr =

3∑

a=1

τk
a

[λk
ae

]2tr︸ ︷︷ ︸
S̃k

a

Ñ
k

a ⊗ Ñ
k

a (3.81)

is introduced. Also the evaluation of the modulus

[Calg
ac ]k =

3∑

b=1

∂τk
a

∂εk
be

[Kk
bc]

−1 =
3∑

b=1

∂([τk
a ]dev + 1

3
τ k : g)

∂εk
be

[Kk
bc]

−1 (3.82)

2The application of l’Hôpital’s rule yields

lim
λb→λa

Seq
b − Seq

a

λ2
b − λ2

a

= lim
λb→λa

∂
∂λb

(Seq
b − Seq

a )
∂

∂λb

(λ2
b − λ2

a)

=
[∂Seq

b

∂λb
− ∂Seq

a

∂λb

] 1

2 λb
=

[∂Seq
b

∂λb
− ∂Seq

a

∂λb

] ∂λb

∂λ2
b

=
∂Seq

b

∂λ2
b

− ∂Seq
a

∂λ2
b

. (3.76)

30



3.3 Algorithmic formulation

is required which is computed by taking into account equations (3.59) and (3.69)–(3.71).

Pushforward transformation of

C̃
k

=

3∑

a=1

3∑

b=1

[
1

[λk
ae

]2tr[λ
k
be

]2tr
[[Calg

ab ]k − τk
a 2δab] Ñ

k

a ⊗ Ñ
k

a ⊗ Ñ
k

b ⊗ Ñ
k

b

]

+
1

2

3∑

a=1

3∑

b=1

2
S̃k

b − S̃k
a

[λk
be

]2tr − [λk
ae

]2tr
Ñ

k

a ⊗ Ñ
k

b ⊗ [Ñ
k

a ⊗ Ñ
k

b + Ñ
k

b ⊗ Ñ
k

a]

=

3∑

a=1

3∑

b=1

3∑

c=1

3∑

d=1

L̃k
abcd Ñ

k

a ⊗ Ñ
k

b ⊗ Ñ
k

c ⊗ Ñ
k

d , (3.83)

with respect to [F k
e ]tr renders the non–equilibrium part of the tangent operator

c
k =

3∑

a=1

3∑

b=1

3∑

c=1

3∑

d=1

L̃k
abcd [λk

ae
]tr[λ

k
be

]tr[λ
k
ce ]tr[λ

k
de

]tr︸ ︷︷ ︸
ck
abcd

na ⊗ nb ⊗ nc ⊗ nd . (3.84)

The limit of the divided difference in equation 3.83 is

lim
λb→λa

S̃k
b − S̃k

a

[λk
be

]2tr − [λk
ae

]2tr
=

∂S̃k
b

∂[λk
be

]2tr
− ∂S̃k

a

∂[λk
be

]2tr
. (3.85)
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4 Basic methods for parameter
identification

For the simulation of the deformation behavior of materials and structures in engineering

applications, reliable material models and the corresponding material parameters have to

be determined. The different steps within the strategy to develop simulation techniques

are (see Mahnken [43]): First, a model concept is formed which is based on observa-

tions from experiments made in correspondence to the respective engineering application.

Hereby the basic phenomena are characterized and the observation scale for the mate-

rial model is determined. Then the constitutive model is formulated. The parameter

identification based on the comparison of simulated and experimentally measured data

follows. With a verification the quality of the model and accordingly the ability to simu-

late the experimental data from the laboratory tests used for the parameter identification

is analyzed. In order to check if the material model and the identified parameters are

able to simulate also experimental data from other tests made under different conditions,

a validation is made finally. Thus, by validation the simulated data is compared with

experimental which has not been used for the parameter identification.

The basic methods within a parameter identification process are described in this chapter.

The inverse problem is formulated in section 4.1. In section 4.2 two methods for optical

measurements are introduced. The interpolation of the measured displacement fields is

described in subsection 4.3. In section 4.4 the methods, which are used for the numerical

solution of the inverse problem in this work, are presented. In the end in section 4.5

stability problems – usually occurring during the identification process – are investigated.

4.1 The inverse problem

The constitutive equations for the viscoelastic material law – as presented in chapter 3

– deliver the functional relationship between the stresses and the strains. The solution

of this boundary value problem (BVP) is termed the direct problem. Considering the

viscoelastic material law as a model function g(κ, f , u) which defines the output variable

u for given input variables f and material parameters κ, the direct problem yields (see

e.g. Mahnken [43]):

find u∗, such that g(κ, f , u) = 0 for given f and κ . (4.1)

For the parameter identification of the model function the corresponding inverse problem

is defined as (see e.g. Banks and Kunisch [2], Mahnken [43] and Bui [13])

find κ∗, such that g(κ, f , u) = 0 for given f and u . (4.2)
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4 Basic methods for parameter identification

The aim of the parameter identification and accordingly the solution of the inverse problem

for the viscoelastic material law is to optimize the material parameters so that the material

model delivers simulation data which optimally agree with the experimental data. In this

work the simulation data and experimental data which are compared are displacement

fields. By variation of the material parameters the displacement fields are varied, whereby

for the simulation the geometry of the specimen and the boundary conditions including

the load forces are chosen in analogy to the experiment. For the identification process the

experimentally measured displacement fields have to be made comparable to the FEM

results. Therefore, the measured displacements of the specimen are interpolated on chosen

identification nodes of the FE model (see section 4.3).

4.2 Non–contacting optical strain measurement
systems

The systems applied for the displacement measurements in this work are the image cor-

relation photogrammetry and the video extensometry. Both are non–contacting optical

measurement methods which therefore have no influence on the deformation behavior of

the specimen and consequently are appropriate for the displacement measurements of soft

polymers. Another advantage is the high accuracy of these systems.

4.2.1 Image correlation photogrammetry

The principle of image correlation photogrammetry bases on the comparison of digitized

images, taken in the reference configuration and the deformed configurations of a specimen

in a test. For the application first a black and white stochastic pattern is applied onto the

specimen’s surface. Using (one or) two CCD cameras (see figure 4.1) the system tracks this

pattern with sub-pixel accuracy during the tests. Therefore synchronized stereo images of

the pattern are recorded at different load stages. After acquisition the images are digitized

and stored for analyses.

The three–dimensional displacement fields are evaluated by using a photogrammetric

evaluation procedure (ARAMIS 1). Thereby, the images are characterized by the patterns

of different levels of light intensity. The processed image for the initial step defines a set

of so–called macroimage facets which are tracked in the following images with sub-pixel

accuracy. The evaluation procedure calculates the two– or three dimensional coordinates

of the surface of the specimen, which are related to the facets at each load step.

For details to this measurement method see, e.g. Winter [74].

4.2.2 Video extensometry

The method of video extensometry measures displacements by tracking contrasting gauge

marks placed on the specimen. The mono and synchronized stereo images taken by one or

two CCD cameras are analyzed using image processing algorithms that track the center

of the marks.

1Version 5.4 (Gesellschaft für optische Messtechnik mbH)
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4.3 Interpolation of experimental data

Figure 4.1: CCD cameras for image correlation photogrammetry in a tensile test.

4.3 Interpolation of experimental data

As mentioned above the simulated displacements must be comparable to the experimen-

tally determined displacements which means that the coordinates of the identification

nodes for the reference configuration have to coincide with the respective coordinates of

the measurement points which is not the case in general (see e.g. Banks and Kunisch [2]).

Therefore, with an interpolation rule which satisfies the geometry of the respective speci-

men, the experimentally measured displacements have to be mapped onto the coordinates

of the identification nodes. In this section the basic techniques for the interpolation of

experimental data for parameter identification are described.

Remark 4.3.1 Note that the interpolation routines must be conducted with most possible

precision. Due to the general ill–posedness of the inverse problem (see section 4.5) even

small inaccuracies within the interpolation procedure will have a strong influence on the

solution and can easily lead to divergence within the parameter identification iteration.

On the one hand the measurement data has to be chosen carefully. I.e. in some cases

some of the measurement points are scattered due to uncertainties at the boundaries of the

specimen. Only without taking into account these measurement points, the later identifi-

cation procedure can deliver a reliable parameter set. In addition, the interpolation of the

measured displacements on the coordinates of the identification nodes has to be admissible.

Therefore, the measurement points have to be chosen in an appropriate neighborhood to

the respective identification node. Generally, extrapolations are not admissible.

4.3.1 One–dimensional interpolation

For the example of a cylinder with the radius d – which is straight in the reference con-

figuration – the one–dimensional interpolation of two–dimensional and three–dimensional
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4 Basic methods for parameter identification

displacement data is described. The measurement points and identification nodes lie on

a straight line along the exterior of the cylinder. The piecewise linear and quadratic

interpolation of the experimentally measured displacements on the identification nodes

are considered. For the linear interpolation the two nearest, for the quadratic interpo-

lation the three nearest measurement points are used. Figure 4.2 shows an example for

the linear and quadratic interpolation of two–dimensional measurement data, whereas in

figure 4.3 the linear and quadratic interpolation of three–dimensional measurement data

is presented.

Linear one–dimensional interpolation

Let (x, y = d) be the coordinates of an identification node in the reference configuration

and let (x1, y1 = d) and (x2, y2 = d) be the coordinates of the two nearest measurement

points in the reference configuration. Moreover, D
exp
1 and D

exp
2 are the displacement

vectors associated to the measurement points. The displacement vector D
exp
proj(x), being

associated to the identification node, is calculated by linear interpolation using

D
exp
proj(x) =

x2 − x

x2 − x1
D

exp
1 +

x − x1

x2 − x1
D

exp
2 . (4.3)

Quadratic one–dimensional interpolation

Let (x, y = d) be the coordinates of an identification node in the reference configuration

and let (x1, y1 = d), (x2, y2 = d), and (x3, y3 = d) be the coordinates of the three

nearest measurement points in the reference configuration. Moreover, D
exp
1 , D

exp
2 , and

D
exp
3 are the displacement vectors associated to the measurement points. Therefore, the

interpolated displacement vector D
exp
proj(x), which is associated to the identification node,

yields

D
exp
proj(x) =

[x − x2] [x − x3]

[x1 − x2] [x1 − x3]
D

exp
1 +

[x − x1] [x − x3]

[x2 − x1] [x2 − x3]
D

exp
2

+
[x − x1] [x − x2]

[x3 − x1] [x3 − x2]
D

exp
3 . (4.4)
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Figure 4.2: Example of a cylinder with two–dimensional measured displacements. Top: specimen in
the reference configuration, specimen in the deformed configuration, and discretization of
an associated FE model. Bottom: Interpolation of the displacements of the measurement
points on the coordinates of the identification nodes.
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Figure 4.3: Example of a cylinder with three–dimensional measured displacements. Top: specimen in
the reference configuration, specimen in the deformed configuration, and discretization of
an associated FE model. Bottom: Interpolation of the displacements of the measurement
points on the coordinates of the identification nodes.
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4.3 Interpolation of experimental data

4.3.2 Two–dimensional interpolation

In this subsection the two–dimensional interpolation of measurement data is described.

Considering the reference configuration, the measurement points and identification nodes

lie on a plane. The examples in fig 4.4 and 4.5 show the interpolations of measured

two–dimensional and three–dimensional displacement fields, respectively.

Within the interpolation algorithm the measured displacements are interpolated linearly

on the identification nodes by triangulation (see, e.g. Scheday [66]). Let (x, y) be the

coordinates of an identification node in the reference configuration and (x1, y1), (x2, y2),

and (x3, y3) the coordinates of the three nearest measurement points – which do not lie

on a straight line – in the reference configuration. Let also D
exp
1 , D

exp
2 , and D

exp
3 be the

displacement vectors associated to the measurement points. Therefore, the interpolated

displacement vector D
exp
proj(u, v), which is associated to the identification node, yields

D
exp
proj(u, v) = [1 − u − v] Dexp

1 + u D
exp
2 + v D

exp
3 , (4.5)

with

u =
[y3 − y1] [x − x1] − [x3 − x1] [y − y1]

[y3 − y1] [x2 − x1] − [x3 − x1] [y2 − y1]
, (4.6)

and

v =
[y1 − y2] [x − x1] + [x2 − x1] [y − y1]

[y3 − y1] [x2 − x1] − [x3 − x1] [y2 − y1]
. (4.7)
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Figure 4.4: Example of a plate with a hole with two–dimensional measured displacements. Top: speci-
men in the reference configuration, specimen in the deformed configuration, and discretiza-
tion of an associated FE model. Bottom: Interpolation of the displacements of the measure-
ment points on the coordinates of the identification nodes.
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Figure 4.5: Example of a plate with a hole with three–dimensional measured displacements. Top: spec-
imen in the reference configuration, specimen in the deformed configuration, and discretiza-
tion of an associated FE model. Bottom: Interpolation of the displacements of the measure-
ment points on the coordinates of the identification nodes.

41



4 Basic methods for parameter identification

4.4 Solution of the inverse problem

The common procedure for the identification of material parameters is the minimization

of a least squares problem in which the measured displacement fields and correspond-

ing displacement fields of the FEM simulation are compared. The forces acting on the

specimen in the experiment are the Neumann boundary conditions on the specimen in

the FEM simulation. Before starting the identification process, the experimental results

are made comparable to the FEM results which is done by an interpolation technique as

described in the previous section. Then the objective function f(κ) depending on the

material parameters κ can be formulated as

f(κ) =
1

2

N∑

k=1

[uk(κ) − u
exp
k ]2 . (4.8)

The domain on the specimen which is of interest for the identification leads to the choice

of identification nodes. The corresponding displacements are assembled in the vectors

uk(κ) and u
exp
k . The denomination uk(κ) denotes nodal displacements of the simulation,

while u
exp
k characterizes measured displacements after interpolation on the coordinates of

the identification nodes. For simplicity, the index k generally represents different time–

or load steps and identification nodes.

The optimization algorithms for the minimization of the least squares functional can be

classified in different ways (see, e.g. Mahnken [43]). One classification differs between

algorithms which work by using only the computation of the objective function and al-

gorithms which also necessitate the respective gradient (gradient methods). Gradient

methods are referred to as Newton–like methods. Another classification is to distinguish

between deterministic and stochastic methods. A deterministic algorithm will always

produce the same result when given the same starting values, whereas stochastic meth-

ods are working by using random numbers for optimization. For an overview of these

different optimization methods see, e.g. Mahnken [43], Bazaraa et al. [5], Bertsekas [7],

Luenberger [38], Dennis and Schnabel [14], Nocedal and Wright [58], Spellucci [71] and

Powell [61].

The objective function (4.8) is, in general, non-convex which means that in addition to the

global minimum local minima might occur. As an advantage, stochastic methods have the

ability to find the global minimum. A disadvantage is the high number of computations

in comparison to deterministic methods. Since usually the computations for material

models within the FE method are expensive even for the direct problem, the exclusive use

of stochastic methods is not advisable. Deterministic gradient based methods, however,

exhibit fast convergence but have the disadvantage of not overcoming (all) local minima.

Therefore, a hybrid method – which has been applied and described in the work of, e.g.

Mahnken and Stein [49] and Mahnken [43] – is used. Hereby, first the gradient descent

method is applied to a number of randomly selected individual parameter sets. This

combination allows to exploit the fast convergence of the Levenberg–Marquardt method

to find different local minima. If the iteration process is trapped in a local minimum, the

iteration is repeated with new starting points by changing individual parameters manually

which is on the one hand a check for the robustness of the result. On the other hand
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4.4 Solution of the inverse problem

this can also lead to another local minimum with a smaller value for the weighted sum of

squared differences.

Using gradient based methods for the above minimization problem, the gradient of the

objective function is calculated

∂κf(κ) =

N∑

k=1

[uk(κ) − u
exp
k ] · ∂κuk(κ) , (4.9)

which must vanish as a necessary condition for a local (or perhaps the global) minimum.

The general iteration algorithm of gradient based optimization methods yields

κ(j+1) = κ(j) − α(j) H(j) · ∂κf(κ(j)) (4.10)

with the step length α(j) ∈ [0, 1] which we, nevertheless, assume as α(j) = 1.

In subsection 4.4.1 first the Newton iteration matrix H = HN – generally giving quadratic

convergence for optimization – is described and the Gauss–Newton iteration matrix

H = HGN is deduced which can give quadratic convergence in special cases as well.

In subsection 4.4.2 the efficient Levenberg-Marquardt iteration matrix H = HLM – a

damped Gauss–Newton iteration matrix which is applied for the parameter identification

in this work – is presented.

4.4.1 The Gauss–Newton method

The Hessian of f(κ) yields

∂2
κf(κ) =

N∑

k=1

[uk(κ) − u
exp
k ] · ∂2

κuk(κ) + ∂κuk(κ) ⊗ ∂κuk(κ) , (4.11)

and consequently the Newton iteration matrix is defined as (∂2
κf(κ))−1 = HN . Therefore

Newton’s method for optimization is equivalent to iteratively minimizing a local quadratic

approximation to the objective function. The first part of the Hessian contains information

about the curvature of the objective function which are specified by the second derivatives

∂2
κuk(κ). The second part of the Hessian is determined by the gradients ∂κuk(κ). By

assuming that near the solution the residua of the objective function yield small values,

the first part of the Hessian can be neglected and this yields the Gauss–Newton iteration

matrix

HGN =
[ N∑

k=1

∂κuk(κ) ⊗ ∂κuk(κ)
]−1

. (4.12)

With the Gauss–Newton method quadratic convergence can be expected near to the

solution. In general at least linear convergence is achieved. Due to instabilities (see also

subsection 4.5) the components of the gradient of the objective function become relatively

small in the vicinity of a local or the global minimum. A flat least squares functional leads

to an ill conditioned Gauss–Newton matrix. The condition number is defined as

k =
λmin

λmax
, (4.13)

whereby λi, i = 1, ..., np are the eigenvalues and np is the number of material parameters.
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4.4.2 The Levenberg–Marquardt method

If the approximated Hessian H−1
GN is ill-conditioned at the solution or not positive definite

a damped Gauss–Newton method – the Levenberg–Marquardt method – can be applied.

The iteration matrix yields

HLM =
[[ N∑

k=1

∂κuk(κ) ⊗ ∂κuk(κ)
]

+ µ I
]−1

, (4.14)

wherein I denotes the identity matrix and µ is a damping factor which is chosen as small

as possible with µ > 0 so that H−1
LM is positive definite. Therefore – within the iteration

algorithm as described in equation 4.10 – the step h
(j)
LM = κ(j+1)−κ(j) = H

(j)
LM ·∂κf(κ(j))

is a descent direction.

The damping factor is chosen according to the iteration process (see e.g. Bazaraa et

al. [5]), whereby µ are increasing if H−1
GN is badly conditioned and if the iteration is far

from a solution. By choosing larger values for µ the iteration step crosses over to a steepest

descent direction which is given by h
(j)
LM ≃ −[1/µ] ∂κf(κ). If the iteration process for κ

becomes stable – near a local or the global minimum – µ can be decreased. Thereby, for

very small µ the iteration matrix yields H−1
LM ≃ H−1

GN and therefore quadratic convergence

might be achieved.

4.5 Stability investigations

In contrast to the direct problem the nonlinear optimization problem (4.8) is, in general,

an ill–posed problem. According to Hadamard, a mathematical problem is called well–

posed if

• for all admissible data, a solution exists,

• for all admissible data, the solution is unique, and

• the solution depends continuously on the data.

If one of these properties is violated, the problem is called ill-posed. The non–convexity

of the least squares functional and instabilities (the solution does not depend continu-

ously on the data) in the solution might lead to the impracticality of finding an unique

solution or even no solution (see, e.g. Banks and Kunisch [2], Baumeister [4], Bui [13],

Louis [36] and Mahnken [43]). The reason for instabilities and therefore the difficulties in

determining a reliable set of material parameters arise from different facts which can be

summarized in three groups which are first the error of the simulation and secondly and

thirdly the insufficiency and uncertainties of the experiments (see Mahnken [43]). The er-

ror of the simulation is due to the fact that a material model cannot perfectly describe all

characteristics of a material. Moreover, within the solution of the direct problem usually

different numerical approximations in time and space are made. In addition, the experi-

ments for the parameter identification have to be coordinated with the characteristics of

the constitutive law, so that all individual material parameters are activated within the
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identification process. Otherwise the experimental data is insufficient. The uncertainties

within the experiments have two main reasons: Firstly stochastic noise in the measure-

ment data is inevitable and depends on the chosen measurement system in combination

with the dimension of the measured data. Secondly scattering of measurement data has

to be taken into account. On the one hand inhomogeneities within the specimens can

cause scattering. On the other hand serious scattering between different specimen due

to the production process can appear. Note that usually scattering has a much bigger

influence on the identification process and the identified parameters than it is the case for

measurement noise.

Moreover, it needs to be mentioned that even for very small data errors the error in the

solution can be large. In practical applications, exact measurement data are often not

given and only a noisy scattered version is available.

One of the reasons for instabilities in least squares problems consists in possible over-

parametrization which can be caused since the experimental data provides too many pa-

rameters resulting in (almost) linear dependencies between the parameters (see Mahnken

[40]). Moreover, instabilities can be caused since the experimental data provides too less

information for all mechanical processes the model is able to describe.

A suitable indicator for the dependencies between the parameters among each other is

the correlation matrix Kmn, the entries of which are calculated via the Gauss–Newton

matrix by (see e.g. Ekh [15] and Kreißig et al. [31])

T = H−1
GN , (4.15)

Kmn =
Tmn√

Tmm Tnn

, (4.16)

with −1 ≤ Kmn ≤ 1 and Kmm = 1. The smaller the value of |Kmn|, the smaller is the

correlation between the parameters κm and κn. In contrast, if |Kmn| approaches 1, the

dependency between the corresponding parameters increases.
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The use of a gradient based iteration method for the solution of the least squares problem

given in equation 4.8 necessitates the calculation of ∂κuk(κ
(j)) for each iteration step (j)

of the parameter identification algorithm.

Following the approach of Mahnken and Stein [48] for the analytical evaluation of sensi-

tivities for inelastic models in the frame of the FE method in section 5.1, first the global

solution of the direct problem is considered in subsection 5.1.1. In subsection 5.1.2 the

computation of ∂κuk(κ
(j)) within the global FE algorithm is shown. The necessary sen-

sitivity analysis for the model of finite viscoelasticity on the constitutive level of the FE

algorithm is presented in subsection 5.1.3.

The finite difference method for the model of finite viscoelasticity is considered in section

5.2.

5.1 Direct differentiation method

5.1.1 Global solution of the direct problem

The static local spatial equilibrium equation yields

div σ + b = 0 , (5.1)

whereby σ are the Cauchy stresses and b are the body forces. The FE discretization

yields the discretized equilibrium equations for individual element nodes I = 1, 2, ..., nnd

to (see, e.g. Hughes [26], Wriggers [75], Reddy [62] and Zienkewicz and Taylor [76])

rI = f int
I − f ext

I = 0 (5.2)

with the nodal residuum rI and the internal and external nodal forces f int
I and f ext

I . The

internal nodal forces are computed by

f int
I =

∫

Bt

∂t
xN I · σ(u) dv , (5.3)

whereby u are the displacements and N I characterize the shape functions. Thus the

nodal residuum yields

rI(u) =

∫

Bt

∂t
xN I · σ(u) dv − f ext

I ∀ I = 1, 2, ..., nnd . (5.4)

For the computation of the displacements u which is done by the solution of the resulting

global residuum by means of a Newton–Raphson method first the linearization of the

element residuum is considered
nnd∑

I=1

∂rI(uJ)

∂uJ

· ∆uJ ≈ −rI (5.5)
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with

∂rI(uJ)

∂uJ
= kIJ ∀ I, J = 1, 2, ..., nnd . (5.6)

The Jacobian of the element residuum for dead loading is the element stiffness matrix kIJ

kIJ = kgeo
IJ + kmat

IJ (5.7)

with a geometric part

kgeo
IJ =

∫

Bt

∂t
xN I · σ · ∂t

xNJ dv I (5.8)

and material part

kmat
IJ =

∫

Bt

∂t
xN I · c · ∂t

xNJ dv . (5.9)

Remark 5.1.1 The tangent operator c in Bt is computed by push–forward transformation

of

c = J−1 ϕ∗C = J−1 ϕ∗

(
2

∂S(C)

C

)
(5.10)

with the second Piola–Kirchhoff stress tensor S and the right Cauchy–Green tensor C.

The global variables are assembled in terms of the respective elemental ones by

K = Anelem

e=1 kIJ , ∆u = Anelem

e=1 ∆uJ , R = Anelem

e=1 rI , (5.11)

with the global residual vector R and the global stiffness matrix K – boundary condi-

tions already being accounted for. The system of equations for the global incremental

displacements ∆u yields

K · ∆u = −R = 0 . (5.12)

The increment ∆u is the solution of

∆u = − [K(m)]−1 · R(m) (5.13)

and the displacement field is updated via

u(m+1) = u(m) + ∆u (5.14)

in the global iteration algorithm.
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5.1 Direct differentiation method

5.1.2 Global solution of the inverse problem

As mentioned above for the solution of the inverse problem by means of gradient based

methods the derivative ∂κu(κ) has to be computed. Considering the total differential of

the converged state of the global iteration

dR

dκ
=

∂R

∂u
· ∂u

∂κ
+

dpR

dpκ
= 0 , (5.15)

with ∂R / ∂u = K one obtains

∂u

∂κ
= −K−1 · ∂pR

∂κ
, (5.16)

where in analogy to the work by Mahnken and Stein [48] the notation ∂p(•(κ))/∂κ em-

phasizes that this derivative excludes the implicit dependence of κ via the displacements

u(κ). Thus, the above partial parameter derivative for the global residual results in

∂pR

∂κ
=

∂pF int

∂pκ
= Anelem

e=1

∫

Bt

∇T
xN I · ∂p

∂κ
( σ(u, κ) dv)

= Anelem

e=1

∫

Bt

∇T
xN I · ∂pτ (κ)

∂κ

1

J
dv ,

whereby τ = J σ are the Kirchhoff stresses with J = det F denoting the local volume ratio

performing a volume change dv = J dV between the initial and the spatial configuration.

Together with equation (5.16) the partial parameter derivative for the global displacement

vector yields

∂u

∂κ
= −K−1 · Anelem

e=1

∫

Bt

∇T
xN I · ∂pτ (κ)

∂κ

1

J
dv (5.17)

which shows that it remains to compute the partial parameter derivative for the Kirchhoff

stresses which is done at the constitutive level of the FE algorithm.

5.1.3 Sensitivity analysis for the model of finite viscoelas ticity

Equivalent to equation (3.39), the partial parameter derivative for the Kirchhoff stresses

takes the form

∂p τ

∂ κı

=
∂p τ eq

∂ κı

+
N∑

k=1

∂p τ k

∂ κı

. (5.18)

Obviously, the equilibrium Kirchhoff stresses τ eq = τ eq(u, κ) do not directly depend on

internal variables. The related partial parameter derivative consequently reads

∂p τ eq
a

∂ κı

=
∂p

∂ κı

(
∂Ψ eq

∂λa

λa

)
, (5.19)

∂p τ eq

∂ κı
=

3∑

a=1

∂p τ eq
a

∂ κı
na ⊗ na . (5.20)
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For the evaluation of the partial parameter derivative for the non–equilibrium parts of the

Kirchhoff stresses the history dependency has to be taken into account (compare Mahnken

and Stein [49], [42]). Consequently ∂ ([Ck
v]

−1)t=tn−1
/∂ κ is needed for the computation of

∂pτ k(κ)/∂κ where ([Ck
v]

−1)t=tn−1
is the inverse of the viscous right Cauchy–Green tensor

and n − 1 indicates the previous time step. Thus at each time step n the parameter

derivative ∂ ([Ck
v]

−1)t=tn/∂ κ has to be computed and stored for the next time step.

In summary, for the computation of ∂pτ k(κ)/∂ κı the following steps [A1]–[A6] must be

performed at time step n for each relaxation module k (the index n for the actual time

step is omitted):

[A1] Partial parameter derivative for the elastic left Cauchy–Green trial tensor

∂p [bk
e ]tr

∂ κı
= F · ∂ [[Ck

v]
−1]t=tn−1

∂ κı
· F T (5.21)

[A2] Partial parameter derivative for the tensor basis 1

∂p (na ⊗ na)

∂ κı
=

∂ (na ⊗ na)

∂ [bk
e ]tr

:
∂p [bk

e ]tr
∂ κı

(5.22)

[A3] Partial parameter derivative for the principal logarithmic elastic trial stretches

∂p [εk
ae

]tr

∂ κı
=

1

2

1

[λk
ae

]2tr
[na ⊗ na] :

∂p [bk
e ]tr

∂ κı
(5.23)

[A4] Derivatives for the calculation of the principal elastic stretches. The matrix Kk
ab is

computed for the converged state of the local Newton–iteration (see equation 3.24)

∂ rk
a

∂ ηk
v

= −∆t
1

9 [ηk
v]

2
τ k : g (5.24)

∂ rk
a

∂ ηk
D

= −∆t
1

2 [ηk
D]2

[τk
a ]dev (5.25)

∂ rk
a

∂ [εk
be

]tr
= − δab (5.26)

∂ rk
a

∂ [τk
a ]dev

= ∆t
1

2 ηk
D

(5.27)

∂ rk
a

∂ (τ k : g)
= ∆t

1

9 ηk
v

(5.28)

∂ [τk
a (κ)]dev

∂ κı

=
3∑

b=1

∂

∂b̄k
be

(
∂[Ψ k(κ)]dev

∂ κı

)
∂b̄k

be

∂λk
ae

λk
ae

(5.29)

∂ (τ k(κ) : g)

∂ κı

= 3
∂

∂Jk
e

(
∂[Ψ k(κ)]vol

∂ κı

)
Jk

e (5.30)

1See Appendix A.1 for the calculation of ∂ (na ⊗ na)/∂ [bk
e ]tr .
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∂p εk
be

∂ κı

= − [Kk
ab]

−1

[
∂ rk

a

∂ ηk
v

∂ ηk
v

∂ κı

+
∂ rk

a

∂ ηk
D

∂ ηk
D

∂ κı

+
∂ rk

a

∂ [εk
be

]tr

∂p [εk
be

]tr

∂ κı

+
∂ rk

a

∂ [τk
a ]dev

∂ [τk
a (κ)]dev

∂ κı

+
∂ rk

a

∂ (τ k : g)

∂ (τ k(κ) : g)

∂ κı

]
(5.31)

∂p λk
ae

∂ κı
= λk

ae

∂p εk
ae

∂ κı
(5.32)

[A5] Partial parameter derivative for the principal Kirchhoff stresses

∂ τk
a (κ)

∂ κı
=

∂ [τk
a (κ)]dev

∂ κı
+

1

3

∂ (τ k(κ) : g)

∂ κı
(5.33)

∂p τk
a (κ, λk

be
)

∂ κı

=
∂ τk

a (κ)

∂ κı

+
∂ τk

a (λk
be

)

∂λk
be

∂p λk
be

∂ κı

(5.34)

[A6] Partial parameter derivative for the Kirchhoff stresses

∂p τ k

∂ κı
=

3∑

a=1

[
∂p τk

a

∂ κı
na ⊗ na + τk

ae

∂p (na ⊗ na)

∂ κı

]
(5.35)

Furthermore, the computation of ∂ [[Ck
v]

−1]t=tn/∂ κı is based on the following steps [B1]–

[B6] referred to time step n for each relaxation module k (the index n for the actual time

step is omitted):

[B1] Parameter derivative for the elastic left Cauchy–Green trial tensor

∂ [bk
e ]tr

∂ κı

= F · ∂ [[Ck
v]

−1]t=tn−1

∂ κı

· F T + 2 sym

(
∂ F

∂ κı

· F−1 · [bk
e ]tr

)
(5.36)

[B2] Parameter derivative for the tensor basis 2

∂ (na ⊗ na)

∂ κı
=

∂ (na ⊗ na)

∂ [bk
e ]tr

:
∂ [bk

e ]tr
∂ κı

(5.37)

[B3] Parameter derivative for the principal logarithmic elastic trial stretches

∂ [εk
ae

]tr

∂ κı
=

1

2

1

[λk
ae

]2tr
[na ⊗ na] :

∂ [bk
e ]tr

∂ κı
(5.38)

[B4] Parameter derivative for the principal elastic stretches [see [A4]]

∂ εk
be

∂ κı
= − [Kk

ab]
−1

[
∂ rk

a

∂ ηk
v

∂ ηk
v

∂ κı
+

∂ rk
a

∂ ηk
D

∂ ηk
D

∂ κı
+

∂ rk
a

∂ [εk
be

]tr

∂ [εk
be

]tr

∂ κı

+
∂ rk

a

∂ [τk
a ]dev

∂ [τk
a (κ)]dev

∂ κı
+

∂ rk
a

∂ (τ k : g)

∂ (τ k(κ) : g)

∂ κı

]
(5.39)

2See Appendix A.1 for the calculation of ∂ (na ⊗ na)/∂ [bk
e ]tr.
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[B5] Parameter derivative for the elastic eigenstretches

∂ [λk
ae

]2

∂ κı
= 2 [λk

ae
]2

∂ εk
ae

∂ κı
(5.40)

[B6] Parameter derivative for the elastic left Cauchy–Green tensor

∂ bk
e

∂ κı
=

3∑

a=1

[
∂ [λk

ae
]2

∂ κı
na ⊗ na + [λk

ae
]2

∂ (na ⊗ na)

∂ κı

]
(5.41)

[B7] Parameter derivative for the inverse of the viscous right Cauchy–Green tensor

∂ [[Ck
v]

−1]t=tn

∂ κı
= − 2 sym

(
F−1 · ∂ F

∂ κı
· [[Ck

v]
−1]t=tn−1

)
+ F−1 · ∂ bk

e

∂ κı
· F−T (5.42)

Optimization scheme

The optimization scheme for the solution of the inverse problem applying the direct dif-

ferentiation method is illustrated in figure 5.1 (see also Mahnken and Stein [49]).

Start

Stop

Inner FEM-iteration
for direct problem

R (u
(m)
t=tn(κ

(j))) = 0

Calculation of

Calculation of

Calculation of

u
(m)
t=tn(κ(j)) , [[Ck

v]
−1]

(m)
t=tn

m → m + 1

Loop over

time steps

∂κ ut=tn(κ(j)) ,

∂κ [[Ck
v]

−1]t=tn

Update of

ut=tn(κ(j)) ,

[[Ck
v]

−1]t=tn

n → n + 1

Least squares

optimization

κ(j)

j → j + 1

Figure 5.1: Optimization scheme
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5.2 Finite difference method

5.2 Finite difference method

The numerical calculation of the parameter sensitivities ∂κuij(κ) yields

∂κm
uij(κ) ≈ uij(κ + ǫ em) − uij(κ)

ǫ
(5.43)

with m = 1, 2, ..., nMP for the number of parameters of the applied viscoelastic material

law. Here em is an unit vector with the entry 1 at position m and the entries 0 for the

other positions. The numerical pertubation is computed with sufficiently small ǫ.
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6 Parameter identification on the
basis of virtual measurement data

The consititutive routine for finite viscoelasticity – which dates back to the work by Reese

and Govindjee [65] and has been reviewed in chapter 3 – is applied for the parameter

identification for elastomeric materials in this work (see chapter 7). Since real measure-

ment data is always subject to uncertainties which complicate the solution of the inverse

problem (see section 4.5), it is advisable to conduct numerical studies for the respective

material model first. Thereby, the possibility of instabilities within the identification it-

eration – arising from the structure of the viscoelastic model itself – can be assessed and

therefore overparametrization might be avoided in the following identifications for real

materials.

The constitutive routine for finite viscoelasticity bases on the hyperelastic Ogden material

law as shown in subsection 2.3.2. In the following two sections the aim is to investigate, if

the necessity of programming the Ogden material model with multiple terms NT > 1 for

the isochoric part (see equation (2.32)) is given or if a simulation can also achieve good

agreement to (virtual) measurement data by only programming the Ogden model with

one term for the isochoric part. If a reduction of the material parameters does not lead to

a deterioration of the quality of the respective simulation, it automatically helps to avoid

instability problems due to overparametrization. Moreover, by application of a model

structure with less material parameters, the computational costs for both, the direct and

the inverse problem, can be reduced significantly.

In section 6.1 a parameter identification for hyperelasticity is conducted whereby for the

simulation of the virtual measurement data an Ogden material with three isochoric terms

is used and the identification is made for an Ogden material with only one respective term.

Consequently, in subsection 6.2 for the viscoelastic model with one relaxation term the

virtual measurement data is simulated with three terms for the equilibrium Ogden model

and three terms for the Ogden model within the non–equilibrium part. The identification

is conducted with only one term for each of the respective Ogden models.

Remark 6.0.1 It needs to be mentioned that with these two studies, if at all, only a

tendency can be specified. The comparison of different structures of Ogden terms in the

respective re–identification problem is made only for the chosen deformation range, FE

model geometry and material parameters for the simulation of virtual measurement data.

Remark 6.0.2 Note that for all respective identification procedures the same FE dis-

cretization is used as for the respective simulation of the virtual measurement data. There-

fore no interpolation of the (virtual) measurement data is necessary.
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6 Parameter identification on the basis of virtual measurement data

6.1 Finite Ogden hyperelasticity

The virtual measurement data are the displacements u
exp
ij = u

exp
ij (κ̃) which are simulated

with the Ogden material with three terms (NT = 3, see equation (2.32)). Thereby, the

set of material parameters is given by κ̃ = [µ̃1, µ̃2, µ̃3, α̃1, α̃2, α̃3, κ̃0]
T with the parameter

values shown in table (6.1).

Table 6.1: Material parameter set κ̃ for the simulation of virtual measurement data with Ogden hypere-
lasticity

µ̃1 µ̃2 µ̃3 α̃1 α̃2 α̃3 κ̃0

9.0 -9.0 15.0 2.8 2.2 1.2 350.0

[MPa] [MPa] [MPa] [−] [−] [−] [MPa]

The simulation within the identification is carried out for an Ogden model with one term

(NT = 1) with the parameter set κ = [µ1, α1, k]T.

For the simulations of the virtual three-dimensional measurement data and for the sim-

ulations within the identification routine the FE model shown in figure (6.1) is used and

both simulations are identically force controlled with ten load steps with equal force load

increments for each step.
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Figure 6.1: FE model with marked identification nodes.

The objective function for the inverse problem yields

f(κ) =
1

2

T∑

i=1

Ng∑

j=1

[uij(κ) − u
exp
ij ]2 (6.1)

and is minimized by means of the Levenberg–Marquardt method. T is the number of

load steps with T = 10 and Ng is the number of identification nodes. The five (Ng = 5)

identification nodes are marked in figure (6.1). The three–dimensional displacements

uij(κ) are simulated by the Ogden material for which NT = 1 holds. In tabular (6.2) and

figure (6.5) the iteration is shown in which after eight iteration steps a local or maybe

global minimum is determined. Since the solution is stable it might be assumed that the

global minimum has been found.
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6.1 Finite Ogden hyperelasticity

Table 6.2: Iteration for the identification for finite Ogden hyperelasticity.
n µ1 α1 κ0 f(κ)

0 15 5 1000 59.3111

1 43.6343 1.3 10 1398.71

2 60.4819 1.3 19.6197 52.7586

3 27.8854 1.74212 42.2743 150.304

4 39.4168 1.46877 72.2105 30.0739

5 43.6623 1.44323 125.343 3.20162

6 38.1302 1.61177 203.391 0.766273

7 37.4445 1.65646 275.806 0.0553081

8 37.179 1.6674 307.166 0.0325014

9 37.1682 1.66802 309.662 0.0323618

10 37.1682 1.66804 309.599 0.0323618

11 37.1682 1.66804 309.601 0.0323618

[MPa] [−] [MPa] [mm2]

0 1 2 3 4 5 6 7 8 9 10 11
10

−2

10
−1

10
0

10
1

10
2

10
3

n

f
(κ

)

Figure 6.2: Sum of squared differences versus iteration steps for the identification of Ogden hyperelas-
ticity.

Figure (6.3) shows that the deformed FE models for the virtual measurement data and

for the solution of the identification problem optically (almost) coincide. Moreover, as

presented in figure (6.4) for the tenth load step both FE simulations have almost the

same distribution of stresses (here: euclidean norm of the deviatoric Cauchy stresses).

The results of the identification show that an extension of the Ogden model to multiple

terms within the sum for the deviatoric part of the energy might not be necessary for the

later parameter identification for real materials. For the deformation range considered in

this example the Ogden model with only three parameters can almost describe the same

deformation behavior. Therefore it also follows that more terms with more parameters

might lead to overparametrization and hence lead to instabilities very easily. Moreover,

with a higher number of parameters the computational costs are increasing.
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6 Parameter identification on the basis of virtual measurement data

(a) Start of the identification iteration (n = 0).

(b) After two iteration steps.

(c) End of the identification iteration (n = 11).

Figure 6.3: FE model of the Ogden material with three parameters over the virtual specimen during the
iteration at the tenth load step.

(a) FE simulation for the virtual measurement

data.

(b) FE simulation for the identified optimal mate-

rial parameters.

Figure 6.4: Comparison of the euclidean norm of the deviatoric Cauchy stresses at the tenth load step.
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6.2 Finite viscoelasticity with one relaxation term

6.2 Finite viscoelasticity with one relaxation term

The virtual measurement data are the displacements u
exp
ij = u

exp
ij (κ̃) which are simu-

lated with the viscoelastic material with one relaxation term (N = 1 in equation (3.8)).

Thereby, within the equilibrium term of the free energy function Ψ eq – as defined in

equation (3.60) – the part [Ψ eq]dev consists of three terms, so that (NT = 3) holds.

For the one non–equilibrium part Ψ k=1 the number of terms in [Ψ k=1]dev is given by

Nk=1
T = 3 as well. Hence, the set of material parameters for the identification problem is

eκ = [[eµeq]1, [eµeq]2, [eµeq]3, [eαeq]1, [eαeq]2, [eαeq]3, eκeq, [eµk=1
neq ]1, [eµk=1

neq ]2, [eµk=1
neq ]3, [eαk=1

neq ]1, [eαk=1
neq ]2, [eαk=1

neq ]3, eκk=1
neq , eτk=1]T with

the parameter values shown in table (6.3).

Table 6.3: Material parameter set κ̃ for the simulation of virtual measurement data with finite viscoelas-
ticity with one relaxation term.

[µ̃eq]1 [µ̃eq]2 [µ̃eq]3 [α̃eq]1 [α̃eq]2 [α̃eq]3 κ̃eq

5.0 -4.0 1.0 1.8 -2.0 7.0 100.0

[MPa] [MPa] [MPa] [−] [−] [−] [MPa]

[µ̃k=1
neq ]1 [µ̃k=1

neq ]2 [µ̃k=1
neq ]3 [α̃k=1

neq ]1 [α̃k=1
neq ]2 [α̃k=1

neq ]3 κ̃k=1
neq τ̃k=1

10.0 -12.0 2.0 5.0 -2.0 7 1.1 7.5

[MPa] [MPa] [MPa] [−] [−] [−] [MPa] [s]

For the simulations of the virtual three-dimensional measurement data and for the sim-

ulations within the identification routine the FE model shown in figure (6.5) is applied.

The simulated measurement data describes a creep test. Both simulations are identically

force controlled with ten time steps with a time step length of ∆t = 10 s as shown in

figure (6.6).

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Figure 6.5: FE model with marked identification
nodes.
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Figure 6.6: Force versus time for the simulation of
the measurement data and the simu-
lation within the identification.
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6 Parameter identification on the basis of virtual measurement data

The parameter identification is carried out for the viscoelastic material with one relaxation

term (N = 1 in equation (3.8)). Thereby, within the equilibrium term of the free energy

function Ψ eq – as defined in equation (3.60) – the part [Ψ eq]dev consists of one term, so

that (NT = 1) holds. For the one non–equilibrium part Ψ k=1 the number of terms in

[Ψ k=1]dev is given by Nk=1
T = 1 as well, so that the corresponding parameter set is given

by κ = [[µeq]1, [αeq]1, κeq, [µ
k=1
neq ]1, [α

k=1
neq ]1, κneq, τ̂

k=1]T.

The objective function for the inverse problem yields

f(κ) =
1

2

T∑

i=1

Ng∑

j=1

[uij(κ) − u
exp
ij ]2 (6.2)

and is minimized by means of the Levenberg–Marquardt method. T is the number of

load steps with T = 10 and Ng is the number of identification nodes. The five (Ng = 5)

identification nodes are marked in figure (6.1). The three–dimensional displacements

uij(κ) are simulated by the viscoelastic material described above with seven parameters.

In table (6.4) and figure (6.7) the iteration is shown in which after eight iteration steps

a local or maybe even global minimum is determined. Since the solution is stable it

Table 6.4: Iteration for the identification for finite viscoelasticity with one relaxation term.
n [µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1 f(κ)

0 14 1.5 14 14 1.5 2 15 24038.5

1 20 1.5 23.5236 15.4605 2.23086 5.43559 10.232 2082.95

2 13.0391 2.03173 37.3725 26.4843 2.39137 13.2734 7.2115 866.314

3 6.92452 2.95216 53.5538 36.9208 2.17134 31.2128 7.3423 625.218

4 5.81038 3.73383 65.6918 39.6741 2.19011 59.3563 7.8656 48.7199

5 4.97352 4.32744 80.3276 44.6039 1.9545. 64.0535 7.8020 5.52809

6 4.93564 4.43388 86.2499 46.6722 1.91372 55.2726 7.6610 0.08398

7 4.93197 4.43925 86.9473 46.3039 1.93621 52.0508 7.6357 0.06743

8 4.93157 4.4395 86.9894 46.335 1.93617 51.6013 7.6308 0.06741

9 4.93149 4.43954 86.9949 46.3377 1.93619 51.5454 7.6302 0.06741

10 4.93147 4.43954 86.9959 46.3401 1.93612 51.5342 7.6301 0.06741

[MPa] [−] [MPa] [MPa] [−] [MPa] [s] [mm2]

might be assumed that the global minimum has been found. In addition figure (6.8)

shows – for the example of the tenth time step – that the deformed FE models for the

virtual measurement data and for the solution of the identification problem optically

(almost) coincide. Moreover, as presented in figure (6.11) for different load steps both

FE simulations have almost the same distribution of stresses (here: euclidean norm of the

viscous part of the Cauchy stresses).

Also for the identification of large strain viscoelasticity based on Ogden models the results

show that the necessity of the use of multiple terms within the sum for the respective devi-

atoric part of the energy might not be given for the later parameter identification for real

materials. Therefore – as well as in order to avoid instabilities due to overparametrization

and in order to save computational costs – within the viscoelastic material law only one

term for each deviatoric part of the energy will be used (NT = Nk
T = 1 ∀ k).
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6.2 Finite viscoelasticity with one relaxation term
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Figure 6.7: Sum of squared differences versus iteration steps for the identification of finite viscoelasticity.

(a) Start of the identifica-

tion iteration (n = 0).

(b) After one iteration step. (c) After two iteration

steps.

(d) After three iteration

steps.

(e) After four iteration

steps.

(f) After six iteration steps.

Figure 6.8: FE model of the viscoelastic material with seven parameters over the virtual specimen during
the iteration at the tenth time step.
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6 Parameter identification on the basis of virtual measurement data

(a) Second time step.

(b) Fourth time step.

(c) Sixth time step.

(d) Eighth time step.

Figure 6.9: FE simulation for the virtual mea-
surement data (15 parameters).

(a) Second time step.

(b) Fourth time step.

(c) Sixth time step.

(d) Eighth time step.

Figure 6.10: FE simulation for the identified
material parameters (7 parame-
ters) after six iteration steps.

Figure 6.11: Comparison of the euclidian norm of the viscous part of the Cauchy stresses.
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7 Parameter identification for finite
viscoelasticity on the basis of real
measurement data

In this chapter the experimental observations on different elastomeric materials and the

respective parameter identification for the finite viscoelastic material (see chapter (3))

are described. In section 7.1 the parameter identification for a polyurethane adhesive is

considered, whereby only the short time viscoelastic behavior – with one relaxation term

for the material model – shall be investigated by taking into account the experimental

data of a single relaxation test. The parameter estimation for a cellular polyurethane

follows in section 7.2, whereby we aim at identifying the parameters of the viscoelastic

law with one relaxation term by means of three different experimental test programs. In

order to describe the viscoelastic behavior of a compact polyurethane universally for short

and long time loads, in section (7.3) the parameter identification for two short– and one

long time tests is conducted.

Note, that within the experiments the influence of damage effects has to be excluded. A

typical damage effect of elastomeric materials is the Mullins effect. This strain–induced

stress softening is occurring mainly in the first load cycle. In order to cause a saturation of

damage, before the conduction of the first test each specimen is loaded in a number of load

cycles with the maximal displacement used in the later tests. The number of necessary

load cycles depends on the kind of elastomer, especially on its chemical composition.

Sufficiently long before the conduction of each test, the specimen is not loaded in order

to exclude relaxation effects of the previous test.

7.1 Polyurethane adhesive

The simulation of strength difference for adhesive materials in finite deformation elasto-

plasticity has recently been investigated by Mahnken [44] and Mahnken and Schlim-

mer [46]. Considering an adhesive material with viscoelastic material behavior, in this

section the parameter identification for the polyurethane adhesive with the trade name

KÖRAPUR 125 1 is presented. This one component polyurethane which is fully curing

with humidity is used as adhesive and sealant for, e.g. primered and varnished metals,

aluminum and wooden materials. The cured adhesive has, referring to the data sheet, a

density of approx. 1.2 g/cm3, a Shore A hardness of approx. 45 and a very high elongation

at tear of circa 450%.

By verification it can be shown that the material model with the identified parameters

1KÖMMERLING CHEMISCHE FABRIK GMBH
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

delivers a very good agreement between experimental and simulated data for the investi-

gated test.

7.1.1 Experiments

The experimental data was determined by D. Vogt at the ’Work Group for Materials

and Surface Technology (AWOK)’, Jun.–Prof. Dr.–Ing. P. Geiß, Technical University of

Kaiserslautern.

For the manufacture of a plate of the cured adhesive, the pasty material has been applied

with a blade and a putty gun to a substrate holder. The plate has a thickness of 1.5 mm,

is 25 mm wide and has a clamping length of 60 mm. For the later identification the test

has to deliver sufficient information about the deformation behavior of the material. Thus

for the specimen a geometry is to be chosen which immediately leads to inhomogeneous

displacement fields in a tensile test. For this reason a hole of 10 mm is punched in the

middle of the cured specimen.

The tensile test is conducted in force control. In the photography in figure 7.1 the specimen

is shown whereby for the optical deformation analysis by means of video extensometry

gauge marks have been applied onto the specimen’s surface (see also section 4.2). In

60 

25 
Clampg.

Figure 7.1: Specimen with gauge marks for video extensometry measurement.

analogy to the picture in figure 7.2 the far ends of the specimen are clamped between steel

plates of a tensile testing machine which is driven by an engine of variable speed and rolled

ball screws. The CCD camera of the measurement system is positioned perpendicular to

the measured surface of the specimen.

The test data are the force–time curve and the two–dimensional displacement field on the

surface of the specimen. The respective measurements are synchronized whereby every

∆tms = 0.3 s the force is measured and an image of the specimen is taken by the CCD

cameras for the displacement measurement. By means of photogrammetric evaluation

procedures for the image processing, the measuring system evaluates the two–dimensional

displacement field associated with each measured time step. The corresponding force–time

curve is shown in figure 7.3, whereby F is the total force in loading direction.

7.1.2 Interpolation of experimental data

For the simulation of the tests four FEM discretizations of the specimen with 48, 192,

432 and 2400 eight–node standard displacement-based elements (Q1) are used whereby
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7.1 Polyurethane adhesive

Figure 7.2: CCD camera for video extensometry in a tensile test.

for the first three models the whole specimen is discretized. For the model with 2400

elements symmetry conditions in transverse direction are applied and hence only half

of the width is discretized. The boundary conditions for both ending planes normal to

the longitudinal direction are chosen in correspondence with the experiments whereby

the nodes on one plane are fixed in longitudinal and transverse direction. The nodes

on the other plane are fixed in transverse direction and in longitudinal direction uniaxial

normal forces are applied whereby warping of the plane is prevented. In addition, for both

planes the edges and straight lines through the nodes along the transverse direction are

prevented from curvature and hence can only move parallel in thickness direction. Rigid

body motion is excluded. Figure 7.4 shows the entire FEM mesh with the discretization

of the respective corresponding FEM model with 2400 elements. In order to reduce the

computational costs for the identification routine these FEM discretizations are used in

ascending order within a multi level strategy (see Mahnken and Stein [47]). The optimal

material parameters determined with the 48–element model at level one are used as initial

parameters for the optimization based on the 192–element model at level two and so forth.

Since the coordinates of the measurement points generally do not coincide with the coor-

dinates of the identification nodes, the measured displacements are interpolated linearly

on the identification nodes by triangulation (see section 4.3). For the triangulation the

displacements of the three measurement points being nearest to the respective identifica-

tion node are used. As only half of the width is discretized for the FE model of level four,

the measured displacements of the opposite side of the longitudinal centerline are mirrored

onto the considered side and two separate triangulations for both displacement fields on

the identification nodes are performed. For each identification node and displacement

direction the mean value of these two data sets is taken into account.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

0 20 40 60 80 100 120
0

2

4

6

8

10

t [s]

F
 [N

]

 

 

Experiment
Simulation

Figure 7.3: Force versus time curve in experiment and for the force control of the identification simula-
tion.

7.1.3 Choice of the model structure and parameter identifica tion
process

Since the test shows that the material exhibits one defined relaxation process in the

considered time range, the identification is carried out for the viscoelastic material with

one relaxation term (N = 1 in equation (3.8)). Thereby, within the equilibrium term of

the free energy function Ψ eq – as defined in equation (3.60) – the part [Ψ eq]dev consists of

one term, so that (NT = 1) holds. For the one non–equilibrium part Ψ k=1 the number of

terms in [Ψ k=1]dev is given by Nk=1
T = 1 as well 2, so that the corresponding parameter set

is given by κ = [[µeq]1, [αeq]1, κeq, [µ
k=1
neq ]1, [α

k=1
neq ]1, κ

k=1
neq , τ̂k=1]T.

As mentioned before the time intervals for the measurements of the forces and displace-

ments are ∆tms = 0.3 s. The total time for the test is 120 s. Numerical pre studies have

been conducted in order to determine a sufficient time step length for the viscoelastic ma-

terial law with one relaxation term in combination with the considered time dependent

material behavior in the experiment. It turned out that a time step length of ∆t = 3 s

is small enough to guarantee a sufficiently accurate computation of the viscous internal

variable within the material law for the (up to now estimated bandwidth of the) material

parameters. Hence the number of load steps for the simulation of the test yields T = 40.

The objective function for the inverse problem yields

f(κ) =
1

2

T∑

i=1

Ng∑

j=1

[uij(κ) − u
exp
ij ]2 . (7.1)

2As described in subsection 6.2 the implementation of more than one term will not lead to a significant

improvement (lowering of the sum of squared differences) but might lead to an instable or non–unique

solution for the identified material parameters. In addition, the parameters for the extra terms

implicate extra computational costs.
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7.1 Polyurethane adhesive

NO 92

NO 30

Figure 7.4: Entire FEM model with the discretization of the respective corresponding FEM model with
2400 elements; Identification nodes NO 30 and NO 92.

For the simulation of the displacement fields uij(κ) the FEM simulation is force–controlled

based on the measured force signals shown in figure 7.3. Moreover, Ng denotes the num-

ber of identification nodes which is dependent on the discretization for the different FE

models in the identification process as described in subsection 7.1.2. For level four the

discretization yields Ng = N lev4
g = 59.

The displacements calculated by FEM uij(κ) and the measured displacements u
exp
ij have,

respectively, two displacement directions. Thus for the FEM discretization with 2400

elements the number of terms in the least square sum adds up to 59× 40× 2 = 4720 per

iteration step of the optimization algorithm. By taking into account that the displace-

ment data of the experiments has been mirrored, the total number of displacement data

compared within the optimization algorithm is 2 × 4720 = 9440 per iteration step.

Because of the non–convexity of the objective function and the existence of (many) local

minima the hybrid method of application of the Levenberg–Marquard method to find

different local minima for stochastically chosen start parameter sets is used (see section

4.4). Basically it can be observed that for each new starting point a number of eight

iteration steps are enough to detect if the starting point leads to a local minimum or
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

whether this iteration can be discarded because of divergence. In order to save computing

time the above described hybrid method is mainly applied in the first and second level,

whereby the FEM models with 48 and 192 elements are used for the identification routine.

The start parameter set leading to the smallest of all investigated local minima is shown

in table 7.1.

Table 7.1: Start parameter set.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

0.5 1.0 10 0.5 1.0 1.0 20

[MPa] [−] [MPa] [MPa] [−] [MPa] [s]

Note that in contrast to the parameter identification for, e.g. hyperelasticity, the iden-

tification of time dependent problems is generally more complex. One the one hand the

extra effort is due to the increased number of material parameters, which make the si-

multaneous identification for all parameters increasingly difficult due to instabilities. On

the other hand the identification of the relaxation time is complicated since it is strongly

affecting all other parameters. If τ̂k=1 is increasing, the non–equilibrium term of the en-

ergy will increasingly behave like an extra equilibrium term which can be confused with

the original equilibrium term in the identification process. In contrast, if τ̂k=1 becomes

too small the non–equilibrium term will vanish too quickly. Then the identification al-

gorithm could use this term in order to fit the simulation even better to a part of the

deformation in which no distinction between the pure elastic and the pure viscous part

of the deformation can be determined. This might happen, if a constitutive routine does

not fit adequate neither in the elastic nor in the viscous regime of the material behavior

and moreover the experiments do not (also) have distinctive relaxation or creep processes.

Only if the material model has the capability to be fitted to the considered real material

and the conducted experiment is appropriate, reliable results for the relaxation time –

affecting the whole behavior of the material simulation – can be determined.

In order to underline the necessity of time ranges within the experiments which only

serve for the distinction between the viscous and the elastic parameters, figures 7.5 and

7.6 demonstrate the simulated material behavior for one of the starting points of the iden-

tification iteration. For representation – in order to compare the results for the starting

point to the later verification, which is conducted on the basis of the identified param-

eters – the simulation for the starting point is carried out for the FE discretization of

the fourth level, too. The corresponding identification nodes are marked in figure 7.4,

whereby the identification node NO 30 is belonging to the number of identification nodes

(Ng = N lev4
g = 59) for half of the FE model (with 2400 elements) and identification node

NO 92 has been mirrored back for the whole discretization with 118 identification nodes

for representation. Although the simulation for the first fourty seconds of the test (during

the beginning of the loading) already delivers good agreement to the experimental obser-

vations, the following creep of the specimen does not give any accordance. Moreover, an

elastomeric material always exhibits several different superposed relaxation effects within

the long– and several short time ranges, which could only be simulated by several relax-

ation mechanisms, and the parameters of which could only be identified in combination

with several tests in these time ranges. Therefore, it needs to be mentioned that the equi-
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7.1 Polyurethane adhesive

librium parameters to be determined within this identification only present parameters

for an ’pseudo’–equilibrium state, referring to a time range not (very) much longer than

the time range of the considered experiment.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

t [s]

U
x [m

m
]

 

 

Sim. No 30
Exp. No 30
Sim. No 92
Exp. No 92

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t [s]

U
y [m

m
]

0 5 10 15
0

2

4

6

8

10

U
x
 [mm]

F
 [N

]

−2 −1 0 1 2
0

2

4

6

8

10

U
y
 [mm]

F
 [N

]

Figure 7.5: Start of the identification iteration. Displacement versus time curves and force versus dis-
placement curves for two representative identification nodes for the experimental and simu-
lated data.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data
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(c) 40th time step.

Figure 7.6: Starting point of the iteration: Interpolated measured displacements (red) over the identifi-
cation nodes.
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7.1 Polyurethane adhesive

The set of material parameters with the smallest sum of squared differences – chosen out

of all determined local minima and therefore denominated ’optimal’ – is listed in table

7.2.

Table 7.2: Parameter set with ’optimal’ material parameters.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

0.317966 2.32189 2.03756 1.14988 1.29458 0.888432 2.17529

[MPa] [−] [MPa] [MPa] [−] [MPa] [s]

It needs to be mentioned that due to instabilities in the identification iteration there

exist several parameter sets which lead to a insignificantly higher least squares sum. In

order to evaluate the significance for the quality of the solution, the correlation matrix

for the optimal parameters shown in table 7.3 (see also equations (4.15) and (4.16)) is

considered. The absolute values of most of the correlation numbers are small. There are

Table 7.3: Correlation matrix for the set of optimal parameters at level two.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

[µeq]1 1.000 -0.997 -0.205 0.189 -0.195 0.253 0.190

[αeq]1 -0.997 1.000 0.126 -0.173 0.178 -0.225 -0.187

κeq -0.205 0.126 1.000 -0.180 0.184 -0.407 -0.172

[µk=1
neq ]1 0.189 -0.173 -0.180 1.000 -1.000 0.390 -0.595

[αk=1
neq ]1 -0.195 0.178 0.184 -1.000 1.000 -0.401 0.585

κk=1
neq 0.253 -0.225 -0.407 0.390 -0.401 1.000 0.431

τ̂k=1 0.190 -0.187 -0.172 -0.595 0.585 0.431 1.000

three categories of parameters which correlate.

Firstly, the pairs of parameters ([µeq]1, [αeq]1) and ([µk=1
neq ]1, [αk=1

neq ]1) have correlation num-

bers close to ±1. This is due to the structure of the Ogden–model which can lead to over-

parametrization even for only one deviatoric term within the corresponding part of the

energy. Since only parameters within the particular deviatoric terms are affected, these

correlations – though the respective parameters are instable in relation to each other –

will not have a significant influence on the quality of the solution.

Secondly, the parameters for the deviatoric part of the relaxation module have compara-

tively high correlation numbers in relation to the first relaxation time [([µk=1
neq ]1, τ̂k=1) and

([αk=1
neq ]1, τ̂k=1)]. As mentioned before, instabilities in finding one fixed relaxation time are

due to the general complex viscoelastic behavior of elastomers. Moreover, the values are

still too small to indicate the respective parameters as instable ones.

Remark 7.1.1 The tests might have too few information about the (viscoelastic) behavior

under compression (only parts around the hole are loaded under compression). The validity

of the identified set of parameters for compression–dominated loading, however, is not

investigated in this example but rather constitutes future work.

Remark 7.1.2 Since only one test for one specimen is considered in this study, no conclu-

sion about the validity of the identified parameters can be made. The method of parameter

identification for multiple tests, however, will be described in the following examples.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

Verification

Within the verification procedure the simulated data – calculated as based on the optimal

parameters for the FEM model with 2400 elements – is compared with the experimental

data used for the parameter identification. By this the quality of the identified parameters

and also the general ability of the constitutive model to describe the viscoelastic behavior

of the material is analyzed. In particular, two representative identification nodes out of

Ng = 59 are chosen. The first is referred to by number 30 and the second has been

mirrored back for representation and is referred by number 103 as shown in figure 7.31.

The verification shows that a very good qualitative and quantitative agreement between

the experiment and the simulation can be observed (see figures 7.7–7.9).
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Figure 7.7: End of the identification iteration. Displacement versus time curves and force versus dis-
placement curves for two representative identification nodes for the experimental and simu-
lated data.
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7.1 Polyurethane adhesive
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(a) 7th time step.
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(b) 13th time step.
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(c) 20th time step.

Figure 7.8: End of the iteration: Interpolated measured displacements (red) over the identification
nodes.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data
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(b) 33rd time step.
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(c) 40th time step.

Figure 7.9: End of the iteration: Interpolated measured displacements (red) over the identification
nodes.
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7.1 Polyurethane adhesive

In figure 7.10 the entire FEM model with 4800 elements is shown for different time steps.

(a) 8th time step. (b) 16th time step.

(c) 40th time step.

Figure 7.10: End of the iteration: Euclidean norm of the total Cauchy stresses.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

7.2 Closed cell polyurethane

In this example a parameter identification for a polyurethane foam is presented. Mi-

crocellular polyurethane elastomers exhibit a predominant closed cell structure and can

be produced – with regard to the designated application area – with different densities

between circa 0.35g/cm3 and 0.65g/cm3. These materials are used as, e.g. vibration

damping systems, as auxiliary springs in the suspension, as damper bearings, as steel

spring supports, as buffer stops, and as torque arms. Due to the cellular structure these

materials display slight transverse elongation and high volume compressibility (for further

reading about polyurethane chemistry and processing see, e.g. Leppkes [33], Becker et

al. [6] and Klempner [29]).

A common application for polyurethane foams within automotive construction is as spring

aids and bump stops (see figure 7.11). The prediction of the mechanical material behavior

Figure 7.11: Spring aid in a spring leg (Elastogran GmbH). Photo taken from R. Leppkes [33] by per-
mission of Verlag Moderne Industrie.

of these components by means of the FE analysis becomes increasingly more important

due to the increasing relevance of these parts as a contribution to the overall handling of

the car. Since they are often used as secondary springs in order to control on the limit

handling, especially the short time mechanical behavior is of interest for the simulation.

The cellular PUR investigated in this study has been provided by VIBRACOUSTIC

GMBH. Based on three different compression tests – conducted on two samples from

different charges with the same density and the same chemical composition – the identi-

fication of the material parameters of the viscoelastic material law (see chapter (3)) with

one relaxation module shall be estimated.

It needs to be mentioned that – due to the closed cell structure – in the first step of a

compression deformation the material behavior is dominated by the deformation of the

volume of the cells, and therefore is primarily dominated by the fluid part of the material.

Afterwards the deformation of the solid part mainly determines the deformation charac-

teristics. However, for the material law no particular approach for the description of the
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7.2 Closed cell polyurethane

mechanical behavior of the cellular microstructure is made. Nevertheless the applicability

of this constitutive model to the considered foam shall be investigated.

7.2.1 Experiments

The experimental data was determined by M. Bosseler of the ’Institute of Resource cen-

tered Product Development’ under the supervision of Prof. Dr.-Ing. R. Renz, University

of Kaiserslautern (see Bosseler et al. [11]).

The material is processed in straight cylinders with a diameter of 40 mm. The specimens

are 40 mm long, and for clamping on the ends steel round bars with the same diameter are

bond (see the right photography in figure 7.12). In a compression test this geometry of

the specimen in combination with its clamping will lead to inhomogeneous displacement

fields.

For the measurement of the displacement field on a part of the lateral surface of the

specimens the three dimensional image correlation photogrammetry (see subsection 4.2)

is used. Therefore a black and white stochastic pattern is applied onto the specimen’s

surface. During the tests synchronized stereo images of the pattern are recorded at dif-

ferent load stages using CCD cameras (Vosskühler 1300, resolution 1024 x 1280 pixels)

with 50mm objectives (Schneider Kreuznach). The three dimensional displacement field

is computed by using a photogrammetric evaluation procedure (ARAMIS 3).

The compression tests are conducted on a Zwick 1454 universal testing machine (load cell

±20kN). The load is applied in displacement control and transmitted by two parallel steel

plates as shown in the left photography in figure 7.12. In order to achieve a continuous

deformation measurement a smooth and bright illumination of the specimen is necessary.

Therefore two fluorescent tubes from the left and the right and a small cold light spot

from the front are installed.

40

40

Figure 7.12: Left: CCD cameras and testing machine. Right: specimen.

Before the conduction of the test, each specimen is loaded in six load cycles with the

maximal total displacement used in the respective later test. It turned out that this

number of load cycles is enough to cause a saturation of damage (Mullins effect). Figure

7.13 shows the stress softening in the first four load cycles. Sufficiently long before the

3Version 5.4 (Gesellschaft für optische Messtechnik mbH)
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

conduction of each test, the specimen is not loaded in order to exclude relaxation effects

of the previous test.
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Figure 7.13: Stress softening in the first four load cycles (Mullins effect) for the cellular PUR.

The test data are the force–time curves and the three–dimensional displacement fields

on the surface of the specimens. Three test programs A, B, and C performed on two

specimens are chosen.

Test A is a compression test. The maximal absolute value of the displacement of

25 mm is applied in 75 s. Every three seconds an image of the specimen is taken by

the CCD cameras for the displacement measurement.

Test B is a compression test with one load cycle. The maximal absolute value of

the displacement of 11.7 mm is applied in 6 s and hold for 6 s. Then the abso-

lute value of the total displacement is reduced in the following 38 s with a rate of

−0.25 mm/s. Each 0.5 s an image of the specimen is taken by the CCD cameras for

the displacement measurement.

Test C reflects 6 loading steps with hold times up to almost full stress relaxation.

The applied absolute values of the total displacements for the respective steps are

2.0 mm, 4.0 mm, 6.0 mm, 8.0 mm, 10.0 mm and 12.0 mm. At the end of each loading

step an image of the specimen is taken by the CCD cameras for the displacement

measurement.

For the tests B and C the same sample is applied, whereas the sample for the test A

derives from another charge – nevertheless it exhibits the same density, chemical compo-

sition and pore structure. With the choice of the test programs listed above the material

parameters of the viscoelastic constitutive law shall be identified for a large range of

loadings within different time domains. As mentioned above, for the simulation of, e.g.

spring aids and bump stops made out of the considered material, the material behavior

for small loads as well as for extreme loadings is of interest. Moreover, the averaging of
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7.2 Closed cell polyurethane

the material parameters respecting the scattering of the mechanical properties between

different samples shall be included.

The corresponding force–time curves for test A and test B are shown in figure 7.14. In

figure 7.15 the values for the measured forces after one hour of relaxation time in each of

the six loading steps are marked. Note that F is the total force in loading direction.
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(a) Test A.
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(b) Test B.

Figure 7.14: Measured force–time curves for the tests A and B. These force vs. time data are used for
the (force–) control of the corresponding simulations.
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Figure 7.15: Measured force after (almost) complete relaxation in six loading levels in test C. These
force levels are used for the (force–) control of the corresponding simulation.

7.2.2 Interpolation of experimental data

For the simulation of the tests two FEM discretizations of the specimen with 162 and

1296 eight–node standard displacement-based elements (Q1) are used. Thereby, symmetry
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

conditions in radial direction are applied for the FE models and hence only a quarter of the

base is discretized. The boundary conditions for both bases are chosen in correspondence

with the experiments whereby the nodes on one base are fixed in all directions. The nodes

on the other plane are fixed in the directions in the plane of the base (x and y) and in

longitudinal (z) direction uniaxial normal forces are applied whereby warping of the plane

is prevented. Rigid body motion is excluded. Figure 7.16 shows the entire FEM mesh

with the discretization of the respective corresponding FEM model with 1296 elements.

NO 7

NO 5

NO 3

Figure 7.16: Entire FEM model with the discretization of the respective corresponding FEM model with
1296 elements; Identification nodes NO 3, NO 5 and NO 7.

In order to reduce the computational costs for the identification routine the optimal

material parameters determined with the 162–element model at level one are used as

initial parameters for the optimization based on the 1296–element model at level two.

Since the coordinates of the measurement points generally do not coincide with the coor-

dinates of the identification nodes, the measured displacements are interpolated linearly

on the identification nodes. For the symmetric cylinder the two dimensional displace-

ments in longitudinal and radial direction for the measurement points on a straight line

along the exterior of the specimens are interpolated on the corresponding identification

nodes on the straight line along the exterior of the FE model whereby the two nearest

measurement points to the respective identification node are used (see section 4.3).

In order to make the three tests A, B, and C comparable for the later identification

throughout identical identification nodes are chosen for all three tests.

7.2.3 Least squares problem

The identification shall be carried out concentrating on the short time viscoelastic behav-

ior. Considering the short loading level of 6 s – which defines this relaxation process most
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explicitly – it becomes obvious that the material exhibits – amongst others – this very

short relaxation time. Without taking into account the whole relaxation process for long

time loads but instead only considering the material behavior for six loading levels with

(almost) full relaxation, the identification is carried out for the viscoelastic material with

one relaxation term (N = 1 in equation (3.8)). Thereby, within the equilibrium term of

the free energy function Ψ eq – as defined in equation (3.60) – the part [Ψ eq]dev consists of

one term, so that (NT = 1) holds. For the one non–equilibrium part Ψ k=1 the number of

terms in [Ψ k=1]dev is given by Nk=1
T = 1 as well, so that the corresponding parameter set

is given by κ = [[µeq]1, [αeq]1, κeq, [µ
k=1
neq ]1, [α

k=1
neq ]1, κ

k=1
neq , τ̂k=1]T.

By means of solving a combined sum of least squares for all three tests, all parameters

shall be identified simultaneously. Therewith we aim at decreasing the instability problems

described in section 4.5. As already mentioned, an insufficient number of testing data can

cause instable or non–unique parameter estimates. If the data is incomplete it cannot

cover the whole range of intended model applications (see Mahnken [40]). In addition,

by simultaneous identification an optimal set of parameters in the sense of an optimal

adjustment of the constitutive model – being subject to a model error itself – to all tests is

achieved. As already mentioned, the consideration of all tests in one optimization iteration

also leads to an improved adjustment of the imbalances which arise from scattering of

experimental data.

In order to identify the parameters for the tests A, B, and C simultaneously, the least

squares approach in equation (4.8) is modified, namely

f(κ) =
1

2

Ng∑

i=1

[ TA∑

j=1

[W ij · [uij(κ) − u
exp
ij ]]2

︸ ︷︷ ︸
A

+

TB∑

k=1

[W ik · [uik(κ) − u
exp
ik ]]2

︸ ︷︷ ︸
B

+

TC∑

l=1

[W il · [uil(κ) − u
exp
il ]]2

︸ ︷︷ ︸
C

]
, (7.2)

whereby W ij, W ik, and W il are weighting matrices (see e.g. Bard [3]) with W ij =

diag([Wij ]1, [Wij]2), W ik = diag([Wik]1, [Wik]2), and W il = diag([Wil]1, [Wil]2). Thereby

[Wij ]1, [Wik]1, and [Wil]1 are the weights for the respective displacements in longitudinal

direction whereas [Wij]2, [Wik]2, and [Wil]2 are the weights for the respective displacements

in transverse (radial) direction. For the simulation of the displacement fields uij(κ),

uik(κ) and uil(κ) the FEM simulation is force–controlled based on the measured force

signals shown in figures 7.14 and 7.15. Moreover, Ng denotes the number of identification

nodes which is identical for all tests. Nevertheless Ng is dependent on the discretization

for the different FE models in the identification process as described in subsection 7.3.2.

The number of identification nodes at level one yields Ng = N lev1
g = 4 and at level two it

yields (Ng = N lev2
g = 7).

In test A the number of time steps is TA = 25 with a time step length of ∆t = 3 s. For B

the number of time steps corresponds to TB = 100 with a time step length of ∆t = 0.5 s.

Within test C we account for a total number of 6 time steps with a time step length of

∆t → ∞, which means that only the equilibrium terms are contributing to the simula-

tion results for these steps. The displacements calculated by FEM uij(κ), uik(κ), uil(κ)
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

and the measured displacements u
exp
ij , uexp

ik , uexp
il have, respectively, two displacement di-

rections. Thus for the FEM discretization with 1296 elements the number of terms in

the least square sum adds up to 7 × [25 + 100 + 6] × 2 = 1834 per iteration step of the

optimization algorithm.

The longitudinal displacements are larger compared with the transverse (radial) displace-

ments. In addition, we want to emphasize some particular time steps of the tests as well

as the tests relative to each other. Accordingly, the matrices W ij, W ik, and W il referring

to each time step of the tests are incorporated.

For all time steps 1 ≤ j ≤ TA and all identification nodes 1 ≤ i ≤ Ng within test A we

assume

W ij = diag(4, 6) . (7.3)

Moreover, the weights for test B are

W ik = diag(1, 8) ∀ 1 ≤ i ≤ Ng ∧ 1 ≤ j ≤ TB , (7.4)

and for test C we apply

W il = diag(1, 4) ∀ 1 ≤ i ≤ Ng ∧ 1 ≤ k ≤ TC . (7.5)

Note that different weights will lead to a different solution.

Due to the non–convexity of the objective function and the existence of (many) local

minima the hybrid method of application of the Levenberg–Marquard method to find

different local minima for stochastically chosen start parameter sets is used (see section

4.4). Basically it can be observed that for each new starting point a number of eight

iteration steps are enough to detect if the starting point leads to a local minimum or

whether this iteration can be discarded because of divergence. In order to save computing

time the hybrid method described above is mainly applied in the first level, whereby the

FEM model with 162 elements is used for the identification routine.

7.2.4 Identified parameter sets

Identified material parameters

First the first level is considered, whereby the FEM model with 162 elements is used for

the identification routine. Out of all investigated local minima the two parameter sets

κ = κlev1

lm1
and κ = κlev1

lm2
are generating the smallest weighted sums of squared differences,

whereby these sums are almost equal (see table 7.4). For the identification at level two

Table 7.4: Determined local minima at level one.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

[MPa] [−] [MPa] [MPa] [−] [MPa] [s]

κlev1

lm1
0.80232 1.69847 1.19092 0.62331 19.83460 9.63142 0.14589

κlev1

lm2
0.76338 1.75274 1.22298 0.71792 10.04860 10.17334 0.21500
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7.2 Closed cell polyurethane

these parameter sets are chosen as start parameters. The iterations at the second level

with 1296 elements yield only little decrease of the sum of squared differences and also

do not change the respective parameter sets significantly as it can be seen in table 7.5.

In the following the parameter set κlev2

lm2
will be denominated as ’optimal’ because its

Table 7.5: Determined local minima at level two.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

[MPa] [−] [MPa] [MPa] [−] [MPa] [s]

κlev2

lm1
0.78486 1.73661 1.17537 0.61717 19.83313 9.62710 0.14547

κlev2

lm2
0.77276 1.77816 1.16421 0.72819 10.04931 10.17078 0.21958

corresponding verification shows that the simulation of the tests with these parameters

yields a better time dependent behavior – especially in test B – than with the parameters

κlev2

lm1
.

Remark 7.2.1 Since the considered material is mainly used for components which are

loaded under compression within their application areas, only compression tests are con-

sidered. Hence, the tests have too few information about the (viscoelastic) behavior under

tension. The validity of the identified set of parameters for tension–dominated loading,

however, is not investigated in this work.

Remark 7.2.2 Note that the identified compression modulus for the equilibrium term κeq

is – in combination with the parameters for the deviatoric part of the equilibrium energy

and in comparison to the respective parameters for compact elastomers – small, which

underlines the well known fact that these kinds of cellular materials display only slight

transverse strain and high volume compressibilities.

Instabilities in the solution

As mentioned above, due to instabilities there exist several parameter sets which lead to a

insignificantly higher least squares sum, which is – as discussed in section 4.5 – a common

problem in parameter estimation. In order to evaluate the significance for the quality of

the solution, the correlation matrix for the optimal parameters shown in table 7.6 (see

also equations (4.15) and (4.16)) is considered. There are two categories of parameters

Table 7.6: Correlation matrix for the set of optimal parameters at level two.
[µeq]1 [αeq]1 κeq [µk=1

neq ]1 [αk=1
neq ]1 κk=1

neq τ̂k=1

[µeq]1 1.000 -1.000 -0.027 0.310 -0.305 -0.164 0.172

[αeq]1 -1.000 1.000 0.021 -0.313 0.308 0.169 -0.177

κeq -0.027 0.021 1.000 -0.018 0.020 -0.006 -0.055

[µk=1
neq ]1 0.310 -0.313 -0.018 1.000 -1.000 -0.896 0.897

[αk=1
neq ]1 -0.305 0.308 0.020 -1.000 1.000 0.904 -0.905

κk=1
neq -0.164 0.169 -0.006 -0.896 0.904 1.000 -0.995

τ̂k=1 0.172 -0.177 -0.055 0.897 -0.905 -0.995 1.000
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

which correlate.

Firstly, the pairs of parameters ([µeq]1, [αeq]1) and ([µk=1
neq ]1, [αk=1

neq ]1) have correlation num-

bers equal to ±1. This is due to the structure of the Ogden–model which can lead to

overparametrization even for only one deviatoric term within the corresponding part of the

energy. Since only parameters within the particular deviatoric terms are affected, these

correlations – though the respective parameters are instable in relation to each other –

will not have a significant influence on the quality of the solution.

Secondly, all parameters for the relaxation module have very high correlation numbers

in relation to each other. Generally – as mentioned in subsection 7.1.3 – instabilities in

finding one fixed relaxation time are due to the complex viscoelastic behavior of elas-

tomers. On the one hand, within the constitutive law there is no explicit approach for

the description of the cellular structure, and a constitutive law cannot perfectly describe

all characteristics of a material anyhow. In addition these parameters have to fit to the

viscoelastic behavior in one load cycle (test B) and a monotonic compression test (test B)

with different load rates at the same time. On the other hand, experimental data is always

subject to errors (measurement errors, scattering), especially for time–dependent mate-

rial behavior, which makes it rather difficult to determine one fixed relaxation time τ̂k=1

for multiple affected tests. Nevertheless it needs to be mentioned, that these correlation

numbers are so high, that the parameters for the whole viscous part of the constitutive

model can be specified as being indifferent. The following verification in which the results

of the simulation are compared to the experimental measurements gives conclusion about

the significance of these instabilities for the quality of the identified parameters.

Remark 7.2.3 Note that the correlation coefficients of the equilibrium compression mod-

ulus κeq between all the other parameters are very small which is an indicator for the

good stability of κeq at the solution. Moreover, this is an important result for the evalu-

ation of the reliability of the identified parameters since the considered material is under

compression in the tests – as well as in the mechanical application area as, e.g. a bump

stop.

7.2.5 Verification

Within the verification procedure the simulated data – calculated as based on the optimal

parameters κlev2

lm2
for the FEM model with 1296 elements – is compared with the exper-

imental data used for the parameter identification. By this the quality of the identified

parameters and also the general ability of the constitutive model to describe the viscoelas-

tic behavior of the material is analyzed. In particular, three representative identification

nodes out of Ng = 7 are chosen which are referred to by numbers 3, 5 and 7 as shown in

figure 7.16. Note that Uz is the displacement in longitudinal (axial) direction and Ur is

the displacement in transverse (radial) direction.
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Verification for test A
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Figure 7.17: End of the identification iteration for test A. Displacement versus time curves and force ver-
sus displacement curves for three representative identification nodes for the experimental
and simulated data.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

(a) 1th time step.

(b) 10th time step.

Figure 7.18: End of the iteration for test A: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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(a) 15th time step.

(b) 25th time step.

Figure 7.19: End of the iteration for test A: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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(a) 1th time step. (b) 10th time step.

(c) 15th time step. (d) 25th time step.

Figure 7.20: End of the iteration for test A: Euclidean norm of the total Cauchy stresses.
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Verification for test B
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Figure 7.21: End of the identification iteration for test B. Displacement versus time curves and force ver-
sus displacement curves for three representative identification nodes for the experimental
and simulated data.
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(a) 6th time step.

(b) 12th time step.

Figure 7.22: End of the iteration for test B: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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(a) 24th time step.

(b) 48th time step.

Figure 7.23: End of the iteration for test B: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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Verification for test C
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Figure 7.24: End of the identification iteration for test C. Displacement versus time curves and force ver-
sus displacement curves for three representative identification nodes for the experimental
and simulated data.
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(a) 3th time step.

(b) 4th time step.

Figure 7.25: End of the iteration for test C: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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(a) 5th time step.

(b) 6th time step.

Figure 7.26: End of the iteration for test C: Left sides of the lateral surface areas: Simulation of the
specimen with red marked identification nodes; Right sides of the lateral surface areas:
Measured displacement field in the experiment (only a part of the specimen is measured)
with blue marked interpolated measured displacements.
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As it can be seen in the verification, the applied viscoelastic material law with the identi-

fied parameters is only conditionally appropriate to simulate the mechanical time depen-

dent behavior of the considered polyurethane. The identification has also been carried out

with two (NT = 2) and three (NT = 3) terms for the isochoric part [Ψ eq]dev of the equi-

librium free energy Ψ eq. Thereby, no significant further reduction of the sum of squared

differences can be observed. These additional parts of [Ψ eq]dev lead to overparametrization

with the instability problems as already mentioned in chapter 6. Nevertheless, the verifi-

cation shows that the local minimization of the weighted least squares functional delivers

a parameter set which enables to fit the simulations to the respective experiments for

all three tests in an average (weighted) way. Moreover, it needs to be mentioned that

the identification has been carried out considering a large loading range. Note that the

identified parameters are only valid in the considered time ranges of the tests A and B

and accordingly at (almost) full relaxation.
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7.3 Compact polyurethane

Considering the short– and long time behavior of an elastomer with the aim of describing

different relaxation processes, multiple relaxation mechanisms have to be implemented

within the constitutive routine. For the parameter identification of these viscoelastic

material laws the parameters are usually split into different sets which are each identified

individually by one test. In doing so, in order to identify the parameters of the equilibrium

part, the experiments have to deliver test data with fully completed stress relaxation.

Thereafter the material parameters of the non–equilibrium term(s) often are identified by

a single test where the viscous stress relaxation is investigated over a chosen time period

while the parameters of the equilibrium term are fixed.

As already mentioned in the previous example by simultaneous identification of all mate-

rial parameters for different tests an optimal set of parameters in the sense of an optimal

adjustment of the constitutive model – being subject to a model error itself – to all tests

is achieved. The consideration of all tests in one optimization iteration also leads to an

improved adjustment of the imbalances which arise from scattering of experimental data.

Moreover the difficulties due to an insufficient number of testing data, which can cause

instable or non–unique parameter estimates, might be avoided by taking into account

several tests. Then all intended model applications and the respective material parameters

can be activated by the experimental data (see Mahnken [40]).

The procedure will be presented for the viscoelastic material law for the example of a

compact polyurethane in the following subsections. The material with the trade name

PU D44 has a Shore A hardness of 80 and, referring to the data sheet, a very high

elongation at break of circa 500%. Moreover it features a high abrasion resistance and

good damping characteristics. For this reason PU D44 has multi–functional application

areas and is used for instance as spring–elements, coupling elements, rolls, gaskets and

bumpers.

By verification it can be shown that the proposed procedure delivers a very good agree-

ment between experimental and simulated data for all investigated tests. Moreover, as

the viscoelastic behavior for long–time intervals is considered, with this approach time–

consuming tests with fully completed stress relaxation are no longer required.

7.3.1 Experiments

The experimental data was determined by M. Bosseler of the ’Institute of Resource cen-

tered Product Development’ under the supervision of Prof. Dr.-Ing. R. Renz, University

of Kaiserslautern (see Bosseler et al. [11]).

The material is PU D44 (polyurethane) processed in plates with a thickness of 2.2 mm.

The specimens are 25 mm wide and have a clamping length of 60 mm. For the later iden-

tification the tests have to deliver sufficient information about the deformation behavior

of the material. Thus for the specimens a geometry is to be chosen which immediately

leads to inhomogeneous displacement fields in a tensile test. For this reason a hole of

10 mm is punched in the middle of the specimens.

The tensile tests are conducted in displacement control. Before the conduction of the first

test, the specimen is loaded in six load cycles with the maximal displacement used in the
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later tests. It turned out that this number of load cycles is enough to cause a saturation of

damage (Mullins effect). Sufficiently long before the conduction of each test, the specimen

is not loaded in order to exclude relaxation effects of the previous test.

In the right photography in figure 7.27 the specimen in a tensile test is shown whereby

for the optical deformation analysis by means of image correlation photogrammetry a

stochastic pattern has been applied onto the specimen’s surface. The test data are the

Figure 7.27: Specimen; Specimen with a stochastic pattern in a tensile test.

force–time curves and the three–dimensional displacement field on the surface of the

specimen measured by the system ARAMIS 4. Thereby, using two CCD cameras 5 with

50 mm objectives (see the photography in figure 4.1), synchronized stereo images of the

specimen are recorded at different time steps of the tests. By means of photogrammetric

evaluation procedures for the image processing, the measuring system evaluates the three

dimensional displacement field associated with each respective time step.

For the later identification only the (two–dimensional) displacements measured along the

longitudinal and transverse direction are used.

Three tests A, B, and C performed on one specimen are chosen. The corresponding force–

time curves are shown in figure 7.28, whereby F is the total force in loading direction.

Test A is a tension test with one load cycle. The maximal displacement of 30 mm is

applied in 30 s and held for 6 s. Then the total displacement is reduced in the

following 53 s with a displacement rate of −0.5 mm/s. Each second an image of the

specimen is taken by the CCD cameras for the displacement measurement.

Test B is a relaxation test. The maximal displacement of 30 mm is applied in 31 s and

hold for 113 s. Each second an image of the specimen is taken by the CCD cameras

for the displacement measurement.

4Version 5.4 (Gesellschaft für optische Messtechnik mbH)
5Type: CCD 1300 (Vosskühler)
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Figure 7.28: Measured force–time curves for test A (top left), B (top right) and C (bottom). These force
vs. time data are used for the (force–) control of the corresponding simulations.

Test C reflects six loading steps. The applied total displacements of the specimen are

5.25 mm, 10.50 mm, 15.75 mm, 21.00 mm, 26.25 mm and 31.70 mm. At the end of

each loading step an image of the specimen is taken by the CCD cameras for the

displacement measurement. The time for the load application between each of these

steps is 45 s.

7.3.2 Interpolation of experimental data

For the simulation of the tests four FEM discretizations of the specimen with 96, 216,

864 and 2400 eight–node enhanced elements (Q1E9) (see Simo and Armero [69]) are used.

Thereby, symmetry conditions in transverse and thickness direction are applied for the

FE models and hence only half of the width and half of the thickness is discretized.

The boundary conditions for both ending planes normal to the longitudinal direction are

chosen in correspondence with the experiments whereby the nodes on one plane are fixed in

longitudinal and transverse direction. The nodes on the other plane are fixed in transverse
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direction and in longitudinal direction uniaxial normal forces are applied whereby warping

of the plane is prevented. In addition for both planes the edges and straight lines through

the nodes along the transverse direction are prevented from curvature and hence can only

move parallel in thickness direction. Rigid body motion is excluded. Figure 7.29 shows the

entire FEM meshes with the discretizations of the respective corresponding FEM models

which serve for the identification routine. In order to reduce the computational costs for

(a) Level one (4 × 96 elements). (b) Level two (4 × 216 elements).

(c) Level three (4 × 864 elements). (d) Level four (4 × 2400 elements).

Figure 7.29: Entire FEM models with the discretizations of the respective corresponding FEM models
which serve for the identification routine.

the identification routine these FEM discretizations are used in ascending order within

a multi level strategy (see Mahnken and Stein [47]). The optimal material parameters

determined with the 96–element model at level one are used as initial parameters for the

optimization based on the 216–element model at level two and so forth.

Since the coordinates of the measurement points generally do not coincide with the coor-

dinates of the identification nodes, the measured displacements are interpolated linearly

on the identification nodes by triangulation (see subsection 4.3.2). For the triangulation

the displacements of the three measurement points being nearest to the respective identifi-

cation node are used. As only half of the width is discretized, the measured displacements

of the opposite side of the longitudinal centerline are mirrored onto the considered side

and two separate triangulations for both displacement fields on the identification nodes

are performed. For each identification node and displacement direction the mean value

of these two data sets is taken into account.
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7 Parameter identification for finite viscoelasticity on the basis of real measurement data

In order to make the three tests A, B, and C comparable for the later identification

identical identification nodes are chosen throughout for all three tests.

7.3.3 Least squares problem

In order to identify the parameters for the tests A, B, and C simultaneously, the least

squares approach in equation (4.8) is modified, namely

f(κ) =
1

2

Ng∑

i=1

[ TA∑

j=1

[W ij · [uij(κ) − u
exp
ij ]]2

︸ ︷︷ ︸
A

+

TB∑

k=1

[W ik · [uik(κ) − u
exp
ik ]]2

︸ ︷︷ ︸
B

+

TC∑

l=1

[W il · [uil(κ) − u
exp
il ]]2

︸ ︷︷ ︸
C

]
. (7.6)

whereby W ij , W ik, and W il are weighting matrices with W ij = diag([Wij ]1, [Wij ]2),

W ik = diag([Wik]1, [Wik]2), and W il = diag([Wil]1, [Wil]2). Thereby [Wij]1, [Wik]1, and

[Wil]1 are the weights for the respective displacements in longitudinal direction whereas

[Wij ]2, [Wik]2, and [Wil]2 are the weights for the respective displacements in transverse

direction. For the simulation of the displacement fields uij(κ), uik(κ) and uil(κ) the

FEM simulation is force–controlled based on the measured force signals shown in figure

7.28. Moreover, Ng denotes the number of identification nodes which is identical for all

tests. Nevertheless Ng is dependent on the discretization for the different FE models in

the identification process as described in subsection 7.3.2. The number of identification

nodes is at level one: Ng = N lev1
g = 19. At the levels two (Ng = N lev2

g = 43) and three

(Ng = N lev3
g = 43) the discretizations only differ in the number of elements in thickness

direction. For level four the discretization yields Ng = N lev4
g = 116.

In test A the number of time steps is TA = 89 with a time step length of ∆t = 1 s. For B

the number of time steps corresponds to TB = 144 with a time step length of ∆t = 1 s.

Within test C we account for a total number of 489 time steps with a time step length

of ∆t = 45 s. However, not all of these time steps contribute to the least squares sum.

Due to the fact that the clamping displacements are fixed during the individual loading

steps use is made of the displacement field measured at the end of each loading step for

77 supporting points so that TC = 77× 6 = 462. Although the first 76 supporting points

are not exact measurement data, they can be used to specify these displacement fields

with a sufficient accuracy. This is also reflected by the later on presented displacement

curves for the short–time relaxation test B. Moreover, this small reduction of accuracy is

balanced by smaller weights W il on the first 76 supporting points in each loading step (see

below). The displacements calculated by FEM uij(κ), uik(κ), uil(κ) and the measured

displacements u
exp
ij , uexp

ik , uexp
il have, respectively, two displacement directions. Thus for

the FEM discretization with 2400 elements the number of terms in the least square sum

adds up to 116 × [89 + 144 + 462] × 2 = 161240 per iteration step of the optimization

algorithm. By taking into account that the displacement data of the experiments has

been mirrored, the total number of displacement data compared within the optimization

algorithm is 2 × 161240 = 322480 per iteration step.
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The longitudinal displacements are much larger compared with the transverse displace-

ments. In addition, we want to emphasize some particular time steps of the tests as well

as the tests relative to each other. Accordingly, the matrices W ij, W ik, and W il referring

to each time step of the tests are incorporated.

For all time steps 1 ≤ j ≤ TA and all identification nodes 1 ≤ i ≤ Ng within test A we

assume

W ij = diag(1, 8) . (7.7)

The weights for test B are

W ik = diag(1, 8) ∀ 1 ≤ i ≤ Ng ∧ 1 ≤ k ≤ 31 (7.8)

and

W ik = diag(2 , 8) ∀ 1 ≤ i ≤ Ng ∧ 32 ≤ k ≤ TB . (7.9)

The weights for test C are for the first 76 supporting points in each loading step

W il = diag(1, 4) ∀ 1 ≤ i ≤ Ng ∧ l ∈ [77, 154, 231, 308, 385, 462] (7.10)

and at the end of each loading step

W il = diag(2, 8) ∀ 1 ≤ i ≤ Ng ∧ 1 ≤ l ≤ TC

∧ l /∈ [77, 154, 231, 308, 385, 462] . (7.11)

7.3.4 Choice of the model structure

Apparently, the structure of the viscoelastic model has to be adjusted for the simulation of

the tested material. The comparison of tests A, B, and C shows that the material exhibits

two defined relaxation processes in the considered time ranges. Thus two relaxation terms

k = {1, 2} are implemented. Secondly the number of terms in the sum of the Ogden–

models for the equilibrium and the two non–equilibrium terms has to be chosen. From

the authors experience for the considered deformation ranges the implementation of more

than one term will not lead to a significant improvement (lowering of the least squares

sum in parameter identification) but might lead to an instable or non–unique solution for

the identified material parameters (see also chapter 6). In addition, the parameters for

the extra terms implicate extra computational costs. Hence for the equilibrium term, for

the first relaxation module and for the second relaxation module we accept NT = Nk=1
T =

Nk=2
T = 1.

Hence, the set of material parameters for the identification problem is

κ = [[µeq]1, [αeq]1, κeq, [µ
k=1
neq ]1, [α

k=1
neq ]1, κ

k=1
neq , τ̂k=1, [µk=2

neq ]1, [α
k=2
neq ]1, κ

k=2
neq , τ̂k=2]T . (7.12)

For simplicity, the subindex for the sum terms mentioned above is omitted

κ = [µeq, αeq, κeq, µ
k=1
neq , αk=1

neq , κk=1
neq , τ̂k=1, µk=2

neq , αk=2
neq , κk=2

neq , τ̂k=2]T . (7.13)

The rheological network of the chosen model structure might be represented in the form of

two Maxwell elements in parallel with an equilibrium spring as shown in figure 7.30. The

springs stand for the respective nonlinear functions of the corresponding strains b, bk=1
e

and bk=2
e . The respective parameter sets which are associated directly to these nonlinear

functions are assigned to the springs in figure 7.30.
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µeq, αeq, κeq

µk=1
neq , αk=1

neq , κk=1
neq , τ̂k=1

µk=2
neq , αk=2

neq , κk=2
neq , τ̂k=2

σ

Figure 7.30: Rheological network of the model structure.

7.3.5 Parameter identification process

Because of the non–convexity of the objective function and the existence of (many) local

minima the hybrid method of application of the Levenberg–Marquard method to find

different local minima for stochastically chosen start parameter sets is used (see section

4.4).

First level (FEM model with 96 elements): In order to save computing time the

above described hybrid method described above is mainly applied in the first level,

whereby the FEM model with 96 elements is used for the identification routine. As

an example, table 7.7 shows a part of the iteration leading to the smallest of all investi-

gated local minima in κ = κlev1

lm1
. Hereby, the weighted sum of squared differences for the

start of the iteration f lev1

start1 and for the end of iteration f lev1

lm1
(after seven iteration steps)

have the relation f lev1

lm1
≈ 0.0502 f lev1

start1.

Table 7.7: Example of a start parameter set and end parameter set κlev1

lm1
within the iteration of the first

level.
µeq αeq κeq µk=1

neq αk=1
neq κk=1

neq τ̂k=1 µk=2
neq αk=2

neq κk=2
neq τ̂k=2

[MPa] [−] [MPa] [MPa] [−] [MPa] [s] [MPa] [−] [MPa] [s]

Start 1.4968 2.6458 7.2937 2.9747 1.5146 0.1 4.2497 2 2 0.1 9814.0

End
“
κ

lev1

lm1

”
1.6136 2.4982 9.1494 3.0075 1.5718 0.1527 4.1338 1.9504 1.2481 0.6154 9846.8

The parameter sets κlev1

lmi
for the four local minima with the smallest weighted sum of

squared errors determined at level one are listed in table 7.8. Thereby, as the least

squares functional is weighted we do not designate the values of the weighted sum of

squared errors f levi

lmi
. These errors for different parameter sets are compared by referring

to f lev1

lm1
for the parameter set κlev1

lm1
by defining ∆f lev1

lmi
= 100 (f lev1

lmi
− f lev1

lm1
)/f lev1

lm1
.

Second, third, and fourth level (FEM models with 216, 814, and 2400 elements):

At the end of the first level the two sets of parameters κlev1

lm1
and κlev1

lm2
, which generate the
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Table 7.8: Determined local minima at level one.
∆f lev1

lmi
µeq αeq κeq µk=1

neq αk=1
neq κk=1

neq τ̂k=1 µk=2
neq αk=2

neq κk=2
neq τ̂k=2

[MPa] [−] [MPa] [MPa] [−] [MPa] [s] [MPa] [−] [MPa] [s]

κ
lev1

lm1
0 1.6136 2.4982 9.1494 3.0075 1.5718 0.1527 4.1338 1.9504 1.2481 0.6154 9846.8

κ
lev1

lm2
2.2 % 1.2686 2.7052 9.7860 2.0348 1.6451 0.0411 6.7217 3.1622 0.9609 0.1008 12956.9

κ
lev1

lm3
3.6 % 1.4331 2.5806 9.8934 2.0186 1.5051 0.2380 7.7610 2.8944 0.9530 0.2323 11765.0

κ
lev1

lm4
4.8 % 1.9386 2.3250 9.2410 2.7570 1.1119 0.0741 7.7249 1.6730 1.1775 0.4444 7497.17

smallest sums of squared differences out of all investigated local minima, are chosen as

start parameters for the following level whereby κlev1

lm1
remains to feature the parameter set

with the smaller weighted sum of squared errors. The following identifications with the

FEM models with 216, 864, and 2400 elements finally yield the optimal solution shown

in table 7.9. Although the number of identification nodes at level four is circa 2.7 times

Table 7.9: Multi level iteration for κlev1

lm1
.

µeq αeq κeq µk=1
neq αk=1

neq κk=1
neq τ̂k=1 µk=2

neq αk=2
neq κk=2

neq τ̂k=2

[MPa] [−] [MPa] [MPa] [−] [MPa] [s] [MPa] [−] [MPa] [s]

κ
lev1

lm1
1.6136 2.4982 9.1494 3.0075 1.5718 0.1527 4.1338 1.9504 1.2481 0.6154 9846.8

κ
lev2

lm1
1.6503 2.4757 9.0033 3.0314 1.5873 0.1628 4.4070 2.0290 1.2012 0.6300 9823.86

κ
lev3

lm1
1.6487 2.4780 8.9790 3.0246 1.5601 0.1678 4.5127 2.0597 1.1847 0.6408 9810.65

κ
lev4

lm1
1.6618 2.4688 8.9079 3.0272 1.5599 0.1694 4.5530 2.0773 1.1795 0.6390 9806.90

higher than at level three, the change between these levels does not have a big influence on

the weighted sum of squared differences. Hereby, the weighted sum of squared differences

for the start of the iteration f lev4

start1 and for the end of iteration f lev4

lm1
(after two iteration

steps) have the relation f lev1

lm1
≈ 0.9935 f lev1

start1. After four more iteration steps no further

(significant) reduction of f lev1 can be observed.

It is to be mentioned that different weights as shown in subsection 7.3.3 will lead to a

different solution. The later verification by comparison of the calculated displacements

with the parameter set κlev4

lm1
and measured displacements for the identification nodes

gives information about the error pattern of the individual parts of the sum of squared

differences. This allows to review if the weighting of the three tests, time steps and

displacement directions among each other has been chosen reasonably.

Secondly, in the identification iteration some instabilities occurred (see also section 4.5).

The consequence of these instabilities is that there exist several parameter sets which lead

to a insignificantly higher least squares sum. In order to evaluate the significance for the

quality of the solution, the correlation matrix for the optimal parameters shown in table

7.10 (see also equations (4.15) and (4.16)) is considered.

The absolute values of most of the correlation numbers are small. There are three cate-

gories of parameters which correlate.

Firstly, the pairs of parameters (µeq, αeq), (µk=1
neq , αk=1

neq ) and (µk=2
neq , αk=2

neq ) have correlation

numbers close to ±1. This is due to the structure of the Ogden–model which can lead

to overparametrization even for only one deviatoric term within the corresponding part
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Table 7.10: Correlation matrix for the set of optimal parameters κlev4

lm1
.

µeq αeq µk=1
neq αk=1

neq κeq κk=1
neq τ̂k=1 µk=2

neq αk=2
neq κk=2

neq τ̂k=2

µeq 1.000 -0.985 0.175 -0.175 0.304 0.035 -0.194 -0.720 0.476 -0.246 -0.876

αeq -0.985 1.000 -0.111 0.110 -0.388 -0.034 0.135 0.802 -0.592 0.344 0.795

µk=1
neq 0.175 -0.111 1.000 -1.000 -0.009 0.205 -0.909 0.268 -0.403 0.113 -0.409

αk=1
neq -0.175 0.110 -1.000 1.000 0.009 -0.216 0.901 -0.270 0.405 -0.114 0.409

κeq 0.304 -0.388 -0.009 0.009 1.000 0.074 0.004 -0.421 0.429 -0.937 -0.236

κk=1
neq 0.035 -0.034 0.205 -0.216 0.074 1.000 -0.020 -0.015 0.010 -0.128 -0.058

τ̂k=1 -0.194 0.135 -0.909 0.901 0.004 -0.020 1.000 -0.199 0.325 -0.100 0.396

µk=2
neq -0.720 0.802 0.268 -0.270 -0.421 -0.015 -0.199 1.000 -0.952 0.519 0.327

αk=2
neq 0.476 -0.592 -0.403 0.405 0.429 0.010 0.325 -0.952 1.000 -0.576 -0.031

κk=2
neq -0.246 0.344 0.113 -0.114 -0.937 -0.128 -0.100 0.519 -0.576 1.000 0.104

τ̂k=2 -0.876 0.795 -0.409 0.409 -0.236 -0.058 0.396 0.327 -0.031 0.104 1.000

of the energy. Since only parameters within the particular deviatoric terms are affected,

these correlations will not have a significant influence on the quality of the solution.

Secondly, the parameters for the deviatoric part of the first relaxation module strongly

correlate with the first relaxation time [(µk=1
neq , τ̂k=1) and (αk=1

neq , τ̂k=1)] which arises from

different facts: On the one hand, a constitutive law cannot perfectly describe all char-

acteristics of a material and these parameters have to fit to the viscoelastic behavior in

one load cycle (test A) and a relaxation (test B) at the same time. On the other hand,

experimental data is always subject to errors (measurement errors, scattering), especially

for time–dependent material behavior, which makes it rather difficult to determine one

fixed relaxation time (τ̂k=1) for multiple affected tests.

Thirdly, the parameters for the deviatoric part of the equilibrium part strongly correlate

with the second relaxation time [(µeq, τ̂k=2) and (αeq, τ̂k=2)]. In addition the compression

modules (κeq, κk=2
neq ) and the parameters (αeq, µk=2

neq ) for the equilibrium part and the sec-

ond relaxation part have high correlation numbers. Within the experimental data of test

C six loading steps are considered each one delivering contributions to identify the second

relaxation time. Since primarily the relaxation of the second relaxation term leads to the

identification of the equilibrium parameters, the above mentioned difficulty of determining

one fixed relaxation time for multiple affected tests (loading steps) causes this instability.

The high variances of τ̂k=2 for the different local minima at level one (see table 7.9) are

the result of this instability.

Remark 7.3.1 Since the scope of this work is the parameter identification for viscoelas-

ticity at long–time intervals under tension, the tests might have too few information about

the (viscoelastic) behavior under compression (only parts around the hole are loaded under

compression). The validity of the identified set of parameters for compression–dominated

loading, however, is not investigated in this work but rather constitutes future work.

Remark 7.3.2 Since the order of magnitude of the parameters differs, a parameter weight

V (j) is employed to the calculation of the iteration step (see also equation 4.10)

∆ κ = κ(j+1) − κ(j) = −V (j) · [α(j) H
(j)
LM · ∂κf(κ(j))] . (7.14)

Conceptually speaking, the diagonal matrix V (j) weights the step ∆ κı for each parameter

corresponding to the magnitude of κ
(j)
ı , whereby

V (j) = diag
(

a
(j)
1 , ... , a

(j)
11

)
. (7.15)
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For the elaborated iteration process we choose a11 = 1000 while all other weights we set to

aı = 1.

7.3.6 Verification

Within the verification procedure the simulated data – calculated as based on the optimal

parameters κlev4

lm1
for the FEM model with 2400 elements – is compared with the exper-

imental data used for the parameter identification. By this the quality of the identified

parameters and also the general ability of the constitutive model to describe the viscoelas-

tic behavior of the material is analyzed. In particular, two representative identification

nodes out of Ng = 116 are chosen which are referred to by numbers 60 and 103 as shown

in figure 7.31. The verification shows that the local minimization of the weighted least

−30 −20 −10 0 10 20 30
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Identification nodes103 60

Figure 7.31: Identification nodes for the tests A, B, and C in the FEM model with 2400 elements;
representative identification nodes 60 and 103.

squares functional delivers a parameter set which enables to fit the simulations to the

respective experiments for all three tests in an average (weighted) way. Generally for the

tests A, B and C a good qualitative and quantitative agreement between the experiment

and the simulation can be observed (see figures 7.32–7.37).
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Figure 7.32: Verification for test A; displacements in longitudinal direction.
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Figure 7.33: Verification for test A; displacements in transverse direction.
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Figure 7.34: Verification for test B; displacements in longitudinal direction.
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Figure 7.35: Verification for test B; displacements in transverse direction.

The tests A (time tA) and B (time tB) reflect the short time viscoelastic behavior. For the

respective load application (0s ≤ tA ≤ 30s and 0s ≤ tB ≤ 31s) and the holding times in

the time segments 30s ≤ tA ≤ 36s and 31s ≤ tB ≤ 37s the simulations deliver a very good

agreement to the experimental data. The relaxation time κk=1
neq is predominantly activated

by the short time tests A and B, and it follows that the identification of the parameters of

the first relaxation term are identified to fit the short time viscoelastic behavior of A and

B in an average sense. As for 36s ≤ tA ≤ 89s and 37s ≤ tB ≤ 113s the characteristics of

the tests A and B are no longer identical, this averaging becomes obvious for these time

segments.
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Figure 7.36: Verification for test C; displacements in longitudinal direction.
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Figure 7.37: Verification for test C; displacements in transverse direction.

Test C reflects the long term viscoelastic response of the material for the six loading

steps considered. Therefore the contribution of test C within the least squares algorithm

mainly determines the identification of the second relaxation time τ̂k=2. As mentioned in

subsection 7.3.5, τ̂k=2 correlates strongly with the parameters for the deviatoric part of

the equilibrium part of the free energy. On the one hand this is due to the difference in

size of the identified parameters τ̂k=2 = 9806.90s compared with the first relaxation time

τ̂k=1 = 4.55s. For the simulation of the tests A and B the second relaxation term almost

behaves like an equilibrium term. On the other hand figure 7.36 shows that Ux versus the

time t has to be averaged for the six loading steps which makes it difficult to identify a

stable parameter τ̂k=2.
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7.3 Compact polyurethane

Figures 7.38, 7.39 and 7.40 show the euclidean norm of the equilibrium– and non–

equilibrium parts of the Cauchy stresses as well as for the total Cauchy stresses for the

identification node 60 in the tests A, B and C.
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Figure 7.38: Test A: Euclidean norm of the equilibrium– and non–equilibrium parts of the Cauchy
stresses as well as for the total Cauchy stresses; Identification node 60.
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Figure 7.39: Test B: Euclidean norm of the equilibrium– and non–equilibrium parts of the Cauchy
stresses as well as for the total Cauchy stresses; Identification node 60.

These curves can also serve as an indicator for the ability of the constitutive model com-

bined with the identified parameters to simulate the viscoelastic behavior of the material

tested. For the loading steps in the tests A, B and C the equilibrium stress is supposed

to stay approximately constant whereby the reduction of the forces (measured in the ex-

periments and applied as force loads in the simulation) is approximately satisfied by the

relaxation of the non-equilibrium stresses. For the tests A and B this requirement is ap-

proximately given. For the six different loading steps in test C the viscous stress relaxes

in a way to lead the equilibrium terms to an almost horizontal line (at the beginning of

each loading interval, however, peak levels are apparently observed).
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Figure 7.40: Test C: Euclidean norm of the equilibrium– and non–equilibrium parts of the Cauchy
stresses as well as for the total Cauchy stresses; Identification node 60.

Note that in both tests A and B the equilibrium state for the first relaxation term is

reached. In test A after the load reduction for tA > 36s the dynamic equilibrium state is

reached at tA ≈ 43s. In contrast test B reaches the thermodynamic equilibrium state at

tB ≈ 75s.

Figures 7.41–7.44 show the total–, equilibrium– and non–equilibrium parts of the Cauchy

stress in x–direction versus the component of the left Cauchy–Green tensor in normal

direction b11 for the identification node 60 in the test A.
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Figure 7.41: Test A: Total Cauchy stress in x–direction σ11 versus the component of the left Cauchy–
Green tensor in normal direction b11; Identification node 60.
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Figure 7.42: Test A: Equilibrium Cauchy stress in x–direction σeq
11 versus the component of the left

Cauchy–Green tensor in normal direction b11; Identification node 60.
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Figure 7.43: Test A: Non–equilibrium Cauchy stress for the first relaxation module in x–direction σk=1
11

versus the component of the left Cauchy–Green tensor in normal direction b11; Identifica-
tion node 60.
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Figure 7.44: Test A: Non–equilibrium Cauchy stress for the second relaxation module in x–direction
σk=2

11 versus the component of the left Cauchy–Green tensor in normal direction b11; Iden-
tification node 60.

Figures 7.45–7.48 show the total–, equilibrium– and non–equilibrium parts of the Cauchy

stress in x–direction versus the component of the left Cauchy–Green tensor in normal

direction b11 for the identification node 60 in the test B.
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Figure 7.45: Test B: Total Cauchy stress in x–direction σ11 versus the component of the left Cauchy–
Green tensor in normal direction b11; Identification node 60.
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Figure 7.46: Test B: Equilibrium Cauchy stress in x–direction σeq
11 versus the component of the left

Cauchy–Green tensor in normal direction b11; Identification node 60.
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Figure 7.47: Test B: Non–equilibrium Cauchy stress for the first relaxation module in x–direction σk=1
11

versus the component of the left Cauchy–Green tensor in normal direction b11; Identifica-
tion node 60.
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Figure 7.48: Test B: Non–equilibrium Cauchy stress for the second relaxation module in x–direction
σk=2

11 versus the component of the left Cauchy–Green tensor in normal direction b11; Iden-
tification node 60.

Figures 7.49–7.52 show the total–, equilibrium– and non–equilibrium parts of the Cauchy

stress in x–direction versus the component of the left Cauchy–Green tensor in normal

direction b11 for the identification node 60 in the test C.
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Figure 7.49: Test C: Total Cauchy stress in x–direction σ11 versus the component of the left Cauchy–
Green tensor in normal direction b11; Identification node 60.
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Figure 7.50: Test C: Equilibrium Cauchy stress in x–direction σeq
11 versus the component of the left

Cauchy–Green tensor in normal direction b11; Identification node 60.
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Figure 7.51: Test C: Non–equilibrium Cauchy stress for the first relaxation module in x–direction σk=1
11

versus the component of the left Cauchy–Green tensor in normal direction b11; Identifica-
tion node 60.
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Figure 7.52: Test C: Non–equilibrium Cauchy stress for the second relaxation module in x–direction
σk=2

11 versus the component of the left Cauchy–Green tensor in normal direction b11; Iden-
tification node 60.

7.3.7 Extended verification

In view of a simplified identification process we did not make use of all available exper-

imental data for the tests A, B, and C. Thus the remaining displacement data can be

used for an extended verification. Figure 7.53 shows the entire FEM model (9600 ele-

ments) with the discretization of the corresponding FEM model based on 2400 elements

which serves for the identification routine. The nodes for the extended verification for

the different tests are marked (V 1–V 6). This extended verification shows that also the

V3
V2

V6

V1

V4,V5

Figure 7.53: End of test C; nodes for the extended verification.

experimental data which is not used for identification, is in good agreement with the

corresponding simulated data which is reflected by the results shown in figures 7.54–7.59,

wherein displacement versus time curves are highlighted by analogy with previous figures.
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Figure 7.54: Extended verification for test A; displacements in longitudinal direction.
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Figure 7.55: Extended verification for test A; displacements in transverse direction.
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Figure 7.56: Extended verification for test B; displacements in longitudinal direction.
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Figure 7.57: Extended verification for test B; displacements in transverse direction.
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Figure 7.58: Extended verification for test C; displacements in longitudinal direction.
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Figure 7.59: Extended verification for test C; displacements in transverse direction.
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8 Parameter identification for
plasticity on the basis of real
measurement data of aluminum
alloy AlSi9Cu3

The parameter identification for metallic materials has been an important research area

in the last years, whereby different constitutive routines, measurement techniques and

materials have been considered (see, e.g. Mahnken and Stein ( [48], [47], [49]), Andresen

et al. [1], Mahnken et. al. [45], Mahnken ( [40], [41], [42]) and Scheday [66]). The aim of

the following study is to estimate the parameters of the aluminum alloy AlSi9Cu3. This

material is intended for use in cast automotive applications and other allied industries. In

contrast to the application of steel, the respective components are lighter, however, they

are also more expensive and less buckling resistant. For the simulation of the mechanical

material behavior for the dimensioning of components in lightweight construction the

determination of the material parameters for a suitable material law is necessary.

As mentioned in the previous sections, the method of simultaneous identification of one

single set of material parameters for multiple experiments can have different objectives.

The main objective for the application of this method for the parameter identification of

polyurethanes as described in the chapters 7.2 and 7.3 is to find a single set of parame-

ters which enables the simulations to fit to the respective experiments for all tests in an

average way. Thereby, the goal is to avoid overparametrization for a complex material

law. For the case of the aluminum alloy considered in this chapter the main objective for

the simultaneous identification for multiple experiments is to find a single set of param-

eters which fits to different specimen in an average way. In order to determine reliable

parameters for the material, the necessity for the application of this procedure is given

by different facts: The first reason is the scattering of experimental data between the

different experiments due to inevitable inhomogeneities of the specimen resulting from

the casting process. The second reason is the scattering of experimental data within

each experiment due to inevitable uncertainties within the optical measurements of the

very small displacements in the deformation range of the considered aluminum alloy. In

addition, uncertainties of the force control of the testing machine have to be taken into

account.

8.1 Constitutive equations for von Mises plasticity

The mechanical behavior of the considered aluminum alloy is simulated with von Mises

plasticity with isotropic hardening. Since the displacements in the tensile tests are very
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8 Parameter identification for plasticity on the basis of real measurement data of aluminum alloy AlSi9Cu3

small, a small strain theory is considered. Thereby, the actual total strain field yields

ε =
1

2
[∇T

xu + ∇xu] (8.1)

with the displacement field u. Moreover, an additive split into an elastic part εe and a

plastic part εp is assumed with ε = εe + εp. The constitutive equations are summarized in

table 8.1. For further elaborations see, e.g. Simo and Hughes [70]. For information on the

subject of constitutive models within the context of geometrically nonlinear anisotropic

elasto–plasticity, the reader is referred to the contributions by, for instance, Menzel [52]

and Menzel and Steinmann ( [55], [54], [53]).

Table 8.1: Small strain von Mises plasticity.

(1) Kinematics: ε = εe + εp

(2) Internal variable: α, εp

(3) Free energy: Ψ = Ψ(εe, α) = Ψ(εe) + Ψ(α)

Ψ(εe) = K
 [εe : I] + µ [εe dev] : I

(4) Real stress: σ = 3K εsph + 2µ[εdev − εp]

(5) Yield function: φ = ‖σdev‖ −
√

2/3 h

(6) Isotropic hardening: h = y0 + H α + [y∞ − y0] [1 − exp (−ω α)]

(7) Evolution equations: ε̇p = λ̇n α̇ = λ̇
√

2/3 n = σdev

‖σdev‖

(8) Kuhn–Tucker conditions: λ̇ ≥ 0 , φ ≤ 0 , λ̇ φ = 0

(9) Material parameters: κ = [K, µ, y0, y∞, ω, H]T

The material parameters are the bulk modulus K, the shear modulus µ, the initial yield

limit y0, the saturated yield limit y∞, the exponential hardening modulus ω and the linear

hardening modulus H . Note that in the later identification procedure the parameter set

κ = [E, ν, y0, y∞, ω, H ]T is considered. Thereby, the relationships E = 9 K µ/[3 K + µ]

and ν = [3 K − 2 µ]/[6 K + 2 µ] hold.
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8.2 Specimens

8.2 Specimens

The blank specimens are manufactured by die casting. Within this process the molten

metal is forced under high pressure into the cavities of steel molds (dies). The produced

metal parts are comparatively precise and have a very smooth surface.

The delivered raw specimens have been processed by the metal shop of the University of

Kaiserslautern according to the engineering drawing in figure 8.1. In the zone of the hole

Figure 8.1: Geometry of the specimen.

an inhomogeneous state of stress is induced and therewith the location of the necking

is defined. In a sufficient distance to the hole an approximately homogeneous state of

stress can be assumed. For the measurement of the displacement fields by means of the

two-dimensional image correlation photogrammetry a stochastic pattern is applied onto

the considered area of the specimen’s surface.

Figure 8.2: Specimen with stochastic pattern.
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8 Parameter identification for plasticity on the basis of real measurement data of aluminum alloy AlSi9Cu3

8.3 Experiments

For the experiments the servo-hydraulic tensile testing machine SCHENK Hydropuls PSA

10 is used. This machine has a capacity of 100 kN in static and 80 kN in dynamic

loading. The maximal stroke is 100 mm. The loading on the specimen is applied by

hydraulic clamping. The experiments are conducted at room temperature. Thermal

effects like the generation of heat during the deformation process are not considered. In

order to avoid temperature effects due to the lighting of the specimen at the measurements,

two cold lights (Dedocool, 250W Quartz Halogen ELC Type) are set up. The CCD

camera (Vosskühler 1300, resolution 1024 x 1280 pixels) with 50 mm objective (Schneider

Kreuznach) is positioned on a stand vertical to the direction of the movement. The two–

dimensional displacement field is computed by using the photogrammetric evaluation

procedure ARAMIS (Version 5.4).

For the parameter identification of the cast aluminum alloy the measurement of the dis-

placement fields of three specimen P83, P84, and P85 are determined in three tests

A (P83), B (P84), and C (P85). Thereby, in order to activate all material parameters in

the later identification routine and to differentiate between the purely elastic and elasto–

plastic parts of the deformation process, a test procedure with an (elastic) unloading is

chosen: The three tests are conducted in force control with a rate of 45 N/s to a maxi-

mal force load of 9000N (maximum tensile load per square unit of original cross section:

200 MPa). Then the specimen is unloaded with a rate of −45 N/s to 0 N . Every 5 s an

image of the specimen is taken by the CCD cameras for the displacement measurement

(a total number of 80 images per specimen). The total time for each test is 320 s.

The experimental results are the force–time curves (see figure 8.3) – whereby F is the total

force in loading direction – and the two–dimensional displacements of the measurement

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

Load steps

F
 [k

N
]

 

 
Sim.
Test

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

Load steps

F
 [k

N
]

 

 
Sim.
Test

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

Load steps

F
 [k

N
]

 

 
Sim.
Test

Figure 8.3: Force vs. load steps curves for the tests of the specimens P83 (left), P84 (center) and P85

(right). These data are used for the (force–) control of the corresponding simulations.

points along the longitudinal (x) and transverse (y) direction on the considered part of

the surface of the specimen. It needs to be mentioned that the displacement data of

the measurement points directly at the hole is relatively inaccurate. These measurement

points are discarded for the following parameter identification. Moreover, significant noise

within the measurement of each individual experiment occurs. As already mentioned this

is due to the very small displacements and the resulting inevitable inaccuracies in the
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8.4 Interpolation of experimental data

optical measurements.

The experimental data was determined by M. Bosseler of the ’Institute of Resource cen-

tered Product Development’ under the supervision of Prof. Dr.-Ing. R. Renz, University

of Kaiserslautern. The experiments were conducted by the Chair for Applied Mechanics,

University of Kaiserslautern.

8.4 Interpolation of experimental data

For the parameter identification effects like the slipping in the clamping and the influence

of the stiffness of the testing machine have to be excluded. Therefore, the measured

and the simulated displacements relative to an identification node are used within the

identification algorithm. Hereby, only the displacement field of a section of the specimen

needs to be measured. Moreover, the discretization of the model of the specimen only

requires a length of the FE model until an approximately homogeneous state of stress in a

sufficient distance to the hole can be assumed. This allows an equivalent force transmission

in the FE simulation in analogy to the experiment. For the simulation of the tests a FEM

discretization of the specimen with 1500 eight–node enhanced elements (Q1E9) (see Simo

and Armero [69]) is used. Thereby, due to the symmetry of the specimen only half of

the width, half of the length and half of the depth is discretized (see figure 8.6). In

addition to the symmetry conditions the boundary conditions for both ending planes

normal to the longitudinal direction are chosen in correspondence with the experiments.

The nodes on the plane x|t0 = −13 (mm) are fixed in longitudinal direction according to

the approximately homogeneous stress field at the respective position of the specimen in

the experiment. For the nodes on the plane x|t0 = 0 in longitudinal direction uniaxial

normal forces are applied, whereby warping of the plane is prevented. Rigid body motion

is excluded.

Since the coordinates of the measurement points generally do not coincide with the coor-

dinates of the identification nodes, the measured displacements are linearly interpolated

on the identification nodes by triangulation (see section 4.3). For the triangulation the

displacements of the three measurement points being nearest to the respective identifi-

cation node are used. In order to make the three tests A (P83), B (P84), and C (P85)

comparable for the later identification, throughout identical identification nodes are cho-

sen for all three tests. Figure 8.4 shows the interpolation of the measured displacements

on the selected identification nodes for the specimen P83. After the execution of the

interpolations for the tests A (P83), B (P84), and C (P85) for all specimen and for all 80

measured load steps the following 159 identification nodes are chosen (see figure 8.5).

8.5 Parameter identification by means of relative
displacements

As described above, for the parameter identification the measured and simulated dis-

placements relative to an identification node Irel are used. In doing so, on the one hand

inaccuracies due to the slipping in the clamping and the influence of the stiffness of the
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−6 −5 −4 −3 −2 −1 0 1 2
−1

0

1

2

3

4

5

6

7

X

Y

 

 
Identification node

Measuring point

Figure 8.4: Interpolation of the measured displacements on the selected identification nodes for the
specimen P83.
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Figure 8.5: Choice of the N = 159 identification nodes for the tests of the specimens P83, P84, and
P85.
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testing machine can be excluded. On the other hand, therewith, only a section of the spec-

imen has to be discretized which means a significant saving of computing time within the

FE calculations. Moreover, the complicated measuring of the exact position of the speci-

men in the clamping and the complicated simulation of the respective force transmission

for a simulation of the entire specimen in the FE simulation is not necessary.

For an uniaxial tensile test with a measurement of two–dimensional displacements in

length and width direction, the chosen identification node Irel must be positioned on

the longitudinal axis (in the middle of the width) of the symmetric specimen. At every

load step j and for all identification nodes i the differences of the displacements to every

identification node Irel are formed (for Irel let i = ir). Therefore, at load step j the

relative displacements for the FE calculation are uirj(κ)−uij(κ), and for the interpolated

measured displacements they are u
exp
irj − u

exp
ij . Hence, for the parameter identification of

a single test the following least squares approach is applied

f(κ) =
1

2

T∑

i=1

N∑

j=1

[
[uirj(κ) − uij(κ)] − [uexp

irj − u
exp
ij ]

]2
, (8.2)

for which the gradient yields

∂κf(κ) =

T∑

i=1

N∑

j=1

[
[uirj(κ) − uij(κ)] − [uexp

irj − u
exp
ij ]

]
· [∂κuirj(κ)− ∂κuij(κ)] . (8.3)

Remark 8.5.1 Since the order of magnitude of the parameters differs, a parameter weight

V (j) is employed to the calculation of the iteration step (see also equation 4.10)

∆ κ = κ(j+1) − κ(j) = −V (j) · [α(j) H
(j)
LM · ∂κf(κ(j))] . (8.4)

Conceptually speaking, the diagonal matrix V (j) weights the step ∆ κı for each parameter

corresponding to the magnitude of κ
(j)
ı , whereby

V (j) = diag
(

a
(j)
1 , ... , a

(j)
11

)
. (8.5)

For the elaborated iteration processes – presented in the following section – we choose

a1 = 1000, a2 = 0.01, a3 = 10, a4 = 10, a5 = 1, and a6 = 100.

Remark 8.5.2 The parameter sensitivities for the identification iteration by means of

the Levenberg–Marquardt method ∂κuij(κ) are calculated numerically by

∂κm
uij(κ) ≈ uij(κ + ǫ V · em) − uij(κ)

ǫ
(8.6)

with m = 1, 2, ..., 6 for the six parameters of the applied elasto–plastic material law.

Here em is an unit vector with the entry 1 at position m and the entries 0 for the five

other positions. Moreover V is the parameter weight as described in equation 8.4. The

numerical pertubation is computed with ǫ = 10−7.
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8.6 Parameter identification for experimental results of
AlSi9Cu3

The objective function (8.2) is, in general, non–convex which means that in addition to the

global minimum local minima might occur. Therefore, – for the parameter identifications

described in the following subsections – the hybrid method of combining the Levenberg–

Marquardt method with the stochastic method of testing different start parameters is

applied. Basically it can be observed, that for each new starting point a number of

eight iteration steps are enough to detect if the starting point leads to a local minimum

or whether this iteration can be discarded due to divergence. If the iteration process is

trapped in a local minimum, the iteration is repeated with new starting points by changing

individual parameters manually which is on the one hand a check for the robustness of

the result. On the other hand this can also lead to another local minimum with a smaller

value for the weighted sum of squared differences.

In the following the results of the parameter identifications for the tests A (P83), B (P84),

and C (P85) are presented. In subsection 8.6.1 the identification for the combination of

the three tests is shown. In the subsections 8.6.2, 8.6.3, and 8.6.4 the respective individual

identifications for the single tests A (P83), B (P84), and C (P85) follow. By comparison

of the different sets of parameters for the respective identifications it is investigated, how

far the identification routine for the simultaneous identification for all three tests has to

average the parameters (see subsection 8.6.5).

Figure 8.6 shows the FE model being applied for all respective parameter identifications.

Thereby, Irel is the identification node for the calculation of relative displacements. For the

respective verifications the identification nodes 1–5 are used for the representation of the

relative displacement vs. load step curves and the force vs. relative displacement curves

of the FE calculation with optimal material parameters in comparison to the respective

interpolated measurements.

8.6.1 Identification for the combination of the tests of the
specimens P83, P84, and P85

For this parameter identification a weighted least squares sum in analogy to equation (8.2)

with displacements relative to the identification node Irel is used. Within the iteration

128



8.6 Parameter identification for experimental results of AlSi9Cu3
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Figure 8.6: FEM model.

algorithm all three tests A (P83), B (P84), and C (P85) are considered simultaneously.

fABC(κ) =
1

2

Ng∑

i=1

( TA∑

j=1

[
W ij ·

[
[uirj(κ) − uij(κ)] − [uexp

irj − u
exp
ij ]

]]2

︸ ︷︷ ︸
A(P83)

+

TB∑

k=1

[
W ik ·

[
[uirk(κ) − uik(κ)] − [uexp

irk − u
exp
ik ]

]]2

︸ ︷︷ ︸
B(P84)

+

TC∑

l=1

[
W il ·

[
[uirl(κ) − uil(κ)] − [uexp

irl − u
exp
il ]

]]2

︸ ︷︷ ︸
C(P85)

)

(8.7)

Thereby, W ij , W ik, and W il are weighting matrices with W ij = diag([Wij]1, [Wij ]2),

W ik = diag([Wik]1, [Wik]2), and W il = diag([Wil]1, [Wil]2). Therefore, [Wij ]1, [Wik]1, and

[Wil]1 are the weights for the respective relative displacements in longitudinal direction.

As well [Wij ]2, [Wik]2, and [Wil]2 are the weights for the respective relative displacements

in transverse direction. For the simulation of the displacement fields uij(κ), uik(κ) and

uil(κ) the FEM simulation is force–controlled based on the measured force signals shown

in figure 8.3. Due to the equal number of load steps TA = TB = TC = 80 for the three

tests – as well as equal numbers of identification nodes Ng = 159 – all tests are weighted

equally for all load steps. The similar dimensions of the displacements in length and width
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direction make the weighting unnecessary in this regard. Hence, we assume

W ij = W ik = W il = diag(1, 1) . (8.8)

The number of terms in the least square sum adds up to 3 ∗ 159 ∗ 80 ∗ 2 = 76320 per

iteration step of the optimization algorithm.

The smallest of all investigated local minima in κ = κlmABC
is shown in table 8.2.

Table 8.2: Parameter set κ = κlmABC
.

E [MPa] ν y0 [MPa] y∞ [MPa] ω H [MPa]

74313.9780 0.3258 132.7606 167.0247 225.4131 7208.3051

In the identification iteration some instabilities occurred which is – as already described

in section 4.5 – a common problem in parameter estimation. The consequence of these

instabilities is that there exist several parameter sets which lead to a insignificantly higher

least squares sum. In order to evaluate the significance for the quality of the solution, the

correlation matrix for the optimal parameters shown in table 8.3 (see also equation 4.14)

is considered.

Table 8.3: Correlation matrix for the set of optimal parameters for the combination of the tests A (P83),
B (P84), and C (P85).

E ν y0 y∞ ω H

E 1.000 0.239 -0.431 0.105 -0.015 -0.146

ν 0.239 1.000 -0.143 0.055 0.028 -0.099

y0 -0.431 -0.143 1.000 -0.100 -0.283 0.307

y∞ 0.105 0.055 -0.100 1.000 -0.907 -0.968

ω -0.015 0.028 -0.283 -0.907 1.000 0.772

H -0.146 -0.099 0.307 -0.968 0.772 1.000

In the identification procedure the parameters E, ν, and y0 are comparatively stable

which is also confirmed by the small correlation numbers for the pairs of parameters which

contain E, ν, or y0. The relatively unstable parameters are the parameters describing the

hardening of the material, i.e. y∞, ω, and H . This is due to the fact that the material

does not have a (precisely) defined saturated yield limit and exhibits linear behavior of

saturation hardening in the last part of the plastic deformation process which can be seen

in the verifications presented in the following.

The verifications show that the local minimization of the weighted least squares functional

delivers a parameter set which enables to fit the simulations to the respective experiments

for all three tests in an average (weighted) way. Generally for the tests A, B and C a good

qualitative and quantitative agreement between the experiment and the simulation can

be observed. For the conclusions and information about the sum of squared differences

for the above parameter identification see subsection 8.6.5.
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8.6 Parameter identification for experimental results of AlSi9Cu3

Verification for test A (P83)

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmABC
for the combination of the tests A (P83), B (P84), and C (P85)

– is compared with the experimental data for test A. Figures 8.7–8.8 show the curves

with (relative) displacement vs. load steps and force vs. (relative) displacement for the

experiment and the simulation.
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Figure 8.7: Verification for test A with identified parameters for the combination of the tests A, B, C.
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Figure 8.8: Verification for test A with identified parameters for the combination of the tests A, B, C.

In figure 8.9 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

Since the displacements are very small, for the representation in figure 8.9 the respective

displacements are multiplied by factor 20.
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Figure 8.9: Verification for test A (P83) with identified parameters for the combination of the tests
A (P83), B (P84), and C (P85); the displacements are multiplied by factor 20 for this repre-
sentation.
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Verification for test B (P84)

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmABC
for the combination of the tests A (P83), B (P84), and C (P85)

– is compared with the experimental data for test B (P84). Figures 8.10–8.11 show the

curves with (relative) displacement vs. load steps and force vs. (relative) displacement

for the experiment and the simulation.
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Figure 8.10: Verification for test B with identified parameters for the combination of the tests A, B, C.
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Figure 8.11: Verification for test B with identified parameters for the combination of the tests A, B, C.

In figure 8.12 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

For the representation in figure 8.12 the respective displacements are multiplied by factor

20.
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Figure 8.12: Verification for test B (P84) with identified parameters for the combination of the tests
A (P83), B (P84), and C (P85); the displacements are multiplied by factor 20 for this rep-
resentation.
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Verification for test C (P85)

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmABC
for the combination of the tests A (P83), B (P84), and C (P85)

– is compared with the experimental data for test C (P85). Figures 8.13–8.14 show the

curves with (relative) displacement vs. load steps and force vs. (relative) displacement

for the experiment and the simulation.
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Figure 8.13: Verification for test C with identified parameters for the combination of the tests A, B, C.
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Figure 8.14: Verification for test C with identified parameters for the combination of the tests A, B, C.

In figure 8.15 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

For the representation in figure 8.15 the respective displacements are multiplied by factor

20.
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Figure 8.15: Verification for test C (P85) with identified parameters for the combination of the tests
A (P83), B (P84), and C (P85); the displacements are multiplied by factor 20 for this rep-
resentation.
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8.6.2 Individual identification for P83

As already mentioned, by comparison of the different sets of parameters for the respective

identifications it is investigated, how far the identification routine for the simultaneous

identification for all three tests has to average the parameters.

For the individual identification for the test A (P83) the weighted least squares sum in

analogy to equation (8.7) with displacements relative to the identification node Irel is

employed with

fA(κ) =
1

2

Ng∑

i=1

TA∑

j=1

[W ij · [(uirj(κ) − uij(κ)) − (uexp
irj − u

exp
ij )]]2

︸ ︷︷ ︸
A(P83)

.

Thereby, W ij = diag(1, 1) are the weighting matrices as described for equation (8.7). For

the simulation of the displacement fields uij(κ) the FEM simulation is force–controlled

based on the measured force signals shown in figure 8.3. The number of load steps is

TA = 80 and the number of identification nodes is Ng = 159.

The smallest of all investigated local minima in κ = κlmA
is shown in table 8.4.

Table 8.4: Parameter set κ = κlmA
.

E [MPa] ν y0 [MPa] y∞ [MPa] ω H [MPa]

74481.7747 0.3257 132.4225 161.1281 225.8283 7055.9503

The correlation matrix for the set of optimal parameters for the single identification for

test A (P83) is shown in table 8.5.

Table 8.5: Correlation matrix for the set of optimal parameters for the single identification for test
A (P83).

E ν y0 y∞ ω H

E 1.000 0.238 -0.383 0.133 -0.074 -0.163

ν 0.238 1.000 -0.144 0.054 0.007 -0.089

y0 -0.383 -0.144 1.000 0.101 -0.368 0.063

y∞ 0.133 0.054 0.101 1.000 -0.953 -0.981

ω -0.074 0.007 -0.368 -0.953 1.000 0.877

H -0.163 -0.089 0.063 -0.981 0.877 1.000

For the conclusions and information about the sum of squared differences for the above

parameter identification see subsection 8.6.5.
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Verification

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmA
for the single test A – is compared with the experimental data for

test A. Figures 8.16–8.17 show the curves with (relative) displacement vs. load steps and

force vs. (relative) displacement for the experiment and the simulation.
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Figure 8.16: Verification for test A (P83) with identified parameters for the single test A (P83).

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

1

2

3

4

5

6

7

8

9

10

U
x
 [mm]

F
 [k

N
]

−0.02 −0.015 −0.01 −0.005 0
0

1

2

3

4

5

6

7

8

9

10

U
y
 [mm]

F
 [k

N
]

Figure 8.17: Verification for test A (P83) with identified parameters for the single test A (P83).

In figure 8.18 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

For the representation in figure 8.18 the respective displacements are multiplied by factor

20.
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Figure 8.18: Verification for single identification for test A (P83); the displacements are multiplied by
factor 20 for this representation.
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8.6.3 Individual identification for P84

The weighted least squares sum in analogy to equation (8.7) with displacements relative

to the identification node Irel is employed whereby within the iteration algorithm the test

B (P84) is considered.

fB(κ) =
1

2

Ng∑

i=1

TB∑

k=1

[W ik · [(uirk(κ) − uik(κ)) − (uexp
irk − u

exp
ik )]]2

︸ ︷︷ ︸
B(P84)

W ik = diag(1, 1) are the weighting matrices as described for equation (8.7). For the

simulation of the displacement fields uik(κ) the FEM simulation is force–controlled based

on the measured force signals shown in figure 8.3. The number of load steps is TB = 80

and the number of identification nodes is Ng = 159.

The smallest of all investigated local minima in κ = κlmB
is shown in table 8.6.

Table 8.6: Parameter set κ = κlmB
.

E [MPa] ν y0 [MPa] y∞ [MPa] ω H [MPa]

75931.0840 0.3132 132.9524 171.9618 225.3120 7185.1660

The correlation matrix for the set of optimal parameters for the single identification for

test B (P84) is shown in table 8.7.

Table 8.7: Correlation matrix for the set of optimal parameters for the single identification for test
B (P84).

E ν y0 y∞ ω H

E 1.000 0.242 -0.431 0.113 -0.004 -0.157

ν 0.242 1.000 -0.138 0.088 0.011 -0.133

y0 -0.431 -0.138 1.000 -0.161 -0.304 0.391

y∞ 0.113 0.088 -0.161 1.000 -0.863 -0.958

ω -0.004 0.011 -0.304 -0.863 1.000 0.683

H -0.157 -0.133 0.391 -0.958 0.683 1.000

For the conclusions and information about the sum of squared differences for the above

parameter identification see subsection 8.6.5.
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Verification

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmB
for the single test B – is compared with the experimental data for

test B. Figures 8.19–8.20 show the curves with (relative) displacement vs. load steps and

force vs. (relative) displacement for the experiment and the simulation.
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Figure 8.19: Verification for test B (P84) with identified parameters for the single test B (P84).
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Figure 8.20: Verification for test B (P84) with identified parameters for the single test B (P84).

In figure 8.21 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

For the representation in figure 8.21 the respective displacements are multiplied by factor

20.
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Figure 8.21: Verification for single identification for test B (P84); the displacements are multiplied by
factor 20 for this representation.

142



8.6 Parameter identification for experimental results of AlSi9Cu3

8.6.4 Individual identification for P85

The weighted least squares sum in analogy to equation (8.7) with displacements relative

to the identification node Irel is employed whereby within the iteration algorithm the test

C (P85) is considered

fC(κ) =
1

2

Ng∑

i=1

TC∑

l=1

[
W il ·

[
[uirl(κ) − uil(κ)] − [uexp

irl − u
exp
il ]

]]2

︸ ︷︷ ︸
C(P85)

.

W il = diag(1, 1) are the weighting matrices as described for equation (8.7). For the

simulation of the displacement fields uil(κ) the FEM simulation is force–controlled based

on the measured force signals shown in figure 8.3. The number of load steps is TC = 80

and the number of identification nodes is Ng = 159.

The smallest of all investigated local minima in κ = κlmC
is shown in table 8.8.

Table 8.8: Parameter set κ = κlmC
.

E [MPa] ν y0 [MPa] y∞ [MPa] ω H [MPa]

72013.7838 0.3564 133.4448 170.3632 225.3081 7180.8752]

The correlation matrix for the set of optimal parameters for the single identification for

test C (P85) is shown in table 8.9.

Table 8.9: Correlation matrix for the set of optimal parameters for the single identification for test
C (P85).

E ν y0 y∞ ω H

E 1.000 0.244 -0.335 0.025 0.006 -0.045

ν 0.244 1.000 -0.079 0.065 -0.037 -0.084

y0 -0.335 -0.079 1.000 0.584 -0.683 -0.508

y∞ 0.025 0.065 0.584 1.000 -0.990 -0.995

ω 0.006 -0.037 -0.683 -0.990 1.000 0.969

H -0.045 -0.084 -0.508 -0.995 0.969 1.000

For the conclusions and information about the sum of squared differences for the above

parameter identification see subsection 8.6.5.
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8 Parameter identification for plasticity on the basis of real measurement data of aluminum alloy AlSi9Cu3

Verification

Within this verification procedure the simulated data – calculated as based on the optimal

parameters κ = κlmC
for the single test C – is compared with the experimental data for

test C. Figures 8.22–8.23 show the curves with (relative) displacement vs. load steps and

force vs. (relative) displacement for the experiment and the simulation.
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Figure 8.22: Verification for test C (P85) with identified parameters for the single test C (P85).
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Figure 8.23: Verification for test C (P85) with identified parameters for the single test C (P85).

In figure 8.24 for all identification nodes the simulated positions for the load steps 20, 40,

60, and 80 are plotted over the interpolated measured displacements for the FE model.

For the representation in figure 8.24 the respective displacements are multiplied by factor

20.
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Figure 8.24: Verification for single identification for test C (P85); the displacements are multiplied by
factor 20 for this representation.
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8 Parameter identification for plasticity on the basis of real measurement data of aluminum alloy AlSi9Cu3

8.6.5 Concluding remarks

As expected, the verifications for the individual identifications show that the experimental

data is in even better agreement with the corresponding simulated data. The comparison

of the identified parameter sets is shown in table 8.10. Note that the material parameters

Table 8.10: Comparison of sets of optimal parameters.
E [MPa] ν y0 [MPa] y∞ [MPa] ω H [MPa]

κlmABC
74313.9780 0.3258 132.7606 167.0247 225.4131 7208.3051

κlmA
74481.7747 0.3257 132.4225 161.1281 225.8283 7055.9503

κlmB
75931.0840 0.3132 132.9524 171.9618 225.3120 7185.1660

κlmC
72013.7838 0.3564 133.4448 170.3632 225.3081 7180.8752

κ∅

lmA,B,C
74142.2142 0.3318 132.9399 167.8177 225.4828 7140.6638

in κlmABC
are averaged nonlinearly for the tests A, B, and C by means of the least

squares algorithm (see equation 8.7). In contrast, the parameter sets of the individual

identifications are averaged linearly in κ∅

lmA,B,C
. The comparison of the sum of squared

differences shown in table 8.11 yields an average sum of squared differences per test for

Table 8.11: Comparison of the sums of squared differences for the sets of optimal parameters.
fABC(κlmABC

) [mm2] fA(κlmA
) [mm2] fB(κlmB

) [mm2] fC(κlmC
) [mm2]

0.0530473 0.0121345 0.0154719 0.00753172

the combination of A, B, and C with ∅
comb
ABC = fABC(κlmABC

)/3 = 0.0176824 mm2 whereas

the average sum of squared differences per test for the individual identifications of A, B,

and C yields ∅
ind
ABC = [fA(κlmA

)+fB(κlmB
)+fC(κlmC

)]/3 = 0.0117127 mm2. Hence, the

average reduction of the sum of squared differences from the combination to the individual

identifications is ∆f = 100 (∅comb
ABC − ∅

ind
ABC)/∅

comb
ABC = 66.24%.

Remark 8.6.1 As already mentioned with reference to the correlation matrix shown in

table 8.3, the parameters describing the hardening of the material, i.e. y∞, ω, and H

are relatively unstable. Also for the individual identifications these parameters have high

correlation numbers and due to this they behave (almost) indifferent. This effect is due to

overparametrization whereby the iterations show that mainly the parameter H – although

the respective term for linear hardening in the material model contributes to a lowering of

the sum of squared differences – is redundant.

In order to determine parameter sets which are comparable to the parameter set κlmABC
,

for the individual identifications the parameter H has been controlled in the respective

identification processes to stay within the limits 7000 MPa ≤ H ≤ 7400 MPa in corre-

spondence with the result H = 7208.3051 MPa for κlmABC
. Due to the indifferent behavior

of H within the iteration processes, this limitation has practically no influence on the sum

of least squares. By applying this limitation the respective parameter sets are stable and

unique.
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8.6 Parameter identification for experimental results of AlSi9Cu3

Concluding the reflection of the results of the respective identifications for the three tests,

figure 8.25 shows the stress vs. strain curves for uniaxial tension for the parameter sets

κlmABC
, κlmA

, κlmB
, and κlmC

.
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Figure 8.25: Stress vs. strain curves for uniaxial tension for the different identified parameter sets.
Black: κ = κlmABC

; Red: κ = κlmA
; Blue: κ = κlmB

; Green: κ = κlmC
. Continuous lines:

proved by experimental data. Dashed lines: extrapolated.

Thereby, for the simulation of the homogeneous tensile tests the uniaxial state of stress

at the eight–noded enhanced element is considered (see figure 8.26). The homogeneous

tensile tests for the different sets of material parameters underlines, that the scattering

of the specimen due to the different material behavior is mainly restricted to a different

mechanical behavior within the plastic range of the deformation.
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Figure 8.26: Uniaxial state of stress at the eight–node enhanced element (Q1E9).
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8 Parameter identification for plasticity on the basis of real measurement data of aluminum alloy AlSi9Cu3

Since the three tests are conducted in force control to a maximal force load of 9000N

(see figure 8.3), at the hole the maximum tensile load per square unit of original cross

section yields 200 MPa. Therefore, in figure 8.25 the computed stress strain curves have

been denominated as ’extrapolated’ for σxx > 200MPa. Figure 8.27 shows the FE model

of the specimen and the euclidean norm of the Cauchy stresses for test A (P83) at load

step 40 (maximal load) for the optimal set of parameters κlmA
.

Figure 8.27: Simulation of test A (P83) at load step 40; Euclidean norm of the Cauchy stresses.
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9 Summary and conclusions

An inverse problem is the task where the values of model parameter(s) must be obtained

from the observed data. Inverse problems are typically ill–posed, as opposed to the, in

general, well–posed direct problems when the model parameters are known. The formu-

lation of an inverse problem in order to establish an appropriate simulation tool for a

material under operational conditions involves different disciplines: In experiments the

mechanical behavior of the material has to be tested and measured. Therefore, suitable

testing machines and accurate measurement systems have to be applied. Using numerical

techniques, the constitutive behavior which has been observed in the experiments, has

to be modeled mathematically so that a simulation is able to reproduce the experiments

properly.

The type of inverse problem to be solved in this work has been to identify the param-

eters for a model of finite viscoelasticity. This model has been proposed by Reese and

Govindjee [65] and has been implemented to a finite–element code. The inverse problem

is approximated by an optimization problem, with which we aim at finding the optimal fit

of measured and simulated displacement fields. Thereby, often stability problems occur

due to the ill–posedness of the inverse problem.

In order to establish a reliable simulation technique for a considered material, appropriate

experiments in combination with a sufficient model structure of the viscoelastic constitu-

tive routine have to be chosen. Moreover, since experiments with a purely homogeneous

displacement field are difficult to conduct and contain less information than experiments

with inhomogeneous displacement fields, the non–uniformity of stresses and strains has

to be considered in the identification algorithm (see Mahnken [40]).

The applicability of the identification algorithm for one experiment in combination with

the viscoelastic model has been shown on the basis of the parameter identification for

virtual measurement data and for displacement fields of a cured polyurethane adhesive.

In order to consider the scattering of the mechanical behavior between different specimen

and in addition to identify the parameters to guarantee a higher reliability, multiple tests

for different specimen have to be considered. Only the consideration of experimental data,

activating all different mechanical processes the constitutive model is able to simulate,

can avoid instabilities in the solution. The presented method of identifying all material

parameters simultaneously for multiple tests leads to an optimal set of parameters which

satisfies all tests similarly well. This has been presented by means of the parameter

identification for a cellular polyurethane foam, whereby one relaxation module has been

implemented in the constitutive routine.

For an example of a compact polyurethane the viscoelastic routine with two relaxation

modules has been implemented and the simultaneous identification of all parameters for

the three tests has been carried out. Based on the method the experimental loading inter-

vals for long–time experiments can be shortened in time and the parameter identification
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9 Summary and conclusions

procedure is now referred to experimental data of tests under short– and long–time loads

without separating the parameters due to these different time scales.

Finally the parameter identification for small strain plasticity has been conducted for

the example of the aluminum alloy AlSi9Cu3. Thereby it could be shown, that the

identification algorithm can be applied to different constitutive laws. Moreover it became

obvious that by consideration of multiple tests it is possible to determine nonlinearly an

averaged set of material parameters, whereby the measurement fields are scattered due

to different material properties of different samples and due to significant noise of the

measurement system in combination with uncertainties of the force control of the testing

machine.

Generally it could be presented for all examples that the calculation of the parameter

correlations and different verifications helps to check the general validity of the identified

parameters for the prediction of the constitutive behavior of engineering components.

150



A Derivatives

A.1 Calculation of ∂(na ⊗ na)/∂b

In this Appendix, the calculation of ∂(na ⊗ na)/∂b is reviewed for convenience of the

reader, whereby na ⊗na is the tensor basis of a positive–definite symmetric second–order

tensor b. For the proof and further details see e.g. Miehe [56].

The spectral decomposition of b yields the representation

b =

3∑

a=1

λ2
a na ⊗ na (A.1)

with ‖na‖ = 1 and λ2
a denoting the eigenvalues of b such that the third invariant of b is

given by J3(b) = λ2
1 λ2

2 λ2
3. By introducing

Da =
3∏

b=1\a

[λ2
a − λ2

b] (A.2)

we arrive at

∂(na ⊗ na)

∂b
=

λ2
a

Da
[II − J3 λ−2

a Ib−1 ] (A.3)

+
λ2

a

Da

3∑

b=1

[J3 λ−2
a − λ4

b] λ
−4
b nb ⊗ nb ⊗ nb ⊗ nb (A.4)

wherein II is the fourth–order identity tensor with the components

[II]
IJKL = 1

2
[[I]IK [I]JL + [I]IL [I]JK ]. The fourth–order tensor Ib−1 = − ∂b−1/∂b

has the components [Ib−1]IJKL = 1
2
[[b−1]IK [b−1]JL + [b−1]IL [b−1]JK ].
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