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Abstract

In this article, we present an analytic solution for Jiang’s constitutive model of elasto-
plasticity. It is considered in its stress controlled form for proportional loading under
the assumptions that the one-to-one coupling of the yield radius and the memory surface
radius is switched off, that the transient hardening is neglected and that the ratchetting
exponents are constant.
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1 Introduction

The existence of analytic solutions for some kind of nonlinear equations is not just an academic
question. In fact, it is very useful to have analytical solutions as benchmark tests, in order
to perform accurate and reliable numerical simulations. In the field of elastoplastic material
(or ‘stress-strain’) laws, including nonlinear hysteresis and memory effects, it is a very tricky
task to find some, cf. [1, 2, 3, 11].
Until now, no analytic solutions of Jiang’s constitutive model [5, 6, 7, 8, 9] are available, for
proportional loading however, numerical benchmarks are exposed in [7]. We give an explicit
example of an analytical solution for the special case of arbitrary proportional loading, where
we assume the following simplifications. The resulting equations are given in (1), ..., (7). (We
follow the notation in [10].)

• The ratchetting exponent in the nonlinear term of the evolution of the ith backstress is
set to a constant value

χi ≡ const ≥ 0.

• For the coupling between the yield surface radius ρ and the memory surface radius R,
given by ρ = ρ∞(1 + aρ exp(bρR)), we assume aρ = 0, which means

ρ ≡ ρ∞ ≡ const > 0,

i. e. the evolution of the memory surface does not influence the evolution of the yield
surface radius. Thus the hardening modulus H = n : dα/dξ + dρ/dξ simplifies to
H = n : dα/dξ, since ρ > 0 is now constant.
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• Transient hardening/softening is switched off, which means that we assume aj
i = 0 for

all i and j in the relation for the coefficients ci = c∞i (1 +
∑

j a
j
i exp(−bji ξ)), i. e.

ci ≡ c∞i ≡ const > 0.

Now Jiang’s stress controlled constitutive model, which describes the movements in the de-
viatoric stress space, takes on the following form.

(J1) The total (deviatoric) stress is additively decomposed into the total (deviatoric) back-
stress and the ‘(deviatoric) stop’

s(t) = α+ βd. (1)

(J2) The total (deviatoric) backstress is additively decomposed into I partial (deviatoric)
backstresses

α = α1 + . . .+ αI . (2)

(J3) The backstress evolutions (or the ‘hardening rules’) are given by the nonlinear relation-
ships

α̇i = ciri

(
n−

(
‖αi‖
ri

)χi+1 αi

‖αi‖

)
ξ̇ (i = 1, . . . , I). (3)

(J4) The (deviatoric) yield surface normal is given by

n =
βd

ρ
. (4)

(J5) The hardening modulus is defined by

H =

 n :
dα
dξ

if ‖βd‖ = ρ and ṡ : n > 0

∞ otherwise
. (5)

(J6) The accumulating plastic strain rate is given by

ξ̇ =
ṡ(t) : n
H

. (6)

(J7) The (deviatoric) plastic strain rate is proportional to the yield surface normal

ε̇pl = ξ̇ n. (7)

Here s = dev ◦σ : [0, T ] → R3×3
sd is the given (deviatoric) stress input and the (deviatoric)

plastic strain εpl : [0, T ] → R3×3
sd is the output. R3×3

s = {τ ∈ R3×3 : τ = τT } is the space of
symmetric 3×3-tensors, R3×3

sd = {dev τ : τ ∈ R3×3
s } is the deviatoric projection of the former,

R3×3
sd = dev R3×3

s , where dev(τ) = τ − tr(τ)I/3 for τ ∈ R3×3
s . The constant ρ > 0 denotes the

radius of the Mises cylinder in the deviatoric stress space. The model (1), ..., (7) is written in
differential equation form(

ε̇pl, ξ̇, α̇, α̇1, . . . , α̇i

)
= Js

(
t, α1, . . . , αI

)
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with discontinuous right-hand side. The differential equations for ε̇pl, ξ̇ and α̇ do not depend
on εpl, ξ and α. Thus they are pure integrations. It follows from the constitutive equations
(1), ..., (7), that

ε̇pl = 0, ξ̇ = 0, α̇i = 0,

iff the Mises yield condition ‖βd‖ = ρ, ṡ(t) : n > 0 (i. e. iff H = ∞) is not satisfied. Iff it is
satisfied (i. e. iff 0 < H <∞), it follows that

ξ̇ > 0, ε̇pl 6= 0.

Here we apply the practical convention x/∞ = 0 for each real number x. In the proportional
(or ‘uniaxial’) case, the hardening modulus H is proportional to the slope ds/dεpl of the
stress-strain phase curve s(t) ↔ εpl(t). It is important to note that the ith partial backstress
evolution (3) can be equivalently rewritten in the form

dαi

dt
= ci

(
rin−

(
‖αi‖
ri

)χi

αi

)
ξ̇, (8)

where the zeros in the denominator are lifted.

Remark 1.1 (a) Let us denote by ·h = hyd(·) the hydrostatic component, by ·d = dev(·)
the deviatoric component of a tensor and by s = σd the deviatoric part of the stress input.
Jiang material is assumed plastically incompressible, i. e. if the prescribed initial values α(0)
and εpl(0) are deviatoric, it follows from ε̇pl ∈ R(s − α) in (7) and α̇ ∈ R(s − α) + Rα in
(2), (3), that εpl

h ≡ 0, αh ≡ 0, i. e. εpl and α remain purely deviatoric in [0, T ]. There holds
σ = σh + σd, σ = α + β. Since αh = 0, εpl

h = 0, it follows that σh = βh, s = α + βd. As the
action of Hooke’s tensor C = (cijkl), cijkl = λ δijδkl + µ(δikδjl + δilδjk) with Lamé’s constants
λ, µ > 0, decouples into hydrostatic and deviatoric components, i. e.

(Cη)d = Cηd, (Cη)h = Cηh, (C−1τ)d = C−1τd, (C−1τ)h = C−1τh (η, τ ∈ R3×3
s ),

we obtain for the strains ε = εel + εpl, εel = C−1σ, consequently εelh = C−1βh = C−1σh,
εeld = C−1(α + βd) = C−1s. Therefore, it is sufficient to consider just the deviatoric stress
controlled (s→ εpl) instead of the total stress controlled (σ → ε) model.
(b) Jiang’s model is a multisurface model. The total backstress α is additively decomposed
into I backstresses, see (2). Thus we make the convention

∑
i · :=

∑I
i=1 ·. Clearly it would not

cause any difficulties, if the finite sum
∑

i · was replaced by a continuous integral
∫
i∈I ·dµ(i)

over an appropriate measure space, similarly as in [2] for Chaboche’s model. That way, we
would obtain a continuous version of Jiang’s model with smooth uniaxial equivalent stress-
strain curves. �

2 Derivation of piecewise analytic solution

We assume that for a fixed deviatoric unit normal N ∈ ∂B1(0) = {τ ∈ R3×3
sd , ‖τ‖ = 1}, the

stress deviator s = dev ◦σ : [0, T ] → R3×3
sd is given in the form

s(t) = S(t)N, ṡ(t) = Ṡ(t)N

with a piecewise linear scalar function S : [0, T ] → R. As Jiang’s model is rate-independent,
this assumption yields no loss of generality, as a reparametrisation with an appropriate
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strongly increasing absolutely continuous function [0, T ] 3 t → τ ∈ [0, T ] shows. Simply
use the chain rule

d
dt

=
dτ
dt

d
dτ
,

dt
dτ

=
(

dτ
dt

)−1

.

For the same reason, using induction, it suffices to consider just one subinterval, reparametrised
onto [0, 1], where S is affine linear. Thus we may w.l.o.g. assume that we have

S(t) = S(0) + t∆S, Ṡ(t) ≡ ∆S, ∆S = S(1)− S(0).

If ∆S = 0, clearly the non-moving constant initial conditions yield a solution of Jiang’s
equations in a trivial fashion. Thus we may w.l.o.g. assume ∆S 6= 0. By replacing N by −N
if necessary, we may as well w.l.o.g. assume that

ṡ(t) : N = Ṡ(t)‖N‖2 > 0.

If τ ∈ [0,∞) denotes the point in time, where the stress path intersects the current yield
surface, we clearly have H ≡ ∞, ‖n‖ < 1, εpl ≡ εpl(0), αi ≡ αi(0), α ≡ α(0), ξ ≡ ξ(0)
on [0, τ ]. If τ < 1, active plastic yielding starts, and on the interval (τ, 1], a solution is
constructed as follows.
Reparametrisation of the ith backstress evolution with respect to the accumulated plastic
strain ξ in the case of active plastic flow ξ̇ > 0 yields

dαi

dξ
=

dαi

dt
dt
dξ

= ci

(
rin−

(
‖αi‖
ri

)χi

αi

)
,

dt
dξ

=
(
ξ̇
)−1

.

For the evolution of the total backstress, we consequently get

dα
dξ

=
∑

i

ci

(
rin−

(
‖αi‖
ri

)χi

αi

)
.

Following the approach in [3, 7], we try the ansatz

αi(ξ) = fi(ξ)N, βd(ξ) = ρN, (9)

and claim that this yields a solution of Jiang’s constitutive equations in the active plastic
regime, if the scalar functions fi are chosen appropriately. Inserting (9) into the constitutive
equations (1), ..., (7) gives

s =
(
f + ρ

)
N, ṡ =

df
dξ

ξ̇N,
ds
dξ

=
df
dξ
N, ṡ : n =

df
dξ

ξ̇,

β̇d ≡ 0,
dβd

dξ
≡ 0, n ≡ N,

α̇i = ḟiN,
dαi

dξ
=

dfi

dξ
N, αi : n = αi : N = fi, ‖αi‖ = |fi|,

f =
∑

i

fi, α = fN, α : n = α : N = f, ‖α‖ = |f |.
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The hardening modulus H becomes

H = n :
dα
dξ

=
∑

i

ci

(
ri‖n‖2 −

(
‖αi‖
ri

)χi

αi : n
)

=
∑

i

ci

(
ri −

(
|fi|
ri

)χi

fi

)
.

We obtain
Hξ̇ = ṡ : n =

df
dξ

ξ̇,

which is equivalent to

H =
df
dξ
, ξ̇ =

ṡ : n
H

, if ξ̇ > 0.

Thus, the ansatz (9) yields a solution of Jiang’s equations, if and only if the functions fi

satisfy
dfi

dξ
N = ci

(
rin−

(
|fi|
ri

)χi

fiN

)
.

Multiplication with N = n and rχi
i gives

rχi
i

dfi

dξ
= ci

(
rχi+1
i − sign(fi)f

χi+1
i

)
,

since ‖N‖2 = 1. With the substitutions

ϕi =
1
ri
fi, dϕi =

1
ri

dfi, ζi = ci ξ, dζi = ci dξ, wi = χi + 1 (10)

we see, that (9) yields a solution of Jiang’s equations, if and only if each function ϕi(ζi)
satisfies the ordinary scalar differential equation

dϕi

dζi
=

(
1− sign(ϕi)ϕwi

i

)
. (11)

Since the constants χi are non-negative, we have wi ≥ 1. Thus, the following elementary
lemma for ϕ = ϕi and ζ = ζi may be applied. Thus (9) with (10) yield a solution of Jiang’s
equations during active plastic flow.

Lemma 2.1 (Nondegenerate case) Let 1 ≤ w <∞ denote any real number. We consider
the scalar differential equation

∂ϕ

∂ζ
= F (ϕ) :=


1 + (−ϕ)w for ϕ < 0
1 for ϕ = 0
1− ϕw for ϕ > 0

. (12)

It has the unique solution ζ 7→ ϕ(ζ), which is implicitly given as the inverse function of the
mapping

ϕ 7→ ζ(ϕ) = C +



∞∑
n=0

ϕnw+1

nw + 1
for ϕ > 0

0 for ϕ = 0
∞∑

n=0

(−1)n+1(−ϕ)nw+1

nw + 1
for ϕ < 0

, (13)
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the latter being defined for −1 ≤ ϕ < 1. Both functions ζ → ϕ and ϕ → ζ are strongly
increasing with the boundary behaviour

ζ(ϕ = −1) = ζmin(w), ζ(ϕ)
ϕ→1−→ +∞,

where

ζmin(w) =
∞∑

n=0

(−1)n+1

nw + 1
. (14)

For any given values −1 ≤ ϕ0 < 1 and ζmin(w) ≤ ζ0 <∞, there exists one and only one real
constant C, such that the initial condition ϕ(ζ0) = ϕ0 – or equivalently ζ(ϕ0) = ζ0 – holds.
Especially for ϕ = 0, we obtain C = ζ(0) = ζ0.

Proof: The function F : R → R is differentiable an the whole real axis, such that its
derivative

dF
dϕ

=


−w(−ϕ)χ for ϕ < 0
0 for ϕ = 0
−wϕχ for ϕ > 0

is still continuous on R. Thus F is of class C1(R,R) and existence and uniqueness of the
solution of (12) is guaranteed, as F is locally Lipschitz continuous by the mean value theorem.
We separate the variables. Recall that the function z 7→ 1/(1− z) is analytic on the complex
unit disk D = {z ∈ C : |z| < 1} and that there holds

1
1− z

=
∞∑

n=0

zn (z ∈ D) (15)

by Neumann (or geometric series) expansion. For 0 ≤ ϕ < 1, we arrive with Neumann
expansion (15) at

ζ(ϕ) ∈
∫

dζ =
∫

dϕ
1− ϕw

=
∫ ∞∑

n=0

ϕnwdϕ =
∞∑

n=0

ϕnw+1

nw + 1
+ C.

For −1 < ϕ < 0, we find with the aid of the substitution ψ = −ϕ, dψ = −dϕ, with Neumann
expansion (15)

ζ(ϕ) ∈
∫

dϕ
1 + (−ϕ)w

=
∫

−dψ
1− (−ψw)

=
∫ ∞∑

n=0

(−1)n+1ψnwdψ =
∞∑

n=0

(−1)n+1(−ϕ)nw+1

nw + 1
+ C.

The value of ζ for ϕ = −1 exists because of the Leibniz criterion for infinite series with al-
ternating summands. The fact that ϕ 7→ ϕ(ζ) and ζ 7→ ζ(ϕ) are strongly increasing follows
from F = dϕ/dζ > 0 for −1 ≤ ϕ < 1. �

Lemma 2.1 gives an explicit analytical representation of the numerical solution considered in
[7] in the case 0 ≤ χi <∞. As well the degenerate case χi = ∞ can be considered, where the
formal convention

x∞ =


1 for x = 1
0 for − 1 < x < 1

undefined for x = −1

for any real number −1 ≤ x ≤ 1 is made in (8) and (11).
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Lemma 2.2 (Degenerate case) Let w = ∞. We consider the scalar differential equation,
given by

∂ϕ

∂ζ
=

{
1 for − 1 < ϕ < 1
0 for ϕ = 1

. (16)

For any ζ0 ∈ R and any given initial value ϕ(ζ0) = ϕ0, satisfying −1 < ϕ0 < 1, it has the
solution

ζ 7→ ϕ(ζ) =
{
ζ − ζ0 + ϕ0 for ζ < 1 + ζ0 − ϕ0

1 for ζ ≥ 1 + ζ0 − ϕ0
. (17)

Solution is to be understood here in the sense of distributions.

Proof: Clear. �

Let a sequence (wn) ⊂ [0,∞) such that wn
n−→∞ and (ζ0, ϕ0) ∈ [ζinf ,∞)× (−1, 1) be given,

where
ζinf = infn∈N ζmin(wn), ζmin(w) defined by (14).

It can be shown, that for the solutions ϕn : [ζ0,∞) → (−1, 1) corresponding to (12) with the
initial value (ζ0, ϕ0) and the exponent wn, defined by (13), it holds that

‖ϕn − ϕ∞‖∞ = sup
ζ∈[ζ0,∞)

|ϕn(ζ)− ϕ∞(ζ)| n−→ 0,

where ϕ∞ : [ζ0,∞) → (−1, 1] is the solution (17) of differential equation (16), corresponding
to the initial value (ζ0, ϕ0). This means, that the functions ϕn converge uniformly, thus
pointwise, towards ϕ∞ on the interval [ζ0,∞) for n → ∞. This observation has been made
numerically in [7].

Remark 2.3 (Benchmark) If the solution, which was constructed in lemma 2.1, is used as
an analytical benchmark for a numerical implementation of Jiang’s model, it is important to
know, where to truncate the series (13). The error, which is caused by truncation after the
N th summand, N ∈ N0, can be estimated by∣∣∣∣∣ζ(ϕ)−

N∑
n=0

ϕnw+1

nw + 1

∣∣∣∣∣ =
∞∑

n=N+1

ϕnw+1

nw + 1
≤ ϕ(N+1)w

∞∑
n=0

ϕnw =
ϕ(N+1)w

1− ϕw

for 0 < ϕ < 1. In the same way, we find the useful estimate∣∣∣∣∣ζ(ϕ)−
N∑

n=0

(−1)n+1(−ϕ)nw+1

nw + 1

∣∣∣∣∣ ≤ (−ϕ)(N+1)w

1− (−ϕ)w

for −1 < ϕ < 0. Simply use (15) and the triangle inequality for derivation. The right-hand
sides in both estimates are vanishing for N →∞. The procedure for reversing the expansions
in (13), in order to receive the inverse mapping ζ 7→ ϕ(ζ), is standard and can be found e. g.
in [4, Section III.2]. �



piecewise analytic solution of jiang’s model of elastoplasticity 8

References

[1] Brokate M.: Elastoplastic constitutive laws of nonlinear kinematic hardening type. Pitman research
notes in mathematics series, Vol. 377, pp. 238-272, 1998.
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