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Vollzug der Promotion: 5. Juni 2007



Achnowledgement

First of all, I thank Prof. Dr. W. Freeden for giving me the opportunity to work on

this topic and for his guidance during the development of this thesis. His valuable advice

mainly contributed to the progress of this work.

Moreover, I thank all the members of the Geomathematics Group Kaiserlautern. Espe-

cially HDoz. Dr. Volker Michel, Dr. Thorsten Maier, and Dr. Carsten Mayer, for having

always an open door and giving valuable comments.

I am deeply grateful to Simone Gramsch for reading the manuscript and I thank Claudia

Korb for being always helpful on any concern I had.

I am grateful to Prof. Dr. habil. Gebhard Schüler and Hans Mack for their cooperation
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Chapter 1

Introduction

The intention of forestal-structure strategy and the consequential reforestation focus on

the establishment of medium- and long-term ecologically robust forest stocks. The de-

cision on positional stability of different types of trees is among other influences depen-

dent on the modelling of data of the wind field. These observational quantities are ac-

quired in Rheinland-Pfalz at 15 stations by the Forest Research Institute Rheinland-Pfalz

(”Forschungsanstalt für Waldökologie und Forstwirtschaft (FAWF) in Rheinland-Pfalz”).

For the evaluation, however, one is interested in a continuously over the surface distributed

smooth representation of the wind field on the basis of the finite set of data, where smooth

means that the resulting vector functions are infinitely often differentiable and that os-

cillations of the approximant should be avoided. Therefore in this thesis we present an

approach to model the wind field by taking into account the vectorial nature of the data,

thereby taking advantage of harmonic vector fields to achieve smoothness. This means that

we operate on vectors instead of speed and direction values which have a scalar nature.

Using harmonic vector fields to model the wind field does not include a physically relevant

impact but concentrates on the creation of a smooth vector field by taking only a finite set

of data into account.

In general this can be addressed as the problem of representing vector fields on regular

surfaces, as e.g., the Earth’s topography. For that objective we first face the problem of

the exact calculation of scalar and vector outer harmonics and based on that in a second

step we develop a truncated Fourier representation and a spline interpolation for restrictions

of harmonic vector fields on regular surfaces. Therefore we extend the scalar approach as
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developed in [8, 18, 21] to the vector case.

Figure 1.0.1: Geometrical concept for Ω, Ωext
R and Σ and the development steps from poly-

nomials in R3 up to the approximation on Σ for the scalar and vector case in comparison.
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Therefore, as presented in Figure 1.0.1 starting with the system of homogenous harmonic

polynomials in R3 we follow the steps (1)-(5) as done in the scalar theory to develop a

smooth approximation on a regular surface, denoted by Σ.

In more detail, from the homogenous harmonic polynomials which build a basis in R3 we

derive in step (1) two kind of systems, the Morse-Feshbach and the Edmonds-system of

vector spherical harmonics on a sphere ΩR. We present an algorithm for the exact calcu-

lation of vector spherical harmonics which is applied for both systems. As in the scalar

case step (2) involves the development of outer harmonics for the space outside of a sphere.

In this work we use the outer harmonics which are derived from the (Edmonds-)system

of vector spherical harmonics. Based on the algorithm for the exact calculation of vector

spherical harmonics we provide numerical calculations for vector outer harmonics. The

Runge property [35] enables us in step (3) to show that the restrictions of outer harmonics

on Σ inherit the closure property. The closure property in connection with Helly’s theorem

[37] guarantees in step (4) the consistency for an approximate set of data resulting in step

(5) in a smooth approximation on Σ by the usage of a Fourier expansion in terms of vector

outer harmonics.

Our first main task focuses on the representation of an algorithm for the exact generation

of scalar outer harmonics, based on the exact generation of homogeneous harmonic poly-

nomials. For the representation of linearly independent systems of homogeneous harmonic

polynomials two algorithms exclusively using integer operations are presented. The first

algorithm [19] is based on the solution of an underdetermined system of linear equations,

whereas the second algorithm uses a recursion relation for two-dimensional homogeneous

polynomials as proposed in [20]. The exact generation of homogenous harmonic polynomi-

als contains besides the determination of linearly independent systems also their orthonor-

malization. With that preparations it easy to extend the methods to the calculation of

scalar spherical harmonics and scalar outer harmonics.

For the vector case we determine orthonormal systems of vector spherical harmonics in

terms of cartesian coordinates. Usually (see, e.g., [6]), the numerical realization of vector

spherical harmonics is based on the use of associated Legendre polynomials. However,

when differentiating the associated Legendre polynomial to obtain vector spherical har-

monics the problem of having singularities at the poles, arises. In this thesis we present

an algorithm for constructing homogenous harmonic polynomials in cartesian coordinates

with exact integer arithmetic thereby avoiding problems arising when using a local coordi-
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nate system. The results are illustrated and extended to calculate vector outer harmonics

which then serve as a basis for further considerations.

Equipped with the possibility to generate vector outer harmonics for any degree and order

we develop Fourier series expansions for vector outer harmonics. For that purpose, we use

the vector outer harmonics, introduced in [33], as basis functions for the outer space of a

sphere. The theoretical backbone is provided by the closure and completeness of restrictions

of vector outer harmonics on regular surfaces. In addition to the property of closure, the

interpolation property for a finite set of approximation points can be guaranteed by Helly’s

theorem [37]. The procedure as described in [18, 21] is then extended to the vector case.

Figure 1.0.2: Approximation of a continuous vector function.

Figure 1.0.2 illustrates the construction principles for the approximation of continuous

functions which are described in more detail in the following. Let Σ be a regular surface

and denote the interior of this surface by Σint. The approximate function is assumed to

satisfy the Laplace equation outside an arbitrarily given sphere ΩR inside the inner space

Σint. The closure and completeness of vector outer harmonics in connection with Helly’s
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theorem shows that, corresponding to the continuous vector function v on Σ, there exists

a member u of a reference space h|Σ in an (ε/2)−neighborhood, such that the values of

u are consistent with the function values of the continuous vector function v on Σ for the

known finite set of discrete points. Moreover, this function u of class h|Σ may be consid-

ered to be in (ε/2)−accuracy to a member u0,...,a of a set of vector outer harmonics up to

degree a, restricted to Σ, h0,...,a|Σ, which can be supposed to be consistent with the known

function values as well. Thus, to any continuous vector function v on a regular surface

Σ, there exists in ε-accuracy a bandlimited vector function u0,...,a ∈ h0,...,a|Σ such that this

bandlimited vector function coincides at all given points with the function values of the

original continuous vector function on the regular surface Σ.

The objective of our work, is to show that the approximation can be established in a

constructive way as an (orthogonal) Fourier series for vector outer harmonics. Our interest

lies in a Fourier approximation of a function u0,...,a of class h0,...,a|Σ from discretely given

vector function values on Σ. The method is a generalization of the scalar Fourier variant

(second variant of [21]) due to Freeden and Schneider. First, we introduce a reference

space and give the representation of a reproducing kernel, constituted from vector outer

harmonics. Then we introduce a new class of approximate formulae involving vector outer

harmonics.

Next, we are concerned with the approximation of continuous vector functions on regular

surfaces corresponding to scattered vector function values on the finite set of discrete

points (on the regular surface). For the case having only a discrete set of vector data we

discuss the spline interpolation problem for smooth vector functions on regular surfaces.

Taking into account the considerations developed for the Fourier representation of vector

outer harmonics we deduce that by observing restrictions of continuous vector functions

on Σ there is a possibility to find in ε−accuracy vector outer harmonics such that the

interpolation property is assured.

The outline of this thesis is as follows.

The second chapter provides the basic notation and defines the spaces and differential op-

erators for a spherical set up. In this chapter we also introduce Legendre polynomials and

describe what we mean when we designate regular surfaces.

Chapter 3 gives an overview on spherical polynomials. First the definition of homogeneous

harmonic polynomials and their addition theorem are presented. Then scalar spherical
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harmonics and two kinds of vector spherical harmonics (the (Morse-Feshbach-) system and

the (Edmonds-)vector spherical harmonics) relating to different properties when regarding

the Laplace equation are introduced, as, e.g., in [14]. The (Edmonds-)system of vector

spherical harmonics has the property to be a set of eigenfunctions to the Beltrami opera-

tor. Thus we are able to define a set of vector functions which fulfill the Laplace equation

in the outer space of a sphere with radius R.

In Chapter 4 we first introduce scalar outer harmonics and then develop vector outer har-

monics in such a way, that the Laplace equation is fulfilled componentwise. The closure

property of the vector outer harmonics system is shown which allows to use these functions

as a basis for the approximation of continuous vector fields on regular surfaces. In Section

4.3 we present two ways for the exact calculation of homogeneous harmonic polynomials.

First by solving underdetermined systems and then via recursion relations, followed by the

calculation of scalar spherical harmonics and scalar outer harmonics and the corresponding

illustrations. Section 4.4 provides the exact generation of vector spherical harmonics and

vector outer harmonics and provides also illustrations of these functions.

In Chapter 5 we introduce first the reference space in which a reproducing kernel struc-

ture can be set up and use then this space for the Fourier representation of vector outer

harmonics (similar to the scalar case, as proposed in [10, 18, 21]). Here, we show that

we are able to present a fully discrete Fourier approximation for a vector function on a

regular surface. Section 5.3 deals with the problem to find the smoothest vector field for a

continuous function on a regular surface from given function values. The result is presented

in a spline interpolation procedure taking into account the reproducing kernel structure

of the used reference space. This chapter closes with numerical examples for the Fourier

approximation of vector functions on regular surface for discretely given wind field mea-

surements over Palatinate. Thus the last numerical example focuses without any further

physical information as, e.g., the pressure, on a smooth modelling of the wind field over

the given topography.



Chapter 2

Preliminaries

This chapter introduces some of the basic mathematical tools to build a basis on which

the following chapters rely.

In this work we operate with two different coordinate systems, therefore the reader ob-

tains an overview about the notation for the Euclidean space R3 and the corresponding

cartesian coordinate system as well as the spherical coordinates and the related spherical

nomenclature. We define then the relevant scalar and vector function spaces and introduce

differential operators, in particular operators which are used to generate vector fields. A

short description of a special system of polynomials, called Legendre polynomials, is given

followed by geometrical assumptions containing information about regular surfaces.

The preliminaries are mainly due to [11, 14, 18].

Euclidean Space R3

First we give the basic notation for the Euclidean space and set up the notation for spherical

problems. The three-dimensional Euclidean space is denoted by R3. With the canonical

orthonormal basis

ε1 =






1

0

0




 , ε2 =






0

1

0




 , ε3 =






0

0

1




 , (2.0.1)

any vector x ∈ R3 can uniquely be written as x = x1ε
1 + x2ε

2 + x3ε
3. Thus elements x,

y ∈ R3 can be represented by using their components with respect to the Cartesian basis,
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i.e., x = (x1, x2, x3)
T , y = (y1, y2, y3)

T . Basic operations for the Euclidean basis are given

by the scalar product,

x · y = x1y1 + x2y2 + x3y3,

the norm

|x| =
√

x2 =
√

x2
1 + x2

2 + x2
3,

the vector product

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1),

and the tensor product

x ⊗ y =






x1y1 x1y2 x1y3

x2y1 x2y2 x1y3

x3y1 x3y2 x3y3




 .

For vectors x, y, w, z ∈ R3 it is easy to verify that

(x ⊗ y)(w ⊗ z) = (y · w)(x ⊗ z)

and

(x ⊗ y)z = (y · z)x. (2.0.2)

Furthermore, let us introduce some notation needed for the representation of polynomial

functions. Let αi ∈ N0 for i = 1, 2, 3. We denote α = (α1, α2, α3)
T , with α1, α2, α3 ≥ 0

as the multiindex. The factorial of the multiindex is given by α! = α1! α2! α3! and the

degree of the multiindex is defined by [α] = α1 + α2 + α3. We write xα = xα1
1 xα2

2 xα3
3 for

abbreviation. With the binomial theorem we obtain the following two relations

(x1 + x2 + x3)
n =

∑

[α]=n

n!

α1!α2!α3!
xα1

1 · xα2

2 · xα3

3 =
∑

[α]=n

n!

α!
xα,

(x · y)n = (x1y1 + x2y2 + x3y3)
n =

∑

[α]=n

n!

α!
xαyα.
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Spherical Nomenclature

The sphere ΩR ∈ R3 with radius R > 0, R ∈ R, is defined by

ΩR = {x ∈ R3| |x| = R}.

The unit sphere is denoted by Ω, i.e., Ω1 = Ω. For the total surface of Ω we have

‖Ω‖ =
∫

Ω
dω = 4π, where dω denotes the surface element.

Any x ∈ R3 \ {0} can be written as x = rξ with r = |x| and ξ = (ξ1, ξ2, ξ3)
T ∈ Ω , i.e., x is

separated into its length r and its direction ξ. We can write

x =






r
√

1 − t2 cos ϕ

r
√

1 − t2 sin ϕ

rt




 , ϕ ∈ [0, 2π), t ∈ [−1, 1], r = |x|, (2.0.3)

where t is the polar distance and ϕ is the spherical longitude.

Function Spaces

We use the following general scheme of notation throughout this work:

capital letters F,G : scalar functions

lower-case letters f, g : vector fields

boldface lower-case letters f,g : tensor fields of second rank

Lp(Ω) is the class of (scalar) functions F : Ω → R that are measurable with

‖F‖Lp(Ω) =

(∫

Ω

|F (η)|pdω(η)

)1/p

< ∞, 1 ≤ p < ∞.

Lp(Ω) admits the inclusion

Lp(Ω) ⊂ Lq(Ω), 1 ≤ q < p.

For p = 2 and with respect to the inner product

(F,G)L2(Ω) =

∫

Ω

F (η)G(η)dω(η),
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L2(Ω) is a Hilbert space. It is the space of all measurable and square-integrable scalar

functions on the sphere.

The Banach space C(Ω) is given by

C(Ω) = {F : Ω → R |F continuous on Ω} ,

equipped with the norm

‖F‖C(Ω) = sup
ξ∈Ω

|F (ξ)|.

C(k)(Ω) denotes the class of k times continuously differentiable scalar functions F : Ω → R.

As is well known, L2(Ω) is the completion of C(Ω) with respect to ‖ · ‖L2(Ω), that is

L2(Ω) = C(Ω)
‖·‖

L2(Ω) . (2.0.4)

There is the following norm estimate between the C− and the L2−norm:

‖F‖L2(Ω) =

(∫

Ω

|F (η)|2dω(η)

)1/2

≤
√

4π‖F‖C(Ω), F ∈ C(Ω).

Let ξ ∈ Ω be fixed, then for every η ∈ Ω the product of ξ and η satisfies −1 ≤ ξ · η ≤ 1.

Hence for every function G ∈ L2[−1, 1] we can define a ξ-zonal function Gξ ∈ L2(Ω) by

η 7→ Gξ(η) = G(ξ · η). (2.0.5)

The value of Gξ(η) is constant on the set

M(ξ, t) = {η ∈ Ω | ξ · η = t}, t ∈ [−1, 1],

it depends only on the polar distance t between ξ ∈ Ω and η ∈ Ω. The set of all ξ-zonal

functions is isomorphic to the set of functions G : [−1, 1] → R. Thus we can interpret

C[−1, 1] and Lp[−1, 1] by norms defined as subspaces of C(Ω) and Lp(Ω), respectively.

‖G‖Lp[−1,1] = ‖G(ε3·)‖Lp(Ω) =

(

2π

∫ 1

−1

|G(s)|pds

)1/p

,

‖G‖C[−1,1] = ‖G(ε3·)‖C(Ω) = sup
η∈Ω

|G(ε3 · η)| = sup
s∈[−1,1]

|G(s)|.

In the following we are interested in spherical vector fields. Using the canonical orthonormal

basis of R3, as given in (2.0.1), every vector field f : Ω → R3 can be represented by

f(ξ) =
3∑

i=1

Fi(ξ)ε
i, ξ ∈ Ω, (2.0.6)
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where Fi are the component functions of f given by the projections onto the basis vectors,

i.e., Fi(ξ) = f(ξ) · εi, i = 1, 2, 3, ξ ∈ Ω.

With l2(Ω) we denote the class of all square-integrable vector fields on Ω. Equipped with

the inner product

(f, g)l2(Ω) =

∫

Ω

f(η) · g(η)dω(η), f, g ∈ l2(Ω),

and the norm

‖f‖l2(Ω) =

(∫

Ω

|f(η)|2dω(η)

)1/2

, f ∈ l2(Ω),

l2(Ω) is a Hilbert space. The q-times continuous differentiability of a vector field f is given

if the component functions Fi are q-times continuously differentiable.

The space c(q)(Ω), 0 ≤ q ≤ ∞, consists of all q-times continuously differentiable vector

fields on Ω. Endowed with the norm

‖f‖c(Ω) = sup
ξ∈Ω

|f(ξ)|, f ∈ c(Ω),

the space c(Ω) is complete. Analogously to the scalar case, l2(Ω) is the completion of c(Ω)

with respect to the l2(Ω)-norm, i.e.,

l2(Ω) = c(Ω)
‖·‖

l2(Ω) .

For f ∈ c(Ω) we have the norm estimate

‖f‖l2(Ω) ≤
√

4π‖f‖c(Ω).

Introducing the projection operators pnor and ptan we are able to decompose a vector field

into its normal and tangential part, respectively. In more detail, for ξ ∈ Ω, we define the

projection operators by

pnorf(ξ) = (f(ξ) · ξ),
ptanf(ξ) = f(ξ) − pnorf(ξ),

(2.0.7)

acting on continuous vector fields on the sphere. Obviously we can write

cnor(Ω) = {f ∈ c(Ω)| f = pnorf},
ctan(Ω) = {f ∈ c(Ω)| f = ptanf},

(2.0.8)
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and combine them to

c(Ω) = cnor(Ω) ⊕ ctan(Ω). (2.0.9)

With (2.0.7) we are also able to introduce projection operators for vector fields f ∈ l2(Ω),

leading to a decomposition of the Hilbert space l2(Ω) into two orthogonal parts

l2nor(Ω) = {f ∈ l2(Ω)|f = pnorf},
l2tan(Ω) = {f ∈ l2(Ω)|f = ptanf}.

(2.0.10)

This yields the orthogonal decomposition of l2(Ω):

l2(Ω) = l2nor(Ω) ⊕ l2tan(Ω). (2.0.11)

Differential Operators

In Table 2.1 a number of differential operators are listed (see for more details [14]).

Table 2.1: Differential operators

Symbol Differential Operator

∇x Gradient at x

∆x = ∇x · ∇x Laplace operator at x

∇∗
ξ Surface gradient on the unit sphere Ω at ξ

L∗
ξ = ξ ∧∇∗

ξ Surface curl gradient on the unit sphere Ω at ξ

∆∗
ξ = ∇∗

ξ · ∇∗
ξ = L∗

ξ · L∗
ξ Beltrami operator on the unit sphere Ω at ξ

∇∗· Surface divergence on the unit sphere Ω at ξ

L∗· Surface curl on the unit sphere Ω at ξ

For the convenience of the reader these operators will be discussed in the particular system

of polar coordinates for x = rξ, ξ ∈ Ω, where the split into a radial and angular part is

provided.

As usual, the gradient operator can be written by

∇x =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)T

. (2.0.12)
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For the purpose of expressing polynomials in terms of multiindices we introduce

(∇x)
α =

(
∂

∂x1

)α1
(

∂

∂x2

)α2
(

∂

∂x3

)α3

=
∂[α]

(∂x1)α1(∂x2)α2(∂x3)α3
.

Obviously, we have

(∇x)
αxβ =

{

0, for α 6= β and [α] = [β],

α!, for α = β.
(2.0.13)

The Laplacian

∆x =

(
∂

∂x1

)2

+

(
∂

∂x2

)2

+

(
∂

∂x3

)2

(2.0.14)

can also be formally written as ∆x = ∇x · ∇x. The operator Lx = x∧∇x is said to be the

curl gradient.

By setting r = 1 in (2.0.3) we obtain a local coordinate system on the unit sphere Ω.

In doing so we obtain basis vectors

εr(ϕ, t) =

(
∂x(r, ϕ, t)

∂r

) ∣
∣
∣
∣
r=1

∣
∣
∣
∣
∣

(
∂x(r, ϕ, t)

∂r

) ∣
∣
∣
∣
r=1

∣
∣
∣
∣
∣

−1

,

εϕ(ϕ, t) =

(
∂x(1, ϕ, t)

∂ϕ

)
∣
∣
∣
∣
∣

(
∂x(1, ϕ, t)

∂ϕ

)
∣
∣
∣
∣
∣

−1

,

εt(ϕ, t) =

(
∂x(1, ϕ, t)

∂t

)
∣
∣
∣
∣
∣

(
∂x(1, ϕ, t)

∂t

)
∣
∣
∣
∣
∣

−1

,

which build a moving orthonormal triad on the unit sphere Ω. Carrying out the calculations

yields

εr(ϕ, t) =






√
1 − t2 cos(ϕ)√
1 − t2 sin(ϕ)

t




 , εϕ(ϕ, t) =






− sin(ϕ)

cos(ϕ)

0




 , εt(ϕ, t) =






−t cos(ϕ)

−t sin(ϕ)√
1 − t2




 .

Notice that

εr(ϕ, t) ∧ εϕ(ϕ, t) = εt(ϕ, t).
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The canonical basis vectors of R3 can be expressed in terms of εr, εϕ, εt in the following

way:

ε1 =
√

1 − t2 cos(ϕ)εr(ϕ, t) − sin(ϕ)εϕ(ϕ, t) − t cos(ϕ)εt(ϕ, t),

ε2 =
√

1 − t2 sin(ϕ)εr(ϕ, t) − cos(ϕ)εϕ(ϕ, t) − t sin(ϕ)εt(ϕ, t),

ε3 = tεr(ϕ, t) +
√

1 − t2εt(ϕ, t).

(2.0.15)

Using the polar coordinates in (2.0.12) and (2.0.14) we can separate the gradient and the

Laplace operator into a purely tangential and a purely radial part by

∇ = εr ∂

∂r
+

1

r
∇∗, (2.0.16)

where ∇∗, the surface gradient on Ω, is the angular part of ∇ given by

∇∗ = εϕ 1√
1 − t2

∂

∂ϕ
+ εt

√
1 − t2

∂

∂t
. (2.0.17)

For the Laplace operator we obtain

∆ =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗, (2.0.18)

where ∆∗, the Beltrami operator on the unit sphere, is the angular part of the Laplace

operator

∆∗ =
∂

∂t
(1 − t2)

∂

∂t
+

1

1 − t2

(
∂

∂ϕ

)2

. (2.0.19)

Later on, working with vector spherical harmonics, we will need the so-called surface curl

gradient:

L∗
ξ = ξ ∧∇∗

ξ , ξ ∈ Ω. (2.0.20)

Applying L∗ to F ∈ C(1)(Ω) we obtain

L∗
ξF (ξ) = ξ ∧∇∗

ξF (ξ),

which is a tangential vector field, perpendicular to the vector field ∇∗
ξF (ξ). Using local

coordinates we are able to write

L∗ = −εϕ
√

1 − t2
∂

∂t
+ εt 1√

1 − t2
∂

∂ϕ
. (2.0.21)
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For a fixed η ∈ Ω the following relations hold:

∇∗
ξ(ξ · η) = η − (ξ · η)ξ,

L∗
ξ(ξ · η) = ξ ∧ η,

∆∗
ξ(ξ · η) = −2(ξ · η).

Applying the operators on radial basis functions as introduced by (2.0.5) leads to the

following results:

Let F ∈ C(1)[−1, 1], then for ξ, η ∈ Ω

∇∗
ξF (ξ · η) = F ′(ξ · η)(η − (ξ · η)ξ),

L∗
ξF (ξ · η) = F ′(ξ · η)(ξ ∧ η),

whereas for F ∈ C(2)[−1, 1], we get

∆∗
ξF (ξ · η) = −2(ξ · η)F ′(ξ · η) + (1 − (ξ · η)2)F ′′(ξ · η), ξ, η ∈ Ω. (2.0.22)

The (formal) scalar product of the operators ∇∗ and L∗ with a tangential vector field

f ∈ c
(1)
tan(Ω), f(ξ) =

∑3
i=1 Fi(ξ)ε

i, yields the surface divergence ∇∗
ξ · defined by

∇∗
ξ · f(ξ) =

3∑

i=1

(∇∗
ξFi(ξ)) · εi (2.0.23)

and the surface curl L∗
ξ · given by

L∗
ξ · f(ξ) =

3∑

i=1

(L∗
ξFi(ξ)) · εi. (2.0.24)

Remark 2.0.1. The motivation for the definition of the operators ∇∗ and L∗ is the fact

that any f ∈ c(1)(Ω) can be decomposed by the Helmholtz Theorem (see [14]) as follows

f(ξ) = ξF1(ξ) + ∇∗
ξF2(ξ) + L∗

ξF3(ξ), (2.0.25)

with functions Fi : Ω → R, i = 1, 2, 3, satisfying
∫

Ω

F2(η)dω(η) =

∫

Ω

F3(η)dω(η) = 0

and

ptanf(ξ) = ∇∗
ξF2(ξ) + L∗

ξF3(ξ), ξ ∈ Ω.
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The last part of this section introduces operators oi, i = 1, 2, 3. Throughout the work we

will use the following notation

0i =







0, if i = 1,

1, if i = 2, 3.
(2.0.26)

Regarding notation (2.0.26) we will use the following abbreviation N0i
= {n ∈ N |n ≥ 0i}.

For F ∈ C(1)(Ω) the operators o(i) : C(0i)(Ω) → c(Ω), i = 1, 2, 3, are defined by

o
(1)
ξ F (ξ) = ξF (ξ),

o
(2)
ξ F (ξ) = ∇∗

ξF (ξ),

o
(3)
ξ F (ξ) = L∗

ξF (ξ).

(2.0.27)

Hence, o(1)F is a normal field, whereas o
(2)
ξ F and o

(3)
ξ F are tangential fields. Furthermore,

o2
ξF (ξ) is curl-free, whereas o3

ξF (ξ) is divergence-free, as ∇∗
ξF (ξ) is a gradient- and L∗

ξF (ξ)

is a curl-field. Additionally, we see that

oi
ξF (ξ) · oj

ξF (ξ) = 0, for all i 6= j, i, j ∈ 1, 2, 3, ξ ∈ Ω. (2.0.28)

Let now f : Ω → R3 be a continuously differentiable vector field. We separate f into a

normal and a tangential component

f = fnor + ftan.

Then there exist scalar-valued functions F (i) : Ω → R, i = 1, 2, 3 such that

fnor(ξ) = o
(1)
ξ F (1)(ξ), ξ ∈ Ω,

ftan(ξ) = o
(2)
ξ F (2)(ξ) + o

(3)
ξ F (3)(ξ), ξ ∈ Ω,

(2.0.29)

Notice that F (i), i = 2, 3, have to be twice continuously differentiable functions.

The functions F (i), i = 1, 2, 3, are given by

F (1)(ξ) = ξ · f(ξ), ξ ∈ Ω,

F (2)(ξ) = −
∫

Ω

G(∆∗; ξ; η)∇∗
ξ · f(η)dω(η), ξ ∈ Ω,

F (3)(ξ) = −
∫

Ω

G(∆∗; ξ; η)L∗
ξ · f(η)dω(η), ξ ∈ Ω,
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where G(∆∗; ξ; η) is Green’s function with respect to the Beltrami operator ∆∗, given

explicitly (see [7]) by

G(∆∗; ξ; η) =
1

4π
ln(1 − ξ · η) +

1

4π
− 1

4π
ln 2, ξ, η ∈ Ω.

Later we will use the adjoint operators of o(i), i.e., those operators O(i) for which holds

(o(i)F, g)l2(Ω) = (F,O(i)g)L2(Ω),

whenever F, g are continuously differentiable functions. With the projections given by

(2.0.7) these operators can be represented as follows:

O
(1)
ξ g(ξ) = ξ · pnorf(ξ), ξ ∈ Ω,

O
(1)
ξ g(ξ) = −∇∗

ξ · ptanf(ξ), ξ ∈ Ω,

O
(1)
ξ g(ξ) = −L∗

ξ · ptanf(ξ), ξ ∈ Ω.

(2.0.30)

These definitions lead to the following results: Let F ∈ C(2)(Ω), then the following relations

are valid.

1. For i 6= j and i, j ∈ {1, 2, 3} the equation Oi
ξo

j
ξF (ξ) = 0 holds,

2. for i ∈ {1, 2, 3},

Oi
ξo

i
ξF (ξ) =

{

F (ξ), for i = 1,

−∆∗
ξF (ξ), for i = 2, 3.

Legendre Polynomials

Legendre polynomials form an orthogonal basis set in L2[−1, 1]. In the following we intro-

duce the Legendre polynomials as done in [14].

A function

Pn : [−1, 1] → R, n ∈ N0, (2.0.31)

satisfying the following properties

1. Pn is a polynomial of degree n,

2.
∫ 1

−1
Pn(t)Pl(t)dt = 0, for n 6= l (orthogonality),
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3. Pn(1) = 1,

is called Legendre polynomial.

Legendre polynomials can uniquely be defined as eigenfunctions of the Legendre operator

given by

Lt =
d

dt
(1 − t2)

d

dt
, t ∈ [−1, 1],

which is a part of the Beltrami operator as given by (2.0.19).

Definition 2.0.1. The Legendre polynomials Pn : [−1, 1] → R of degree n are uniquely

defined as the twice differentiable eigenfunctions of the Legendre operator corresponding to

the eigenvalues -n(n+1), such that

(Lt + n(n + 1))Pn(t) = 0,

with Pn satisfying the additional condition Pn(1) = 1.

The Legendre polynomials form an orthogonal set with respect to the L2[−1, 1] - inner

product, i.e.,
∫ 1

−1

Pn(x)Pm(x)dx =
2

2n + 1
δnm, n,m ∈ N0,

with δnm being the Kronecker symbol.

Theorem 2.0.1. Let the Legendre polynomials be given by Definition 2.0.1 and n ∈ N0.

Then the following statements hold true.

1. The set {Pn}n∈N is complete in L2[−1, 1] with respect to ‖ · ‖L2[−1,1] and closed within

C[−1, 1] with respect to ‖ · ‖C[−1,1],

2. Pn(ε3·) as in (2.0.5) is the only polynomial of degree n, that is invariant with respect

to orthogonal transformations t with tε3 = ε3 (i.e., that leave the ε3-axis fixed).

Let F be any function of class L2[−1, 1], then the representation by its Legendre series is

given via

F =
∞∑

n=0

2n + 1

4π
F∧(n)Pn, (2.0.32)
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with the Legendre coefficients F∧(n) given by

F∧(n) = (F, Pn)L2[−1,1] =

∫ 1

−1

F (x)Pn(x)dx, n ∈ N0.

The equality (2.0.32) is understood in the L2[−1, 1]-sense, i.e.,

lim
N→∞

∥
∥
∥
∥
∥
F −

N∑

n=0

2n + 1

4π
F∧(n)Pn

∥
∥
∥
∥
∥
L2[−1,1]

= 0.

For a more detailed description about Legendre polynomials we refer to [14].

Geometrical Assumptions

For our purposes concerning the approximation of functions given on discrete points on

a surface we need to explain which kind of surfaces are approved. This will be done as

proposed, e.g., in [8, 18, 21].

Definition 2.0.2. A surface Σ ⊂ R3 is said to be regular, if it satisfies the following

properties (see Figure 2.0.1):

1. Σ divides the three-dimensional space R3 into the (open) bounded region Σint (inner

space) and the (open) unbounded region Σext (outer space) defined by Σext = R3\Σint.

2. Σ is a closed and compact surface with no double points.

3. The origin is contained in Σint.

4. Σ has a continuously differentiable unit normal field ν pointing into the outer space

Σext.

Georelevant regular surfaces Σ are, for example, spheres, ellipsoids, spheroids, the geoid,

the (regular) Earth’s surface, etc.

As usual, Ωint
R and Ωext

R denote the inner and the outer space of the sphere ΩR around the

origin with radius R. Σint
inf , Σint

sup (resp. Σext
inf , Σext

sup) denote the inner (resp. outer) space
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Figure 2.0.1: The geometrical concept. ΩR denotes a sphere with radius R, Σ is a regular

surface with Σext, Σint denoting the exterior and interior space, respectively.

of the sphere Σint (resp. Σext) around the origin with radius σinf (resp. σsup). Given a

regular surface, there exists a positive constant R such that

R < σinf = inf
x∈Σ

|x| ≤ sup
x∈Σ

|x| = σsup. (2.0.33)

The set

Σ(τ) = {x ∈ R3 |x = y + τν(y), y ∈ Σ}

generates a parallel surface which is exterior to Σ for τ > 0 and interior for τ < 0. From

differential geometry (see [32]) it is well known that if |τ | is sufficiently small, then the

regularity of Σ implies the regularity of Σ(τ) and the normal to one parallel surface is also

a normal to the other. Moreover, it is easily seen (see [18]) that

inf
x,y∈Σ

|x + τν(x) − (y + σν(y))| = |τ − σ|

provided that |τ |, |σ| are sufficiently small.

In what follows every sphere ΩR ⊂ Σint as indicated above will be called a Runge sphere.



Chapter 3

Spherical Polynomials

Our approach essentially follows [7, 8, 18, 21]. We start with the definition of homogeneous

harmonic polynomials and introduce the addition theorem. Then we introduce scalar

spherical harmonics as a restriction of the homogeneous harmonic polynomials to the sphere

Ω. After that we present two types of vector spherical harmonics, the (Morse-Feshbach)-

system y
(i)
n,m and the (Edmonds-)system u

(i)
n,m, n ∈ N0i

; m = 1, . . . , 2n + 1; i = 1, 2, 3.

Referring to Figure 1.0.1 this chapter deals with step (1) of the scalar and vector case.

3.1 Homogeneous and Homogeneous Harmonic Poly-

nomials

First we follow the representation of homogeneous harmonic polynomials as introduced

in [7, 14]. The set of all homogeneous polynomials of degree n (i.e., Hn(λx) = λnHn(x),

λ ∈ R, λ > 0, and x ∈ R3) is denoted by Homn. If Hn ∈ Homn, then there exist real

numbers Cα = Cα1,α2,α3 such that

Hn(x) = Hn(x1, x2, x3) =
∑

[α]=n

Cαxα =
∑

α1+α2+α3=n

Cα1α2α3 xα1
1 xα2

2 xα3
3 . (3.1.1)

Thus Homn = {Hn : R3 → R |Hn =
∑

[α]=n Cαxα}.

Remark 3.1.1. The following properties are associated with the space Homn.

(i) The set of monomials x 7→ xα, x ∈ R3, [α] = n is a basis of Homn.
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(ii) The dimension of the space Homn is precisely the number of ways a triple can be

chosen so that we have [α] = n, i.e., the number of ways selecting 2 elements out of

a collection of n + 2. This means that the dimension d(Homn) of Homn is equal to

d(Homn) =
(n + 1)(n + 2)

2
=

(
n + 2

2

)

.

Let Hn(∇x) be the differential operator associated to Hn(x) (i.e., replace xα formally by

(∇x)
α in the expression of Hn(x)) then

Hn(∇x) =
∑

α1+α2+α3=n

Cα1α2α3

∂[α]

∂xα1
1 ∂xα2

2 ∂xα3
3

=
∑

[α]=n

Cα(∇x)
α . (3.1.2)

If such an operator is applied to a homogeneous polynomial Un of the same degree

Un(x) =
∑

[β]=n

Dβ xβ,

we obtain as result a real number:

(Hn(∇x)) Un(x)

=
∑

[α]=n

∑

[β]=n

Cα Dβ

(
∂

∂x1

)α1

xβ1

1

(
∂

∂x2

)α2

xβ2

2

(
∂

∂x3

)α3

xβ3

3

=
∑

[α]=n

Cα Dα α! .

Clearly, we find

(Hn(∇x)) Un(x) = (Un(∇x)) Hn(x),

(Hn(∇x)) Hn(x) ≥ 0.

This enables us to introduce an inner product (·, ·)Homn
on the space Homn by letting

(Hn, Un)Homn
= (Hn(∇x)) Un(x). (3.1.3)

The space Homn equipped with the inner product (·, ·)Homn
is a finite-dimensional Hilbert

space. The set of monomials

{x 7→ (α!)−1/2xα | [α] = n}
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forms an orthonormal system in the space Homn. For each Hn ∈ Homn we have ([7, 14])

in connection with (3.1.2)

Hn(x) =
∑

[α]=n

1

α!
(Hn(∇y)) yα xα

= (Hn(∇y))
1

n!

∑

[α]=n

n!

α!
xαyα

= (Hn(∇y))
(x · y)n

n!

=
1

n!
(x · ∇y)

n Hn(y).

In other words,

Hn(x) =

(
(x· )n

n!
, Hn

)

Homn

.

Theorem 3.1.1. Homn equipped with the inner product (·, ·)Homn
is a finite-dimensional

Hilbert space of dimension (n+1)(n+2)
2

with the reproducing kernel

KHomn
(x, y) =

(x · y)n

n!
, x, y ∈ R3,

i.e.,

(i) for every fixed y, the function KHomn
(·, y) belongs to Homn,

(ii) for any Hn ∈ Homn and any point x the reproducing property

Hn(x) = (KHomn
(x, ·), Hn)Homn

is valid.

Let {Hn,m}m=1,...,d(Homn), {Un,m}m=1,...,d(Homn) be two orthonormal systems in the space

Homn:

(Hn,m, Hn,k)Homn
= δmk,

(Un,m, Un,k)Homn
= δmk,
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where δmk is the usual Kronecker symbol. Then, for m = 1, ..., d(Homn), we have

Hn,m =

d(Homn)
∑

k=1

(Hn,m, Un,k)Homn
Un,k,

Un,m =

d(Homn)
∑

k=1

(Un,m, Hn,k)Homn
Hn,k.

Therefore it follows that

d(Homn)
∑

m=1

Hn,m(x) Hn,m(y) =

d(Homn)
∑

m=1

Un,m(x)Un,m(y).

Hence, in particular for the orthonormal system of monomials, we obtain the following

result.

Theorem 3.1.2. Let {Hn,m}m=1,...,d(Homn) be an orthonormal system in Homn. Then

KHomn
(x, y) =

(x · y)n

n!
=

d(Homn)
∑

m=1

Hn,m(x)Hn,m(y), x, y ∈ R3.

KHomn
(·, ·) is the only reproducing kernel in Homn.

Suppose that there are given d(Homn) points x1, ..., xd(Homn) ∈ R3 and d(Homn)–values

d1, ...dd(Homn) ∈ R. We are able to solve the Homn interpolation problem

d(Homn)
∑

m=1

bmHn,m(xk) = dk, k = 1, ..., d(Homn),

if and only if the matrix

matr{x1,...,xd(Homn)}(Hn,1, . . . , Hn,d(Homn)) (3.1.4)

=






Hn,1(x1) . . . Hn,1(xd(Homn))
...

. . .
...

Hn,d(Homn)(x1) . . . Hn,d(Homn)(xd(Homn))






is non-singular. A system of d(Homn) points x1, ..., xd(Homn) is called a fundamental system

relative to Homn if the matrix (3.1.4) is non-singular.

In what follows we guarantee the existence of a fundamental system relative to Homn (see

for [31]).
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Lemma 3.1.3. There exists a system {x1, . . . , xd(Homn)} ⊂ R3 such that (3.1.4) is non-

singular.

Proof. As orthonormal system, the functions Hn,1, ..., Hn,d(Homn) are linearly independent.

Hence, there exists a point x1 for which

Hn,1(x1) 6= 0.

Now, there must also be a point x2 such that
∣
∣
∣
∣
∣

Hn,1(x1) Hn,1(x2)

Hn,2(x1) Hn,2(x2)

∣
∣
∣
∣
∣
6= 0,

for else we would have a contradiction to the linear independence of Hn,1, Hn,2. In the same

way the existence of a point x3 can be deduced by the requirement
∣
∣
∣
∣
∣
∣
∣

Hn,1(x1) Hn,1(x2) Hn,1(x3)

Hn,2(x1) Hn,2(x2) Hn,2(x3)

Hn,3(x1) Hn,3(x2) Hn,3(x3)

∣
∣
∣
∣
∣
∣
∣

6= 0.

Finally, by induction, we obtain a system of points x1, ..., xd(Homn) such that
∣
∣
∣
∣
∣
∣
∣

Hn,1(x1) . . . Hn,1(xd(Homn))
...

. . .
...

Hn,d(Homn)(x1) . . . Hn,d(Homn)(xd(Homn))

∣
∣
∣
∣
∣
∣
∣

6= 0,

i.e., {x1, . . . , xd(Homn)} constitutes a fundamental system relative to Homn.

To every Hn ∈ Homn, there exist real numbers b1, ..., bd(Homn) such that

Hn =

d(Homn)
∑

k=1

bk Hn,k.

Under the assumption that {x1, ..., xd(Homn)} is a fundamental system relative to Homn,

the linear equations

d(Homn)
∑

j=1

aj Hn,k(xj) = bk, k = 1, ..., d(Homn) , (3.1.5)

are uniquely solvable in the unknowns a1, ..., ad(Homn). Thus we obtain

Hn =

d(Homn)
∑

k=1

d(Homn)
∑

j=1

aj Hn,k(xj) Hn,k.



3.1 Homogeneous and Homogeneous Harmonic Polynomials 26

Theorem 3.1.4. Let {Hn,m}m=1,...,d(Homn) be an orthonormal system in Homn. Assume

that {xk}k=1,...,d(Homn) is a fundamental system relative to Homn. Then, each Hn ∈ Homn

is uniquely representable in the form

Hn(x) =

d(Homn)
∑

m=1

am KHomn
(xm, x) =

d(Homn)
∑

m=1

am
(xm · x)n

n!
.

By Harmn we denote the space of all polynomials in Homn that are harmonic, i.e., fulfill

Laplace’s equation in three dimensions:

Harmn = {Hn ∈ Homn | ∆xHn(x) = 0, x ∈ R3} .

For n < 2, of course, all homogeneous polynomials are harmonic.

Any homogeneous harmonic polynomial of degree n can be represented in the form

Hn(x) = Hn(x1, x2, x3) =
n∑

j=0

xj
3An−j(x1, x2), (3.1.6)

where An−j is a homogeneous polynomial of degree n − j in the variables x1, x2 given by

the recursion relation

An−j−2(x1, x2) = − 1

(j + 1)(j + 2)

(

(
∂

∂x1

)2 + (
∂

∂x2

)2

)

An−j(x1, x2),

for j = 0, . . . , n − 2. Therefore, all polynomials An−j are determined if we know An and

An−1.

Theorem 3.1.5. Let An and An−1 be homogeneous polynomials of degree n and n − 1 in

R2, respectively. For j = 0, ..., n − 2 we set recursively

An−j−2(x1, x2) = − 1

(j + 1)(j + 2)

((
∂

∂x1

)2

+

(
∂

∂x2

)2
)

An−j(x1, x2). (3.1.7)

Then Hn : R3 → R given by

Hn(x1, x2, x3) =
n∑

j=0

xj
3An−j(x1, x2)

is a homogeneous harmonic polynomial of degree n in R3, i.e. Hn ∈ Harmn. The num-

ber of linearly independent homogeneous harmonic polynomials is equal to the number of

coefficients of An and An−1, i.e.

d(Harmn) = n + n + 1 = 2n + 1.
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Assume that n ≥ 2. Let Hn−2 be a homogeneous polynomial of degree n − 2, i.e. Hn−2 ∈
Homn−2. Then, for each homogeneous harmonic polynomial Kn, we have

(| · |2Hn−2, Kn)Homn
= (Hn−2(∇x))∆xKn(x) = 0 .

This means | · |2Hn−2 is orthogonal to Kn in the sense of the inner product (·, ·)Homn
.

Conversely, suppose that Kn ∈ Homn is orthogonal to all elements Ln of the form

Ln(x) = |x|2Hn−2(x) , Hn−2 ∈ Homn−2.

Then it follows that

0 = (| · |2Hn−2, Kn)Homn
= (Hn−2(∇x))∆xKn(x) = (Hn−2, ∆Kn)Homn−2

for all Hn−2 ∈ Homn−2. This is true only if ∆Kn = 0, i.e. Kn is a homogeneous harmonic

polynomial.

Theorem 3.1.6. (Decomposition theorem of Homn) Homn, n ≥ 2, is the orthogonal

direct sum of Harmn and Harm⊥
n , where Harm⊥

n = | · |2Homn−2 is the space of all Ln with

Ln(x) = |x|2Hn−2(x), Hn−2 ∈ Homn−2. Consequently, each homogeneous polynomial Hn

of degree n can be uniquely decomposed in the form

Hn(x) = Kn(x) + |x|2Hn−2(x) ,

where Kn is a homogeneous harmonic polynomial of degree n and Hn−2 is a homogeneous

polynomial of degree n − 2.

Denote by ProjHarmn
and ProjHarm⊥

n
the projection operators in Homn onto Harmn and

Harm⊥
n , respectively. Then

Hn = ProjHarmn
Hn + ProjHarm⊥

n
Hn .

In other words,

Kn(x) = ProjHarmn
Hn(x),

|x|2Hn−2(x) = ProjHarm⊥
n
Hn(x) .

For all Hn, Un ∈ Homn,

(ProjHarmn
Hn, Un)Homn

= (Hn, ProjHarmn
Un)Homn

.
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Moreover, we have ProjHarmn
Hn = ProjHarmn

Kn = Kn. Observe that

d(Harmn) = d(Homn) − d(Harm⊥
n )

= d(Homn) − d(Homn−2)

=

(
n + 2

2

)

−
(

n

2

)

= 2n + 1.

If we apply Theorem 3.1.6 recursively to Hn−2, Hn−4, ..., we obtain the following result.

Theorem 3.1.7. Each homogeneous polynomial of degree n can be uniquely decomposed

in the form

Hn(x) =

[n/2]
∑

i=0

|x|2iKn−2i(x), Kn−2i ∈ Harmn−2i, x ∈ R3, (3.1.8)

where
[n

2

]

=
1

2

(

n − 1

2
(1 − (−1)n)

)

.

In other words, Homn admits the direct sum decomposition

Homn(R3) =

[n/2]
⊕

i=0

| · |2iHarmn−2i(R
3).

This result gives rise to the following corollary.

Corollary 3.1.8. For n ∈ N0

Homn(R3)|Ω = Homn(Ω) =

[n/2]
⊕

i=0

Harmn−2i(R
3)|Ω.

Since the space Pol0,...,n(R3) of polynomials in three variables of degree ≤ n can be written

as direct sum decomposition of Homn(R3) and Homn−1(R3), when restricted to Ω, i.e.,

Pol0,...,n(R3)|Ω = (Homn(R3)|Ω) ⊕ (Homn−1(R
3)|Ω).

We finally obtain the following.

Corollary 3.1.9. For n ∈ N0

Pol0,...,n(R3)|Ω =
n⊕

i=0

Harmi(R
3)|Ω.

In other words, the restriction to the unit sphere Ω of any polynomial of three variables is

a sum of restrictions to Ω of homogeneous harmonic polynomials.
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Addition Theorem for Homogeneous Harmonic Polynomials

We are now interested in giving the explicit representation of the orthogonal projection

ProjHarmn
Hn of a given homogeneous polynomial Hn. For that purpose we need some

preliminaries. By induction we are able to prove that for i = 1, 2, 3 and |x| 6= 0 (see for

[26])

(
∂

∂xi

)n
1

|x|

= (−1)n (2n)!

n!2n

1

|x|2n+1





[n/2]
∑

s=0

(−1)s n!(2n − 2s)!

(2n)!(n − s)!s!
|x|2s∆s



 xn
i .

In other words, we find

(εi · ∇x)
n 1

|x|

= (−1)n (2n)!

n!2n

1

|x|2n+1





[n/2]
∑

s=0

(−1)s n!(2n − 2s)!

(2n)!(n − s)!s!
|x|2s∆s




(
εi · x

)n
,

i = 1, 2, 3. Since the differential operator ∆ is invariant with respect to orthogonal trans-

formations it is easy to see that

(y · ∇x)
n 1

|x|

= (−1)n (2n)!

n!2n

1

|x|2n+1





[n/2]
∑

s=0

(−1)s n!(2n − 2s)!

(2n)!(n − s)!s!
|x|2s∆s



 (y · x)n

is valid for every y ∈ R3. Now, as we have seen in Theorem 3.1.4, each Hn ∈ Homn may

be represented in the form

Hn(x) =

d(Homn)
∑

m=1

cm(xm · x)n, x ∈ R3,

where cm, m = 1, ..., d(Homn), are suitable coefficients and x1, ..., xd(Homn) is a fundamental

system relative to Homn.

Consequently, we have the following result.
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Theorem 3.1.10. Let Hn be a homogeneous polynomial of degree n. Then, for each

x ∈ R3, |x| 6= 0,

(Hn(∇x))
1

|x|

= (−1)n (2n)!

n!2n

1

|x|2n+1





[n/2]
∑

s=0

(−1)s n!(2n − 2s)!

(2n)!(n − s)!s!
|x|2s∆s



Hn(x).

From the considerations given above it follows that

(Hn(∇x))
1

|x| = (Kn(∇x))
1

|x| + (Hn−2(∇x))∆x
1

|x| , |x| 6= 0.

Thus, in connection with

∆x
1

|x| = 0, |x| 6= 0,

∆xKn(x) = 0, x ∈ R3,

we obtain for |x| 6= 0

(Hn(∇x))
1

|x| = (Kn(∇x))
1

|x| = (−1)n (2n)!

n!2n

1

|x|2n+1
Kn(x). (3.1.9)

Therefore, by comparison of (3.1.9) and Theorem 3.1.10, we get the following lemma.

Lemma 3.1.11. Let Hn be a homogeneous polynomial of degree n. Then

Proj
Harmn

Hn(x) =





[n/2]
∑

s=0

(−1)s n!(2n − 2s)!

(2n)!(n − s)!s!
|x|2s∆s



Hn(x).

Observing

∆x(x · y)n = n(n − 1)|y|2(x · y)n−2, y ∈ R3,

we obtain, in particular,
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ProjHarmn
(
(x · y)n

n!
)

=
1

n!

[n/2]
∑

s=0

(−1)s (2n − 2s)!(n!)2

(n − 2s)!(n − s)!s!(2n)!
|x|2s|y|2s(x · y)n−2s.

Thus, we find by using x = |x|ξ, y = |y|η, (ξ, η) ∈ Ω2, the equation

ProjHarmn

(
(x · y)n

n!

)

=
(2n + 1)2n · n!

(2n + 1)!
(|x| |y|)n

[n/2]
∑

s=0

(−1)s (2n − 2s)!

2n(n − 2s)!(n − s)!s!
(ξ · η)n−2s.

Suppose that {Hn,m}m=1,...,d(Harmn) is an orthonormal system in Harmn with respect to

(·, ·)Homn
. Let {Un,m}m=1,...,d(Homn)−d(Harmn) be an orthonormal system in Harm⊥

n . Then

the union of both systems

{Hn,m}m=1,...,d(Harmn) ∪ {Un,m}m=1,...,d(Homn)−d(Harmn)

forms an orthonormal system in Homn. Therefore it follows that

(x · y)n

n!
(3.1.10)

=

d(Harmn)
∑

m=1

Hn,m(x) Hn,m(y) +

d(Homn)−d(Harmn)
∑

m=1

Un,m(x) Un,m(y)

for any pair x, y ∈ R3. On the one hand, in view of the definition of the projection operator

ProjHarmn
, we get

ProjHarmn





d(Harmn)
∑

m=1

Hn,m(x)Hn,m(y) +

d(Homn)−d(Harmn)
∑

m=1

Un,m(x)Un,m(y)





=

d(Harmn)
∑

m=1

Hn,m(x)Hn,m(y). (3.1.11)

On the other hand, as we have shown above,

ProjHarmn
(
(x · y)n

n!
) (3.1.12)

=
(2n + 1)2nn!

(2n + 1)!
|x|n|y|n

[n/2]
∑

s=0

(−1)s (2n − 2s)!

2n(n − 2s)!(n − s)!s!
(ξ · η)n−2s.
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By comparison of (3.1.11) and (3.1.12) we obtain the addition theorem of homogeneous

harmonic polynomials in R3.

Theorem 3.1.12. Let {Hn,m}m=1,...,d(Harmn), d(Harmn) = 2n + 1, be an orthonormal

system in Harmn with respect to (·, ·)Homn
. Then, for x, y ∈ R3, x = |x|ξ, y = |y|η, we

have
2n+1∑

j=1

Hn,m(x) Hn,m(y) =
2nn!

(2n)!
|x|n|y|nPn(ξ · η),

where we have used the abbreviation

Pn(t) =

[n/2]
∑

s=0

(−1)s (2n − 2s)!

2n(n − 2s)!(n − s)!s!
tn−2s, t ∈ [−1, 1].

Next we discuss the important question of how, for any pair of elements Hn ∈ Harmn,

Kn ∈ Harmn, the inner product (·, ·)Homn
defined by (3.1.3) is related to the (usually used)

inner product (·, ·)L2(Ω).

Theorem 3.1.13. For Hm ∈ Harmm, Kn ∈ Harmn,

(Hm, Kn)L2(Ω) =
δnm

µn

(Hm(∇x))Kn(x),

where µn is given by

µn =
(2n + 1)!

4π2nn!
=

1 · 3 · . . . · (2n + 1)

4π
=

(2n + 1)!!

4π
. (3.1.13)

Proof. By virtue of the fundamental theorem of potential theory (see, for example, [27])

Kn(x) =
1

4π

∫

Ω

{
1

|x − y|
∂

∂νy

Kn(y) − Kn(y)
∂

∂νy

1

|x − y|

}

dω(y)

for all x ∈ R3 with |x| < 1, where ∂/∂ν denotes the derivative in the direction of the outer

normal to Ω. Therefore we find

(Hm(∇x))Kn(x) =
1

4π

∫

Ω

{

(Hm(∇x))
1

|x − y|
∂

∂νy

Kn(y)

− Kn(y)
∂

∂νy

(Hm(∇x))
1

|x − y|

}

dω(y). (3.1.14)

For x 6= y we get from (3.1.9)

(Hm(∇x))
1

|x − y| = (−1)m (2m)!

m!2m

Hm(x − y)

|x − y|2m+1
.
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Because Hm is homogeneous, this is equivalent to

(Hm(∇x))
1

|x − y| =
(2m)!

m!2m

Hm(y − x)

|x − y|2m+1
. (3.1.15)

Inserting (3.1.15) into (3.1.14) gives

(Hm(∇x))Kn(x) =
(2m)!

(m!)2m

1

4π

∫

Ω

{
Hm(y − x)

|x − y|2m+1

∂

∂νy

Kn(y)

−Kn(y)
∂

∂νy

Hm(y − x)

|x − y|2m+1

}

dω(y).

It is easy to see that for m 6= n

(Hm(∇x))Kn(x) |x=0 = 0,

while for m = n

(Hm(∇x))Kn(x) |x=0 = (Hm(∇x))Kn(x) = (Hm, Kn)Homn
.

Therefore we obtain

1

4π

∫

Ω

{
Hm(y)

|y|2m+1

∂

∂νy

Kn(y) − Kn(y)
∂

∂νy

Hm(y)

|y|2m+1

}

dω(y) (3.1.16)

=

{

0 for m 6= n
(

2mm!
(2m)!

)

(Hm, Kn)Homn
for m = n

.

Since the normal derivatives of Kn and Hm are equal to

∂

∂r
Kn(rξ) |r=1 = nKn(ξ) ,

∂

∂r
Hm(rξ) |r=1 = mHm(ξ), (3.1.17)

respectively, it follows that

1

4π

∫

Ω

{
Hm(y)

|y|2m+1

∂

∂νy

Kn(y) − Kn(y)
∂

∂νy

Hm(y)

|y|2m+1

}

dω(y)

=
1

4π

∫

Ω

{nHm(ξ)Kn(ξ) + (m + 1)Hm(ξ)Kn(ξ)} dω(ξ)

=
n + m + 1

4π

∫

Ω

Hm(ξ)Kn(ξ) dω(ξ). (3.1.18)

Thus, by combination of (3.1.16) and (3.1.18), we finally obtain the desired result stated

in Theorem 3.1.13.
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Thus, to any orthonormal system {Hn,m}m=1,...,2n+1 in Harmn with respect to (·, ·)Homn

there corresponds the L2(Ω)-orthonormal system {√µnHn,m}m=1,...,2n+1, and vice versa.

Finally, we are led to the following reformulation of the addition theorem.

Theorem 3.1.14. Let {Hn,m}m=1,...,2n+1 be an orthonormal system in Harmn with respect

to (·, ·)Homn
. Then, for x, y ∈ R3, we have

2n+1∑

m=1

√
µnHn,m(x)

√
µnHn,m(y) =

2n + 1

4π
|x|n|y|nPn(ξ · η),

where x = |x|ξ, y = |y|η; (ξ, η) ∈ Ω2 and µn is defined by (3.1.13)

3.2 Scalar Spherical Harmonics

Spherical harmonics are the analogues of trigonometric functions on spheres (see, e.g.,

[7, 14, 31]). One possibility to define them is as restrictions of homogeneous harmonic

polynomials to the unit sphere. Other possibilities are, e.g., given by the use of the Bel-

trami operator or with the help of Legendre polynomials (see Definition 2.0.1). Every

spherical harmonic, which is invariant under orthogonal transformations can be repre-

sented by a Legendre polynomial. This relationship is reflected by the addition theorem

for scalar spherical harmonics, which will also be given in this section.

We provide first the definition of spherical harmonics and the development of their prop-

erties in R3.

Definition 3.2.1. Let Hn : R3 → R be a homogeneous harmonic polynomial in three

variables of degree n with n ∈ N0. We call its restriction to the unit sphere

Yn = Hn|Ω

a spherical harmonic of degree n. The space of all spherical harmonics of degree n is

denoted by Harmn(Ω). Additionally the space of all spherical harmonics of degree less or

equal to n will be denoted Harm0,...,n.

We now state some useful and important facts about spherical harmonics ( see for more

details, e.g., [7, 14, 31]):
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1. Spherical harmonics of different degrees are orthogonal with respect to the L2-scalar

product, i.e., for every Yn ∈ Harmn and every Ym ∈ Harmm we have

(Yn, Ym)L2(Ω) =

∫

Ω

Yn(η)Ym(η)dω(η) = 0, n 6= m, η ∈ Ω.

2. Harmn(Ω) is of dimension dim(Harmn) = 2n + 1.

3. From the last property we can deduce that

Harm0,...,n(Ω) =
n⊕

m=0

Harmm(Ω), (3.2.1)

hence,

dim(Harm0,...,n(Ω)) =
n∑

m=0

(2m + 1) = (n + 1)2.

Applying the Laplace operator to Hn ∈ Harmn(R3) and observing that Hn(x) = rnYn(ξ)

with Yn ∈ Harmn(Ω) and x = rξ ∈ R3, r = |x|, ξ ∈ Ω, we get another possibility to

introduce spherical harmonics, namely as eigenfunctions of the Beltrami operator.

Lemma 3.2.1. Any spherical harmonic Yn, n ∈ N0, is an infinitely often differentiable

eigenfunction of the Beltrami operator corresponding to the eigenvalue −n(n + 1). More

explicitly,

(∆∗
ξ − (∆∗)∧(n))Yn(ξ) = 0, ξ ∈ Ω, Yn ∈ Harmn,

where the ’spherical symbol’ {(∆∗)∧(n)}n∈N0 of the Beltrami operator ∆∗ is given by

(∆∗)∧(n) = −n(n + 1), n ∈ N0.

Remark 3.2.1. With Yn,m we denote a member of an orthonormal system {Yn,1, . . . , Yn,2n+1}
in Harmn with respect to (·, ·)L2(Ω).

In the following we list the completeness and closure properties for spherical harmonics

in C(Ω) and L2(Ω). They enable us to expand scalar functions F ∈ L2(Ω) (observe that

C(Ω) ⊂ L2(Ω)) into a Fourier series of spherical harmonics.

The system {Yn,m} n∈N0;
m=1,...,2n+1

is closed in (C(Ω), ‖·‖C(Ω)). That means that for each F ∈ C(Ω)

and any ε > 0 there exists a linear combination

Nε∑

n=0

2n+1∑

m=1

dn,mYn,m, (3.2.2)
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such that
∥
∥
∥
∥
∥
F −

Nε∑

n=0

2n+1∑

m=1

dn,mYn,m

∥
∥
∥
∥
∥
C(Ω)

≤ ε. (3.2.3)

Further, the system {Yn,m} n∈N0;
m=1,...,2n+1

is closed in the space C(Ω) with respect to ‖ · ‖L2(Ω),

that is for any given ε > 0 and any given F ∈ C(Ω), there exists a linear combination

Nε∑

n=0

2n+1∑

m=1

dn,mYn,m,

such that
∥
∥
∥
∥
∥
F −

Nε∑

n=0

2n+1∑

m=1

dn,mYn,m

∥
∥
∥
∥
∥
L2(Ω)

≤ ε. (3.2.4)

From (2.0.4) we know that C(Ω) is dense in L2(Ω), so we deduce that for each F ∈ L2(Ω)

there exists a G ∈ C(Ω) lying arbitrarily close to F in the L2−topology. In connection

with 3.2.4 we thus can formulate:

Corollary 3.2.2. The system {Yn,m} n∈N0;
m=1,...,2n+1

is closed in the space L2(Ω) with respect to

‖ · ‖L2(Ω).

Lemma 3.2.3. Let F ∈ L2(Ω) and let {Yn,m} n∈N0;
m=1,...,2n+1

be an L2(Ω)- orthonormal system,

then
∥
∥
∥
∥
∥
F −

a∑

n=0

2n+1∑

m=1

F∧(n,m)Yn,m

∥
∥
∥
∥
∥
L2(Ω)

= inf
Y ∈Harm0,...,a

‖F − Y ‖L2(Ω),

where

F∧(n,m) =

∫

Ω

F (η)Yn,m(η)dω(η).

Thus, any element F of class L2(Ω) allows a representation by its Fourier series

F =
∞∑

n=0

2n+1∑

m=1

F∧(n,m)Yn,m,

where

F∧(n,m) =

∫

Ω

F (η)Yn,m(η)dω(η)
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are the so-called Fourier- (or orthogonal) coefficients of F .

Most of the results of this section are summarized in the fundamental theorem of spherical

harmonic expansion.

Theorem 3.2.4. The following seven statements are equivalent.

1. {Yn,m} n∈N0;
m=1,...,2n+1

is closed in L2(Ω) (closure property).

2. The orthogonal expansion of any F ∈ L2(Ω) converges in norm to F , i.e.,

lim
a→∞

∥
∥
∥
∥
∥
F −

a∑

n=0

2n+1∑

m=1

(F, Yn,m)L2(Ω)Yn,m

∥
∥
∥
∥
∥
L2(Ω)

= 0.

3. Parseval’s identity holds true, i.e., for any F ∈ L2(Ω) we have

‖F‖2
L2(Ω) = (F, F )L2(Ω) =

∞∑

n=0

2n+1∑

m=1

|(F, Yn,m)L2(Ω)|2.

4. Extended Parseval’s identity holds true, i.e., for any F,G ∈ L2(Ω) we have

(F,G)L2(Ω) =
∞∑

n=0

2n+1∑

m=1

(F, Yn,m)L2(G, Yn,m)L2 .

5. There is no strictly larger orthonormal system containing the orthonormal system

{Yn,m} n∈N0;
m=1,...,2n+1

.

6. The system {Yn,m} n∈N0;
m=1,...,2n+1

fulfills the completeness property. That is, F ∈ L2(Ω)

and (F, Yn,m)L2(Ω) = 0 for all n ∈ N0 and m = 1, . . . , 2n + 1, implies F = 0.

7. Any element F ∈ L2(Ω) is uniquely determined by its orthogonal coefficients. That

means if (F, Yn,m)L2(Ω) = (G, Yn,m)L2(Ω) for all n ∈ N0 and m = 1, . . . , 2n+1, implies

F = G.

The addition theorem, introduced next, builds the bridge between zonal, i.e., radial basis

functions and spherical harmonics.
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Theorem 3.2.5. Let {Yn,m}, n ∈ N0; m = 1, . . . , 2n + 1, be a system of orthonormal

spherical harmonics of degree n, and let Pn be the Legendre polynomial of degree n. Then,

for all ξ, η ∈ Ω
2n+1∑

m=1

Yn,m(ξ)Yn,m(η) =
2n + 1

4π
Pn(ξ · η). (3.2.5)

This immediately leads to

2n+1∑

m=1

Yn,m(ξ)Yn,m(ξ) =
2n+1∑

m=1

(Yn,m(ξ))2 =
2n + 1

4π
. (3.2.6)

Another important theorem that sets radial basis functions and spherical harmonics into

relation is the following formula of Funk-Hecke.

Theorem 3.2.6. Let G ∈ L1[−1, 1] and let Pn be the Legendre polynomial. Then for all

(ξ, η) ∈ Ω2 and n ∈ N0,

∫

Ω

G(ξ · ζ)Pn(η · ζ)dω(ζ) = G∧(n)Pn(ξ · η),

where G∧(n) is the Legendre coefficient of G, i.e.,

G∧(n) = (G,Pn)L2[−1,1].

Moreover, if Yn is a spherical harmonic of degree n, then

∫

Ω

G(ξ · η)Yn(η)dω(η) = G∧(n)Yn(ξ).

That means that the spherical harmonics Yn are the eigenfunctions of the above integral

operator corresponding to the eigenvalue G∧(n). Thus, the last theorem establishes a

connection between spherical harmonics and radial basis functions and founds the basis

for the introduction of spherical singular integrals and spherical wavelets (see [14], [17] and

[22], for example).
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3.3 Vector Spherical Harmonics

We will give now an overview on two types of vector spherical harmonics: the (Morse-

Feshbach-)vector spherical harmonics y
(i)
n,m and the (Edmonds-)vector spherical harmonics

u
(i)
n,m, n ∈ N0i

; m = 1, . . . , 2n + 1; i = 1, 2, 3. Both types are derived from the scalar

spherical harmonics by using different classes of differential operators which are applied on

Yn ∈ Harmn(Ω). More information can be found in [14, 30].

(Morse-Feshbach-)Vector Spherical Harmonics y
(i)
n,m

In order to construct vector spherical harmonics y
(i)
n,m, n ∈ N0i

; m = 1, . . . , 2n + 1; i =

1, 2, 3, which on the one hand separate into normal and tangential parts and on the other

hand lead to an orthonormal basis of l2(Ω) we use the operators o(i), i = 1, 2, 3, as given

by (2.0.27).

Definition 3.3.1. Let Yn be of class Harmn(Ω), i ∈ 1, 2, 3 and n ∈ N0i
. Then we call the

vector field

y(i)
n (ξ) = o

(i)
ξ Yn(ξ), ξ ∈ Ω,

(Morse-Feshbach-)vector spherical harmonic of degree n and type i.

Further, we denote the space of all vector spherical harmonics of degree n and type i by

harm
(i)
n (Ω) and let

harm0 =harm
(1)
0

harmn(Ω) =
3⊕

i=1

harm(i)
n (Ω), n ≥ 1.

Regarding Remark 2.0.1 and the definitions for the operators O(i), i = 1, 2, 3, given by

(2.0.30), we can orthogonally split the space c(∞)(Ω) as follllows:

c(∞)(Ω) =
3⊕

i=1

c
(∞)
(i) (Ω),

where

c
(∞)
(i) (Ω) = {f ∈ c(∞)(Ω) |O(k)f = 0, i 6= k}.
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Then,

c(∞)
nor (Ω) = c

(∞)
(1) (Ω),

c
(∞)
tan (Ω) = c

(∞)
(2) (Ω) + c

(∞)
(3) (Ω).

In canonical way we extend these definitions to c
(p)
(i) (Ω), 0i ≤ p < ∞ and l2(Ω):

c
(p)
(i) (Ω) = {f ∈ c(p)(Ω) |O(k)f = 0, i 6= k}

and

l
(2)
(i) (Ω) = {f ∈ c(∞)(Ω) |O(k)f = 0, i 6= k},‖·‖l2(Ω)

for i = 1, 2, 3. Obviously,

l2(i)(Ω) = span{y(i)
n,m} n∈N0i

;

m=1,...,2n+1

‖·‖
l2(Ω)

and

l2(Ω) =
3⊕

i=1

l2(i)(Ω).

The next theorem introduces the l2(Ω)-orthonormal system of vector spherical harmonics,

derived from the L2(Ω)-orthonormal system of scalar spherical harmonics.

Theorem 3.3.1. Let {Yn,m} n∈N0;
m=1,...,2n+1

be an L2(Ω)-orthonormal system of scalar spherical

harmonics. Then the system

y(i)
n,m = (µ(i)

n )−1/2o(i)Yn,m,

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, forms an l2(Ω)-orthonormal system of vector

spherical harmonics when the normalization factor is chosen to be

µ(i)
n =

∥
∥O(i)o(i)Yn,m

∥
∥
L2(Ω)

=







1, if i = 1,

n(n + 1), if i = 2, 3.

We also mention that the system of vector spherical harmonics is closed and complete.

Definition 3.3.2. A vector field hn : R3 → R3, n ∈ N0, is called a homogeneous harmonic

vector polynomial of degree n if hn · εi is a homogeneous harmonic polynomial of degree

n ∈ N0i
for every i = 1, 2, 3.
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We set

Harmn(R3)εi = {Hnε
i|Hn ∈ Harmn(R3)},

and use this abbreviation to define the space of all homogeneous harmonic vector polyno-

mials of degree n by

3⊕

i=1

Harmn(R3)εi.

In [14] it is shown that each type, 1 or 2, of vector spherical harmonics of degree n can be

expressed as linear combinations of homogeneous harmonic vector polynomials of degree

n − 1 and n + 1, restricted to the unit sphere, i.e.,

harm(i)
n ⊂

3⊕

j=1

Harmn−1(Ω)εj ⊕
3⊕

j=1

Harmn+1(Ω)εj, i = 1, 2. (3.3.1)

We find that, for type 3 vector spherical harmonics the relation

harm(3)
n ⊂

3⊕

j=1

Harmn(Ω)εj (3.3.2)

holds true. Combining (3.3.1) and (3.3.2) we get

harmn ⊂
n+1⊕

m=n−1

3⊕

i=1

Harmn(Ω)εi.

In analogy to the scalar case we know from [14] that

∞⊕

m=0

3⊕

i=1

Harmmεi

is dense in c(Ω) with respect to ‖ · ‖c(Ω) and in l2(Ω) with respect to (., .)l2(Ω), so that we

can state the following theorem:

Theorem 3.3.2. Let {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

be an l2(Ω)-orthonormal system of vector spherical

harmonics defined as in Theorem 3.3.1, then the following statements are valid:

(i) The system {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

of vector spherical harmonics is closed in c(Ω) with

respect to ‖ · ‖c(Ω).
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(ii) The system {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

is complete in l2(Ω) with respect to ‖ · ‖l2(Ω).

From part (i) of this theorem we can deduce that any continuous vector field can be

approximated arbitrarily close by finite linear combinations of vector spherical harmon-

ics. Hence, by part (ii) we can represent any f ∈ l2(Ω) by its Fourier series in terms of

{y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

, i.e., we have

lim
N→∞

∥
∥
∥
∥
∥
f −

3∑

i=1

N∑

n=0i

2n+1∑

m=1

f (i)∧(n, l)y(i)
n,m

∥
∥
∥
∥
∥

l(2)(Ω)

= 0, for all f ∈ l2(Ω)

with Fourier coefficients

f (i)∧(n, l) = (f, y(i)
n,m)l2(Ω) =

∫

Ω

f(ξ) · y(i)
n,m(ξ)dω(ξ).

We may, of course, write

f =
3∑

i=1

f (i),

where each f (i) is given by

f (i) =
∞∑

n=0i

2n+1∑

m=1

f (i)∧(n,m)y(i)
n,m.

The representation in terms of vector spherical harmonics enable us to model both the

normal and the tangential part of any vector field f ∈ l2(Ω). Thus, the Hilbert space

l2(Ω) can be split into three orthogonal subspaces that admit the following interpretation:

the first subspace l2(1)(Ω) consists only of square-integrable normal fields, the second one

contains only (surface-) curl-free tangential fields and the third one consists of (surface-)

divergence-free tangential parts. Therefore, we can write:

l2(Ω) = l2nor(Ω) ⊕ l2tan(Ω),

l2nor(Ω) = l2(1)(Ω),

l2tan(Ω) = l2(2)(Ω) ⊕ l2(3)(Ω).

We conclude this section with the vectorial analogon of the addition theorem. The first

step to obtain the required theorem is to extend the definitions of the o(i)−operators to



3.3 Vector Spherical Harmonics 43

vector fields. This can be done by referring to a sufficiently smooth vector field f : Ω → R3

on a sphere, admitting the representation

f(ξ) =
3∑

ν=1

Fν(ξ)ε
ν , Fν(ξ) = f(ξ) · εν ,

where εν are unit coordinate vectors. We define o
(i)
ξ f(ξ) to be

o
(i)
ξ f(ξ) =

3∑

ν=1

(o
(i)
ξ Fν(ξ)) ⊗ εν , i = 1, 2, 3.

Theorem 3.3.3. Let {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

be an l2(Ω)-orthonormal basis . Then

2n+1∑

m=1

y(i)
n,m(ξ) ⊗ y(j)

n,m(η) =
2n + 1

4π
p(i,j)

n (ξ, η), ξ, η ∈ Ω,

with the (i, j)-Legendre-tensor-field of degree n, i, j = 1, 2, 3, defined by

p(i,j)
n (ξ, η) : Ω × Ω → R3 ⊗ R3,

p(i,j)
n (ξ, η) = (µ(k)

n )−1/2(µ(i)
n )−1/2o

(i)
ξ o(j)

η Pn(ξ · η), ξ, η ∈ Ω. (3.3.3)

Detailed representations of the Legendre-tensor-fields can be found, e.g., in [12] and [14].

There exists an upper bound for the values p
(i,j)
n (ξ, η) for ξ , η ∈ Ω, given by

Lemma 3.3.4. Let i, j, l ∈ {1, 2, 3}. Then, for all ξ, η ∈ Ω,

|p(i,j)
n (ξ, η)εl| ≤ 1.

For the Legendre tensors we find (see [12], [14],[33])

p(1,1)
n (ξ, η) = Pn(ξ · η)ξ ⊗ η,

p(1,2)
n (ξ, η) =

1
√

n(n + 1)
P

′

n(ξ · η)ξ ⊗ (ξ − (ξ · η)η),

p(1,3)
n (ξ, η) =

1
√

n(n + 1)
P

′

n(ξ · η)ξ ⊗ η ∧ ξ,

p(2,1)
n (ξ, η) =

1
√

n(n + 1)
P

′

n(ξ · η)(η − (ξ · η)ξ) ⊗ η,
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p(2,2)
n (ξ, η) =

1√
2
(Pn(ξ · η)itan(ξ),

p(2,3)
n (ξ, η) =

1

n(n + 1)
(P

′′

n (ξ · η)(η − (ξ · η)ξ) ⊗ η ∧ ξ

+ P
′

n(ξ · η)(−jtan(η) − ξ ⊗ η ∧ ξ),

p(3,1)
n (ξ, η) =

1
√

n(n + 1)
P

′

n(ξ · η)ξ ∧ η ⊗ ξ,

p(3,2)
n (ξ, η) =

1

n(n + 1)
(P

′′

n (ξ · η)ξ ∧ η ⊗ (ξ − ξ · η)η

+ P
′

n(ξ · η)(jtan(ξ) − ξ ∧ η ⊗ η),

p(3,3)
n (ξ, η) =

1√
2
(Pn(ξ · η)jtan(ξ),

where the identity tensor i is defined by

i =
3∑

i=1

εi ⊗ εi,

and the surface identity tensor is given by

itan(ξ) = i − ξ ⊗ ξ, ξ ∈ Ω,

and the surface rotation tensor is given by

jtan(ξ) = ξ ∧ i =
3∑

i=1

(ξ ∧ εi) ⊗ εi, ξ ∈ Ω.

The formulation of the vectorial addition theorem with Legendre-tensor-fields is a natural

extension to the scalar case.

Introducing Legendre vectors p
(i)
n : Ω × Ω → R3, i = 1, 2, 3, n ∈ N0i

, by

p(1)
n (ξ, η) = ξPn(ξ · η)

p(2)
n (ξ, η) =

1

n(n + 1)
(η − (ξ · η)ξ)P ′

n(ξ · η),

p(3)
n (ξ, η) =

1

n(n + 1)
(ξ ∧ η)P ′

n(ξ · η).

we can formulate the following theorem:
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Theorem 3.3.5. Let {Yn,m} n∈N0;
m=1,...,2n+1

be a system of L2(Ω)-orthonormal spherical harmon-

ics and {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

the corresponding system of vector spherical harmonics. Then,

for ξ, η ∈ Ω,

2n+1∑

m=1

y(i)
n,m(ξ)Yn,m(η) = (µ(i)

n )1/2 2n + 1

4π
p(i)

n (ξ, η),

As we stated before the scalar spherical functions fulfill the Laplace equation: ∆xr
nYn(ξ) =

0, with x = rξ, ξ ∈ Ω, r = |x|. Easy calculations yield the following relations

(
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
∆∗

ξ)r
nYn(ξ) = 0,

(n(n − 1)rn−2 + 2nrn−2 + rn−2∆∗
ξ)Yn(ξ) = 0,

rn−2(n(n + 1)Yn(ξ) + ∆∗
ξ)Yn(ξ) = 0,

(∆∗
ξ + n(n + 1))Yn(ξ) = 0.

The last equation indicates that the scalar spherical harmonics are eigenfunctions of the

Beltrami differential operator to the eigenvalues −n(n+1). The vector spherical harmonics

for i = 1, 2, i.e., {y(i)
n,m} i=1,2; n∈N0i

;

m=1,...,2n+1

do not share this property. They are not eigenfunctions

of the scalar Beltrami operator. This is stated in the next theorem.

Theorem 3.3.6. Let Yn ∈ Harmn be a spherical harmonic of degree n. Then we have

∆∗o(1)Yn = (−n(n + 1) − 2)o(1)Yn + 2o(2)Yn, (3.3.4)

∆∗o(2)Yn = 2n(n + 1)o(1)Yn − n(n + 1)o(2)Yn, (3.3.5)

∆∗o(3)Yn = −n(n + 1)o(3)Yn, (3.3.6)

where the (scalar) Beltrami operator ∆∗ for a function f ∈ c(2)(Ω) of the form

f(ξ) =
3∑

i=1

εiFi(ξ),

is defined by

∆∗
ξf(ξ) =

3∑

i=1

εi∆∗
ξFi(ξ), ξ ∈ Ω.

The proof of Theorem 3.3.6 can be found in [14]. We deduce that the vector spherical

harmonics {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

do not fulfill the Laplace equation.
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(Edmonds-)Vector Spherical Harmonics u
(i)
n,m

Now we are interested in the construction of vector fields which fulfill the Laplace equation.

Therefore, we introduce another set of vector spherical harmonics which are constructed

by operators k
(i)
n , i = 1, 2, 3, as proposed in quantum mechanics [5].

Suppose that Hn ∈ Harmn(Rn). Considering the vector field ∇Hn, we realize that it is

a homogeneous harmonic vector polynomial of degree n − 1. Furthermore, it is not hard

to observe that x → x ∧ ∇xHn(x) for x ∈ R3, represents a homogeneous harmonic vector

polynomial of degree n. The function x → xHn(x), x ∈ R3, is, in general, not harmonic.

Therefore, we go over to the function x → ((2n + 1)x − |x|2∇x)Hn(x), which turns out to

be a homogeneous harmonic vector polynomial of degree n+1. This perspective motivates

the following definition.

Definition 3.3.3. For n ∈ N0 and x ∈ R3, F sufficiently smooth, we define the operators

k
(i)
n , i = 1, 2, 3, by

k(1)
n F (x) = ((2n + 1)x − |x|2∇x)F (x), (3.3.7)

k(2)
n F (x) = ∇xF (x), (3.3.8)

k(3)
n F (x) = x ∧∇xF (x). (3.3.9)

The definition of the operators k
(i)
n leads to the following lemma.

Lemma 3.3.7. Let Hn ∈ Harmn(R3), n ∈ N0. Then k
(i)
n Hn is a homogeneous harmonic

vector polynomial of degree deg(i)(n), where we use the abbreviation

deg(i)(n) =







n + 1, i = 1,

n − 1, i = 2,

n, i = 3.

If deg(i)(n) < 0 then k
(i)
n Hn = 0.

Applying the operators k
(i)
n on Hn ∈ Harmn(R3), with Hn(x) = rnYn(ξ) yields

h(1)
n (x) = k(1)

n rnYn(ξ) = (n + 1)rn+1o(1)Yn(ξ) − rn+1o(2)Yn(ξ),

h(2)
n (x) = k(2)

n rnYn(ξ) = nrn−1o(1)Yn(ξ) − rn−1o(2)Yn(ξ),

h(3)
n (x) = k(3)

n rnYn(ξ) = rno(3)Yn(ξ),
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where { h
(i)
n }i=1,2,3; n∈N0i

represents a set of vector fields. Therefore, the restrictions of

x 7→ h
(i)
n (x) = k

(i)
n rnYn(ξ), x = rξ, r = |x|, to the unit sphere Ω can be written as linear

combinations of vector spherical harmonics o(i)Yn.

In the sequel we identify k
(i)
n Yn with

k(i)
n Yn(ξ) = h(i)

n (x)||x|=1 = k(i)
n Hn(x)|r=1,

with Hn(x) = rnYn(ξ), x = rξ, or, in more detail,

k(1)
n Yn(ξ) = (n + 1)o(1)Yn(ξ) − o(2)Yn(ξ), (3.3.10)

k(2)
n Yn(ξ) = no(1)Yn(ξ) + o(2)Yn(ξ), (3.3.11)

k(3)
n Yn(ξ) = o(3)Yn(ξ). (3.3.12)

Let G ∈ Harmn then the adjoint operators satisfying

(k(i)
n G, f)l2(Ω) = (G,K(i)

n f)L2(Ω), i = 1, 2, 3,

where the adjoint operators K
(i)
n to k

(i)
n are given by

K(1)
n f = (n + 1)O(1)f − O(2)f,

K(2)
n f = nO(1)f + O(2)f,

K(3)
n f = O(3)f,

with f ∈ harmn.

The scale factor for the vector spherical harmonics is defined in the next lemma.

Lemma 3.3.8. For an orthonormal system of spherical harmonics {Yn,m} n∈N0;
m=1,...,2n+1

the

following equations hold true:

K(i)
n k(j)

n Yn,m(ξ) = δi,jν
(i)
n Yn,m(ξ), i, j = 1, 2, 3, (3.3.13)

where the constants ν
(i)
n are defined by

ν(i)
n = ‖K(i)

n k(i)
n Yn,m‖L2(Ω),

i.e.,

ν(1)
n = (n + 1)(2n + 1), (3.3.14)

ν(2)
n = n(2n + 1), (3.3.15)

ν(3)
n = n(n + 1). (3.3.16)
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In other words, we are led to the following set of vector spherical harmonics (note that we

base our considerations on the same approach as introduced by [5]):

Definition 3.3.4. Any vector field

u(i)
n = k(i)

n Yn, i = 1, 2, 3, n ∈ N0i
, Yn ∈ Harmn(Ω),

is called an (Edmonds-)vector spherical harmonic of degree n and type i.

Lemma 3.3.9. Let {Yn,m} n∈N0;
m=1,...,2n+1

be an L2(Ω)-orthonormal system of scalar spherical

harmonics. Then the vector fields given by

u(i)
n,m = (ν(i)

n )−1/2k(i)
n Yn,m,

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, form an l2(Ω)-orthonormal set of vector spherical

harmonics with the normalization coefficients as defined in (3.3.14)-(3.3.16).

By inverting (3.3.10)-(3.3.12) we obtain the following equations for ξ ∈ Ω:

o(1)Yn,m(ξ) =
1

2n + 1
(k(1)

n Yn,m(ξ) + k(2)
n Yn,m(ξ)), (3.3.17)

o(2)Yn,m(ξ) =
1

2n + 1
(−nk(1)

n Yn,m(ξ) + (n + 1)k(2)
n Yn,m(ξ)), (3.3.18)

o(3)Yn,m(ξ) = k(3)
n Yn,m(ξ). (3.3.19)

This provides a relation between the system {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

and {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

of

vector spherical harmonics. More explicitly, these systems are connected in the following

way

u(1)
n,m =

√

n + 1

2n + 1
y(1)

n,m −
√

n

2n + 1
y(2)

n,m,

u(2)
n,m =

√
n

2n + 1
y(1)

n,m +

√

n + 1

2n + 1
y(2)

n,m, (3.3.20)

u(3)
n,m = y(3)

n,m.

Conversely,

y(1)
n,m =

√

n + 1

2n + 1
u(1)

n,m +

√
n

2n + 1
u(2)

n,m,

y(2)
n,m = −

√
n

2n + 1
u(1)

n,m +

√

n + 1

2n + 1
u(2)

n,m

y(3)
n,m = u(3)

n,m.
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An immediate consequence of the construction of the new system of vector spherical har-

monics is the following corollary (see [14]).

Theorem 3.3.10. Let the system of vector spherical harmonics {un,m} i=1,2,3;n∈N0i
;

m=1,...,2n+1

be defined

as in Lemma 3.3.9. Then the following statements are valid

(i) The above system of vector spherical harmonics is closed in c(Ω) with respect to ‖·‖c(Ω).

(ii) The above system of vector spherical harmonics is complete in l2(Ω) with respect to

‖ · ‖l2(Ω).

From part (i) of Theorem 3.3.10 we can deduce that any continuous harmonic vector field

can be approximated arbitrarily close by finite linear combinations of vector spherical

harmonics {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

. Hence, by part (ii) we can represent any function f ∈ l2(Ω)

by its Fourier series in terms of {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

, i.e.,

lim
N→∞

∥
∥
∥
∥
∥
f −

3∑

i=1

N∑

n=0i

2n+1∑

m=1

f (i)∧(n,m)u(i)
n,m

∥
∥
∥
∥
∥

l(2)(Ω)

= 0,

for all f ∈ l2(Ω) with Fourier coefficients

f (i)∧(n,m) = (f, u(i)
n,m)l2(Ω) =

∫

Ω

f(ξ) · u(i)
n,m(ξ) dω(ξ).

We may, of course, write

f =
3∑

i=1

f (i),

where each f (i) is given by

f (i) =
∞∑

n=0i

2n+1∑

m=1

f (i)∧(n,m)u(i)
n,m.

Theorem 3.3.11. Let {Yn,m} n∈N0;
m=1,...,2n+1

be an L2(Ω)-orthonormal set of scalar spherical

harmonics. Then the set {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

defined in (3.3.9) forms an l2(Ω)-orthonormal
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set of vector spherical harmonics which is closed in c(Ω) with respect to ‖·‖c(Ω) and complete

in l2(Ω) with respect to (·, ·)l2(Ω). Furthermore, for all ξ ∈ Ω,

∆∗
ξu

(1)
n,m(ξ) = −(n + 1)(n + 2)u(1)

n,m(ξ),

∆∗
ξu

(2)
n,m(ξ) = −n(n − 1)u(2)

n,m(ξ),

∆∗
ξu

(3)
n,m(ξ) = −n(n + 1)u(3)

n,m(ξ).

In other words,

∆∗
ξu

(1)
n−1,m(ξ) = −n(n + 1)u

(1)
n−1,m(ξ),

∆∗
ξu

(2)
n+1,m(ξ) = −n(n + 1)u

(2)
n+1,m(ξ),

∆∗
ξu

(3)
n,m(ξ) = −n(n + 1)u(3)

n,m(ξ).

On the one hand, each member of the (Edmonds-)system {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

is, by definition,

not decomposable into normal and tangential parts, but on the other hand it is a set of

eigenfunctions of the Beltrami operator. This property will enable us in Chapter 4 to

introduce a set of vector outer harmonics which fulfill the Laplace equation outside a

sphere ΩR.

Further, we can show that for any f ∈ l2(Ω) Parseval’s identity holds true, thus we have

(f, f)l2(Ω) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(f, u(i)
n,m)2

l2(Ω).

Analogously to the function spaces for scalar and vector spherical harmonics we define for

the system {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

the function spaces

h̃arm
(i)

n = span{u(i)
n,m} n∈N0i

;

m=1,...,2n+1

,

for i = 1, 2, 3, which fulfill

harm
(1)
0 = h̃arm

(1)

0 ,

harm(1)
n ⊕ harm(2)

n = h̃arm
(1)

n ⊕ h̃arm
(2)

n , n ∈ N,

harm(3)
n = h̃arm

(3)

n , n ∈ N.

Thus, we have

harm0 = h̃arm
(1)

0 ,

harmn =
3⊕

i=1

h̃arm
(i)

n , n ∈ N.
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The new set of vector spherical harmonics is characterized by the property that the Laplace

equation is fulfilled. Thus, as shown by the next lemma, homogeneous harmonic vector

polynomials can be composed by vector spherical harmonics of different degrees.

Lemma 3.3.12. Let for k = 1, 2, 3, n ∈ N0i
, εkHn be a homogeneous harmonic vector

polynomial. Then

εkHn|Ω = u
(1)
n−1 + u

(2)
n+1 + u(3)

n ,

with

u
(1)
n−1 = k

(1)
n−1Yn−1,

u
(2)
n+1 = k

(2)
n+1Yn+1,

u(3)
n = k(3)

n Yn.

Proof. As the homogeneous harmonic vector polynomial εkHn is an element of l2(Ω), we

get with Theorem 3.3.10

εkHn|Ω =
3∑

i=1

∞∑

p=0i

2p+1
∑

q=1

a(i)
p,qu

(i)
p,q,

where {u(i)
p,q} i=1,2,3;p∈N0i

;

q=1,...,2p+1

is an orthonormal system of vector spherical harmonics. Further-

more, because of Lemma 3.3.7 the following equations hold true.

u(1)
n,m =

3∑

j=1

c
(1)
j,mεjY j

n+1, Y j
n+1 ∈ Harmn+1, (3.3.21)

u(2)
n,m =

3∑

j=1

c
(2)
j,mεjY j

n−1, Y j
n−1 ∈ Harmn−1, (3.3.22)

u(3)
n,m =

3∑

j=1

c
(3)
j,mεjY j

n , Y j
n ∈ Harmn. (3.3.23)

The system {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

builds an orthonormal basis in l2(Ω), thus we finally get

a(1)
p,q =







0, n − 1 6= p,

C
(1)
k,p,q, n − 1 = p,
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a(2)
p,q =







0, n + 1 6= p,

C
(2)
k,p,q, n + 1 = p,

a(3)
p,q =







0, n 6= p,

C
(3)
k,p,q, n = p,

with constants C
(i)
k,p,q ∈ R.

This yields the desired result.

In a similar way as for the vector spherical harmonics {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

an addition theorem

can be formulated. For that reason we first define the Legendre tensors based on the vector

fields {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

.

Definition 3.3.5. The (i, j)-Legendre tensor field p̃
(i,j)
n : Ω × Ω → R3 ⊗ R3, i, j = 1, 2, 3,

of degree n is given by

p̃(i,j)
n (ξ, η) = (ν(i)

n )−1/2(ν(j)
n )−1/2(k(i)

n )ξ(k
(j)
n )ηPn(ξ · η), ξ, η ∈ Ω, (3.3.24)

where

(k(i)
n )ξf(ξ) =

3∑

l=1

(k(i)
n Fl(ξ)) ⊗ εl, i = 1, 2, 3,

for any sufficiently smooth vector field f : Ω → R3 of the form

f(ξ) =
3∑

l=1

Fl(ξ)ε
l.

Next we introduce the addition theorem for vector spherical harmonics {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

.

Theorem 3.3.13. Let {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

be an l2(Ω)-orthonormal basis as defined in Lemma

3.3.9. Then

2n+1∑

m=1

u(i)
n,m(ξ) ⊗ u(k)

n,m(η) =
2n + 1

4π
p̃(i,k)

n (ξ, η)

holds for i, k = 1, 2, 3.
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Proof. Observing the definitions of the Legendre tensors, given in (3.3.3) for {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

and the addition Theorem 3.3.13 we get the desired result.

The Legendre tensors p̃
(i,k)
n (given by (3.3.24)) have the same upper bound as the Legendre

tensors of {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

(given in Lemma 3.3.4).

The connection between the Legendre tensors p̃
(i,j)
n and the Legendre tensors p

(i,j)
n (see

(3.3.3)) is given by the following lemma [33].

Lemma 3.3.14. Let the tensor fields p̃
(i,j)
n : Ω × Ω → R3 ⊗ R3, i, j = 1, 2, 3, be defined by

(3.3.24). Then we have

p̃(1,1)
n = (n + 1)2(c1,1

n )2p(1,1)
n − (n + 1)c1,1

n c2,1
n (p(1,2)

n + p(2,1)
n ) + (c2,1

n )2p(2,2)
n ,

p̃(1,2)
n = n(n + 1)c1,1

n c1,2
n p(1,1)

n + (n + 1)c1,1
n c2,2

n p(1,2)
n − nc1,1

n c2,2
n p(2,1)

n − c2,1
n c2,2

n p(2,2)
n ,

p̃(1,3)
n = (n + 1)c1,1

n c3,3
n p(1,3)

n − c2,1
n c3,3

n p(2,3)
n ,

p̃(2,1)
n = n(n + 1)c1,2

n c1,1
n p(1,1)

n + (n + 1)c2,2
n c1,1

n p(2,1)
n − nc1,2

n c2,1
n p(1,2)

n − c2,2
n c2,1

n p(2,2)
n ,

p̃(2,2)
n = n2(c1,2

n )2p(1,1)
n + nc1,2

n c2,2
n (p(1,2)

n + p(2,1)
n ) + (c2,2

n )2p(2,2)
n ,

p̃(2,3)
n = nc1,2

n c3,3
n p(1,3)

n + c2,2
n c3,3

n p(2,3)
n ,

p̃(3,1)
n = (n + 1)c1,1

n c3,1
n p(3,1)

n − c3,3
n c2,1

n p(3,2)
n ,

p̃(3,2)
n = nc3,3

n c1,2
n p(3,1)

n + c3,3
n c1,2

n p(3,2)
n ,

p̃(1,3)
n = (c3,3

n )2p(3,3)
n ,

where the constants ci,k
n are given by

ci,k
n =

√

µ
(i)
n

ν
(k)
n

.

We introduce Legendre vectors p̃
(i)
n which are based on the system {u(i)

n,m} i=1,2,3;n∈N0i
;

m=1,...,2n+1

and

which allow us to constitute the addition theorem in an alternative way.

Definition 3.3.6. The i-Legendre vector field for the system {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

of degree n,

p̃
(i)
n : Ω × Ω → R3, i = 1, 2, 3, is given by

p̃(i)
n (ξ, η) = (ν(i)

n )−1/2(k(i)
n )ξ Pn(ξ · η), ξ, η ∈ Ω.
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The connection between the Legendre vectors for {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

and the Legendre vec-

tors for {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

is given by the following lemma.

Lemma 3.3.15. Let the Legendre vectors p̃
(i)
n : Ω × Ω → R3, i = 1, 2, 3, be defined as in

Definition 3.3.6. Then we have

p̃(1)
n (ξ, η) = (n + 1)c1,1

n p(1)
n − c2,1

n p(2)
n ,

p̃(2)
n (ξ, η) = nc1,2

n p(1)
n − c2,2

n p(2)
n ,

p̃(3)
n (ξ, η) = c3,3

n p(1)
n ,

where the constants c
(i,k)
n , i, k = 1, 2, 3, are given by ci,k

n =

√

µ
(i)
n

ν
(k)
n

.

With the help of the Legendre vectors for {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

the addition theorem then

reads as follows.

Theorem 3.3.16. Let {Yn,m} n∈N0;
m=1,...,2n+1

be an L2(Ω)-orthonormal basis of Harmn and

u
(i)
n,m = (ν

(i)
n )−1/2k

(i)
n Yn,m, n ∈ N0i

; m = 1, . . . , 2n + 1; i = 1, 2, 3. Then

2n+1∑

m=1

u(i)
n,m(ξ)Yn,m(η) =

2n + 1

4π
p̃(i)

n (ξ, η), ξ, η ∈ Ω,

holds for i = 1, 2, 3.

Observing relations (see [24]):

∇x · u(2)
n,m(x) = 0, ∇x ∧ u(2)

n,m(x) = 0,

x · u(3)
n,m(x) = 0, ∇x · u(3)

n,m(x) = 0,

we see that u
(2)
n,m(x) is a poloidal field whereby u

(3)
n,m(x) is a toroidal field.



Chapter 4

Scalar and Vector Outer Harmonics

In this chapter, first, we extend the theory of spherical harmonics from the unit sphere

to a sphere with radius R ∈ R, R > 0. Second, we introduce scalar outer harmonics (see

[18], [33]) and vector outer harmonics (see [14], [33]). Further, we investigate the closure

property of vector outer harmonics with respect to a regular surface Σ. Then two algorithms

for the exact generation for homogeneous harmonic polynomials are presented followed by

orthonormalization procedures. From that the calculation of scalar spherical harmonics

and scalar outer harmonics are derived. We close this chapter with the exact calculation of

vector spherical harmonics and vector outer harmonics which builds the fundamentals for

the numerical realization of the approximation methods described in Chapter 5. Referring

to Figure 1.0.1 we deal in this chapter with step (2) and (3).

4.1 Extension to the Sphere ΩR

Up to now, we have only considered a sphere Ω around the origin with radius R = 1. As

mentioned before ΩR is a sphere of radius R ∈ R, R > 0, where we define the inner space

by Ωint
R = {x ∈ R | |x| < R} and the outer space by Ωext

R = {x ∈ R | |x| > R}.
By virtue of the isomorphism Ω ∋ ξ 7→ Rξ ∈ ΩR, functions given on Ω can be understood

to operate on ΩR, and vice versa. We define the Hilbert space (L2(ΩR), (·, ·)L2(ΩR)) by

using the scalar product

(F,G)L2(ΩR) =

∫

ΩR

F (Rξ)G(Rξ)dωR(ξ).
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With the relationship ξ ↔ Rξ, every function F : Ω → R can be viewed as a function

on ΩR by defining F̃ : ΩR → R with F̃ (Rξ) = F (ξ), where as before ΩR defines a sphere

with radius R ∈ R, R > 0. In order to transfer the differential operators to spheres with

arbitrary radius, we abbreviate the new operators by giving them a superscript R and

define (see, e.g., [18])

∇∗;R =
1

R
∇∗, L∗;R =

1

R
L∗, ∆∗;R

ξ =
1

R2
∆∗

ξ .

Thus we get an orthonormal basis in L2(ΩR). Consequently, every function F ∈ L2(ΩR)

can be written as a Fourier series

F =
∞∑

n=0

2n+1∑

m=1

F∧R(n,m)Y R
n,m,

(in L2(ΩR)-sense) with Fourier coefficients

F∧R(n,m) = (F, Y R
n,m)L2(ΩR)

and

Y R
n,m(x) =

1

R
Yn,m

(
x

|x|

)

, x ∈ ΩR. (4.1.1)

Analogously, we are able to define the system {y(i),R
n,m } i=1,2,3; n∈N0i

;

m=1,...,2n+1

of vector spherical har-

monics for {y(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

for an arbitrary sphere ΩR by

y(i),R
n,m (x) =

1

R
y(i)

n,m

(
x

|x|

)

, x ∈ ΩR. (4.1.2)

As the system {y(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

constitutes an l2(i)(Ω)-orthonormal basis for i = 1, 2, 3, the

system {y(i),R
n,m } i=1,2,3; n∈N0i

;

m=1,...,2n+1

also forms an orthonormal basis for i = 1, 2, 3 in l2(i)(ΩR).

The projection operators given in (2.0.7) can be analogously extended to pR
nor and pR

tan for

the sphere ΩR, and, in addition, the function spaces c(ΩR) and l2(i)(ΩR) can be introduced

in an analogous way to (2.0.8) - (2.0.11).

Every vector field f (i) ∈ l2(i)(ΩR) can be expanded in terms of vector spherical harmonics

for ΩR as follows:

f (i) =
∞∑

n=0i

2n+1∑

m=1

f (i)∧R(n,m)y(i),R
n,m , i = 1, 2, 3, (4.1.3)
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with the Fourier coefficients

f (i)∧R(n,m) = (f (i), y(i),R
n,m )l2(ΩR), i = 1, 2, 3.

Note that (4.1.3) is understood in ‖ · ‖l2(ΩR)-sense.

In the same way (as defined in (4.1.2)) we can transfer the system {u(i)
n,m} i=1,2,3; n∈N0i

;

m=1,...,2n+1

to the

system u
(i),R
n,m (x) i=1,2,3; n∈N0i

;

m=1,...,2n+1

of vector spherical harmonics for an arbitrary sphere ΩR by

u(i),R
n,m (x) =

1

R
u(i)

n,m

(
x

|x|

)

, x ∈ ΩR. (4.1.4)

These preparations will help us now to introduce the theory for scalar and vector outer

harmonics.

4.2 Outer Harmonics

4.2.1 Scalar Outer Harmonics

As point of departure for our formulation of the Runge approximation property on regular

surfaces we introduce now scalar outer harmonics as done in [18], [33] which enable us to

practice approximation theory on and outside a sphere.

As usual, ΩR denotes a sphere around the origin with radius R > 0, and Ωext
R its outer

space. The system {HR
n,m} n∈N0;

m=1,...,2n+1
, of scalar outer harmonics HR

n,m of degree n and order

m defined by

HR
n,m(x) =

(
R

|x|

)n+1

Y R
n,m

(
x

|x|

)

, x ∈ R3 \ {0}, (4.2.1)

satisfies the following properties:

• HR
n,m is of class C(∞)R3 \ {0},

• HR
n,m is harmonic in R3 \ {0}, i.e.,

∆xH
R
n,m(x) = 0 x ∈ R3 \ {0},

• HR
n,m is regular at infinity, i.e.,

|HR
n,m(x)| = O(|x|−1), |x| → ∞,
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and

|∇xH
R
n,m(x)| = O(|x|−2), |x| → ∞,

• HR
n,m|ΩR

= Y R
n,m,

•
(
HR

n,m, HR
l,s

)

L2(ΩR)
= δn,lδm,s.

We denote by Harmn(Ωext
R ) the space of all scalar outer harmonics of degree n, i.e.,

Harmn(Ωext
R ) = spanm=1,...,2n+1(H

R
n,m|Ωext

R ),

and Harmp,...,q(Ωext
R ), 0 ≤ p ≤ q, denotes the space

Harmp,...,q(Ωext
R ) =

q
⊕

n=p

Harmn(Ωext
R ).

From the addition theorem of scalar spherical harmonics we can deduce the addition the-

orem of scalar outer harmonics as follows.

Theorem 4.2.1. Let {HR
n,m} n∈N0;

m=1,...,2n+1
be a system of scalar outer harmonics of degree n.

Then, for any pair (x, y) ∈ Ωext
R × Ωext

R , the addition theorem reads as follows:

2n+1∑

m=1

HR
n,m(x)HR

n,m(y) =
2n + 1

4πR2

(
R2

|x||y|

)n+1

Pn

(
x

|x| ·
y

|y|

)

.

An important property of scalar outer harmonics (see [8, 18]) is that

L2(Σ) = span n∈N0;
m=1,...,2n+1

(HR
n,m)|Σ

‖·‖
L2(Σ) ,

C(Σ) = span n∈N0;
m=1,...,2n+1

(HR
n,m)|Σ

‖·‖C(Σ)
,

where Σ is a regular surface (e.g., the real Earth’s surface) and ΩR is a so called Runge

sphere inside Σ, i.e., R < σ = infx∈Σ|x|.

4.2.2 Vector Outer Harmonics

In this section we extend the theory of scalar outer harmonics to the vectorial case (as, e.g.,

in [14, 33]). We use the system of vector spherical harmonics {u(i)
n,m} i=1,2,3; n∈N0i

;

m=1,2,...,2n+1

in order
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to generate the set of vector outer harmonics {h(i),R
n,m } i=1,2,3; n∈N0i

;

m=1,2,...,2n+1

in such a way, that the

Laplace equation is fulfilled componentwise. These functions when restricted to a regular

surface can then be used to approximate continuous vector fields on regular surfaces which

is the matter of Chapter 5.

Remark 4.2.1. The vector outer harmonics are derived formally by applying the Laplace

operator on a harmonic function f given by

f(x) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

f (i)∧
n,m (r)u(i)

n,m(ξ),

where the Fourier coefficients depending on r are given by

f (i)∧
n,m (r) =

∫

Ω

f(rξ) · u(i)
n,m(ξ)dω(ξ).

Using the fact that f fulfills the Laplace equation componentwise and that the vector fields

u
(i)
n,m are eigenfunctions of the (scalar) Beltrami operator, we derive (see [33]) the differ-

ential equations
(

∂2

∂r2
+

2

r

∂

∂r
− 1

r2
(n + 1)(n + 2)

)

f (1)∧
n,m (r) = 0,

(
∂2

∂r2
+

2

r

∂

∂r
− 1

r2
n(n − 1)

)

f (2)∧
n,m (r) = 0,

(
∂2

∂r2
+

2

r

∂

∂r
− 1

r2
n(n + 1)

)

f (3)∧
n,m (r) = 0,

n ∈ N0i
; m = 1, . . . , 2n + 1. The solutions of these differential equations are given by

f (1)∧
n,m (r) =

C1

rn+2
+ D1r

n+1,

f (2)∧
n,m (r) =

C2

rn
+ D2r

n−1,

f (3)∧
n,m (r) =

C3

rn+1
+ D3r

n,

where Ci, Di ∈ R, i = 1, 2, 3, are arbitrarily chosen constants. Since we are only interested

in the outer space of ΩR we choose Di = 0 for i = 1, 2, 3, in order to fulfill the property of

regularity at infinity of the harmonic solutions.
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The freedom in choosing the constants implies many possibilities to introduce vector outer

harmonics. We will work with vector outer harmonics as presented in [33].

The vector outer harmonics h
(i),R
n,m of degree n and kind i are defined for x ∈ Ωext

R and

n ∈ N0i
; m = 1, . . . , 2n + 1, by

h(1),R
n,m (x) =

(
R

|x|

)n+2

u(1),R
n,m

(
x

|x|

)

, (4.2.2)

h(2),R
n,m (x) =

(
R

|x|

)n

u(2),R
n,m

(
x

|x|

)

, (4.2.3)

h(3),R
n,m (x) =

(
R

|x|

)n+1

u(3),R
n,m

(
x

|x|

)

. (4.2.4)

We can give a common representation by setting

li =







4, i = 1,

i, i = 2, 3,

i.e., li = i + 3(1 − 0i) with n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3,

h(i),R
n,m (x) =

1

R

(
R

|x|

)n−2+li

u(i)
n,m

(
x

|x|

)

. (4.2.5)

The following properties are satisfied [33]:

• h
(i),R
n,m is of class c(∞)(Ωext

R ),

• ∆xh
(i),R
n,m (x) = 0 for x ∈ Ωext

R , i.e., every component function h
(i),R
n,m · εk, k = 1, 2, 3

satisfies the Laplace equation,

• h
(i),R
n,m |ΩR

= 1
R
u

(i)
n,m,

• (h
(i),R
n,m , h

(j),R
l,s )l2(ΩR) = δijδnlδms,

• |h(i),R
n,m (x)| = O(|x|−1), |x| → ∞, x ∈ Ωext

R .

Similar to the scalar outer harmonics we define the space for vector outer harmonics by

harm(i)
n (Ωext

R ) = span{h(i),R
n,m |m = 1, . . . , 2n + 1}
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and

harm0(Ωext
R ) = harm

(1)
0 (Ωext

R ),

harmn(Ωext
R ) =

3⊕

i=1

harm(i)
n (Ωext

R ),

where Ωext
R again denotes the outer space of a sphere ΩR. The representation for bandlim-

ited spaces harm
(i)
p,...,q(Ωext

R ), 0i ≤ p ≤ q, is naturally given by

harm(i)
p,...,q(Ω

ext
R ) =

q
⊕

n=p

harm(i)
n (Ωext

R ),

whereas we have

harm(Ωext
R ) = span i=1,2,3; n∈N0i

;

m=1,2,...,2n+1

h
(i),R
n,m

‖·‖
c(Ωext

R
)

(4.2.6)

and

harm(i)(Ωext
R ) = span n∈N0i

;

m=1,2,...,2n+1

h
(i),R
n,m

‖·‖
c(Ωext

R
)
. (4.2.7)

Using the Legendre tensors given by (3.3.24) we are able to deduce the addition theorem

for vector outer harmonics from the addition theorem for vector spherical harmonics u
(i)
n,m.

Theorem 4.2.2. Let {h(i),R
n,m } i=1,2,3;n∈N0i

;

m=1,...,2n+1

, be a system of vector outer harmonics of degree

n and kind i as defined by (4.2.5). Then for any pair (x, y) ∈ Ωext
R × Ωext

R the addition

theorem for vector outer harmonics reads as follows:

2n+1∑

m=1

h(i),R
n,m (x) ⊗ h(j),R

n,m (y) =
1

R2

(
R

|x|

)n−2+li ( R

|y|

)n−2+lj 2n + 1

4π
p̃(i,j)

n (ξ, η),

where li = i+3(1−0i), i = 1, 2, 3, and lj = j +3(1−0i), j = 1, 2, 3 and the p̃
(i,j)
n are given

by (3.3.24).

4.2.3 Closure of Vector Outer Harmonics

Finally we want to discuss the closure properties of vector outer harmonics on regular

surfaces. Thus we will show that linear independence is one important property of vector

outer harmonics.
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Lemma 4.2.3. Let Σ be a regular surface and {h(i),R
n,m } i=1,2,3;n∈N0i

;

m=1,...,2n+1

be a system of vector

outer harmonics of degree n and kind i as given in (4.2.2)-(4.2.4). Then the system

{h(i),R
n,m |Σ} i=1,2,3;n∈N0i

;

m=1,...,2n+1

is linearly independent.

The proof can be found in [33] based on results in [8].

The following lemma (see, e.g., [33]) is an auxiliary tool to prove the theorem of complete-

ness for vector outer harmonics. It follows from the corresponding results of scalar outer

harmonics.

Lemma 4.2.4. Let {HR
n,m}n∈N0; m=1,...,2n+1 be a system of scalar outer harmonics as defined

by (4.2.1). Then

span i=1,2,3;n∈N0;
m=1,...,2n+1

{HR
n,mεi|Σ}

‖·‖
l2(Σ) = l2(Σ),

span i=1,2,3;n∈N0;
m=1,...,2n+1

{HR
n,mεi|Σ}

‖·‖c(Σ)
= c(Σ).

In the following theorem a completeness result for the vector outer harmonics is given (see

[33]).

Theorem 4.2.5. Let {h(i),R
n,m } i=1,2,3;n=0i,1,...;

m=1,...,2n+1
be a system of vector outer harmonics as defined

by (4.2.5). Then the following statements hold true:

span i=1,2,3;n∈N0i
;

m=1,...,2n+1

{h(i),R
n,m |Σ}

‖·‖
l2(Σ)

= l2(Σ), (4.2.8)

span i=1,2,3;n∈N0i
;

m=1,...,2n+1

{h(i),R
n,m |Σ}

‖·‖c(Σ)

= c(Σ). (4.2.9)

Proof. Let εkHR
n,m be a homogeneous harmonic vector polynomial for any fixed value of

k = 1, 2, 3; n ∈ N0; m = 0, . . . 2n + 1. Then this homogeneous harmonic vector polynomial

can be written as a linear combination of vector spherical harmonics, given by Lemma

3.3.12. Let us first represent εkHR
n,m restricted to the unit sphere ΩR with radius R = 1,

i.e.,

εkHR
n,m(x)|Ω = u

(1)
n−1

(
x

|x|

)

+ u
(2)
n+1

(
x

|x|

)

+ u(3)
n

(
x

|x|

)

, x ∈ ΩR, R = 1.

By suspending the restriction on the unit sphere thus allowing R ≥ 1 we get the following
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representation:

εkHR
n,m(x)

=

(
R

|x|

)n+1(

u
(1),R
n−1

(
x

|x|

)

+ u
(2),R
n+1

(
x

|x|

)

+ u(3),R
n

(
x

|x|

))

=

2(n−1)+1
∑

m=1

a
(1)
n−1,mh

(1),R
n−1,m(x) +

2(n+1)+1
∑

m=1

a
(2)
n+1,mh

(2),R
n+1,m(x) +

2n+1∑

m=1

a(3)
n,mh(3),R

n,m (x).

Therefore,

span k=1,2,3; n∈N0;
m=0,...2n+1

{εkHR
n,m|Σ}

⊂
2(n−1)+1
⊕

m=1

{h(1),R
n−1,m|Σ} ⊕

2(n+1)+1
⊕

m=1

{h(2),R
n+1,m|Σ} ⊕

2(n)+1
⊕

m=1

{h(3),R
n,m |Σ}.

Lemma 4.2.4 completes the proof.

Thus the system {h(i),R
n,m } i=1,2,3;n∈N0i

;

m=1,...,2n+1

of vector outer harmonics is orthogonal when restricted

to a sphere ΩR linearly independent and complete when restricted to a regular surface Σ.

From functional analysis (see e.g. [3]) we know that in a Hilbert space such as l2(Σ) the

properties of completeness and closure are equivalent. This leads to the following corollary.

Corollary 4.2.6. Under the assumption of Theorem 4.2.5 the following statement is valid.

The system of vector outer harmonics {h(i),R
n,m |Σ} i=1,2,3;n=0i,1,...;

m=1,...,2n+1
is closed in l2(Σ), i.e., for

given f ∈ l2(Σ) and arbitrary ε > 0 there exists a linear combination

hm =
3∑

i=1

N∑

n=0i

2n+1∑

m=1

a(i)
nmh(i),R

n,m |Σ,

such that

‖f − hm‖l2(Σ) ≤ ε,

where a
(i)
nm are appropriate coefficients.

4.3 Exact Computation of Homogeneous Harmonic

Polynomials

Two algorithms exclusively using on integer operations are explained for establishing lin-

early independent systems of homogeneous harmonic polynomials. The first algorithm is
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based on the solution of an underdetermined system of linear equations, whereas the second

algorithm uses a recursion relation for two-dimensional homogeneous polynomials.

4.3.1 Exact Computation Via Underdetermined Linear Systems

Our purpose now is to explain how a maximal linearly independent and orthonormal system

of homogeneous harmonic polynomials of degree n can be generated exactly (our consid-

erations literally follow [19]). The concept is based on the observation that any linearly

independent system {Hn,j}j=1,...,2n+1 of homogeneous harmonic polynomials of degree n

Hn,1(x) =
∑

[α]=n

C1
αxα

...
...

...
... (4.3.1)

Hn,2n+1(x) =
∑

[α]=n

C2n+1
α xα

can be determined by exact computation of the coefficients Cj
α, i.e., entirely by integer

operations for j = 1, . . . , 2n + 1. (Note that we briefly write Cj
α instead of Cn,j

α when

confusion is not likely to arise). In other words, we want to show that the coefficients

Cj
α, j = 1, ..., 2n + 1, in (4.3.1) can be expressed as integers.

Generation of Linearly Independent Systems

Let Hn be a homogeneous polynomial of the form Hn = Σ[α]=nCαxα, x ∈ R3, n ≥ 2.

Assuming that Hn is harmonic, i.e., ∆xHn(x) = 0 , x ∈ R3, we obtain

∆xHn(x) = ∆x

∑

[α]=n

Cαxα =
∑

[α]=n

Cα∆x(x
α) = 0. (4.3.2)

Thus it follows that
∑

α1+α2+α3=n

Cα

(
α1(α1 − 1)xα1−2

1 xα2
2 xα3

3 + α2(α2 − 1)xα2−2
2 xα1

1 xα3
3

+ α3(α3 − 1)xα3−2
3 xα1

1 xα2
2

)
= 0. (4.3.3)

We discuss the terms

α1(α1 − 1)xα1−2
1 xα2

2 xα3
3 , α1 + α2 + α3 = n,
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α2(α2 − 1)xα1
1 xα2−2

2 xα3
3 , α1 + α2 + α3 = n, (4.3.4)

α3(α3 − 1)xα1
1 xα2

2 xα3−2
3 , α1 + α2 + α3 = n

in more detail. Every term in (4.3.4) with index α = (α1, α2, α3)
T satisfying [α] = α1 +

α2 + α3 = n is a homogeneous polynomial of degree n − 2. Hence, the left hand side of

(4.3.3) is a homogeneous polynomial of degree n − 2. Therefore ∆Hn can be represented

in the form

∆xHn(x) =
∑

[β]=n−2

Dβxβ. (4.3.5)

The coefficients Dβ are given by

Dβ =
∑

[α]=n

Cαmβα, (4.3.6)

where mβα is given by

mβα =







α1(α1 − 1), β − α = (−2, 0, 0)T

α2(α2 − 1), β − α = (0,−2, 0)T

α3(α3 − 1), β − α = (0, 0,−2)T

0, otherwise.

(4.3.7)

Hn is assumed to be harmonic, i.e., ∆xHn(x) = 0 for all x ∈ R3. But this means that all

numbers Dβ are equal to 0. Therefore it follows that

∑

[α]=n

Cαmβα = 0 (4.3.8)

for all β with [β] = n − 2. Now, (4.3.8) is a linear system of
(

n
2

)
equations in the

(
n+2

2

)

unknowns Cα, [α] = n.

The matrix m = (mβα) has
(

n
2

)
rows and

(
n+2

2

)
columns; m can be partitioned as follows:

m = ( l
︸︷︷︸

(n
2)

... r
︸︷︷︸

(n+2
2 )−(n

2)=2n+1

)}
(

n

2

)

, (4.3.9)

where l = (lβδ) is a
(

n
2

)
by
(

n
2

)
matrix and r = (rβδ) is a

(
n
2

)
by
(

n+2
2

)
−
(

n
2

)
matrix.

For the set of multiindices of degree n we introduce a binary relation (lexicographical order)

between elements

α
′

= (α
′

1, α
′

2, α
′

3)
T , α

′′

= (α
′′

1 , α
′′

2 , α
′′

3)
T (4.3.10)
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designated by ” > ” and defined as follows:

α
′

> α
′′

(4.3.11)

if and only if one of the following relations is satisfied

α
′

1 > α
′′

1 (4.3.12)

or

α
′

1 = α
′′

1 , α
′

2 > α
′′

2 (4.3.13)

or

α
′

1 = α
′′

1 , α
′

2 = α
′′

2 , α
′

3 > α
′′

3 . (4.3.14)

The binary relation ” > ” implies an ordering for the multiindices α, [α] = n, according

to the mapping

(n, 0, 0) → 1 } 1

(n − 1, 1, 0) → 2

(n − 1, 0, 1) → 3

}

2

(n − 2, 2, 0) → 4

(n − 2, 1, 1) → 5

(n − 2, 0, 2) → 6







3

...
...
...

(0, n, 0) →
(

n+2
2

)
− n

...
...
...

(0, 0, n) →
(

n+2
2

)







n + 1 .

In the same way, the set of multiindices β, [β] = n−2, may be ordered by increasing integers

i, 1 ≤ i ≤
(

n
2

)
. Hence, in canonical manner, each pair (β, α) with [β] = n − 2, [α] = n,

corresponds uniquely to a pair (i, j), 1 ≤ i ≤
(

n
2

)
, 1 ≤ j ≤

(
n+2

2

)
. In this notation the

matrix

m = (mβα), [β] = n − 2, [α] = n, (4.3.15)

can be rewritten in the ordered form

m = (mij), 1 ≤ i ≤
(

n

2

)

, 1 ≤ j ≤
(

n + 2

2

)

. (4.3.16)
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Analogously

l = lβγ, [β] = n − 2, [γ] = n − 2 (4.3.17)

becomes

l = (lij), 1 ≤ i ≤
(

n

2

)

, 1 ≤ j ≤
(

n

2

)

. (4.3.18)

¿From (4.3.7) it can be deduced that

lij = 0 for i > j, i = 2, ...,
(

n
2

)
,

lij 6= 0 for i = j, i = 1, ...,
(

n
2

)
.

(4.3.19)

But this shows that l is non-singular, hence, the matrix m is of maximal rank:
(

n
2

)
.

Therefore we are able to find
(

n+2
2

)
−
(

n
2

)
, i.e., 2n + 1 linearly independent solution vectors

(A1
α) , ... , (A2n+1

α ), [α] = n, of the homogeneous linear system (4.3.8). According to

standard arguments of linear algebra the
(

n+2
2

)
by 2n+1 matrix a consisting of the vectors

(A1
α), ..., (A2n+1

α )

a =
(
(A1

α), ..., (A2n+1
α )

)

︸ ︷︷ ︸

2n+1

} (
n+2

2

)
(4.3.20)

may be partitioned in the following form

a =

(

u

−i

)

, (4.3.21)

where i is the (2n + 1) by (2n + 1) unit matrix, and u is a
(

n+2
2

)
by (2n + 1) by (2n + 1)

matrix. Then the linear system m a = 0 can be written as follows l u = r. Since l is a

(2n + 1) by (2n + 1) upper triangular matrix, the unknown matrix u can be computed by

(2n + 1)-times backward substitution.

The elements of the matrix m = (mβα) are all integers. Therefore, any solution of the

linear system (4.3.8) is a column vector of rational components. Hence, there exists a

matrix

c = ((C1
α), ..., (C2n+1

α )), [α] = n, (4.3.22)

the elements of which are all integers (observe that if (Cα), [α] = n, is a solution of

(4.3.8), then k (Cα), [α] = n, k integer, is a solution, too).

In other words, the solution process can be performed strictly in the modulus of integers.

Exact computation (without rounding errors) is possible in integer mode by use of integer
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operations (addition, subtraction, multiplication of integers). When the matrix c has been

calculated, the homogeneous harmonic polynomials Hn,j given by (4.3.1) form a (maximal)

linearly independent system, i.e., a basis in Harmn.

Finally, it should be emphasized that exact computation, i.e., addition, subtraction, mul-

tiplication in integer mode must be performed strictly in the available range of the integer

constants. Helpful is an arithmetic for arbitrarily long integers whose implementation on

a computer system operates with lists so that there is no restriction on the size of the

integers worked with (this is a standard feature of computer algebra packages). Let us

demonstrate the technique of calculating the matrix c for two examples:

We choose the degree n = 3. Then an elementary calculation yields

(
n + 2

2

)

= 10,

(
n

2

)

= 3, (4.3.23)

hence, (
n + 2

2

)

−
(

n

2

)

= 7. (4.3.24)

Every homogeneous harmonic polynomial H3 ∈ Hom3 may be represented in the form:

H3(x) = C300 x3
1 + C210 x2

1 x2 + C201 x2
1 x3

+ C120 x1 x2
2 + C111 x1 x2x3 + C102 x1 x2

3

+ C030 x3
2 + C021 x2

2x3 + C012 x2 x2
3

+ C003 x3
3

(x = (x1, x2, x3)
T ).

(4.3.25)

H3 has to fulfill the differential equation ∆xH3(x) = 0, x ∈ R3, i.e.,

6 C300x1 + 2 C210x2 + 2 C201x3 (4.3.26)

+2 C120x1 + 6 C030x2 + 2 C021x3

+2 C102x1 + 2 C012x2 + 6 C003x3 = 0.

Since ∆xH3(x) = 0 identically for all x ∈ R3 we get
(

n
2

)
= 3 equations for the coefficients

6C300 + 2C120 + 2C102 = 0,

2C210 + 6C030 + 2C012 = 0,

2C201 + 2C021 + 6C003 = 0.
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Using the introduced order for the coefficients Cα, [α] = 3, the equation m c = 0 reads in

matrix notation







6 0 0
... 2 0 2 0 0 0 0

0 2 0
... 0 0 0 6 0 2 0

0 0 2
... 0 0 0 0 2 0 6































C300

C210

C201

. . .

C120

C111

C102

C030

C021

C012

C003

























=

























0

0

0

. . .

0

0

0

0

0

0

0

























, (4.3.27)

where we have marked the partitioning of the matrix m and the vector (Cα) by dashed

lines. If we choose

C120 = −1, C111 = ... = C003 = 0 (4.3.28)

the linear system is uniquely solved by the vector

(
1

3
, 0, 0

... − 1, 0, 0, 0, 0, 0, 0)T . (4.3.29)

Multiplying this vector by 3 all components become integers

(C1
α) = (1, 0, 0

... − 3, 0, 0, 0, 0, 0, 0)T . (4.3.30)

In the same way we generate a set of 7 linearly independent solutions of the above system

the components of which are all integers, viz.

(C2
α) = (0, 0, 0

... 0,−1, 0, 0, 0, 0, 0)T ,

(C3
α) = (1, 0, 0

... 0, 0,−3, 0, 0, 0, 0)T ,

(C4
α) = (0, 3, 0

... 0, 0, 0,−1, 0, 0, 0)T ,

(C5
α) = (0, 0, 1

... 0, 0, 0, 0,−1, 0, 0)T ,

(C6
α) = (0, 1, 0

... 0, 0, 0, 0, 0,−1, 0)T ,

(C7
α) = (0, 0, 3

... 0, 0, 0, 0, 0, 0,−1)T .
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Thus a linearly independent system {H3,j}j=1,...,7 of homogeneous harmonic polynomials

of degree 3 is found by the following functions:

H3,1(x) = 1 · x3
1 − 3 · x1x

2
2,

H3,2(x) = −1 · x1x2x3,

H3,3(x) = 1 · x3
1 − 3 · x1x

2
3,

H3,4(x) = 3 · x2
1x2 − 1 · x3

2,

H3,5(x) = 1 · x2
1x3 − 1 · x2

2,

H3,6(x) = 1 · x2
1x2 − 1 · x2x

2
3,

H3,7(x) = 3 · x2
1x3 − 1 · x3

3.

Generation of Orthonormal Systems

The linearly independent systems of homogeneous harmonic polynomials as developed here

turn out to be of particular significance when outer harmonics have to be orthonormalized

with respect to a (geoscientifically relevant) regular surface Σ, i.e., when a linearly indepen-

dent and not an L2(Ω)-orthonormal system is required for the orthonormalization process

on Σ. Nevertheless it is worth mentioning that, corresponding to the linearly independent

system {Hn,m}m=1,...,2n+1 of homogeneous harmonic polynomials of degree n, an orthogo-

nal system, in {H∗
n,m}m=1,....,2n+1 with respect to both the topology of Homn and L2(Ω)

can be constructed only by integer operations (according to the well-known Gram-Schmidt

process). To this end the functions H∗
n,m are computed recursively. We start from

H∗
n,1 = Hn,1 . (4.3.31)

Then we set

H∗
n,2 = an

2,1H
∗
n,1 + Hn+1 . (4.3.32)

The coefficient an
2,1 has to be chosen such that H∗

n,2 is orthogonal to H∗
n,1 :

(H∗
n,2, H

∗
n,1)Homn

= 0 . (4.3.33)

It turns out that

an
2,1 = − (Hn,2, H

∗
n,1)Homn

(H∗
n,1, H

∗
n,1)Homn

. (4.3.34)
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It should be noted that numerator and denominator may be determined exactly. Now, let

H∗
n,3 = an

3,1H
∗
n,1 + an

3,2H
∗
n,2 + Hn,3 . (4.3.35)

The requirements

(H∗
n,3, H

∗
n,1)Homn

= 0,

(H∗
n,3, H

∗
n,2)Homn

= 0

lead to

an
3,1 = − (Hn,3, H

∗
n,1)Homn

(H∗
n,1, H

∗
n,1)Homn

, (4.3.36)

an
3,2 = − (Hn,3, H

∗
n,2)Homn

(H∗
n,2, H

∗
n,2)Homn

. (4.3.37)

Again, the coefficients can be deduced by integer operations. Analogously we get, in

general,

H∗
n,k = an

k,1H
∗
n,1 + ... + an

k,k−1H
∗
n,k−1 + Hn,k, k = 2, ..., 2n + 1, (4.3.38)

H∗
n,1 = Hn,1 , (4.3.39)

where the coefficients

an
k,s = − (Hn,k, H

∗
n,s)Homn

(H∗
n,s, H

∗
n,s)Homn

. (4.3.40)

are computable exactly by integer operations, i.e., an
k,s is known exactly as a fraction of

integers.

According to this well–known orthogonalization scheme, each function H∗
n,j is a linear

combination of the functions Hn,1, ..., Hn,2n+1 . The coefficients of this linear combination

can be obtained exactly as rational numbers, too. Thus there exists a vector (Bm
α ) such

that

H∗
n,m(x) =

∑

[α]=n

Bm
α xα , m = 1, ..., 2n + 1 . (4.3.41)

The vectors (Bm
α ), m = 1, ..., 2n + 1, form a matrix b whose elements consist of fractions

of integers (provided that all numbers in the course of computation have been calculated

in such a way that numerator and denominator are known as integers).
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Lemma 4.3.1. There exists a sequence of homogeneous harmonic polynomials {H∗
n,m}m=1,...,2n+1

of degree n with

(H∗
n,m, H∗

n,l)Homn
= 0, m 6= l ,

viz.

H∗
n,1 = Hn,1

H∗
n,k = an

k,1H
∗
n,1 + ... + an

k,k−1H
∗
n,k−1 + Hn,k, k = 2, ..., 2n + 1,

where all coefficients an
k,s are computable by integer operations.

Remark 4.3.1. Provided that the expression
√

(H∗
n,m, H∗

n,m)Homn
has been stored as the

radicant of an integer a Homn-orthonormal system of homogeneous harmonic polynomials

of degree n can be calculated exactly, i.e., by integer operations. The exactness is of basic

importance. In fact, the method is constructed so as to avoid computational errors.

Lemma 4.3.2. The system
√

(H∗
n,1, H

∗
n,1)

−1
Homn

H∗
n,1, . . . ,

√

(H∗
n,2n+1, H

∗
n,2n+1)

−1
Homn

H∗
n,2n+1

is an orthonormal system of homogeneous harmonic polynomials of degree n with respect

to (·, ·)Homn
, while
√

µn(H∗
n,1, H

∗
n,1)

−1
Homn

H∗
n,1, . . . ,

√

µn(H∗
n,2n+1, H

∗
n,2,+1)

−1
Homn

H∗
n,2n+1

is an orthonormal system of homogeneous harmonic polynomials of degree n with respect to

(·, ·)L2(Ω). The values (H∗
n,m, H∗

n,m)Homn
can be determined entirely by integer operations.

We only deal with the degree n = 3 (for a table of higher degrees see [9]). According

to our orthonormalization process due to Gram-Schmidt we are able to deduce from the

maximal system of linearly independent homogeneous harmonic polynomials {H3,m}m=1,...,7

an orthogonal system {H∗
3,m}m=1,...,7. The resulting functions are listed below:

H∗
3,1(x) = x3

1 − 3x1x
2
2,

H∗
3,2(x) = x1x2x3,

H∗
3,3(x) = x3

1 + x1x
2
2 − 4x1x

2
3,

H∗
3,4(x) = 3x2

1x2 − x3
2 − x3

2,

H∗
3,5(x) = x2

1x3 − x2
2x3,

H∗
3,6(x) = x2

1x2 + x3
2 − 4x2x

2
3,

H∗
3,7(x) = 3x2

1x3 + 3x2
2x3 − 2x3

3.
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That means, all components Bj
α 6= 0 are decomposed into an integer times a product of

the prime numbers 2, 3. An easy calculation gives

(H∗
3,1, H

∗
3,1)Hom3 = 24 = 1 · 23 · 31,

(H∗
3,2, H

∗
3,2)Hom3 = 1 = 1 · 20 · 30,

(H∗
3,3, H

∗
3,3)Hom3 = 40 = 5 · 23 · 30,

(H∗
3,4, H

∗
3,4)Hom3 = 24 = 1 · 23 · 31,

(H∗
3,5, H

∗
3,5)Hom3 = 4 = 1 · 22 · 30,

(H∗
3,6, H

∗
3,6)Hom3 = 40 = 5 · 23 · 30,

(H∗
3,7, H

∗
3,7)Hom3 = 60 = 5 · 22 · 31.

(4.3.42)

Thus, the integers are decomposed into a (positive) integer times a product of prime

numbers ≤ 3.

Consequently, the orthonormal system

√

(H∗
n,m, H∗

n,m)−1
Hom3

H∗
n,m (4.3.43)

(with respect to (·, ·)Hom3). corresponding to {H∗
n,m}m=1,...,7 may be listed as follows:

√

(H∗
3,1, H

∗
3,1)

−1
Hom3

H∗
3,1(x)

= (1 · 20 · 30 · x3
1x

0
2x

0
3 − 1 · 20 · 31 · x1

1x
2
2x

0
3)/

√
1 · 23 · 31,

√

(H∗
3,2, H

∗
3,2)

−1
Hom3

H∗
3,2(x)

= (1 · 20 · 30 · x1
1x

1
2x

1
3)/

√
1 · 20 · 30,

√

(H∗
3,3, H

∗
3,3)

−1
Hom3

H∗
3,3(x)

= (1 · 20 · 30 · x3
1x

0
2x

0
3 + 1 · 20 · 30 · x1

1x
2
2x

0
3

−1 · 22 · 30 · x1
1x

0
2x

2
3)/

√
5 · 23 · 30,

√

(H∗
3,4, H

∗
3,4)

−1
Hom3

H∗
3,4(x)

= (1 · 20 · 31 · x2
1x

1
2x

0
3 − 1 · 20 · 30 · x0

1x
3
2x

0
3)/

√
1 · 23 · 31,

√

(H∗
3,5, H

∗
3,5)

−1
Hom3

H∗
3,5(x)

= (1 · 20 · 30 · x2
1x

0
2x

1
3 − 1 · 20 · 30 · x0

1x
2
2x

1
3)/

√
1 · 22 · 30,

√

(H∗
3,6, H

∗
3,6)

−1
Hom3

H∗
3,6(x)
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= (1 · 20 · 30 · x2
1x

1
2x

0
3 + 1 · 20 · 30 · x0

1x
3
2x

0
35 · 23 · 30 · x0

1x
1
2x

2
3)/

√
1 · 22 · 30,

√

(H∗
3,7, H

∗
3,7)

−1
Hom3

H∗
3,7(x)

= (1 · 20 · 31 · x2
1x

0
2x

1
3 + 1 · 20 · 31 · x0

1x
2
2x

1
3

−1 · 21 · 30 · x0
1x

0
2x

3
3)/

√
5 · 22 · 31.

Therefore we obtain the system

H3,1(x) =
1√
24

(x1
3 − 3x1x2

2), (4.3.44)

H3,2(x) = x1x2x3, (4.3.45)

H3,3(x) =
1√
40

(x1
3 + x1x2

2 − 4x1x3
2), (4.3.46)

H3,4(x) =
1√
24

(3x1
2x2 − x2

3), (4.3.47)

H3,5(x) =
1√
4
(x1

2x3 − x2
2x3), (4.3.48)

H3,6(x) =
1√
40

(x1
2x2 + x2

3 − 4x2x
2
3), (4.3.49)

H3,7(x) =
1√
60

(3x1
2x3 + 3x2

2x3 − 2x3
3) (4.3.50)

of homogeneous harmonic polynomials of degree 3 (see Figure 4.3.1).

Finally, the orthonormal system of homogeneous harmonic polynomials of degree n (with

respect to (·, ·)L2(Ω)) is given as follows

√

µ3(H∗
3,m, H∗

3,m)−1
Hom3

H∗
3,m, m = 1 . . . , 7 (4.3.51)

with

µ3 =
105

4π
=

1 · 3 · 5 · 7
4π

. (4.3.52)

4.3.2 Generation of Linearly Independent Systems Via Recur-

sion Relations

Our considerations have shown how a basis of Harmn can be computed entirely by in-

teger operations from 2n + 1 systems of linear equations. The basis functions obtained

can be orthonormalized exactly by means of the well-known Gram-Schmidt orthonormal-

ization process. As result there are 2n + 1 homogeneous harmonic polynomials available
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(orthonormalized in the sense of (·, ·)Homn
). But the disadvantage in that approach is

that the linear systems of equations result in basis functions which are all involved in the

computational work of the orthonormalization. This is the reason why [20] proposed an

algorithm such that, for every degree n ≥ 2, a basis of Harmn is computable exactly which

divides itself in a natural way into four subsets such that the sets are mutually orthogonal

and the intersection between any pair of subsets is empty.

The starting point for this approach is the fact that any homogeneous harmonic polynomial

Hn in the three variables x1, x2, x3 can be represented in the form (3.1.6), where An−j :

R3 → R, j = 0, . . . , n, are homogeneous polynomials of degree n− j in the variables x1, x2,

where, for j = 0, ..., n−2, An−j−2 is determined recursively from An−j according to (3.1.7).

In what follows we especially denote by M(n) the set of all multiindices α ∈ N2
0 with

[α] = α1 + α2 = n:

M(n) = {(n − j, j), j = 0, . . . , n}. (4.3.53)

Obviously, M(n) consists of n + 1 elements. Hence, corresponding to the set M(n), there

exists an ordered system An,1, . . . , An,n+1 of n + 1 monomials (x1, x2) 7→ xα1
1 xα2

2 , α1 + α2 =

n, (x1, x2)
T ∈ R2. It is clear that the set of all linear combinations of An,j, j = 1, ..., n + 1,

spans the space of all homogeneous polynomials of degree n in R2. For brevity, we use An

to denote the system of the n + 1 monomials {An,j}j=1,...,n+1.

Lemma 4.3.3. The union Bn of the sets B(n−1)
n and B(n)

n given by

B(n−1)
n =

{
n∑

j=1

2 xj
3An−j,l(x1, x2) | l = 1, ..., n

}

, (4.3.54)

B(n)
n =

{
n∑

j=0

2 xj
3An−j,l(x1, x2) | l = 1, ..., n + 1

}

(4.3.55)

with

An−j−2,l(x1, x2) = − 1

(j + 1)(j + 2)

(
(

∂

∂x1

)2 + (
∂

∂x2

)2
)
An−j,l(x1, x2)

forms a basis of the linear space Harmn, where
∑
2 means that every second summand will

be omitted in the sum
∑

.

Proof. All members of the subsystems B(n−1)
n ,B(n)

n are linearly independent, since the func-

tion An,j are linearly independent. Both systems together possess n + n + 1 = 2n + 1

elements, i.e., they form a basis of Harmn.
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Obviously,

H
(n−1)
n,l (x) =

n∑

j=1

2 xj
3An−j,l(x1, x2) =

⌈n
2
⌉

∑

j=1

x2j−1
3 An−2j+1,l(x1, x2) (4.3.56)

and

H
(n)
n,l (x) =

n∑

j=0

2 xj
3An−j,l(x1, x2) =

⌊n
2
⌋

∑

j=0

x2j
3 An−2j,l(x1, x2), (4.3.57)

where we have used the notation ⌈·⌉ and ⌊·⌋ for rounding real numbers ⌊t⌋ = max{n ∈
Z|n ≤ t}, ⌈t⌉ = min{n ∈ Z|n ≥ t}, t ∈ R.

Next we verify the following theorem.

Theorem 4.3.4. Let B(k)
n , k = n − 1 and n, respectively, be defined as in Lemma 4.3.3

Then B(n−1)
n ⊥ B(n)

n (in the sense of (·, ·)Homn
).

Proof. Since each H
(n−1)
n,l ∈ B(n−1)

n is homogeneous, it can be represented in the form

H
(n−1)
n,l (x1, x2, x3) =

⌈n
2
⌉

∑

j=1

x2j−1
3 An−2j+1(x1, x2) (4.3.58)

=

⌈n
2
⌉

∑

j=1

x2j−1
3

∑

(β1,β2)T ∈N2
0,

β1+β2=n−2j+1

Cβ1,β2x
β1

1 xβ2

2

=

⌈n
2
⌉

∑

j=1

∑

(α1,α2α3)T ∈N3
0

α1+α2=n−2j+1
α3=2j−1

Cα1,α2,α3x
α1
1 xα2

2 xα3
3 .

Analogously we obtain

H
(n)
n,k(x1, x2, x3) =

⌊n
2
⌋

∑

i=0

∑

(γ1,γ2,γ3)T ∈N3
0,

γ1+γ2=n−2i,
γ3=2i

Cγ1,γ2,γ3x
γ1

1 xγ1

2 xγ3

3 . (4.3.59)

Thus it follows that

(

H
(n−1)
n,l , H

(n)
n,k

)

Homn

=

⌈n
2
⌉

∑

j=1

⌊n
2
⌋

∑

i=0

∑

α∈N3
0

α1+α2=n−2j+1
α3=2j−1

∑

γ∈N3
0

γ1+γ2=n−2i
γ3=2i

CαCγ(∇x)
αxγ (4.3.60)

This completes the proof of Theorem 4.3.4.



Exact Computation of Homogeneous Harmonic Polynomials 77

Theorem 4.3.4 shows that we already have obtained a basis of Harmn which is partially

orthogonal. Thus we know that we have two subsystems which are orthogonal to each other.

This can be improved by the following: The reason for the orthogonality of the subsystems

is that one subsystem contains only polynomials with multiindices α = (α1, α2, α3)
T ∈ N3

0,

where α3 is odd, whereas in the other subsystems are only polynomials with multiinidices

α = (α1, α2, α3)
T ∈ N3

0, where α3 is even. This idea can be applied in the same way to the

second component of the multiindices.

In more detail we let

Bn =
⋃

k=n−1,n

B(k)
n (4.3.61)

=
⋃

k=n−1,n
i=0,1

B(k)
n,i , (4.3.62)

where

B
(k)
n,0 = {Hk ∈ B(k)

n |α2 even}, (4.3.63)

B
(k)
n,1 = {Hk ∈ B(k)

n |α2 odd}. (4.3.64)

Let us denote by M0(n), M1(n) the sets of all multiindices given by

M0(n) = {(n − j, j) | j even, 0 ≤ j ≤ n},
M1(n) = {(n − j, j) | j odd, 0 ≤ j ≤ n}. (4.3.65)

By virtue of this splitting of M(n), the set An defined above is separated into two subsys-

tems An,0,An,1, namely

An,k = {(x1, x2) → xα1
1 xα2

2 , α1 + α2 = n, (α1, α2) ∈ Mk(n)} (4.3.66)

for k = 0, 1.

Remark 4.3.2. As subscripts for the sets M we use binary numbers. The binary digits

reflect the odd/even pattern of the multiindices if we read ’even’ for 0 and ’odd’ for 1. We

see that Mk(n) and Mk(n − 1) have the same patterns in the second component, but the

patterns differ in the first component.

As required by Theorem 3.1.5, the Laplace operator (∂/∂x1)
2 + (∂/∂x2)

2 in R2 has to be

applied repeatedly to a basis function An−1,l or An,l in order to generate the functions
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An−j−2,l. Applying the Laplacian in R2 changes the multiindices, but does not change the

odd/even pattern. Thus, a homogeneous harmonic polynomial generated by the elements

of An−1,k, k = 0, 1, can be represented as a sum of the kind

∑

[α]=n, α3odd

(α1,α2)∈M(k)(n−1)

C(n−1)
α xα1

1 xα2
2 xα3

3 , x = (x1, x2, x3)
T , (4.3.67)

while a homogeneous harmonic polynomial generated by the elements of An,k, k = 0, 1, can

be represented by a sum of the kind

∑

[α]=n,α3even

(α1,α2)∈Mk(n)

C(n)
α xα1

1 xα2
2 xα3

3 , x = (x1, x2, x3)
T . (4.3.68)

Therefore we obtain

Theorem 4.3.5. Let B(n−1)
n,k , k = 0, 1, be the set of homogeneous harmonic polynomi-

als generated from the elements of An−1,k. Moreover, let B(n)
n,k, k = 0, 1, be the sets of

homogeneous harmonic polynomials generated from An,k. Then

Bn = B(n−1)
n,0 ∪ B(n−1)

n,1 ∪ B(n)
n,0 ∪ B(n)

n,1

is a basis of Harmn, where

B(n−1)
n,0 ∪ B(n−1)

n,1 = B(n−1)
n , B(n−1)

n,0 ∩ B(n−1)
n,1 = ∅ (4.3.69)

B(n)
n,0 ∪ B(n)

n,1 = B(n)
n , B(n)

n,0 ∩ B(n)
n,1 = ∅ (4.3.70)

and

B(i)
n,k ⊥ B(j)

n,l

(in the sense of (·, ·)Homn
) for (i, k) 6= (j, l); n − 1 ≤ i, j ≤ n; 0 ≤ k, l ≤ 1.

Generation of Orthonormal Systems

Applied to the functions of each subsystem B(i)
n,k; i = n− 1, n; k = 0, 1; the Gram-Schmidt

orthonormalization process can be performed exactly (over a finite subset of Q) except for

the final (square root) division of each polynomial by its norm. This yields an orthonormal

basis of homogeneous harmonic polynomials in (Harmn, (·, ·)Homn
). To this orthonormal

basis there corresponds an orthonormal basis in (Harmn, (·, ·)L2(Ω)) by multiplying each

basis element with the factor
√

µn.
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In order to get an estimate of the amount of work saved if we orthonormalize the subsets

rather than the whole set of basis functions, we have to know the number of functions in

each subset B(i)
n,k; i = n − 1, n; k = 0, 1, i.e., the number of elements in M(k)(n − 1) and

M(k)(n) for k = 0, 1. Let us define

νk(n) = #M(k)(n).

Then we easily see that for even n

νk(n) =

{
n+2

2
, if k = 0,

n
2

, if k = 1,

while for odd n

νk(n) =

{
n+1

2
, if k = 0,

n+1
2

, if k = 1.

Let us denote by WN(n) the amount of computational work to perform the Gram-Schmidt

orthonormalization process for a subset of N homogeneous harmonic polynomials. In the

i-th step are computed: i - scalar products (S), (i-1)- divisions (D); (rational/rational),

(i-1)- multiplications (M); (rational x polynomial) and (i-1)- additions (A); (polynomial ±
polynomial). The square root is not really performed. Thus WN(n) is equal to

WN(n) =
N∑

i=1

i · S + (i − 1)(D + M + A)

=
1

2
(N(N + 1)S + (N − 1)N(D + M + A))

≈ 1

2
N2(S + D + M + A) =

1

2
N2 · U,

where

U = S + D + M + A.

For the orthonormalization of a set of 2n+1 basis functions of Harmn, i.e. for all functions

of a basis of Harmn,we get

Wall(n) = W2n+1(n) ≈ W̃2n+1(n) =
1

2
(2n + 1)2 · U.

The computational work for the individual orthonormalization of the four subsets is

Wsubsets(n) =
1∑

k=0

n∑

j=n−1

Wνk(n)(j)

≈ W̃subsets(n) =
1

2
U

1∑

k=0

n∑

j=n−1

ν2
k(j).
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The amount of computational work which we save if we orthonormalize individually the

basis subsets can be expressed by the ratio

R̃(n) =
W̃all(n)

W̃subsets(n)
.

We see that

R̃(n) < 4

and

lim
n→∞

R̃(n) = 4.

Even for very small n the limit 4 is nearly reached.

This means that the amount of computational work is reduced drastically when the el-

ements of the basis have to be orthonormalized, because the orthonormalization process

can be performed separately for the four individual subsets (whose numbers of elements

on average is (2n + 1)/4).

We start with the sets of multiindices

M(4) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)},
M(5) = {(5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5)}.

They are split according to procedure described above into

M0(4) = {(4, 0), (2, 2), (0, 4)},
M1(4) = {(3, 1), (1, 3)},
M0(5) = {(5, 0), (3, 2), (1, 4)},
M1(5) = {(4, 1), (2, 3), (0, 5)}.

From each of these sets the corresponding homogeneous harmonic polynomials are derived.

The polynomials read as follows:

M0(4) : 1x4
1x

0
2x

1
3 − 2x2

1x
0
2x

3
3 + 1

5
x0

1x
0
2x

5
3,

1x2
1x

2
2x

1
3 − 1

3
x0

1x
2
2x

3
3 − 1

3
x2

1x
0
2x

3
3 + 1

15
x0

1x
0
2x

5
3,

1x0
1x

4
2x

1
3 − 2x0

1x
2
2x

3
3 + 1

5
x0

1x
0
2x

5
3,

M1(4) : 1x3
1x

1
2x

1
3 − 1x1

1x
1
2x

3
3,

1x1
1x

3
2x

1
3 − 1x1

1x
1
2x

3
3,
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M0(5) : 1x5
1x

0
2x

0
3 − 10x3

1x
0
2x

2
3 + 5x1

1x
0
2x

4
3,

1x3
1x

2
2x

0
3 − 3x1

1x
2
2x

2
3 − 1x3

1x
0
2x

2
3 + 1x1

1x
0
2x

4
3,

1x1
1x

4
2x

0
3 − 6x1

1x
2
2x

2
3 + 1x1

1x
0
2x

4
3,

M1(5) : 1x4
1x

1
2x

0
3 − 6x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3,

1x2
1x

3
2x

0
3 − 1x0

1x
3
2x

2
3 − 3x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3.

An illustration of members of the system of homogeneous harmonic polynomials for degree

5 is given in Figure 4.3.2.

For the (·, ·)Hom5-orthonormalized set of polynomials we find the following 11 monomials:

M0(4) :
√

5
384

(1x4
1x

0
2x

1
3 − 2x2

1x
0
2x

3
3 + 1

5
x0

1x
0
2x

5
3),

1√
6
(1x2

1x
2
2x

1
3 − 1

3
x0

1x
0
2x

3
3 − 1

12
x2

1x
0
2x

3
3 + 1

24
x0

1x
0
2x

5
3

−1
8
x4

1x
0
2x

1
3),

1√
63

(1x0
1x

4
2x

1
3 − 3

2
x0

1x
2
2x

3
3 + 1

8
x0

1x
0
2x

5
3 + 1

8
x4

1x
0
2x

1
3

+1
4
x2

1x
0
2x

3
3 − 3

2
x1

1x
2
2x

1
3),

M1(4) : 1√
12

(1 · x3
1x

1
2x

1
3 − 1x1

1x
1
2x

3
3),

1√
9
(1x1

1x
3
2x

1
3 − 1

2
x1

1x
1
2x

3
3 − 1

2
x3

1x
1
2x

1
3),

M0(5) : 1√
1920

(1x5
1x

0
2x

0
3 − 10x3

1x
0
2x

2
3 + 5x1x

0
2x

4
3),

1√
54

(1x3
1x

2
2x

0
3 − 3x1

1x
2
2x

2
3 + 1

4
x3

1x
0
2x

2
3

+1
4
x3

1x
0
2x

4
3 + 3

8
x1

1x
0
2x

4
3 − 1

8
x5

1x
0
2x

0
3),

1√
63

(1x1
1x

4
2x

0
3 − 3

2
x1

1x
2
2x

2
3 + 1

8
x1

1x
0
2x

4
3

+1
8
x5

1x
0
2x

0
3 + 1

4
x3

1x
0
2x

2
3 − 3

2
x3

1x
2
1x

0
3),

M1(5) : 1√
192

(1x4
1x

1
2x

0
3 − 6x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3),

1√
36

(1x2
1x

3
3x

0
3 − 1x0

1x
3
2x

2
3 + 1

2
x0

1x
1
2x

4
3),

1√
945

(
1x0

1x
5
2x

0
3 − 5x0

1x
3
2x

2
3 + 15

8
x0

2x
1
2x

4
3

+15
8
x4

1x
1
2x

0
3 + 15

4
x2

1x
1
2x

2
3 − 5x2

1x
3
2x

0
3

)
.

An illustration of members of the (·, ·)Homn
-orthonormalized system of homogeneous har-

monic polynomials for degree 5 is given in Figure 4.3.3.
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4.3.3 Generation of Scalar Spherical Harmonics and Scalar Outer

Harmonics

One more step is needed to produce a (·, ·)L2(Ω)-orthonormalized set of polynomials from the

above given polynomials. By multiplying the (·, ·)Homn
-orthonormalized system with the

normalizing factor
√

µn, where µn is defined by (3.1.13) we obtain a (·, ·)L2(Ω)-orthonormalized

set of polynomials. Therefore, let {Hn,m}m=1,...,2n+1 be a set of (·, ·)Homn
-orthonormalized

polynomials in Harmn. Then, with x = |x|ξ, ξ ∈ Ω and µn defined by (3.1.13) the system

{Yn,m}m=1,...,2n+1 with

Yn,m(ξ) =
√

µnHn,m

(
x

|x|

)

, x ∈ Ω, (4.3.71)

is a set of (·, ·)L2(Ω)-orthonormalized polynomials in Harmn.

In our above example, for the case of n = 5, we obtain µn = 10395
4π

. An illustration of

members of the (·, ·)L2(Ω)-orthonormalized system of homogeneous harmonic polynomials

for degree 5 is given in Figure 4.3.4.

Let us now provide further numerical examples for the generation of the extension of spher-

ical harmonics to arbitrary spheres and finally to scalar outer harmonics.

The extension to an arbitrary sphere with radius R can be computed (due to (4.1.1)) by

multiplying each member of the (·, ·)L2(Ω)-orthonormalized system of homogeneous har-

monic polynomials, given by (4.3.71), with 1
R
, i.e., for R > 0,

Y R
n,m(x) =

1

R
Yn,m

(
x

|x|

)

, x ∈ ΩR. (4.3.72)

An example is given in Figure 4.3.5 for the extension from a sphere with R1 = 1 to a

sphere with R2 = 1.3 (only a part of the spherical harmonics is extended for a better

visualization).

We proceed in a similar way to obtain scalar outer harmonics (4.2.1). Therefore we use the

result of the extended set of (·, ·)L2(Ω)-orthonormalized polynomials, given by (4.3.72) and

multiply with the factor
(

R
|x|

)n+1

, x ∈ R3 \{0}, to obtain the set of scalar outer harmonics

{HR
n,m} n∈N0;

m=1,...,2n+1
, i.e.,

HR
n,m(x) =

(
R

|x|

)n+1

Y R
n,m(x), x ∈ R3 \ {0}.
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Figure 4.3.1: Illustration of the (·, ·)Hom3−orthonormalized system of homogeneous har-

monic polynomials on the unit sphere.

Figure 4.3.6 provides some examples of scalar outer harmonics on a regular surface for

degree 5 and order m = 5, 6, 11.
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Figure 4.3.2: Members of the system of homogeneous harmonic polynomials for degree 5

and order m = 1, . . . , 11.
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Figure 4.3.3: Members of the (·, ·)Homn
−orthonormalized system of homogeneous harmonic

polynomials for degree 5 and order m = 1, . . . , 11.
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Figure 4.3.4: Members of the (·, ·)L2(Ω)−orthonormalized system of homogeneous harmonic

polynomials for degree 5 and order m = 1, . . . , 11.
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Figure 4.3.5: Illustration where scalar spherical harmonics have been extended for a part

of the sphere (for better illustration) from R1 = 1 to R2 = 1.3 for degree 5 and order

m = 6, 9, 11 (from top to bottom).
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Figure 4.3.6: Illustration of scalar outer harmonics where a part of the sphere has been

replaced by a regular surface (for better illustration) for degree 5 and order m = 5, 6, 11

(from top to bottom).
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4.4 Exact Generation of Vector Spherical Harmonics

and Vector Outer Harmonics

In what follows we present a way for determining l2(Ω)−orthonormal systems of vector

spherical harmonics in terms of cartesian coordinates, avoiding problems arising from sin-

gularities of a spherical coordinate system.

Let Hn,m, m = 1, . . . , 2n + 1, be a Homn−orthonormal system of homogeneous harmonic

polynomials of degree n, represented by

Hn,m(x) =
∑

[α]=n

Cm
α xα (4.4.1)

with known real members Cm
α (as defined in (3.1.1)).

Then we know that Yn,m(ξ) =
√

µnHn,m(ξ), ξ ∈ Ω, µn given by (3.1.13) constitutes an

L2(Ω)-orthogonal system of spherical harmonics. Therefore, via the well-known procedure,

by letting

y(i)
n,m = (µ(i)

n )1/2o(i)Yn,m; m = 1, . . . , 2n + 1, i ∈ 1, 2, 3,

an l2(Ω)-orthonormal system of vector spherical harmonics of kind i is found.

More explicitly,

y(1)
n,m(ξ) =

√
µn h(1)

n,m(x)||x|=1 =
√

µn h(1)
n,m(ξ),

y(2)
n,m(ξ) =

√
µn(n(n + 1))−1/2 h(2)

n,m(x)||x|=1 =
√

µn(n(n + 1))−1/2 h(2)
n,m(ξ),

y(3)
n,m(ξ) =

√
µn(n(n + 1))−1/2 h(3)

n,m(x)||x|=1 =
√

µn(n(n + 1))−1/2 h(3)
n,m(ξ),

where

h(1)
n,m(x) = Hn,m(x)x,

h(2)
n,m(x) = x2∇xHn,m(x) − nHn,m(x)x,

h(3)
n,m(x) = x ∧∇xHn,m(x),

with x = rξ, r = |x|, ξ ∈ Ω, and ∇∗ = limr→1(r∇x − x ∂
∂r

). Our purpose is to determine

the vector spherical harmonics with exact integer arithmetic. We base our considerations

on the representation

h(i)
n,m(x) =

3∑

k=1

εk




∑

[α]=li

Di,k
α;mxα



 , (4.4.2)
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where we have used the abbreviations l1 = l2 = n + 1, l3 = n. Using the already known

identities (3.3.17)-(3.3.19),

y(1)
n,m(ξ) =

√
µn

µ
(1)
n

1

2n + 1
(k(1)

n + k(2)
n )Hn,m(rξ)|r=1, (4.4.3)

y(2)
n,m(ξ) =

√
µn

µ
(2)
n

1

2n + 1
(−nk(1)

n + (n + 1)k(2)
n )Hn,m(rξ)|r=1, (4.4.4)

y(3)
n,m(ξ) =

√
µn

µ
(3)
n

k(3)
n Hn,m(rξ)|r=1 (4.4.5)

we find by observing the definition of the k
(i)
n -operators (see Definition 3.3.3)

y(1)
n,m(ξ) =

√
µn

µ
(1)
n

∑

[α]=n

Cm
α






ξα1+1
1 ξα2

2 ξα3
3

ξα1
1 ξα2+1

2 ξα3
3

ξα1
1 ξα2

2 ξα3+1
3




 ,

y(2)
n,m(ξ) =

√
µn

µ
(2)
n

∑

[α]=n

Cm
α






α1ξ
α1−1
1 ξα2

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3) − nξα1+1
1 ξα2

2 ξα3
3

α2ξ
α1
1 ξα2−1

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3) − nξα1
1 ξα2+1

2 ξα3
3

α3ξ
α1
1 ξα2

2 ξα3−1
3 (ξ2

1 + ξ2
2 + ξ2

3) − nξα1
1 ξα2

2 ξα3+1
3




 ,

y(3)
n,m(ξ) =

√
µn

µ
(3)
n

∑

[α]=n

Cm
α






α3ξ
α1
1 ξα2+1

2 ξα3−1
3 − α2ξ

α1
1 ξα2−1

2 ξα3+1
3

α1ξ
α1−1
1 ξα2

2 ξα3+1
3 − α3ξ

α1+1
1 ξα2

2 ξα3−1
3

α2ξ
α1+1
1 ξα2−1

2 ξα3
3 − α1ξ

α1−1
1 ξα2+1

2 ξα3
3




 .

Hence, the coefficients Di,k
β,m occuring in Equation (4.4.2) are found. We organize their

computation by a matrix-matrix multiplication:

Di,k
β;m =

√
µn

µ
(i)
n

∑

[α]=n

Cm
α M i,k

βα;m

for i, k = 1, 2, 3; m = 1, . . . , 2n + 1; [β] = n + 1 in the cases i = 1, 2 respectively [β] = n if

i = 3. The matrices mi,k = (M i,k
β,α) have

(
n+2

2

)
rows and

(
n
2

)
columns in the cases i = 1, 2

and they have
(

n
2

)
rows and columns if i = 3. It is easy to develop that

M1,1
βα;m =

{

1, if β − α = (1, 0, 0)T ,

0, otherwise,

M1,2
βα;m =

{

1, if β − α = (0, 1, 0)T ,

0, otherwise,
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M1,3
βα;m =

{

1, if β − α = (0, 0, 1)T ,

0, otherwise,

M2,1
βα;m =







α1 − n, if β − α = (1, 0, 0)T ,

α1, if β − α ∈ {(−1, 2, 0)T , (−1, 0, 2)T},
0, otherwise,

M2,2
βα;m =







α2 − n, if β − α = (0, 1, 0)T ,

α2, if β − α ∈ {(2,−1, 0)T , (0,−1, 2)T},
0, otherwise,

M2,3
βα;m =







α3 − n, if β − α = (0, 0, 1)T ,

α3, if β − α = {(2, 0,−1)T , (0, 2,−1)T},
0, otherwise,

M3,1
βα;m =







α3, if β − α = (0, 1,−1)T ,

−α2, if β − α = (0,−1, 1)T ,

0, otherwise,

M3,2
βα;m =







α1, if β − α = (−1, 0, 1)T ,

−α3, if β − α = (1, 0,−1)T ,

0, otherwise,

M3,3
βα;m =







α2, if β − α = (1,−1, 0)T ,

−α1, if β − α = (−1, 1, 0)T ,

0, otherwise.

As a starting point for our example, we consider for n = 3 the (·, ·)Hom3-orthonormal

system given by (4.3.44)-(4.3.50) of homogeneous harmonic polynomials of degree 3 (see

Figure 4.3.1). Then we obtain with
√

µn =
√

105
4π

y
(1)
3,1(ξ) =

√

105

4π

1√
24

(ξ1
3 − 3ξ1ξ2

2)ξ,

y
(1)
3,2(ξ) =

√

105

4π
ξ1ξ2ξ3ξ,

y
(1)
3,3(ξ) =

√

105

4π

1√
40

(ξ1
3 + ξ1ξ2

2 − 4ξ1ξ3
2)ξ,

y
(1)
3,4(ξ) =

√

105

4π

1√
24

(3ξ1
2ξ2 − ξ2

3)ξ,
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y
(1)
3,5(ξ) =

√

105

4π

1√
4
(ξ1

2ξ3 − ξ2
2ξ3)ξ,

y
(1)
3,6(ξ) =

√

105

4π

1√
40

(ξ1
2ξ2 + ξ2

3 − 4ξ2ξ
2
3)ξ,

y
(1)
3,7(ξ) =

√

105

4π

1√
60

(3ξ1
2ξ3 + 3ξ2

2ξ3 − 2ξ3
3)ξ,

and

y
(2)
3,1(ξ) =

√

105

28π

1√
24






−3ξ1
2(ξ1

2 − 3ξ2
2) + 3(ξ1

2 − ξ2
2)

−3ξ1ξ2(ξ1
2 − 3ξ2

2) − 6ξ1ξ2

−3ξ1ξ3(ξ1
2 − 3ξ2

2)




 ,

y
(2)
3,2(ξ) =

√

105

28π






−3ξ1
2ξ2ξ3 + ξ2ξ3

−3ξ1ξ2
2ξ3 + ξ1ξ3

−3ξ1ξ2ξ3
2 + ξ1ξ2




 ,

y
(2)
3,3(ξ) =

√

105

28π

1√
40






−3ξ1
2(1 − 5ξ3

2) + 3ξ1
2 + ξ2

2 − 4ξ3
2

−3ξ1ξ2(1 − 5ξ3
2) + 2ξ1ξ2

−3ξ1ξ3(1 − 5ξ3
2) − 8ξ1ξ3




 ,

y
(2)
3,4(ξ) =

√

105

28π

1√
24






−3ξ1ξ2(3ξ1
2 − ξ2

2) + 6ξ1ξ2

−3ξ2
2(3ξ1

2 − ξ2
2) + 3ξ1

2 − 3ξ2
2

−3ξ2ξ3(3ξ1
2 − ξ2

2)




 ,

y
(2)
3,5(ξ) =

√

105

28π

1√
4






−3ξ1ξ3(ξ1
2 − ξ2

2) + 2ξ1ξ3

−3ξ2ξ3(ξ1
2 − ξ2

2) − 2ξ2ξ3

−3ξ3(ξ1
2 − ξ2

2) + ξ1
2 − ξ2

2




 ,

y
(2)
3,6(ξ) =

√

105

28π

1√
40






−3ξ1ξ2(1 − 5ξ2
3) + 2ξ1ξ2

−3ξ2
2(1 − 5ξ2

3) + ξ1
2 + 3ξ2

2 − 4ξ3
2

−3ξ2ξ3(1 − 5ξ2
3) − 8ξ2ξ3




 ,

y
(2)
3,7(ξ) =

√

105

28π

1√
60






−3ξ1ξ3(3 − 5ξ3
2) + 6ξ1ξ3

−3ξ2ξ3(3 − 5ξ3
2) + 6ξ2ξ3

−3ξ3
2(3 − 5ξ3

2) + 3(1 − 3ξ3
2)




 ,

and

y
(3)
3,1(ξ) =

√

105

28π

1√
24

ξ ∧






3(ξ1
2 − ξ2

2)

−6ξ1ξ2

0




 ,
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y
(3)
3,2(ξ) =

√

105

28π
ξ ∧






ξ2ξ3

ξ1ξ3

ξ1ξ2




 ,

y
(3)
3,3(ξ) =

√

105

28π

1√
40

ξ ∧






3ξ1
2 + ξ2

2 − 4ξ3
2

2ξ1ξ2

−8ξ1ξ3




 ,

y
(3)
3,4(ξ) =

√

105

28π

1√
24

ξ ∧






6ξ1ξ2

3(ξ1
2 − ξ2

2)

0




 ,

y
(3)
3,5(ξ) =

√

105

28π

1√
4
ξ ∧






2ξ1ξ3

−2ξ2ξ3

ξ1
2 − ξ2

2




 ,

y
(3)
3,6(ξ) =

√

105

28π

1√
40

ξ ∧






2ξ1ξ2

ξ1
2 + 3ξ2

2 − 4ξ3
2

−8ξ2ξ3




 ,

y
(3)
3,7(ξ) =

√

105

28π

1√
60

ξ ∧






6ξ1ξ3

6ξ2ξ3

3(1 − 3ξ3
2)




 .

The set of vector spherical harmonics y
(i)
3,m, i = 1, 2, 3; m = 1, . . . , 2n + 1 is illustrated

in Figures 4.4.1- 4.4.2. Further, some examples of the vector spherical harmonics y
(i)
10,15,

i = 1, 2, 3 are shown in Figures 4.4.3- 4.4.5. The vector spherical harmonics of type 1

represent a radial field while the vector spherical harmonics of type 2 and 3 are tangential

fields. These properties can also be seen in Figures 4.4.3- 4.4.5.

To derive the system of vector spherical harmonics {u(i)
n,m} i=1,2,3;n∈N0i

;

m=1,...,2n+1

we proceed in the

same manner. The system of (Edmonds-)vector harmonics

u(i)
n,m = (ν(i)

n )−1/2k(i)
n Yn,m, (4.4.6)

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, forms an l2(Ω)−orthonormal system of vector
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spherical harmonics of kind i. Therefore we can write

u(1)
n,m(ξ) =

√
µn((n + 1)(2n + 1))−1/2 h(1)

n,m(x)||x|=1 =
√

µn((n + 1)(2n + 1))−1/2 h(1)
n,m(ξ),

u(2)
n,m(ξ) =

√
µn(n(2n + 1))−1/2 h(2)

n,m(x)||x|=1 =
√

µn(n(2n + 1))−1/2 h(2)
n,m(ξ),

u(3)
n,m(ξ) =

√
µn(n(n + 1))−1/2 h(3)

n,m(x)||x|=1 =
√

µn(n(n + 1))−1/2 h(3)
n,m(ξ),

where

h(1)
n,m(x) = ((2n + 1)x − |x|2∇x)Hn,m(x),

h(2)
n,m(x) = ∇xHn,m(x),

h(3)
n,m(x) = x ∧∇xHn,m(x),

with x = rξ, r = |x|, ξ ∈ Ω, and ∇∗ = limr→1(r∇x − x ∂
∂r

). In the same way as before our

purpose is to determine the vector spherical harmonics with exact integer arithmetic. We

start again with the representation

h(i)
n,m(x) =

3∑

k=1

εk




∑

[α]=li

Di,k
α;mxα



 , (4.4.7)

where we have used the abbreviations l1 = n + 1, l2 = n − 1, l3 = n. For the vector

harmonics we derive

u(1)
n,m(ξ) =

√
µn

ν
(1)
n

k(1)
n Hn,m(rξ)|r=1, (4.4.8)

u(2)
n,m(ξ) =

√
µn

ν
(2)
n

k(2)
n Hn,m(rξ)|r=1, (4.4.9)

u(3)
n,m(ξ) =

√
µn

ν
(3)
n

k(3)
n Hn,m(rξ)|r=1 (4.4.10)

we find by observing the definition of the k
(i)
n -operators (see Definition 3.3.3)

u(1)
n,m(ξ) =

√
µn

ν
(1)
n

∑

[α]=n

Cm
α






(2n + 1)ξα1+1
1 ξα2

2 ξα3
3 − α1ξ

α1−1
1 ξα2

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3)

(2n + 1)ξα1
1 ξα2+1

2 ξα3
3 − α2ξ

α1
1 ξα2−1

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3)

(2n + 1)ξα1
1 ξα2

2 ξα3+1
3 − α3ξ

α1
1 ξα2

2 ξα3−1
3 (ξ2

1 + ξ2
2 + ξ2

3)




 ,

u(2)
n,m(ξ) =

√
µn

ν
(2)
n

∑

[α]=n

Cm
α






α1ξ
α1−1
1 ξα2

2 ξα3
3

α2ξ
α1
1 ξα2−1

2 ξα3
3

α3ξ
α1
1 ξα2

2 ξα3−1
3




 ,

u(3)
n,m(ξ) =

√
µn

µ
(3)
n

∑

[α]=n

Cm
α






α3ξ
α1
1 ξα2+1

2 ξα3−1
3 − α2ξ

α1
1 ξα2−1

2 ξα3+1
3

α1ξ
α1−1
1 ξα2

2 ξα3+1
3 − α3ξ

α1+1
1 ξα2

2 ξα3−1
3

α2ξ
α1+1
1 ξα2−1

2 ξα3
3 − α1ξ

α1−1
1 ξα1+1

2 ξα3
3




 .
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The determination of the coefficients Di,k
β,m follows immediately. We organize their compu-

tation again by a matrix-matrix multiplication:

Di,k
β;m =

√
µn

µ
(i)
n

∑

[α]=n

Cm
α M i,k

βα;m

for i, k = 1, 2, 3; m = 1, . . . , 2n + 1,

[β] =







n + 1, for i = 1,

n − 1, for i = 2,

n, for i = 3.

The matrices mi,k = (M i,k
β,α) have

(
n+2

2

)
rows and

(
n
2

)
columns in the cases i = 1 and they

have
(

n
2

)
rows and

(
n
2

)
columns for i = 2, 3. We get the following representation:

M1,1
βα;m =







(2n + 1) − α1, if β − α = (1, 0, 0)T ,

−α1, if β − α ∈ {(−1, 2, 0)T , (−1, 0, 2)T},
0, otherwise,

M1,2
βα;m =







(2n + 1) − α2, if β − α = (0, 1, 0)T ,

−α2, if β − α ∈ {(2,−1, 0)T , (0,−1, 2)T},
0, otherwise,

M1,3
βα;m =







(2n + 1) − α3, if β − α = (0, 0, 1)T ,

−α3, if β − α ∈ {(2, 0,−1)T , (0, 2,−1)T},
0, otherwise,

M2,1
βα;m =

{

α1, if β − α = (−1, 0, 0)T ,

0, otherwise,

M2,2
βα;m =

{

α2, if β − α = (0,−1, 0)T ,

0, otherwise,

M2,3
βα;m =

{

α3, if β − α = (0, 0,−1)T ,

0, otherwise,

M3,1
βα;m =







α3, if β − α = (0, 1,−1)T ,

−α2, if β − α = (0,−1, 1)T ,

0, otherwise,
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M3,2
βα;m =







α1, if β − α = (−1, 0, 1)T ,

−α3, if β − α = (1, 0,−1)T ,

0, otherwise,

M3,3
βα;m =







α2, if β − α = (1,−1, 0)T ,

−α1, if β − α = (−1, 1, 0)T ,

0, otherwise.

We derive the vector harmonics from the scalar harmonics as given by Equation (4.3.44)-

(4.3.50) and obtain

u
(1)
3,1(ξ) =

√

105

4π

1√
24






7ξ1
2(ξ1

2 − 3ξ2
2) − 3(ξ1

2 − ξ2
2)

7ξ1ξ2(ξ1
2 − 3ξ2

2) + 6ξ1ξ2

7ξ1ξ3(ξ1
2 − 3ξ2

2)




 ,

u
(1)
3,2(ξ) =

√

105

4π






7ξ1
2ξ2ξ3 − ξ2ξ3

7ξ1ξ2
2ξ3 − ξ1ξ3

7ξ1ξ2ξ3
2 − ξ1ξ2




 ,

u
(1)
3,3(ξ) =

√

105

4π

1√
40






7ξ1
2(1 − 5ξ3

2) − 3ξ1
2 − ξ2

2 + 4ξ3
2

7ξ1ξ2(1 − 5ξ3
2) − 2ξ1ξ2

7ξ1ξ3(1 − 5ξ3
2) + 8ξ1ξ3




 ,

u
(1)
3,4(ξ) =

√

105

4π

1√
24






7ξ1ξ2(3ξ1
2 − ξ2

2) − 6ξ1ξ2

7ξ2
2(3ξ1

2 − ξ2
2) − 3ξ1

2 + 3ξ2
2

7ξ2ξ3(3ξ1
2 + ξ2

2)




 ,

u
(1)
3,5(ξ) =

√

105

4π

1√
4






7ξ1ξ3(ξ1
2 − ξ2

2) − 2ξ1ξ3

7ξ2ξ3(ξ1
2 − ξ2

2) + 2ξ2ξ3

7ξ3(ξ1
2 − ξ2

2) − ξ1
2 + ξ2

2




 ,

u
(1)
3,6(ξ) =

√

105

4π

1√
40






7ξ1ξ2(1 − 5ξ2
3) − 2ξ1ξ2

7ξ2
2(1 − 5ξ2

3) − ξ1
2 − 3ξ2

2 + 4ξ3
2

7ξ2ξ3(1 − 5ξ2
3) + 8ξ2ξ3




 ,

u
(1)
3,7(ξ) =

√

105

4π

1√
60






7ξ1ξ3(3 − 5ξ3
2) − 6ξ1ξ3

7ξ2ξ3(3 − 5ξ3
2) − 6ξ2ξ3

7ξ3
2(3 − 5ξ3

2) − 3(1 − 3ξ3
2)




 ,



4.4 Exact Generation of Vector Spherical Harmonics and Vector Outer Harmonics 97

and

u
(2)
3,1(ξ) =

√

105

28π

1√
24






3(ξ1
2 − ξ2

2)

6ξ1ξ2

0




 ,

u
(2)
3,2(ξ) =

√

105

28π






ξ2ξ3

ξ1ξ3

ξ1ξ2




 ,

u
(2)
3,3(ξ) =

√

105

28π

1√
40






3ξ2
1 + ξ2

2 − 4ξ3
2

2ξ1ξ2

−8ξ1ξ3




 ,

u
(2)
3,4(ξ) =

√

105

28π

1√
24






6ξ1ξ2

3(ξ1
2 − ξ2

2)

0




 ,

u
(2)
3,5(ξ) =

√

105

28π

1√
4






2ξ1ξ3

−2ξ2ξ3

ξ1
2 − ξ2

2




 ,

u
(2)
3,6(ξ) =

√

105

28π

1√
40






2ξ1ξ2

ξ1
2 + 3ξ2

2 − 4ξ3
2

−8ξ2ξ3




 ,

u
(2)
3,7(ξ) =

√

105

28π

1√
60






6ξ1ξ3

6ξ2ξ3

3(1 − 3ξ2
3)




 .

The vector spherical harmonics u
(i)
3,m for i = 1, 2; m = 1 . . . , 2n + 1, are illustrated in Fig-

ures 4.4.6- 4.4.7. Figures 4.4.8- 4.4.9 show vector spherical harmonics u
(i)
10,15 for i = 1, 2.

The functions of type 3 are omitted because they are equivalent to y
(3)
10,15 as shown in Fig-

ure 4.4.5. Each field u
(i)
n,m, i = 1, 2, is a composition of vector spherical harmonics y

(i)
n,m.

Therefore the fields u
(i)
n,m of type i = 1 and i = 2 have radial and tangential contributions.

Thus, we do not have any more the separation like in the case of y
(i)
n,m, i = 1, 2, 3 into a

radial and tangential part. But still u
(3)
n,m is a tangential field. In Figures 4.4.10-4.4.13

these properties are illustrated.

With the generated set of vector spherical harmonics we can proceed to extend them to
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arbitrary spheres and finally obtain vector outer harmonics.

The extension from a sphere with R1 = 1 to a sphere with R2 = 1.3 is shown for u
(3)
5,6, u

(1)
5,9

and u
(3)
5,9 in Figure 4.4.14 .

To get the vector outer harmonics we see with (4.2.5) that we have to distinguish the

factors for the different types i = 1, 2, 3, where the factor is given by
(

R
|x|

)n−2+li
with

li = i + 3(1 − 0i), i.e.,

h(i),R
n,m (x) =

1

R

(
R

|x|

)n−2+li

u(i)
n,m

(
x

|x|

)

, (4.4.11)

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3.

Figures 4.4.15 and 4.4.16 show examples for h
(i),R
5,3 , i = 1, 3 and h

(i),R
5,11 , i = 1, 3, respectively.
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Figure 4.4.1: Vector spherical harmonics y
(i)
3,m for i = 1, 2, 3, m = 1, 2, 3, 4. The columns

represent the type i = 1, 2, 3 and the rows the order m = 1, 2, 3, 4. The colorbar represents

the absolute value of the vectors.
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Figure 4.4.2: Vector spherical harmonics y
(i)
3,m for i = 1, 2, 3, m = 5, 6, 7. The columns

represent the type i = 1, 2, 3 and the rows the order m = 5, 6, 7. The colorbar represents

the absolute value of the vectors.
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Figure 4.4.3: Vector spherical harmonic y
(1)
10,15 on the unit sphere Ω. At the right a close-up

view around the pole area is provided.

Figure 4.4.4: Vector spherical harmonic y
(2)
10,15 on the unit sphere Ω. At the right a close-up

view around the pole area is provided.
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Figure 4.4.5: Vector spherical harmonic y
(3)
10,15 on the unit sphere Ω. At the right a close-up

view around the pole area is provided.
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Figure 4.4.6: Vector spherical harmonics u
(i)
3,m for i = 1, 2, 3, m = 1, 2, 3, 4. The columns

represent the type i = 1, 2, 3 and the rows the order m = 1, 2, 3, 4. The colorbar represents

the absolute value of the vectors.
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Figure 4.4.7: Vector spherical harmonics u
(i)
3,m for i = 1, 2, 3, m = 5, 6, 7. The columns

represent the type i = 1, 2, 3 and the rows the order m = 5, 6, 7. The colorbar represents

the absolute value of the vectors.
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Figure 4.4.8: Vector spherical harmonic u
(1)
10,15 on the unit sphere Ω. At the right a close-up

view around the pole area is provided.

Figure 4.4.9: Vector spherical harmonic u
(2)
10,15 on the unit sphere Ω. At the right a close-up

view around the pole area is provided.
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Figure 4.4.10: Zoomed section on the polar region of the unit sphere Ω with calculated

values of u
(3)
5,1. The arrow inside the smallest circle (pole) illustrates the non singularity of

the calculated vector spherical harmonic.

Figure 4.4.11: Zoomed section on the polar region of the unit sphere Ω with calculated

values of u
(1)
29,5. The absolute value of the vectors is colored and ranges between 0 and

0.8202. Because it is of type one the direction of the vector field is neither pure tangential

nor normal.
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Figure 4.4.12: Zoomed part of a vector spherical harmonic u
(2)
29,5 on the unit sphere Ω. The

absolute value of the vectors is colored and ranges between 0 and 0.8064. Because it is of

type two the direction of the vector field is neither pure tangential nor normal.

Figure 4.4.13: Zoomed section on the polar region of the unit sphere Ω with calculated

values of u
(3)
29,5. The absolute value of the vectors is colored and ranges between 0 and 0.751.

Because it is of type three the direction of the vector field is pure tangential.
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Figure 4.4.14: Illustration of the partly extension of vector spherical harmonics u
(3),R
5,6 , u

(1),R
5,9

and u
(3),R
5,9 (from top to bottom) from a sphere R1 = 1 to a sphere with R2 = 1.3.
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Figure 4.4.15: Illustration of vector outer harmonics h
(i),R
5,3 , i = 1, 3, by replacing a part of

the unit sphere by a regular surface (from top to bottom).
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Figure 4.4.16: Illustration of vector outer harmonics h
(i),R
5,11 , i = 1, 3, by replacing a part of

the unit sphere by a regular surface (from top to bottom).



Chapter 5

Approximation of Vector Functions

on Regular Surfaces

In this chapter, first, a Fourier representation of vector outer harmonics will be used for the

approximation of continuous vector fields on regular surfaces (e.g., geoscientifically relevant

surfaces like ellipsoid, geoid, real Earth’s surface). This concept is characterized by the fact

that an integral over a sphere, inside the regular surface, will be expressed by approximate

formulae involving data points on a regular surface Σ (i.e., not on the sphere ΩR). In

other words our approach to approximate continuous vector fields on regular surfaces in

terms of vector outer harmonics leads to a new class of approximate integration formulae,

where the nodal points are not taken on the reference area of integration. This, of course,

requires the solution of a linear system in terms of vector outer harmonics relating the

integral over a sphere ΩR, with Ωint
R ⊂ Σint and dist(ΩR, Σ) > 0, i.e., the so called Runge

sphere, to a (cubature) formula on a regular surface Σ. Second, the Fourier approach leads

us to a minimum interpolation procedure of vector fields on a regular surface Σ based on

a finite set of discretely given vector data on Σ. Essential tool is the reproducing kernel

structure in the reference space h. The consideration closely parallels the interpolation

method proposed by [13]. Referring to Figure 1.0.1 we deal in this chapter with step (4)

and (5).

We begin our considerations with preparatory material such as the reference space h for

vector fields harmonic in the outer space of the Runge sphere ΩR. Similar approaches for

scalar fields can be found, e.g., in [18], [21], and [29].
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5.1 Reproducing Kernel Structure of the Reference

Space h

In what follows we introduce the reference space h in which the approximation of vector

fields on regular surfaces will be done (see, e.g., approach [13]).

Let f be a field of class l2(Ω). Suppose that Σ is a regular surface satisfying (2.0.33). Then

it can easily be seen that the sum

v(x) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(f, h(i),R
n,m )l2(Ω)h

(i),R
n,m (x)

is absolutely and uniformly convergent for all x ∈ Σext
inf . The linear space h defined by

h = {v | v =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(f, h(i),R
n,m )l2(Ω)h

(i),R
n,m (x)|

Σext
inf

, f ∈ l2(Ω)} (5.1.1)

is a separable Hilbert space with respect to the inner space (·, ·)h corresponding to the

norm

‖v‖h = ‖f‖l2(ΩR) =





∫

ΩR

∣
∣
∣
∣
∣

3∑

i=1

(f(x) · εi)

∣
∣
∣
∣
∣

2

dω(x)





1/2

(5.1.2)

=

(∫

ΩR

f(x) · f(x) dω(x)

)1/2

.

Theorem 5.1.1. The space h defined by (5.1.1) with the norm (5.1.2) is a Hilbert space.

The kernel k(·, ·) given by

k(x, y) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

h(i),R
n,m (x) ⊗ h(i),R

n,m (y), x, y ∈ Σext
inf , (5.1.3)

is a reproducing kernel for h in the sense that

(i) for fixed x ∈ Σext
inf each vector field k(·, x)εi, i = 1, 2, 3, given by

k(·, x)εi|
Σext

inf

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(
h(i),R

n,m (x) · εi
)
h(i),R

n,m |
Σext

inf

is an element of h.
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(ii) for every v ∈ h and every x ∈ Σext
inf , the reproducing property

v(x) =
3∑

i=1

(
k(·, x)εi, v

)

h
εi

is valid, so that

v(x)εi =
(
k(·, x)εi, v

)

h
, i = 1, 2, 3. (5.1.4)

Remark 5.1.1. By application of the Cauchy-Schwarz inequality, we obtain

|v(x)εi| ≤
(
εi · k(x, x)εi

)1/2 ‖v‖h.

This means that

|v(x)| ≤
(

3∑

i=1

εi · k(x, x)εi

)1/2

‖v‖h

for every x ∈ Σext
inf and all v ∈ h. Thus, we are able to deduce that there exists a positive

constant A (dependent on Σ, but independent of v) such that

sup
x∈Σext

|v(x)| ≤ A‖v‖h.

Consider the linear space spanned by the vector fields h
(i),R
n,m , n ∈ N0i

; m = 1, . . . , 2n + 1;

i = 1, 2, 3,

h0,...,a = {v | v =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(
f, h(i),R

n,m

)

l2(ΩR)
h(i),R

n,m , f ∈ l2(ΩR)}

with ai being defined in connection with Lemma 3.3.12 by

ai =







a − 1, if i = 1,

a + 1, if i = 2,

a, if i = 3

(5.1.5)

for a > 1.

Of course, h0,...,a possesses the dimension

M = 3(a + 1)2, a > 1.
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Moreover, h0,...,a, a > 1, is a M-dimensional Hilbert space equipped with the inner product

(·, ·)h0,...,a
, given by

(v1, v2)h0,...,a
=

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(
f1, h

(i),R
n,m

)

l2(ΩR)
(f2, h

(i),R
n,m )l2(ΩR), f1, f2 ∈ l2(ΩR),

and the reproducing kernel

kh0,...,a
(x, y) =

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

h(i),R
n,m (x) ⊗ h(i),R

n,m (y), x, y ∈ Σext
inf . (5.1.6)

The tensor kernels (5.1.6) are related to the (Morse-Feshbach)-vector spherical harmonics

y
(i)
n,m, n ∈ N0i

, m = 1, . . . , 2n + 1, i = 1, 2, 3, in the following way:

Corollary 5.1.2. Let y
(i)
n,m, n ∈ N0i

, m = 1, . . . , 2n + 1, i = 1, 2, 3, a > 1, be vector

spherical harmonics as given by Theorem 3.3.1 then

3∑

i=1

k
(i)
h0,...,a

(x, y) =

R

|x||y|
1

3

(

y(1)
n,m(ξ) ⊗ y(1)

n,m(η) +
√

2(y(1)
n,m(ξ) ⊗ y(2)

n,m(η) + y(2)
n,m(ξ) ⊗ y(1)

n,m(η)) +

2y(3)
n,m(ξ) ⊗ y(3)

n,m(η)
)

+

3∑

i=1

a∑

n=1

2n+1∑

m=1

R(i)
n y(i)

n,m(ξ) ⊗ y(i)
n,m(η) + R(1,2)

n

(
y(1)

n,m(ξ) ⊗ y(2)
n,m(η) + y(2)

n,m(ξ) ⊗ y(1)
n,m(η)

)
.

where

R(1)
n =

(
R

|x||y|

)n+1(
(2n + 1)2 − 2

(2n + 1)2 − 4

)

,

R(2)
n =

(
R

|x||y|

)n+1(
(2n + 1)2 − 6

(2n + 1)2 − 4

)

,

R(3)
n =

(
R

|x||y|

)n+1

,

R(1,2)
n =

(
R

|x||y|

)n+1
(√

(2n + 1)2(n + 1)(n + 2) −
√

(2n + 3)2n(n − 1)

(2n + 1)2 − 4

)

.

Proof. We calculate the kernel for each pair of i, i = 1, 2, 3, using the representation of

outer harmonics in terms of (Edmonds-)vector spherical harmonics (see (4.2.5)) and by



5.1 Reproducing Kernel Structure of the Reference Space h 115

substituting these vectors by the (Morse-Feshbach)-vector spherical harmonics as given by

(3.3.20). We set x = |x|ξ and y = |y|η, ξ, η ∈ Ω obtaining the following expressions:

k
(1)
h0,...,a

(x, y) =

a1∑

n=0

2n+1∑

m=1

h(1)
n,m(x) ⊗ h(1)

n,m(y)

=
a∑

n=1

2n+1∑

m=1

(
R

|x||y|

)n+1
[

n

2n − 1
y(1)

n,m(ξ) ⊗ y(1)
n,m(η)−

√

n(n − 1)

2n − 1

(
y(1)

n,m(ξ) ⊗ y(2)
n,m(η) + y(2)

n,m(ξ) ⊗ y(1)
n,m(η)

)
+

n − 1

2n − 1
y(2)

n,m(ξ) ⊗ y(2)
n,m(η)

]

,

k
(2)
h0,...,a

(x, y) =

a2∑

n=1

2n+1∑

m=1

h(2)
n,m(x) ⊗ h(2)

n,m(y)

=
a∑

n=0

2n+1∑

m=1

(
R

|x||y|

)n+1
[

n + 1

2n + 3
y(1)

n,m(ξ) ⊗ y(1)
n,m(η)+

√

(n + 1)(n + 2)

2n + 3

(
y(1)

n,m(ξ) ⊗ y(2)
n,m(η) + y(2)

n,m(ξ) ⊗ y(1)
n,m(η)

)
+

n + 2

2n + 3
y(2)

n,m(ξ) ⊗ y(2)
n,m(η)

]

,

k
(3)
h0,...,a

(x, y) =

a3∑

n=1

2n+1∑

m=1

h(3)
n,m(x) ⊗ h(3)

n,m(y) =
a∑

n=1

2n+1∑

m=1

(
R

|x||y|

)n+1

y(3)
n,m(ξ) ⊗ y(3)

n,m(η).

Building the sum with the above presented kernels and splitting the sum for the type i = 2

into n = 0 and n = 1, . . . , a, a > 1, we obtain:

3∑

i=1

k
(i)
h0,...,a

(x, y) = k
(1)
h0,...,a

(x, y) + k
(2)
h0,...,a

(x, y) + k
(3)
h0,...,a

(x, y)

=
R

|x||y|
1

3

(

y(1)
n,m(ξ) ⊗ y(1)

n,m(η) +
√

2(y(1)
n,m(ξ) ⊗ y(2)

n,m(η) + y(2)
n,m(ξ) ⊗ y(1)

n,m(η)) +

2y(3)
n,m(ξ) ⊗ y(3)

n,m(η)
)

+
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a∑

n=1

2n+1∑

m=1

(
R

|x||y|

)n+1
[(

(2n + 1)2 − 2

(2n + 1)2 − 4

)

y(1)
n,m(ξ) ⊗ y(1)

n,m(η)+

(
(2n + 1)2 − 6

(2n + 1)2 − 4

)

y(2)
n,m(ξ) ⊗ y(2)

n,m(η) + y(3)
n,m(ξ) ⊗ y(3)

n,m(η)+

(√

(2n + 1)2(n + 1)(n + 2) −
√

(2n + 3)2n(n − 1)

(2n + 1)2 − 4

)

(
y(1)

n,m(ξ) ⊗ y(2)
n,m(η) + y(2)

n,m(ξ) ⊗ y(1)
n,m(η)

)

]

.

Denote by h⊥
0,...,a the orthogonal compliment of h0,...,a in h. The linear space with inner

product (·, ·)h⊥
0,...,a

defined by

(v1, v2)h⊥
0,...,a

=
3∑

i=1

∞∑

n=ai+1

2n+1∑

m=1

(f1, h
(i),R
n,m )l2(ΩR)(f2, h

(i),R
n,m )l2(ΩR), f1, f2 ∈ l2(ΩR),

and reproducing kernel

kh⊥
0,...,a

(x, y) =
3∑

i=1

∞∑

n=ai+1

2n+1∑

m=1

h(i),R
n,m (x) ⊗ h(i),R

n,m (y), x, y ∈ Σext
inf .

Hence, h is the orthogonal direct sum of h0,...,a and h⊥
0,...,a

h = h0,...,a ⊗ h⊥
0,...,a

with inner product

(v1, v2)h = (v1, v2)h0,...,a
+ (v1, v2)h⊥

0,...,a

and the reproducing kernel

k(x, y) = kh0,...,a
(x, y) + kh⊥

0,...,a
(x, y). (5.1.7)

For the representation of the kernel kh⊥
0,...,a

(x, y) considerations as proposed in [2] can be

taken into account.
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5.2 Fourier Representation of Vector Functions on

Regular Surfaces

In this chapter we are interested in Fourier representations of vector functions on regular

surfaces. Our work is based on the scalar case in [18, 21]. We already mentioned that the

set of all finite linear combinations of vector outer harmonics restricted to a regular surface

Σ is uniformly dense in the space c(0)(Σ). What follows is that the refernce space h|Σ is

also a uniformly dense subset of c(0)(Σ).

Suppose that from a continuous function v on a regular surface Σ a discrete set of function

values v(x1) = v1, . . . , v(xN) = vN , vi ∈ R3, i = 1, . . . , N , are available on the set of points

{x1, . . . , xN} ⊂ Σ. We are interested in the approximation of a continuous vector function

on a regular surface Σ corresponding to the scattered vector function values on the finite

set of discrete points on Σ.

The closure and completeness of vector outer harmonics in connection with Helly’s theo-

rem [37] shows that, corresponding to the continuous vector function v on Σ, there exists

a member u of class h|Σ in an (ε/2)−neighborhood, such that the values of u are con-

sistent with the function values of the continuous vector function v on Σ for the known

finite set of discrete points, i.e., u(xi) = vi = v(xi), i = 1, . . . , N . Moreover, this function

u of class h|Σ may be considered to be in (ε/2)−accuracy to a member u0,...,a of class

h0,...,a|Σ which can be supposed to be consistent with the known function values as well,

i.e., u0,...,a(xi) = vi = v(xi), i = 1, . . . , N . Thus, to any continuous vector function v on a

regular surface Σ, there exists in ε-accuracy a bandlimited vector function u0,...,a ∈ h0,...,a|Σ
such that this bandlimited vector function coincides at all given points with the function

values of the original continuous vector function on the regular surface Σ.

Our interest, first, lies in a Fourier approximation of a function u0,...,a of class h0,...,a|Σ from

discretely given vector function values on Σ. The method presented here is a generalization

of the scalar Fourier variant (second variant of the paper [21]) due to Freeden and Schneider.

We start with the discussion of a new class of approximate formulae involving vector outer

harmonics. For that purpose consider a vector function v0,...,a of class h0,...,a and a vector

function u of class h. Our purpose is to develop a rule of the form

(v0,...,a, u)h =
N∑

k=1

ak · v0,...,a(xk), (5.2.1)
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where the weights ak ∈ R3, k = 1, . . . , N are vectors with 3N ≥ M , M = 3(a + 1)2, a > 1

and x1, . . . , xN are knots on the regular surface Σ.

Let us define an admissible system for a set of vector outer harmonics. (Note that

(v0,...,a, u)h can be written as an integral over ΩR, hence, we are interested in integration

rules of ΩR corresponding to knots on the regular surface Σ).

Definition 5.2.1. A system {x1, . . . , xN} ⊂ Σ of N points with 3N ≥ M ,

M = 3(a+1)2, a > 1, is called an admissible system of order a on Σ with respect to h0,...,a,

if the rank of the (M, 3N)-matrix

h =






















(h
(1),R
0,1 (x1))

T . . . (h
(1),R
0,1 (xN))T

...
...

(h
(1),R
a1,2a1+1(x1))

T . . . (h
(1),R
a1,2a1+1(xN))T

(h
(2),R
1,1 (x1))

T . . . (h
(2),R
1,1 (xN))T

...
...

(h
(2),R
a2,2a2+1(x1))

T . . . (h
(2),R
a2,2a2+1(xN))T

(h
(3),R
1,1 (x1))

T . . . (h
(3),R
1,1 (xN))T

...
...

(h
(3),R
a3,2a3+1(x1))

T . . . (h
(3),R
a3,2a3+1(xN))T






















(5.2.2)

is equal to M , where h
(i)
n,m, n ∈ N0i

; m = 1, . . . , 2n + 1; i = 1, 2, 3, are the vector outer

harmonics.

Definition (5.2.1) leads us to the following integration formula.

Lemma 5.2.1. Let {x1, . . . , xN} ⊂ Σ, 3N ≥ M , M = 3(a + 1)2, a > 1, be an admissible

system of order a on Σ with respect to h0,...,a. Furthermore, suppose that v0,...,a ∈ h0,...,a

and u ∈ h. Then,

(v0,...,a, u)h =
3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

u(j)∧(p, q)
N∑

k=1

a
j,p,q
k · v0,...,a(xk)

holds for all weights a
j,p,q
1 , . . . , aj,p,q

N ; p = 0j, . . . , aj; q = 1, . . . , 2p + 1; j = 1, 2, 3, satisfying

the linear equations

N∑

k=1

a
j,p,q
k · h(i)

n,m(R; xk) = δijδnpδmq (5.2.3)



Fourier Representation of Vector Functions 119

for n = 0i, . . . , ai; m = 1, . . . , 2n + 1; i = 1, 2, 3.

Proof. Using Fourier expansion of v0,...,a and u together with the Parseval identity we are

able to deduce that

(v0,...,a, u)h =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(v0,...,a)
(i)∧(n,m)u(i)∧(n,m),

where

(v0,...,a)
(i)∧(n,m) = (v0,...,a, h

(i),R
n,m )h,

u(i)∧(n,m) = (u, h(i),R
n,m )h.

Therefore,

(v0,...,a, u)h =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(v0,...,a)
(i)∧(n,m)

3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

u(j)∧(p, q)δijδnpδmq

=
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(v0,...,a)
(i)∧(n,m)

3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

u(j)∧(p, q)
N∑

k=1

a
j,p,q
k · h(i),R

n,m (xk)

=
3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

u(j)∧(p, q)
N∑

k=1

a
j,p,q
k · v0,...,a(xk).

A simple idea to reduce the total amount of weights is performed in the next corollary.

Corollary 5.2.2. Under the assumption of Lemma 5.2.1, the formula

(v0,...,a, u)h =
N∑

k=1

ak · v0,...,a(xk)

holds for all weights a1, . . . , aN satisfying the linear equations

N∑

k=1

ak · h(i),R
n,m (xk) = u(i)∧(n,m), n = 0i, . . . , ai; m = 1, . . . , 2n + 1.

Proof. We let ak =
∑3

j=1

∑aj

p=0j

∑2p+1
q=1 u(j)∧(p, q)aj,p,q

k , k = 1, . . . , N , and apply Lemma

5.2.1.
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Corollary 5.2.2 immediately leads to the following consequence.

Corollary 5.2.3. If a1, . . . , aN ∈ R3 are weights satisfying the linear equations

N∑

k=1

ak · h(i),R
n,m (xk) = (u0,...,a)

(i)∧(n,m), (5.2.4)

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, then

(v0,...,a, u0,...,a)h =
N∑

k=1

ak · v0,...,a(xk),

where we have used the canonical abbreviation

u0,...,a =
3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

u(i)∧(p, q)h(j),R
p,q .

Setting u = h
(j),R
p,q we find:

Corollary 5.2.4. If a1, . . . , aN ∈ R3 are weights satisfying the linear equations

N∑

k=1

ak · h(i),R
n,m (xk) = (h(j),R

p,q )(i)∧(n,m) = (h(j),R
p,q , h(i),R

n,m )h = δjiδpnδqm, (5.2.5)

for n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, then

(v0,...,a, h
(j),R
p,q )h = (v0,...,a)

(j)∧(p, q)

=
N∑

k=1

ak · v0,...,a(xk).

Summarizing the results we are able to present a fully discrete Fourier approximation for

a vector function v0,...,a ∈ h0,...,a|Σ in the following way:

Theorem 5.2.5. Suppose that {x1, . . . , xN} ⊂ Σ, 3N ≥ M , M = 3(a + 1)2, a > 1, is an

admissible system of order a on Σ with respect to h0,...,a. Furthermore, assume that from

a vector function v0,...,a ∈ h0,...,a there are known the vector values v0,...,a(xk) = vk ∈ R3,

k = 1, . . . , N . Then

v0,...,a(x) =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

N∑

k=1

ak · vkh
(i),R
n,m (x), x ∈ Σ, (5.2.6)
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provided that the weights a1, . . . , aN ∈ R3 satisfy the linear equations

N∑

k=1

ak · h(j),R
p,q (xk) = δijδpnδqm (5.2.7)

for i, j = 1, 2, 3; p = 0j, . . . , aj; q = 1, . . . , 2p + 1; n = 0i, . . . , ai; m = 1, . . . , 2n + 1.

Proof. The Fourier expansion of v0,...,a reads as follows

v0,...,a(x) =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(v0,...,a)
(i)∧(n,m)h(i),R

n,m (x), x ∈ Σ.

This can be rewritten in the form

v0,...,a(x) =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

δijδpnδqm(v0,...,a)
(j)∧(p, q)h(i),R

n,m (x).

Observing the linear equations (5.2.7) we find by resubstitution of the Fourier expansion

v0,...,a(x) =
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

3∑

j=1

aj∑

p=0j

2p+1
∑

q=1

N∑

k=1

ak · h(j),R
p,q (xk)(v0,...,a)

(j)∧(p, q)h(i),R
n,m (x)

=
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

N∑

k=1

ak · v0,...,a(xk)h
(i),R
n,m (x).

This is the desired result.

The problem of representing a vector function v0,...,a ∈ h0,...,a|Σ from known vector val-

ues v0,...,a(xk) = vk, k = 1, . . . , N , is the solution of the linear system (5.2.5), (5.2.7),

respectively. Obviously

N∑

k=1

ak · h(i),R
n,m (xk) = δijδpnδqm, (5.2.8)

n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, is equivalent to

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(
N∑

k=1

ak · h(i),R
n,m (xk)

)

h(i),R
n,m (x) =

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

δijδpnδqmh(i),R
n,m (x)

= h(j),R
p,q (x), (5.2.9)
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x ∈ Σ, and

N∑

k=1

ak · h(i),R
n,m (xk) = (u0,...,a)

(i)∧(n,m), (5.2.10)

for n ∈ N0i
; m = 1, . . . , 2n + 1; i = 1, 2, 3, is equivalent to

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(
N∑

k=1

ak · h(i),R
n,m (xk)

)

h(i),R
n,m (x) = u0,...,a(x), x ∈ Σ. (5.2.11)

Using the tensor notation the left hand side of (5.2.9) and (5.2.11) can be written as follows:

3∑

i=1

ai∑

n=0i

2n+1∑

m=1

(
N∑

k=1

ak · h(i),R
n,m (xk)

)

h(i),R
n,m (x)

=
N∑

k=1

(
3∑

i=1

ai∑

n=0i

2n+1∑

m=1

h(i),R
n,m (x) ⊗ h(i),R

n,m (xk)

)

ak

=
N∑

k=1

kh0,...,a
(x, xk)ak.

In other words, the coefficients a1, . . . , aN ∈ R3 corresponding to (5.2.8) can be obtained

by solving

N∑

k=1

kh0,...,a
(xs, xk)ak = h(j),R

p,q (xs), s = 1, . . . , N. (5.2.12)

Analogously, the coefficients a1, . . . , aN ∈ R3 corresponding to (5.2.10) are solutions of the

linear equations

N∑

k=1

kh0,...,a
(xs, xk)ak = u0,...,a(xs), s = 1, . . . , N. (5.2.13)
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Note that









h
(1),R
0,1 (x1)...h

(1),R
a1,2a1+1(x1)...h

(3),R
1,1 (x1)...h

(3),R
a3,2a3+1(x1)

...

...

h
(1),R
0,1 (xN)...h

(1),R
a1,2a1+1(xN)...h

(3),R
1,1 (xN)...h

(3),R
a3,2a3+1(xN)






























(h
(1),R
0,1 (x1))

T . . . (h
(1),R
0,1 (xN))T

...
...

(h
(1),R
a1,2a1+1(x1))

T . . . (h
(1),R
a1,2a1+1(xN))T

(h
(2),R
1,1 (x1))

T . . . (h
(2),R
1,1 (xN))T

...
...

(h
(2),R
a2,2a2+1(x1))

T . . . (h
(2),R
a2,2a2+1(xN))T

(h
(3),R
1,1 (x1))

T . . . (h
(3),R
1,1 (xN))T

...
...

(h
(3),R
a3,2a3+1(x1))

T . . . (h
(3),R
a3,2a3+1(xN))T






















=






kh0,...,a
(x1, x1) . . . kh0,...,a

(x1, xN)
...

...

kh0,...,a
(xN , x1) . . . kh0,...,a

(xN , xN)




 (5.2.14)

and the last 3N × 3N block matrix is of rank M (since {x1, . . . , xN} ⊂ Σ is an admissible

system of order a on Σ with respect to h0,...,a). Therefore, in case of 3N = M , the linear

systems (5.2.12), (5.2.13) are uniquely solvable.

5.3 Spline Representation of Vector Functions on Reg-

ular Surfaces

The interpolation problem for discussion can be formulated as follows. For an unknown

v ∈ h, given the data points (xi, v(xi)) ∈ Σ × R3, i = 1, . . . , N , find the smoothest vector

field in the set IN of all interpolants in h, namely

IN = {w ∈ h |w(xl) = f(xl), l = 1, . . . , N}.

By the smoothest field, we mean the one for which the norm is minimized in h. In doing

so we essentially follow the paper [13].

To deal with this problem, we discuss some preliminary results.

Lemma 5.3.1. Let XN be a system of N points x1, . . . , xN on the surface Σ such that

xn 6= xm for n 6= m. Then the vector fields k(·, xl)ε
i, l = 1, . . . , N , i = 1, 2, 3, are linearly

independent.
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Proof. From the viewpoint of the theory of boundary value problems, k(·, ·) is Green’s

matrix of the inner Dirichlet problem in vector potential theory for the sphere centered

at the origin with radius R. Hence, if xn 6= xm for n 6= m, then the linear independence

of k(·, xl)ε
i, l = 1, . . . , N ; i = 1, 2, 3, follows from the well-known arguments, e.g., to be

found in [28].

From Lemma 5.3.1, another result follows immediately.

Lemma 5.3.2. The 3N × 3N block matrix





k(x1, x1) . . . k(x1, xN)
...

...

k(xN , x1) . . . k(xN , xN)




 (5.3.1)

is nonsingular, positive definite, and symmetric.

Proof. The matrix is a Gram matrix of linearly independent elements.

In fact, the matrix (5.3.1) can be partitioned as it stands by conventional methods, such as

the usual square-root method (Cholesky decomposition) or QR-decomposition, for which

powerful computer routines are readily available (see [4] for example). On the other hand,

the matrix (5.3.1) can be interpreted as a block positive-definite matrix. In this case, the

block variant of the usual square-root method (see [1] ) is known, too.

In the sequel, we use the following notation.

Let XN be a nodal system on Σ, i.e., a system of distinct points x1, . . . , xN on Σ (xn 6= xm

for n 6= m). Then SN = SN(x1, . . . , xN) denotes the space of all vector fields s ∈ h of the

form

s(x) =
N∑

l=1

k(x, xl)al, x ∈ Σext
inf , (5.3.2)

where a1, . . . , aN ∈ R3 are arbitrary coefficients. The kernel k can be decomposed as given

by (5.1.7).

From Theorem 5.1.1 we now obtain the following result.

Lemma 5.3.3. Let s be a vector field of class SN of the form (5.3.2). Then, for each

v ∈ h,

(v, s)h =
N∑

l=1

v(xl)al.
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Proof. It is easy to see that

N∑

l=1

3∑

i=1

(al · εi)
(
k(·, xl)ε

i, v
)

h
=

N∑

l=1

v(xl)al.

Noting the identity (5.1.4), we derive the desired result.

Lemma 5.3.4. There exists a unique element s ∈ SN ∩ IN , which we denote in brief by

sN .

Proof. Any s ∈ h of the form (5.3.2) involves a total of N coefficients a1, . . . , aN ∈ R3.

Hence, s ∈ IN leads to N linear equations in these coefficients:

s(xk) =
N∑

l=1

k(xk, xl)al, k = 1, . . . , N.

This system is uniquely solvable provided that XN is a nodal system as described above.

From Lemma 5.3.3, we obtain by straightforward calculations the following result.

Lemma 5.3.5. If v ∈ IN , then

‖v‖2
h = ‖sN‖2

h + ‖sN − v‖2
h.

Summarizing the above results, we finally obtain the following theorem.

Theorem 5.3.6. Let XN be a nodal system on Σ. Then the interpolation problem

‖sN‖h = inf
v∈IN

‖v‖h

is well posed in the sense that its solution exists, is unique, and depends continuously on

the data f(x1), . . . , f(xN). The uniquely determined solution sN is given in the explicit

form

sN(x) =
N∑

l=1

k(x, xl)al, x ∈ Σext
inf , (5.3.3)

where the coefficients a1, . . . , aN ∈ R3 satisfy the linear equations

f(xk) =
N∑

l=1

k(xk, xl)al, k = 1, . . . , N. (5.3.4)
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For every nodal system XN of N points x1, . . . , xN on Σ and for every vector field v ∈ h,

there exists a unique element sN ;v ∈ SN(x1, . . . , xN) satisfying the conditions

v(xl) = sN ;v(xl), l = 1, . . . , N.

Let ΘN denote the XN−width on Σ, i.e., the maximal distance for any point of the surface

Σ to the system XN :

ΘN = max
x∈Σ

(

min
y∈XN

|x − y|
)

.

Theorem 5.3.7. Suppose that v is of class h. Let XN be a nodal system on Σ. Then there

exists a positive constant B (dependent on Σ, but independent of v) such that

sup
x∈Σ

|v(x) − sN ;v(x)| ≤ BΘN‖v‖h.

Proof. For any given x ∈ Σ, there exists a point xl ∈ XN with |x − xl| ≤ ΘN . Now

v(xl) = sN ;v(xl), and thus it is clear that

sN ;v(x) − v(x) = (sN ;v(x) − sN ;v(xl)) − (v(x) − v(xl)) .

Observing the reproducing property (5.1.4) and applying the Cauchy-Schwarz inequality,

we find that

|v(x) − v(xl)| ≤ (β(x, xl))
1/2‖v‖h,

|sN ;v(x) − sN ;v(xl)| ≤ (β(x, xl))
1/2‖sN ;v‖h,

(5.3.5)

where

β(x, xl) =
3∑

i=1

εi · (k(x, x) − k(x, xl) − k(xl, x) + k(xl, xl)) εi.

Now sN ;v is the smoothest h interpolant, that is to say

‖sN ;v‖h ≤ ‖v‖h. (5.3.6)

Consequently, from (5.3.5) and (5.3.6), the triangle inequality gives

|sN ;v(x) − v(x)| ≤ 2(β(x, xl))
1/2‖v‖h.
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From considerations given in [10] and [13], it follows that there exists a constant B (de-

pendent on Σ, but independent of v) such that

|β(x, xl)| ≤
1

4
B|x − xl|2.

Therefore we may deduce that

|sN ;v(x) − v(x)| ≤ BΘN‖v‖h,

and this is the desired result.

Summarizing our results, we therefore obtain the following theorem.

Theorem 5.3.8. Suppose that v is a vector field of class h, and XN is a nodal system

of N points x1, . . . , xN on Σ. Let sN ;v denote the uniquely determined solution of the

minimization problem

‖sN ;v‖h = inf
w∈I

v
N

‖w‖h,

where

IvN = {w ∈ h |w(xl) = v(xl), l = 1, . . . , N}.

Then there exists a positive constant D (dependent on the geometry of Σ, but not on the

field v) such that

sup
x∈Σ

|sN ;v(x) − v(x)| ≤ DΘN‖v‖h.

Theorem 5.3.8 gives rise to the following conclusions. Let f be an element of the class h|Σ
of all restrictions v|Σ of elements v ∈ h to the surface Σ, and let {XN} be a sequence of

nodal systems XN such that ΘN → 0 as N → ∞. Then, for given f ∈ h|Σ the solution of

the boundary value problem

v ∈ h|Σext , v|Σ = f

can be arbitrarily well approximated in the sense that, for every ε > 0, there exists an

integer N = N(ε) and a linear combination

sN ;v(x) =
N∑

l=1

3∑

i=1

ai
lk(x, xl)ε

i
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uniquely given by

N∑

l=1

3∑

i=1

ai
lk(x, xl)ε

i = f(xl), l = 1, . . . , N,

such that

sup
x∈Σ

|sN ;v(x) − v(x)| ≤ ε.

Thus we have developed a constructive method for solving the boundary value problem,

provided that the boundary values f are elements of the class h|Σ.

5.4 Theoretical Conclusions Concerning Spline Inter-

polation in h

In many problems (for example, the wind field determination on the topography), we are

faced with the situation in which only a discrete set of vector data (xl, f(xl)), l = 1, . . . , N ,

is available. To deal with this problem by applying our constructive method given in

Section 5.3, we must assume that the values f are of class h|Σ. From a theoretical point of

view, however, it is of interest to discuss the situation in which the values f are assumed to

be in c(Σ), but not necessarily in h|Σ. To consider this case, we should recall (see Theorem

4.2.5) that the vector outer harmonics restricted to Σ form a dense subset in c(Σ) (in the

sense of uniform topology on Σ). Hence h|Σ, considered as a subset of c(Σ) containing

the space of vector outer harmonics restricted to Σ is dense in c(Σ), too. Therefore, an

extended version of Helly’s theorem, due to [37], enables us to conclude that, for any

positive number ε > 0, for any prescribed set X̃M of M points x̃1, . . . , x̃M on Σ, and for

any element f ∈ c(Σ), there exists an element g of the space h|Σ in the ε−neighbourhood

of f such that f(x̃l) = g(x̃l), l = 1, . . . ,M .

Combining these results, we therefore obtain the following theorem (see [10, 13]).

Theorem 5.4.1. Let X̃M be a nodal set of M points x̃1, . . . , x̃M on Σ. Suppose that XN

is a sequence of nodal systems XN on Σ such that X̃M ⊂ XN for all N and ΘN → 0 as

N → ∞. Then any f ∈ c(Σ) can be arbitrarily well approximated in the sense that, for

every ε > 0, there exists an integer N = N(ε) and a linear combination

sN(x) =
N∑

l=1

k(x, xl)bl, x ∈ Σ, (5.4.1)
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such that

sN(x̃k) = f(x̃k), k = 1, . . . ,M,

and

sup
x∈Σ

|sN(x) − f(x)| ≤ ε.

As in scalar potential theory [10], we are unable to find a suitable method for determining

explicitly the linear combination (5.4.1) which realizes Theorem 5.4.1. In other words, the

theoretical problem of approximating a continuous vector field f from discretely given data

points on the surface Σ can be answered only in a nonconstructive way. Nevertheless, our

theoretical result (Theorem 5.4.1) shows us that the kernel matrix (5.1.3) can be used to

construct basis systems with continuous restrictions on Σ, i.e.,

c(Σ) = spanx∈Xk(·, x)εi|Σ,

in the sense of the c−topology on Σ, provided that X is the union of a system of nodal

systems XN on Σ with ΘN → 0 as N → ∞.
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5.5 Numerical Aspects of Vector Field Approxima-

tions

We provide some numerical examples for the approximation of vector fields on regular sur-

faces by using the techniques developed in Section 5.2. The described approach to model

vector fields on regular surfaces considers the calculation of coefficients by solving the linear

equation system (5.2.7). The calculated coefficients are then used to approximate a vector

function on Σ by using function values given on the regular surface Σ (see (5.2.6)).

The topography data is taken from the GLOBE Project of NOAA’s (National Oceanic and

Atmospheric Administration) National Geophysical Data Center.

Let us now face the topography of the area of Rheinland-Pfalz (Palatinate), where the

Forest Research Institute Rheinland-Pfalz (”Forschungsanstalt für Waldökologie und Forst-

wirtschaft (FAWF) in Rheinland-Pfalz”) records quantities in fields of temperature, hu-

midness, precipitation and wind velocity. In a cooperation between the FAWF and the Ge-

omathematics Group Kaiserslautern models [15] based on scalar interpolation are already

developed for temperature, humidness and precipitation. These observational quantities

are acquired in Rheinland-Pfalz at 15 stations (see left illustration in Figure 5.5.1). Nu-

merical results are already obtained by spherical spline interpolation (as given in Figure

5.5.1, right hand side) of the absolute value (norm) and the direction of the wind field

in [16]. We are interested in the meso-scale wind propagation. The meso-scale specifies,

as e.g., described in [36], the dimension of spatially-horizontal phenomena regarding their

resolution. The spatial resolution ranges between 2 and 2000 kilometers. Thus, an approx-

imation with low degrees is sufficient. In the following we will exemplarily show how the

approximation of wind field data can be performed by the use of spline interpolation with

vector outer harmonics. The wind measurements are taken at points of Rheinland-Pfalz

at different heights but always having a fixed distance of 10 meters to the topography.

Figure 5.5.2 shows the values for 22.01.2002 (at 4.p.m.). This set of values will be used in

the following to demonstrate exemplarily the interpolation technique for continuous vector

functions on a regular surface. In this case the topography of Rheinland-Pfalz serves as

the regular surface. Regarding [34] the wind field is dominated by horizontal vector com-

ponents, instead of three dimensional currents. The wind measurements consist out of a

an angle which gives the direction and the absolute value, therefore, our calculations are

also based on horizontal vector values.
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First we want to validate the interpolation behavior by taking a field with constant di-

rections and values into account and observe the interpolation result. We choose 9 input

vectors f1, . . . , f9 at the corresponding data points x1, . . . , x9 (see Figure 5.5.3) and set in

the first case all to the same direction (200◦) and absolute values (fi = 1 for i = 1, . . . , 9).

For the second example we take the direction from the wind measurements and let the

values still be fix. And in the last case we take the measured wind speed and let the

direction fix (200◦).

The points x1, . . . , x9 are from the area 5.9◦ − 8.9◦ East and 49◦ − 51◦ North. For the

evaluation we use a grid of dimension 49 × 72.

We use (5.2.7), respectively (5.2.12), to retrieve the coefficients ak, k = 1, . . . , 9. The linear

equation systems can be uniquely solved because 3N = M , with M = 27. Therefore we

solve the linear system

hva = d, h ∈ RM×3N , M = 3N,

where h is a matrix as given in (5.2.2), va is a vector of dimension 3N representing the

coefficients ak, k = 1, . . . , 9, i.e.,

va =









a1

a2

...

a9









and d is a vector of dimension M with entries equal to 1 and 0.

We solve this linear equation system by standard routines provided by Matlab. In Figure

5.5.4 the result of the interpolation with degree n = 2 for the first case (direction and

values are fix) is given. We obtain an exact interpolation with vector values equal to 1 and

the direction being 200◦ at all points of the evaluation area. In Figure 5.5.5 and Figure

5.5.6 the results for the interpolation with degree n = 2 for the second case (direction from

measurements and fix values) and the third case (fix direction and measured values) can

be seen. We see that the strength of the interpolation procedure lies in the interpolation

of the direction. For the absolute values the deviation in case the values are fix is high.

Now let us take into account the wind measurements of the 9 data points x1, . . . , x9 (see

Figure 5.5.3). Same calculations as above yield the interpolation result given in Figure

5.5.7. We observe that we obtain an interpolation with some irregularities in the northern
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river deltas (which can be seen in the bottom figure).

The next step considers all 15 measurement stations. What follows is that for degree n = 2

the dimension of the matrix h changes from (27 × 27) to (27 × 45), because 3N = 45 and

M = 27. That means that we are confronted with an under-determined linear equation

system:

hva = d, h ∈ RM×3N , M ≤ 3N.

An under-determined set of equations usually has infinitely many solutions. Therefore we

can replace the problem with a least-norm problem, i.e., looking for the solution with the

smallest norm (see [23]).

Theorem 5.5.1. If h ∈ RM×3N has rank M , then the solution of the least-norm problem

of finding an ṽa that satisfies

hṽa = d

and

‖ṽa‖2
2 ≤ ‖va‖2

2

for all va that satisfy hva = d is unique and given by

ṽa = h
T (hhT )−1d. (5.5.1)

Proof. We first show that hhT is positive definite. We have

vT
a
hhT va = (hT va)

T (hT va) = ‖hT va‖2 ≥ 0

for all va. Moreover if rankh = M , then ‖hT va‖2 = 0 only if va = 0. This means that hhT

is positive definite, hence non singular. Next, we verify that ṽa satisfies hṽa = d:

hṽa = (hhT )(hhT )−1d = d.

Finally, we have to show that any other solution of the equations has a norm greater than

‖ṽa‖2. Suppose va satisfies hva = d. We have

‖v2
a
‖2 = ‖ṽa + (va − ṽa)‖2

2 = ‖ṽa‖2
2 + ‖va − ṽa‖2

2 + 2ṽ2
a
(va − ṽa).
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Now, observe that

ṽ2
a
(va − ṽa) = (hT (hhT )−1d)T (va − ṽa)

= dT (hhT )−1h(va − ṽa)

= 0

because hva = hṽa = d. We therefore have

‖va‖2
2 = ‖va − ṽa‖2

2 + ‖ṽa‖2
2 ≥ ‖ṽa‖2

with equality only if va = ṽa. In conclusion, if hva = d and va 6= ṽa then

‖va‖2
2 > ‖ṽa‖2

2.

This proofs that ṽa is the unique solution of the least-norm problem.

This result means that we can solve the least-norm problem by solving

(hhT )b = d (5.5.2)

and then calculating ṽa = hT b. The equations (5.5.1) are a set of M linear equations in

M variables, and are called the normal equations associated with the least-norm problem.

The normal equations (5.5.2) can be solved by standard procedures using the Cholesky

factorization of hTh or the QR factorization of hT .

In Figure 5.5.2 the set of 15 input points is given. The least-norm solution to that problem

is given in Figure 5.5.8. We observe that we gain a smooth vector field approximation.
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Figure 5.5.1: Left: Observational network of FAWF for wind measurements. Right: Scalar

spline interpolation of wind field over Palatinate on 22.01.2002 (4pm). The values range

between 1 and 5.7 m/s wind speed.

Figure 5.5.2: Input points from FAWF for the date 22.01.2002 at 4pm. Left: absolute

value of the input points denoting the speed in m/s. Right: vectors on the topography of

Rheinland-Pfalz (5.9◦ − 8.9◦ East and 49◦ − 51◦ North).
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Figure 5.5.3: Set of 9 vector input points from the wind field measurements over Palatinate.

Left: vectors versus their absolute value. Right: vectors versus the topography.

Figure 5.5.4: Interpolation (degree 2) of a vector field over the topography of Palatinate

with fix direction (200◦) and fix values fi = 1, i = 1, . . . , 9 (marked in red). Plotted are

the vectors versus the topography. The interpolation vectors have all the absolute value 1.
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Figure 5.5.5: Interpolation (degree 2) of a vector field over the topography of Palatinate

with measured direction and fix values fi = 1, i = 1, . . . , 9 (marked in red). Form top

to bottom: Whole area with vectors plotted versus their absolute value. Boundaries are

removed for better resolution of the absolute vector values. Vectors plotted versus the

topography.
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Figure 5.5.6: Interpolation (degree 2) of a vector field over the topography of Palatinate

with fix direction and measured values fi = 1, i = 1, . . . , 9 (marked in red). Form top

to bottom: Whole area with vectors plotted versus their absolute value. Boundaries are

removed for better resolution of the absolute vector values. Vectors plotted versus the

topography.
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Figure 5.5.7: Interpolation (degree 2) with 9 vector input points (marked in red) from

the wind field measurements over Palatinate. From top to bottom: Vectors versus their

absolute value. Boundaries are removed for better resolution of the absolute vector values.

Vectors plotted versus the topography.
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Figure 5.5.8: Approximation (degree 2) with 15 vector input points (marked in red) from

the wind field measurements over Palatinate. From top to bottom: Vectors versus their

absolute value. Boundaries are removed for better resolution of the absolute vector values.

Vectors plotted versus the topography.



Chapter 6

Summary and Outlook

In this thesis we achieved two main goals. First (Section 4.3), we presented algorithms

for the exact construction of scalar and vector spherical harmonics and their extension to

scalar and vector outer harmonics. The basis for that is given by the exact calculation

of homogeneous harmonic polynomials. One advantage of the exact generation of vector

outer harmonics in terms of cartesian coordinates is that it avoids problems arising from

singularities of a spherical coordinate system.

In a second step, we developed, based on vector outer harmonics, an approximate integra-

tion formulae, where the nodal points are not taken on the reference area of integration.

The underlying concept extends the existing developments for scalar problems (as described

in [18, 21]) by the representation for vector fields. We developed a Fourier variant for vec-

tor functions, where only values on a regular surface, e.g., the Earth topography, are given.

The Fourier representation consists of coefficients which can be determined by solving a

set of linear equations involving vector outer harmonics. At this point the generation (as

presented in Section 4.3) of vector outer harmonics plays an important role.

Further, with tensor kernels composed from vector outer harmonics a spline interpolation

procedure for continuous vector functions on regular surfaces is developed.

The methods developed in this thesis are a first step towards the approximation and

interpolation of continuous vector functions on regular surfaces. Further investigation

could be, e.g., done to develop the explicit representation for tensor kernels of vector outer

harmonics. In the case of a more dense data situation concepts for multiscale approximation



5.5 Numerical Aspects of Vector Field Approximations 141

and wavelet theory can be continued straightforward from the developed settings of Chapter

5, hence, the exact computation of the vector basis functions (Section 4.4) can then be

used to explicitly derive scaling functions.

To handle the numerical efforts when handling huge amounts of discretely given data one

could extend the methods presented in [25]. There a domain decomposition method based

on the Schwarz alternating algorithm for large symmetric positive definite matrices is

presented. This algorithm enables the solution of extremely large equation systems from,

e.g., spline interpolation problems. The procedure comprises first the split of the large

linear equation systems into several smaller subsystems and then solves them alternating

in an iterative algorithm.



Bibliography

[1] I.S. Beresin and N.P. Shidkow. Numerische Methoden 2. Berlin: Deutscher Verlag der

Wissenschaften, 1971.
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of the ”Stiftung Rheinland Pfalz für Innovation”

Since 2005 Employe at SAP, Walldorf


