Aso-bimodules and Serre A -functors

Oleksandr Manzyuk

Vom Fachbereich Mathematik der Technischen Universitat Kaiserslautern
zur Verleihung des akademischen Grades Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation

1. Gutachter: Prof. Dr. Gert-Martin Greuel
2. Gutachter: Prof. Dr. Bernhard Keller

Vollzug der Promotion 25.10.2007

D 386






Abstract

This dissertation is intended to transport the theory of Serre functors into the context
of A.-categories. We begin with an introduction to multicategories and closed multi-
categories, which form a framework in which the theory of A..-categories is developed.
We prove that (unital) A..-categories constitute a closed symmetric multicategory. We
define the notion of A..-bimodule similarly to Tradler and show that it is equivalent to
an A..-functor of two arguments which takes values in the differential graded category of
complexes of k-modules, where k is a commutative ground ring. Serre A..-functors are
defined via A..-bimodules following ideas of Kontsevich and Soibelman. We prove that
a unital closed under shifts A..-category A over a field k admits a Serre A,.-functor if
and only if its homotopy category H°A admits an ordinary Serre functor. The proof uses
categories enriched in K, the homotopy category of complexes of k-modules, and Serre
XK-functors. Another important ingredient is an A..-version of the Yoneda Lemma.
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CHAPTER 0

Introduction

0.1. Motivation

It is widely accepted that Verdier’s notion of triangulated category is not quite satis-
factory. It suffers from numerous deficiencies, starting from non-functorial cone up to the
failure of descent for the derived category of quasi-coherent sheaves on a scheme, see e.g.
[Bg]. As a remedy, Bondal and Kapranov [[] introduced the notion of pretriangulated
differential graded (dg) category that enhances the notion of triangulated category. In
particular, the 0" cohomology (called also the homotopy category) of a pretriangulated
dg category admits a natural triangulated structure. Remarkably, triangulated categories
arising in algebraic geometry and representation theory are of that kind. It is therefore
desirable to develop the relevant homological algebra at the level of pretriangulated dg
categories rather than at the level of triangulated categories. Drinfeld gave in [13] an ex-
plicit construction (implicitly present in Keller’s paper [B5]) of a quotient of dg categories
and proved that it is compatible with Verdier’s quotient of triangulated categories.

The notion of dg category is a particular case of a more general and more flexible
notion of A,-category. The notion of pretriangulated dg category generalizes to A..-cat-
egories. It is being developed independently by Kontsevich and Soibelman [B2] and by
Bespalov, Lyubashenko, and the author [(]. Consequently, there are attempts to rewrite
homological algebra using A..-categories. Lyubashenko and Ovsienko extended in
Drinfeld’s construction of quotients to unital A,-categories. In [BY], the author jointly
with Lyubashenko constructed another kind of a quotient and proved that it enjoys a
certain universal property. We also proved that both constructions of quotients agree,
i.e., produce A,-equivalent unital A..-categories. In [B], it is proven that the homotopy
category of a pretriangulated A..-category is triangulated. Furthermore, the quotient of
a pretriangulated A.-category over a pretriangulated A..-subcategory is again pretrian-
gulated.

The reasons to work with A, -categories rather than with dg categories are the follow-
ing. On the one hand, it is the mirror symmetry conjecture of Kontsevich. In one of its
versions, it asserts that the homotopy category of the Fukaya A..-category, constructed
from the symplectic structure of a Calabi—Yau manifold, is equivalent to the derived cat-
egory of coherent sheaves on a dual complex algebraic variety. The construction of the
Fukaya A..-category is not a settled question yet, it is a subject of current research, see
e.g. Seidel [Mg]. However, it is clear that the Fukaya A..-category is in general not a dg
category. On the other hand, the supply of dg functors between dg categories is not suf-
ficient for the purposes of theory. Instead of extending the class of dg functors to a wider
class of (unital) A..-functors, some authors prefer to equip the category of dg categories
with a suitable model structure and to work in the homotopy category of dg categories.
This approach is being developed, e.g., by Tabuada [54, B3] and Toén [B7]. There are
evidences that both approaches may be equivalent, at least if the ground ring is a field.
However, the precise relation is not yet clear to the author.
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The goal of this dissertation is to transport the theory of Serre functors into the
context of A.-categories.

The notion of Serre functor was introduced by Bondal and Kapranov [H], who used
it to reformulate Serre-Grothendieck duality for coherent sheaves on a smooth projective
variety as follows. Let X be a smooth projective variety of dimension n over a field k.
Denote by D°(X) the bounded derived category of coherent sheaves on X. Then there
exists an isomorphism of k-vector spaces

Home(X)(f.,g. X CL}X[TL]) = HOme(X)(g., y.)*,

natural in #°* 4* € D°(X), where wy is the canonical sheaf, and * denotes the dual
k-vector space. If .# and ¢ are sheaves concentrated in degrees ¢ and 0 respectively, the
above isomorphism specializes to the familiar form of Serre duality:

Ext" (Z,9 @ wx) = Ext' (¥4, .F)*.

In general, a k-linear functor S from a k-linear category C to itself is a Serre functor if
there exists an isomorphism of k-vector spaces

(X, SY) = C(Y, X)*,

natural in X, Y € Ob €. A Serre functor, if it exists, is determined uniquely up to natural
isomorphism. In the above example, € = D°(X) and S = — ® wx[n]. Being an abstract
category theory notion, Serre functors have been discovered in other contexts, for example,
in Kapranov’s studies of constructible sheaves on stratified spaces [24]. The existence of
a Serre functor imposes strong restrictions on the category. For example, Reiten and van
den Bergh have shown that Serre functors in abelian categories of modules are related to
Auslander—Reiten sequences and triangles, and they classified the noetherian hereditary
Ext-finite abelian categories with Serre duality [E7]. Serre functors play an important
role in reconstruction of a variety from its derived category of coherent sheaves [B]. An-
other rapidly developing area where Serre functors find applications is non-commutative
geometry.

The idea of non-commutative geometry that goes back to Grothendieck is that cate-
gories should be thought of as non-commutative counterparts of geometric objects. For
example, the derived category of quasi-coherent sheaves on a scheme X reflects a great
deal of geometric properties of X. The general philosophy suggests to forget about the
scheme itself and to work with its derived category of quasi-coherent sheaves. Thus, in-
stead of defining what a non-commutative scheme is, non-commutative geometry declares
an arbitrary (sufficiently nice) triangulated category to be the derived category of quasi-
coherent sheaves on a non-commutative scheme. In the spirit of the agenda explained
above, Keller in the talk at ICM 2006 and Kontsevich and Soibelman in [B1] suggested to
consider pretriangulated dg categories resp. A.-categories as non-commutative schemes.
Then, to a (commutative) scheme X its derived dg category Dg,(X) is associated. By
definition, Dy,(X) is Drinfeld’s quotient of the dg category of complexes of quasi-coherent
sheaves on X modulo the dg subcategory of acyclic complexes. Its homotopy category is
the ordinary derived category of X. Geometric properties of the scheme X (smoothness,
properness etc.) correspond to certain algebraic properties of its derived dg category.
Abstracting these yields a definition of smooth, proper etc. non-commutative schemes.
This approach is being actively developed by Toén, see e.g. [B7] and [56].

In non-commutative geometry, triangulated categories admitting a Serre functor (and
satisfying some further conditions) are considered as non-commutative analogs of smooth
projective varieties. Modern homological algebra insists on working with pretriangulated
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dg categories or A..-categories instead of triangulated categories. Therefore, we need a
notion of Serre functor in these settings. The definition of Serre dg functor is straightfor-
ward, but apparently useless, for given a pretriangulated dg category A such that H°(A)
admits a Serre functor, it is not clear whether there exists a Serre dg functor from A to
itself. The definition of Serre A, -functor was sketched by Soibelman in [B1]]. We define
Serre A..-functors using A.-bimodules and prove that an A, -category A admits a Serre
functor if and only if its homotopy category HY(A) does, provided that some standard
assumptions are satisfied. This result applies in particular to the derived dg category of
coherent sheaves on a smooth projective variety X.

The (refined) homological mirror symmetry conjecture of Kontsevich asserts the exis-
tence of an A,.-equivalence between the Fukaya A..-category and the derived dg category
of coherent sheaves on a dual complex algebraic variety. Both A, -categories admit Serre
A-functors, cf. [BO]. Therefore, to approach the conjecture, a theory of A..-categories
with Serre duality is needed.

A smooth projective variety X is Calabi-Yau if the canonical sheaf is isomorphic to
the structure sheaf. In particular, the Serre functor

S =—-®uwx[n]: D"(X) — D"(X)

is isomorphic to the shift functor [n]. This motivates the following definition: a triangu-
lated category is an n-Calabi-Yau category if the n'® shift is a Serre functor. Triangulated
2-Calabi—Yau categories play an important role in the theory of cluster categories, see e.g.
Caldero and Keller [[]. Correspondingly, there is a notion of n-Calabi-Yau A..-category.
We believe that the obtained results may have applications to the study of topological
conformal field theories due to the work of Costello [L0].

0.2. Notation and conventions

We tried to avoid questions of ‘size’. Possible set-theoretic difficulties can be solved
by using universes [[L9].

The category of sets is denoted by Set. The category of (small) categories is denoted
by Cat. Binary product of sets or of categories is written as x and arbitrary product as
[]- The disjoint union of sets is written as LI. The cardinality of a set S is denoted by
|S]. The set of integers is denoted by Z; the set of non-negative integers is denoted by N.
For a finite set I and an element n = (n;);c; € N', denote by |n| the sum >, n;.

The symmetric group on n points is denoted by &,,.

The set of objects of a category € is denoted by Ob €, the set of morphisms is denoted
by Mor €. For a pair of objects X, Y € Ob €, we prefer the notation C(X,Y’) for the set
of morphisms from X to Y to the traditional Home(X,Y'). The composite of morphisms
f: X —=Yandg:Y — Zisdenoted by fg =f-g=gof. Afunction f: X — Y
applied to an element x € X is written zf = f(x) and occasionally fx. The inverse image
of an element y € Y is denoted by f~'y. Isomorphism between objects of a category is
written =, whereas the symbol ~ denotes equivalence of categories. Identity morphisms
in a category are denoted by id. The symbol Ide denotes the identity functor of a category
C.

We assume familiarity with the language of enriched categories. Some of the concepts
are recalled in the main text. For a symmetric monoidal category V, a V-category C
consists of a set of objects Ob €, an object of morphisms C(X,Y) € Ob'V, for each pair
of objects X, Y € Ob €, a composition

pe: C(X,Y)®C(Y,Z) — €(X, Z),
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for each triple X,Y, Z € Ob G, and an identity element 1§ : 1 — CG(X, X), for each object
X € ObC. The associativity and identity axioms are expressed by the commutativity
of certain diagrams, see [BY, Section 1.2], or Section below. Sometimes, when no
confusion arises, composition in a V-category is denoted just by comp. The associativity
axiom allows to define iterated compositions

C(Xo, X1) ® - ®C(X,1, X)) — C(Xo, X,),

which are denoted by p¢. Identities are often denoted simply by 1x. The reader is referred
to for more details on enriched categories.

Throughout, k is a commutative ring with 1. The following categories are particularly
important for this dissertation: the category gr of graded k-modules; the category Cy
of complexes of k-modules, sometimes also denoted by dg; the homotopy category K of
complexes of k-modules. These categories are discussed in detail in the main text. The
category of k-modules is written as k-Mod.

0.3. Chapter synopsis

Chapter 1. We introduce the definitions of lax Monoidal category and multicategory.
We also need 2-dimensional analogs of these concepts, though not in full generality. The
appropriate notions are those of lax Monoidal category and multicategory enriched in
Cat, the category of categories. To get a uniform treatment, we introduce lax Monoidal
categories and multicategories enriched in a symmetric Monoidal category V. We discuss
thoroughly the relation between lax Monoidal categories and multicategories. More pre-
cisely, we introduce appropriate notions of functors and natural transformations in both
cases, and observe that lax Monoidal categories as well as multicategories constitute a
2-category, or equivalently a Cat-category, a category enriched in Cat. We construct a
Cat-functor from the 2-category of lax Monoidal categories to the 2-category of multi-
categories. We prove that it is fully faithful (in enriched sense) and describe its essential
image. These results hold true in enriched setting. However proofs are provided in the
case V = Set only, with a few exceptions, where for the sake of being rigorous we included
proofs of propositions that are used in the sequel in the case of general V.

We spend some time discussing categories and multicategories enriched in a symmetric
multicategory. An important issue is base change. We prove that a symmetric multifunc-
tor F' : V. — W gives rise to a Cat-functor F,, the base change Cat-functor, from
the 2-category of (multi)categories enriched in V to the 2-category of (multi)categories
enriched in W. The case of multicategories coming from lax Monoidal categories is of
particular importance, it is treated at some length. Finally, we introduce the notion of
closed multicategory that generalizes the notion of closed Monoidal category. We prove
that a closed symmetric multicategory C gives rise to a multicategory C enriched in C.
For each symmetric multifunctor F' : C — D, we introduce its closing transformation,
which is a certain naturally arising D-multifunctor F' : F,C — D. We spend some time
discussing properties of closing transformations.

Chapter 2. We introduce Serre functors for categories enriched in a symmetric Monoidal
category V. The examples of interest are V = X, the homotopy category of complexes
of k-modules, and V = gr, the category of graded k-modules. These build a bridge from
Aso-categories to ordinary k-linear categories. We study behavior of Serre functors under
base change and derive some results concerning the existence of Serre functors.
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Chapter 3. We begin by explaining our conventions about graded k-modules and com-
plexes of k-modules, where k is a fixed commutative ground ring, and introduce some
notation. Afterwards, we introduce (differential) graded spans and quivers. We recall the
definition of augmented coassociative counital coalgebra and introduce the main example
of interest, the tensor coalgebra T'A of a quiver A. We spend some time studying mor-
phisms and coderivations from a tensor product of tensor coalgebras to another tensor
coalgebra, which is necessary for understanding A.-functors and A.-transformations.

We define a symmetric multicategory A, of A.-categories and A -functors. In par-
ticular, we introduce A.-functors of several arguments. We prove that the multicategory
A, is closed. The disadvantage of our proof is that it is indirect, although short. In
particular, it says almost nothing useful about the closed structure. There is a more
conceptual approach to A.-categories that is developed by Yuri Bespalov, Volodymyr
Lyubashenko, and the author in the book in progress [B]. It leads to an explicit descrip-
tion of the closed structure which is suitable for computations. It seems impossible to
reproduce the contents of the book here, since it would take us far away from the main
topic of the dissertation. For the reason of size, only a short summary of results relevant
for the further considerations is given. We briefly review the closed structure of A, and
describe the multicategory A, enriched in A.

We recall the definition of unital A.-category following Lyubashenko [BE], and gen-
eralize the notion of unital A,-functor to the case of many arguments. We prove that
unital A,-categories and unital A, -functors constitute a closed symmet/riﬂnulticategory

AS,. We construct a symmetric multifunctor k : A%, — @t, where K-Cat is the sym-
metric multicategory arising from the symmetric Monoidal category K-Cat of categories
enriched in K, the homotopy category of complexes of k-modules. The category K-Cat
is enriched in k-Cat, the category of k-linear categories, therefore so is the multicategory

K-Cat. Applying results about base change, we conclude that the multicategory AL may
be also viewed as a multicategory enriched in k-Cat. The multifunctor k is extended to a
k-Cat-multifunctor. We relate the closed multicategory approach to A..-categories with
the 2-category approach developed in and [£Q].

Finally, we briefly consider duality for A,-categories. We show that the correspon-
dence that assigns to an A..-category its opposite extends to a symmetric multifunctor
op : Ay — A.. We compute its closing transformation.

Chapter 4. We introduce bimodules over A..-categories and prove that, for A, -cat-
egories A and B, A-B-bimodules constitute a differential graded category. It turns out
to be isomorphic to the differential category of A.-functors A®, B — C,, where C, is
the differential graded category of complexes of k-modules. We introduce also unital
Aso-bimodules. We spend some time discussing operations on A..-bimodules.

Chapter 5. As an application of the bimodule technique, we introduce Serre A,-func-
tors. We prove a criterion and give certain sufficient conditions for the existence of Serre
Aso-functors. In particular, we prove that if the ground ring k is a field, then a Serre
Aso-functor in an A,-category A induces an ordinary Serre functor in the cohomology
HC°A. The converse is true if the A -category A is closed under shifts. Finally, we
consider the strict case of a Serre A.-functor.

Appendix. As another application of the bimodule technique, we prove the Yoneda
Lemma for unital A, -categories. As a corollary, we deduce that an arbitrary unital
Aso-category is A .-equivalent to a differential graded category. We also obtain a criterion
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for representability of a unital A,-functor A — C,, which is necessary for our proof of
the existence of Serre A..-functors.

Author’s contribution. More detailed information concerning the author’s contribu-
tion to the dissertation can be found at the beginning of each chapter. Here we just make
general remarks. The results of Chapters [[] and B have been obtained jointly with Yuri
Bespalov and Volodymyr Lyubashenko, and should appear as part of the book [B]. The
central notion of closed multicategory as well as the key observation that A.-categories
form a closed multicategory are due to Yuri Bespalov. Sections and B.J are en-
tirely due to the author. The main results of Chapters B, [, [, as well as the results of
Appendix [A] represent the author’s contribution, with the following exceptions: Proposi-
tions R.2.11], B.4.2), £.4.4, b.2.1, and part of Proposition [A.7 are due to Prof. Lyubashenko.
He should also be credited for suggesting many definitions and formulations of statements.




CHAPTER 1

Tools

The study of A-categories is intertwined with higher-dimensional category theory,
in particular, with the study of monoidal categories and multicategories. While monoidal
categories are in prevalent use in mathematics, the concept of multicategory, which goes
back to Lambek [B3], has been confined primarily to purposes of categorical logic. In
mid-1990s, multicategories enjoyed a resurgence of interest due to applications in higher-
dimensional category theory, due to the work, e.g., of Baez and Dolan [I], Day and
Street [I]], Leinster [BH]; in quantum algebra, see e.g. Beilinson and Drinfeld [g],
Borcherds [§], Soibelman [50]. We discuss these notions at some length. The emphasis
is put on the relation between monoidal categories and multicategories, which is crucial
for the subsequent chapters, and on closed multicategories, which are the main tool of
the dissertation. Though the notion of closed multicategory is merely a straightforward
generalization of that of closed monoidal category, to the best of author’s knowledge, it
did not appear in the literature before and deserves closer look. The author may have
first learned it from Yuri Bespalov.

The chapter is organized as follows. In Section [[.1] we briefly review the definitions
of lax Monoidal category, lax Monoidal functor, and Monoidal transformation. We also
introduce enriched analogs of these notions. For a symmetric Monoidal category V, the
2-category V-Cat of V-categories, V-functors, and V-natural transformations provides an
example of symmetric Monoidal Cat-category. We investigate in Section [[.1.14 the effect
of a lax symmetric Monoidal functor V. — W on the corresponding enriched categories,
functors, and transformations. This issue was intentionally omitted in Kelly’s book [29].
According to [, Proposition 6.4.3], a lax symmetric Monoidal functor V. — W induces
a 2-functor V-Cat — W-Cat. For our purposes, we need a more precise statement.
Namely, we prove that the induced 2-functor V-Cat — W-Cat is, in fact, a symmetric
Monoidal Cat-functor.

Multicategories, multifunctors, and multinatural transformations are introduced in
Section [[.. For the benefit of the reader, we begin with the unenriched picture, since it
seems more accessible. The enriched counterparts are discussed afterwards. Section
is devoted to the relation between lax Monoidal categories and multicategories. We explain
how a lax Monoidal category gives rise to a multicategory. Furthermore, a lax Monoidal
functor induces a multifunctor between the corresponding multicategories, and a Monoidal
transformation of lax Monoidal functors induces a multinatural transformation of the
corresponding multifunctors. Together, these correspondences constitute a Cat-functor
from the 2-category of lax Monoidal categories to the 2-category of multicategories. We
prove that its if fully faithful and describe its essential image. Though these results may
be well-know to the experts, there seem to be no account of these results in the literature
(or at least a search turned up nothing).

In Section [[.3.] we briefly discuss categories and multicategories enriched in a sym-
metric multicategory V. Closed multicategories are introduced in Section [.3.10. The fun-
damental result here is that a closed symmetric multicategory C gives rise to a symmetric
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multicategory C enriched in C. We also develop some algebra in closed multicategories.
Multifunctors between closed multicategories are studied in Section [.3.27. It turns out
that with an arbitrary symmetric multifunctor between closed symmetric multicategories
a certain natural closing transformation is associated. We investigate properties of closing
transformations.

Much of the material presented here can be found in [B], where it is treated in greater
generality. Here we develop as much theory as necessary. To keep the exposition self-
contained, we included some topics which are not used in the sequel but which supplement
the picture.

The results of Section [.2.16 have been obtained jointly with Volodymyr Lyubashenko,
although some proofs given here differ from those provided in [J]. These are due to the au-
thor. The proofs of Propositions [[.2.20 and [[.2.27 are entirely due to Prof. Lyubashenko.
The notion of lax representable multicategory is an invention of Prof. Lyubashenko. The
notions of closed multicategory and closing transformation are due to Yuri Bespalov. A
thorough proof of Proposition [[.3.14 was given first by Prof. Lyubashenko in [§]. Here
we provide a lightened version of his proof.

1.1. Lax Monoidal categories

A classical monoidal category, as defined by Mac Lane 3], is a category € equipped
with a functor ® : € x € — €, (X,Y) — X ® Y (tensor product), an object 1 (unit
object), and isomorphisms

(XeY)0Z2Xe(YoZ), 1oX~2X, Xel=X

natural in X, Y, Z € Ob € (associativity and unit constraints, or coherence isomorphisms),
such that the pentagon, involving the five ways of bracketing four objects, commutes,
and the associativity constraint for Y = 1 is compatible with the unit constraints. A
monoidal category is called strict if coherence isomorphisms are identities. A version of
Mac Lanes’s ‘coherence theorem’ [A3] asserts that each monoidal category is equivalent
to a strict monoidal category.

Four other definitions of monoidal category (and related notions of lax monoidal func-
tor and monoidal transformation) are discussed by Leinster in [B5], Chapter 3]. These
definitions are proven to be equivalent, in a strong sense. More precisely, monoidal cate-
gories and lax monoidal functors for a particular definition form a category. Leinster con-
structs equivalences between these categories for different definitions and remarks that
these equivalences can be extended to equivalences of 2-categories (including monoidal
transformations). We are not going to explore the subject here.

We adopt a definition of lax Monoidal category which is a weakening of Lyubashenko’s
notion of Monoidal category [B7, Definition 1.2.2], which in turn is equivalent to Leinster’s
notion of unbiased monoidal category [BH, Definition 3.1.1]. We begin by an informal
introduction.

Let € be a monoidal category. Let ®7,®5 : €™ — € be arbitrary derived n-ary tensor
products, i.e., functors obtained by iterating the functor ®. For example, for n = 4, we
may have @] = ® o (® x ®) and ®3 = ® o (1 x ®) o (1 x 1 x ®). The meaning of
Mac Lane’s coherence theorem is that there is a unique natural isomorphism ®7 — @3
constructed from associativity and unit constraints and their inverses, which means that
there is essentially a unique way to extend the operation ® to a functor ®” : " — C. In
particular, for each partition n = ny + - -- + ng, there is a unique natural isomorphism
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®" = @F o (@™ x -+ x ®"). These isomorphisms satisfy equations

o ®ko(®"lx...x®nk)

le

(o ®ko(®p1X...x@?k)o(®"%x...x®"1l x...x@n}@x...x(gnzk)

[=

1 Pl 1 Pk
®po(®"1x...x®n1 x...x@"kx...x®"k)

IR

where n = ny +--+ng, p=pi1+-+pp, ns =n} +---+nl" i =1,... k Indeed,
the paths of the diagram represent two natural isomorphisms between the source and the
target. These paths must coincide by Mac Lane’s coherence theorem.

A Monoidal category is defined as a category C equipped with arbitrary n-ary tensor
products ®" : " — € and coherence isomorphisms ®" = ®*o (@™ x---x @™) : C" — €,
for each partition n = nq + - - - + ny, satisfying the above equations. The formal definition
follows. Since it is no extra work, we define at once lax Monoidal categories in which
coherence morphisms ®" — ®@Fo (@™ x -+ x ®™) : €" — C are not necessarily invertible.

Let O (resp. 8) denote the category whose objects are finite linearly ordered sets and
whose morphisms are order-preserving (resp. arbitrary) maps. For each integer n > 0,
denote by n the linearly ordered set {1 < 2 < --- < n}; in particular, 0 is the empty
set. For each map f : I — J, the inverse image f~1'j C I of an element j € J inherits a
linear order from I. Note that there is a bijection between maps f : m — n in Mor O and
partitions m = my + - -+ 4+ my, given by m; = |f~'j|, j € n. Similarly, maps f : m — n
from Mor 8 correspond to partitions of the set m into disjoint union of n subsets.

Let € be a category. For each set I € Ob O, denote by € the category of functors
from I to G, where I is regarded as a discrete category. Thus an object of ! is a function
X : 1 — ObC, i+ X, ie., a family (X;);es of objects of €, and the set of morphisms
between (X;);er and (Y;);es is given by

C (Xi)ier, Yadier) = [ [ €(X:, V2).
el
In particular, C® is the ordinary €", C° is the category with one object and one morphism.
1.1.1. Definition. A laz Monoidal (vesp. laz symmetric Monoidal) category (€, @1, \/)
consists of the following data.

e A category C.

e A functor @' : @ — €, (X))icr — @1 X;, for each I € Ob O, such that ®’ = Ide,
for each 1-element set I. For each map f : I — J in MorO (resp. Mor3$),
introduce a functor ®7 : €/ — €7 that fo a function X : I — Ob@C, i — X,
assigns the function J — Ob@, j — ®€/ Y X;. The functor @f : €7 — €7 acts
on morphism via the map

[Texa vy =TT T e, v —~— e ® He €I X, @€Y,

iel jedicf-1j jeJ
e A morphism of functors
A - N of el o e, N ®z’eIXi -y ®z’€f_1j X;,
for each map f: 1 — J in Mor O (resp. Mor 8).
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These are required to satisfy the following conditions.

e For each order-preserving bijection f: [ — J,

M =id.
For each set I € Ob O and for each 1-element set J,
M7 =id.

e For each pair of composable maps [ L7 % K from Mor O (resp. Mor§), the
diagram

A

Q€ X, ®I€T @i€f X,

)\fgl l)\-‘? (111)

R QRFEE\SE o .
®k€K ®z€f gk Xz AN ®k€K ®J€g k ®z€f JX@'
commutes, where fy = f|;-1,-15: flg7 'k — g7k, k€ K.

A Monoidal (resp. symmetric Monoidal) category is a lax Monoidal (resp. symmetric
Monoidal) category in which each A/ is an isomorphism.

1.1.2. Remark. For each I € Ob0, there exists a unique order-preserving bijection
f:I —mnforsomen >0. If [ ={i; <iy <--- <i,}, then f is given by f(ix) = k,
k € n. Since M is the identity, it follows that

®iEIXi _ ®k€an71(k) — ®k€nXik — ®n(Xi17X 7Xin)a

for each X; € Ob@, i € I. Thus the meaning of the condition that A/ is the identity, for
each order-preserving map f, is that the tensor product of a family of objects depends on
the cardinality of the family, but not on the indexing set.

iy e

1.1.3. Remark. An arbitrary Monoidal structure on a category € produces a monoidal

structure as follows. The tensor product is given by the functor ® = ®2 : €2 — €,
(X,Y) = X ®Y ¥ ®2(X,Y). The unit object 1 is ®°(x), where  is the only object of
the category C°. The associativity constraint is given by the composite

Viy—1 Vi
axvz=[XeY)ez L e¥X,Y,2) 5 X o (Y @ 2)],

where the maps are
VI:3—2, 1—1, 2+—1, 32,
V:3—-2, 1—1, 22 32
The unit constraints are
Ix=N""X>10X, ry=X":X—-X®1,

wherel. : 1 —-2,1+—1, .1:1— 2, 1+ 2. The pentagon axiom and triangle axiom are
proven in [B7, Section 1.2]. If, furthermore, € is a symmetric Monoidal category, then so
defined monoidal structure on € is symmetric, with the symmetry given by

cxy =N X®Y Y ®X,

where the map X = (12) : 2 — 2, 1 — 2, 2 +— 1. The axioms for the symmetry are
proven in [B7, Section 1.2]. Conversely, an arbitrary (symmetric) monoidal structure on
a category € extends to a (symmetric) Monoidal structure, cf. [I3, Proposition 1.5].
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1.1.4. Example. Endow the category Set of sets with the following symmetric Monoidal
structure. For each integer n > 0 and sets X1, X5, ..., X, choose a product [], ., Xx.
In the case n = 1, take the product of the family consisting of an object X; to be just
X1. Denote by pr, : [[1cn Xx — Xp, p € n, the canonical projections. For an arbitrary
linearly ordered set I = {i; <iy < --- <'i,} and a family of sets (X;);cs, define [],.; X;
as [[ren Xi,- The maps pr; o pr, [ Lic; Xi = [1jen Xi, — Xi, turn the set J]..; X; into
a product of the family (X;);c;. For a map f: I — J in Mor §, the composites

HHXiM H Xi&)Xpa pel,
)

jeJief-1j ief~1fp
turn the iterated product [[;c; [Tic;—1; Xi into a product of the family (X;)ier. By the
universal property of product, there exists a unique isomorphism

)\éet:HXil)H H XZ

iel JjeJief—1j
that makes the diagrams
pr,
HZEI XZ Xp
|
ol
)\Set | Tprp
34

Prs(p)
HjeJ Hief—lj X r Llief=1f(p) X

commute, for each p € I. Equation ([.LI.]) follows from the uniqueness part of the
universal property.

1.1.5. Definition. A laz Monoidal (resp. laz symmetric Monoidal) functor between lax
Monoidal (resp. lax symmetric Monoidal) categories

(F,¢'): (€, M) — (D,®",\)
consists of

e a functor F : € — D, and
e a morphism of functors

¢ @loFl s Fo!: @ =D, ¢ :09FX, > F&< X,
for each I € Ob 0,

such that

e ¢! =idp, for each 1-element set I, and
e for each map f : I — J in MorO (resp. Mor8) and for an arbitrary family
(X;)ier of objects of €, the diagram

®ZEIFXZ- ¢!

Afl lFAf (1.1.2)
Qi€ pf i J

QI€T gicf i FX,—— ®I€F QiEf X, L F i€ ®z‘€f*1in

F ®i6] XZ

commutes.

A Monoidal (resp. symmetric Monoidal) functor is a lax Monoidal (resp. lax symmetric
Monoidal) functor such that each ¢! is an isomorphism.
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1.1.6. Definition. A Monoidal transformation
t:(F,¢") — (G.¢"): (€& M) — (D & N)
is a natural transformation ¢ : ' — G such that for each I € Ob O the diagram

I
®iEIFXi L F ®’i€[ Xz

®i€’tl lt (1.1.3)

. o :
®ZEIGXZ- y G ®ze[ X
commutes.

A Monoidal category (€, ®!, ) is called strict if M/ : @ — @7 o @/ is the identity
transformation, for each order-preserving map f : I — J. A Monoidal (resp. symmetric
Monoidal) category is equivalent to a strict Monoidal (resp. strict symmetric Monoidal)
category by [B7, Theorem 1.2.7]. Strict Monoidal (resp. strict symmetric Monoidal) cat-

egories are in bijection with strict monoidal (resp. strict symmetric monoidal) categories
by [B7, Propositions 1.2.15, 1.2.17]. These results lead to the following useful observation.

1.1.7. Lemma (Coherence principle). An equation between isomorphisms of functors
constructed from the data of Monoidal (resp. symmetric Monoidal) category holds true if
it is satisfied for arbitrary strict Monoidal (resp. strict symmetric Monoidal) categories.

Proof. A Monoidal category € is Monoidally equivalent to a strict Monoidal category A
by [B7, Theorem 1.2.7]. The equation we consider holds in A by assumption. A Monoidal
equivalence (F,¢’) : € — A gives rise to a prism (in which edges are isomorphisms) with
commutative walls, whose bottom is the considered equation in A. Therefore, its top,
which is the required equation in €, also commutes. U

1.1.8. Remark. All isomorphisms of functors which can be constructed for arbitrary
symmetric strictly monoidal category data coincide if their source and target coincide.
Therefore, the same property holds for isomorphisms of functors which can be constructed
for arbitrary symmetric Monoidal category data. Similarly, all isomorphisms of functors
which can be constructed from A/ with monotonic f for arbitrary Monoidal category data
coincide if their source and target coincide.

We are going to define lax Monoidal categories enriched in a symmetric Monoidal
category V = (V, @4, )\{7) The definition of V-category is briefly recalled in Section [.2.
The reader is referred to [29] for more details concerning enriched categories.

For I,J € Ob O and a family of objects I x J 3 (i, ) — X;; € Ob"V, define a natural
permutation isomorphism

pr2:l><J—>J) pri:IxJ—1I

O(12) = [®]6J R X — ®(Z’J)GIXJXij . ®<76J XU} (1.1.4)

For a V-category € and I € Ob O, define C to be the V-category of functions on I with
values in C:

ObC'={maps I - ObC:i— X;}, C((X))ier, (Y)ier) = ®% C(X,,Y;).
Composition in €! is given by the morphism in V

9(12)

per = [(@5'C(X;, V7)) ®v (@' C(Y;, Zi) —

&I (€(X,, i) @y OV;, Z)) 0 @isTe(X,, 2)],
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for each X;,Y;,Z; € ObC, ¢ € I. The identity of an object (X;);cs is given by the
composite in 'V
F—I i€l1C
1%, = [y 2 @i 1y /5 @i e(X;, X,)].
In particular, €9 is the V-category 1 with one object *, whose endomorphism object is
the unit object 1y of V. For each 1-element set I, we identify C! with € via the obvious
isomorphism.

1.1.9. Definition. A laz Monoidal (vesp. lax symmetric Monoidal) V-category (€, @1, \/)
consists of the following data.

o A V-category C.

e A V-functor @ : @ — €, (X;)ier — @ X;, for each set I € Ob O, such that

®! = Ide, for each 1-element set I. For each map f : I — J in Mor O (resp.

Mor 8), introduce a V-functor @’ : €/ — €7 that to a function X : I — ObC,

i — X;, assigns the function J — Ob @, j — ®€/ 7 X;. The functor @/ acts on
morphisms via the morphism

JE€J o1

SEIC(X,, V) L @l @ (X, ;) S

~

@ (@ IX;, @'97IY)).

e A morphism of V-functors

el ol e/
®I% LX)J
e

consisting of morphisms
M1y - Q@9 X, @ @€V X;), X;€0be, iel,
for each map f: 1 — J in Mor O (resp. Mor 8).

These data are subject to the following conditions.

(a) For each order-preserving bijection f: [ — J,

M =id.
For each set I € Ob O and for each 1-element set J,
MN=T =id.

(b) for each pair of composable maps [ L 7% K from Mor © (resp. from Mor 8)
the equation

GJ
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holds true, where fi, = flj-1,-15 + f'g7'k — ¢ 'k, k € K, and the natural
transformation ®]{7€K Mk is given by the composite

Q—»K ®$EK>\f

1y 20— ®keK]1 ®/{76K€(®ief*1g*1kXi’ ®jeg*1k ®z‘ef*1j X)).

A Monoidal (resp. symmetric Monoidal) V-category is a lax Monoidal (resp. symmetric

Monoidal) V-category in which each A/ is an isomorphism.

A V-functor F : € — D gives rise to V-functor F! : €1 — DI (X})icr — (FX)ier,
that acts on morphisms via

. Q€I R Y ;
CI((X)ier, (YVa)ier) = @E1C(X,,Y;) ——% @EID(FX;, FY;) = D' ((FX)ier, (FY:)ier),
for each X;,Y; € ObC, i € I.

1.1.10. Definition. A laz Monoidal (resp. laz symmetric Monoidal) V-functor between
lax Monoidal (resp. lax symmetric Monoidal) V-categories

(F, ") : (C, @8, AL) — (D, @k, A))

consists of

e a V-functor F': € — D, and
e a morphism of V-functors

GIF—I>-DI

¢I
F

C——D

for each set I € Ob O,

such that ¢! = id, for each 1-element set I, and for each map f: I — J of Mor O (resp.
Mor §8) the equation

Jall
-DI
®é ®JEJ¢f / ®é
f
)‘G

®J<: el = @ ———|l oL (1.1.6)

\/\ )

holds true, where the natural transformation ®<7€J¢f s given by the composite

€~>J ] ®]€J¢f ey ) iy ) iy
1y 2 — @1y ®{f D@ IFX,, F o7 X))
= DY((& I FXy)jes, (F @777 Xi)jeg).
A Monoidal (resp. symmetric Monoidal) V-functor is a lax Monoidal (resp. lax symmetric
Monoidal) V-functor such that each ¢! is an isomorphism.
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An arbitrary V-natural transformation ¢ : F' — G : € — D, represented by a family
of morphisms tx : 1 — D(FX,GX), X € ObC, gives rise to a V-natural transformation
th: FI — GT: G — DI, represented by

>\®—>I ®§7€Itx.

Hixyey = [1v —— ©F 1y 5@ D(FX;, GX;) = D' ((FX;)ier, (GXi)ier)]
for each X; € ObC, i € I.
1.1.11. Definition. A Monoidal V-transformation
Er(F.00) = (Gou') (€85, M) — (D, @h, M)

is a V-natural transformation ¢t : ' — G such that for each I € ObO the following
equation holds:

FI
. T
GI utl -DI GI F -DI
GI I
®% ®L = ®L iy ®L (1.1.7)
P! F
/\
e G D e d/ D
G

1.1.12. Example. Let V = Cat be the symmetric Monoidal category of categories. The
tensor product is the Cartesian product of categories. A Cat-category is the same thing
as a 2-category; Cat-functors and Cat-natural transformations are particular cases of
2-functors and 2-transformations. A weak 2-functor is required to preserve compositions
and identities up to natural isomorphisms [B7), Definition A.1.2]. On the other hand, a
Cat-functor is a 2-functor that preserves compositions and identities on the nose. We
say that a Cat-functor is a strict 2-functor. Similarly, a Cat-natural transformation is
a strict 2-transformation. Thus, a symmetric Monoidal Cat-category (€, X!, Af) consists
of the following data.
o A 2-category €.
e A strict 2-functor X! : ¢! — ¢, for each I € ObS, such that X/ = Ide, for
each l-element set I. For a map f : [ — J in Mor§, introduce a 2-functor
X/ . ¢l — ¢/ that to a function X : I — Ob¢€, i — X, assigns the function
J — O0bC, j— Xi€/ i X;. The 2-functor X/ acts on categories of morphisms
via the functor

[Texv) =11 I ex.v) % [[e® <X, & y;).

icl jedicf-1j jed
e An invertible strict 2-transformation

¢ = ¢’

% FJ (1.1.8)
¢

consisting of invertible 1-morphisms A/ : K€/ X, — K7€/ Xi€/7' X,;, X, € Ob€,
for each map f: I — J in Mor 8.

&I

These data are required to satisfy the following conditions.
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(a) For each order-preserving bijection f: 1 — J,

A =id.
For each set I € Ob O and for each 1-element set J,
A7 =id.

(b) For each pair of composable maps [ L 7% K from Mor$ the diagram

Af

gieIXi i€ qicf i X;

Afgl l/\g (1.1.9)

. kEK A fk . . .
keK qicf~lg 'k X keK cg 1k pief1t
X Xi€f 9 X; X X<y [ief I X;

commutes, where fy = fly15-15: g7k — g7k, k€ K.
A symmetric Monoidal Cat-category is a particular case of a symmetric monoidal
2-category, as defined e.g. in [B7], Definition A.6.1].

1.1.13. Example. Let V = (V,®1%, )\{7) be a symmetric Monoidal category. The 2-cat-
egory € = V-Cat of V-categories, V-functors, and V-natural transformations is a sym-
metric Monoidal Cat-category. Indeed, a strict 2-functor X! : ¢/ — € is defined as
follows. The tensor product of V-categories €;, i € I, is a V-category C = KI€IC;
whose set of objects is ObC = [[,.; ObC;, and whose objects of morphisms are given
by C((X;)ier, Yi)ier) = @5'Ci(X;,Ys), for each X;,Y; € ObC;, i € I. Composition in €
is given by the morphism in V

pe = [(F1Ci(X:, V7)) @v (@51€,(Y5, Z,)) ~

®%7€I (GZ(XM K) ® el()/za Zz)) vk ®%7€IGZ(XZ, Zz)j|7
for each X;,Y;, Z; € ObC;, i € I. For each X; € Ob(;, ¢ € I, the identity of the object
(X)ier € ObC is given by the composite in V

oI icl1C;

1(8X¢)ie, = [1y AN @y bl N ®57C(Xi, X))
The tensor product of V-functors F; : €, — D;, i € I, is a V-functor F' = X! F; such
that Ob F' = [[,.; Ob F; and
F = @§ F: @FCi(X;,Y) — @F Di(F.X, FY),
for each X;,Y; € ObC;, i € I. The tensor product of V-natural transformations
riF,—G;:C—D;, i€l

is a V-natural transformation r = M€/, whose components are

A2 ' i€l '
r=[1y —— ®F1y B n, @5 Di(F X, GiX,)],
for each X; € ObG;, i € I. Showing that X/ preserves compositions and identities is a
straightforward computation.
For each map f : I — J, 2-transformation ([.I.§) is given by the family of V-functors
AL €@, — XIS )€/ @) defined by

)\éet : H Obe;, — H H ObC;, (Xy)ier — ((Xi)ies—1j)jer,

iel JeJief1j
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on objects, and by
N 16X, ¥) S e i 6(X,, V) (1110

on morphisms. It is not difficult to check that A]é is a strict 2-transformation. Equa-

tion (L.1.9) for Aé follows from similar equation ([L.1.5) for M;. Therefore, € = V-Cat is

a symmetric Monoidal Cat-category.

1.1.14. Base change. Let (B,37) : (V,®L,\) — (W, %, M) be a lax symmetric
Monoidal functor. It gives rise to a lax symmetric Monoidal Cat-functor

(B,, ") : V-Cat — W-Cat,

which we are going to describe. For notational simplicity the tensor product in both
categories V and W is denoted by ®.

To a V-category € a W-category B,C is assigned, with the same set of objects. For
each pair of objects X, Y € ObC = Ob B,C, there is an object B,C(X,Y) = BC(X,Y) of
the category W. The identity of an object X € ObC = Ob B,C is

B.C 37 B1%
1% = [1w — Bly —5 BE(X, X)].
Composition in B,C is given by
e = [BC(X,Y)® Be(Y, 2) 5 Be(x,v) e ey, 2)) 25 Be(x, 7)),
for each X,Y,Z € Ob €. The right identity axiom follows from the commutative diagram

<z B c
BE(X,Y)® 1w 2% Be(X,Y) @ Bly — % . BE(X,Y)® BE(Y,Y)

lﬁﬂ s
%)

B(1e1$%

A BE(X,Y)®1y) —— B(C(X,Y)®C(Y,Y))
y Bpe
BC(X,Y) BC(X,Y)

where the left trapezoid is equation ([LI-J) written for the map I. : 1 — 2, the square
commutes by the naturality of 42, and the bottom trapezoid is a consequence of the right
identity axiom for 1§. A similar computation shows that 1§*e is also a left identity. The
associativity of upg, e is expressed by the following equation:

B.C(W, X) ® B.C(X,Y) ® B.C(Y, Z) -2+ B.C(W, X) ® (B.C(X,Y) @ B.C(Y, Z))

AV 1®up,.e
(B.e(W, X)® B.(X,Y))® B.C(Y, Z) B.C(W,X)® B.C(X, Z)
UBe®1 UB.C
KBye

B.C(W,Y) ® B.C(Y, Z) B.C(W, Z)
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Expanding out the top-right path yields

[Be(W, X) @ BC(X,Y) ® BC(Y, Z) X5, pe(w, X) @ (BE(X,Y) ® BE(Y, Z))

1®ﬂ —— BC(W, X)® B(C(X,Y)® C(Y,Z2))

198re, pe(w, X) @ Be(X, z) L Be(W, X) @ (X, Z)) 2L Be(W, 2)]
— [BE(W, X) @ BE(X,Y) ® BE(Y, Z) . Be(W, X) ® (BE(X,Y) @ BE(Y, )

195, Be(W, X) @ B(C(X,Y) ® C(Y, Z))

2 BEW, X) ® (C(X,Y) @ C(Y, Z)))

M B(C(W, X) ® C(X, Z)) 2% Be(W, Z)]
— [BE(W,X) ® Be(X,Y) @ BE(Y, z) L5 Be(W, X) ® €(X,Y) ® C(Y, 2))

BAY

— B(C(W, X) @ (C(X,Y) ® C(Y, Z)))

B(1®pe)
5

B(C(W, X) ® C(X, Z)) 2% Be(W, Z)]
by equation ([.I.4) written for the map IV : 3 — 2. Similarly, the left-bottom path
becomes
3 VI
[BE(W, X) ® BE(X,Y) ® BC(Y, Z) L5 Be(W, X) @ C(X,Y) @ C(Y, Z)) L
B((E(W, X) ® €(X,Y)) @ C(Y, Z)) 220, B(e(W,Y) ® C(Y, 2)) 21 Be(W, z)].

Both paths coincide by the associativity of pe. Therefore B,C is a W-category.
To a V-functor F : € — D a W-functor B, F : B,C — B,D, with ObB,F = Ob F, is

assigned. Its action on morphisms is given by

(B.F)xy = [B(X,Y) 225 BD(FX,FY)],  X,Y € ObE.
For each triple X, Y, Z € ObC, consider the diagram
BFx y®BFy,z
BC(X,Y)® BC(Y, Z) BD(FX,FY)® BD(FY,FZ)
B? B2
BE(X,Y) ® C(Y, Z)) —Xrea gy (px, FY) @ D(FY, FZ))
Bpe Bup
BFx z
BC(X, Z) ’ BD(FX,FZ)

The top square commutes by the naturality of 32, the bottom square commutes since F
preserves composition. The composite in the left (resp. right) column is equal to pp,e
(resp. pp,p). Thus B,F preserves composition. Compatibility with identities is obvious:
B.C B1$ BFx,x
15 %(B.F)xx = [nw 2, Bly 25 BC(X,X) —= BD(FX,FX)]

1D

= [1w 25 By 255 BD(FX, FX)] = 152,
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BE(X,Y) @ 1w 2% BE(X,Y) @ Bly — ", BD(FX, FY) @ BD(FY,GY)

B2 B2
l B(Fx,y®ty)
g BE(X,Y)® 1y) B(D(FX, FY)® D(FY,GY))
y :
Bu®
BC(X,Y) BD(FX,GY)
BXy; BHD
B(tx®Gx,y)
! B(ly® €(X, V) 2N pp(px, GX) ® D(GX, GY))
%z ”

1w BC(X,Y) 2 Bly® BE(X,Y)

Btx®@BGx,y
—

BD(FX,GX)® BD(GX,GY)
DiAGrAM 1.1.

so that B,F' is a W-functor.
To a V-natural transformation ¢t : F© — G : € — D a W-natural transformation
B.t: B,F — B,G : B,C — B,D is assigned. Its components are given by

Btx

(B.t)x = [1w L5 By 25 BD(FX,GX)], X € Obe.

The naturality of B,t is expressed by the following equation:

B.C(X,Y) a B.C(X,Y) @ 1
A (B« F)x,y®@(Bst)y
1y ® B,C(X,Y) B.D(FX,FY)® B.D(FY,GY)
(B«t)x ®(B«G) x,y KB.D
HKBs«D

B.D(FX,GX)® B, D(GX,GY) B.D(FX,GY)

It coincides with the exterior of Diagram [[.1. The top right square and the bottom right
square commute by the naturality of 3%. The pentagon commutes since ¢ is a V-natural
transformation. The remaining quadrilaterals are instances of equation ([[.1.9) written for
the maps|. : 1 — 2 and .l:1 — 2. Thus B,t is a W-natural transformation.

It is obvious that B, is compatible with composition of 1-morphisms and with action
of 1-morphism on 2-morphisms. It is also compatible with vertical composition of 2-mor-
phisms. Indeed, suppose t : FF — G : C — D and u: G — H : € — D are V-natural
transformations. The composite tu : ' — H : € — D has components

o—2

(tu)x = [1y 22— 1y ® Ty X295 D(FX, GX) @ D(GX, HX) X2 D(FX, FH)],
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for each X € Ob C. Consider the diagram

a—2 o o “
Ly Ty @Iy 2 Bly® Bly X2, BD(FX,GX) ® BD(GX, HX)

ﬁZ‘/ ﬂ2‘/ ‘/132
BN T2

Bly B(1y ® 1y) B(D(FX,GX)® D(GX, HX))

B(tx@ux)

The pentagon is equation ([[I.2) written for the map @ — 2. The square commutes
by the naturality of 32. The top-right composite followed by By yields the component
(B.(tu))x, whereas the left-bottom composite followed by Bup is equal to ((B.t)(B.u))x.
We conclude that B, (tu) = (B.t)(B.u).

The above considerations can be summarized by saying that B, : V-Cat — W-Cat is
a Cat-functor. In order to turn it into a lax symmetric Monoidal Cat-functor we need a
natural transformation of Cat-functors

(V-Cat)! N (W-Cat)!
! !
V-Cat ——— W-Cat

for each set I € Ob 0. For an arbitrary family (C;)ier of V-categories, there is a W-functor
Bl K€ B,C; — B, K€ @, identity on objects, whose action on morphisms is given by

. 1 .
(ﬁi)(Xi)iGI:(Yi)iel = [®Z€IBei(Xi7 Yl) ﬁ_> B ®Z€I ei(Xiv YZ)}
The proof that 3 is a W-functor is based on the following technical lemma.

1.1.15. Lemma. Let I, J € ObO. For each family of objects I x.J 3 (i,j) — X;; € Ob"V,
the diagram

. 4 ®I€Ipl : 87 . 4
®J€J ®z€[ BXz‘j ®]€JB ®z€l Xij B ®]€J ®Z€IX’ij

a(u)J |BU(12)
. , ®'€lp’ - ! j ‘
®z€] ®jeJ BXij —ﬂ> ®Z€IB ®]€J Xij L B ®zel ®J€JXZ‘j
commutes.
Proof. The diagram in question coincides with the exterior of the following diagram:
. . jeigl A 7 ; ;
®]eJ ®z€] BXZ-]- ®—> ®]€JB ®z€[ Xz'j L B ®]€J ®zeIXij

pro:IxXJ—Jy_1 pro:IxXJ—J\_1
(M ) By )

ﬁIxJ

®(i’j)€IXJBXZ‘j B ®(z’,j)€l><J Xz‘j

IxJ—T pri:IxJ—I
Aot BX
W v

el ojed ® €I er jeJ B! el et
R @7 BXU — R BRI Xij — B ®J Xij

The pentagons are instances of equation ([[.1.2). O
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That 3! preserves composition follows from the commutative diagram

(@1 BE,(X,,Y))) ® (& BE,(Y;, Z) 5 (B! €(X,,Y))) @ (B &< €,(Y;, Z))
7(12) B2
®"1(BC;(X;,Y;) ® BCi(Y:, Z:)) B((®"C,(X;, V) ® (2C,(Y;, Z4)))
®iel g2 Boqa)
QTB(Ci(X;,Y;) ® Ci(Yi, Z;)) z B @™ (€(X,,Y;) ® Ci(Yi, Z;))
@I Bue, B®' e,
p

R BC(X;, Z;)

B @ €,(X;, Z;)

where the hexagon is a particular case of Lemma [[.LT.T5, and the square commutes by
the naturality of 4’. The composite in the left (resp. right) column is equal to ugierp, e,
(resp. pp,micre,). Compatibility with identities follows from the commutative diagram

A?VHI ®Iﬂg ®iEIBl)e(7l. A
Iy ———— @1y ———— @' Bly ————— @€' BC(X;, X))
ﬁ@l ﬁ’l lﬁf
B g—! Bl 4
Bly B®!'1ly—— = B C(X;, X;)

where the pentagon is equation ([.I.4) written for the map @ — I, and the square

%Z(E)I B ei, the left-bottom

. i)iel

composite is equal to 1&&;:56 Therefore 3, : XK€ B,C, — B, X! @, is a W-functor.
The Cat-naturality of 3/ means that it is compatible with V-functors and with V-nat-

ural transformations. The former condition is expressed by the equation

commutes by the naturality of 3/. The top composite is equal to 1

I
&iGIB*Gi L B* &iel el
&iGIB*Fil — ‘/B* &iGIFi

, Bl '
@ZEIB*@Z- s B* gze[ Di

for an arbitrary family of V-functors F; : €; — D;, ¢ € I. It holds true by the naturality
of 3'. The latter condition is expressed by the equation

Bi Bl

Xi€! B,€; —— B, KI€! ¢ Xi€! B,€; —— B, KI€! ¢
. Ri€! B, ¢; ) ] ) . B.XE€lg; .
i€l B, F; |[———| K1 B.G; B.Ri€lG; = KCIB.F; B.Ri€I |, |———| B.KI€I G,
, B . , Bl ,
&zGIB*-Di SN B* IXZEI ®z &ZGIB*-Di SN B* gzel ®z

for arbitrary V-natural transformations t; : F; — G; : ¢, — D;, i € I. Comparing
components of the V-natural transformations in both sides of the equation, we obtain an
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I , P | 4
H \7(]1\7, Xz) 4@)\7 R V(@)I]lv, ®Z€IX’i) Ky ) V(]]_V7 ®Z€IXZ')

el

V(1)) V(1,M)

. o vy L) S
V(®I]1\7> ®]€J ®z€f 1y X. ) —> V(]lv ®]€J ®z€f 1 Xz)

kéet V(>‘(771) V(kg_h%l)
icJ oicf=1j €] oief1lj V(®jEJA€Hf_Ij’1) J icJ oicflj
V(@I @€ 1y, @€ @€ X;) V(@7 1y, @€ @€ X))
5L ®y o—f L %
II ®y 1T v(xy 1) 1.
[I IT V(W Xi) 5 [T V(@ iy, @ X;) 7 T V(ly, @ X)
jeJief-1j jeJ jeJ

DIAGRAM 1.2.

equation expressed by the exterior of the diagram

®—>I ®Iﬁz ®1€IB t
Ly @y — @ Bly ————— @€ BD,(F,X;, G; X;)

IBQ‘/ ﬂI‘/ J/IBI
B! Bl (t;)x,

Bly B 1y ———5 B Dy(FX;, GiX;)

where X; € ObG;, i € I. The square commutes by the naturality of 57, the pentagon is
equation ([[L1.9) written for the map @ — I. Finally, equation ([.1.4) for 8! follows from

analogous equation ([LT.2) for 3.

1.1.16. Example. Let V = (V, ®4, )\{7) be a symmetric Monoidal category. There is a
lax symmetric Monoidal functor (F ¢'):V — Set, F: X — V(1y, X),
gt .
¢I — [Hz‘el \7(]]_V7 XZ) —> \7(®I]1 ®z€IX) g V(]lv’ ®Z€IX2‘)}-
Clearly, ¢! = id for each 1-element set /. Equation ([.1.2) coincides with the exterior of
Diagram [[.3. The hexagon expresses the naturality of )\{7. The bottom square commutes
since ®3, is a functor. The square in the middle is a consequence of equation ([[I.1])

written for the par of maps @ — I L, J. The functor (F, ¢") gives rise to a lax symmetric
Monoidal Cat-functor (F,,¢L) : V-Cat — Cat. For a V-category €, denote by € the
ordinary category F,C. Sometimes it is called the underlying category of the V-category
€. For example, if V = Cat, and € is a Cat-category (i.c., a 2-category), then € is the
ordinary category obtained from C by forgetting 2-morphisms.

1.2. Multicategories

1.2.1. Multicategories. We refer the reader to [BY, Chapter 2] for a modern introduc-
tion to multicategories.

The notion of multicategory (known also as colored operad or pseudo-tensor cate-
gory) is a many-object version of the notion of operad. If morphisms in a category are
considered as analogous to functions, morphisms in a multicategory are analogous to
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functions in several variables. The most familiar example of multicategory is the multi-
category of vector spaces and multilinear maps. An arrow in a multicategory looks like
X1, Xo, ..., X, = Y, with a finite sequence of objects as the source and one object as the
target, and composition turns a tree of arrows into a single arrow.

We begin by giving formal definitions of multicategory, multifunctor, and multinatural
transformation.

1.2.2. Definition. A multiquiver C consists of a set of objects Ob C and a set of mor-
phisms C((X;)ier;Y), for each I € Ob O and X;,Y € ObC, ¢ € I, such that

C((Xi)iel§ Y) = C((Xafl(j))jeJ%Y)a

for each order-preserving bijection o : I — J. A morphism of multiquivers F' : C — D
consists of a function Ob F': ObC — ObD, X — F X, and functions

F=Fxpey : C(Xi)iennY) = D(FXi)ier; FY),  f—= Ff,
for each I € ObO and X;,Y € ObC, i € I, such that F(x,),.,;y = F(x
order-preserving bijection o : I — J.

1 ())sessY for each

1.2.3. Remark. If I = {i; < iy <--- <1i,} is a linearly ordered set and I — n, iy — k,
is the unique order-preserving bijection, then it follows that
C(Xi)iern V) = C((Xiken} Y) = C(X4,, Xy, -, X V).
Elements of C((X;);cr;Y) are depicted as arrows (X;);e; — Y, or as
Xi, Xiyy oo, Xy, = Y,

If I = &, elements of C(;Y') are depicted as () — Y.

The following definition of (symmetric) multicategory is very close to Leinster’s defi-
nition of ‘fat symmetric multicategory’ [BH, Definition A.2.1].
1.2.4. Definition. A (symmetric) multicategory C consists of the following data.

e A multiquiver C.
e For each ¢ : I — J in Mor O (resp. Mor§) and X,;,Y;,Z € ObC, i€, je J, a
function

o = 1S+ [T CUX oY) x C(V)yers 2) = C(Xiers 2), (121)
jeJ
called composition and written
((fi)ier, 9) = (fi)jes -6 9-
It is required to be compatible with the multiquiver structure. Namely, suppose

we are given a commutative diagram in O (resp. 8§ in the symmetric case)

¢
e

I J
|,
K——1L

where the vertical arrows are order-preserving bijections. Suppose further that
X, Y, U, Vi € ObC,i eI, je J, ke K, e L, are objects of C such that
X; = Usy and Y = V), for each ¢ € I, j € J. Then the mapping

g+ | [ CAUkep-13 Vi) x C(Viers Z2) — C((Un)kex Z)

leL
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must coincide with ([[.2.1]).
e For each X € Ob(C, an element 1x € C(X; X), called the identity of X.
These data are required to satisfy the following axioms.

e Associativity:
(fi)ies o ((gr)rer w h) = ((fi)jevp—1k ox Gr) “ou I

for each pair of composable maps [ 2 7Y% K in Mor® (resp. Mor §) and for
arbitrary morphisms f; : (Xi)ico-1; — Y5, J € J, g (Y))jep-16 — Zi, k € K,
h: (Zk)kEK — W. Here (bk = ¢‘¢_1¢_1k : (ﬁ_lw_l]{] — 1/1_1]%', ke K.

e Identity:

(Ix)ier ia, f=f=f 1y,
for each morphism f : (X;);er — Y, where > : I — 1 is the only map.
Restricting to morphisms with one input object as the source, we find that an arbitrary
multicategory (symmetric or not) has an underlying category.
Suppose C is a symmetric multicategory, ¢ : I — J is an arbitrary bijection, and

X;,Y; € ObC i€, j € J,are objects of C such that X; = Yy, for each i € I. For each
object W € Ob C, define a mapping

C(6:W) : (V) )yer W) = C((X e W), [ (yhyeso /o (122)
where 1y, € C(Y};Y;) = C((Xi)icp1;;Y;), j € J. The identity axiom and the compatibility
of composition with the multiquiver structure imply that

Clp; W) =id : C((Y)jes;s W) — C((Xi)ier;: W),

for each order-preserving bijection ¢ : I — J. Furthermore, suppose [ 2 7% K are
bijections, and X;,Y;,Z, € ObC, ¢ € I, j € J, k € K, are objects of C such that
Xi = Yy4), Yj = Zy(), for each i € I, j € J. Then the equation

C(p;W) C(gsW)
—_—

Clp; W) = [C((Zi)ker; W) C((Xy)ier; W)

holds true. Indeed, for an arbitrary f: (Zx)rex — W, we have
Clo; WC(o; W)(f) = (Iyy)jes o ((Lz ke - F) = ((Ivy)jep—1k o 12) g 00 f

by the associativity axiom. By the identity axiom, (1y,);cy-1x » 1z, = 1z, k € K, and
the equation follows. In particular, C(¢; W) is a bijection with the inverse C(¢~1; W).

C((Yj)jeJQ W)

1.2.5. Proposition. Suppose we are given a commutative diagram

Iy
[, ]
K—r

where the vertical arrows are bijections. Suppose further that X;,Y;, Uy, V,; € ObC, i € I,
j€J, ke K,l €L, are objects of C such that X; = U, ;) and Y; = V,(;), for each i € I,
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j € J. Then the diagram

ez C(Uikep-15 Vi) % C((Viier; Z2) n C(U)rex: Z)
[ier CloisVi)xC(7:2)

[Tier X ies17-10); Yory) X C((Y))jes 2) Cle:2)
Aoy X1

[Les C(Xiieo15: Y5) x C((V))jes Z) " C((Xi)ier; Z)

commutes, where o; = 0|,-14-1;: 0~ W — 71, | € L, are the induced bijections.

Proof. Suppose f; : (Up)rep-11 = Vi, L € L, g : (V))ier, — Z are morphisms in C. Evaluat-
ing their image along the left-bottom composite yields

(C(O-T(j); Y})(f’r(j)))jej ‘P C(7'7 Z)(g) = ((]‘Uk)kEw*lT(j) ‘o) fT(j))jeJ 5 ((1‘/1)16L . g)
B <((1U’“)ke¢_ll Ky fl) > 1Vl>leL o1 9,

by the associativity axiom for the pair of maps [ LN Ny By the identity axiom,
(Lo kew-11 00 f1) » vy = Q) kep-11 o0 fi-
Since ¢ = o1, it follows that
(Clors Yi) (i) sy w0 €T = (v kep-11 01 J1) 1y, 0w 9
= (ly )keK o ((fl)leL " 9)
Clos Z)((fiher v 9),

by the associativity axiom for the pair of maps I = K Y, L. The proposition is proven.

U

Proposition implies, in particular, that a symmetric multicategory can be defined
as a multicategory C equipped with a family of bijections ([.2.9), satisfying axioms. We
prefer Definition since it allows a uniform treatment of both non-symmetric and
symmetric cases.

1.2.6. Definition. Suppose C and D are (symmetric) multicategories. A (symmetric)
multifunctor F : C — D is a morphism of multiquivers such that composition and identi-
ties are preserved.

The following proposition yields a useful criterion for a multifunctor to be symmetric.

1.2.7. Proposition. Suppose C and D are symmetric multicategories, F' : C — D is a
multifunctor. It is a symmetric multifunctor if and only if for each bijection o : I — K
and objects X;, U, Z € ObC, i € I, k € K, such that X; = Uy, for each i € I, the
diagram

Fixpierz

C((Xi)ier; Z) D((FXy)ier; FZ)

C(U;Z)l lD(U;FZ)
F

UkkekiZ
C((Uk)k;eK§Z) D((FUk)keKQFZ)
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commutes.

Proof. Obviously, the formulated condition is necessary. Let us prove it is also sufficient.
Note that, for each map ¢ : I — J in Mor §, there is a bijection o : I — K in Mor § such

-1
that the composite K Z— I 2, Jis an order-preserving map. Indeed, take K = I as
sets, and introduce a linear ordering < on K by the rule:

k<l € ok) <o) or (p(k) = (k) and k < K).

Then the identity map I — K satisfies the required property. Suppose X;,Y;, Z € ObC,
i € I, j € J, are objects of C. Denote the composite 0= - ¢ : K — J by 1 and take
Uy = Xo-1), k € K. By Proposition [.2.9, the diagram

e
HjEJ C((Uk)kew—lﬁ YJ) X C((Yj)jeJ§ Z) — C((Uk)rer; 2)
HjGJC(Jj;Yj)Xlk lC(U;Z)
uC
HjeJ C((Xi)iewlj? YE) X C((Yj)jeJ% Z) —¢> C((Xi)iel; Z)

commutes, where o; = o|4-1;: ¢~'j — 714, j € J. A similar diagram for D and for the
objects F'.X;, Uy, FY;, FZ, 1€ I, j € J, k € K, commutes by the same proposition.
These diagrams are the ceiling and the floor of a prism whose edges are components of
the multifunctor F'. Three out of four side faces of the prism commute by assumptions.
Since [;c; C(oy;Y;) x 1 is a bijection, the remaining face

e

[Tjes C((Xiies—153Y5) x C((Y)jers Z) ————— C((Xi)ier; 2)
e F(xi>i€¢U:YjXF(Yj)]-eJ;{ lF(Xi)iGI?Z
[T, DUFX)ico15: FYy) % CUFY;)jesi FZ) " C((FX.)iers F2)
commutes as well, hence F' preserves an arbitrary composition. O

1.2.8. Definition. Suppose F,G : C — D are multifunctors. A multinatural transfor-
mation r : F' — G : C — D is a family of elements rx € D(FX;GX), X € Ob(, such
that

Ffwry = (Txi)z‘el 14, G,

for each morphism f : (X;);er — Y, where > : [ — 1 is the only map.

1.2.9. Example. Consider the symmetric multicategory k-Mod. Its objects are k-mod-
ules. A morphism f € kﬁd((Xi)iel; Y) is a k-multilinear map f : [[..; X; — Y. For
amap ¢ : I — J in Mor§, the composite of k-multilinear maps f; : Hz‘ewlj X, — Y,
jeJ,and g:[];.;Y; — Z is the k-multilinear map

jes i
=11 I x =20y 2 2
il jET icp-1j jed

1.2.10. Example. Consider the symmetric multicategory gr. Its objects are Z-graded
k-modules, i.e., functions X : Z — Obk-Mod, n — X". A morphism f € gr((X;)icr;Y)
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is a family of k-multilinear maps
(e T X0 = YEerm) e
iel

of degree 0. For a map ¢ : I — J, the composite of morphisms

(M) ;ep—1; ni Y ico—1; M .
e [ e R T At
i€pLj
g = (gmaies Hyjma N szeij)(mj)EZJ
jeJ

is the k-multilinear map

(n;)
[T =] I1 o et e
iel jeJ icgp—1j jeJ
X ep—1,m4) o
gies 1 S (D) o
RN 2?§:]€&7§:l€¢ J - 2?22261 ,

where the sign
i,pel

o= > nm (1.2.3)

i<p, ¢(i)>¢(p)
is prescribed by the Koszul sign rule.
1.2.11. Example. Consider the symmetric multicategory aé Its objects are Z-graded
k-modules X equipped with a differential, a family of k-linear maps (d : X™ — X"™!), ¢z

such that d> = 0. A morphism f € aé((Xi)ie[;Y) is a chain multimap, i.e., an element
f € gr((X,)ier;Y) such that

TLo 220ty 4 yterian]

icl

_ Z(_l)zbq n; |:H X [Lics[(Di<gsds(1)isql HXiniJr&q flrithiqier Y1+ iermi

qel i€l i€l

for all (n;);e; € Z'. Here §;, = 1 if i = q and d;;, = 0 otherwise. Composition in gr of
chain multimaps is again a chain multimap. Therefore, there is a faithful multifunctor
dg — gr that forgets the differential.

Let V be a symmetric Monoidal category. We are going to define V-multicategories,
V-multifunctors, and V-multinatural transformations. When V=Set, we recover the above
definitions. The reason we are introducing also multicategories enriched in a symmetric
Monoidal category is because the symmetric multicategory of unital A.-categories may
be considered, as we will see, as a multicategory enriched in the category of k-linear
categories.

1.2.12. Definition. A V-multiquiver C consists of a set of objects Ob C and an object of
morphisms C((X;)er;Y) € Ob'V, for each I € ObO and X;,Y € ObC, i € I, such that

C(Xi)ier; V) = U(Xo1(5))jers ¥,
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for each order-preserving bijection o : I — J. A morphism of V-multiquivers F : C — D
consists of a function Ob F': ObC — ObD, X +— F X, and morphisms in 'V

= F(Xi)iel;Y : C(<Xi>z'el§ Y) - D((FXi)zGI; FY),

for each I € Ob O and X;,Y € Ob(, ¢ € I, such that Fix,,.,.v = F(x
order-preserving bijection o : I — J.

o—1()sesiY for each

A map ¢ : I — J gives rise to amap ¢ : I UJ U1 — J U1 given by

Bon =id: JUL = JUL, @)= (% T Jul). (1.2.4)

1.2.13. Definition. A (symmetric) V-multicategory C consists of the following data.

e A V-multiquiver C.
e For each ¢ : I — J in Mor O (resp. Mor§) and X,;,Y;,Z € ObC,iel,je J, a
morphism in V

po = g : @7 (C(Xieg—15: Y))jes, C((Y)jers Z2)) — C((Xi)ier: 2), (1.2.5)
called composition. It is required to be compatible with the V-multiquiver struc-

ture. Namely, suppose we are given a commutative diagram in O (resp. 8)

¢
_—

1 J
|, |
K——1L
where the vertical arrows are order-preserving bijections. Suppose further that

X, YU, Vi e ObCoie I, je J, ke K, € L, are objects of C such that
Xi = U,y and Y = Vo), for each 7 € I, j € J. Then the morphism

ty : @ ((C((U)key-11 Vi) )ier, C((Vi)ier; Z)) — C((Uk) ke Z)
must coincide with ([[.2.5).
e For each X € ObC, a morphism 1x = 1§ : 1y — C(X;X) in V, called the
wdentity of X.

These data are required to satisfy the following axioms.

e Associativity: for each pair of composable maps [ 2 7% K in Mor® (resp.
Mor §) and objects X;,Y;, Z,,W € ObC, i € I, j € J, k € K, Diagram [[.3
commutes. The map ¢ is the restriction ¢|g-14-15 : ¢~k — vk, k € K.
The map id; > : JU K U1 — J U1 preserves the order, whereas the map
Y JUKU1 — KU1 is not necessarily order-preserving; it is given by ([:2.4).

o Identity:

(X)) 25 (X 2) 8 1y 125

C(X)ien; Z2) ® C(Z; Z) 2255 C((Xi)ier; Z)] =id,  (1.2.6)
[C(Xi)ier: 2) 2 @™ (Mv)ier, C((Xi)ier: Z)
@M [(C(Xi X)) s CU(X)ier: 2)] 25 C(Xi)iers 2)] =1id,  (1.2.7)
foreach I € ObO and X;, Z € ObC, i € I. Here>: I — 1 is the only map.

) @I ((1x,)ier,1)
_— 5



CT WVYDVI(

@7 (C(XiesY)) jer @ (SO jev10 Z20)) eger C(Zidiercs W)

)\i\;jJ U
& UKL [(C((Xi)ieqs—lj% Yj))jej’ (CUY))iew45 Z1)) eser CUZR) ke W)] 7 (1)je51)
3 & (CU(Xi)ieo 153 Y9)) sy C(Y)yess W)
KU1 K@)w*lkul [(CUXDies1:Y9)) sepmr CUYG ) jew11s Zi)] ) o S Frers W)] "
DK (g e 1o 1) C((Xi)ier; W)
Heyp

@KU [(C((Xi)ie(qw)_l(k); Zk))keK’ C((Zk)ker; Wﬂ

SHIHOOHLVYOLLINN "¢'T

6¢



30 1. TOOLS

1.2.14. Definition. Suppose C and D are (symmetric) multicategories. A (symmetric)
V-multifunctor F' : C — D is a morphism of multiquivers such that composition and
identities are preserved. The former means that the diagram

"

@ [(C((Xi)ies153Y5)) sy C((Y))jess Z)] C((Xi)ier: Z)

®Ju1[(F(X Dicg—143Y; )jGJ’F(Yj)jGJ;Z}J ‘/F(Xi)iel?z
D

®JUL [(D((FXi)ieqﬁ*lj? FY])) D((FY))jer; FZ)} L D((FXy)ier; F'Z)

jeJ’

commutes, for each map ¢ : I — J in Mor O (resp. Mor8) and X;,Y;,Z € ObC, i € I,
j € J. Preservation of identities is expressed by the equation
C
[y =5 C(X; X) 255 D(FX; FX)] = 19,
for each X € Ob C.

1.2.15. Definition. A V-multinatural transformation r : F — G : C — D is a family of
morphisms 7x : 1y — D(FX;GX), X € Ob(C, such that the diagram

)\I .
C((Xi)ier; Y) : C((Xy)ienn V) @ Ly
)\\17;>Iu1 F(Xi)iel?y®ry
@™ (Lv)ier, C((Xi)ier; V)] D(FX,)ier; FY)®D(FY;GY)
M (rx,)ier,G(x,);e 3] P
D

My
@ (D(FX;, GX)ier, DI(GX)iers GY )]~ D((FX)ier; GY)
commutes, for each I € ObO and X;,Y € Ob(C, i € I, where >: I — 1 is the only map.

1.2.16. From lax Monoidal categories to multicategories and back. The aim of
the present section is to justify the point of view that multicategories are just as good as
lax Monoidal categories. In the passage below, we briefly explain the ideas. In order to
simplify the way of speaking, we speak about non-symmetric case. Similar results hold
true in symmetric case as well.

We will shortly see that a lax Monoidal category € = (€, ®!, \/) gives rise to a

multicategory € whose objects are those of €, and a morphism
Xl,XQ,...,Xn —Y

in Cis a morphism
®n(X1,X2, e ,Xn) —Y

in €. Composition in @ is derived from composition and tensor product in C. Furthermore,
a lax Monoidal functor (F, ¢’) : € — D defines a multifunctor F:€ — D, and a Monoidal
transformation ¢ : (£, ') — (G, ") : € — D gives rise to a multmatural transformation
t:F—G:¢—=D. Conversely, an arbitrary multlfunctor € — @ is of the form F for a
unique /', and an arbitrary multinatural transformation F— G:C— Dis of the form 7
for a unique t.
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Here is a fancy way of seeing these statements. Note that lax Monoidal categories, lax
Monoidal functors, and Monoidal transformations form a 2-category LaxMonCat. Sim-
ilarly, multicategories, multifunctors, and multinatural transformations form a 2-category
Multicat. A 2-category is the same thlng as a Cat- Category in the sense of enriched

categories. The correspondences € — G F— F t — t define a Cat-functor
LaxMonCat — Multicat,

which is a special case of a 2-functor, the difference being that a Cat-functor preserves
composition of 1I-morphisms on the nose, not only up to 2-isomorphisms. The Cat-functor
LaxMonCat — Multicat is fully faithful (in enriched sense). In particular, it induces a
Cat-equivalence between LaxMonCat and its essential image, i.e., the full Cat-subcate-
gory of Multicat consisting of multicategories isomorphic to € for some €. These can be
described by a simple axiom, which leads to the notion of lax representable multicategory.
The essence of the axiom is the existence, for each finite sequence (X;);c; of objects, of
an object X and a morphisms (X;);e; — X enjoying a universal property resembling that
of tensor product of modules. The notion of lax representable multicategory seems to be
more satisfactory than that of lax Monoidal category. It formalizes a notion of monoidal
category in which tensor product is only defined up to canonical isomorphism. For ex-
ample, as in the case of modules, it is not important to remember the construction of
tensor product; it is only the universal property of tensor product that matters. Another
advantage is that there is no need to bother with morphisms \/.

The relation between lax Monoidal categories and multicategories is apparently part
of common consciousness of category-theorists, see e.g. [B3, 1], BY]. We discuss it in
details since it is crucial for what follows.

The results of this section are true in more general, enriched setting. We did not aim
to exhaust the subject and the reader. Thus we have decided to provide proofs in the case
V = Set only, with a few exceptions, where for the sake of being rigorous we included
proofs of propositions that are used in the sequel in the case of general V. The reader
is advised to skip these proofs on the first reading. In particular, since we will not need
representable V-multicategories, we are not going to discuss them. The curious reader is

referred to [J].

1.2.17. Proposition. A (symmetrlc) lax Monoidal category (€, ®%, \) gives rise to a
(symmetrlc) multicategory € defined by the following prescriptions: ObC = Ob €, and
C((X)ier;Y) = C(&€!X,,Y), for each I € ObO and X;,Y € ObC, i € I. Thus a
morphism (X;);e; — Y in Cisa morphism ®€'X; — Y in €. For each map ¢ : [ — J
in Mor O (resp. Mor§), the composition of morphisms f; : (X;)ics-1; — Y;, j € J, and
g :(Y;)jes — Z is given by the composite

(Fi)jes o9 = [§751X; 2 @ied gico™i x, Z°0, giery. 9, 7], (1.2.8)
Identities of € are those of C.
Proof. The condition

C(X)ier V) = (@' X, Y) = €& Xom1), Y) = B((Xom1y)jess V),

for each order-preserving bijection o : I — J, is satisfied since \? is the identity morphism,
in particular @€' X, = ®J'€JX071(]-). Thus, € is a multiquiver. For the same reasons

composition in Cis compatible with the multiquiver structure.
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Clearly, for each morphism f: (X;);e; — Y in @,
foly=[@9X 5 ey, Ly 2y] =

since A\* = id. Similarly,

. id . Q€. .
(1Xi>z'el “id; f' — [®Z€IXZ' )‘_I> ®Z€IXZ' —X’> ®161Xi i} Y} _ f,
since N7 = id, and ® is a functor, in particular, @1y, = lgiery,.

Let us check that composition is associative. Suppose [ 2 7% Kisa pair of
composable maps in Mor O (resp. Mor8). Consider morphisms f; : (X;)ics-1; — Y,
j € J, gk (Y})jewflk — Zk, ke K, h: (Zk)kEK — W in €. Then

: ¥ R keK
(gk) ke -w h = [®J€JY} AV QheK gicv Y, &9k, @K 7, h W],

therefore

(Fies o ((@eleer o b) = [&/X, 25 @7 @07 X, T2 @<y,
/\_) QFEK ®jew—1k Y, w) ®keKZk LR W]
= [ X, N, @€ @ico ™l x, A, gkek gics 'k gjies™!i x
ghek giev  hp, ®je¢*1kyj & <K okek 7 I, wl,
by naturality of \¥. Similarly, ((fj)jewflk b gk) -4y I 1s given by the composite

. foxt} 1 kEK y¢ . _ 1.
[®ZEIXZ‘ A, QFEK gicsT vk X, 2 AT, QREK gi€hk gice lei

1
®k€k®]6¢ kfj ®k€K
- 0

QK @ISV hy, B, gkeKZ L.

The equation (f;);es ¢ ((gk)keK b h) = ((fj)jewflk; bk gk) o b 1s a consequence of

equation ([.T.1)). O

1.2.18. Proposition. A lax (symmetric) Monoidal functor
(F¢"): (€,0", ) — (D, &', M)

between lax (symmetric) Monoidal categories g1ves rise to a (symmetnc) multifunctor
F:C — D defined as follows. The function Ob F : Ob€ — ObD is equal to Ob F'. The

action on morphisms is given by
F:C((X)werY) = Q@€ X,,Y) = DR FX;, FY) = D(FX))ier; FY), [+ FJ,
where F f is given by the composite
Ff = [ FX, % F e X, 2, Fy).

Proof. Equation ([-I.7) implies that
¢I _ (bJ . ®ZEIFXZ' — ®]‘EJFX071(]‘) o F ®i€[ X, =F ®j6J Xafl(j)a
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~

for each order-preserving bijection o : I — J. Therefore, F\( XierY = v, hence

F(Xg—l(j))jGJ;
F' is a morphism of multiquivers. To show that F' is a multifunctor, we must show that
it preserves identities and composition. The former is obvious, since

Flx

Fly = [FX — FX —5 FX]| = 1px,

as ¢! is the identity transformation of the functor F. To show a preserves composition,
consider a map ¢ : I — J in Mor O (resp. Mor§) and morphisms f; : (X;)icyp-1; — Y,
j€J,9:(Y;)jes — Z in C. Recalling the definition of composition in €, we find that

~ A , .
F((f)jer v g) = [ FX; & Faie! X, 2%
F @€/ ®z’€1/z—1in % F /€’ Y; Fo, FZ}.
On the other hand,

P

~ ~ . P . .1 J . L1
(Ffj)jes o (Fg) = [@'€'FX; 25 @/ @'« FX, =2 @/¥/F g'sv ™ X,

JjeJ . R J
®I€IF f; ®jeJF}/j ¢_)F®j6JY —>FZ]

®J’EJ¢¢71

_ [®161FX A, gied gicd™l px, , @ISV gicv Tl X,
. N jed g, ‘
2, Feied gievix, T80, pgiery, 9, py)
by the naturality of ¢”. Equation ([[1.3) implies that
F((fi)jes w9) = (Ffjjer - (Fg),
hence F is a multifunctor. U

1.2.19. Proposition. A Monoidal transformation r : (F,¢") — (G,¢') : € — D gives
rise to a multinatural transformation7: F — G : € — @ determined by the morphisms

TX:T)(E'D(FX,GX), X e ObC.

Proof. To show 7 is a multinatural transformation, let f : (X;);e; — Y be a morphism in
C, i.e., a morphism f : @€' X; — Y in €. We must show

F\f w Ty = (Tx,)ier "id; @f
Expanding out the left hand side we obtain
Ffory = [09FX, & F e X, 2 py 2% gy,
while the right hand side yields
(rXi)iEI i @f — [®ZEIFXZ &) ZEIGX G ®ZEI X Gf GY]
The equation in question follows from the following commutative diagram:

- ! ] Ff
QEFX;, — FRS X, — FY

®ielrxil lT@,ieIXi lT’Y
I Gf

®i€IGXi — G ®i€[ Xz‘ — = GY
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The right square commutes by the naturality of r. The left square is a particular case of
(L13). O

1.2.20. Definition. A (symmetric) multicategory C is lax representable if the func-
tors C((X;)ier; —) : C — Set are representable for all families (X;);c; of objects of C.
Equivalently, for each X; € ObC, ¢ € I, there exists an object X € ObC and a mor-
phism 7x,),., : (Xi)ier — X enjoying the following universal property: for an arbitrary

morphism [ : (Xi)ier — Y, there exists a unique morphism f : X — Y such that
T(Xi)ier ™ f=1r
T(Xier, X

—
(Xi)ier

|
E;
<
Ty
We may assume that, for each 1-element set I, the chosen X coincides with X; for the
only i € I, and 7x = 1x € C(X;X) is chosen to be the identity; then f = f, for each
[+ X — Y. Furthermore, since the functors C((X;)er; —) and C((Xy-1(;)) es; —) coincide,
for each order-preserving bijection o : I — J, we may choose the same representing object
for these functors. In the sequel, we assume that the choices of X and 7(x;),., satisfy the
above conditions.

iel

A strong notion of representability is given by Hermida [RI], Definition 8.3]. The
above condition of lax representability is taken from Definition 8.1(1) of BT]. It is due to
Volodymyr Lyubashenko. Day and Street make in [[[]] remarks similar to the following
proposition.

1.2.21. Proposition. A (symmetric) multicategory C is lax representable if and only if
it is isomorphic to € for some lax (symmetric) Monoidal category C.

Proof. The “if” part is rather straightforward. For the proof of the “only if” part, suppose
C is a lax representable (symmetric) multicategory. Let € denote its underlying category.
It has the same objects as C, and C(X,Y) = C(X;Y), for each pair of objects X, Y € Ob C.
Composition in € is induced by composition in C:

def
CX3Y)x QY3 2) = X5 2), (f,9)—=f-9="Ffy,
where > : 1 — 1 is the only map. Identities of € are those of C.

Claim. The category € admits the following structure of a lax (symmetric) Monoidal
category. For each I € Ob 0, the functor @’ : €I — @ takes (X;);c; to an object @€/ X;
representing the functor C((X;);er; —). For each X; € ObC, i € I, choose a universal
morphism 7x,),., : (Xi)ier — ®'€!X,. The action of the functor ®’ on morphisms is
given by
® HC(Xi; Y;) = Q@' X; @Y, (fi)ier — @ fi,
il
where @'’ f; is the unique morphism satisfying 7(x,),., » @' fi = (fi)ier ‘i, Tviyics:
T(X3); .
(Xi)ier — @1 X,
|

¢
®Z'€IY;

(fi)ier

(Yi)ier

Q€1 f;

T(Yi)ier
—
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For each map ¢ : I — J in Mor O (resp. Mor §), the morphism
= C(®ieIXi; QI€ ®ie¢*1j X;)
is defined as the unique morphism such that
T(Xi)ier ™ X = (T(Xi)ie¢—1j)je‘] ¢ T(@ieo™ X)) e
or diagrammatically

T(Xi)ier

(Xi)iel

|
(T(x )ico—1 )J€J| ‘ 2\®

T@iesix;) v
(&7 X, )jey —— @I @i I X,

®i€IXi
|

Let us prove the claim. To show that ®’ is a functor, we must check that it preserves
composition and identities. We first show that ®€'1y, = 1gry,, for each X; € ObC,
i € I. Indeed, the morphism ®'/1y, is uniquely determined by the property

T(Xi)ier > ®Z611X (1x,)ier “id; T(X.)ier = T(X:)ie; (1dentity),
and 1gier x, clearly satisfies it. To show that ®” preserves composition, consider morphisms
(fi)ier € [Lie; C(X3:Y3), (gi)ier € [Lies C(Yi; Z;). We must show
®i€[(fi . gz) — ®i61fi . ®i619i~

Composing both sides with 7(x,),., vields an equivalent equation:

Txier » (@ (fi - 91) = Txiyier » (@€ fi - @ g1).
The left hand side equals

T(Xi)ier > (®iel(fi : gz)) = (fi - 9i)ier id; T(Z)sex (definition of ®1)

= (fi)ier "ia; ((gz‘)z‘e[ “idy T(Zi)iel) (associativity),
while the right hand side equals

Txier = (@ fi - @ g:) = (Txiyies » @ i) » @ g, (associativity)
((fz iel “idy T(y)ze,) > ® EIgl (definition of ®1)

= (fi)ier "ia; (T(y Yier > & eIgz) (associativity)
= ( (

fi)ier sia; ((9i)ier “ia; T(z)ie;)  (definition of ®7),

hence the assertion. Therefore, @ is a functor. The property ®! = Ide, for a 1-element set
I, follows by the choice of representing objects ®'€’ X; and universal morphisms 7(x,),, -

To show that A? is a natural transformation, let (f;)ier € [[,c; C(X;;Y;) be a mor-
phism. We must show

R, A0 = 2. @I Qi€P™ fi.

By the universal property of 7(x,),.,, the above equation is equivalent to

Toier > (O fi - A7) = Tixes » (A - @7 @779 ).
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Expanding out the left hand side we obtain
Txer o (@ fi - A%) = (Txiier » @1 fi) o A (associativity)
= ((fi)ie[ “id; T(m)iel) 5 A? (definition of ®1)
(
(

associativity)

= (fi)iel “idr (T(Yi)iel > )\¢)

= (fi)ie[ *id; ((T(Yi)ie¢—1j)j€‘] ) T(®i€¢71j}/;)jej) deﬁnition Of )\¢),

while the right hand side becomes

T(Xi)ier > ()\¢> - @T€) @ieel fl)
I (associativity)
(T(Xi)iel > Xb) v @I ®ie¢71j fi
I (definition of \?)
, .y
((T(Xi)i€¢—1j>j€J ¢ T(®i6¢_1jxi)j6.]) ‘> ®JGJ ® €T fl
(associativity)
, o
(T(Xi)ieqaflj)jEJ K (T(®i6¢_1jxi)je.] > QRIET Qi€PJ fz)
(definition of ®7)
o1y
I (associativity)
icp—1j
(T(X¢)¢e¢r1j > & S ]fi)jGJ ) T(®ie¢_1jyi)jeJ B
I (definition of @® %)

((fi)ieqﬁ*lj fidy—1; T(Yi)ieqb—lj) ¢ T(®i€¢71jyi)je‘l'

The obtained expressions coincide by the associativity axiom, so that A\? is a natural trans-
formation. The properties > = id and A/ = id follow by the choice of the representing
objects @/ X; and the universal morphisms 7(x,),.,. For example, X' : @€' X, — @€/ X;
is defined as the unique morphism that satisfies the property

idr __
T(Xi)iel > )\ - (TX1>Z€I 'id] T(Xi)iEI'

However, the right hand side equals 7(x,),., by the identity axiom, since 7y, = lx;,
1 € I. Clearly, the identity morphism satisfies the required property, thus by uniqueness
Adr = id. Furthermore, for each order-preserving bijection o : I — J holds A7 = id.
Indeed, A7 is uniquely determined by the equation

o P . .
T(Xi)ie] > N = (TXU_l(]-))jEJ > T(XU—I(]-))jeJ'

The right hand side equals 7 x by the identity axiom, since Tx = lx

o—l(j))jeJ

j € J. Now, @€' X; = @/ X,-1(;) and 7(x,),.,
the identity morphism satisfies the required equation, therefore by uniqueness A7 = id.

-1 o)’
= T(X,-10;))jes by assumption. Clearly,

Finally, let us prove equation ([LI71)). Suppose [ % I% Kisa pair of composable
maps in Mor O (resp. Mor §8). We must show

)\¢> . )\w — )\dﬂﬁ . ®k€K)\¢k’
where ¢y, = ¢|g-14-1% 1 ¢k — Y1k, k € K. An equivalent equation is obtained by
composing with 7y,

iel”

T(Xi)ier > (Xi’ ) )\111) = T(Xi)ier * ()\¢>111 . ®k€K)\¢k).
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Transforming the left hand side we obtain

T(Xi)ier "> (Xi’ ’ /\111)
I (associativity)
(T(Xi)iel > /\d)) » A
(definition of A\?)

((T(Xi)ie(ﬁflj )]EJ '¢> T(®i6¢_1jxi)].e‘]) > )\w

I (associativity)
(T(Xi)ieqb*lj >J'€J K (T(®ie¢_ljxi)jEJ > Xﬂ)
I (definition of \¥)

(Tx0)seqm;)ie w6 (Tgieoting, 1 bk b Tigoeuthgrestix i)

jey—lk
The right hand side equals

T(Xi)ier * (XW . ®k€K/\¢k)
(associativity)
(T(Xi)iel > XW) s @FEK NPk
[ (definition of A\?%)
((T(Xi)iedflw—lk)keK K T(®i€¢71w71kXi)keK) > ®k€K/\¢k
| (associativity)

keK
(T(Xi)ie¢—1w—1k)k6K o) (T(®ie¢*1w*1kXi)keK > & € /\d)’“)

(definition of @%)

(T(Xi)ie¢_1¢_1k)keK K (()‘¢k)keK “idi T(®j€w71k®i€¢7ljxi)ke}<)
(associativity)

o 2%k . _ . .
(T(Xi)iequwflk > A )keK ol T(®J€¢_1k®16¢_ljxi)k€K

[ (definition of \?*)

((T(Xi)ie¢_1j)jew—1k P T(@z'eas*ljxi)jew,lk)kef( ¢p T(gicv thgicd i X, ek

The resulting expressions are equal by the associativity axiom, thus equation ([.I.0]) is
satisfied, and (C, ®’, A?) is a lax Monoidal category.

Claim. The multicategory C is isomorphic to e.

We begin by constructing a multifunctor p : C — @, identity on objects. The action
on morphisms is given by

C(Xier; Y) = C(Xoier; V) = (@ X;5Y), [ T,
where f : ®€/X; — Y is the unique morphism satisfying T(Xi)ier > f = f. Clearly, p
preserves identities (E = lyx, due to the choice of 7x, X € ObC(C). To show p preserves

composition, consider a map ¢ : I — J in MorO (resp. Mor$§) and morphisms f; :
(Xi)ieg—1; = Y5, 7€ J,9:(Y))jes — Z in C. We must show

(fi)ier 6 9= (fi)jes 4T
By the universal property of 7(x;),.,, the above equation is equivalent to

Txier o (Fijes 6 9= Txier » ((Fi)jes 6 9)-
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The left hand side is equal to (f;)jes ¢ g by definition. Expanding out the right hand side
we find

T(Xi)ier "> ((Tj)jEJ K ?) N
[ B (definition of C)
T(Xi)ier > ()‘¢ ) ®]€ij ?)
[ B (associativity)
(T(Xi)iel > /\d)) > (®J€ij ’ y)
| B (definition of \?)
((T(Xi)iquflj)je'] 'd) T(®i6¢_1in)jeJ) > (®j6ij ’ g)
[ - (associativity)
(T(Xi)ie¢—1j)j€J K2 ((7—(®i€¢>*1jxi)j€] > ®]€ij) > ?)
J (definition of ®7)
(Tx0),ey1,)ied o ((Fi)jer ias T0),e0) > G)
l (associativity)
(T(X0);ey1,)i€T "6 ((fi)jes iy (Tvy)ses  9))
[ (definition of g)

(T(Xz)le¢—1])]e(] (15 ((T])]EJ ldJ g)
| (associativity)
(TX0)sey1,; w fi)jes "0 9 B
| (definition of f;)

(fi)ier ¢ 9,
so that p preserves composition. The induced maps on the sets of morphisms are bijective
by the universal property of 7. Hence, p is an isomorphism. 0

1.2.22. Example. The symmetric multicategory k-Mod from Example [[.2.9 is repre-
sentable. Thus, it comes from some symmetric Monoidal structure of the category k-Mod.
For instance, we define ®Hifl X; to be the free k-module, generated by the set J].., X;,
divided by k-multilinearity relations. The tautological map 7 : [[,.,; X; — R X, deter-
mines isomorphisms )\]{: .

1.2.23. Example. The symmetric multicategory gr from Example [:2.17 is representable.
Thus, it comes from some symmetric Monoidal structure of the category gr = gr(k-Mod).

We define (®5/X;)" = @Zi nimn ®i1 X1, The isomorphism Aér is )\H’:, extended additively

)

to direct sums, multiplied with the sign (—1)7, where o is given by Koszul sign rule ([.23).

1.2.24. Example. The symmetric multicategory &é from Example is representable.
Thus, it comes from some symmetric Monoidal structure of the category dg = dg(k-Mod).
We define ®ii€gl X, as the graded k-module ®igerl X, equipped with the differential d whose
matrix elements are given by

Z(_l)zbj MR RAdR -1 ®§(‘51Xini — ®ﬁfIX;”+5”,

jel

The isomorphism )\(’;g coincides with Aér.

1.2.25. Proposition. Let C, D be lax (symmetric) Monoidal categories. Then the maps
LaxMonCat(C, D) — Multicat(@, @), F— ]/7\, r =T,



1.2. MULTICATEGORIES 39

constructed in Propositions [[.2.1§, are bijective. The same is true for lax symmetric
Monoidal categories.

Proof. We begin by constructing an inverse map to the map F +— F. Let G: € — D be
a (symmetric) multifunctor. Define a functor F': € — D by Ob F = Ob G,

Fxy =Gxy : €(X,Y) = €(X:Y) — D(GX;GY) = D(GX,GY).

For each X; € ObC, i € I, the set /G\((Xi)ie[;(gielXi) = (@' X;, ®"¢'X;) contains a
distinguished element 1gicry,. Applying to it G(x,),.;;eécrx, We obtain an element

¢ = Gixpwierx, (lgiery,) € D(GXy)ier; G ' X;) = D(@E1GX;, G @ X,).

We claim the the morphisms ¢’ : @/ FX, — F ®€! X, constitute a natural transforma-
tion ¢! : @ o F — F o ®!. Indeed, suppose f; : X; — Y;, i € I, is a family of morphisms
in €. We must show

F®ielfi ®iEIFfZ,
—_— —_—

[®i€IFXi ﬂ) F ®i€[ XZ F ®i€[ }/Z:| — [®Z€IFXZ ®i€IF}/; ﬂ) F ®i€[ )/Z]

By the definition of composition in the multicategory @, the left hand side admits the
presentation

gbl - F ®z‘e[ fZ = G(Xi)iel;(gielxi(]_@ielxi) > G@ielxi;(@ielyi(@’ielfi),

where @€ f; is regarded as a morphism ®€'X; — ®€1Y; in @, and the composition in
the right hand side is performed in the sense of D. Since G is a multifunctor, it follows
that

Gxiieneerx; (Lgierx,) » G®i€IXi;®ieIm(®ieIfi) = Gix)ienwicly; (lgierx, » QL)
- G(Xi)iel§®ielyi(®i61fi)'

The last equality holds by the definition of composition in e. Similarly, the right hand
side can be written as

®i€IGXi;Yi(fi) . G(Yﬁiel;@z’elyi(l@ielyi) = (GXuYz(fZ))zeI “idy G(Yi)ie];@)ieIYi(l@ieIYi)
- G(Xi)iez;@e’%((fi)iel "idy 1®ielyi)
- G(Xi)iez;®i€IYi(®Z€Ifz‘)~

The first and the third equalities follow from the definition of composition in D resp. e.
The second equality is implied by the fact that G is a multifunctor. Thus ¢! is a natural
transformation.

Let us prove that (F,¢') : € — D is a lax (symmetric) Monoidal functor. If I is
a l-element set, then ¢! = Gx.x(1x) = lgx define the identity transformation of the
functor F'. It remains to prove that diagram ([[I.7]) commutes, for each map f: 1 — J
in Mor O (resp. Mor8). By the definition of composition in @, the left-bottom path of
the diagram can be written as (¢/ )jes p @, or, substituting the expressions for the
transformations, as
;®i€f’1in(1®i€f’17Xi))jeJ ' Ggiertixy e poicrpiertix, (Lgiesgiertix,)-

(Gx,

ief—1j

Since G is a multifunctor, the above expression equals

G(Xi)iel;@)jeJ@ief*lei ((1®i€f*11Xi)j6J f 1®j€J®i€f*11Xi) :
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The composite in the brackets 1s equal to M@l X, — @€ @€Y X; viewed as

morphism (X;);e; — ®€ @€/ X; in €. The top-right path of diagram ([.I.3) can be
written as

G(Xi)iel§®ielxi (1®ZEIX1) S G®i€IXi;®j€J®ie¢7lei (Af)
Since G is a multifunctor, the above composite is equal to
G(Xi)iel;®je‘]®i6f_1jxi (1®iEIXi ke )\f)'
The composite in the brackets equals Af. We conclude that both paths of the diagram
compose to G(Xi)Ef@J'EJ@in*lei()‘f)’ hence diagram ([.1.9) is commutative, and (F, ¢7) :
C — D is a lax (symmetric) Monoidal functor.

Now we are going to prove that the two constructed maps are inverse to each other.
Given a multifunctor G, we have produced a lax Monoidal functor (F,¢") out of it. Let

us prove that F = G. Indeed, both multifunctors give Ob ' = Ob G on objects. To show
that F and G coincide on morphisms, let f : (X;);er — Y be a morphism in G ie., a
morphism f : @' X; — Y in €. Recall the definition of F:

Ff = [ FX, % F e X, 2, Fy).
The above composite can be written as the composite
Gxierwierx; (Lgierx,) v Gaierx,y (f)
in D. Since G is a multifunctor, the above composite equals
Gxiery Ugierx, » [) = Gxicry (f)-

Therefore, F=0aG.

Given a lax (symmetric) Monoidal functor (F,¢’) : € — D, we make a (symmetric)
multifunctor G = F out of it via the recipe of Proposition [2:27. The multifunctor G
gives rise to a lax (symmetric) Monoidal functor (H,?!) : € — D. Let us prove that
(H,y") = (F,¢"). Indeed, both functors give Ob F' = ObG = Ob H on objects. Both

coincide on morphisms, Hxy = Gx,y = Fxy. Furthermore, for each X; € ObC, i € I,

¢ — (X icl; ®161X (1®Z€IX ) gbl . F@iGIXi’(@'LEIXi(l@iGIXi) — ¢I . 1F®iEIXi — ¢I.
Thus (H, ") = (F,¢"), and bijectivity on (multi)functors is proven.
Bijectivity on transformations is clear. Thus Proposition [[.2.2] is proven. O

Finally, as announced at the beginning of the section, let us formulate and prove the
analogs of Propositions [.2.17, [[.2.1§ for enriched multicategories. We will not need the
analog of Proposition [.2.19, so it is omitted.

Let us introduce some notation. Suppose € is a V-category, f : 1y — C(X,Y) is a
morphism. It gives rise to morphisms

fo—=c(f ) =[er,z) 2 1y e ey, 2) L5 ex,y) @ ey, 2) £ e(X, Z)],
where comp means composition in C. It follows from the associativity of composition

in € that C(g,1)C(f,1) = C(fg,1) whenever makes sense. The identity axiom implies
C(1x,1) =id. Similarly, there are morphism

comp

—f=ef)=[ev,x) 2L e X) @1y 2L eV, X) @ 0(X,Y) L2 eV, V).

enjoying similar properties. Moreover, C(f,1)C(1,g) = C(1,¢9)C(f,1), whenever makes
sense.
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1.2.26. Proposition. A lax (symmetric) Monoidal V-category C = (€, ®!, \/) gives rise
to a (symmetric) V-multicategory defined as follows. The set of objects Obe equals
Ob €. For each I € Ob and X;,Y € ObC, i € I, the object of morphisms /E’\((Xi)ig; Y)
is (@1 X, Y). Identities of € are those of C. For each map ¢ : I — J in Mor O (resp.

Mor §) and objects X;,Y;,Z € ObC, i € I, j € J, the composition morphism
pg - @ (C((X)iep15Y7)) s o ©((Vi)jess 2)] — C((Xi)ier; Z)
is given by the composite in 'V
&M X, Y)))jes, QY] 2)]
%
(/57 e(&= X, ;) @ C(&7'Y;, 2)
S
(@I @7 X, ®7€'Y)) ® e(&7€Y;, Z)
l)ﬁ.,.,
e(®i€IXi7 Z),
wherey: JU1 — 2, ~v(j)=1,7€ J,v1)=2,1€1.

Proof. Clearly, Cisa V-multiquiver and composition respects the V-multiquiver structure.
The left identity axiom follows from the commutative diagram

@M1 ((1x, )ier,1)

R (Ly)ier, C(@ ' X5, Y)] R H(C(XG, Xi))ier, C(®'' X, V)

A\
v
®i€11Xi®1

(®"1y) ® ("X, Y) ——— (@'C(X;, X,)) @ C(@'°' X,,Y)
AL—TuL A%*%@J e'el

lgierx,®1

]]-V ® e(®iEIXZ'7 Y) e(®iEIXi7 ®iEIXi) & e(®iEIXi7 Y)

comp

(@ X,,Y) C(®EX,,Y)

The top trapezoid commutes by the naturality of A}, The left quadrilateral is a particular
case of equation ([CI.1]) written for the pair of maps 1 < I1U1 5 2. The square in the
middle commutes since ®’ is a V-functor. Finally, the bottom trapezoid commutes since
lgierx, satisfies the identity axiom in €. The right identity axiom is obvious.

To prove the associativity equation for a composable pair I ERy SN K, consider objects
Xi, Y, Zy, W of € and substitute the definition of composition in €. The last factor
C(®FK Zy, W) splits out and the equation takes the form of the exterior of Diagram [4.
Here f; denotes the map f|;-1,-15 : f'g7'k — ¢ 'k, k € K. Pentagon 1 commutes
due to @% being a V-functor. Square 2 commutes by equation ([[I1.5). Polygon 3 in
Diagram [[4 can be rewritten as Diagram [[.5. Here pentagon 4 commutes due to @ being
a V-functor. Square 5 is the definition of ®7. Quadrilateral 6 follows from the associativity
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V)® ®C( ® Y, Z)

R ek

4%

C(® ® X, Y,)eC® & Y;, ® Z)
JjeJ  ief1j keK jeglk JeJ icf-1j jedJ keK jeg—1k keK
) (—A9)®1
[ ® € @ X;,Y;)®C( ® Y;,Z C(® ® X;\,® ® Y)eC® ® Y, ®Z
keK[jegflk (iefflj ]) <jeg*1k ’ 2l (jeJiefflj keK jeg—1k J> (keKjegflk I ek k)
® [®9 *1] RC( ® ©® XiZ)
keEK keK jeg~lkicf—1j
® comp =
keK =)
comp o
/ 9
REC® ® X, ® YV,)®C Y., Z ”
keK[ (jegflkiefflj j€g 1k i) <jeg*1k ) C
Feoe o C(® ® ® X;), ®7Z,) M- (v ® X;, 7
ké@K[)\k ] keK jeg—lkicf—1j keK k) (jeJief—lj keK k)
(kg@KAfk)'_ A=
e ® X.Z F C(® ® X, ®Z Mi— C(®X;, ®Z
keK <i€f_1g_1k k) (kEKiEf_lg—lk keK k) (z(§1 7k:?K k)
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®C( ® X,Y)® ®@C( ® Y, Z) ®'®e" C(® ® X;,0Y)0C® ® Y, Q%)
JjeJ  ief1j keK jeg~lk JjeJ ief~1j jeJ keK jeg—1lk kGK
2 ® ® € ® X@,Yj)® ® C( ® Y;, Z)
keK jeg—1lk ief-1 keK jeg—lk
k(gK[je?lke(ze? XHYJ)@e(jG;@ilijvZk)] ®I®1 (—A9)®1
® (89 *e1] ®C ® ©® X;, @ Y)® ®C( ® Y;Z)
kEK k€K jeg—lkief—1j j€g 1k keK  jeg—lk
® C( ® ® X ® Y)®C ® Y;,~Z €®®XZ,® ® Y; C Y; Z
keK[ (jegflmefflj jEg1k ) <]€g 1! 2 o ee® (jEJief* kK jeg—1k )@ (kngeS?lk ’k?}( k)
® comp @( ® & QR X;\) ® Y) ® G( ® & Y', & Zk) comp
keK keEK jeg—lkicf—1j keK jeg—1k keK jeg—1k keK
J/comp @
RC ® ® X;,Z;) %" C(® ® ®Xi,®Z I X; 7
keK (ngflkinflj k) (kEKjeg 1k icf—1j keK k) (j(ngie](fgzlj ,k(§K k)
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of composition in €. Polygon 7 expresses the V-naturality of the transformation 9.
Therefore, the associativity of composition in € is proven. U

1.2.27. Proposition. A lax (symmetric) Monoidal V-functor
(F,0") : (€,0",A) — (D,®",A})
between lax (symmetric) Monoidal V-categories gives rise to a (symmetnc) V-multifunctor

: © — D defined as follows. The mapping of objects is ObF = Ob F. The action on
ob jects of morphisms is given by

F
®€Ix,;y

Fixoy = [B(Xier; YV) = (@' X,, Y) D(F @' X;, FY)

O D@ FX, FY) = D(FX)ier FY)). (129)
Proof. Clearly, Fisa morphism of V-multiquivers. Since ¢! = id, it follows that

Fy.x = Fxx : €(X,X) — D(FX,FX)

preserves identities.
Compatibility of F' with composition that corresponds to a map f : I — J is expressed
by the equation

&M (C(Xi)ies-15:Y))) 0 C(Y))jes5 Z))] C((X)ier: Z)
®Ju1[(A( )zef 1j Y)7€J F( Yidiers Z]l Jﬁ(xi)ieﬁz
~ Mﬁ ~
SMA(D(FXs)ies15 FY3)) s o DUFY))jess FZ)] ——— D((FX,)ier; F2)

It coincides with the exterior of Diagram [[4. Here quadrilateral 1 commutes due to ®’
being a V-functor. Quadrilateral 2 follows from the associativity of composition in D.
Quadrilateral 3 commutes due to F' being a V-functor. The remaining polygon 4 is the
exterior of Diagram [[.7. In this diagram, quadrilateral 5 is due to F' being a V-functor.
Triangle 6 commutes, as equation ([.1.4) shows. Hexagon 7 follows from the \7 naturahty

of transformation ¢’. Therefore, the whole diagram commutes, and F:C—-Disa
V-multifunctor. O

1.2.28. Remark. The change of symmetric Monoidal base category considered in Sec-
tion [.L1.14 can be expressed in particularly convenient form using multifunctors. Let
(B, 1) = (V, @4, M) — (W, @, M) be a lax symmetric Monoidal functor. By Proposi-

tion [[.2.27, it gives rise to a symmetric multifunctor B :V — W. The induced lax symmet-
ric Cat-functor (B,, 3!) : V-Cat — W-Cat constructed in Section [[1.14 yields a symmet-

ric Cat- multlfunctor B, : V-Cat — \/V/C\at There is a simple relation between the multi-
functor B and the Cat-multifunctor B,. For a V-category ¢, (B*G)(X, Y)=B(C(X,Y)),

Hg.e = Blue) € V(BE(X.Y), BE(Y, 2): BE(X, 7)), and n® = B(n$) € V(; BE(X, X)),
For a V-functor F' € \7—Ca1:((€z~)z~€[7 D), ObB,F = Ob F, and

(B*F)(Xi)ielv(yi)iel = B(F(X )ier,(Ys) 161) € W((Bei(Xia Y;))iED BD(F(Xi)iela F(Y;)ZGI»
For a natural transformation t : F' — G : (C;);e; — D of V-functors,

(B\*t>(xi)iel = E(t(xi)iel) € w(? BD(F(Xi)ier, G(XZ)z€I>)
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€ ® X,Y)eC(®Y;,Z) &« (e & X, ®Y;)eCe( ,
jeJ (ief 1 5) (jeJ i 7) 3 (jeJief*] jeJ ® ® EIX“Z)
comp /
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jeT icf-1j ier "
Fo & x;,z
J€Jief—1;j
DF(® © X;)F (Fxe) F(®X;),FZ)
jedief-1j iel
]?]erf@ . ®FJ®JY g (¢ -FAL)-— ol .—
D(@FX;, F7)

D

jedJ ief~1j

2, (@)@ (e )J

®D( ® FX; FY;)®D(® FY; FZ)

JjeJ  ief1j jeJ

(@ (F( ® X3)),F(®Y))

JjeJ jeJ

(—-M@ﬁ

ief-1j

® D(F( ® Xi),FYj)®D<F<_§J%),FZ) @'l D(@ (F( ® X;)

jeJ icf—1j

, ® FY;)

]EJ

el
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In practice it is often more convenient to work with the Cat-multifunctor B\* rather than
with the lax symmetric Monoidal Cat-functor (B, 31).

1.3. Closed multicategories

1.3.1. Categories and multicategories enriched in symmetric multicategories.
According to the classical picture, categories can be enriched in Monoidal categories and
lax (symmetric) Monoidal categories can be enriched in symmetric Monoidal categories.
As we have seen in Section [[.2.16, multicategories generalize lax Monoidal categories. It
is therefore not surprising that categories can be enriched in multicategories and multi-
categories can be enriched in symmetric multicategories.

Throughout the section, V is a symmetric multicategory. We denote composition in
V simply by the dot -, whenever no ambiguity is likely.

A V-category € consists of a set of objects Ob €, an object of morphisms C(X,Y) €
ObV, for each pair X,Y € Ob €, a composition morphism

e : C(X,Y),CY,2) — C(X, Z),
for each triple X,Y,Z € Ob@C, and an identity morphism 1§ : () — CG(X, X), for each

X € ObC. The associativity of composition is expressed by the commutativity of

C(W, X),C(X,Y),C(Y, Z) — " (W, X), C(X, Z)

/“6671‘/ ‘/HC

C(W,Y), (Y, Z) = C(W, Z)

for each quadruple W, X, Y, Z € Ob €. The identity axiom is expressed by the equations

v e
) lex,vyly
B —

[e(X,Y C(X,Y),E(Y,Y) &5 C(X,Y)] = 1gxy),

e qV
) 1X716(X,Y)
_

e(X.Y

for each pair X, Y € ObC.

Each V-category € gives rise to a V-category C°P, the opposite V-category, with the
same set of objects. For each pair X, Y € ObC, the object of morphisms CP(X,Y) is
C(Y, X). Composition in C° is given by

peor = V(X; C(Z, X)) (pe) = (1\é(Y,X)a 1\6/:(Z,Y)) x pe: €Y, X),€(Z2,Y) — €(Z, X),

where X = (12) : 2 — 2, 1 +— 2, 2+ 1. Identities of C°" are those of €. The associativity
of composition is established as follows. The top-right composite in the associativity
diagram equals

G(Xa X)a G(Xa Y) “_€> G(Xa Y)] = 1\é(X,Y)7

(1, preor) v preor = 1\6/(X,W)a (1\G/(Y,X)> 1\€/(Z,Y)) "X HG) vV ((1\€/(X,W)> 1\€/(Z,X)) "X N@)
( K

(
(1\é X, W
(1\€/(X,W

= )" 1\G/(X,W)a ((1\8/(Y,X)> 1\€/(Z,Y)) X fte) - 1\e/(Z,X)) VIX e
= ) (1\é(Y,X)> 1\e/(z,y)) "X ,ue) VIX e
= (1\8/(X,W)a 1\G/(Y,X)> 1\€/(Z,Y)) "(13) ((/‘L@a 1\é(X,W)) VI He)a
by the associativity of composition in V and by the identity axiom. Here (13) : 3 — 3 is
the transposition that interchanges 1 and 3. Similarly, the left-bottom composite equals

(teor, 1) i preor = (1\€/(X,W)7 1\e/(y,x)a 1\é(z,y)) "(13) ((1\€/(Z,Y)7,u(3> Y Me)-
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The associativity of pe implies the associativity of peor. The identity axiom is obvious.
For V-categories C, D, a V-functor F : € — D consists of a function

ObF:0bC — ObD, X s FX,

and morphisms F' = Fxy : C(X,Y) — D(FX,FY), X,Y € ObC, such that composition
and identities are preserved. The compatibility with composition means that the diagram
in V

C(X,Y),C(Y,Z) — = C(X, 2)

D(FX,FY),D(FY,FZ) 2 D(FX,FZ)

commutes, for each X,Y, Z € Ob €. The compatibility with identities is expressed by the
equation in V
e
[ =5 €(X, X) £ D(FX, FX)] = 12y,
for each X € ObC.

Given V-functors F': € — D and G : D — €&, define their composite F'G : € — & by
ObFG=O0ObF-ObG and (FG)xy = Fxy -Grxry, X,Y € ObC. Showing that FG is
a V-functor is a straightforward computation.

For V-functors F,G : € — D, a V-natural transformationt : F — G : € — D is a
family of morphisms tx : () — D(XF, XG), X € ObC, such that the diagram in V

Fity

C(X,Y) D(XF,YF),D(YF,YG)

tx,Gl ‘/MD

D(XF,XG),D(XG,YG) — 2 S D(XF,YG)

commutes, for each X,Y € ObC.
The vertical composite of V-natural transformations ¢t : F — G :€C — D and u: G —
H : ¢ — D has components

(tu)x = [() 25 D(FX,GX), D(GX, HX) X2, D(FX,HX)], X € Obe,

The composite tK of t and a V-functor K : D — & has for its component (tK)x the
composite
)5 DFX,GX) L e(KFX, KGX).
The composite Et of ¢t and a V-functor E : B — € has for its component (FEt)y simply
tpx.
It is routine to check that with so defined compositions V-categories, V-functors, and
V-natural transformations form a 2-category V-Cat.

1.3.2. Example. Let V = (V,®’, \/) be a symmetric Monoidal category. The usual no-
tions of V-category, V-functor, and V-natural transformation are recovered by considering
V="V

1.3.3. Remark. Let V = (V,®', M) be a symmetric Monoidal category. As we have
seen in Example [.T.T3, V-categories, V-functors, and V-natural transformations form not
merely a 2-category, but a symmetric Monoidal Cat-category. We could define V-functors
of several variables and V-natural transformations between these V-functors, and would
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end up with a symmetric Cat-multicategory of V-categories. Such generality, however,
seems superfluous for the purposes of the dissertation.

1.3.4. Definition. A V-multiquiver C consists of a set of objects Ob C and an object of
morphisms C((X;)ier;Y) € ObV, for each I € ObO and X;,Y € Ob(C, i € I, such that

C((Xi)iels Y) = C((Xo—l(j))jeJ; Y),

for each order-preserving bijection o : I — J. A morphism F : C — D of V-multiquivers
consists of a function Ob F': ObC — ObD, X +— F X, and a morphism

F= F(Xi)ieI;Y : C((Xi)ieﬁ Y) - D((FXi)iel; FY)
in V, for each I € Ob0O and X;,Y € ObC, i € I, such that Fix,),.,.,v = F(ngl(j))jEﬁY" for
each order-preserving bijection o : I — J.

1.3.5. Definition. A (symmetric) V-multicategory, consists of the following data.
e A V-multiquiver C.
e For each map ¢ : [ — J in Mor O (resp. Mor8) and X;,Y;,Z € ObC, i € I,
J € J, a morphism
S+ (C(X o153 Y)), e CUY: )i 2) — C((Xo)iers 2) (1.3.1)

in V, called composition. It is required to be compatible with the V-multiquiver
structure. Namely, suppose we are given a commutative diagram in O (resp. §)

¢
_—

1 J
|,
K——1L

where the vertical arrows are order-preserving bijections. Suppose further that
X, YU, Vi e ObCiie I, je J, ke K, € L, are objects of C such that
Xi = U,y and Y = Vo), for each i € I, j € J. Then the morphism

15+ (CUU kep-11 V) ier, C>(Vidier; Z) — C((Ur)kek; Z)

must coincide with ([[.3.7)).
e For each X € Ob(, a morphism 1% : () — C(X; X) in V, called the identity of
X.

These data are subject to the following axioms.

e Associativity: the diagram
(CU(Xiies15:Y)) ;e o (CUY))jew183 Z1)) perer CUZ0kers W)
w"“i
(C((Xi>i€¢’1j; Y’))jgj? C((Y]')J'EJ; W)
(1§, Irer;1 lug
C((Xi)ier; W)

C
%

(CUXDicww) 14 Zr)) peser CUZk)ker; W)
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commutes; more precisely,
Vv C C C Vv C
((1C((Xi)ie¢71j;Yj))jeJa Mw) fidy > Mg = ((H¢>k)keKa 1C((Zk)k€K;W)) b Mg (1.3.2)

for each pair of composable maps [ 2 7% K in Mor© (resp. Mor$8) and
objects X;,Y;, Z,,, W € ObC,i €I, j€ J, k € K. The map ¢, is the restriction
Alo-1p-1x : ¢k — Yk, k € K. The map id;l>: JUK U1 — JU1
preserves the order, while the map ¢ : J UK L1 — K U1 is not necessarily
order-preserving; it is given by ([.2.4)).

e Identity: the diagram in V

\Y% C
Ie(xpiery)ly

C((Xi)ier; V) C((Xi)ier; V), C(Y;Y)
1V -) . .
(159)"6”1\5((&)161”% Liier™) lu%al
Kia
(C(X5 X)), C(Xi)ier; V) ———— C((Xi)ser Y)

commutes, for each I € ObO and X;,Y € Ob(C, 7 € I.

An arbitrary V-multicategory has an underlying V-category. We will not distinguish
the two notationally; this should cause only minimal confusion.

1.3.6. Definition. Let C, D be (symmetric) V-multicategories. A (symmetric) V-multi-
functor F': C — D is a morphism of V-multiquivers such that

e [ preserves identities:

C
[() =5 C(X; X) 255 D(FX; FX)] = 12,

for each X € ObC, and

e [ preserves composition: the diagram in V

u

(CU(Xiics15:Y5)) ey C((Yi)jess Z) ——— C(Xi)ier; Z)
(F(Xi)ie¢_1j;Yj)jEJ:F(Y]-)jGJ;Z ‘/F(Xi)iel;Z (1.3.3)

(D(FX.)ieo 1 FY))._ . D((FY,)er: FZ) 5 D{(F Xoyer: F2)

jer
commutes, for each map ¢ : I — J in Mor O (resp. Mor8) and X;,Y;,Z € ObC,
1el,j€elJ.

Given V-multifunctors F': C — D, G : D — E, define the composite FG : C — E by
Ob(FG) = ObF - ObG and (FG)x,)criv = Fix,iery - Gpx,)icrsFy for each I € ObO
and X;,Y € Ob(C, ¢ € I. Clearly, FG is a V-multifunctor.

1.3.7. Definition. For V-multifunctors F, G : C — D, a V-multinatural transformation
r: F'— G :C— D is a family of morphisms in V

rx : () = D(FX;GX), X € Ob(,
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such that the diagram in V

Fxpieny Ty

C((Xz')iel; Y)

(TX,L)iGIaG(Xi)iGI;Yk = lu?ﬂl (1-3-4)

D
idy

°w
commutes, for each I € ObO and X;,Y € Ob(C, i € I.

The ‘vertical’ composite ¢ - u of V-multinatural transformations ¢t : FF — G : C — D
and u : G — H : C — D has the component (t-u)y given by

D((FX,)icr; FY),D(FY;GY)

iel’

() 2 D(FX;GX),D(GX; HX) =5 D(FX: HX).

The composite of t : FF — G : C — D as above with a V-multifunctor H : D — E has for
its component (¢t - H)x the composite

() 2 DFX; GX) L5 E(HPX; HGX);

while the composite of ¢t with £ : B — C has for its component (E - t)x simply tgy.
It is a routine computation to check that (symmetric) V-multicategories, (symmetric)
V-multifunctors, and V-multinatural transformations constitute a 2-category.

1.3.8. Example. In the case of V = \A7, where V = (V, ®!, /) is a symmetric Monoidal
category, we recover the definitions of V-multicategories, V-multifunctors, and V-multi-
natural transformations from the preceding section.

1.3.9. Base change. A symmetric multifunctor B : V — W gives rise to a Cat-functor
B, from the 2-category of (symmetric) V-multicategories to the 2-category of (symmetric)
W-multicategories. A V-multicategory C gives rise to a W-multicategory B,C with the
same set of objects and with objects of morphisms (B.C)((X;)icr; Y) = BC((X)ier; Y).
Composition in B,C is given by

i = BU1s§) + (BC((Xiw13Y0)) e p BUW)seri 2) = B Xo)ier; 2).

The identity of an object X € ObCis 15 = B(1%) : () — BC(X; X). A V-multifunctor
F: C — D induces a W-multifunctor B,F' : B,C — B,D given by Ob B,F' = Ob F' and

(B*F>(Xi)iel§y = B(F(Xi)ief;Y> : BC((Xi)i€I; Y) - BD(<FXZ'>Z'€1; FY)'

A V-multinatural transformation r : F' — G : C — D gives rise to a W-natural transfor-
mation B,r : B,F — B,G : B,C — B,D whose components are given by

(B.r)x = B(rx) : () = BD(FX;GX), X €ObC.

The compatibility conditions (associativity axiom ([.3.3), the identity axiom, preservation
of composition and identities, and multinaturality condition ([[.3.4)) hold true since B
preserves composition and identities. By the same reason, B, is a Cat-functor. Note that
the assumption that B is a symmetric multifunctor is essential. Indeed, the associativity
axiom for a V-multicategory (resp. W-multicategory) involves composition in V (resp. W)
with respect to not necessarily order-preserving maps. QuiAte similarly, the multifunctor
B induces a Cat-functor B, : V-Cat — W-Cat. If V =V and W = W, where V and
W are lax symmetric Monoidal categories, then by Proposition [[.2.25 the multifunctor B
comes from a certain lax symmetric Monoidal functor, and we recover the base change

Cat-functor from Section [.1.14 and Remark [.2.2§.
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1.3.10. Closed multicategories. First, we recall that a symmetric Monoidal category
V = (V,®!,)) is closed if the functor X ® — admits a right adjoint V(X, —), for each
X € ObV, cf. [A4, Section VIL7]. In particular, we have an adjunction

V(X ©Y,2) = VY, VX, 2).

The unit coev’ : ¥ — V(X, X ® V) and the counit ev’ : X ® V(X,Y) — Y of this
adjunction are called coevaluation and evaluation respectively. These satisfy so called
triangular identities, see e.g. [A4, Theorem IV.1.1]. The mutually inverse adjunction
isomorphisms are given explicitly as follows:

VY V(X,Z) = V(X @Y, Z),  VX©Y,Z)— VY, VX, 2)),
fr=(1x @ f)evxz, g — coevyy V(X, g).

For each pair of objects X,Y € Ob"V, the object V(X,Y) € Ob"V is called an internal
Hom-object. There is a V-category V whose objects are those of V, and for each pair

of objects X and Y, the object V(X,Y) € Ob'V is the internal Hom-object of V. The
composition is found from the following equation:

(1.3.5)

X@V(X,Y)2VY,Z) " X (VX,Y)@V(Y, Z)) 2 X 9 V(X, 2)

ol - lw

er ev
XVX,Y)eVY,Z) 2L (X e VX, V) eV, Z) — 7
(1.3.6)
The identity morphism 1y : 1y — V(X, X) is found from the following equation:

[X—>X®]1v—>X®\7(XX) X} idy .

The definition of closedness transfers without significant changes from Monoidal cat-
egories to multicategories.

1.3.11. Definition. A (symmetric) multicategory C is closed if for each I € ObO and
Xi,Z € ObC, i € I, there exist an object C((Xj)icr; Z) of C, called internal Hom-object,
and an evaluation morphism

such that the function

Cvyenxienz : C((Y)jer; C(Xi)ier: 2)) — C((Xa)ier, (Y))jer; Z)
that takes a morphism f : (Y;)je; — C((X})ier; Z) to the composite

c
(1 Xi)ie[:f V(X)ieriZ

[(Xi)i€fa (Y))jes ——— (Xi)ier, C((Xi)ier; Z) Z] (1.3.7)
is a bijection, for an arbitrary sequence (Y;);cs, J € Ob O, of objects of C. Here concate-
nation of sequences indexed by I and J is indexed by the disjoint union I U.J, where i < j
forallie I, j € J.

Notice that for I = @ an object C(; Z) and an element eV;CZ with the required property
always exist. Namely, we may always take C(; Z) = Z and eV;CZ =15 : Z — Z. With this
choice ©(v;),c,uz : C(( B)jed; ) — C(( )JGJ,Z) is the identity map. Furthermore, we
may assume that C((X;)ier; Z) = C((Xo-1(j))jes; Z) and ev( X)ier? = eV(CX i)ien?? for

each order-preserving bijection o : [ — J.
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The condition that ¢(v;);.,:(x,),c;;7 i a bijection translates into the following universal
property: for each morphism g : (XZ)ZGI, (Y )jes — Z there exists a unique morphism

I (Yj)jeJ - Q((Xi)ieﬁ Z) such that (( zeI, ) eve (Xi)ier;z — 9

( Z)zel Q(( z)zebZ)

(133(1%

(Xi)ier, (Y))jes VX ieri2

.

Z

An example of closed symmetric multicategory is provided by a closed symmetric
Monoidal category.

1.3.12. Proposition. Let (€, ®!, \/) be a closed symmetric Monoidal category. Then
the multicategory C is closed. For each I € ObO and X;,Y € ObC, ¢ € I, an internal
Hom-object C((X;)ier; Z) is C(®'X;, Z), and evaluation morphisms are represented by
the composites in C:

ov® = [@/N(X)ier, (&' X,, 2)) X (071X,) ® ©(0° X, 7) 2 7],
where v : [ U1 — 2 isgiven by I 21— 1,131+ 2.

Proof. Since € is a closed symmetric Monoidal category, the map
QDGG(YV,Q(X,Z))HG(XQ?YV,Z), g'_)(lX@g) eVXZ7

is bijective. To compute the map

o°  C(Y))jes; €((Xiier; 2)) — C(Xiier, (Vy)ses: 2),

consider an arbitrary morphism g : (Yj)jes — E(( Xi)ier; Z) in @, that is, a morphism
g: @€Y, - C(®€X;,Z) in €. Then

@é(g) = ((1;€(v)ielag) “idy L eVé (1.3.8)

where id;L> 2 T UJ — I'U1. Expanding out the right hand side of (L3]) using
formula ([[.2.§) for composition in €, we obtain that © (g) is given by the composite

Aid Up:TUJ—TU1 ) ®Iu1((1§(i)ielvg)

[/ (Xo)ier, (V)se) & (Kidier &57Yy) ————
AviIU1—2

@™ (Xi)ier, (@, 2)) X5 (070 X,) © 0@ X,, Z) °5 7).

It can be written as

[©" (X)ier, (¥)jes) 20 @M (Xier, ©7€7Y;) 202
i€l1C ‘
(®ieIXZ~) ® (®j€JYj) w} (®ieIXi) ®Q(®iEIXZ-, 7) 10_) Z},

by the naturality of \IU1=2  Gince the functor ®! preserves identities, it follows that

R, = 18icr i, - Furthermore, by equation (LI1),

)\1d1 U JuJ—Iu1 NE JU1—2 = \™ JuJ—2 ®IuJ((Xi)i€h (Y}>JGJ) N (®Z€IXZ) ® (®j€JY}),
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where m: I U J — 2 is given by I i+ 1, J 3 j +— 2. Therefore
® AU —2 i .

v°(9) = [®IuJ((Xi)i€h (Y))jes) — (® “X;) @ (&77Y;)

1€ ®
®ZEIXi g

(97€'X;) @ C(&'' X,, Z) 25 7],
in other words,

~ . . ¢ 3 j
Pf = [E(&Y; L(0'71XG, 2)) S (07X @ (87Y)), 2)
e(Aﬂ'Zl\_lJ—*271)

(™ (Xier, (Vy)jes). Z)]-

~

It follows that cpé is bijective, hence € is closed. U

The following observation simplifies checking that a particular multicategory is closed.
However, the choice of internal Hom-objects and evaluations that it suggests is not always
convenient.

1.3.13. Proposition. Suppose that, for each pair of objects X,Z € ObC(, there exist
an object C(X; Z) and a morphism ev$., : X,C(X; Z) — Z of C such that the function

Oy)enxiz 2 C(Y))jen C(X;Z)) — CX, (Y, ) .cs; Z) given by ([L3.7) is a bijection, for
each finite sequence (Y;);e; of objects of C Then C is a closed multicategory.

Proof. Define internal Hom-objects C(Xy,. .., X,; Z) and evaluations

Xz Xt X C(X0y e X3 Z2) — 2

.....

by induction on n. For n = 0, choose C(; Z) = Z and eV 7z =1z Z — Z, as explained
above. For n = 1, we are already given C(X; Z) and ev§ X.z- Assume that we have defined

C(X1,..., Xy Z) and ev§,  y,.z for each k < n, and that the function

PY)jes X1y Xi;Z + C((Yj)jeJ;Q(Xl, oy X Z)) - C(Xl, oo Xk, (Yj)jeJ; Z)

is a bijection, for each k < n and for each finite sequence (Y});ecs of objects of C. For

Xq,..., X, Z € Ob(, define
X1, X3 Z2) B C(X C(X -, X3 2)).

An evaluation morphism evg(1 x,,.z 18 given by the composite

.....

Xi,oo, X, C(X0 C(X, ., X 13 Z))
J(l)n—lvevg(n;gxl ..... Xp_13%)

Xla s 7Xn717£(X17 s 7Xn71; Z)
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It is easy to see that with these choices the function D)) jers Xy Xn; 7 decomposes as

C((Y))jess &(Xa, .., X3 Z))

Q(le e aXna (}/j)]EJa Z))
hence it is a bijection, and the induction goes through. O

1.3.14. Proposition. A closed symmetric multicategory C gives rise to a symmetric
multicategory C enriched in C.

Proof. For each map ¢ : [ — J in Mor8 and X;,Y;,Z € ObC, ¢ € I, j € J, there exists
a unique morphism

g+ (C(Xiies15:Y5)) e s C(V)iess 2) — C(Xidier: Z)
that makes the diagram

c
(1%)1'617/»‘5

(Xi)ier, (C((X)ies153 7)) s C(Y))jess Z) —— (Xi)ier, C(Xy)ier; Z)

jegr=
C . 1C C
(eV(Xi)ie(b*lj;Y]')]eJ? C((Yj)jeJ?Z)k c levwmepz
eV(Yj)jeJ;Z

(Y;)jes, C((Y))jer; 2) Z

commute. More precisely, the commutativity in the above diagram means that the equa-
tion

C C C _ C C _C
((1X¢)i€f’ N(p) dr e OV (X,)ie2 = ((eV(Xi)iewlj;Yj)J’GJv 12((Yj)jeJ;Z)) "¢ V(Y))jesiZ
holds true, where id; U>: TUJ U1 — TUL, and ¢ : TLUJ U1 — JU1is given by (T.2.4).

Furthermore, for each X € Ob C, there is a morphism

15 € ol (1% ) — C(X; X).

It is a unique solution to the equation

1€ 1£

ch .
(X 25 X, (X X) —5 X] =15
Let us check the conditions of Definition [.3.5. Equation ([.3.2) reads
((1Ex,.,

where id; L>: JUK U1 — JU1,and ¢ : JUK L1 — KU1 is given by ([.24). Applying
the transformation p(c((x,),.,-1,1¥:)),es.C(V))jes:2)i(Xi)ier;z Yields an equivalent equation

c C_ ((,C C _C
lj;Yj>)j€J’“w) idg e Mg = (g ) hercs L(@ercm)) 5 Mo

)’ g) i g] i eVC
icp—153Y7) 1€ Hyp) tidy e Ho | | idrie OV(Xy)iers2

((1§(2~)iela [((1&(&)
c C
- ((15(2-)@'61’ (kg merts Le(zipperw) 7 /%D 0y OV (eri2

where id;L>: TUJ U1 — IUU1L. It is proven as follows. To shorten the notation, we
drop the subscripts of identities and of evaluation morphisms. The detailed form can be



QT IWVHOVI(]

(Xz)zeb ( ) (1 : (X_>_€I . N
Q((Xl>z ; ) X DR e g—153)) ]EJ’H"’ e (1%, )ier kg
EC«Y)@ . zb))”GJ (CUX)ies53Y5)) jes XiJiers C((Xier; W)
A Zower W) C(¥;)sei W)
eve .
(ev (X)€¢_1 y)jEJ7 &) e W) (Xi)ienW
(BVE:X ) v )~eJ eVE:Y-) I
i)ieg—13Y;0 jliedi
¢ (Y))jer, C((Y))jers W) 1%
(12((Yj)j€w_1k;zk))kel(a
IE((Zk>keK?W) (1%)]‘er#%
eV(CZk)keK%W
(evGy. Jeek1E
) 15 2 ) e p—1152k S(ZkeriW)
ibe é«zk)ffif 0 uer o (Ziker, C(Zidrercs W)
- S ) —
=
o
2
Xz)zeb c (X) n
Q((Xl)l ; ) ) (1%i)ieI,(H@)keK»lE((zk)k W) i)iel (1§<i)i61,/¢%¢
EC((Y) » 12 Z]k )) /< - (g((Xi)i€¢’1¢’l’f;Zk))keK’ (Xi)ier, C((Xi)ier; W)
- (S ) )
C((ch)]keK W) hekt C((Zk)ker; W)

C
eVix. .y, Ji€ed
( (Xl)iqufljay] )] ’

C
(12((Yj)jew—1k§zk))keK7

1€ )
C(Zr)ker:W)

(Yi)jer,
(C((Y))jep1w; Zk))keK’
C((Zi)rer; W)

c c
(CV(Yﬂjewﬂk?Zk)’CEK’lg((Zk)keK?W)

(ev (X Jicp—1lyp—

(Zi)kers C((Zi)kex: W)

C
;Zk)kEK’1§(<Zk)keK;W)

C
ev
(X)iersW

C
ev
(ZK)kesW
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read from Diagram [[.§. Since identities in C are idempotent, the associativity axiom for

the pair of maps

idy Uidy U> idy Li>
_

ITUJUKU1 IuJul —rIu1

yields
((1)1'617 [((1)]'EJ7,U%) "idy > M%}) “idy U ev©
= <(1)iela (Dje%ﬂ%) “idy Uidy U (((Dielaﬁ‘%) “idy L eVC)-
By the definition of ,u%,

C
(e 1) s 05 = (v )se1) -5 v
The associativity axiom for the pair of maps

idy Uidy U
—_

JTUJUK U1 TuJuUlS Jul

implies
((1)i617 [((]‘)jEJnu%) "idy U M%}) ‘idy U ev©
C

- ((((1)i€¢—1ja 1) fidy-151 eVC)jeJ"u% "KUu1—1 1) “(id; Uidy us)-p €V -
By the identity axiom,
(Dieg=15:1) vid, -1, eve =ev© gyl M% k-1 1= ((Drexs 1) “iden ,u%-
Therefore, by the associativity axiom for the pair of maps
TUJUKU1S JUK U1 222 ju1,
where 7 is given by
ok =id: JUKU1 = JUKUL, wl,=(I%J—JUKU1),
it follows that

(e, [((se0.1S) 1,00 15]) 1m0
= <(eVC)j€J,(1>k€}(,1> . <((1)j€J,/¢%) iy e evc>.

By the definition of ,u%,

((nje%ui) ‘idy U eVC = ((eVC)keK, 1) T eVC,

therefore
<(1)iel’ (Ve 1) ey Nﬁ) idy s €V
= ((evc)jeJ, (Dgex, 1) . <((evc)keK, 1) - evc>_

Similarly, by the associativity axiom for the pair of maps

JTUJUKUL 2 r k1 4 1
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and the identity axiom,
C C
((Dieb [((11g, Jercs 1) 5 M@D idy s €VC
C C
= <(1)i€h (115, Jkexs 1) “id; UD (((1)iela,u$¢) iy U eVC>-

By the definition of “%1/)’

((1)i€hﬂ%w) id7 L eVC = ((ch)kgK, 1) o0 eVC.

Applying the associativity axiom for the pair of maps

idy Llw

JTUJUKUL MY roku1 ® kUt

leads to

C c
((1)1'617 (15, Jkexs 1) iy Ui <((1)z’el,ug¢) “idy Ub ch)
c

- <(((1)ie¢*lw*1k’#§k) fidg1 1 P evc)keK’1> pev
where idg-14-1, > : ¢ kLU R UL — ¢k U 1. Finally, since by the definition
of pg, .

(Dicg-1g-1k; M%k) idym1 -1 L evt = ((evc)ie(b_lw_lk, 1) o ev®,
it follows that

((1)2‘617 [((N%k)kel(a 1) R Nip}) “idy U ev©

_ C . C . C
= ((((ev )i6¢_1w—1k7 1) oo €V >k€K, 1) “(id; Up) 55 €V -

The equation in question is a consequence of the associativity of composition in C, written
for the pair of maps

I|_|J|_|Ku11>J|_|Ku1iK|_|1

and morphisms

C z)quﬁ 15, ((Xz)quS*lja)/]) - }/ja .] € J7

Y;)iew-1k C((Y5) jep—1k3 Zk) — Zi, k € K,

(

v (

Ve (Zk)rer, C(Zi)kerc; W) — W.
V) -

Note that 7 - ¢ = (id; L)) - 2, and the map
T =Tlpgog 7 0 k=90 W kUYTRUL ¢ kUL =9 Mk

coincides with ¢, k € K. The verification of the identity axiom is left to the reader. O

The proof of Proposition is quite detailed. In the sequel, we are not going to
explain each instance of the associativity axiom and identity axiom, letting a pedantic
reader fill in details by herself.

Suppose C is a (symmetric) multicategory, ¢ : [ — J is a map in Mor O (resp. Mor§),
and f; : (Xi)iep-1; — Y}, j € J, is a family of morphisms in C. Then there is a map

C((fi)jer; Z) : C((Y))jes; Z2) — C((Xi)ier; Z), g (fi)jes 6 9-
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These maps are compatible with composition: if I % JY% Kisa pair of composable
maps in Mor O (resp. Mor8), f; : (Xi)ico—r; — Yj, 7€ J, gr = (Y))jep—1k — Zi, k € K,
are morphisms in C, then

C((gr)kers W) - C((f5)jers W) = CU((f5)jew—1k o Ir)rer; W)

as maps C((Zg)rex; W) — C((Xi)ier; W). This is a consequence of the associativity of
composition in C.

1.3.15. Proposition. For each closed (symmetric) multicategory C, the bijection
P jer(Xe)ier; Z - C((Y})iEJ;Q((Xi>i€I; Z)) — C((Xi)zGI, (Y})jEJQ Z)’
g ((1§(i>ielag) “idy U eV(CXi)Z.GI;Z,

is natural in (Y;)je;. That is, for an arbitrary map ¢ : K — J in Mor O (resp. Mor$§)
and morphisms f; : (Wy)rep-1; — Y, j € J, the diagram

P jesi(Xdier:Z

C((Y))jer; C((Xy)ier; Z)) C((Xi)ier, (Yy)jes; Z)
C((fj)jeﬁc((xi)ieﬁz))k kc((l%i)ielv(fj)jeﬁz)

PWikek:(X)ieriZ
C((Wh)ker; C(Xy)ier; 2)) S C((Xiier, Wi)ker; Z)

commutes.

The naturality in the remaining arguments can also be proven. However, since we are
not going to make use of the fact, it is not explored in details.

Proof. Indeed, taking an arbitrary morphism ¢ : (Y;);es — C((X})ier; Z) and pushing it
along the top-right path produces

((1§(i)z‘eb (fj)jeJ) "idy Ug <((1§(2~)z‘ebg) “idy U eV(CXi)ie,;Z)>
while pushing g along the left-bottom path yields
((1§(i>i€1’ ((fj)jGJ K2 g)) “idy L eV(CXi)ieI;Z :
The former expression is equal to
((1§(2 ’ 1§Q)i617 ((fj)jGJ K g)) idy L eV(CXz')iel;Z - <(1§Q)i617 ((fj)jeJ K2 g)) “idy U eV(CXz')iel;Z

by the associativity axiom for the pair of maps I Ll K oy g 111, and since

15, - 1%, = 1%,, @ € I. The proposition is proven. O

idy Li>
—_—

1.3.16. Proposition. The choice of evaluations eV(CXi)ieI' , for a closed multicategory C
determines a unique isomorphism

Py seri(Xiieriz - C((Y))jes: C((Xi)ier; 2)) — C((Xi)ier, (Yi)jer; Z).
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Proof. Let ¥w,),, denote the bijection

C((Wiker: C((Y)jess C((Xi)ier; 2)))

PWiker:(Yj)jes:C((Xy)ie1:2)

C((Y))jeqs Wiker; C((Xi)ier; Z))

PYPjer Widkek(Xiier:Z
C((Xi)ier, (V3)jer, (Wi)ker; Z)

1
Wi ker:(Xier () jesi2

C((Wirers CU(Xi)ier, (V)jes; Z))

It is natural in (Wy)gex by Proposition [[3.15. Denote A = C((Y;);es; C((Xi)ier; Z))
and B = C((X,)ier, (Yj)jes; Z). Considering K = 1 we get an isomorphism between the
functors W +— C(W; A) and W — C(W; B), which by the ordinary Yoneda Lemma gives
an isomorphism Povy e r(XiyieriZ - A — B in C, the image of 1§ under the map 4.
—\tyJje\Ajiels

Notice that, for an arbitrary family (Wj)rex, the isomorphism ), ), , is obtained
by composition with oy yseri(Xier 2" Indeed, the naturality of ¥, , is expressed by
the commutative diagram

YWier
C(()ier; A) —————— C((Ui)er; B)
C((fz)zeL;A)l LC((fl)leDB)
VWi kek
C((Wi)ker; A) herc C((Wi)kex; B)

for each ¢ : K — L and morphisms f; : (Wy)keg-1 — U;, L € L. Consider ¢ = : K — 1,
Uy = A, and an arbitrary morphism f : (Wj)zex — A. Pushing the identity 1§ € C(4; A)
along the top-right path produces f-1¥4(1) = f - Py e s (Xyeri2? while pushing it along
JjE i€l

the left-bottom path gives ¥, ), (f), hence the assertlon O

1.3.17. Corollary. The isomorphism ¢ P, makes the diagram

)]EJ (Xi)ier;Z

.C
C(’f(Yj)jeJ%(Xi)iez:Z)

€6 Ll0G)ier L(Xiier: 2))) Cl:CU(Xer. (V))jer: 2))
cp;c(xj)je“’;c((xi)iel;z)l lcp?c(xi)ieb(yj)je‘i;z
wfyj)je‘l?(xi)iej;z
C((Y}')J'EJSQ((Xi)ieI; Z)) C((Xi)iel’ (Yj)jeJ; Z)
commute.
Proof. The proof follows from the definition of ¥ uy,), ., for K = @. 0

1.3.18. Example. Let C be a closed symmetric multicategory. Let X be an object
of C. It gives rise to a C-functor C(X;—) : C — C, Y — C(X;Y), where C denotes
the C-category underlying the symmetric C-multicategory C. The action on objects of
morphisms is found from the following equation in C:

[CX5Y), €Y 2) 22520 C(X5Y), C(C(X; V) €(X3 2)) 25 X5 2)] = €
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The existence and uniqueness of the solution are guaranteed by the closedness of C.
That so defined C(X; —) preserves identities is a consequence of the identity axiom. The
compatibility with composition is established as follows. Consider the diagram

C(X;Y), C(X; Y)

Cv:z), XD cieix vy ox: z)), oot SX2)
&z w) C(C(X; 2): C(X; W) C(C(X,Z)@C(X,W))
C(X;Y), L) C(XGY), o :

Cy;w) C(C(X;Y); C(X; W) C(X; W)

By the above definition of C(X; —), the exterior expresses the associativity of u& The
right square is the definition of 4. By the closedness of C, the square

Q(Y;Z),Q(Z; W) C(X;-),C(X;-)

Cy;w)

CC(X;Y); C(X; 2)), C(C(X; Z2); C(X; W)

L

C(C(X;Y); C(X; W)

la]

C(X;-)

commutes, hence the assertion.

1.3.19. Example. Similarly, an arbitrary object Z € ObC gives rise to a C-functor
C(—;2):C" - C, X — C(X;Z). Its action on objects of morphisms is found from the
following equation in C:

[C0x: 2),. ¢V ) C(X; 2), C(C(X; 2); (Y3 2)) 5 LY 2)] = g,

The existence and uniqueness of the solution follow from the closedness of C.

1,C(—;2)
—_—

Let g : (Y;)jes — Z be a morphism in C, X; € ObC, i € I, a family of objects, and
let ¢ : I — J be a map in Mor 8. The morphism g gives rise to a morphism

C(d;9)  (C((Xi)iep—153 Y)))jes — C(Xi)ier; Z)

in C determined in a unique way via the diagram
1)r1.C(#s9)
(Xdiers (CUXies17: Y))jes —— (Xi)ier, C(Xi)ier; Z)

(eV(CXZ.)iE¢_1J_;Yj)jEJl lev(cxi)iel?z (139)
(Y))jes : Z

The existence and uniqueness of C(¢; g) follow from the closedness of C.

Let ¢ : K — I be a map in MorS§. Let f; : (Wy)key-1; — Xi, ¢ € I, be morphisms
in C. A morphism C((f;)ier; 1) : C((Xi)ier; Z) — C((Wi)kex; Z) is defined as the only
morphism that makes the following diagram commutative:

Dk .C((fi)ier;1)

(Wk)keK, Q((Xi)iels Z) (Wk)keK, Q((Wk)keKS Z)

(fi)ielall/ lev%wmemz (1.3.10)
Z

eV(CXi)ieﬁZ
(Xi)ier, C((Xi)ier; 2)
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The following statements are proven in the same manner: instead of proving an equa-
tion f = g between morphisms f,g : (Yj)jes — C((Xi)ier; Z), we prove an equivalent
equation ¢(f) = p(g) between the morphisms ¢(f), p(g) : (Xi)ier, (Yj)jes — Z. Usually,
it suffices to draw a commutative diagram whose exterior coincides with the required
equation, and to explain its commutativity. When the diagram does not fit into a page,
as it happens in the proof of the following lemma, we provide an inline proof.

1.3.20. Lemma. In the above assumptions, the introduced morphisms satisfy the com-
mutativity relation:

(C((Xieo15 V) sy —— s C((Xiier: 2)

(Q((fi)ieq;—lj;l))jeJJ = lg((fi)ieﬂl)

C(ve;
(CWidrev10-15Y5)) 1) — 2y C(Widsens 2)

Proof. We may rewrite the required equation in an equivalent form:

K ,C(¢;
[(Widkere, (CU(Xiies153Y5)) 1oy P22 (Witer, C((Xiier; Z)

(DK:Q((fi)ieI?l) (Wk)keK,g((Wk)keK,Z) i} Z:|

Mk (C((fi)ieg—1;1))jes

= [(Wokere, (C(X)ieo15: 1)) jes

(Wi)kek, (Q((Wk)kew*%*lj? Y’))jeJ

1) i, C(-; evC
O LO2D, (Wi per, C(Wikers Z) < 7).

The left hand side can be transformed as follows:

(1) k ,C(¢39)

[(Wi)ker, (CU(X:)icp15; Y‘))jeJ (Wi)ker, C((Xi)ier; Z)

s 71 eVC
et (X )ier, C(Xi)iers 2) ©5 2]

(Xi)ier (Q((Xz‘)z‘eb*lj? Y'))jeJ
(1)1,C(59)
=

(fi)ier,(1)
= [(Wi)kex, (Q((Xz‘)z‘eqs*lj?y))jej —

(Xi)ier, C((Xs)ier; 2) el Z]
(Xi)ier, (g((Xi)iEqS’lj; Y'))jeJ

C
(eV(Xi)i€¢_

(fi)ier,(1)
= [(Wi)kex, (Q((Xz‘)z‘ewlj?Y'))jeJ =

lj;yj)jeJ

(Yj)jeJ = Z]' (1.3.11)
The right hand side can be transformed to

MW (C((fi)ieg—1;:1))5ea

[(Wk)keK, (g((Xz’)iE¢_lj; Y'))jeJ

(ev§ v,
W) peyp—15—1;Y5

)ies

(Wi)kek (Q((Wk)kew*%*lj? YJ’))jeJ

which coincides with the last expression of ([.3.11)). O

(}/j)jEJ & Z:| )
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1.3.21. Lemma. Let I % J % K be maps in Mor 8, and let f; : (X;)iep-1; — Yj, j € J,
g = (Y})jep-1k — Zi, k € K, be morphisms in a closed symmetric multicategory C. Then

C(((fijew1k - g)rers 1)
C ;1 C((f5)jer1)
= [Q((Zk)kez(; W) M Q((Yj)jeJ; W) s C((Xi)ier; W)}
Proof. The commutative diagram

(D) 1,C((9%))kek;1)

(Xi)ier, C((Zk) ke W) (Xi)ier, C((Y))jers W)

(fi)jer:l (f)jes,1 D)r,.C((f5)jes1)

(1)5,€((gr)kek;1)
(Yj)ies, C((Zi)ker; W) = (Y)jer, C((Y5) s W) (Xi)ier, CU(X3) s W)
(9K )ker>1 e

. V(CYj)jeJ?W %;W
Ve W
(Zr)kers C((Z1)ker; W)

implies the lemma. The lower square is the definition of C((gx)rex;1). The left quadri-
lateral is the definition of C((f;);es;1). O

1.3.22. Lemma. Let I & J % K be maps in Mor§, and let fi : (Y))jep-16 — Zk,
ke K, g: (Zy)kexk — W be morphisms in a closed symmetric multicategory C. Denote
by ¢y, the restriction ¢|y-1y-11 : ¢~ 'k — 7k, k € K. Then

C(¢5(fr)kek v9)
[(Q((Xi)in*lj;Y'))jeJ SRR Y, C((Xi)ier; W)]
C(Pk3fu)) ke
= [((C((Xieo 15 YD) jew k) ere P (CU(Xiieg 1018 Z) e
M C((Xi)ier; W)} :

Proof. The claim follows from the commutative diagram

(eV(CX-) -y.)jeJ
(Xiier, (C((X)ico153Y7)) Vieomld Ay
i)iel, \& i)iep—1j, jeJ ( ])]EJ
(D) 1,(C(Pr;fu)) ke Kk (fe)ver
(eV(CXi)V 11 ;Zk)kEK
(X)ier, (CUXd)ico 1918 Z)) pege S (Zk)rex
1) 1,C(9959) g
C
eV(Xi)i ;W
(X)ier, C((Xi)ier; W) = W

where the lower square is the definition of C(¢v; g), and the commutativity of the upper
square is a consequence of the definition of C(¢x; fx), k € K. O

Notation. Let g : (Y;)jes — Z be a morphism in a closed symmetric multicategory C.
Denote by § : () — C((¥);e1 Z) the morphism ¢ (g) € C( C(Y)ses: 2)).
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1.3.23. Lemma. Let the above assumptions hold. Let (X;);e; be a family of objects of
C, and let ¢ : I — J be a map in Mor 8. Then C(¢; g) coincides with the composite

[(Q((X‘)ieww;yj))jeJM (C((Xi)ies 15 Vi) jers CU(Y)sers Z) =2 Q(( X)ier; Z)].

Proof. Plugging the right hand side into defining equation ([33.9) for C(¢;g) we obtain
the diagram in C

(eV(CXi)i€¢ 1j;yj)jej
(Xi)ier, (C((Xi)icp—15; Y7))jer (Y))jes
(1)17(1).]79 (1).]79
(v, Jies1

(X3)ier, (CU(Xdieat: V)jer C(Yi)jers Z) — = (V) ier, C(V)seri Z) )

C C
(1)],}1(;5 ev(Yj)jeJ?Z

eV(CXi)ieIiZ
(Xi)ier, C((Xi)ier; Z) A
The lower square is the definition of u%. The right triangle expresses the equation

©.v;),es:2(9) = g. The commutativity of the exterior of the diagram implies the statement
of the lemma. O

1.3.24. Remark. Suppose ¢ : Y — Z is a morphism in C. It follows that
: ' C(X;5-)
(Cl39)) = [() = C(Y;2) = C(C(X:Y): C(X; 2))],
for each object X € ObC.

1.3.25. Lemma. Let ¢ : K — I be a map in Mor 8. Let f; : (Wy)keyp-1; — Xi, 1 € I, be
morphisms in C. Then C((f;):er; 1) coincides with the composite

(fiier1 “w

[C((Xi)ier; Z) (C((Wi)key—15; Xi) ier, C((Xi)ier; Z) == C(Wi)rex; Z)]-

Proof. Plug the right hand side into defining equation ([Z3:10) for C((fi)icr; 1). We obtain
the diagram in C

(Wk>k€K7 Q((Xi)ielé Z)

(D, (fi)ier,1

(fi)ier,1

C . 1
(eV(Wk)k@rli?Xi)ZeI’

(Wk)keK, (Q((Wk)kew—lz'; Xi))iela Q((Xi)iels Z) (Xi)iela Q((Xi)ielé Z)
(1)K7M% ‘/ev(cxi)ie[;z
eV(CWk>ke1<;Z
Wi)rer, (Wi )rer; Z) A

The square is the definition of ,u%. The triangle follows from the equations

w?(Wk)kew—liQXi(fi) = f’i) [ € I
The commutativity of the exterior of the diagram implies the statement of the lemma. [

1.3.26. Remark. Suppose f: W — X is a morphism in C. It follows that

(1) = [0 L cow; x) 22 ce(x; 2); ¢ 2))].
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1.3.27. Closing transformations. Let C, D be closed symmetric multicategories. Let
F : C— D be a (symmetric) multifunctor. Define a morphism in D

Eixyeny  FUXo)ier V) — D((FX;); FY)
as the only morphism that makes the diagram

(F'Xi)ier, DI(F Xi)ier; FY)

WrExyy

(FXZ)Z€I7F£((XZ)ZEI7Y) ev?pxi);py (1312)

c

commute. It is called the closing transformation of the multifunctor F.

Y

1.3.28. Lemma. The diagram
C((Y))jes; C((Xi)ier; Z)) s D((FY;)jes; FC((X:)ier; Z))
DLE (x;);2)
P jegs(XierZ D((FY;)]EJ,D((FXZ)Ze],FZ)) (1313)

PEY})je g (FXy)ier:iFZ

C((Xa)ier, (Y))jer; Z) — D((FXi)ier, (FY))jes: FZ)
commutes, for each I, J € ObO and objects X;,Y;,Z € ObC,v €1, j € J.

Proof. Pushing an arbitrary morphism ¢ : (Y;);e; — C((X;)ier; Z) along the top-right
path produces the composite

(1)1,Fyg

[(FXi)ier, (FY)jes ——

Dr.Ex,).z
—

(FXi)z‘eI, FQ((Xi)ief; Z)

D
V(FX,);Fz
SN

(FXi)icer, D((FX,)ier; F7) FZ].

The last two arrows compose to F eV(CXZ_), 2 by the definition of F(x,.,. Since F' preserves

composition, the above composite equals

F(((l)[,g) : eV(CXi);Z) = F(¢(3?)16J;(Xi)iel;z(g))>
hence the assertion. O
1.3.29. Corollary. For J = @ we get the following relation between F' and F':

DGE(x,);2)

C(:C((X)ier; Z2)) —2= D(; FC((Xi)ier; Z2)) — 2 D(; D((FX:)icsr; FZ))

w%(Xi)ieI?Zk Mf’%(FXi)iez:FZ

C((Xi)ielé Z) d D((FXi)ieISFZ>
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Let F': C — D be a symmetric multifunctor. According to Section [1.3.9, it gives rise to
a Cat-functor F, from the 2-category of symmetric C-multicategories to the 2-category of
symmetric D-multicategories. The Cat-functor F, takes the symmetric C-multicategory C
to the symmetric D-multicategory F,C whose objects are those of C, and whose objects of
morphisms are (F,.C)((X;)icr;Y) = FC((X,)ier; Y), for each I € ObO and X;,Y € Ob(,
1 € 1. Composition in F,C is given by

Fpg : (FC((Xi)ies15:Y)))jes FC((Y)jes; Z2) = FC(Xi)ier: Z).
The identity of an object X is 15°¢ = F15 : () = FC(X; X).
1.3.30. Proposition. There is a D-multifunctor F : F,C — D such that ObF = Ob F,

and F ),y * FC((Xi)ier; V) — D((FXi)ier; FY') is the closing transformation, for each
I €0b0 and X;,Y € Ob(C, i€ I.

Proof. Tt follows from Corollary that F preserves identities. Indeed, take I = 1,
X1 =7 =X € ObC. Starting with the element 1%( of the source and tracing it along the
sides of the pentagon, we obtain that the composite

0 1%, FC(X: X) 25 D(FX; FX)

is mapped by ¢.rx.rx to F((p;X;X(lgf)) =F1$ =18, = w;FX;FX(l%X). Since ¢.x.x is
bijective, it follows that

Fl—

[0 25 Pe(x; X) 255 D(FX FX)] =12,

so that F' preserves identities.
To show F' preserves composition, we must show that, for each map ¢ : I — J in
Mor 8, the diagram

C
Fug

(FC((Xiico15:Y5))jer, FC((Y))jer; Z) ———— FC((Xi)ier; Z)

(E(Xi);Yj)JEJvE(Y]-);Z‘/ lF(xi);z (1.3.14)
D
2

(D((FX.)ico-15; FY;))jes, DUFY;)jess FZ) —— D((F X, )ier; FZ)

commutes. This follows from Diagram [[.9(a). The lower diamond is the definition of
the composition morphism ug. The exterior commutes by the definition of ,u% and since
F' preserves composition. The left upper diamond and both triangles commute by the
definition of closing transformation. U

1.3.31. Lemma. Let F' : C — D be a symmetric multifunctor. Let f : (Y;);e; — Z be
a morphism in C, X; € ObC, i € I a family of objects, and ¢ : [ — J a map in Mor S.
Then the diagram

FC(o;f)
(FC((X)ico17: Vi) jes ——

(E(Xi);yj)jeJl

(D((FXi)iEqS*lj; FYj))jEJ

FC((Xy)ier; Z)
lﬂ(xi);z (1.3.15)

BOED L D(FX\)ier: F2)

commutes.
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(FXi)ier,
(FC(( )ie¢*1j?Yj))jeJ’
FC((Y;)jer; Z)

C
(Feviy, )Y)J/l Frg

(F}/})jEJa ()1 (F ) 7 (FXi>z'Gla
FC((Y))jer; Z) PG T0G) FC((Xy)ier; Z)

"ij

( 1)1617
(1)J’E(Yj)?z (D(( z)z€¢> 143 F%))jeJ’ (1)1’E(Xi);Z
D((FY))jes; FZ)

D
%?in);pyj)ja,l (1)%

(FYJ')JGJa (FXZ'>Z'617
D((FYJ)J'GJ; FZ) D((FXz')z’eBFZ)

(FWi)ker
FC((Xi)ier; Z)

(Ffi)i% %ﬁ((ﬂ)ieul)

(F'Xi)ier, D (FWi)kek,
Fg((Xz)ZGI, Z) —(Xa)iZ FQ((Wk)kGK, Z)

(FWk>k€K7
WEx,).z D((FX,)ier; FZ) VkoEw, )z

(Ffi)ier,1
K D( Ffz)zel 1

(FXi)ier, (EW)kek,
D((FXi)ier; FZ) D((FWi)kex; FZ)

DiAGrAM 1.9.

67
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Proof. The claim follows from the diagram

(FX,)icr, (1)1, FC(@3f) (FX)ier,
(FC((X)ies153Y7)) ey FC((Xi)ier; Z)
l(l)I:(F(Xi);Yj )i mlv&&-)%l
(FX,)ier, WrD@FH  (FX;)ier,
(Feviy,)y,)ies (D((FXZ'%E(;S*U; FYJ'))jeJ D(FX,)icr; FZ)| Fevixz
(eV?Xi);Yj)jeJ eVI(DXi):Z
Ff
(FYj)jeJ FZz

The lower square is the definition of the morphism D(¢; F'f). The exterior commutes by
the definition of C(¢; f) and since F preserves composition. The triangles are commutative
by the definition of closing transformation. g

1.3.32. Lemma. Let ¢ : K — I be a map in Mor8. Let f; : (Wy)reyp-1; — Xi, 1 € 1, be
morphisms in C, and let F' : C — D be a symmetric multifunctor. The following diagram
commutes:

FC((fi)iers1)

FC((Xy)ier; Z)

E(Xi);zl

D((FXi)ier; FZ)

FC(Wh)kek; Z)

lF(Wk);z (1316)

Proof. The claim follows from Diagram [[.9(b]] The lower diamond is the definition of the
morphism D((F'f;)ier;1). The exterior is commutative by the definition of C((f;)icr; 1)
and since I’ preserves composition. The triangles commute by the definition of closing
transformation. U

1.3.33. Lemma. Given a multinatural transformation v : F — G : C — D, the diagram

Eixpy

FC((Xi)ier; Y) D((FXi)icr; FY)

Vg((xmepml lD(wuy) (1.3.17)
G D((vx;)ier;1)

(XY

GC((Xi)ier; Y) ——— D((GXi)er; GY) —————— D((F Xi)icr; GY')

is commutative.

Proof. The claim follows from Diagram [[.I(. Its exterior expresses the multinaturality of
v. The square is the definition of D((vx;)icr; 1). The right diamond is the definition of
D(>; vy). The triangles commute by the definition of closing transformation. O

1.3.34. Lemma. Let C, D, E be closed symmetric multicategories. Let C 2D % E be
symmetric multifunctors. Then

GE(x;)y Grx;)Fy
—_—

GoF = [GFC((Xi)ier; Y) GD((FX;)icr; FY) E((GFX,)ier; GFY)].
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(FX))ier
FC((Xi)ier; Y)

C
(XY

W Ex)y

(F'Xi)ier (FXi)ier
GQ((Xz‘)z‘eHY) D((FXz‘)z‘eﬁ FY)
W1.G(x,)y (1)172('>§VY\)/
(rx )ier 1 (FX;)ier, WrD(wxiers)) (FX;)ier,
VX, )iels _
) D((GXy)ier; GY) D((FX;)ier; GY)
eVD
(FX;);FY
(GXi)ier, _
GC(Xi)ier; Y) i derd Verx, )Gy FY
vy

DiaGgraM 1.10.

Proof. This follows from the commutative diagram
D1.GFx;)Fy
(GFX;)ier, GD(FXi)ier; FY) —————— (GFX;)ier, E(GFX;)ier; GFY)
(1)I=GF(X¢>;YT

(GFXy)ier, GFC((X)ier; Y)

D
GeV(FXi):FY E
V(GFX,);GFY

GFY

The upper triangle is the definition of G px,).py, the lower triangle commutes by the
definition of Fy,).,- and since G preserves composition. u

A

1.3.35. Example. Let € = (€, ®’, \/) be a symmetric Monoidal category. Then for each

J € ObO the category €7 has a natural symmetric Monoidal structure (€7, ®Ie_,, /\é_,).
Here

ety = [(@) = @) £ e],
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and foramap f: 1 — K

-1
J HkGK(®f kyJ

[Tier (@)% = Ther (@)

l

)‘éJ = { - (erK efilk) ’

) =

[Ther €7 —— (€N~

l

(Hrex ®f71k)J

(€")’

o7
(®7) (@)

(@)’ 0’
(GJ)I S N (GI)J @7

Equation ([.L1.1) holds true due to the coherence principle of Lemma and Re-
mark [L.T.§.

The functor ®”’ : @/ — € equipped with natural isomorphism

eIxJ -« ~ (GJ)I — !

I
®
)\pI‘QIIXJ*)J

en’ SRR

is a symmetric Monoidal functor. Explicitly, o9 is given by ([.1.4). Equation ([.1.9)
holds due to the mentioned coherence principle.
Assume that € is closed, then €7 is closed as well. Thus the symmetric Monoidal
functor (®7,002) : (€7,®L,, L) — (€,®",\) determines the closing transformation
&J : ®jng(Xj7 Yj) — Q(@)jEJXj’ ®j€JY})’

which is the only solution of the equation

@)

, , 1887 . , ,
(®JEJXJ,) ® (®j€JQ(Xj’ Y})) - (®]EJXj) ® §(®jeJX],’ ®j€J}/})

0(12)J leve (]_3]_8)

. Jeve .
& (X; © 8(X;, ) : &Y

These transformations turn € into a symmetric Monoidal C-category. For each f: I — J,
the isomorphism )\é c e — Q(@FX;, @€ QiEf i X;) is the morphism M. Equa-
tion ([.I1.3) for )\é follows from similar equation ([CI.1]) for A/.



CHAPTER 2

Serre functors for enriched categories

The notion of Serre functor was introduced by Bondal and Kapranov and motivated
by the Serre-Grothendieck duality for coherent sheaves on a smooth projective variety
[A]. It proved useful in many other contexts, see e.g. Bondal and Orlov [, Kapranov
[B4)], Reiten and van den Bergh [[7], Mazorchuk and Stroppel [5]. Serre functors play
an important role in the theory of cluster categories; in fact, the notion of Serre functor
enters the very definition of cluster category, see e.g. Caldero and Keller [g].

We extend the definition of Serre functor to enriched categories. The motivation here
is as follows. We will see in Section .4 that unital A-categories form a k-Cat-multicat-
egory A%, and that there is symmetric k-Cat-multifunctor k from A% to the k-Cat-mul-
ticategory of categories enriched in K, the homotopy category of complexes of k-modules.
On the one hand, k can be thought as a kind of forgetful multifunctor since it neglects
higher homotopies. On the other hand, it forgets not too much: we will see, for example,
that it reflects isomorphisms of A, -functors and A..-equivalences. It is therefore natural
to expect that a Serre A,.-functor in a unital A,.-category A, whatever it is, should induce
a Serre K-functor in the K-category kA. This motivates us to introduce Serre K-functors.
In fact, we define Serre V-functors for arbitrary V-categories, where V is a closed sym-
metric Monoidal category. Taking V = k-Mod, the category of k-modules, we recover
the definition of ordinary Serre functor. There is also another reason for such generality.
Namely, we would like to find conditions that assure the existence of a Serre K-functor
in a K-category € provided that an ordinary Serre functor in the 0*® cohomology H°(C)
exists. It is hard to do directly, that is why we introduce an intermediate graded category
H*C, the full cohomology. We prove that if a graded category € is closed under shifts and
its 0 part C° admits an ordinary Serre functor, then € admits a graded Serre functor,
provided that the ground ring k is a field. Furthermore, we prove that if k is a field,
then a K-category € admits a Serre K-functor if and only if H*(C) admits a graded Serre
functor.

The contents of the chapter can be found in [|1]]. The idea to introduce Serre functors
for enriched categories as a bridge between Serre A, -functors and ordinary Serre functors
is due to the author. Section was suggested by Volodymyr Lyubashenko. It was
also his idea that a graded category may possess a graded Serre functor as soon as it is
closed under shifts and its 0" component admits an ordinary Serre functor. The remaining
results have been proven by the author.

2.1. Preliminaries on enriched categories

Let V = (V,®',\) be a closed symmetric Monoidal category. Its unit object is
denoted by 1. The main examples we are interested in are V = X, the homotopy category
of complexes of k-modules, and V = gr, the category of graded k-modules. To simplify
the notation, we often ignore isomorphisms A/ for order-preserving maps f and work with
the category V as if it were strict. This is justified by the coherence theorem, see e.g.

71
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[B@, Theorem 1.2.7]. Let c = X : X ® Y — Y ® X denote the symmetry of V, where
X =(12) : 2 — 2. For a permutation 7 € &,,, denote by

Te: X1® - ® Xp = Xp11) ® -+ ® X1y

the action of 7 in tensor products via the symmetry c. In particular, the symmetry c
coincides with the morphism (12). : X®Y — Y ®X. Sometimes, when the permutation of
factors reads clearly, we write simply perm for the corresponding canonical isomorphism.
We stick with the notation of Section [.3.10. Evaluation and coevaluation morphisms
are denoted by ev" and coev" respectively. As usual, V denotes the V-category arising
from the closed structure of V. The category of unital (resp. non-unital) V-categories
is denoted V-Cat (resp. V-Cat™). We refer the reader to [29, Chapter 1] for the basic
theory of enriched categories.

2.1.1. Opposite V-categories. Let A be a V-category, not necessarily unital. Its op-
posite A is defined in the standard way. Namely, ObA°® = Ob A, and for each pair of
objects X, Y € ObA, A®(X,Y) = A(Y, X). Composition in A°P is given by

frase = [AP(X,Y) @ AP(Y, Z) = A(Y, X) ® A(Z,Y) =
A(Z,Y)® AY,X) 5 A(Z,X) = AP(X, Z)].
More generally, for each n > 1, the iterated n-ary composition in A°P is

w?

Wopop = [®ienAOP(Xi—1,Xz‘) = @ "A(X;, Xi1) —
P A(X i1, Xos) 25 A(X,, Xo) = AP(Xp, X,)], (2.1.1)

where the permutation w® = (}L G2t Tf) is the longest element of &,,. Note that if A
is unital, then so is A°P, with the same identity morphisms.

Let f : A — B be a V-functor, not necessarily unital. It gives rise to a V-functor
foP AP — B with Ob f* = Ob f : ObA — Ob B, and

f;)(I?Y = fY,X : ‘Aop(Xa Y) = ‘A(YvX) - B(YfaXf) = Bop(Xfa Yf)) X7Y € ObA.
Note that f°P is a unital V-functor if so is f. Clearly, the correspondences A — A°P,
f — f°P define a functor —°P : V-Cat™" — V-Cat"" which restricts to a functor —°P :
V-Cat — V-Cat. The functor —°P is symmetric Monoidal. More precisely, for arbitrary
V-categories A;, i € n, the equation KA = (K"A,)°P holds. Indeed, the sets
of objects and objects of morphisms of both V-categories coincide, and so do identity
morphisms if the V-categories A;, i € n, are unital. Composition in K**® AP is given by

pienqoe = [(®"PAP(X;,Y;)) @ (@ AP(Y;, Z;))
70, e AV, Xi) @ Ai(Zi, Vi) Z @i (Ay(Z:, Y) @ Ai(Yi, X))

g,

- ®i6nﬂi(Zz', Xz') = ®i€nA?p(Xz'a Zz):|
Composition in (K'“™A;)°P is given by

pgienaor = [(RA)P((Xo)iens (Yoien) @ (R AP ((Y)iens (Zi)ien)
= (®i€nA¢(Yi,Xi)) ® (®i€n-/4i(Zz',Yi)) = (®i€n-Ai(ZiaY;)) 02y (®i€nﬂi(Y;,Xi))

I, QN (AL(Z,, V) @ A(Yi, Xi)) 2L @R AL(Z,, X;) = @M AP(X, Z3)].
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The equation pgiengor = fywiena,)or follows from the following equation in V.

(&7 AV, X)) @ (&7 A2, V) =
" (Ai(Y:, Xo) ® Ai(Z:, V7)) B & (Al 2 Yi) @ Al X))
= [(®""A(Y;, X)) ® (87" A(Z:,Y))) = (97 A(Z:, YY) © (9" AL(Y;, X))
T, g (A2, V) @ AV, X)),

which is a consequence of coherence principle of the Lemma [[I.7] and Remark [.T.§.
Therefore, —°P induces a symmetric multifunctor —°° : V-Cat™ — V-Cat™ which re-
stricts to a symmetric multifunctor —°P : V-Cat — V-Cat.

2.1.2. Hom-functor. A V-category A gives rise to a V-functor Homy : AP XA — V
which maps a pair of objects (X,Y) € ObAxObA to A(X,Y) € ObV, and whose action
on morphisms is given by

Homy = [A®(X,Y) @ A(U,V) = A(Y, X) @ A(U, V) <25

V(1 (e1)2)

Equivalently, Hom, is found by closedness of V from the diagram

1®HomA

AX,U)@ A(Y, X) @ A(U,V) AX,U) @ VAX,U),A(Y,V))

c®1l levv (2.1.3)

AY, X)® A(X,U)® A(U,V) A(Y, V)

2.1.3. Lemma. Let A be a V-category. Then
Hom o = [ARAP S AP KA 2224, ),
Proof. Using (-1.1]), we obtain:

Homuer = [A(X,Y) ® A®(U, V) = A®(Y, X) @ A®(U, V)
w0 VAP(X, U), AP (X, U) @ A% (Y, X) @ AP (U, V))

Y(la(c(g)l)uiop
_—

L V(AP(X, U), A (Y, V)]
= [AX,Y) @ A(V, U) <25 VAU, X), AU, X) @ A(X,Y) @ A(V,U))

V(1,(e®@1)wdpd)

V(A(U, X), A(V,Y))],
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where w” = (13) € &3. Clearly, (c® 1)w? = (1 ® ¢)(c ® 1), therefore

Homger = [A(X,Y) @ A(V,U) = V(A(U,X),A(U,X) R AX,Y)® AV,U))

Y(1,(186) (c@1)p)

VAU, X), A(V,Y))]
= [AX,Y)®@ A(V,U) S A(V,U) ® A(X,Y)
<, VAU, X), AU, X) @ A(V,U) @ A(X,Y))

LB, VAU, X), A(V,Y))]

— [AX,Y) @ A(V,U) S A(V,U) ® A(X,Y) 2225 VAU, X), AV, Y))].

The lemma is proven. O

A
An object X of A defines a V-functor X : 1 — A, x +— X, L(x,*) =1 =, A(X, X),
whose source 1 is a V-category with one object *. This V-category is a unit of tensor
multiplication K. The V-functors A(—,Y) = Homu(—,Y) : A®? — V and A(X,—) =
Homy (X, —) : A — V are defined as follows:

~

A(=Y) = [AP 2 AP R 1 25 AP R A 2204, p)
AX, =)= [A B 1RA L gor g 2204,y

Thus, the V-functor A(—,Y’) maps an object X to A(X,Y), and its action on morphisms
is given by

A(=Y) = [AP(W, X) = A(X, W) 225 VAW, Y), AW, Y) @ A(X, )

y(lvcﬂﬂ)
=5

VAW, V), AX,Y))]. (2.1.4)

Similarly, the V-functor A(X, —) maps an object Y to A(X,Y), and its action on mor-
phisms is given by

AX,-) =[AY,Z) — oev?, V(A(X,Y),AX,Y)® A, Z))

S V(AX,Y), A(X, 2))]. (215)

2.1.4. Duality functor. The unit object 1 of V defines the duality V-functor
V(—,1) = Homy(—,1) : V" = V.

The functor V(—, 1) maps an object M to its dual V(M, 1), and its action on morphisms
is given by

V(= 1) = [VP(M, N) = V(N, M) <25 (V(M, 1), V(M, 1) @ V(N, M)) 2=

v(, HV) ]

V(V(M,1),V(N, M) ® V(M,1)) —24 v(v(M, 1), V(N,1))]. (2.1.6)
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For each object M there is a natural morphism e : M — V(V(M,1),1) which is a
unique solution of the following equation in V:

VML) @M MaV(M1)

1®€l levV
v

Y(M7 ]]') & Y(Y(Ma ]]-)7 ]]') L 1
Explicitly,

e = [M <20 Y(V(M, 1), V(M, 1) @ M) 222,

VV(M, 1), M @ V(M, 1)) 22 vv(, 1), 1)).

An object M is reflexive if e is an isomorphism in V.

2.1.5. Representability. Let us state for the record the following proposition.

2.1.6. Proposition (Weak Yoneda Lemma). Let F' : A — V be a V-functor, X an object
of A. There is a bijection between elements of F'(X), i.e., morphisms t : 1 — F(X), and

V-natural transformations A(X,—) — F : A — V defined as follows: with an element
t: 1 — F(X) a V-natural transformation is associated whose components are given by

tQFx 7z
—

FX) @ VF(X),F(2) %% F(Z), ZeObA.

In particular, F' is representable if and only if there is an object X € Ob A and an element
t: 1 — F(X) such that for each object Z € Ob.A the above composite is invertible.

AX,Z) 21 ® AKX, 2)

Proof. Standard, see [29, Section 1.9]. O

2.2. Basic properties of Serre functors
Let C be a V-category, S : € — € a V-functor. Consider a V-natural transformation

1 as in the diagram below:

PR E 2 @or g @

Hom(é%pl / lHom@ (221)
’\7(77]1)

v — S0y
The V-natural transformation v is a collection of morphisms of V
¢X,Y]]-HY(G(X7YS)>Y(€(Y7X%]1))’ X7Y€Ob€

Equivalently, ¢ is given by a collection of morphisms ¥xy : C(X,YS) — V(C(Y, X),1)
of V, for X, Y € Ob €. The V-naturality of {» may be verified variable-by-variable.

2.2.1. Definition. Let C be a V-category. A V-functor S : € — € is called a right
Serre V-functor if there exists a natural isomorphism 1 as in (.2.1)). If moreover S is a
self-equivalence, it is called a Serre V-functor.

Taking V = k-Mod, the category of k-modules, we recover the definition of ordinary
Serre functor. The terminology agrees with the conventions of Mazorchuk and Stroppel
[AE5] and up to taking dual spaces with the terminology of Reiten and van den Bergh [[A7].
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2.2.2. Lemma. Let S : € — C be a V-functor. Fix an object Y of C. A collection of
morphisms (Yxy : C(X,YS) — V(C(Y, X),1))xecobe of V is V-natural in X if and only
if

Uy = [B(X,Y'S) 255 B(E(Y, X), €Y, X) @ €(X, Y'S))
V(C(Y, X),C(Y,YS)) V(1,7y)

V(1,ue)
_—

V(e(Y,X),1)], (2.22)
where

(¢
n = [C(V,YS) X2 (Y, V) ® C(Y, VS) 2,

YY) @ V(e(Y,Y), 1) 25 1].
(2.2.3)

The morphisms 7y are called trace functionals in the sequel.

Proof. The collection (¢¥xy)xeobe is a V-natural transformation

-YSs
@op Sy

Yoy
e(xﬁ H %n)

vep

if the following diagram commutes:

ez, X)— 5 ye(x,Ys),e(Z,YS))
Y(1,¥z,y)
&) V(C(X,YS),V(E(Y, Z),1))
V)
Y(-,1)

V(e(Y, 2),e(Y, X)) ——= V(V(C(Y, X), 1), V(C(Y, Z), 1))

By the closedness of V, this is equivalent to the commutativity of the exterior of the
following diagram:

1®C(-,YS)

C(X,YS) ® C(Z, X) C(X,YS)® @V(C(X,YS),C(Z,YS))
\c\
- C(Z,X)®C(X,YS)
Ve, X),1)® €(Z,X) 1@yx,y T C(Z,YS)
\c
1€(Y,-) C(Z,X)®Y(C(Y,X),1)
V(C(Y,X), 1)@ V(C(Y, Z2),C(Y, X)) e(y,—)®1 bz,
18Y(~1) V(E(Y, 2), &Y, X)) @ V(C(Y, X),1)
V(e(Y, X),1) @ V(V(E(Y, X),1),V(C(Y, Z),1)) I — V(C(Y, Z),1)

The right upper quadrilateral and the left lower quadrilateral commute by the definition
of C(—,YS) and V(—, 1) respectively, see (B.1.4) and its particular case (.1.4). Since ¢
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is an isomorphism, the commutativity of the exterior is equivalent to the commutativity
of the pentagon. Again, by closedness, this is equivalent to the commutativity of the
exterior of the following diagram:

(Y, Z) ® C(Z, X)® C(X,YS) [ne C(Y,Z) ® €(Z,YS)
118X,y 1®¢Yz,y
(Y, Z) ® C(Z, X) ® V(C(Y, X),1) e(Y, Z) ® V(C(Y, Z),1)
evV
1®C(Y,—)®1 peel 1
evV

evV ®1

(Y, Z) @ V(C(Y, Z),C(Y, X)) ® V(C(Y, X), 1) (Y, X) @ V(C(Y, X),1)

The triangle commutes by definition of C(Y, —), see (B.1.9). It follows that the V-naturality
of ¢_y is equivalent to the commutativity of the hexagon:

C(Y,Z) ® C(Z,X) ® C(X,YS) —“Y ey, 2) @ V(C(Y, Z),1)
Me®wX,Yl levv (2.2.4)
C(Y, X) ® V(E(Y, X),1) 1

Assume that v¢_y is V-natural, so the above diagram commutes, and consider a
particular case, Z = Y. Composing both paths of the diagram with the morphism
$0101:CY,X)®C(X,YS)— CY,Y)®C(Y,X)®C(X,YS), we obtain:

C(Y,X)®C(X,YS) == e(Y,Y59)

1®'¢X,Y‘/ ‘/TY (2.2.5)
C(Y, X) @ V(C(Y, X), 1) —"— 1

where 7y is given by expression (B.2.3). By closedness, the above equation admits a unique

solution tx y, namely (B.2.2).
Assume now that ¢y y is given by (2.2.3). Then (B.2.5) holds true. Plugging it into

(B-2.4), whose commutativity is to be proven, we obtain the equation

1®pe

C(Y,2)®C(Z,X)®C(X,YS) C(Y,Z)®C(Z,YS) — C(Y,YS)

Me®1l Tyl

CY, X)® €(X,YS) re C(Y,YS) 1

which holds true by the associativity of composition. 0

2.2.3. Lemma. Let S : € — € be a V-functor. Fix an object X of C. A collection of
morphisms (Yxy : C(X,YS) = V(C(Y,X),1))ycobe of V is V-natural in Y if and only if
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for each’Y € ObC

Uxy = [B(X,YS) 205 V(E(Y, X), &Y, X) ® €(X,YS)) ~,

V(C(Y, X),C(Y'S, XS) ® C(X,YS)) 2L%) ey, X), (X, XS))
2, yie(y, X),1)], (2.2.6)

where Tx is given by (B.2.3).
Proof. The V-naturality of 1x _ presented by the square

c—>——e¢
||
e(—,X)°P C(X,—)
V(-1
yop # y
is expressed by the commutativity in V of the following diagram:

S

e, 2) e(Y'S, ZS)
C(—,X) C(X,—)
V(€(Z, X),E(Y, X)) V(C(X,Y5),E(X, Z5))
V(-,1) V(1,¥x,z)
VOV(E(Y, X), 1), V(€(Z, X),1)) XY y(e(x, VS), V(C(Z, X),1))

By closedness, the latter is equivalent to the commutativity of the exterior of Diagram P.1].
Since c is an isomorphism, it follows that the polygon marked by | * | must be commutative.
By closedness, this is equivalent to the commutativity of the exterior of the following
diagram:

C(Z, X)®C(X,YS)®C(Y,Z) —22% (2, X)® C(X,YS)® C(YS, ZS)
1®c 1®ue
C(Z,X)® C(Y,Z) ® C(X,YS) C(Z, X) ® C(X, ZS)
1®1Yx,y 1®Yx,z
C(Z, X)® (Y, Z) ® V(C(Y, X), 1) C(Z, X)® V(€(Z,X),1)
evV
196(—,X)®1 he®! 1

evV

evV ®1

C(Z, X) ® V(C(Z,X),C(Y, X)) ® V(C(Y, X),1) e(Y, X) @ V(C(Y, X), 1)



"1°C WVUDVI(]

C(X,YS)

2 C(Y,7) ¥ L e(X,YS) @ e(YS, Z5) )

Ux,y®1 CY,Z)®C(X,YS)
VY, X),1)®C(Y,2) 1®Yx,vy
19€(~X) C(Y,Z)®V(C(Y, X),1)

VEY, X))oV

1@V(—,1)

(C(Z, X),C(Y, X)) e(— X)®1

C

V(€(Z. X), &Y, X)) ® V(E(Y, X), 1)

V(EY, X), 1) @ V(V(E(Y, X), 1), V(E(Z, X), 1)) =

C(X,YS) ® V(C(X,YS),C(X, ZS))

er

e(X, Z5)

VX, z

SHOLONNA HYYHS A0 SHITYHJOHUd DISVI '¢'¢

6L
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The triangle commutes by (2.1.4). Therefore, the remaining polygon is commutative as
well:

C(Z, X)®C(X,YS)®C(Y,Z2) —=%% L e(Z,X)® C(X,YS)® C(YS, ZS)

(123)c 1®pe
(Y, Z) ® €(Z,X) ® C(X,YS) C(Z,X) ® €(X, Z5)
pe®1 10¢x, 7 (2.2.7)
(Y, X)® C(X,YS) C(Z,X) @ V(C(Z,X),1)
1®Yx,y evV
(Y, X) @ V(E(Y, X),1) 1

Suppose that the collection of morphisms (¢xy : C(X,YS) — V(C(Y, X),1))yeone
is natural in Y. Consider diagram (B.2.7) with Z = X. Composing both paths with the
morphism 1 ® 1®1: C(X,YS) ® (Y, X) — C(X, X) ® C(X,YS) ® C(Y, X) gives an
equation:

C(Y,X)®C(X,YS) 2L e(V'S, XS) ® (X, YS) 4% (X, XS)
1®WX,Yl lﬂ'x (2.2.8)
e(Y, X) ® V(E(Y, X),1) 1

The only solution to the above equation is given by (2.2.9).

Conversely, suppose equation (2:2.§) holds. It suffices to prove that diagram (£:2:7)
is commutative. Plugging in the expressions for (1 ® ¥xy)ev? and (1 ® ¥x z)ev’ into
(B:27), we obtain (cancelling a common permutation of the factors of the source object):

C(X,YS)®C(Y,Z)® C(Z,X) —22° , (X, YS) @ €(YS, ZS) ® C(ZS, XS)
1®ue pne®1
C(X,YS)® C(Y, X) C(X,ZS) ® €(ZS, XS)
1®S fie
C(X,YS)® (Y S, XS) e(X, XS)
He X
C(X, X5S) e 1

The commutativity of the diagram follows from the associativity of pe and the fact that
S is a V-functor. The lemma is proven. O
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2.2.4. Proposition. Assume that S : C — C is a V-functor, and v is a V-natural trans-
formation as in (R.2.1)). Then the following diagram commutes (in V):

e(Y, X) —<— V(V(E(Y, X), 1), 1)

S‘/
Yy s, x

C(YS, XS) 2, Y(C(X,YS),1)

l\l(dlx,yvﬂ)

In particular, if for each pair of objects X,Y € ObC the object C(Y, X) is reflexive, and
v is an isomorphism, then S is fully faithful.

Proof. By closedness, it suffices to prove the commutativity of the following diagram:

CX,YS)® (Y, X) —2 (X, Y S) ® V(V(C(Y, X),1),1)

109 1®V(¥x,y,1)
C(X,YS)® C(YS, XS) C(X,YS) @ V(C(X,YS),1)
1®vYy s, x evV
C(X,YS) ® V(C(X,YS),1) e’ 1

Using (B.2.9) and the definition of e, the above diagram can be transformed as follows:
CX,YS)®CY,X) ———CY,X)®C(X,YS)

1®S 1®¢x,y
C(X,YS)®C(YS, XS) C(Y,X)®V(e(Y,X),1)
re ev?
C(X, X5S) = 1
It is commutative by (B.2.§). O

Proposition P.2.4 implies that a right Serre functor is fully faithful if and only if
C is Hom-reflexive, i.e., if C(X,Y) is a reflexive object of V, for each pair of objects
X, Y € ObC. If this is the case, a right Serre functor will be a Serre functor if and only
if it is essentially surjective on objects. The most natural reason for Hom-reflexivity is,
of course, k being a field. When k is a field, an object C' of gr is reflexive if and only
if all spaces C™ are finite-dimensional. The ring k being a field, the homology functor
H* : X — gr is an equivalence (see e.g. [[[7, Chapter III, § 2, Proposition 4]). Hence, an
object C' of K is reflexive iff all homology spaces H"C' are finite-dimensional. A projective
module of finite rank over an arbitrary commutative ring k is reflexive as an object of a
rigid monoidal category [13, Example 1.23]. Thus, an object C' of gr whose components
C™ are projective k-modules of finite rank is reflexive.

2.2.5. Proposition. Suppose C is a V-category. There exists a right Serre V-functor
S : € — € if and only if for each object Y € Ob € the V-functor

Home(Y, =) - V(—, 1) = V(C(Y, =), 1) : €P — V
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is representable.
Proof. Standard, see [B9, Section 1.10]. d

2.2.6. Commutation with equivalences. Let C and € be V-categories with right
Serre functors S : € — € and S’ : ¢’ — €' respectively. Let ¢ and ¢’ be isomorphisms as
in (B.2.1). For objects Y € ObC, Z € Ob €, define 1y, 7, by (B2.3). Let T : € — €' be a
V-functor, and suppose that T is fully faithful. Then there is a V-natural transformation
7 : ST — TS’ such that, for each object Y € Ob €, the following equation holds:

C'(YT,s)
S AN

[ev,ys) L e(yT,YST) (YT, YTS) 25 1] = 7y (2.2.9)

Indeed, the left hand side of equation (R.2.9) equals

[e(y,YS) L (YT, YST) 2225 @ (YT, Y ST) @ €' (Y ST, YTS')
ke (YT, YTS') 25 1.

Using relation (B.2.3) between 73, and ¢y gpyp, we get:

[e(y,YS) L (YT, Y ST) 2225 @(YT, Y ST) @ €' (Y ST, YTS')
SENSIYT @1y T, Y ST) @ V(Q(YT, Y ST), 1) < 1.

Therefore, equation (£.2.9) is equivalent to the following equation:

) 1®¢§/ST,YT
—_—

[e(Y,YS) =225 (Y, VS) @ €(YST,YTS'

1®V(T,1)
—_

C(Y,YS)® V(C(YT,YST), 1) C(Y,YS) @ V(C(Y,YS), 1) 5 1] = 7y,

It implies that the composite

17 @(YST.YTS) T ey, v sT), 1) 2,

V(E(Y,YS),1)

is equal to 7y : 1 — V(C(Y, Y S), 1), the morphism that corresponds to 7y by the closed-
ness of the category V. Since the morphisms ¢y gpyo and V(T,1) are invertible, the
morphism sy : 1 — C' (Y ST, YTS’) is uniquely determined.

2.2.7. Lemma. The V-natural transformation s satisfies the following equation:

Uxy = [C(X,YS) L @(XT,YST) CXTA o(xXT,YTS)
V(T.1)
—_—

DX (YT, XT), 1) V(e(y, X),1)],

for each pair of objects X,Y € ObC.
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Proof. The exterior of the following diagram commutes:

C(Y,YS) ~ 1

pe '
T TyT

CY, X)® C(X,YS)  CYT.YST)— T2 L eyT,yTs)

Her Her
TRT

C(YT,XT)® € (XT,YST)

1®C (XT,»)
—_—

C(YT,XT)® € (XT,YTS)

The right upper square commutes by the definition of sz, the commutativity of the lower
square is a consequence of the associativity of pue. The left quadrilateral is commutative
since T is a V-functor. Transforming both paths with the help of equation (2.2.7) yields
the following equation:

) 1®Yxy

[e(Y, X) ® C(X,Y'S C(Y, X) ® V(C(Y, X),1) 25 1]

= [e(y,X) @ e(X,YS) 25 @(YT, XT) ® €'(XT,YST)

1RC/ (XT, )
—_

(YT, XT)® €(XT,YTS') —2 @(yT, XT) @ V(@ (YT, XT),1) 2 1]

1T

= [C(Y.X)®C(X,YS) — C(Y, X) ® C'(XT,YST)

1®C (XT,»)
_—

1 !
C(Y, X) ® C(XT,YTS) —2, oy, X) @ V(€/(YT, XT), 1)

LY, ey, X) @ V(E(Y, X), 1) °5 1]
The required equation follows by the closedness of V. O

2.2.8. Corollary. If T' is an equivalence, then the V-natural transformation s : ST —
TS' is an isomorphism.

Proof. Lemma B.2.7 implies that €' (XT, ») : ¢(XT,YST) — C'(XT, XTS’) is an isomor-
phism, for each X € Ob €. Since T is essentially surjective, it follows that the morphism
C(Z,») : C(Z,YST) — C(Z,YTS') is invertible, for each Z € Ob (', thus s is an
isomorphism. 0

2.2.9. Corollary. A right Serre V-functor is unique up to isomorphism.

Proof. Suppose S, S5’ : € — € are right Serre functors. Applying Corollary P-2.§ to the
functor T'= Ide : € — € yields a natural isomorphism » : S — 5. O

2.2.10. Trace functionals determine the Serre functor. Combining for a V-natural
transformation ¢ diagrams (.2.3) and (B.2.§) we get the equation

CIY,X)®C(X,YS) — X e(Y,YS) ~ 1

S®1l = }X (2.2.10)

C(YS, XS)®C(X,YS) -5 (X, YS)®C(YS, XS) %5 (X, XS)
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The above diagram can be written as the equation

C(X,YS)®C(Y,X) 2% e(X,YS) ® C(YS, XS)

C‘/ == ‘/¢YS,X (2'2'11)

C(Y, X) ® C(X,YS) ’ 1

where

oxy = [C(Y,X)®C(X,YS) &5 e(Y,YS) I 1. (2.2.12)
When S is a fully faithful right Serre functor, pairing (B.2.12) is perfect. Namely, the
induced by it morphism ¢ xy : C(X,YS) — V(C(Y, X), 1) is invertible, and the morphism
P C(Y,X) = V(C(X,YS),1), induced by the pairing

PX,Y

c-oxy = [CX,YS)®C(Y,X) S €Y, X)®C(X,YS) — 1],
is invertible. In fact, diagram (R.2.11]) implies that

W = [y, X) S e(vs, x8) 255 yex, vs), 1)].
Diagram (P.2.17]) allows to restore the morphisms S : C(Y, X) — C(Y'S, XS) unam-

biguously from Ob S and trace functionals 7, due to ¥y g x being isomorphisms.

2.2.11. Proposition. A map Ob S and trace functionals T7x, X € Ob €, such that the
induced ¢ xy from (R.2.9) are invertible, define a unique right Serre V-functor (S, ¢xy).

Proof. Let us show that the obtained morphisms S : C(Y, X) — C(Y'S, XS) preserve
composition in €. In fact, due to the associativity of composition we have

[C(X,Z5) ® €(Z,Y) @ C(Y, X) 22222, (X, ZS5) ® €(ZS,YS) @ C(Y'S, X S)

1®pe bz8,X
—

C(X,ZS)®e(ZS,XS) —= 1]
— [6(X,ZS) @ €(Z,Y) & B(Y, X) 22225, (X, Z5) ® C(ZS,YS) ® C(Y'S, XS)

He®1

S X, YS) ®E(YS, XS) £S5 (X, XS) S5 1]

) (1S®1)(ne®1)

= [e(X,ZS)®e(Z)Y)® (Y, X C(X,YS) ® €Y, X)

195, 0(X,YS) @ €(Y'S, XS) £% e(X, XS) 25 1]

= [e(X,25) ® €(Z,Y) ® C(y, X) L2EDletl,

C(X,YS)®C(Y, X)
S eV, X)®C(X,YS) £ ey, YS) =5 1]

LR, €Y, X) @ €(X, 28) © (28, Y 5)

S (Y, X) @ C(X,Y'S) X5 e(v, Y'S) 5 1]
L0, €Y, X) @ €(X, 28) © (28, Y 5)

2BL e(Y, 28) @ €(ZS,Y'S) L e(Y, Y S) 25 1]
)

) (123)c (pe®1

= [e(X,Z9)®C(Z,Y)® C(Y,X)
= [e(X,Z9)®C(Z,Y)® C(Y,X)

= [e(X,ZS)®C(Z,Y)® C(Y,X C(Y, ZS) ® C(Z,Y)

15, 0(Y, 25) © €(ZS, Y S) £ e(Y, Y S) 5 1]
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= [e(x, z8) @ e(z,Y) @ ey, X) E2UE, oy z5) g €(2,Y)
SC(ZY)®C(Y,ZS) 55 €(Z,28) 5 1]

= [e(x, zS) @ e(z,Y) 2 ey, X) Z e(2,v) @ C(Y, X) ® C(X, ZS)

e, (2,Y) @ C(Y, 285) L e(Z, 25) 1],
On the other hand

1Que

[C(X,Z9)®C(Z,Y)®C(Y,X) —> C(X, ZS5) ® €(Z, X)
195, @(X, 2S) ® €(2S, X S) 2255 1]
= [8(X,Z5) ® €(Z,Y) @ €Y, X) ~ ©(X, ZS) @ C(Z, X)
£ C(Z,X) ® C(X, 28) 224 1]

= [e(X,z8) @ ez, Y) @ ey, X) 2 e(2,Y) @ €Y, X) @ C(X, Z5)

19l 0(7,X) ® €(X, ZS) L% (7, 25) T 1]

= [e(X,z8) @ ez, Y) @ ey, X) 2 e(2,Y) ® €Y, X) @ C(X, Z5)

B, 0(7,Y) @ (Y, Z5) L e(Z, 25) 1],

The last lines of both expressions coincide, hence (S ® S)ue = peS.
Let us prove that the morphisms S : C(X, X) — C(X S, XS) of V preserve identities.
Indeed, the exterior of the following diagram commutes:

X

C(X, XS) 1
/ He
o
e(X, X9) — 2 ex, X) @ e(X, XS)

)\I.‘/Z fry c — TX

C(X, XS) ® (X, X)

1®S

C(X,XS)®C(XS,XS) L4 (X, XS)

Therefore, both paths from C(X, X S) to 1, going through the isomorphism \'- | sides of
triangle marked ‘1®7’, pe and 7x, compose to the same morphism 7x. The invertibility
of ¥ x x implies that the origin ‘?” of the mentioned triangle commutes, that is,

s = [1 25 €(X, X) 3 (X9, X9)].

Summing up, the constructed S : € — € is a V-functor. Applying Lemma
we deduce that ¢_y is V-natural in the first argument for all objects Y of €. Recall
that ¥y y is a unique morphism which makes diagram (.2.]) commutative. Due to
equation (R.2.10), v x,y makes commutative also diagram (£.2.§). This means that ¢x y
can be presented also in the form (:2.6). Applying Lemma P.2.3 we deduce that ¢x _ is
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V-natural in the second argument for all objects X of €. Being V-natural in each variable

¥ is V-natural as a whole [R9, Section 1.4]. O

2.3. Serre functors and base change

Let (B,5) : (V,®L, M) — (W, L, A\,) be a lax symmetric Monoidal functor be-

tween closed symmetric Monoidal categories. Denote by B:V — W the corresponding
multifunctor. According to Section [LI.14, (B, 3') gives rise to a lax symmetric Monoidal

Cat-functor (B,, ﬁl ) : V-Cat — W-Cat. Since the multicategories V and W are closed,
the multifunctor B determines the closing transformatlon B In particular , we have a

W-functor B,V — W, X — BX, which is denoted by ﬁ by abuse of notation, see also
Proposition [.3.30. Its action on morphisms is found from the following equation in 'W:

[BX © BOV(X,Y)) 2. BX 0 W(BX, BY) * BY] =

B(ev"). (2.3.1)
Let B\* . V-Cat — W-Cat denote the symmetric Cat—multifu/rg:tor that corresponds to
the lax symmetric Monoidal Cat-functor (B, !). Clearly, B, commutes with taking
opposite.

We are going to investigate the following question: given a V-category € together with
a Serre V-functor S : € — €, is the W-functor B,S : B,C — B,C a Serre W-functor in
the W-category B.C obtained by the base change? In general, the answer is negative,
however it is affirmative in the cases of interest.

In the sequel, the tensor product in the categories V and W is denoted by ®, the unit
objects in both categories are denoted by 1.

Let A be a V-category. We claim that the W-functor

~

B,Hom,-B = [(B*A)OpﬁB*A:B*(AOP)&B*AmB*ng}

coincides with Homp, 4. Indeed, both W-functors map a pair (X,Y) € ObA x ObA to
the object B(A(X,Y)) = (B.A)(X,Y) of W. Applying B to equation (R.1.3) yields a

commutative diagram

1®B Hom 4

BA(X,U) ® BA(Y, X) ® BA(U,V)

c®1l

BA(Y,X) ® BA(X,U) @ BA(U,V)

BA(X,U) ® BY(A(X,U),A(Y,V))

lé(evv)

i BA(Y,V)

Expanding B (ev") according to (2.3.1)) we transform the above diagram as follows:

1®BHomy -B
—

BA(X,U) ® BA(Y, X) ® BA(U, V) BA(X,U) @ WBA(X,U), BA(Y,V))

C®1l levW
3

BA(Y, X) @ BA(X,U) @ BA(U,V) Hhes BA(Y,V)

It follows that the W-functors E\* Hom 4 B and Homp, 4 are solutions to the same equa-
tion, therefore they must coincide by the closedness of 'W.
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There is a W-natural transformation ¢’ as in the diagram below:

B,V°P _BAED B,V

@wl / Fe

WP ———W

For each object X, the morphism (% : B(V(X,1)) — W(BX, B1) in W comes from the
map B(ev”) : BX ® BV(X,1) — B1 by the closedness of W. In other words, (% = Byq.
The W-naturality of (' is expressed by the following equation in 'W:

BY(Y, X) mel BY(V(X,1),¥(Y,1))
B B
W(BY, BX) W(BY(X,1), BY(Y,1))
W(-,B1) W(L,¢5)
W(C% 1)

W(W(BX, B1), W(BY, B1))

W(BY(X,1), W(BY, B1))

By the closedness of W, it is equivalent to the following equation:

BY(X,1) @ BY(Y, X) P U L py(x,1) @ BY(V(X,1), V(Y1)
¢ @B B(evY)
W(BX, B1) ® W(BY, BX) BY(Y, 1)
1QW(—,B1) Gy
W(BX, B1) © W(W(BX, B1), W(BY, B1)) et W(BY, B1)

By (:I7), the above equation reduces to the equation

BY(Y, X) ® BY(X, 1) i BY(Y,1)
B®C§( IBY,X ®Bx,n By,nﬁéh{/

Hw

W(BY, BX) ® W(BX, B1) ——— W(BY, B1)

which expresses the fact that E : B,Y — W is a W-functor.
Suppose that 49 : 1 — B1 is an isomorphism. Then there is a W-natural isomorphism

W(L, (8)71) : W(—, BL) — W(—, 1) : WP — W.
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Pasting it with (' gives a W-natural transformation ¢ as in the diagram below:

B,V & B,V

@wl / F (2.3.2)
W(—,1)

)

WP ——— W

2.3.1. Proposition. Suppose ( is an isomorphism. Let C be a V-category, and suppose
S : € — € is a right Serre V-functor. Then B,S : B.C — B,C is a right Serre W-functor.

Proof. Let 1 be a V-natural isomorphism as in (2:271)). Applying the Cat-multifunctor
B, and patching the result with diagram (£:3.3) yields the following diagram:

1XB. (S)

B.(€)" & B.(C) B.(€)" ® B.(C)
B, (Homgop )°P % B, Home
BV B2 B.V (2.3.3)

¢

(B)® B

V_V(*Jl) W

WeP

Since B, Home-B = Homp,e¢ and B, Homeo -B = Homp, eo», we obtain a W-natural
transformation

B.ePR B.C— 25 . pergB.e

Hom?gp* eop l / lHomB* e
w(fvﬂ)

WP w
It is invertible since so are ¢ and (. It follows that a right Serre V-functor S : € — C
induces a right Serre W-functor B,S : B,C — B,C. O
We are going to apply the above results according to the scheme
. Iil III
g L) gr () k-Mod,

where the first functor is given by the total cohomology, and the second functor singles
out the 0" component. We assume that the reader is familiar with the fact that the
involved symmetric Monoidal categories are closed; details can be found in Section B.].

2.3.2. From X-categories to gr-categories. Consider the lax symmetric Monoidal
base change functor (H®, k') : X — gr, X +— H*X = (H"X),cz, where for each [ € Ob O
the morphism ! : @€' H*X; — H* ®€! X, is the Kiinneth map. There is a gr-functor

o~

He*: H:X — gr, X — H*X, that acts on morphisms via the map
K(X[-n],Y) = H'K(X,Y) — gr(H*X,H'Y)" = [ [ k-Mod(H* "X, H'Y)
dez,

which sends the homotopy class of a chain map f : X[-n] — Y to (H%(f))sez. Here
k-Mod (M, N) denotes the internal Hom-object in the category k-Mod. As a set, it
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coincides with k-Mod (M, N). Note that H® preserves the unit object, therefore there is
a gr-natural transformation

H:KOP M H}:K

@)Opl / F
gr(f 7k)

grr — . @er

—~

Explicitly, the map (x = H®y) : H*(X(X,k)) — gr(H*X, H*k) = gr(H*X,k) is given
by its components

K(X[-n],k) = H"K(X,k) — gr(H*X,k)" = k-Mod(H "X,k), f+— H(f).

In general, ( is not invertible. However, if k is a field, { is an isomorphism. In fact, in this
case H® : X — gr is an equivalence. A quasi-inverse is given by the functor F' : gr — K
which equips a graded k-module with the trivial differential.

2.3.3. Proposition. Suppose k is a field. Let S : € — C be a (right) Serre X-functor.
Then HZ(S): H2(C) — H:(C) is a (right) Serre gr-functor. Moreover, H? reflects (right)
Serre functors: if H?(C) admits a (right) Serre gr-functor, then € admits a (right) Serre
K-functor.

Proof. The first assertion follows from Proposition P.3.1 For the proof of the second,
note that the symmetric Monoidal functor F' : gr — X induces a symmetric Monoidal
Cat-functor F, : gr/—C\at — K-Cat. The corresponding K-functor E : F.gr — X acts
as the identity on morphisms (the complex K(FX,FY) carries the trivial differential
and coincides with gr(X,Y) as a graded k-module). Furthermore, F' preserves the unit
object, therefore Proposition applies. It follows that if S : H2(C) — H?(C) is a right

Serre gr-functor, then F.(S) : F.H?(C) — F,H?(C) is a right Serre K-functor. Since the

K-category F,H?(C) is isomorphic to €, the right Serre K-functor F,(S) translates to a
right Serre K-functor on C. U

2.3.4. From gr-categories to k-categories. Consider a lax symmetric Monoidal base
change functor (N,v') : gr — k-Mod, X = (X"),ez — X", where for each I € ObO the
map

l/I . ®i€INXi — ®i€IXZ~O S N ®’i€[ XZ — @ Xlnz
Zie]ni:o

is the natural embedding. The k-Mod-functor ﬁ : N.gr — k-Mod, X — NX = X0
acts on morphisms via the projection

Ngr(X,Y) =gr(X,Y)" = [ [ kMod (X", Y*)
dez

— k-Mod (X", V") = k-Mod(NX, NY).
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The functor N preserves the unit object, therefore there exists a k-Mod-natural trans-

formation
N op N*g(ka)
gr* — — —  N,gr

. l / l N
(N)°P N
k-Mod(— k)

k-Mod”® —— = k-Mod

~

Explicitly, the map (x = Ny is the identity map
Ngr(X,k) = gr(X,k)° — k-Mod (X’ k) = k-Mod(NX, k).

2.3.5. Corollary (to Proposition .3.T]). Suppose S : € — @ is a right Serre gr-functor.
Then N.(S) : N.(C) — N,.(C) is a right Serre k-Mod-functor (i.e., an ordinary Serre
functor).

If N.(C) possess a right Serre k-functor, it does not imply, in general, that C has a
right Serre gr-functor. However, this is the case if C is closed under shifts, as explained
in the next section.

2.3.6. Categories closed under shifts. We are going to define X-categories and
gr-categories closed under shifts. Since the construction is the same in both cases, we
treat them simultaneously.

Let @ be a V-category, where V is either K or gr. Define a V-category Cll as follows.
The set of objects of Cll is Ob@ x Z. Thus, an object of Cl! is a pair (X, m), where X is
an object of € and m is an integer. It is thought as a formal translation of X by m. For
objects (X, m), (Y,n), the object of morphisms Cl((X,m), (Y,n)) is C(X,Y)[n —m]. In
the case V = K, the graded k-module CU((X,m), (Y,n)) is equipped with the differential

d@[] : GH(<X7 m)7 (Y7 n)) - GH(<X7 m)7 (Y7 n))
given by fde; = (—)" " fde, for each f € CU((X,m),(Y,n))F = C(X,Y)" ™k k € Z,
where de is the differential in C(X,Y"). For each triple (X, m),(Y,n),(Z,p) of objects of
C, the composition
pen = CU((X,m), (YV,n)" @ CU((Y,n), (Z,p))' — €V((X,m), (Z,p))*"
is given by
(_)(mfn)(meJrl),ue : G(X, Y)meL‘i’k‘ ® G(Y, Z)pferl N G(X, Z)p*m+k‘+l’
for k,1 € Z. The identity of an object (X,n) is simply
1$ =15 1k — (X, n), (X,n)) = C(X, X).
We leave it to the reader to check that Gl is a V-category. The V-category € embeds fully
faithfully into Cl via vy : € — €U, X — (X, 0).
2.3.7. Definition. We say that a V-category C is closed under shifts if every object (X, n)
of €l is isomorphic in €U to some object (Y, 0), Y € ObC. We write Y = X|[n).

One finds immediately that a V-category € is closed under shifts if and only if the
V-functor u) : € — el is an equivalence.

The lax symmetric Monoidal base change functor (H® x’) : X — gr gives a lax
symmetric Monoidal Cat-functor (H?, kl) : K-Cat — gr-Cat. It is easy to see that

* 7 *

(H:C)U = H2(Cl), and that the embedding uj : H:C — (H:C)U identifies with the
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gr-functor H?(up)) : H'€ — H?(CU). Therefore, if € is a K-category closed under shifts,
then H?C is a gr-category closed under shifts.

For a gr-category C, the components of the graded k-module C(X,Y") are denoted by
C(X,Y)" =C"(X,Y), X,Y € ObC, n € Z. The k-linear category N,(C) is denoted by
0.

2.3.8. Proposition. Let C be a gr-category closed under shifts. Suppose S° : €% — €°
is an ordinary right Serre functor. Then there exists a right Serre gr-functor S : € — C
such that N,.(S) = S°.

Proof. Let ¢° = (¢%y : C°(X,YS?) — k-Mod(C°(Y, X),k))xyeobe be a natural iso-
morphism. Let ¢% - : C°(Y, X)®C°(X,YS) — k, X,Y € ObC, denote the corresponding
pairings from (2:2.19). Define trace functionals 7% : €°(X, XS) — k, X € Ob@, by

formula (R.2.3). We are going to apply Proposition 2.2.11. For this we need to specify
a map ObS : ObC — ObC and trace functionals 7y : C(X, XS5) — k, X € ObC. Set
ObS = Ob SY. Let the 0" component of T7x be equal to the map 7%, the other compo-
nents necessarily vanish since k is concentrated in degree 0. Let us prove that the pairings

¢x,y given by (B.2.I7) are perfect. For n € Z, the restriction of ¢xy to the summand
C™(Y,X)®C(X,YYS) is given by

by = [C(Y, X) ® (X, YS) L5 (v, vS) % k]
It can be written as follows:
oxy = [C"(Y,X)®C (X, YS) = (Y, 0), (X,n))° ® €((X,n), (VS,0))°
Sl ell((v,0), (v'S,0))° = (v, ¥ S) 2 k]

Since € is closed under shifts, there exist an object X[n] € Ob € and an isomorphism
a:(X,n) — (X[n],0) in Cl. Using the associativity of ue(;, we obtain:

oxy = [C"(Y,X) ® €T(X,YS) = CU((Y,0), (X,n)’ ® CU((X,n),(YS,0))°

C[](l,oz)()@@[](a*l,l)o

el((Y,0), (X[n],0))° ® €((X[n), 0), (YS,0))°

(=)ol
_

el((v,0),(Y'5,0))° = €Y, YS) & k]
= [e"(Y, X)® (X, YS) = Cl((Y,0), (X,n))’ ® C((X,n), (VS,0))°

ell(1,0)0cl(a=t,1)°

el((Y,0), (X[n],0))° ® €((X[n), 0), (YS,0))°

— (Y, X[n]) @ €(X[n], Y'S) 1L @0y, v s) T k]
= [e"(V, X)® e ™(X,YS) = l((Y,0), (X,n)" ® C((X,n), (VS,0))°

()€l (a"t,1)° cll((v,0),(X[n],0))° ® ((X[n],0), (Y'S,0))°

_)n¢g([n],Y

— (Y, X[n]) @ €(X[n], Y'S) ~ K].

Since ¢y, y is a perfect pairing and the maps Cll(1,a)% and Cl(a~!, 1) are invertible,
the pairing ¢x y is perfect as well. Indeed, it is easy to see that the corresponding maps
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¥y and @bg([n],y are related as follows:

ell(a=11 _)nwg([n],Y
_—

", @ (Xn], VS) -

k-Mod(€ll(1,a)),1)

vyy = [€7(X,YS)

k-Mod(C°(Y, X[n]), k) k-Mod(C"(Y, X),k)].

Proposition P.2. 17 implies that there is a right Serre gr-functor S : € — €. Its components
are determined unambiguously by equation (£.2.1(). Applying the multifunctor N to it we
find that the functor N,(S) : €° — €° satisfies the same equation the functor S° : €% — €°
does. By the uniqueness of the solution, N,(S) = S°. U




CHAPTER 3
A -categories

The notion of A-algebra goes back to Stasheff [53]. He introduced it as a linearization
of the notion of A.-space, a topological space equipped with a product operation which
is associative up to homotopy, and the homotopy which makes the product associative
can be chosen so that it satisfies a collection of higher coherence conditions. For a long
time, A.-algebras have been a subject of algebraic topology. Their applications have
been studied, e.g., by Smirnov [9] and Kadeishvili [, B3]. Over the past decade,
Aso-algebras have experienced a recommencement of interest due to applications in non-
commutative geometry, see e.g. Getzler and Jones [[§], Hamilton and Lazarev [20],
Kontsevich and Soibelman [B1]]; in algebraic geometry, see e.g. Penkava and Schwarz [46];
in representation theory, see e.g. Keller [B7], Palmieri et al. [B6], etc.

Aso-categories are to A,.-algebras as linear categories to algebras. On the other hand,
A-categories generalize differential graded categories, or dg-categories, categories en-
riched in the category dg of complexes of modules. In contrast to dg-categories, compo-
sition in A..-categories is associative only up to homotopy that satisfies certain equation
up to another homotopy, and so on. The notion of A.-category appeared in the work
of Fukaya on Floer homology [[§]. Its relation to mirror symmetry became apparent
after Kontsevich’s prominent talk at ICM 94 [BQ]. The basic notions of A..-category and
Aoo-functor have been studied by Fukaya [[L§], Keller [R€], Lefevre-Hasegawa [B4)], Soibel-
man [p1]]. Lyubashenko initiated a 2-category approach to A..-categories [Bg]. He intro-
duced the notions of (weakly) unital A -category and A, -functor, and proved that these
together with certain equivalence classes of natural A, -transformations form a 2-category.
In particular, the notions of isomorphism of A..-functors, of A, -equivalence, etc. make
sense. According to the recent paper of Kontsevich and Soibelman [BI]], A.-categories
may be regarded as models for non-commutative varieties. Non-commutative geometry
of A.-categories brings new insights to the theory and makes many results more trans-
parent, including A..-structure on A..-functors and the theory of Hochschild complexes,
both chain and cochain.

Here we present a different approach to A.-categories that is being developed in
the book in progress by Bespalov, Lyubashenko, and the author [B]. It is based on
the observation that (unital) A.-categories constitute a closed symmetric multicategory.
Since A.-categories are defined as differential graded coalgebras of special form, and
coalgebras form a symmetric Monoidal category, it is not surprising that A.-categories
form a symmetric multicategory. Its closedness can be derived easily from existing results
about A.-categories of A, -functors. However, the mere fact of closedness does not help
too much if we do not have an explicit description of internal Hom-objects and evaluations.
Such a description is obtained in []. It became possible after the elaboration of an
appropriate language, namely that of multicomonads and Kleisli multicategories. These
exciting topics lie, however, apart from the subject of the dissertation, and for the reason
of size, it seems impossible to discuss them here. Therefore, we have chosen the following
compromise: we give a short summary of results from [B] that are used in the sequel;

93
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however further results concerning unital A..-categories, which are more relevant for the
dissertation, are treated at full length. In particular, we give a detailed proof of closedness
of the multicategory of unital A, -categories.

The chapter is organized as follows. In Section B.1], we explain our conventions con-
cerning graded modules and complexes, introduce some notation, and establish some basic
identities in the closed symmetric Monoidal category of complexes. In Section B.2.1), we
recall the notions of graded span and graded quiver. In Section B.2.3, we briefly review the
definitions of coalgebra, morphism of coalgebras, and coderivation, and work out the main
example of interest, the tensor coalgebra of a quiver. We also spend some time studying
morphisms and coderivations from a tensor product of tensor coalgebras to another tensor
coalgebra, since it is important for understanding A..-functors and A..-transformations.
The symmetric multicategory A, of A,-categories is introduced in Section B.2.14.

Section B.J starts with a quick but indirect proof of closedness of the multicategory
A. In the rest of the section we discuss the closed structure of Ay, following [f]. In par-
ticular, we give explicit formulas for internal Hom-objects and evaluations, and describe
the corresponding symmetric A,-multicategory A.

Unital A.-categories are introduced in Section B.4. We extend the definition of unital
Aqo-functor from [B] to A..-functors of several arguments. We prove that unital A,.-cat-
egories and unital A..-functors form a closed symmetric multicategory A . We extend the
functor k : Ay — X-Cat from to a symmetric multifunctor. We demonstrate that
the multicategory Al may be viewed as a multicategory enriched in the category k-Cat
of k-linear categories, and extend the multifunctor k to a k-Cat-multifunctor. Finally,
we relate the closed multicategory approach to unital A, -categories with the 2-category
approach undertaken in [B§, B9, @0].

Section B.5 introduces the operation of dualization for A..-categories. To each (unital)
A-category A, there is an opposite (unital) A,.-category A°P. We extend the correspon-
dence A — A°P to a multifunctor —°° : A, — A, and compute its closing transformation.

Section B.1] does not contain new results. Section B.g collects standard material about
graded quivers, coalgebras, A,-categories, and A, -functors. To a large extend, it can
be found in [B8| or [B4]. The only new points here are the definition of A..-functor
of several arguments and symmetric multicategory of A..-categories. As was mentioned
above, Section B-] is a short account of the theory of A.-categories developed in [B]. The
results of Section B4 can also be found in [loc.cit.]. However, these results are crucial for
the dissertation, so we decided to include complete proofs. The definition of the multi-
functor k (Propositions B-4. and B-4.3) is due to Volodymyr Lyubashenko. The criterion
of unitality of Proposition B.4.§ and the closedness of the symmetric multicategory of
unital categories (Proposition B.4.12) have been proven by joint efforts of the author and
Prof. Lyubashenko. It was the author’s observation that the multifunctor k is symmetric.
It led to the conclusion that the multicategory of unital A, -categories can be regarded as
a multicategory enriched in k-Cat, and to an extension of k to a symmetric k-Cat-mul-
tifunctor, which is crucial for our treatment of Serre A, -functors. Finally, Section B.J is
entirely an author’s contribution.

3.1. Graded modules and complexes

3.1.1. Graded modules. Let us explain our conventions concerning graded modules
extending Examples [.2.9 and [.2.23. A Z-graded k-module is a sequence of k-modules
X = (X"),ez. Since no other gradings occur in this dissertation, in the sequel ‘graded’
will always mean ‘Z-graded’. A morphism of graded k-modules f : X — Y of degree d is a
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sequence of k-linear maps f" : X" — Y"*4 n € Z. A morphism of degree d is also called
a k-linear map of degree d. Let gr denote the category whose objects are graded modules
and whose morphisms are k-linear maps of degree 0. Quite often, a graded k-module is
defined as a k-module X with a decomposition into a direct sum X = &, ., X". We find
this definition somewhat misleading, since, for example, the product of graded k-modules
X;, 1 € I, in the category gr is given by

(Hiel Xi) Hzel Xi', nel.

It differs from the product of k-modules €, ., X', @ € I, in the category k-Mod of
k-modules. We need the former definition of the product.

Abusing notation, we write x € X meaning that x € X" for some n. An element
x € X" is assigned the degree degx = n.

The category gr has the structure of a symmetric Monoidal category described in
Example [.2.23. Moreover, it is closed. For graded k-modules X and Y, the internal
Hom-object gr(X,Y) is a graded k-module whose d™ component gr(X, Y) consists of

k-linear maps of degree d. Thus,
gr(X,Y)" = [[ k-Mod (X", Y"*).

neZ
Here k-Mod(M, N) is the internal Hom-object in the category of k-modules. As a set,

it coincides with k-Mod (M, N), the set of k-linear maps from M to N. The evaluation
map ev® : X ® gr(X,Y) — Y is given by

(X" ® gr(X,Y)* 125 X" @ k-Mod (X", y™Ht) 0, yntd],

Less formally, ev® assigns to an element x € X of degree n and a k-linear map f : X — Y
of degree d the element xf € Y of degree n + d.

The closed symmetric Monoidal category gr gives rise to a symmetric Monoidal gr-cat-
egory gr in the standard way described Example [.3.35. In particular, we have a k-linear
map

®:gr(X,Y)@gr(U,V) —gr(X@UY V),
for arbitrary graded k-modules X, Y, U, V. It is found from the following equation in
gr:

(X @U)® (gr(X,Y)oer(lU,V) 2 . (XeY)ogr(XaU,Y @ V)

0(12)\[ levgr

(X ®Q(X’ Y)) ® (U®Q(U’ V)) eve' @ ev8" U® V

It follows that, for k-linear maps f : X — Y and g : U — V of certain degrees, the tensor
product f ® g is given by

(z@y)(f®g) = (—1)%8 981 f @ yg,

for each x € X and y € Y. Abusing notation, we denote the tensor product f ® g simply
by f ® g. This is justified by the fact that if f, g are of degree 0, f ® g agrees with the
tensor product f ® ¢ in gr. In the sequel, the notation (—1)d¢&/d%8Y is abbreviated to
(=)7%. Similarly, (—)® means (—1)4e® (=)**Y means (—1)deetdeey ete.
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3.1.2. Complexes. Let Cy = dg denote the category of complexes of k-modules. An
object of Cy is a graded k-module X equipped with a k-linear map of degree 1, a dif-
ferential, d : X — X such that d* = 0. A morphism f : (X,d) — (Y,d) in Cy is a
k-linear map f : X — Y of degree 0 that preserves the differential. A morphism in
Cy is also called a chain map. The category Cy is symmetric Monoidal. Its structure is
described in Example [[.2.24. Using our conventions about graded k-modules, the dif-
ferential in the tensor product ®™'X; of complexes (X;,d), i € I, can be written as
d =3 ®N(Vicj,d, (1)isg] + @' X; — @' X;. Moreover, the category Cy is closed.
For each pair of complexes X and Y, the complex C,(X,Y) is the graded k-module
gr(X,Y) equipped with the differential d given by

(f" ez = (frd™ = (=) d" [ ) ez,
for each (f™)nez € [1,cz k-Mod(X™, Y™ **). The evaluation ev® : X @ C,(X,Y) - Y
coincides with ev®8", which is a chain map. The closed Monoidal category Cy gives rise to
a Cg-category C, is the standard way. Categories enriched in the category Cy = dg are
also called differential graded categories or simply dg-categories. Thus, C, is a differential
graded category. Its objects are complexes of k-modules. For a pair of complexes X and
Y, we have the complex C,(X,Y’) described above. The composition

ne, : C(X,Y) ® G (Y. Z) — C(X, 2)
in C, coincides with the composition in gr. It is induced by composition of k-linear
maps of certain degree. For each complex X, we have the identity morphism 1x : k —
G (X, X), 1 +— (1xn)nez. It is convenient to denote the differential in C, by m; = m%k
and composition by my = m%“‘. The reason for this will become clear soon.

Since internal Hom-objects in the categories gr and C, coincide as graded k-modules,

for each pair of complexes X and Y, we often confuse the notation and write C, (X,Y)
even when gr(X,Y) seems more appropriate. This is reflected by the following bit of
notation.

Given a complex Z and an element a € C,(X,Y'), we assign to it elements
laeC(ZX,ZQY), zex)(l1®a) =2z® za,
a®leCG(X®ZY®Z), (z®@2)(a®1)=(—)""2a® z.

Clearly, (1®a)c = c(a®1) € C(Z@X,Y®Z) and (a®1)c = c(1®a) € G (X R Z, ZQY).
If g € C,(Z, W), then we have (1®a)(g®1) = (—)“(g®1)(1®a) € C(ZQ X, WRY).
A complex Z gives rise to a chain map
g]k(Za _) : g]k(Xa Y) - gk(gk(zv X)?Qk(zv Y))
found from the following equation in Cj:

[C.(2, X)®C, (X, Y) 527, ¢ (2, X) 00, (Cu(Z, X), C(Z,Y)) 25 C(2,Y)] = m§,

cf. Example [.3.18. It maps an element a € C,(X,Y’) to the element C,(Z, a) = C,(1,a) of
G (G (Z,X),C(Z,Y)). Despite that the map a is not a chain map we write this element
as a: X — Y, and we write C,(1,a) as

gk(la a) : Qk(za X) - Qlk(Zv Y)’ (fi)iEZ = (fiai+degf)i€Z~

It is not a chain map, only a k-linear map of degree dega. Similarly, a complex X gives
rise to a chain map

Qk(_aX) : Qk(VV, Z) - gk(gk(zaX)vgk(WaX))
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found from the following equation in C,:

1’£]1§(_7X)

G2, X)W, Z) ——— G (7, X) ® G (Ci(Z, X), G (W, X))

c evCr
Cx

G(W, 2) © C(Z, X) G(W, X)

cf. Example [[.3.19. It takes an element g € C (W, Z) to the element C, (g, X) = C,(g,1)
of C,(Cy(Z, X), G (W, X)). Although the map C,(g, 1) is not a chain map, only a k-linear
map of degree deg g, we write it as

C]k(97 1) : Q]k(Z, X) - g]k(Wa X)a (fi>i€Z = ((_)degf-degggz'fieregg)ieZ.

For each pair of elements a € G, (X,Y), g € G, (W, Z) we have

Q]k(Zva) Q]k( ,Y)
[C(Z,X) === C,(Z,Y) == C,(W,Y)]
= (=) [Qk(ZaX) S, G (W, X) &), G (W, Y)}

This equation follows from one of the standard identities in closed symmetric monoidal
categories [[[4], and can be verified directly. We also have C,(1,a)C,(1,h) = Cy (1, ah)
and C,(g,1)C.(e, 1) = (—)¢C,(eg, 1), whenever these maps are defined.

It is easy to see that the differential m%“‘  G(X)Y) — G (X,Y) coincides with
C.(1,dy) — C(dx, 1), where dx : X — X and dy : Y — Y are the differentials in
complexes X and Y respectively.

Let f: A® X — B,g: B®Y — C be k-linear maps of arbitrary degrees. Then the
following holds:

Ci Cx
coev 4 x (24 CoevV gy

(XY CG(AARX)®C(B,BRY)

C(A,f)@C,(B,g) ok

glk(Av B) ® Qk(B’ O) m—2> Qlk(Aa C)]

Q]k(Avf®1) Q]k(Avg)
_—> ) _—

Ci
= XY —5 G (A4ARX®Y) C(AB®Y C(A,0)].

(3.1.1)

Indeed, (coeva x ® coevpy )(Cy (A, f)@Cy (B, g)) = (coeva x Gy (A, f)®coevpy Gy (B, 9)),
for coev has degree 0. Denote f = coevy x Cy (A4, f), § = coevpy C (B, g). The mor-

phisms f and g correspond to f and ¢ by adjunction (L33). Further, the morphism mgk
comes by adjunction from the following map:

Ck

C
evAkB 1 evpg
A®C(A B)®C(B,C) “222 Bo c (B, C) 22 ¢.
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Thus we have a commutative diagram

Cx

£ ev ®1
AoXxoy 2 aec (4B oy — 27 BoY
1®1®g 1®g

eVZkB ®1

A®C (A, B)®C (B, C0) ——— B (B,0)

Cx Ck
1®@m5 Vg o
Ck
ev, o

A® C(A,0) C

The top-right composite coincides with (f®1)g by adjunction ([L.3.5), thus so does the top-
left-bottom composite. On the other hand, (1® f®1)(101®7)(10ms*) evf{‘fo is the image

of (f ® g)my under adjunction ([L3.9), so that (f ® g)mgk = coeva xey Cp(4, (f ® 1)g),
and we are done.

One verifies similarly the following assertion: for each homogeneous a € C, (X, A), the
equation

ms* C.(a.0)
[gk(Aa B) @ Cy(B,C) — C(A,C) —— (X, C)]

Ci

M C.(X,B)® C(B,C) =, G (X, C)} (3.1.2)

- [Qk(A’ B) ® glk(B> C)
holds true.

Let X denote the homotopy category of complexes of k-modules. Tensor product of
complexes in Cy induces a tensor product in X, and K becomes a symmetric Monoidal
category. Moreover, it is closed. For each pair of complexes X and Y, the internal
Hom-object I(X,Y) is the same as the internal Hom-complex C,(X,Y’) in the closed
symmetric Monoidal category Cy. The evaluation morphism ev* : X @ X(X,Y) — Y and
the coevaluation morphism coev® : ¥ — K(X, X ® Y) in X are the homotopy classes
of the evaluation morphism ev® : X ® C,(X,Y) — Y and the coevaluation morphism
coev 1 Y — C (X, X ®Y) in Cy respectively.

3.2. A, -categories and A,-functors

The notion of graded quiver underlies the definition of A.-category in the same way
as the notion of quiver (or graph) underlies the definition of category. Roughly speaking,
a graded quiver is a graded module distributed over a set of points. We begin by giving
precise definitions and discussing Monoidal structures on quivers. In Chapter [, where we
treat A..-bimodules, we will also need a generalization of graded quivers, called graded
spans. We discuss both concepts simultaneously.

3.2.1. Spans and quivers. A graded span A consists of a set of source objects Obg A,
a set of target objects Ob; A, and for each X € Ob, A, Y € Ob; A, a graded k-module
of morphisms A(X,Y). A morphisms of graded spans f : A — B of degree n consists of
functions

Ob, f : Oby A — Oby B, Ob; f: Ob; A — Ob, B,
and for each X € Oby A, Y € Ob; B, a k-linear map

f=fxy AX,Y) — B(X.Obs f,Y.Ob, f)
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of degree n. With obvious composition and identities, graded spans constitute a category.
It admits the structure of a symmetric Monoidal category. The tensor product of graded
spans Q;, ¢ € I, is given by
Ob, ®'<'Q; = [ Ob. Q;, Ob,K<'Q; = [T Ob: Q;,
i€l el
and (&ieIQi>((Xi)i€], (K)ze[) = ®iEIQi(Xi,}/;), Xz € Obs Qz’7 Y; € Obt Qz i € I. For each
map f: I — J in Mor$, the isomorphism A : Ki€/Q, = Ki€/ Ki€/'J Q; consists of the
bijections
Mot JTObs =TT T Ops Qi Mee: JJObeQ = ] J] ObeQ
iel jeJ icef-1j iel JeJief~1j
on objects and of isomorphisms
M @€19,(X,, V) S @ @' 04(X,, V)
on morphisms. The unit object is the graded span 1 with Oby,1 = Ob;1 = {x} and
L(x,*) =k.

If f,g : A — B are morphisms of graded spans of the same degree and such that
Ob, f = Ob, g, Ob; f = Ob, g, then the sum f+g¢g: A — B is a well-defined morphism of
graded spans.

If P and Q are graded spans such that Ob; P = Ob, Q, then there exists a tensor
product P ® Q, a graded span given by Ob, P ® Q = Ob, P, Ob; P ® Q = Ob, Q, and

PeX,2)= f PXY)eY,2),
Y €Ob; P=Ob, Q
for each X € Ob,P, Z € Ob; Q. Similarly, if f : M — P and ¢ : N — Q are morphisms
of graded spans such that
Ob; f = Obsg : Oby M = ObyN — Ob; P = Ob, Q,
then there exists a tensor product f ® g: M ® N — P ® Q given by the functions
Obs f®g=0Obs f:0b;M — Ob,P, Ob; f®g=0b;g: Ob;N — Ob,; Q,

and by k-linear maps

Dy cob m=ob, xnM(X,Y) @ N(Y, Z)
lZ fx,y®gy,z
@YeObt M=Ob, N P(X.Ob, f,Y.Ob, f) ® Q(Y. Ob, g, Z. Ob, g)

[

Ducon, r—ob, o P(X. Ob; f,U) ® Q(U, Z. Oby g),

for each X € Ob; M, Y € Ob; N. Extension to an arbitrary positive number of factors is
straightforward.

A graded quiver A is a graded span such that Oby; A = Ob; A = ObA. For graded
quivers A, B, a morphism of graded quivers f : A — B is a morphism of graded spans
of degree 0 such that Ob, f = Ob; f = Ob f. We write X f instead of X.Ob f. Let 2
denote the category of graded quivers. It inherits the structure of a symmetric Monoidal
category (2, ).

An arbitrary set S gives rise to a quiver kS given by ObkS = S, kS(X, X) = k and
kS(X,V)=0if X #Y, X, Y € S. Amap f: S5 — R of sets gives rise to a morphism
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of quivers kf : kS — kR given by Obkf = f, fxx = idx : kS(X, X) — kR(X f, X f)
and fxy =0:kS(X,)Y)=0—-kR(Xf,Yf)f X #Y, XY € S. Given a quiver A, we
abbreviate k Ob A to kA. For a morphism of quivers f : A — B, the morphism k Ob f is
abbreviated to kf.

For a set S, denote by 2/5 the subcategory of 2 whose objects are graded quivers A
such that ObA = S, and whose morphisms are morphisms of graded quivers f : A — B
such that Ob f = idg. The abelian k-linear category 2/S is Monoidal. The tensor
product of quivers A;, i € n, is given by

X=Yy,Ypn=2

(@ANX,Z2)= P @CANLY), X ZeS

Isomorphisms A extend linearly those of gr. The unit object is the graded quiver kS. If
S is a l-element set, the category 2/S is naturally equivalent (as a Monoidal category)
to the category of graded k-modules.

In particular, for each graded quiver A and n > 0, there is an n-fold tensor product
T"A = @"A in 2/O0bA. For example, T°A = kA, T'A = A, T?°A = A® A etc. A

morphism of quivers f : A — B gives rise to a morphism
T"f=x"f : T"A="A - T"B = "B,

thus we obtain a functor 7" : 2 — 2. For a graded quiver A and a sequence of objects
(Xo,...,Xp) of A we use the notation

Tn.A(Xo, ce 7Xn) - .A(Xo, Xl) ® e ® -A(anla Xn)7 (321)
T"A(Xo, X)) = b 1A, X))

X1,..,Xn-1€0bC

When the list of arguments is obvious we abbreviate the notation T"A(Xy, ..., X,) to
T"A(Xo, X,).

Suppose that Az are graded quivers, ¢ € I, j € m, and that ObAz = S; does not
depend on j. Define S = [],.; S;. Denote by ®g, the tensor product in 2/S;. There is
an isomorphism of graded quivers

~

7 @IFM R AT S ) @IS AT, (3.2.2)

identity on objects, which is a direct sum of permutation isomorphisms

~

o+ £ AT, X)) = 6 o A, X,
see ([LI4), where X7 € S;, 0 < j < m. In the particular case A7 = A; we get isomorphisms
7 T XS A & EIT™A,

3.2.2. Coalgebras. A.-categories are defined as augmented differential graded coalge-
bras of special form. We adopt the following definition.

3.2.3. Definition. A graded coalgebra is a graded quiver C equipped with morphisms

A:C—C®Cande:C—kCin Z2/0bC such that the triple (C, A, ¢) is a coassociative
counital coalgebra in the Monoidal category 2/ Ob €. Thus, the morphism A : € — C®C,



3.2. A-CATEGORIES AND A..-FUNCTORS 101

the comultiplication, makes the diagram

e—2  e@e

cxe2.egewe

commute, and the morphism ¢ : € — kC, the counit, satisfies the equations
[eSeee e =ide, [€Se€xCe]=ide.

We are committing abuse of notation by silently identifying € ® (€ ® €) and (C® C) ® C

with € ® € ® €. The detailed form of the coassociativity axiom is

>\I)1

[eSeve®esE@ee) s el

~

A®1

—[e2ewet eae)ee G®G®q

~

Similarly, C®kC and k€ ® € are identified with C. More precisely, the counit axiom reads
as follows:

[esene s eake 2 e = ide,

~

eieoekese X ¢ = ide.

~

A morphism of graded coalgebras f : (C,A,e) — (D,A,e) is a morphism of graded
quivers f : C — D that preserves the comultiplication and the counit, meaning that

elp2pen=lc2ecwelfpep], 6L DK =[eS ke LKD)

3.2.4. Example. For a set S, the graded quiver kS is turned into a graded coalgebra by
defining the comultiplication to be the isomorphism A?~2 : kS = kS ® kS in 2/S and
the counit to be the identity kS — kS. For a map f: S — R, the induced morphisms of
quivers kf : kS — kR is a morphism of graded coalgebras.

3.2.5. Definition. Suppose (€, A ¢) is a graded coalgebra. An augmentation is a mor-
phism of graded coalgebras n : kC — €. Thus, the diagram

k@G ——— @

,\@H2l2 lA
ke ke —" Lewe

commutes, and the composite k€ - € < k€ is the identity of the graded quiver k€. An
augmented graded coalgebra is a graded coalgebra equipped with an augmentation. A mor-
phism of augmented graded coalgebras is a morphism of graded coalgebras that preserves
the augmentation. Let ac2 denote the category of augmented graded coalgebras.

3.2.6. Example. For a set S, the graded coalgebra kS becomes an augmented graded
coalgebra when equipped with an augmentation given by the identity kS — kS. Clearly,
foramap f : S — R, the induced morphism of graded coalgebras kf : kS — kR preserves
the augmentation.
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3.2.7. Example. Let A be a graded quiver. The tensor quiver T'A = @, , T"A equipped
with a cut comultiplication Ag : TA — TA® TA, the counit € = pry : TA — T°A = kA,
and the augmentation n = ing : kA = T°A — T'A is an augmented graded coalgebra, the
tensor coalgebra of the graded quiver A. The comultiplication Aq is given by

Nolgoa : T"A — P TPATIA,

pt+q=n

f1®"'®fn'_>Zfl®"'®fi®fz’+l®"'®fn-
i=0

More precisely, the graded quiver T'/A ® T'A decomposes into a direct sum
TARTA= P T?ARTA,
P,q20

and for each n,p,q > 0, the matrix coefficient
pr, @ pry
_

(Do)npg & [T"A 2% TA S TARTA
vanishes if n # p + ¢; otherwise, (Ag)y.p,q is the isomorphism
AT =@ 5 @2 e 1A= (@9 TA)® (@7 2A) = TPAR TIA,
where g : n — 2 corresponds to the partition n = p+q, p = [¢g7 1], ¢ = |g7*2|.

Let (€, A,e,1) be an augmented graded coalgebra. Denote by A™: € — ®"C the
comultiplication iterated n — 1 times, so that

AO =g AU =ide, AP =A AP =AA®1)=A(1RA),

TPA ® TA]

and so on.

3.2.8. Example. The iterations A(()m) : TA — @™TA of the cut comultiplication Aq are
described as follows. The m-fold tensor product ®™TA decomposes into a direct sum

(ni)iGmENm
For each n,nq,...,n, = 0, the matrix coefficient

(m) ZEmp nz

(A(()m))nml . def [Tn.A ing, RN ®z€mTA ®Z€anZ.A]

.....

vanishes if n # ny + - - - 4+ n,,; otherwise, (A(()m))n - is the isomorphism

)\g Tn.A ®nﬂ H ®z€m ®g -1 .A ®Z€anZ.A
where ¢ : n — m corresponds to the partition n =ny + -+ + n,,, n; = [¢7'], i € m.

3.2.9. Proposition. The category ac2 is symmetric Monoidal. The tensor product of
graded coalgebras (C;, As,e4,m;), © € I, is the graded quiver X'!C; equipped with the
comultiplication, the counit, and the augmentation given by

A= [&ﬂe N (e ®e) (WGIG) ® (K'e))], (3.2.3)
€= [w@e B, xzefke k X< €], (3.2.4)
n = [k ¢, 2 melke; E20, wicle). (3.2.5)

For each map f : I — J in Mor 8, the isomorphism X : Ki€IQ, = RS/ )i€/' @, is that
of 2.
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Proof. The proof is by a straightforward computation. O

3.2.10. Example. Let (C;, A;,e;,m:), @ € I, be graded coalgebras. The iterated comulti-
plication A™ of the tensor product K'!@; is given by
. @ze] (") 51 .
A = [RETe;, ——— R @ €; Z— @™ K1 ¢;].

Take C; = TA;, © € I, with the structure of an augmented graded coalgebra described
in Example B.2.7. Then using Example B.2.§, we can write explicit formulas for matrix
coefficients of AM™ . Namely, the graded quiver ®@" X</ T A; decomposes into a direct sum

Q" @iel T.AZ — @ ®p€n &iel Tmi’PAi.
(mip)(i p)GIxneNl><n
For m;, m;, > 0,7 € I, p € n, define (A "))(mi);(mw) by the composite

peEnicl
@PERETpry,,

An) ®p€l’l &zel T.A ®p€n giel Tmi’p./q.i] )

e A, 220 et AT

Then (A™) () (m:,) vanishes if m; # m;; + -+ + my, for some i € I; otherwise, it is
equal to the isomorphism

[ieiTmi A, B, @isl gpen gor'na, — ®iE! gren s A, T2, gpen i€l Tris ]
where ¢g; : m; — n corresponds to the partition m; = m;1 + -+ + My, Mmip = |g; p|,

p € n, for each 7 € [.

3.2.11. Remark. Note that, for each graded quiver A, the graded quiver T'A admits
also the structure of an algebra in the Monoidal category 2/ Ob.A. The multiplication
pw:TA®TA — TA removes brackets in tensor products of the form

(1@ ®@2,) QR ® -+ D y,).

More precisely, for each p,q,n > 0, the matrix coefficient

1np ®1i ing

Hp.gin o [T”A @ TiA 222200 paoTA S 1A X Tn,q]

vanishes if p 4+ ¢ # n; otherwise, p, 4., is equal to the isomorphism
N TPARTIA = (®9711A) ® (®9712A) =R gl A Q" =T A,

where g : n — 2 encodes the partition p + ¢ =n, p = |¢g7'1], ¢ = |¢g~'2|. The unit is the
embedding 1 = ing : kA = T°A < TA. The iterated multiplication p™ : @*TA — TA
removes brackets in tensor products of the form

(@@ ®aq)QRal e 0aq,)Q) Q- ed,).
More precisely, for kq, ..., k,, k > 0, the matrix coefficient

M/(;f)knk = [ T™A AL GEnTA L TA P — TA]

of ™ vanishes if k1 + - - - + k,, # k and is equal to the isomorphism
()\g)fl . ®i€nTkiA — ®i€n ®g’1i A ; ®k.A — Tk.A,

otherwise, where g : k — n corresponds to the partition ky +--- + k, = k, k; = |g7 1],
1€ n.
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Let r : K€ITA; — T'B be a morphism of graded spans of a certain degree. Denote by

def ingm,

Pimerh = |[REIT™ A, B, sieima, T 7B P T3]
matrix coefficients of r, for m;,k > 0, ¢« € I. Matrix coefficients 7(,,), ;.1 are called
components of r and abbrev1ated tO 7(m,);c;- The morphism of graded spans

P pry WEITAZ- — B

collects components of r, meaning that ()., = F|serpm, 4, = K< in,,,, 7.
The following statement was obtained by Keller [B§, Lemma 5.2] in a more general
form for morphisms out of so called cocomplete graded coalgebra to the tensor coalgebra

of a quiver. Here we provide a direct proof sufficient for our purposes.
3.2.12. Proposition. Let A;, B, i € I, be graded quivers. Then the map
ac2(XSITA;, TB) — 2(XC'TA;,B), [ f,

establishes a bijection between the set of morphisms of augmented graded coalgebras
f:XEITA; — TB and the set of morphisms of graded quivers g : X'¢!'TA; — B such
that g|®iEIT0A¢ =0.

Proof. Note the following property of the cut comultiplication:

(n)
(T8 20 @rrB 2P, @np = TB] = pr,, 0> 0.

Indeed, by Example B:2.§, the restriction of the left hand side to the summand 7B of
the source is the matrix coefficient A n :T™B — T™B. It vanishes if m # n and
equals N =id : T"B — T"B if m = n; here g = id : n — n corresponds to the partition
n=1+---+1 (n summands).

Let A denote the comultiplication in X'S'TA,;. Suppose f : K€TA;, — TB is a
morphism of augmented graded coalgebras. Since f preserves the augmentation

n= [TO IEZEI .A @ZEITO.A Ting &ZEIT.A ]

it follows that f|gicrqo 4; = fo,.,00 = 0. The morphism f preserves the counit and the
comultiplication, i.e., f-e =¢-kf and f- Ay = A (f ® f). The former equation can be
written as f - A(()O) = A©®.®%f By induction, f- Aé") =AM .@"f n>0. It follows that
foor, =f A -@"pry =AM @ f - @ pry = AW . gh ]
Therefore, the morphism f can be recovered from f as
f=r- Zprn'inn = Zf~prn~inn = ZA(H) @ f -in,, (3.2.6)
n=0 n=0 n=0

so that the map f — f is injective. Conversely, suppose ¢ : K€/TA; — B is a morphism
of graded quivers such that g|gicrz04, = 0. Denote by

S Ny, .
g(mi)iel =y RiclTm A, = [&ZEITm’.A —Z> IXZEIT‘A g B]

components of g. Define a morphism f by

f =S [®ETA, A gr R A, L @rp = 7B L 7).
n=0
It is well-defined. Indeed, it suffices to make sure that for each m; > 0, ¢« € I, the
restriction of the right hand side to the summand X€/T™i A; of the source is well-defined.
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Using formulas for matrix coefficients of A™ obtained in Example B-2-10, the restriction
can be written as follows:
M=y, 1+ My, 1€1
Z Z [&z‘eleiAi i€l \oi i€l gpen T™iw A,

n20 (mi,p)(i,p)EIXnElen
i) ®p€n &iel Tmi’p.AZ‘

Tt peng o e, 7]

where g; : m; — n corresponds to a partition m; = m;1 + -+ + My, My, = lg; 'pl,
p €n, for each i € I. It is easy to see that if n > )., m;, then for arbitrary partitions
m; = mi1 + -+ My, ¢ € I, there exists p € n such that m;, = 0, for each i € I. The
corresponding term of the sum vanishes since g, )., = 0. Therefore the sum is finite.

The morphism f clearly preserves the counit and the augmentation. The comultipli-
cation is also preserved. Indeed, to check the equation f- Ay = A (f ® f), it suffices to
show that

fDg-(pr,@pr,) =A-(f® f)-(pr,®pr,) : K<'TA; - T"B @ T"B,

for each m,n > 0. Denote C = K'€/TA;. Expanding out the left hand side, we obtain
(m-+n) mn A
[e L) QmtneE &7y, Qmtngy iq_) (®m.3) Q (®HB)],
where ¢ : m +n — 2 correspond to the partition of m +mn, m = |¢g~ 1], n = |g~'2|, while
the right hand side becomes

AmMAT) M 9)®(®"9)
_ _ 5

eiewe (@™€) ® (@™C) (@™B) ® (@"B)].
The obtained expressions coincide by the naturality of A9 and due to the equation
(€2 exe (@"C)e(@™e)] = [e me X (@he)e(@™e)], (3.2.7)
which holds true by the coassociativity of A.

Clearly, f = g, so that the map f +— f is surjective, hence the assertion. U

AlMAm) A(m+n)
— —

It follows from the proof of the preceding proposition that a morphism of augmented
graded coalgebras f : X'!TA; — T3B is unambiguously determined by its components
Jmi)eer Xi€lTmiA, — B. For each m;,n > 0, i € I, the matrix coeflicient Joma) is
given by

ieln

M= 144y n, 1€1 o
_ iclgm; XPEL N iel €n rm;
f(WLi)iEI;TL = E : [@ T™A; ——— K= QP T™r A,

(Mi,p) (i,p)eIxn ENTX

1> ®p€n @iel Tmi,pﬂi

®p€nf(mi )i

2L QPR B = T B, (3.2.8)
where ¢g; : m; — n corresponds to a partition m; = m1+- My, M, = |g;1p|, p En,
1 € I. In particular, if I is a 1-element set, a morphism of augmented graded coalgebras
f:TA — TB is recovered from its components via the formula

®PER fimy,

fon= D [TMA@T™A

mi+-+mp=m

®p€n.B — TnB] ’
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for each m,n > 0; here g : m — n encodes a partition m = my + -+ + m,, m, = |g~'p|,
p € n. We often omit isomorphisms A\ and write the matrix coefficient f,,.,, in a more
simple form:

fon= > fa @@ frn, : T"A > T"B. (3.2.9)
my+-t+mp=m

In particular, f,,., vanishes if m < n. The coefficient fo equals T°f : T°A — TB.

3.2.13. Definition. For morphisms of graded coalgebras f,g : € — D, an (f, g)-code-
rivation of degree n is a morphism of graded spans r : € — D of degree n such that

Obsr =0b f, Obyr =Obg, and TA = A(f @71 +r® g).

3.2.14. Remark. Suppose 7 : € — D is an (f, g)-coderivation. Then re = 0. Indeed, by
the counit axiom ¢ = A(e ® ¢). Since f and ¢ preserve the counit, it follows that

re=rAle®e)=A(feRre+re®ge)=A-(e®1)-re+A-(1®e¢) - -re=re+re,
hence the assertion.

3.2.15. Proposition. Suppose f, g : KIS!TA; — TB are morphisms of augmented graded
coalgebras. Then there exists a bijection between (f, g)-coderivations r : KR! TA; — TB
of degree d and morphisms of graded spans u : XSITA; — B of degree d such that
Obsu = Ob f, Ob,u = Obg. The bijection is given by assigning to an ( f, g)-coderivation
r the morphism of graded spans 7.

Proof. The proof is quite similar to the proof of Proposition B.2.14. We provide it for the
sake of completeness.

Suppose 1 : KISITA; — TB is an (f, g)-coderivation. Then 7-Ag = A- (f@7r+r®y9),
and by induction

reA Z@pen Jp<isTs (D)p>5), n =1 (3.2.10)
It follows that

repr,=rn- Aén) - @"pry = A Z P((f - Pry)p<js 7 Pry; (9 Pry)p>)
j=1

= A(n) . Z ®pen((f)p<ja f’ (g)p>j)7

for each n > 1. By Remark [3.2.14, r - pry = 0. Therefore r can be recovered from 7 as
P i = Y = 30 3T A (P (D)
n=0 n>1 n>1 j=1

so that the map r — 7 is injective. Conversely, suppose u : KI€'TA; — B is a morphism

of graded spans such that Obsu = Ob f, Ob, u = Ob g. Denote by

er;
inm,

i€lrpm
u(mi)iel U|®161TmZA [IX T Z.A

components of u. Define a morphism r by

X''TA; — B

PR ((f)p<jou

r— Z Z [&ZEIT.AZ ﬂ ®PEn el TA, (9)p>3) QPERB = TR m_n> TB] .

n>l j=1
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To see that it is well-defined, it suffices to check that, for each m; > 0, 2 € I, the restriction
of the right hand side to the summand X!</T™iA; of the source is given by a finite sum.
Indeed, the restriction can be written as follows:

no Mi=mg 1+ +mg n, 1€1

2.2 > [iei A, B, @iel gpen s g,

n2l §=1 (m;p)@,p)erxnENIXD
(12 ; )
(12) ®p€n &zel Tml’p.AZ‘

OPE((f(m; p)ieJp<it(m; )i r(9m; )ier Jp>5)

®p€n3 — TnB 111_n> TB],

where g; : m; — n corresponds to a partition m; = M1+ My, My = \gl p\ pEN,
for each i € I. It is easy to see that if n > > ., m; + 1, then for arbitrary partitions
m; = m;1+ -+ my, ¢ €1, there exist k,/ € n, k </, such that m;, = m;y = 0, for
each ¢ € I. The corresponding term of the sum vanishes since either k£ < j, and then
Jimip)ier =0, 0r £ >k > j, and then g(p, )., = 0. Therefore the sum is finite.

To check that 7 is an (f, g)-coderivation, it suffices to show

r- Ao (pr, ®pr,) = A (f@r+7r®g)- (pr, ®pr,) : KTA — T"B® T3,
for each m,n > 0. Denote C = K€/TA;. The left hand side equals

m+n m4n Em+n((f - u.(g . ¢
3 [e A, gming Wt @rn), gming X, (gmp) g (o0B)],
j=1

where ¢ : m +n — 2 encodes the partition of m +n, m = [¢g~ 1|, n = |¢~'2|. Expanding

out the right hand side using equation (B.2.6), we obtain

AlM gA™)
>

[e2ewe (@™e) @ (a"C) & (2™B) @ (a"B)],

where
=3 (@™ ) @ (@ ((Npess s (D)ps5)) + D (DT (Fgter t, (3)g51)) @ (@)
j=1 k=1

The obtained expressions coincide by the naturality of A9 and by equation (B.2.7).
Clearly, 7 = u, so that the map r — 7 is surjective, hence the assertion. 0

Proposition B.2.19 implies that an arbitrary (f, g)—coderivation r: X€ITA; — TB
is unambiguously determined by its components T(mi)ie : Wi€lTmi A, — B. For each
mji,n = 0, 1 € I, the matrix coefficient 7(,,,),_,:n 1s given by

n mi=mg; 1++mgn, i€l
E : 2 : [&ZEITmZ.A R A9i @ZEI ®p€n Tm”,‘A

J=1 (77li,p)(i,p)el><neNI><n
k23 n ; .
— ®p€ el 7 Mie A,

OPE((f(m; p)ie Jp<i T (mi ier(9im; )ier Jp>5)

®QFB =T"B], (3.2.11)

where g; : m; — n corresponds to a partition m; = m;1 + -+ M4y, My, = lg; ' pl,
p € n, for each ¢ € I. In particular, if I is a 1-element set and f,g : TA — TB are
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augmented coalgebra morphisms, then an (f, g)-coderivation r : TA — T'B is recovered
from its components via the formula

Tmin = Z Z [T A N gpenmy 4 B (mp Jp<i mj (9mp)p>3) ®PB = T"B],

7=1 mi+--+mnp=m

where g : m — n encodes a partition m = my + -+ - + my, m, = |¢g"'p|, p € n. We often
omit isomorphisms A\ and write the matrix coefficient 7,,,, in the following form:

p+1l4+g=n
Frin = > fa® @ f @1, Qg @ @y, TTA — T"B. (3.2.12)
i1+ tiptjtki o tkg=m
In particular, r,,, vanish unless 1 <n < m + 1.

The notions of graded span, graded quiver, graded coalgebra etc. admit obvious
differential graded analogs. For a graded span A, a differential is a morphism of graded
spans d : A — A of degree 1 such that Obyd = idoy, 4, Obsd = idop, 4, and d* = 0.
A differential graded span is a graded span A equipped with a differential. Equivalently,
a differential graded span A consists of a set of source objects Obg.A, a set of target
objects Ob; A, and for each pair X € Ob, A, Y € Ob; A, a differential graded k-module
(i.e., a complex of k-modules) (A(X,Y),d). A morphism of differential graded spans
f:(A,d) — (B,d) is a morphism of graded spans f : A — B of degree 0 that preserves
the differential. A differential graded quiver is a graded quiver equipped with a differential.
A morphism of differential graded quivers is a morphism of graded quivers that preserves
the differential. Let 2 denote the category of differential graded quivers. It is symmetric
Monoidal. The tensor product of differential graded quivers (Q;,d%), i € I, is the graded
quiver X€1Q; equipped with the differential

d="> B ((idg,)ick, d, (idg,)isk). (3.2.13)
kel
Isomorphisms A\ of 92 are those of 2.

For a set S, denote by 92/S the subcategory of 92 whose objects are differential
graded quivers A such that Ob A = S and whose morphisms are morphisms of differential
graded quivers f : A — B such that Ob f = idg. The category %2 is Monoidal. The
tensor product of differential graded quivers (A;, d), i € I, is the graded quivers ®</ A,
equipped with the differential

d= Z @' ((ida, i<k, &, (ida,)isk)-
kel
Isomorphisms M\ of 42/S are those of 2/S. The unit object is the graded quiver kS
equipped with the trivial differential.

A differential graded coalgebra is a differential graded quiver (C,d) equipped with
morphisms A : € — C® € and € : € — k€ in 92/ Ob € such that the triple (€, A,¢)
is a coassociative counital coalgebra in the Monoidal category %2/ Ob C. Equivalently, a
differential graded coalgebra is a graded coalgebra (C, A, ¢) equipped with a differential
d: C — € such that A and e are morphisms of differential graded quivers. The fact that
A preserves the differential is expressed by the equation d- A = A - (ide ®d + d ® ide),
which means that d : € — € is an (ide, ide)-coderivation of degree 1. Remark B.2.14
implies that d - ¢ = 0. In other words, £ preserves the differential as soon as A does.
A morphism of differential graded coalgebras is a morphism of graded coalgebras that
preserves the differential. An augmented differential graded coalgebra is a differential
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graded coalgebra equipped with an augmentation which is a morphism of differential
graded quivers. Equivalently, an augmented differential graded coalgebra is an augmented
graded coalgebra (C, A, e, n) equipped with an (ide, ide)-coderivation d : € — € of degree 1
such that d> = 0 and 7-d = 0. A morphism of differential graded augmented coalgebras is a
morphism of augmented graded coalgebras that preserves the differential. Let ac?2 denote
the category of augmented differential graded coalgebras. It is symmetric Monoidal. The
tensor product of augmented differential graded coalgebras (A;, dY, Ay, €;,m;), 4 € I, is the
graded quiver X'/ A; equipped with differential (B:2.13), comultiplication (B:2.3), counit
(B24), and augmentation (B:2.5). Isomorphisms A of ac?? are those of ac2.

3.2.16. Multicategory of A.-categories. For a graded quiver A, denote by sA its
suspension. Thus, ObsA = ObA, and (sA(X,Y)) = s(A(X,Y)) = A(X,Y)][1], for
X, Y € ObA. The ‘identity’ morphism A — sA of degree —1 is denoted by s.

Aso-categories and A,-functors form a full submulticategory of the multicategory ac??
of augmented differential graded coalgebras.

3.2.17. Definition. An A, -category consist of a graded quiver A and a differential
b : TsA — TsA that turns (T'sA, A, pry,ing) into an augmented differential graded
coalgebra. Thus, b : TsA — TsA is an (idysa, idrsa)-coderivation of degree 1 such that
62 =0 and b|T°sA = il’lo b =0.

Since b : T'sA — T'sA is a coderivation and a differential, it may be called a codiffer-
ential. By Proposition B.2.15, it is unambiguously determined by its components

by = [T"sA 2% TsA 5 TsA 25 sA], n>0.

The condition b|o,4 = 0 implies that by vanishes. It is easy to see that b* is an
(id7sa,id7sa)-coderivation of degree 2. By Proposition B:2.13, the equation b* = 0 is
equivalent to

opr,=b-b=0:TsA — sA.
Note that the identity morphism idz,4 : T'sA — T'sA has a unique non-trivial component,
namely (idrsa)1 = idsa : A — sA. Using formula (B.2.17), we can write the condition
b-b =0 as follows:

S (@b @ 1% byrig = 0: T"sA — sA, m > 1. (3.2.14)
p+k+g=m

Thus, an A,-category consists of a graded quiver A, and for each n > 1 and a sequence
of objects Xy, X1,..., X, of A, a k-linear map

bn . S.A(X(),Xl) XX S.A(Xn_l, Xn) - S.A(X(),Xn)

of degree 1, subject to identities (B.2.14). Using another, more traditional, form of com-

ponents of b:
s®n

M = (A" 25 (sA)P" 2 sA 2 A)
we rewrite (B.2.14) as follows:

Z (=) TR @ my, @ 1) myy 149 = 0: T™A — A. (3.2.15)
p+k+q=m
3.2.18. Example. A differential graded category is an example of A,,-category for which
m, = 0 for n > 3. The components m; and my are the differential and composition
respectively.
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3.2.19. Definition. For A..-categories A;, B, i € I, an Ay -functor f : (A;)icr — B is
a morphism of augmented differential graded coalgebras f : X'/TsA; — T'sB. Equiv-
alently, f is a morphism of augmented graded coalgebras and preserves the differential,
meaning that
Z ®i61(<ideAi>i<j7 ba (idTSAi>i>j) ’ f = f -b. (3216)
jel
By Proposition B.2.13, an A.-functor f is unambiguously determined by its compo-
nents fim,),e; @ KEITmisA; — sB. It is easy to see that both sides of equation (B:2:16)
are (f, f)-coderivations, therefore, by Proposition B.2.19, equation (B.2.16) is equivalent
to
> R ((idraa,)icss b, (idraa,)isg) - f - pry = f-b-pry : B TsA; — 5B,
jEI
or equivalently
Z &iel((idT&Ai)Z(j, b, (ideAi)i>j) . ]E = f . 6 . &ZEITS.AZ' — SB. (3217)
jel

’1

Using equations (B.2.§) and (B:2.11]), the above condition can be written as follows:

Z [&ieleiS.A' IXiEI[(l)i<jv/\¢jv(1)i>j}

R [(T™ 5As)icjs ®P[(sA)) gers TP s A, (5A;)qet], (T 5A:)i5]

giEI[(1)’i<j7®p[(1)q€l‘vbkv(l)qet]v(l)i>j] &Z’GI [(

TmiS.Ai)i<j, Tpsflj, (TmZS-Az)Z>]]

f(mi)i<jvpv(mi)i>j

SB]
_ Z [&iEITmiS.Ai REET (i @iel ®l€n Tmi’lS.Ai

®l€nf(m.

= ) ) Dierl b
=, ®l€n &zel Tmz’lS.AZ' o mte ®l€nSB LN SB],

~

for each m; > 0, ¢ € I. The summation in the right hand side extends over j € I and
over partitions

mj=1+ -+ 14+k+1+--+1,
d t d
encoded by an order-preserving map ¢; : m; — p, p =1+ 1+, \¢;1q| =1, q#r+1,
|¢;1(T + 1)] = k. The summation in the right hand side extends over n > 1 and over
partitions

m; =m;1+ -+ Miy,, €I,

encoded by order-preserving maps g; : m; — n, |g; 'l| = m;;, | € n, for each i € I. In
particular, if I is a 1-element set, omitting isomorphisms A, the above equation can be
written as

Z (1®r ® b ® 1®t>fT+1+t - Z (fml - fmn)bn :T"sA — sB,
r+k+t=m mi+---+mp=m
for each m > 1.

3.2.20. Definition. An A.-functor f : (A;)ier — B is called strict if f,, = 0 for each
n € N unless |n| = 1.
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3.2.21. Example. Suppose € and D are dg-categories. Then a dg-functor F' : € — D
gives rise to a strict A-functor f: € — D such that Ob f = Ob F' and

fi=s5"'Fs:5C(X,Y) — sD(XF,YF),
for each pair X,Y € ObC.

3.2.22. Example (Shifts as dg-functors). Let f : X — Y be a k-linear map of certain
degree d = deg f. Define

f[n} _ (_)fnsfnfsn — (_)dn (X[n]z — Xi+n m Yz'Jrner — Y[n]ier)

Y

which is an element of C, (X [n], Y'[n]) of the same degree deg f. Define the shift differential
graded functor [n] : C, — C, as follows. It takes a complex (X,d) to the complex
(X[n],d™), d" = (—=)"s~"ds™. On morphisms it acts via

Qlk(s_n’ 1) ) Qlk(L Sn) : gk(X’ Y) - Qlk(X[n]’ Y[TL]), f = f[n]
Clearly, [n] - [m] = [n + m].

3.2.23. Definition. The symmetric multicategory A, is the full submulticategory of
ac?? whose objects are A,-categories.

Thus, for each map ¢ : I — J in Mor 8 and A-functors f; : (A;)iep-1; — Bj, j € J,
g (Bj)jes — €, the composite (f;)jes -4 g equals

) . L1 JEJT F. .
[ TsA; 25 @IS Ri€0 Ts A, =2 I8, 4 Ts€). (3.2.18)

For an A.-category A, the identity A.-functor idy : A — A is represented by the
identity morphism of augmented differential graded coalgebras idpgq : TsA — T'sA. Its
only non-trivial component is (id4); = ids4 : sA — sA.

3.2.24. Remark. Note that there is a bijection between A..-functors () — B and objects
of B. Indeed, an A -functor f : () — B is a morphism of augmented graded coalgebras
f 1 — TsB that preserves the differential. It amounts to a mapping % — U € ObB on
objects and to the identity 1(x,*) = k — k = T°sB(U, U) on morphisms. Commutation
with the differential holds true automatically.

Let f: (A;)ier — B be an A-functor, and let J C I be a subset. Choose a family
of objects (X;)ier~s € [lic;; ObA;. Viewing them as A,-functors X; : () — A;, define

X)),
an A-functor f| i

composite

: (Aj)jes — B, the restriction of f to arguments in J, as the

((ida,)jes, (Xi)ierws) ger [ 1 (Aj)jes — B
in A,,. The A,-functor f|SXi)i€’\J takes an object (X;);es to ((Xi)ier)f € ObB. For each
k = (k;)jes € N/, the component (f|f,Xi)"e“°’)k of f|JXi)"e’\" is given by the composite
(@S T55,(X;, Y;) 2 @I TR A (X, Y3) 25 sB((Xiien) f, (Wien) )], (3:2.19)

where k = (k;)ie; €N by =k;ifi€ J, k;=0and Y; = X; ifi € I J.
In particular, for J = {j} — I = n we have an A -functor f|§-Xi)i# : A; — B,
the restriction of f to the j™ argument. It takes an object X; € ObA; to the object
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((Xi)ien)f € ObB. The k" component (f|§Xi)i¢j)k is given by the composite

[TFsA;(X;,Y;) = @ [(TOsA(Xi, X;))icjy TFsA (X5, Y5), (TOsA(Xi, X)) i)

VRN VR
fke
—>S‘B((Xl,...,Xn)f,(Xl,...,Xj_l,Y;‘,Xj_H,...,Xn)f>},

Where ke; = (0,...,0,k,0,...,0) € N™ has k at the j™ place. The first component
( f \ ”é]) = fe; commutes with b;, and there are chain maps

sfe;s !t AG(X;,Y5) = B((Ya)ics, (Xi)izg) fo (Yo)icss (Xi)isi) ), (3.2.20)
for each X;,Y; € ObA;, j € J.

3.3. A, .-categories of A -functors

We are going to show that the symmetric multicategory A, is closed. It is well-known
that, for each pair of A.-categories A, B, there exists an A, -category of A..-functors
A (A;B). These A-categories have been studied by many authors, e.g. Fukaya [L6],
Kontsevich and Soibelman [B2], Lefevre-Hasegawa [B4)], Lyubashenko [B§]. We begin by
recalling the construction of Ay (A; B) following [BE], where it was denoted by A, (A, B).
An object of Ay (A; B) is an A-functor A — B. For each pair of Ay-functors f,g: A —
B, the k™ component of the graded k-module of morphisms A (A; B)(f,g) consists of
(f, g)-coderivations r : T'sA — T'sB of degree k — 1. By Proposition B.2.15, an arbitrary
(f, g)-coderivation r : TsA — T'sB is uniquely determined by its components r,, : T"sA —
sB, n > 0. Therefore, the graded k-module sA(A; B)(f, g) is identified with the product

I er(@sAX,v),sBxfYg) =] [ sr(@ sAX.Y) sB(X[,Yg)).

X,Y€ObA n>0 X,Y €Ob A

The differential By : sAx(A;B)(f,9) — sAx(A;B)(f,g) maps an (f, g)-coderivation
r:TsA — TsB of degree degr to an (f, g)-coderivation

rBy =[r,bl =rb— (=)"br: TsA — TsB
of degree degr + 1. The higher components
Byt sAsc (A B)(f°, 1) @+ ® sAs (A B)(f" 1, ") = sAx(A; B)(fY, "), n>2,

are defined as follows. For (1, f%)-coderivations r* : TsA — TsB, i € n, the (f°, f)-co
derivation r = (r!' ® - - - ® ) B,, is given by its components

re=> ( @ @fy O Of@ ®fy @@ R ® @ ffy mottmatn;
where the summation is taken over all partitions
Qi F gy, F i i, =k

There is an A, -functor evi= = eVA93 TsAXTsAg(A;B) — T'sB, denoted in [BY] by
a. It maps a pair (X, f) consisting of an object X € ObA and an A,.-functor f : A — B
to the object X f of B. The only non-trivial components of evA> are

VA% = [TPsA(X,Y) © TOsAx (A; B)(f, f) = T"sA(X,Y) L sB(X [, Y )]
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forn > 1, and

1®pr}7y

evis = [T"sA(X,Y) ® sAx(A; B)(f, 9)
TsA(X,Y) @ gr(T"sA(X,Y),sB(X f,Yg)) < sB(X f,Yg)],

for n > 0. Proposition 5.5 of [B§] asserts that, for each A -functor f : A, Cy,...,C, — B,
there exists a unique A-functor g : €y, .. G — Ax(A; B) such that

yAoo

f=[ACL... € 1% A Ag(A; B) —2 B].
Therefore, the function
0o s Aso(Cl .t Co A (A B)) = Ag(A, €y, ..., €5 B)

is a bijection, so that the assumptions of Proposition are satisfied. Hence, A is a
closed symmetric multicategory.

The presented argument is short, and it convinces that the assertion is true. However,
internal Hom-objects and evaluations constructed as in the proof of Proposition are
rather inconvenient for practical computations. As we have mentioned at the beginning
of the chapter, a conceptual approach to the closedness of the symmetric multicategory
A, is developed in [B]. It leads to a different (but, of course, isomorphic) choice of the
structure of a closed multicategory for A,,. We are going to use it in the sequel, so it is
briefly discussed below. The reader is referred to [[] for details.

For A.-categories A;, B, i € I, there exists an A-category As((Ai)icr; B) whose
objects are As-functors (A;)ie; — B, i.e., morphisms of augmented graded coalge-
bras X€/TsA; — TsB that preserve the differential. For each pair of A..-functors
frg9: K€'TsA; — T'sB, the k™ component of the graded k-module Ay ((A:)ier; B)(f, g)
consists of (f, g)-coderivations X! TsA; — T'sB of degree k — 1. By Proposition .2.17,
the graded k-module sAy ((A;)icr; B) is identified with the product

el

I er(@TsAi(X;, V), sB((Xi)ier f, (Vi)ierg))

X;,Y;€0b A;
el

~ H H gr(@ielT"is.Ai(Xi,Y;),SB(( Xi)ierf, (Yi)ierg))-

(ni)icr€N! X;,Y;€0b A;

For (fP~!, fP)-coderivations r? : Ki*/TsA; — TsB, p € n, define a morphism of graded
spans (r' @ --- @ r")6 : K'TsA; — TsB by its matrix coefficients

Y[R TR A, BT i @N (T A, TH A, T sAs, ... TV sAy)

L, N (REITY s Ay, RIEITI s A, RIEITU s Ay, ... REITH s A,)

N 1 n
ity (19)5mq Z.l)’f(lzl);ml7...7f(l?);mn}

T"sB], (3.3.1)
where N = {1,2,...,2n + 1}, the summation is taken over all partitions
it li+ 40l =ky, i€I, mo+--+my+n=m

the mapping ¢g; : k; — N encodes the partition 1 + j! + 1} + - -+ 1" = k;, i € I, and
fg?);mp  REITH s A; — T™rsB are matrix coefficients of 2, 0 < p < n. More concisely,
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the morphism (r! ® - - ® r™)0 is given by the composite

A(g nt1) ® |ZZ€I T .A N(fozflzfla---vfn)

(re--rMf=[RTsA;, ——

p(2nt1)

N(TsB,sB,TsB,...,TsB) =—— TsB], (3.3.2)

where p is the multiplication in the tensor quiver TsB, see Remark B.2.17]. In particular,
if n=1, then (r')0 = r'. If n =0, then ()0 = f°. The differential

By sAx((Ai)ier; B)(f, 9) = sAso((Ai)ier; B)(f, 9)

maps an (f, g)-coderivation r : K€/ T'sA; — T'sB of degree degr to an (f, g)-coderivation

rBy = [r,bl =rb— (— Z L ((1)icry b, ()isg)r : K€ TsA; — TsB (3.3.3)

kel

of degree degr + 1. The higher components
By, : sAx((Aiiers B)(f*, [1) @+ - @A (Ai)iery B) (" 1) = sAx((Adiers B)(f*, f7),

for n > 2, are defined as follows. For (fP~!, fP)-coderivations r? : X€/TsA; — TsB,
p € n, the (f° f™)-coderivation r = (r' @ --- ® r") B, is given by

P = [T, L pep by B, (3.3.4)
In other words, for each (k;);c; € N,
(@ ®r i Z ™)) (k)i g embin- (3.3.5)

m=1

For As-functors f,g : (Ai)ier — B, an (f, g)-coderivation r : K€/ TsA; — TsB is also
called an A -transformation and denoted 7 : f — g : (A;)ier — B. An A,-transfor-
mation 7 : f — ¢ : (Ay)ier — B is called natural if degr = —1 and rB; = 0. Two
Ao-transformations r,t : f — g : (A;)ier — B of the same degree d are called equivalent
and denoted r = t if they differ by a boundary, i.e., if there exists an A.-transformation
v:f—g:(Ai)ier — B of degree d — 1 such that r — ¢t = vB;y. Later we will give an
interpretation of these notions in terms of base change.

3.3.1. Remark. Suppose B is a dg-category. Then B, = 0 for n > 3. Indeed, it follows
from formula (B=37]) that the matrix coefficient [(r'®- - ®@7™)0]k,),c;m Vamshes if m < n.
Formula (B:3.3) implies that (r' @ --- @ r")B, Vanishes iftn > 3.

The evaluation A,-functor evA= = ev?j{’)lel g ¢ (Ai)ier, Asc((Ai)ier; B) — B maps a
tuple ((X;)ier, f) consisting of objects X; € ObA;, i € I, and an A -functor f : (A;)ier —
B to the object (X;)ierf of B. The only non-vanishing components of ev = are

evie = [@IT™sA(X;,Y;) ® TOsAx ((Ai)ier; B) =

(n4)ier,0

S TV SA(X, Y)) L sB(XYier f, (V)ierf)]. (3.3.6)
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for (n;)ier € N, (n;)ier # 0, and

(nidier
1®pr(Xi)i€I7(Yi)i€I

eV e = (BT SA(X, YD) @ sAx((As)ier; B)(/, 9)
(& TS A(X,Y)) © gr(© < T sA(X,, Vi), sB(Xi)ier f, (Vi)ierg)

O sB((Xa)ier f, V)ierg)], (3.3.7)

for (n;)ic; € NI, If I is a 1-element set, we recover the definitions from the beginning of
the section.
Note that A, (;B) = B, as it should be in a closed multicategory. Indeed, the iso-

morphism A (; B) — B extends the bijection of Remark B.2:24. It is a strict A-functor
with the first component given by the isomorphisms

A (i B)(f, f) = gr(L(x, =), sB(U,V)) = gr(k, sB(U,U)) = sB(U, U),

where U = (%) f € ObB. In the sequel, we tacitly identify A (; B) with B.
It is easy to see that the bijection

~

Pl - Ao Ass((Ai)ier; B)) = As((Ai)ier; B)
identifies with the bijection
Aco(; Ase((Ai)ier; B)) = Ob Ax((Ai)ier; B) = Aw((Ai)ier; B)
of Remark B.2.24.

3.3.2. Inversion formulas. We are going to compute explicitly the inverse of the func-
tion

" Aso((By)jess Ao ((Aiier; ) = Aso((Adier, (By)jes; €),  f — ((ida,)ier, [) ev?™.

Suppose ¢ : (A;)ier, (Bj)jes — Cis an Ao-functor. There exists a unique A-functor
f=(9*=)"(9) : (Bj)jes — Axc((Ai)icr; €) such that

(da,)ier.f

9= [(Adier, (By)jes (Adier, Ao ((Aiier; €) 225 €] (3.3.8)

As a morphism of augmented graded coalgebras, f can be restored from equation (B-3.8)
unambiguously. Indeed, it follows immediately that, for each U; € ObB;, j € J, the
image (U;)jesf is an Ao-functor (Uj)jesf : (Ai)ier — € that takes an object (X;)ies
to (Xy)ier(U))jesf = ((Xi)ier, (Uj)jes)g. To compute components of the A,-functor
(Uj)jesf, pick m = (m;)ier € NI, m # 0, objects X;,Y; € ObA,;, i € I, and consider the
restriction of equation (B:3-§) to the appropriate direct summand of the source:

gmo = [(@"FT™sAi(X;, V7)) @ (&7 TsB;(U;, U;))
I 18((U;)jes
=Q® EIT Zsfli(XZ-, Yi) e, 36((Xi)i€I(Uj>j€Jfa (Y;)iel(Uj)jle)]-
Comparing the result with formula (B.2.19), we conclude that (U;);esf = g\ng)jEJ. To

find components of f, take m = (m;);e;r € N/, n = (n;);e; € N/, objects X;,V; € ObA,,
iel,U;,V; € ObB,, j € J, and consider the restriction of (B.3.§) to the direct summand
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(& 1T™isA;(X,, Y;)) ® (27€7TsB,(U;, V;)) of the source:

G = (ST 54X, Y3)) © (29T 5B,(U;, V)
RN (@ T sAi(X3, V7)) @ Ao ((As)ier; C)((U)jes f, (Vy)jes )
S (@M s A(X,, V) @ gr(@E T™ s Ay(X,, Y7),
sC((Xi)ier(Uj)jesf, Yi)ier(Vj)jesf))
S $C((Xa)ier, (U)je0)gs (Yadier, (Vi)jen)9)].

Therefore, somewhat informal, f,, maps an element ®7<7/ @L< qj»j of ®€/TmisB;(U;, V;)

to an (g|\"7<7, 9|97 ) coderivation r : Ri€ITsA; — Ts€, whose m™ component r,,

takes an element ®*€7 @F€™ pk' of @EIT™i s A,(X;,Y;) to

((®i61 ®kiemi pfl) X (®jEJ ®ljenj qg‘j))gm,n S Se(((Xi)iEIa (Uj)jEJ)g> ((}/i)iela (‘/J)JGJ)Q)

See [B] for the proof that f is an A,.-functor.
According to Proposition [[.3.16, there exists an isomorphism of A, -categories

" Ao ((By)jesi Ass((Ad)ier; €)) = Aso((Adier, (By)jes; C). (3.3.9)

By Corollary [3.17, Ob p*~ = ¢*><. Indeed, in the commutative diagram

Ao (3pPo0)

Ao (i Aso((Bj)jes; Ao (Ai)ier; €))) ————— A A ((Ai)icr, (Bj)jes; €))

SDAOO | ‘/gpAoo

Aoo((Bj)jeJ3 Aﬁ((‘Ai)iEI; ) z A ((Aiier, (Bj)jes; C)

the bottom arrow identifies with the mapping Ob p*>, by Remark B.2.24. The isomor-
phisms "> allows to compare the internal Hom-objects Ay (Aq, ..., A,; B) with those
defined inductively according to the recipe of Proposition [3.173 Namely, we have a chain
of isomorphisms

@hoo

Aco(An; Ao (An—15- - Aso (A1 B) ) == Aso(An—1,An; Ao (An-2; - Aso(A1; B) ... )

hoe

We will not need explicit formulas for £A°°, though it is not difficult to show that it is a
strict A-functor.

3.3.3. Composition. According to the general recipe of Proposition [[.3.14, for each
map ¢ : I — J in Mor 8 and A,-categories A;, B;, €, i € I, j € J, there is a unique
A-functor

M = 15+ (As((Addico15:B))) sey As((B))je:€) = An((A)ier: ©)
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that makes the diagram

(ldﬂl)l ],M
(Ai)ier, (A;.o(( )ze¢ 1 ) ]EJ’ «((B )jeJ§ ) e (Ai)ielaA;oo((Ai)ieﬂ €)
(ev(A Dics—1,% )ieJ 1dAoo((B )jesi€ k N lev?jj)ielie
ev (go) e
(B ]€J7 ]GJ?G) et C

commute. The mapping Ob M is composition of A,.-functors. It is not difficult to deduce

from the diagram that components
Mimayicrm = BT 5A (Ad)ies15: Bj) B T"sAx ((B)jes; €) — sAx((Aiier; ©)

i€l

vanish unless n = 0 or n = 1. For each (m;);c; € N!, the component
10t @ T A (Aiieo15: B (f5: 95) © T 5P ((By)je; ©)(h, D)
= 8Axo((Ai)icr; €)((f3)ies o Dy (95)jes -0 )

maps an element @77 (r/' @ --- @ r7™) of the source to an ((f;)jes - I, (95)jer <o h)-co-
derivation p given by

M(WZ)

Wej(rﬂ@m@rjm]' )6’

p= [RETsA; 25 RIS €T TsA, SEITsB, 1 Tse).

Similarly, the component
Mmyiern = @7 T™ A ((Ai)ies155 Bi) (f: 95) © A ((By)jes; C)(h, k)
— 5Ax((Ai)ier; C)((fj)jes ¢ 1, (95)jes o k)

maps an element @</ (r’' @ - @ ri™) @t to an ((fj)jes ¢ hs (95)jes "¢ k)-coderivation g
given by

®7€J(Tj1®---®rjmj)0

§ = [RTsA; 25 RIS R ToA, %I/ TsB; L TsC].

3.3.4. Example. Suppose that f': Al ... AT — By, ..., f*: AL ... A™ — B, are

Aso-functors. Let r: g — h:Bq,..., B, — € be a coderivation. Then
('R R Rr)My o= (XK f") -7

as ((f'X--- B f")-g,(f'®--- K f*)- h)-coderivations. Indeed, it is easy to see that the

right hand side is an ((f1 K- Kf)g, (XK f)- h)—coderivation. Moreover, by
definition

(R RfRr)My. o) = (fR---Rf"r= TR Kf)-r].
The claimed equality follows from Proposition B.2.15.

3.3.5. Example. Suppose that f1: Al ... AT — By, ..., [ AL ... AT — B,
g:Bi,....,B, — Cand h' : Al ... A" — B, for some i, 1 < i < n, are Ay-functors.
Let p: f' — k' : Al,..., A" — B; be a coderivation. Then similarly to the previous
example

(R R TRpR IR R R Mo = (f R BT RHpR IR RS g

s ((f1 K. XfAXK---XKf).-g (X -KhK ---&f")-g)—coderivations. Here
e; =(0,...,0,1,0,...,0) € N* (1 at i*" spot).
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3.4. Unital A, -categories

Denote by X the homotopy category of complexes of k-modules. We will consider
non-unital categories and functors, enriched in K. They form a category X-Cat™". Uni-
tal K-categories and X-functors form a smaller category X-Cat. Abusing notation,
denote the underlying category of the multicategory A, by the same symbol. There
is a functor k : A, — XK-Cat™, constructed in [B, Proposition 8.6]. It assigns to
an A-category C the K-category kC with the same set of objects ObkC = ObC, the
same graded k-module of morphisms kC(X,Y) = C(X,Y), equipped with the differential
my = sbys~!. Composition pye in k€ is given by (the homotopy equivalence class of)
my = (s®s)bys™ : C(X,Y)®C(Y,Z) — C(X, Z). Thus the functor k can be thought as
a kind of forgetful functor that truncates the structure of an A..-category at the level 2,
forgetting higher homotopies.

3.4.1. Example. It is easy to see that pg = mgk and 1% = 1%(“‘, therefore X = kC,.
We are going to extend the functor k to a sort of multifunctor k : A, — K-Cat™.
The mapping Obk which assigns the K-category k€ to an A..-category C is described
above.
Let f : (Aj)jes — B be an A, -functor. Define a (non-unital) K-functor kf :
XVS'kA; — kB on objects by Obkf = Obf : [[,.;ObA; — ObB. On morphisms

we set

jeJ

®j€]5f67'87

kf = [&“TkA;(X;,Y5) ®/<TkB ((( Z)Z<ja(Xi)i>j)f>(()/i)i<j>(Xi)i>j)f)

0 \B((X)ierf, (Vies f)], (3.4.0)

-1

where the chain maps sf. s~ are given by ([B:2:20), and pj is the composition of |.J]

composable arrows in kB.

3.4.2. Proposition. kf is a (non-unital) X-functor.
Proof. Let X;, Y;, Z; be objects of A;, i € I. We must prove the following equation in X:
[®i€I-Ai(Xia Y:) ® @< A(Y;, Z;)

@ €lsfe, sT @R sfe 571 zeI.B ((( )j<“ (Xj)]>z)f ((Yj)j<z, (Xj)j>z)f)
® @ 'B(((Z)j<ir (V))jz) [, (Z)) <0 (V)50 )

B, B (Xierf, (Vier]) © B(Yierf, (Z)ier f) 2 BUX)ierf, (Z)iea )]
= [®"TA(X;,Y;) @ @ A(Y;, Zy)

i€l 2
Hica;

— @ A(X;, Z))

T(12)
—

" (A(X3, Y:) @ Ai(Ys, Z3))
®i€lsfe 571 1613((( Di<ir (X)isi) fr (Z3)i<in (X5)550) )
o B(X)ierf, (Zer )], (342)
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In particular case I = 1 it takes the form

(X, Y) @ A(Y, 2) D80 g p v ) @ BV S, Zf) 2 B(XF 26)
— [A(X,Y) @ A(Y, Z) "2 A(X, 2) 220 B(X T, Zf)]. (34.3)

This equation in X is proven in [B§, Proposition 8.6]. In fact, the difference of the right
and the left hand sides is the boundary of (s ® s) fas™'.

Since f,, : A; — B, i € I, are Ay -functors, they satisfy equation (B.4.3). Therefore,
(B-4.2) is equivalent to the following equation in X:

(@M A(X;, V) ® &1 A(Y;, Z5)
@ sfe, sT1@RIE s fe, 571 zEI.B ((( )j<“ (Xj)j>i)f ((Yj)jgz‘, (Xj)j>z‘)f)
® @<'B(((Z;)<i (Y] ')j>i)f,((Zj)jgi,(Y})j>i)f)
e B(Xp)ierf, (Vidierf) @ BUYier fy (Zi)ier f) 225 BO(X)ierf, (Ze)ierf)]
= [@"A(X,, Y) © @AY, Z0)
@ €lsfe, sTIRRE s fe 571 zEIB((( )j<“( j)]>l) ((Zj)j<z‘,Y;‘,(X])]>z)f)
®®Z€IB((( ])]<za 7(Xj)j>i>f ((Z]> (X]>]>Z>f)
ﬂ@)iel(%(((zj)jda()(j) i) (( Z;j)j<i> Y, (Xj)j>i) f)
B(((Z;)j<i> Yir (X5)i5) - ((Z5) < (X)) )
EIB((( )]<za (Xj)j>i)f> ((Zj)j>i’ (XJ)J>Z)f)
e B(X)ierf, (Zi)ier )], (3.4.4)

which we are going to prove. We may assume that I = n. Two parts of equation (B4.4)
are particular cases of the following construction.

Consider staircases defined as connected subsets S of the plane which are unions of 2n
segments of the form [(k—1,i—1), (k—1,7)] or [(k—1,1), (k,4)] for integers 1 < k < i < n.
We assume also that (0,0) € S and (n,n) € S, see examples with n = 5 below.

i€l 2
O picy
_—

(n,n) (n,n) (n,n)

(a) (3.4.5)

=
=

(0,0) (0,0) (0,0)

With a staircase S two non-decreasing functions [,k : n — n are associated. Namely,
l(p) = ls(p) is the smallest [ such that (p,l) € S, and k(i) = kg(i) is the smallest k such
that (k —1,7) € S. Notice that ls(p) > p and kg(i) < i. Moreover, any non-decreasing
function £ : n — n (resp. [ : n — n) such that k(i) < i (resp. I(p) = p) determines a
unique staircase S such that kg = k (resp. lg =1).
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Let (Wp.1)ogp<i<n be objects of B. The staircase S gives rise to a map

@' B(Wii) 11, Wi -14) © @By 1100, Woip)
2n
25 @B (W, Wa) 5 B(Woo, W), (34:6)

where the signed (n,n)-shuffle shg is associated with the staircase S. Namely, if the
m-th segment of S, 1 < m < 2n (starting from the segment [(0,0), (0, 1)]) is vertical
(resp. horizontal), then the m-th factor of ®**B(W,,, W,,) comes from the first (resp.
the last) n factors of the source. Thus the intermediate tensor product has the form
QMEB(Wy(m—1), We(m)), where (v(m))2_, C Z? is the list of all adjacent integer vertices
belonging to S, v(0) = (0,0), v(2n) = (n,n). In particular, the composition uZh makes
sense.

Let us take Wy,; = ((Z;)j<p, (Yj)p<i<ts (Xj)j>1)f, 0 < p < I < n. Given a staircase .5,
we extend mapping (B-4.G) to the following:

] -1 —1
®Z€n5fei8 ®®p€n8fep5

x(f,5) = [ "A(X;, Yi) ® @AYy, Z,)
"™ B(((Z))j<rtiy: (Vi) Sy (Xi)izi) fr (Z3)ientys (Vi) 1Sk (Xi)j=i) f)
© & B(((Z))i<p (V)15 (Xm0 F- (230 (V)5 (X3)351) f)

= ®ien‘B(Wk(i)fl,i717 Wiei)-1.0) @ @ B(Wy_ 1,100 W)

Sh_s) ®2nB(Wv(m—1)a Wv(m)) “ﬁ) (WO,Oa Wn,n) = B((Xj>j€nf7 (Zj)jenf)] .
The left hand side of (B.4.4)) equals »(f,S,), where S, from (B.4.)(a) gives shg, = id,
k(i) = 1, I(p) = n. The right hand side of (B.4.4)) equals s(f, S.), where S, from (B.4.5)(c)
gives shg, = s, k(i) =1, l(p) = p.
We claim that the composition s(f,S) does not depend on the staircase S. Indeed,
consider two staircases S, S’ which coincide everywhere except in m™ and (m + 1)
segments, 0 < m < 2m — 1, as drawn:

S > v(m) v(im+1)

v(im—1) v'(m) e S’

Then the corresponding shuffles are related by the equation shg: = shg-(m, m + 1).. Let
i € n (resp. p € n) index the factors which come to m™ (resp. (m + 1)) place after
application of shg. Expressions

B(Wk(i)—l,i—la Wk(z‘)—l,i) X B(Wp—l,l(p)a Wp,l(p))

and
B(VVv(mfl)a Wv(m)) & B(VVv(m)a Wv(erl))

are identical. This implies p = k(7) and ¢ = {(p) and gives coordinates of the four points:

(p=10)=v(m)  vim+1)=(pi)

(p—1,i—1)=v(m—1) v'(m) = (p,i — 1)
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In particular, p < i — 1. The expression for »(f,S’) differs from that for »(f,S) by an
extra factor
(12)0 : B(Wv/(m)a Wv(erl)) ® B(Wv(mfl)a Wv/(m))
- B(VVv(m—l)a WU’(m)) X B(VVU’(m)7 Wv(m+1))~
Thus, the equation »(f,S) = s(f,S’) follows from the equation in X

sfeis_1®sfeps_1
[Ai(X5,Y)) ® Ay (Y, Z,)

BWp—1,i-1 Wp—1) @ BWp_14, W) Hk—B> B(Wp—1,i-1, Wp,i)]

sfeis’l(X)sfeps’

1
= [Ai(X5,Y) @ Ay(Yy, Z,) BWp,i—1, Wpi) @ BWp—1,i-1, Wp,i-1)

(12)

— B(Wp_1im1, Wpic1) @ BW,i-1, W) L, (Wp_1,i-1, Wp,z‘)]>

which we are going to prove now.
Introduce an A.-functor of two variables

f‘{plj<p (Y p<j<is (X J>1 -Ap,-A N B

Recall that p < 7. In terms of g the above equation in X can be rewritten as follows:

—1

S 1s’1 879108
[‘Ai(Xia YZ) ® ‘Ap(Ypa Zp) L L LR

B((Yy, X)g. (Y. Y)9) © B((Y,. Yi)g. (Z Y)g) 2 B((Y,, X\)g. (2, Yi))]

— XL YD) @AY, Z,) U5 ALY, Z,) @ Ai(X, V) e e
B((Yy, X)9 (Zy, X)9) © B((Zys X)gs (70, Y2)g) “25 B((Y, Xi)g, (Zp Yi)g)]. (3.4.7)

B(
In order to prove it we recall that gb = (1K b+ bX 1)g by (@) The restriction of
this equation to sA; X sA, gives

(910 @ go1)b2 + (12)c(go1 @ g10)b2 + g11b1
=1 @b+ b @1)gnn : sAi(X;, Vi) ® sAy(Yy, Zp) — sB((Y,, Xi)g, (Zp, Yi)9g).
Thus, (g10 ® go1)b2 + (12):(go1 ® g10)bs is a boundary. Therefore,

(s @ ) (901 ® gro)bas ™ = (12)e(s @ 5)(g10 © go1)bas ™
in K. This implies equation (B-4:7).

Since any two staircases S’ and S” can be connected by a finite sequence of ele-

mentary transformations as above, it follows that »(f,S") = s(f,S”). In particular,
equation (B.4.4) holds true, so that kf is a (non-unital) K-functor. O

3.4.3. Proposition. The maps
Obk : ObA,, — ObX-Cat™, e kC
k: Aw((A))er; B) — K-Cat™ (RI'kA,;, kB), [+ kf,

(given by (B.4.]) for non-empty J only!) are compatible with composition and identities,
and define a kind of (non-symmetric) multifunctor k : A, — K-Cat™".
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I — J be an order-preserving surjection with non-empty J. Suppose

Proof. Let ¢ :
[ (Ag)icg—1; — By, 5 € J, g (Bj)jes — € are A-functors. They are taken by k to
®i€¢71j(8fj¢_1j571)

el
k3

kfi = [®i€¢_1jﬂi(){i’ Y;)
@€ B (V)R (X0ps) P, (VRS (X)) )
i 7

—j>BJ((X)z€¢> ]f ( )z€¢> Jf )}

@77 (sg, J8 )

& C((Wies, (D)iz5)g: (Whigs, (Ui)i5)9)
e, C((U))jer9, (Wy)jes9)],

kg = [®'B;(U;, W;)

where e¢ I e N¢7' and e € N’ are standard basis elements. The composite of these

morphisms in K-Cat™ is

(kf7)jes o kg = [ A, (X, v5) 25 X, giel giesl Ai(X5,Y5)

®j€]kf] -
—_—_>®]EJ‘Bj(( )ze¢ ]f ( )Z€¢ Jf)
. .
= (((Xi)iab—ljf])je]ga ((Yi)i@‘ljf])jGJg)]
= [A(X, Y) 25 @ @7 A(X,,Y))
®jEJ®iE¢_1]'(Sfj¢71js—l)
P pk=j ( )¢k ])fj

& &€ @€ Bj(((Yk)k<i ) k>i
(V)P (X)) 1)

®JEJ,U$BJJ -
——— @B ((Xi)icp-1517, Vi)icop15 )

®7€7 (sg, 78 )

———— > @YC(((Y)icp-11S )i<js (X)ico-11S")1=5)9,
((YDieo-11f i< (Xi)ies—11f)15)9)

J . .
2 C((Xaieo 15 jesgs (Vies157)jesg)] - (3.4.8)
Since kg}é < (U5 : B — C, V= (W), V, (U))1>4)g, given on morphisms by
)9, (Wi)igj, (U1)i5)g) is a K-functor, we have

Sgeqsfl : Bj(Uj, Wj) e(((VVl)K]a (Ul) 2]

an equation in X:
1

[P B (V2 Vi) 2 B,(U;, W) X, C((Wiejs (Uizi)g, (Wi (U)i5)9) ]

®1€Psg JS -1
» (U1)i>5)9,

= [@"PB; (V] |, V) ———— & ((W)iej, VI,
(W)iess Vi, (U)15)9)

uX C((W)icjs (U)iz)g, (W)igj, U)i=5)g)],  (3.4.9)
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where P =p, U; = VJ, W; = V. Applying this identity to P = ¢~'j, we turn (B.4.§)
into:
. ®j€J®ie¢—1j(Sfj¢_1js—1)
(@ A(X;,Y)) = @€ giet Ai(Xi,Y5) .

jeJ gicdLj —1
IR 7(896315 )

1 @ETIB (Ve)eer s (X)) 7 (Vo) (X s £7)
@ @I (Vi) a1y (Vi) o, (X)) 7, (X oomtf)i55) 91
(V) gr=t s (V)i (X)) 2 (X gr=if )i57) 9}
®IET o 1j

Fhe (Vi) gr=t S N1<is (Xior=tS)i123) 9, (Vi) gr=iSNi<is (Xi)gh=iS)i>5)9)

e, ¢ ((Xdieg-15)ses9, (Ydies1,f7)jesg) ] (3.4.10)

Denote by % the composition (fN)jes 69+ (Ai)ier — € in Ay given by (B21§). We
have f’,_, - g.s = her if ¢i = j. Furthermore, A . @€ @€ h ;= @€h - A by the
e’ J g K3 [

naturalzity of A\?. Thus, (B-410) equals

®lel(8h 15 1)

(@A (X;,Y;) ————— @ C((Yi)rwir (Xi)kzi) Py (Yi)wis (X)) ki) )
@ L ((Ye)onot Ncons (V)R (X5 )V (Xi)ohatf iz 6) .
(Vi) gr=t <o (Vi)oer * s (X)) 7 (Xi) gt [ )15 01) 9}
2 @9 @00 @ ((Vi)gemt iy, (P, (X, (KX)ot i)
(V) srt i (V)5 (X2 7 (X ormtf)i55) 9}

EHe L IR (((Veoror e (K)ot s
(Vi) shetfiss (X stmt f)i1)9)

M—kJe* e(((Xi)iewljfj)jng, ((Yz‘)z‘ewljfj)je(fg)} - (3411

By the associativity of composition in k€, we may replace the last three arrows in (B.4.11])
with ufo and get

®lel(8h IS 1)

(@A (X0, Ys) ————— @ T ((Yi)weir (Xn)izi)hs (Yi)wsis (Xi)rsi)h)

B, C((Xi)ierh, (Yi)ierh)] = kh.

This proves the compatibility of k with composition. Compatibility with identities is
obvious. U

3.4.4. Definition. An A,-category C is called unital if kC is unital, that is, if for each
object X of C, there is an identity 1y : k — C(X, X) € X such that equations

([d®1y)ms = 1 = (1y ®id)ms : C(X,Y) — €(X,Y)

hold true in K. In other terms, for each object X of €, there is a cycle defined up to a
boundary, a unit element, xi$ : k — (s€)~}(X, X) such that the chain maps (1 ® yi$)bs,
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—(xi§ ® 1)by : sC(X,Y) — sC(X,Y) are homotopic to the identity map. This definition
is equivalent to unitality in the sense of [B8, Definition 7.3], see also [ibid, Lemma 7.4].

If B is a unital A, -category and f : () — B is an A,.-functor identified with an object
X = ()f of B by Remark B-2.24, then we define kf : X°() — kB, ()ico — ()f = X, on
morphisms via (B4.1)) for n = 0. That is,

kf=[2"0)=k Hes, kB(X, X)], 1 1x. (3.4.12)

1x

3.4.5. Definition. Suppose A;, B, i € I, are unital A,-categories. An A.-functor
f i (Ai)ier — B is called unital if the K-functor kf : Ki<'kA; — kB is unital. The set of
unital A-functors is denoted AL ((A;)ier; B) C Aso((Ai)ier; B).

Due to (B.4.12), for I = @ any A, -functor f : () — B is unital (if B is unital).
For one-element [ an A.-functor f : A — B between unital A,-categories is unital
if and only if Xiaq fi—x inB € Imb; for all objects X of A. This criterion coincides

with [B8, Definition 8.1]. Since K-Cat is a submulticategory of Ka”“, the subsets
AL ((Aier; B) C Ax((Ai)ier; B) form a submulticategory A% C A, with unital A.-cat-
egories as objects and unital A, -functors as morphisms.

3.4.6. Remark. Note that an isomorphism of unital K-categories is necessarily unital,
therefore an isomorphism of unital A.-categories is necessarily unital.

In the unital case the statement of Proposition B.4.3 extends to the empty set J of
arguments, and to composites for arbitrary order-preserving maps ¢ : I — J. The proof
repeats the proof of Proposition B.4.3 word by word. As a summary, we obtain a (non-

symmetric) multifunctor k : AL — K-Cat. We are going to prove that it is in fact
symmetric.

3.4.7. Proposition. The multifunctor k : Al — K-Cat is symmetric.

Proof. By Proposition [1.2.7, it suffices to show that, for each bijection o : I — K and
An-categories A;, €y, B, i € I, k € K, such that A; = C,(;), for each i € I, the diagram

AL ((Cr)rer: B) —— K-Cat((kCy)pex; kB)
Ago(a;ﬁ)l Jafc?t(a;kﬂs)
AL ((Ad)ier; B) ——— K-Cat((kA:)ics: kB)

commutes. Without loss of generality, we may assume that I = K = n. Furthermore,
since bijections n — n are generated by elementary transpositions, we may assume that
o = (i,i+ 1) for some 1 <i < n. Suppose f : K¥"T'sA, — TsB is a unital A-functor.
Then g = A% (0;B)(f) is given by the composite

(R [(TsAg)k<is TsAis1, TsAy, (T'sAR) k>it1] X, RATs A, ER TsB].
We must prove that

kg = [ (kAR ki, kA1, kAL (A si] o2 REkA, L kB,
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Clearly, ge, = fe,, for k #i,i+1, g., = fe,.,, and ge,,., = fe,. Therefore the X-functor kg
is given by the composite
O™ [ (Ak (X i) i i1 (Xigr, Yign), As( X, V), (Ak(Xks Ya)) o)

J®n[(sfek5_1)k<i73f81'+15_173f8¢3_17(3f8k3_1)k>i+1}

®n[(B((( j) (XJ)J>k) (( )j<kv(X )J>k)f))k;<z"
BU(Y5)i<ir (X)520) [ (V)i X, Yiga, (X)) j5i40) f),
B((( )J<uXZ>Yz+1>(X )]>Z+1)f ((}/J)]§Z+17(Xj)j>i+1)f)v
(BUY5)j<h (X3)i20) fo (Vi)ichs (X3)i50) ) i)

J“EB
B((Xla s 7Xn)f7 ()/17 cee 7Yn>f)7
while A . - kf 1s given by

(@™ [(AR(Xn, Yie)hwir Aiir (X1, Vi), Ai(Xe, Y3), (A(Xi, Vo) Jisin] 2,

kenB((( Di<ts (Xi)jze) [ (Y5)j<ns (X5)j50) f)
B B((Xy, - Xo) fy (Vi V) ).

®k€n8fek87

Q"™ Ay (Xy, Ya)

By the associativity of composition in kB, it suffices to prove the equation
[Ai1(Xiga, Vi) © Ai(X,, Y))

Sfeyi15 '@ fe st B(((Y})J ( )J>Z)f’(( )]<“X”Y;+1,(X]>]>Z+1) )
@ B(((Y, )]<z, Xy Yigr, (Xj)j>i00) £ (V)i (Xj)j>i41) )

22 B((Y))j<is (X)) o (V))<irns (Xp)jsirn) )]
2, Ai( X, Y;) @ Aip1 (X1, Yigr)

= [‘Ai-l—l(Xz—l—ly Yz+1) ®Ai(X,Y;) —
iy Solaiat 3(((&9)]@,( Dz (V)< (X)) )
BV, () smie0) o (V)i (X)) o010 f)
—*B((( Di<ir (X3) i) f (V) j<ivt, (Xi)jsie1) )]
)

Introduce an A..-functor h = f\{f’sz} (X )i>s : A, Air1 — B. In terms of h the above

equation in X can be written as follows:

[-Ai+1(Xi+1a Yip1) ® Ai( X3, Y5)
chore “@ohios B((Xi, Xig1)h, (Yi, Xip1)h) @ B((Yi, Xiy1)h, (Y3, Yigr)h)

B2 B((Xy, Xia)h, (Y, Yiga)h)]
12
= [-Ai-i—l(Xz—I—la Yz+1) ®Ai(X;,Y;) — @2, Ai( X3, Y5) @ Aip1(Xigr, Yigr)
shios SR B (X, Xipn)hy (Vi Xis1)h) @ B((Ys, Xiza)hs (Yi, Xia1)h)
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28 B((Xy, Xiwa)hy (Y, Yig )]

It is proven in the same way as equation (B.4.7). Namely, the restriction of the equation
ho = (1Xb+ 0K 1)h to sA; K sA;; 1 produces

(h1o ® ho1)ba + (12).(ho1 ® hi19)ba + h11by = (1 ® by + by @ 1)hy;y -
sAi(Xi,Y:) ® sAir1(Xiv1, Yirr) — sB((Xi, Xiy1)h, (Yi, Yiga)h).

Therefore (h1g ® hop)bs + (12).(ho1 ® h10)bs is a boundary and
(S ® S)(h01 (29 hlo)bzsil = (12)C(S ® 8)(h10 ® h01)b2871

in K. The proposition is proven. U

Consider a change of symmetric Monoidal base category given by the lax symmetric
Monoidal functor

H’: X — k-Mod, C+ K(k,C)=Ker(d:C°— C")/Im(d:C~" — C°) = H(C).

Here k = 14 is the graded k-module k concentrated in degree 0. According to Sec-
tion [LI.14, H° provides a lax symmetric Monoidal Cat-functor H? : X-Cat — k-Cat,
which we have denoted also B — B in Example [[T.1g. Thus, ObB = ObB and
B(X,Y) = H°(B(X,Y)). By Proposition [[2.1§, there is a symmetric multifunctor
I/{\Q . X-Cat — k-Cat. Composing it with k : AL — K-Cat we get a symmetric
multifunctor, denoted

H° = HOok: A" — kCat

by abuse of notation. It assigns to a unital A, -category € the k-linear category H°(€), the
homotopy category of C, with the same set of objects Ob H°(€) = Ob €, with k-modules
of morphisms H°(€)(X,Y) = H°(€(X,Y),m;), and with composition induced by ms.
Objects X and Y of € are called isomorphic if they are isomorphic in H°(C). In other
words, if there exist cycles a € sC(X,Y) and § € sC(Y,X) of degree —1 such that
(@ ® B)by — xi§ € Imby and (B ® a)by — yi§ € Imby.

Assume that € is an A.-category and k is a field. Then the unitality of the graded
k-linear category H*(C) (cohomological unitality [26, B4, Ag]) is equivalent to unitality
of the A, -category C itself. Indeed, any chain complex of k-vector spaces is homotopy
isomorphic to its cohomology, the graded k-vector space equipped with zero differential.
Therefore, any two chain maps inducing the same map in cohomology are homotopic.
Certainly, this does not hold for arbitrary complexes of modules over an arbitrary com-
mutative ring k.

3.4.8. Proposition. Let (A;);cr, B be unital Ay-categories, and let f : (A;)icr — B be
an A-functor. It is unital if and only if the A, -functor f\g-xi)#j

each j € I.

: A; — B is unital, for

Proof. It I = &, the statement holds true. Let 7 € I, and let X; € ObA; fori € I, i # j.
We have seen that A-functors X; : () — A; and idg, : A; — Aj are unital. If f is unital,

then f\ﬁ-xi)#j = (ida,, (Xi)izj) (j3—r f is unital due to A}, being a submulticategory.
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Conversely, assume that A.-functors f | its : A; — B are unital for all j € I. Then
for each X; € ObA;, i € I, we have

j Xi)iti\ -
Lxj)erkf = [@ x5 fe;s7 e = [ 1y, (f|§ ") e

] (X4)s
= [ (Lx, (k17 D] bt = [©7 Lxpyier ] tken = Lxoerks-
Thus kf is unital, hence, f is unital. O

3.4.9. Corollary. If f : (A;)ie; — B is a unital A, -functor, and J C I is a subset, then
f|SXi)iEI\J : (A;)jes — B is unital, for each family of objects (X;)ier~s € [Lic;, Ob A,

Proof. Indeed, restrictions of f | J Xidierss ¢ 5 argument coincide with those of f. O

We are going to prove that the A.-category As((A;)icr; B) is unital if B is unital.
Recall from B, Proposition 7.5] that unital elements xif’, X € Ob B, of the A..-category
B extend to a natural A.-transformation i® : idg — idg : B — B, determined uniquely
up to equivalence, such that (i® ® i®)B, = i®. It is called a unit transformation of B.

For I = @, the unitality of A, (;B) follows from the isomorphism A, (;B) = B.

Suppose I is nonempty. The proof of the following proposition repeats the proof of [BS,
Proposition 7.7] mutatis mutandis. We provide it for the sake of completeness.

3.4.10. Proposition. Let A;, B, i € I, be Ay-categories. Suppose that B is unital.
Then the Ax-category A ((A;)icr; B) is unital with unit elements

Aoo((fl Jier;B)

rio = fi® € sAx((Ai)ier: B)(f, f),
for each Ay-functor f: (A;)ier — B.
Proof. Clearly, fi®is an A, -transformation f — f : (A;)ier — B. Moreover, it is natural.
Indeed, since f commutes with the differential, it follows that (fi®)B; = f(i®B;) = 0. It
remains to prove that for each pair of A -functors f,g: (A;)ic; — B the maps
SA (( Z)zelv )(f7 ) - SA (( Z)zela )(fa )7 re (7" ®giB)B27
SA (( Z)zelv )(f7 )_>3A (( Z)zela )(fa )7 7”'—>7"(fi3®1)32,

are homotopy invertible. We are going to give a proof for the first map, the other map is
treated similarly.

Let us define a decreasing filtration of the complex (sAx((As)icr; B)(f,9), B1). For
n € N, we set

O, = {r € sAx((Ai)icr; B)(f,9) | Y(ni)ier € N30 ni < ns 7y, = 03
Clearly, ®,, is stable under B; and
SA((Ad)ier; B)(f,9) =P D P D---DP, DP,11 D ...
Due to (B:3.5) and (B:3.1)), the chain map a = (1 ® gi®)B, preserves the subcomplex
®,,. By definition sAco((Ai)ier; B)(f,9) = I1(n,),c;ent Viniyier» Where Vi, is the graded
k-module of components r(,,),., : BT sA; — sB of (f,g)-coderivations r, and the
product is taken in the category of graded k-modules. Let V,, denote the product of

Vinier over (n;)ier € N' such that >, n; = n. Then sAx((As)ier; B)(f, 9) = 1oy Vas
and the filtration consists of graded k-submodules ®, =0 x ---x 0 x [[*_ V,,
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The graded complex associated with this filtration is @, ,V;, and the differential
d:V, — V, induced by B is given by the formula

kel
T(n)ier@ = Tng)ie b1 — (=) "ier Z (1) iy 19 @ by @ 197 (1)im )T (n)ecs -
ag+1+B=ng

The associated endomorphism gra of @, V,, is given by the formula
iel
B
(T(Tli)iel) gra = H ((X?,...,X?i)iej,r(ni)iel ® (X?i)ielglo )b2

X?2,..,X[""€0b A;

7

for each 7(n,),.; € Viny)ie,» as formulas (B.3.1]), (B.3.3) show. Here
(x9,..., X?i)ielr(m)iel : ®i€ITmS‘A(Xi07 v 7inl) - SB((XZQ)Z'EI]C’ (inz)lelg)a

where T"sA(X?, ..., X[") is given by (B:2.1).

Since ‘B is unital, for each pair X, Y of objects of B, the chain map (1 ® yi3)b, is
homotopic to the identity map, that is, (1®yif)by = 1+ hb; + by h for some k-linear map
h:sB(X,Y)— sB(X,Y) of degree —1. Let us choose such homotopies

(X?)iel,(X;”)ielh L sB((XD)ier [, (X7)ierg) — sBUX)ier f, (X]")ierg)
for each pair (X7)ier, (X[")ier € [[;c; ObA;. Denote by H : [[2 Vi, — 1,2, Vi the
diagonal map
(X0, XY r T (i)ier 7 (X0, X )ier | (ni)ier (X?)iel,(X:i)ielh‘

Then gra = 1+ Hd + dH. The chain map a — HB; — B1H being restricted to a map
D, o Vin — 11— Vi gives an upper triangular N x N matrix which, in turn, determines
the whole map. Thus, a — HBy — B1H =1+ N, where the N x N matrix N is strictly
upper triangular. Therefore, 1 + N is invertible (since its inverse map Y.~ (—N)* makes
sense). Hence, a = (1 ® gi®) B, is homotopy invertible. O

For I = n, n > 1, A,-categories Aq,...,A,, and a unital A,-category B, there is

isomorphism (B-3.9)

Mt A (As, o Ani A (A1 B)) — As(Ad, .., A B). (3.4.13)
It is unital by Remark B.4.q. The following lemma is a straightforward generalization of
[BY, Proposition 7.15]. It is proven by induction using isomorphism (B.4.13).

3.4.11. Lemma. Let r: f — g : (A;)ie;r — B be a natural A-transformation. Assume
that for all families (X;);c; of objects X; € Ob.A; there are elements (x,),.,po : k —

(sB) M (((Xi)ien)g, (Xi)ier) [) such that (x,),.,pob1 = 0 and
((Xi)iEITO ® (Xi)ieij)bZ - (Xz)zelfi(‘)B € Im bl)

Then given (x,),.,Po extend to a natural Ay-transformation p : g — f : (A;)ier — B
inverse to r, that is,

(7,, R p)B2 o fig;oo((-Az)zelvB) c Im Bh (p ® 7,,)32 o gig;oo((-’qi)ieﬁg) cIm Bl-
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Let us show that multicategory A% is closed. If (A;);cr, B are unital A.-categories,
we set Al ((Ai)ier; B) C Ao ((Ai)ier; B) to be the full A-subcategory, whose objects are
unital A-functors f : (A;)icr — B. Since Ay ((Ai)icr; B) is unital, so is A% ((Ai)icr; B).
The evaluation Ae-functor ev®> : (A;)icr, AL ((A)icr; B) — B is taken to be the restric-
tion of ev** : (A;)ier, Ac((Ai)ier; B) — B. We must show that the A -functor evA% is
unital.

If [ = @, then ev?> : A% (; B) — B is the natural isomorphism, hence, it is unital by
Remark B.4.G. If j € [ =n, X; € ObA, for i # j, and g € A% ((A;)ien; B), then due to
(B:3.9)

(K — g g p; o (RIENUITOSA,) R Ts A, K TsA% ((Ai)ien; B) — TsB

eV°°

is unital, since g|(X")i#j is unital by Proposition B.4.§. If X; € ObA, for i € n, the first
component (evA> |n+’1’e“)1 ; TlsAé((Ai)ien;B) — sB of the A, -functor ev”> |n+’1’e“
takes, due to (B.3.7), an As-transformation 7 : g — h : (A;)ien — B to its 0*F component
To..0 € sB((X1,...,Xn)g, (X1,..., X,)h). In particular, the unit element gi® of g goes to
the unit element (x, . x,),i5 € sB((X1,...,Xu)g, (X1,...,X,)g). By Proposition B4,
we conclude that evA> is unital.

3.4.12. Proposition. So defined Al ((A:)icr; B), ev*> turn A% into a closed multicate-
gory.

Proof. Let (A;)ier, (B;)jes, C be unital A-categories. Denote by
€ &«Ai)iel? €) — Ax((Ai)ier; ©)

the full embedding. The functions p*= and p”> are related by embeddings:

AL () AL (Ad)ier: €)) — 7= AL (Ad)ier. (B),es:€)

P

e

Aw((Bj)jGJ;Aléo((Ai)iEI; @)) e

Ao ((Bj)jease)

A

Ao ((B)jer A ((Ai)ier: €)) ———— Au((Ai)ier, (B;)je: €)

Therefore, ™= is injective. Let us prove its surjectivity.

Suppose g : (Bj)jcs — Axc((Ai)icr; €) is an A-functor such that the A-functor
f=¢"(9) : (Aiier, (Bj)jes — Cis unital Let Y; € ObB,, j € J, be a family of
objects. Then Au-functor ((Y;)jes)g = f\ e, (A;)ier — Cis unital by Corollary B.4.9.
Therefore, g = he for an A-functor h : (B;)e; — AL ((Ai)ier; C).

Let us prove that h is unital. This is obvious if J = @. Assume that J # @& and
consider an arbitrary k € J, a family (X;)ier € [[;c; ObA;, and a family (Y;);4 €
[1;., ObB;. The restriction of

1Xh

f=[(RTsA;) R (WTsB,) — (K''TsA;) R TsAL ((Ai)ier; C) N T'sC]
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to the k'™ argument

(Y )ik evAl ‘(Xi)iel

f|(X ienb(Yi)j#e [TS'.Bk LN TsAY ((-Ai)iél; e) _ﬁ__) TS@}
is unital by Proposition B.4.§ The first component

(BCV74) 2 5BV, Vi) — sAL (Adiers €) (((Y3)5en)hs ((Y)se0)h)

takes the unit element Yklok to some element r*. Since (h| % ”““)1 is a chain map that

preserves composition up to homotopy, we find that r* is a cycle idempotent modulo
boundary:

(r*YB, =0, (r* @ r*)By —r* € Im B.

The first component

(Rl V37Hy

(fIer iz = (5B (Y5, Vi) S sAL (Adiers €) (V) jen)hy (Vi) jes)h)

S Se((Xen) (Vi) s ((Kidier ((¥)e)P)]

takes y,ig" to (x, )ZGITO 0 € 5C((Xiier, (V))jen) f, (Xidier, (Yi)jes) f) due to (B:37). The

|(X )il (Yj) ik

unitality of f implies that

k .0
(X0)ie170..0 — (Xi)ier, (Vi) e )/l € Tm by

By Lemma this implies invertibility of r*. Being also idempotent, 7* is equal to
the unit transformation ((Y )jes)hi® of the Ao -functor ((Y;)jes)h : (Ai)ier — € mod-
ulo boundary. Thus, h|( 775 ig unital. By Proposition B.4.§, h is a unital A -functor
(Bj)jes — Am((ﬂz)zg, @), hence, "= is surjective, and, moreover, bijective. Therefore,
the multicategory A% is closed. U

We are going to construct an extension of the multifunctor k : A} — K-Cat to natural
As-transformations as follows. Suppose f,g : (Ai)ies — B are unital A,.-functors,
r:f — g: (A)ier — B is a natural A, -transformation. It gives rise to a K-natural
transformation of K-functors kr : kf — kg : K<’kA; — kB. Components of kr are given
by

(Xi)ielk,r = (Xi)iellrosil 'k — B((Xz>zelf7 (Xi)ielg), X@ € Ob.AZ, 1€ 1.

Since rob; = 0, kr is a chain map. The K-naturality is expressed by the following equation

in X:

Rk A;(X;, V) &l KB((X)icr f, (Yi)ier f)

kgl = lﬂ@(yi)ie,kr)ukzs
(X)serkr@D s

kB((Xi)ier9, (Yi)ierg) kB((Xi)ierf, (Yi)icrg)
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The associativity of uwp allows to write it as follows:

iel -1 -1
®"<sfe;s O(Y;);e, 708

[®i€[kﬂi(Xz', Y;)
" KB(((V))j<ir (Xj)520) f> (V) i<ir (Xi)5i) f) @ KB((Ya)ier S, (Yi)ierg)

Iul

B0 WB((Xierf, (Yi)ierg)]

1o ei€l —1
(X);erT08  ®R78ge; 5

— [®ielkfli(Xi, Y:)
kB((X)icrf, (Xi)icrg) @ @ TkB(((Y;)j<ir (X;)i20)9, (V)j<ir (Xi)j5i)9)

1u7

B kB((Xa)erf, (Yi)ierg)]-

This equation is a consequence of the following equation in X:

Yi)i<i(X5)i>e _ _
(s(FIP <9220 570 @ e )eatos ) e

= ((Yj)j<¢7(Xj)j>i700371 ® 3(9|§Yj)j<i’(Xj)j>i)1371),“@ :
A(X3,Y:) — B((Y)j<i> (X)) 1, (Vi) i<ir (X5)>i)9),

which in turn follows from the equation (rB)., = 0:

(5fe,8 P @105 )My — (105" @ 5Ge, 8 )My + 576,87y + My STy s
= S[(fei ® TO)b2 + (TO ® gei)bQ + Teibl + blrei]s_l =0:
A(X, Y:) = B((Y))i<ir (X3)520) f (V)i (X5)550)9)-
The 2-category X-Cat is naturally a symmetric Monoidal k-Cat-category, therefore
K-Cat is a symmetric k-Cat-multicategory by Proposition [[.2.24. According to it, for
each map ¢ : [ — J, the composition in K-Cat is given by the k-linear functor

PO = [R/(K-Cat( I A;, B)) jes, K-Cat (B, €)

Ay Cat @jleK_Cat(giGd)_lj.Ai, BJ) X K—Cat(&je‘]Bj, e)

L, % Cat(RVE! K€Y A, KIEB,) K K-Cat(R<7B;, C)

AP —.—

~—5 K-Cat(X<'A;, €)],

where v : JU1 — 2is given by v(j) =1, j € J, v(1) =2, 1 € 1. In particular, the action
on K-natural transformations is given by the map

@/ K-Cat(R€? IA,;, B,)(f;,9;) @ K-Cat (V< B;, €)(h, k)
— K-Cat (' A;, C)((f))jes - b (95)jes - k), &7 @p = (17)jes - p,
where for each collection of objects X; € A;, 1 € I,

.GJ ]
®’ (Xi)iap—ljT]®((Xi)ie¢—1jgj)jer

e [(M)jes Pl = [k = @'k @k
&1 B((X)iey1iF5r (Xidieo195) © CU(X)ieg1505)jeshs (Xidieo1;95)jesk)
22 C((Xa)ier(f)jeshs (Xiier (g7)5esh) ® CU(X)ier(g5)jesh, (Xi)ier (97) k)

= C((Xa)ier(fi)jeah, (Xi)ier(g))jesk)] .
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The base change multifunctor HY : A% — k-Cat turns the symmetric Aj_-multicate-
gory AL, into a symmetric k-Cat-multicategory, which we denote by A%, see Section [.3.9.

Note that it is essential that the multifunctor H° is symmetric. Thus, objects of A“ are
unital A,-categories, and for each collection (A;);cr, B of unital A, -categories, there is a
k-linear category A% ((A;)ier; B) = HOAL ((A;)icr; B), whose objects are unital A -func-
tors, and whose morphisms are equivalence classes of natural A.-transformations. If
r:f —g:(A)ier = Bandp:g — h: (A)ier — B are natural A,-transforma-
tions, the ‘vertical’ composite of 2-morphisms rs~! and ps~—! is represented by the natural
A-transformation (r ® p)Bys™!. Note that k preserves vertical composition:

(Xi)ielk(<,r ® p)Bs) = (Xi)iel[(,r ® p>B2]0571 = ((Xi)ielro ® (Xi)ielpo)b2871
- <(Xi)iel7ﬂosil ® (Xi)ielposil)m2 = ((X0)ier KT © (), kD) ke
by formulas (B:3-1) and (B-3-5). Unit transformations i® : id — id : B — B (unit elements
in sAx(B,B)(ids,idg)) provide for any unital As-functor f : (A;)icr — B the natural
Ag-transformations fi® : f — f : (As)ic;r — B, representing the identity 2-morphism

;. Since (x,),c,(f1%)o = (x1):crfiG, it follows that k preserves identities. Thus, for each
I € Ob O and A.-categories A;, B, i € I, there is a k-linear functor

k: A" ((A)ier; B) — K-Cat((kA;)icr; kB).
We claim that these k-linear functors constitute a k-Cat-multifunctor k : A% — K-Cat.

The composition in A% is given by the k-linear functor ,uf;" =H O(M%) =H O(k,u%),
where according to (B-4.]]) the K-functor ku% is given by the composite

RITAL (Adics15: Bi) (f95) © A% ((Bj)jer; €)(h, k)
l@jeJSMejOS_1®5M0.“015_1
AL (Adier; ©)(((90)i<sy (Fizph, ((9)i<ss (fi)i=5)h)
QAL (Ad)ier; €)((g) e, (95)jek)
l”fﬁ(mi)iepe)

AL ((Ai)ier; ©)((f5)jerhs (95)jesk)
3.4.13. Proposition. There is a symmetric k-Cat-multifunctor k : A% — K-Cat.

Proof. It remains to prove that k is compatible with the composition ug& on the level of
2-morphisms. Let 7/ € sAL ((Ai)ics15;B;)(f5,95), 7 € J, p € sAL((B;)jes; C)(h, k) be

natural A-transformations. Then ((r/s™1);c, 115‘*1),11?oo is the equivalence class of the
following natural A..-transformation:

(7T ((g)i<s 1, (f)isgy ) Mejos™ @ ((gj)jeJ,p)Mo...013_1]ﬂi§(mi)i€,;e)-

In order to find k[((rjs_l)jEJ,ps_l)u;‘&] we need the 0" components of the above expres-
sion. Since [(t ® q) Balo = (to ® qo)ba, for arbitrary composable A.-transformations ¢ and
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q, it follows that

e (5™ e, ps ™)
= (& (X001, [((@)1<gs 7, (F)ims ) Mejolos ™ @ (xi),es [((95) 7 ) Mo onos™ atice
- (®j€J(X")i€¢*1a’Tgsil ' Shejsil ® ((Xi)iewljgj)japos )/’Liélla
see Examples B.3.4 and B.3.5. Here

he = (h|((Xi)ie¢fllgl)l<jv((Xi)¢€¢fllfl)l>j)1

sBj((Xi)ieg—1jfi> (Xi)icp—139;) — sC(((Xi)ieg-11f1) R, (Xi)ieg-11g1)h)-

By the associativity of jue, it follows that (Xi)ielk[((rjs_l)jg,ps‘l)ui&] equals

(®jeJ(Xi icp—1 -Tés_l - ®'s she;s™ e @ ((X; )ze¢—1j9]')ﬂ'€Jp08_l)Mke
= (®]€J(Xi)ie¢—1j kr? - kh ® ((Xi)igy—1, -gj)y‘eJkp)Mk@ = (Xi)iez[(krj)jeJ s kp).

Therefore, k[((rjs_l)jeJ,ps_l)u;%] = ((krf)jes, kp) KCat hence k is a k-Cat-multifunc-
tor. U

3.4.14. 2-category approach to unital A, -categories. It turns out that the 2-cate-
gory structure on unital A, -categories studied in [B], as well as somewhat unnatural and
obscure notions of A, .-2-functor and A..-2-transformation introduced in [[40] fit naturally
into the framework of closed multicategories, and even become obv1ous. Let us supply
the details.

The k-Cat-multicategory A% has an underlying k-Cat-category, i.e., a 2-category,
whose sets of 2-morphism are k-modules, and vertical and horizontal compositions of
2-morphisms are (multi)linear. In particular, the notions of 2-category theory, such as
isomorphisms between 1-morphisms, equivalences etc. make sense. These notions are
worked out in [B§, Sections 7,8]. For example, a natural A.-transformation p: f — g¢:
A — B is invertible if there exists a natural A.-transformationq:¢g — f: A — B
such that (p ® q)Bs = fi® and (¢ ® p)By = gi®. Proposition 7.15 from [BF] asserts
that a natural A-transformation p : f — g : A — B is invertible if and only if so
is kp. Equivalently, p is invertible if and only if the cycle xpy : k — sB(Xf, Xg) is
invertible modulo boundaries, for each X € ObA. A unital A,-functor f : A — B is
an A, -equivalence if there exists a unital A, -functor g : B — A and invertible natural
Aso-transformations fg — idg : A — A and gf — idg : B — B. Proposition 8.8 of
[BY] gives a particularly useful criterion that simplifies immensely the task of checking
that a given unital A, -functor is an A,.-equivalence: a unital A,-functor f : A — B
is an A-equivalence if and only if kf : kA — kB is an equivalence of K-categories.
Equivalently, f is an As-equivalence if and only if H°f : H°A — H°B is essentially
surjective on objects, and the first component f; : sA(X,Y) — sB(X f,Y f) is homotopy
invertible, for each X,Y € Ob.A. We can say that the symmetric Cat-multifunctor k
reflects isomorphisms between A..-functors and A..-equivalences.

The symmetric A} -multicategory A% and its underlying A% -category are denoted
by the same symbol. Then AY-functors F : A% — A, are the same things as strict
A% -2-functors introduced in [40].

3.4.15. Example. From the general theory of closed multicategories it follows that an
arbitrary unital A-category € gives rise to an Al -functor AL (C;—) : AL, — AY, see
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Example [[.3.1§. The A.-functor
AL(C; =) 1 AL (A B) — AL(AL(CA), AL (C;B))

is computed in [B§, Proposition 6.2]. From Remark [.3.24 we know that it takes a unital
Aso-functor f: A — B to the unital A, -functor AL (1; f) : AL (€ A) — AL (C; B) defined

by equation ([[.3.9) appropriately interpreted in the closed symmetric multicategory AL

3.4.16. Example. Similarly, each unital A, -category € gives rise to an Al -functor
AL (=€) 1 (AL — AL, see Example [.3.19. The A-functor

AL (=€) AL(B; A) — AL (AL (A;€), AL (B; ©))

is computed in [BY, Appendix B]. From Remark [[.3.24, it follows that it takes a unital
Ao-functor f : B — A to the unital A,-functor AL (f;1) : AL (A; €) — AL (B; €) defined

by equation ([.3.9) interpreted in the closed symmetric multicategory Au

For Al -functors F, G : Ay, — AL, an Al -natural transformation F' — G : A, — Ay
is the same thing as a strict A“ -2- transformatlon as defined in [, Definition 3. 2]

Recall that we have the symmetric multifunctor H : A% — ]k—/C?c. It gives rise to
a base change Cat-functor H? : A% -Cat — (k-Cat)-Cat. Let F' : A% — AL be an
AU -functor. It is mapped by H? to the k-Cat-functor HF : A% — A“ A k-Cat-func-
tor is just a strict 2-functor subject to an additional requirement that it must be k-linear
with respect to 2-morphisms. The k-Cat-functor HYF takes a unital A..-category A to
the unital A-category F'A, and a unital A,.-functor f : A — B to the unital A,.-functor
Ff:FA — FB. A 2-morphism f — g : A — B represented by a natural A.-transfor-
mation r € (sAL (A;B))"'(f, g) is taken to the 2-morphism represented by the natural
A -transformation (Fa8)17, where

is the first component of the A -functor Fq 5 : AL (A; B) — AL (FA; FB). In particular,
HCF acts on objects and on 1-morphisms simply—as F. Being?Q—functor, HCF preserves
equivalences in the 2-category A%, which are precisely A-equivalences. We conclude
that an arbitrary Al -functor F' : AL — AL preserves A,-equivalences. Similarly, an
arbitrary A% -functor (A% ) — A preserves A.-equivalences.

3.4.17. Example. The Al -functors A} (C; —) and A% (—; €) from Examples and
preserve A.-equivalences. Therefore, for each A.-equivalence f : A — B, the
Aso-functors AL (1; f) and AL (f; 1) are A-equivalences as well.

Let A, B be unital A,-categories. A unital A,.-functor f: A — B is called homotopy
fully faithful if the corresponding K-functor kf : kA — kB is fully faithful. That is,
f is homotopy fully faithful if and only if its first component is homotopy invertible.
Equivalently, f is homotopy fully faithful if and only if it admits a factorization

ALITS B, (3.4.14)

where J is a full A,-subcategory of B, e : J — B is the embedding, and g : A — J is an
Aso-equivalence.

The following lemma will be useful when we come to A,-bimodules. It is a minor
generalization of Example B.4.17.



3.5. OPPOSITE A..-CATEGORIES 135

3.4.18. Lemma. Suppose f : A — B is a homotopy fully faithful A.,-functor. Then for
an arbitrary unital A-category C the A-functor A3 (1; f) + AL(C;A) — AL (C;B) is
homotopy fully faithful.

Proof. Factorize f as in (B:4.14). Then by Lemma [:3.22 the A.-functor AJ (1; f) factor-
1zes as
Ai(l;g) AL (13e)
AL(CA) —— AL(C;T) ——— AL (C; B).
The A.-functor Aj (1; g) is an A-equivalence by Example B.4.17, so it suffices to show
that A% (1;e) is a full embedding. It is determined unambiguously by the equation
1,A% (Lse)

C,AL(CT) ==, €, AL (€ B)

u
evico l lev”\Oo

e

J B

The left-bottom composite is a strict A,-functor, therefore so it the top-right composite.
From formulas (B:3.6) and (8:3.§) for components of ev*=, it follows that Al (1;¢) is a
strict A,.-functor, and that its first component is given by

X,YeObe
(1761)

SAL(C:D)(0,9) = [ Cu(T"s€(X,Y),sI(X6, Y1) Hgzen,
n=>0
X,Yeobe
[I C(Tmse(X,Y),sB(X6, Y1) = sAL(C; B)(ge, ve),
n=0
that is, r = (r,) — re = (rpe1). Since sI(X ¢, Y1) = sB(X¢, Y1) and e, is the identity
morphism, the above map is the identity morphism, and the proof is complete. O

3.5. Opposite A, -categories

Recall the following definitions from [B9, Appendix A]. Let A be a graded quiver.
Then its opposite quiver A°P is defined as the quiver with the same class of objects
ObA° = Ob A, and with graded k-modules of morphisms A®(X,Y) = A(Y, X).

Let v : TsA® — T'sA denote the following anti-isomorphism of coalgebras and alge-
bras (free categories):

v= (—1)]%02 . S.AOP(X(), Xl) X ® S.AOP(kal,Xk)
- S.A(Xk, Xk—l) (SR S.A(Xl, XQ), (351)
where w” = (} 2, = 31 1) € & Clearly,
YA = Ao(Y @ ¥)e = Age(y ® ) (3.5.2)

which is the anti-isomorphism property. Notice also that (A°)°P = A and * = id.
When A is an A, -category with the codifferential b : TsA — TsA, then by :
TsA®? — TsA° is also a codifferential. Indeed,

ToyAg = 0Agc(7 @ ) = YA (1 ® b+ b® 1)e(y ® )
=Ap(7®@7)c(1@b+b@1)c(y®@7) = Ap(vby @ 1 + 1@ by).
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The opposite A -category A°P to an A,-category A is the opposite quiver equipped with
the codifferential 0°? = by : TsA® — TsA®. Components of b°? are computed as
follows:

wO
b = (=) [sAP(Xo, X1) @ + -+ ® SAP(Xjo1, X)) —
S.A(Xk, X]g,1> - S.A(Xl, XO) b—k> S.A(Xk, XO) = S.AOP(X(), Xk)} . (353)

The sign (—1)* in (B:5.1]) ensures that the above definition agrees with the definition of
the opposite K-category, meaning that, for an arbitrary A..-category A, k(A°) = (kA)°P.
Indeed, clearly, both K-categories have Ob.A as the set of objects. Furthermore, for each
pair of objects X,Y € ObA,

mP = sbPs ' = sbys Tt =m;  AP(X,Y) =AY, X) — A(Y, X) = AP(X,Y),

therefore (kAP)(X,Y) = (A®(X,Y),m®) = (A(Y,X),my) = (kA)?(X,Y). Finally,
compositions in both categories coincide:

fiaor =M = (s @ 8)byPs 1 = —(s ® 8)chas™! = (5 @ 5)bas ™t = cmy = [h(kAyop -

In particular, it follows that A°P is unital if so is A, with the same unit elements.
For an arbitrary A.-functor f : K'**TsA; — TsB there is another A -functor f°P
defined by the commutative square

RiEnTsA; —— TsB
&“yl lv
XienTs AP I B
Since 72 = id, the A,-functor f°P is found as the composite
P = [@ierTsA® 20, mienraa, L 7sB L TsB).

3.5.1. Lemma. For an arbitrary A.-functor f : K'*"TsA; — TsB, the K-functors
kfoP, (kf)oP : K€k AP — kBOP coincide.

Proof. The case n = 1 is straightforward. We provide a proof in the case n = 2, which
we are going to use later.
Let f: TsAXTsB — TsC be an A, -functor. The components of f°P are given by

= (=) AP (X, X1) @ - - @ SAP(Xpo1, Xi)®
® sBP(Up, Uy) @ -+ - @ sBP(U,,_1,U,)
= sA(X1, Xo) ® - @ sA(Xy, Xp1) @ sB(U1,Up) @ - - @ sB(Up, Up—1)

T SA(Xiy X 1) © -+ © sA(Xy, Xo) @ $B(Un, Uy 1) ® - ® sB(Uy, Up)
Ten, SC((Xn, Up) f, (X0, Un) ) = sCP((Xo, Uo) f, (Xi, Un) )], (3.5.4)

kn _ (1 2 .. kk+1 k+2 .. k+n
where 7" = (k; E—1 .. 1 kdn ktn—1 ... k+1

tion isomorphism.

) € S1n, and T is the corresponding permuta-
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Clearly, both kf°P and (kf)°" act as Ob f on objects. Let X, Y € ObA, U,V € Ob B.
Then

ST s fers

kfP = [AP(X,Y)® B®(U,V)
CP((X,U)f, (Y, U)f) @ €P((Y,U)f, (Y, V) f) == €P((X, U) f, (Y, V) [)].
By (B5.4),
fio = fro 1 sAP(X)Y) — sC((Y, U) f, (X, U) f) = sCP((X, U) f, (Y, U) f),
for = for 1 sBP(U,V) — sC((Y, V) [, (Y, U)f) = sCP((Y,U) [, (Y, V) f),

therefore

k[ = [AY, X) @ B(V, U) L2200 L oy, ) £, (X,U) f) @ C((Y, V) £, (Y, U) f)
< QY V), (Y, U) ) @ C((Y, U) £, (X, U)f) S €((v, V) £, (X, U)f)]
— [A(Y. X) @ B(V,U) % B(V,U) ® A(Y, X) o eeho
(Y, V), (Y,U)f) @ C(Y,U) f, (X,U) ) 2 (Y, V), (X, U)f)].
Further,

(kf)P = [A(Y, X) @ B(V,U) 2hoeehus
C((Y, V) (X, V)f) @ C((X, V)£, (X, U)f) =5 €((Y, V) £, (X, U)f)].

We must therefore prove the following equation in X:

[A(Y, X) @ B(V,U) S B(V,U) @ A(Y, X) s @efios
C((Y,V)f, (Y, U)f) ® C((YV,U)f,(X,U)f) =% (Y, V) f,(X,U)[)]
= [A(Y. X) @ B(V,U) 2R (v, V) £, (X, V) f) @ ©((X V)L (X, U)f)
S (Y, (X, U)f)]. (35.5)

Since f is an A,.-functor, the equation fb = (bX1+1Xb)f : TsAXTsB — TsC holds
true. Restricting it to sA X sB and composing with the projection pr; : T'sC — sC, we
obtain

(10 ® fo1)b2 + c(for ® fro)ba + fuib
=(1®@b +b @1)fi1: sAY, X) @ sB(V,U) — sC((Y, V) [, (X, U)f).
Thus, (fi0 ® fo1)be + c(fo1 ® fi0)b2 is a boundary. Therefore,
(s ®5)(f10 ® for)b2 = (s ® s)(for @ f10)b2
in K. This implies equation (B-5:3). O
In particular, f°P is a unital A,-functor if f is unital.

3.5.2. Proposition. The correspondences A — AP, f — f°P define a symmetric multi-
functor —°° : A, — A, which restricts to a symmetric multifunctor —°° : A} — Al .

Proof. Straightforward. O
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As an arbitrary symmetric multifunctor between closed multicategories, —°P possesses
a closing transformation op : A;,O ((A)ier; B)P — A ((A7P)ier; B°P) uniquely determined
by the following equation in A
[(-A?p)iela A;oo((-Az')z'eB B)?P —

1,0 p

(AP icr, Ao (AP )ier: B?) S B] = (ev=)°»,
(3.5.6)

The Ay-functor (evA=)°P acts on objects in the same way as evA~. It follows that

(Xi)ier(f)op = (Xi)ierf for an arbitrary A-functor f : (A;)ier — B and a family of

objects X; € ObA;, i € I. The components

. I

(evh=)? | =~ [RIIT™ A% R T sAu(Ar)ier; B)® — 2,

Aco
(m;)

X' T s A; R T™5A ((As)ier; B) —— sB]  (3.5.7)
vanish unless m = 0 or m = 1 since the same holds for ev?‘”) . From equations (B.5.0)
and (B.5.1) we infer that
i€l ®m; Aco
(®1%™ @ Obop) evi,>)
= —[@" @™ sAT (X, 1, X;,) @ TPsAx((Ai)ier; B)P(f, f)
i€l opiem; . 4OP( i N
=~ @ @hem s AP(X! X)) —————

®ZEI ®p16mzs‘A (Xz Xz fmz)

m;—p;) < my; p+1)
therefore (f)op = fP : (A;")ier — BP. Similarly,

sB((X()ierf, (X}, )ier f)],

(®"'1%™ @ op )eV(Am )1
= [@' @M sAP (X1, X}) © sAx((Aiier; B)(f, 9)
@ (—)miwl®l i€l opi€m { i
s QT QP g A, (Xm p?Xm p+1>®SA;oo((-Ai>i€I;‘B)(g7f)

®z€[ ®Pz€mz S.A (Xz Xz

m;—p;) < my; p1+1)

® gr(®lel ®pz€mz S‘A (XZ mi—pi 7X:ni—pi+1> SB(( )zelga ( (Z))zelf))

SB(( ml>l€lg7( O)ielf) :SBOP((Xé)iEIfopa(Xrlni)ielgopﬂ'

It follows that the map op, : sAx((Ai)ier; B)P(f, 9) — sAx((A7")ier; BP)(f°P, g°P) takes

an A.-transformation r : g — f : (Ai)ier — B to the opposite A,-transformation

rov & (r)op, : [ — g i (A;")icr — B°P with the components

®i€1®pi€mi 1®pr
——_—)

(1)op,Jimy = ()4 [ @Pem sAP(X;, 1, X)) <=
& @K X pir) — SB(X s, (XE)ier ).
The higher components of op vanish. Similar computations can be performed in the mul-
ticategory A% . They lead to the same formulas for op, which means that the A, -functor
op restricts to a unital A.-functor op : A} ((A»;;B)Op — AL ((AP)ier; BP) if the
A-categories A;, ¢ € I, B are unital. o

3.5.3. Remark. Suppose that B is a unital A.-category, and r: f — g : (A;)ie;r — B is
an isomorphism of A -functors. Then r°P : g — [P : (AP);c; — B is an isomorphism
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as well. Indeed, since op is a chain map, it follows that 7P = (r)op, is a natural

Aoo-transformation. Furthermore, the 0*" components of the transformations r and r°P
coincide. The claim follows from Lemma B.4.11. Note that in the case when A;, i € I,
are unital A..-categories, we may just argue that op is a unital A,.-functor and therefore
takes cycles invertible modulo boundaries to cycles invertible modulo boundaries.






CHAPTER 4

A.-bimodules

The definition of A.-bimodule over A -algebras has been given by Tradler [59, 60].
The notion of bimodule over some kind of A.-categories was introduced by Lefevre-
Hasegawa under the name of bipolydule [B4]. Here we extend Tradler’s definition of
A-bimodules improved in [BJ] from graded k-modules to graded quivers. We will see
that A.-bimodules over A,-categories A and B form a differential graded category.
It turns out to be isomorphic to the differential graded category A (AP, B;C,). In
particular, there is a bijection between A-B-bimodules and A..-functors A®, B — C,.
This observation is very helpful, although obvious. On the one hand, it allows to apply
general results about A.-functors to the study of A.-bimodules. On the other hand,
Aso-bimodules are often more suited for computations than A..-functors. For example,
the Yoneda Lemma proven in Appendix [f is formulated using A..-functors, but the proof
uses A..-bimodules.

The chapter is organized as follows. In Section [, we introduce the notion of dif-
ferential graded bicomodule over a pair of graded coalgebras. Specializing to coalgebras
of the form T'sA, where A is an A..-category, we obtain the definition of A.-bimodule.
We establish an isomorphism between the differential graded category of A.,-bimodules
over A.-categories A and B and the differential graded category A (AP, B;C,). There
is nothing surprising in this statement. In fact, it is in complete analogy with the ordi-
nary category theory: on the one hand, a bimodule over k-linear categories A and B can
be defined as a collection of k-modules P(X,Y), X € ObA, Y € Ob3B, together with
k-linear action maps AU, X) ® P(X,Y) ® B(Y,V) — P(U,V) compatible with compo-
sitions and identities; on the other hand, an A-B-bimodule can be defined as a k-linear
bifunctor A°® X B — k-Mod. That these definitions are equivalent is a straightforward
exercise. In the case of A -bimodules it is still straightforward, however computations
become cumbersome.

A basic example of A, -bimodule is provided by regular A..-bimodule. It is discussed
in Section .. For an A, -category A, we introduce an A, -functor Hom 4 : A?, A — C,
as a unique A, -functor that corresponds to the regular A-A-bimodule. It is an ingredient
of the definition of Serre A,.-functor. Furthermore, by the closedness of the multicategory
As, the As-functor Homy gives rise to an A.-functor % : A — A (A°P; Cy), called the
Yoneda As-functor.

We study some operations on A.-bimodules (restriction of scalars, taking opposite and
dual bimodule) in Section [l.3. These are necessary for the definition of Serre A,.-functor.

Section f.4 is devoted to unital A.-bimodules, which are defined simply as A,.-bi-
modules that correspond to unital A, -functors. A unital A, -functor g : € — A gives rise
to a unital A-C-bimodule AY defined as the bimodule corresponding to the A..-functor
(1,g) Homy : A, € — C,. We prove that the mapping g — AY extends to a homotopy
fully faithful A -functor AL (C;A) — AL (A°P, C; C,) and characterize it image. Here we
use some of the properties of the Yoneda A.-functor proven in Appendix Al. Finally, Sec-
tion [l.9 is an expository section. Here we introduce A.,-modules as a particular case of

141
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Ao-bimodules. The results obtained for A,.-bimodules remain true also for A,,-modules.
These results are stated for the record, since we are going to use them in Appendix [A].
The definitions of bicomodule and A,-bimodule are due to Volodymyr Lyubashenko.
He also suggested Propositions [.1.9 and f.1.3 The proofs of these statement have been
given by the author. The definition of the Yoneda A -functor via regular bimodules is
Prof. Lyubashenko’s finding. Section [.3 contains authors results only. The definition
of unital A,-bimodules was suggested by Prof. Lyubashenko. He also proved Proposi-

tions 4.2 and [£.4.4.

4.1. Definitions

Consider the monoidal category (2/5, ®) of graded quivers with a fixed set of objects
S, see Section B.2.1]. When S is a 1-element set, the category (2/S,®) reduces to the
category of graded k-modules used by Tradler.

4.1.1. Definition. Let A, C be coassociative counital coalgebras in (£/R,®pg) resp.
(2/85,®s), i.e., graded coalgebras in the terminology of Section B.2.3. A counital (A, C)-bi-
comodule (P, ") consists of a graded span P with Ob, P = R, Ob; P = S, and a coaction
6 = (0,68"): P — (A®gr P) ® (P ®g C) of degree 0 such that the following diagram
commutes

P i (A®gp P)& (P ®sC)

(A®r P) & (P®s O)

and 0’ - (e®1)=1=9¢"-(1®¢e): P— P.

l(A@l)EB((S@l)

108)B(10A
M(A@RA@)RP)GB(A@RP@SC)®(P®SC®SC)

The equation presented on the diagram consists in fact of three equations claiming
that P is a left A-comodule, a right C-comodule and the coactions commute.

Let A, B, C, D be graded coalgebras; let ¢ : A — B, ¢ : C' — D be morphisms
of graded coalgebras; let y : A — B be a (¢, ¢)-coderivation and let £ : C' — D be a
(1, 1)-coderivation of certain degree, that is,

XA=A@RXx+Xx®¢), E(EA=AWRE+ERY).

Suppose that § : P — (A® P) & (P ® C) is a counital (A, C)-bicomodule and that
0:Q — (B®Q)®(Q®D)is a counital (B, D)-bicomodule. A morphism of graded
spans f : P — @ of degree 0 with Obg f = Ob¢, Ob, f = Ob1) is a (¢, v)-bicomodule
homomorphism if fo' =0 (¢ f): P — B®Q and f§" =§"(f @) : P — Q® D. Define
a (¢,9, f, x,§)-connection as a morphism of graded spans r : P — @) of certain degree
with Obgr = Ob ¢, Ob; r = Ob such that

P— L(AgP)e(PaC)

rl l(¢®r+x®f)@(f®é+r®w)
Q——(BeQ)e(@eD)

commutes.
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Let (A, b4), (C, %) be differential graded coalgebras and let P be an (A, C')-bicomodule
with an (idy,ide,idp, b4, b%)-connection b” : P — P of degree 1, that is,

P =81@b” +v*®1), P =0"1®b°+b" ®1).

Its curvature (b¥)? : P — P is always an (A, C)-bicomodule homomorphism of degree 2.
If it vanishes, b is called a flat connection (a differential) on P.

Equivalently, bicomodules with flat connections are bicomodules which live in the cat-
egory of differential graded spans. The set of A-C-bicomodules becomes the set of objects
of a differential graded category A-C'-bicomod. For differential graded bicomodules P, @),
the k-th component of the graded k-module A-C'-bicomod(P, Q)) consists of (id4, id¢)-bi-
comodule homomorphisms ¢ : P — @ of degree k. The differential of ¢ is the commutator
tm; = tb9 — (=)'t : P — @Q, which is again a homomorphism of bicomodules, nat-
urally of degree k£ 4+ 1. Composition of homomorphisms of bicomodules is the ordinary
composition of morphisms of graded spans.

The main example of a bicomodule is the following. Let A, B, €, D be graded
quivers. Let P, Q be graded spans with Ob,P = ObA, Ob;P = ObC, Ob,Q = Ob B,
Ob; Q = ObD. Take graded coalgebras A = TsA, B = TsB, C = TsC, D = TsD
and bicomodules P = TsA ® sP ® TsC, @ = TsB ® sQ ® T'sD equipped with the cut
comultiplications (coactions)

Ao(al, N an) = Z(al, N ai) & (ai+17 e ,an),

i=0
k

0@y, .y Ay Dy Cligls - -+ s Chol) = Z(al, ey @) @ (@ig1y e oy Py ey Chgl)
i=0
k41

+ Z(ala s Dy '7Ci) ® (CiJrla cee 7Ck+l>‘
i=k

Let ¢ : TsA — TsB, ¢ : TsC — TsD be morphisms of augmented graded coalgebras.
Let g : P — @ be a morphism of graded spans of certain degree with Obs,g = Ob ¢,
Ob; g = Ob 1. Define matrix coefficients of g to be

Gklymn = (Hlk Rl ® inl) *g- (prm ®1® prn) :
TF'sA®sPRT'sC — T"sB®sQ®T"sD, k,I,m,n>0.
Coefficients g0 : TFsA®sPRT'sC — sQ are abbreviated to gj; and called components
of g. Denote by g the composite g- (pr,®1®pry) : TsARsPRTsC — sQ. The restriction
of § to the summand T%sA ® sP ® T'sC is precisely the component gy.
Let f: P — @ be a (¢,1)-bicomodule homomorphism. It is uniquely recovered from

its components similarly to Tradler [b9, Lemma 4.2]. Let us supply the details. The
coaction 47 has two components,

V=M R101:TsARsPRTsC— TsARTsARsP®TsC,
=110 A): TsARsPRTsC— TsA®sP®TsC®TsC,
and similarly for 69. As f is a (¢, ¥)-bicomodule homomorphism, it satisfies the equations

fFA®1®1)=(A@101)(¢p® f): TsA®sPRTsC — TsB@TsB®sQ®TsD,
JAR1®A) =101 A)(f @) : TsARsPRTsC — TsB®sQRTsD®TsD.
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It follows that

FA®1®A) =(A®@130A) (0D fRY):
TsARQRsPRTsC—-TsBRTsBRsQRTsDRQTsD.

Composing both sides with the morphism
1@pryR1@pry@1 : TsBRTsBRsQRTsDRTsD — TsB®sQ®TsD, (4.1.1)
and taking into account the identities A¢(1 ® pry) = 1, Ag(pr, ®1) = 1, we obtain
F=(M0@10A) (0@ fR1). (4.1.2)

This equation implies the following formulas for matrix coefficients of f:

Frmn = >, (00 ® @ ¢, @ frg @y, @@ Yy,) :

i1+ Fim+p=k
Jrt-Fintq=l

TFsA®sPRT'sC — T"sB®sQRT"sD, k,I,m,n >0, (4.1.3)
see also (B.2.9) for the formula of matrix coefficients of augmented graded coalgebra
morphisms ¢ and . In particular, if & < m or [ < n, the matrix coefficient fi.nn

vanishes.
Let r: P — @ be a (¢, 9, f, x,§)-connection. It satisfies the following equations:

r(Re®1e1)=(A®101)(¢@r+x®f):
TsARsPRTsC—TsBRTsB®sQ®TsD,
F1©1880) = (1010 A)(fRE+TB1);
TsA®sPRTsC—TsB®sQRTsD®TsD.
They imply that

TsARsPRTsC—-TsBRTsBRsQRTsDRQTsD.

Composing both side with morphism (fI1]) we obtain
r=L0®1RA) PR fRE+ORTFRY+ XD fFRY). (4.1.4)
From this equation we find the following expression for the matrix coefficient ry .,

p+1+q=n
Y. $u® 00, O fy Y ® Oy, ®& O Y, O Oy,
i1+ timti=k
Jgtetdptttip s+ ip =l
+ ) u® 06, Oy RY, ® -0,

i1+ i i=k
Jtiitetin=l

a+1+c=m
+ Y 6@ ®by, DXu® iy, @D i, D [ O Uy, @ @Yy,
i1+ Figtutiot1++iatcti=k
i tin=l

TFsA®sPRT'sC — T"sB®sQRT"sD, k,I,m,n >0, (4.1.5)
see also (B.2.17) for the formula of matrix coefficients of coderivations £ and .
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Let A, C be A,-categories and let P be a graded span with Oby,P = ObA and
Ob; P =0bC. Let A =TsA, C = TsC, and consider the bicomodule P = TsA®sPRTsC.
The set of (1, 1,1, 5%, b)-connections b” : P — P of degree 1 with (bJ,)? = 0 is in bijection
with the set of morphisms of augmented graded coalgebras ¢” : TsA® X T'sC — TsC,.
Indeed, collections of complexes (¢7(X,Y),d)yEG0 ¢ are identified with the differential
graded spans (P, sbiys~1). In particular, for each pair of objects X € ObA, Y € Ob€
holds (¢%(X,Y))[1] = (sP(X,Y),—b%). The components b] and ¢3 are related for
(k,n) # (0,0) by the formula

by = [SA(Xp, Xio1) ® -+ @ sA(X1, Xo) ® sP(Xo, Yo) ® sC(Y5, V1) ® -+ - @ s€(Yp1, Yy)

5/®1®n
—

sP(Xo, Yo) ®@ sAP(Xo, X1) @ - - @ sAP(Xp—1, Xi)
® sC(Yp, Y1) ® - ® sC(Y,-1,Y)

®¢kn
SiP(XOa Yb) ® SCH((?(X07 )/O)a iP(Xk‘) Yn))
1®

= 5?(X07 Yo) @ Gy (P(Xo, Yo), P(Xy, Yn))

L9, $P(Xo, Yo) @ Cu(sP(Xo, Vo), sP(Xi, Yi)) 255 sP(Xy, V)],

where ¥ = (12...k 4+ 1) - 7, the anti-isomorphism + is defined by (B-5.]]), and the shift
differential graded functor [1] : C, — C, is defined in Example B.2.23.

Components of b” can be written in a more concise form. Given objects X,Y € ObA,
Z, W € ObC, define

bY = [TSA(Y X)®sP(X,Z) @ TsC(Z,W)
L sP(X,Z) @ TsA(Y, X) @ TsC(Z, W)

1®y®1
e

sP(X,2) @ TsA®(X,Y)® TsC(Z, W)

1®¢> sP(X, 7)) ® sC(P(X, Z),P(Y,W))

CETL PN, 2) 0 CUP(X, 2), P(Y.W)) 25 Y, W) 2 sP(Y, W)]

= [TsA(Y,X)® sP(X,Z) @ TsC(Z,W)
Bl ¢P(X, Z) @ TsA(Y, X) @ TsC(Z,W)
DL $P(X, Z) @ TsA®(X,Y) ® TsC(Z, W)

1957, (X, Z) @ sCu(P(X, Z), PY, W)

1o W P (X, Z) @ C(sP(X, Z), sP(Y, W) <5 sP(Y, W), (4.1.6)

where v @ TsA — TsA° is anti-isomorphism (B.5.1]), and #” denotes, as usual, the
composite ¢” pr, : TsA® K TsC — sC,. Conversely, components of the A, -functor ¢”
can be found as

$” = [TsA®(X,Y) ® TsC(Z,W) 125 TsA(Y, X) @ TsC(Z,W)
wer, L (sPIX, Z), sP(X, Z) @ TsA(Y, X) @ TsC(Z, W)

G (1,(c@1)b%) s,
_—

C(sP(X, Z), sP(Y, W) =25 sC(P(X, Z), PV, W))]. (4.1.7)
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Define also
- T T P
b = [TsA(Y, X) ® sP(X, Z) ® TsC(Z, W) L2200, sp(x 7y 0 sp(X, 7)]. (4.1.8)

Note that b7 vanishes on T°sA(Y, X) ® sP(X,Z) ® T°sC(Z, W) since ¢” vanishes on
TOsA%(X,Y) ® T°sC(Z,W). Tt follows that b” = b7 + Y.

The following statement was proven by Lefevre-Hasegawa in assumption that the
ground ring is a field [B4], Lemme 5.3.0.1].

4.1.2. Proposition. The connection b” is flat, that is, (TsA ® sP ® TsC,b”) is a bi-
comodule in 92, if and only if the corresponding augmented coalgebra homomorphism
7 : TsA® R TsC — TsC, is an Ay-functor.

The reader is advised to skip the proof on the first reading.

Proof. According to ([19),
bY = (Ao ® 1 ® Ag)(1® pry®@1 @ pro@b® + 1@ 0" @1+ b @ pry @1 @ pry®1)
=11+ (A 210A)120"21)+v*®@1®1.

The morphism of graded spans (b”)? : P — P is a (1,1,1,0,0)-connection of degree 2,
therefore the equation (b”)* = 0 is equivalent to its particular case (b”)*(pry ®1 ® pry) =
0:TsA®sP®TsC— sP. In terms of b”, the latter reads as follows:

'@ 101+12120907 + (Ae®1® A))(1@b0” @ 1)b” = 0. (4.1.9)

Note that (" @1 @1+ 1@ 1) = (1@ 1+ 1® 1@ b%)b7 since b*pry = 0,
b¢pr, = 0. The second term in the above equation splits into a sum of four summands,
which we are going to compute separately. First of all,

(B0 ®1® Ao)(1® bY@ 1)b) = (Ao(pro @ pro) @ 1 ® A(pro @ pro)) (bi)”
= (pry®1 @ pry)s 'd’s =0 : TsA® sP @ TsC — sP.
Secondly,

(Ag®1® M) (107 @1)b) + (Ag®1® Ag)(1 @b @ 1)b7
= (Ap(pry®1) ® 1 ®@ Ag(1 ® pro))i)ibg}o + (Ag(1 ® pry) ® bgo ® A(pry ®1))B$
- Bibcﬂ;o +(1® bgo ® 1)B$
= [TsA(X,Y) @ sP(Y, Z) @ TsC(Z,W)
L sP(Y, Z) @ TsA(X,Y) @ TsC(Z,W)
“DEL $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

1067

190, SPIY, Z) @ sCu(P(Y, Z), P(X, W)

1®s~1

—— sP(Y, Z) @ C(P(Y, 2), P(X, W))

5 P
L (v, 2) @ CP(Y, 2), 52X, W) < 5P 0, W) B spx, )

+ [TsA(X,Y) @ sP(Y,Z) @ TsC(Z, W)

1®bd,®1
_

TsAX,Y)®sP(Y,Z) @ TsC(Z,W)
B $P(Y, Z) @ TsA(X,Y) ® TsC(Z, W)
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“DCL SP(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

1067

190, $PIY, Z) @ sCu(P(Y, Z), P(X, W)

10s~1

—— sP(Y, Z) @ C(P(Y, 2), P(X, W))

1®[1]

Ll sp(v, 2) © Cu(sP(Y, Z), sP(X, W) 25 sP(X, W)]
= [TsA(X,Y) @ sP(Y,Z) @ TsC(Z,W)
B $P(Y,Z) @ TsA(X,Y) ® TsC(Z, W)
L $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

1067

—— sP(Y, Z) @ s (P(Y, Z2), P(X, W))
18 SP(Y, Z) @ C(P(Y, Z), P(X, W)

1®[1] ev& b, — (b ®1) evCk
—

sP(Y, Z) ® C,(sP(Y, Z), sP(X, W)

sP(X,W)].

The complexes sP(Y, Z) and sP(X, W) carry the differential —bg,. Since ev™ is a chain
map, it follows that ev® by — (bjy @ 1) ev® = —(1 ® ms*) evC, therefore

(Ao ®@1®Ag) (107 @1)b) + (A @ 1® Ag)(1® by @ 1)b]
= —[TsA(X,Y) @ sP(Y, Z) @ TsC(Z,W)

EL sP(Y, Z) @ TsA(X,Y) @ TsC(Z,W)

“DEL $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

1067

190, $PIY, Z) @ sCu(P(Y, Z), P(X, W)

10s~1

—— sP(Y, Z) @ C(P(Y, 2), P(X, W))

18[1] (1@ms*) ev
—_

SP(Y, Z) ® Cu(sP(Y, Z), sP(X, W) = (X, W]

Since [1] is a differential graded functor, it follows that [1]mg* = my*[1]. Together with
the relation bi*s~! = s~!m this implies that

(Ao ®1® A) (107 @1)b) + (Ag®1® Ag)(1®@ b @ 1)b7
= —[TsAX,Y) @ sP(Y, Z) @ TsC(Z,W)

EL sP(Y, Z) @ TsA(X,Y) @ TsC(Z, W)
“DEL $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

1®q39’b%k
—— sP(Y, 2) @ sC (P(Y, Z2), P(X, W))

1®s~ 1

—— sP(Y, Z) @ C(P(Y, 2), P(X, W))

1®[1] evCk

sP(Y,Z) @ C,(sP(Y, Z),sP(X,W)) Z— sP(X, W)
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Next, let us compute

(Ao ®1®Ag)(1®b] @ 1)b] = [TsA(X,Y) ® sP(Y, Z) @ TsC(Z,W)
Lo®140, P TsAX,U) @ TsA(U,Y) @ sP(Y, Z) @ TsC(Z,V) @ TsC(V, W)

UeObA,VeObe
=R P TSAX,U) @ 5PV, Z) @ TsA(U,Y) @ TsC(Z,V) @ Tse(V, W)
UcObA,VeObC
L 101en®Iel, P TsAX,U) @ sP(Y, Z) @ TsAP(Y,U) @ Ts€(Z,V) @ TsC(V, W)
UcObA,VeObC
1P
2181899781, P TsAX,U) @ sP(Y, Z) @ sC(P(Y, Z), P(U,V)) @ TsC(V, W)
UcObA,VeObC
Lo 0L (PTSAX,U) @ sP(Y, Z) @ G(P(Y, ), P(U, V) ® TsC(V, W)
UcObA,VeObC
ZEEUEL ONTSA(X,U) @ sP(Y, Z) © Cu(sP(Y, Z), sP(U. V) © TsC(V, W)
UeObA,VeObe
ch
L N TSAX,U) © sP(U, V) © TsC(V, W)
UcObA,VeObC
EEL P UV @ TSAX,U) @ Tse(V, 1)
UeObA,VeObC
PILLALEN P sPUV)@TSAP(U,X) @ TsC(V, W)
UeObA,VeObC
1P
2L sPU.V) @ sCPU.V), PX,W))
UeObA,VeObe
871
LAY UV GPU V), P(X W)
UeObA,VeObe

evCi
2Oy UL V) © GBI V), sPX, W) EY P, W],
UeObA,VeObC

The latter can be written as

[TsA(X,Y) @ sP(Y, Z) ® TsC(Z,W) =5 sP(Y, Z) @ TsA(X,Y) ® TsC(Z,W)

1O2ENER, (AN P(Y, Z) @ TsAP (Y, U) @ TsAP(U, X)

UeObA,VeObC
@ TsC(Z,V) @ TsC(V, W)

ZIOECL DY sP(Y. Z) © TsAP(Y,U) © TsC(Z,V) ® TsA®(U, X)  TsC(V, W)

UcObA,VeObC

1OV NPV, Z) @ sC(P(Y, Z), (U, V) @ sC(P(U, V), P(X, W)
UeObA,VeObe
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Tieslga ! P sP(Y. 2) @ CUP(Y, 2),P(U,V)) ® C(P(U, V), P(X, W)
UeObA,VeOb €

PEIDCION P sP(Y, 2) @ Cu(sP(Y, Z), sP(U,V)) @ Cu(sP(U, V), sP(X, W)
UcObA,VeObC

sP(X, W)].

Using the identities Agc(y ® ) = 72, (see (B52)), (ev® 1) ev® = (1@ m3*) evC, and

- 1y, C Cy o .
(s7'®@ s )ms* = —by*s™!, we transform the above expression as follows:

(Ao ®1® A (1] @ )b} = —[TsAX,Y)®sP(Y,Z) @ TsC(Z, W)
L¢PV, Z) @ TsA(X,Y) @ TsC(Z, W)
DL $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

IR, @ sP(Y, Z) @ TsAP (Y, U) @ TsA™(U, X) @ Ts€(Z,V) @ TsC(V, W)
UeOb A, VeObC

=l P sP(v, 2) @ TsA®(Y,U) @ TsC(Z,V) @ TsA®(U, X) @ TsC(V, W)
UeOb A, VeObC

EECEL, @D sPY.2) @ 5GPV, 2),PU,V)) @ sC(PU V), DX, W)
UeObA,VeObeC

I (v, 2) @ sCu(P(Y, Z), P(X, W)
18 (Y, Z) @ C(P(Y, Z), P(X, W)
P (Y, 2) © CUsP(Y, 2), sPX, W) S5 sP(X, W)
Finally,
@101 +1010b%0 = [TsA(X,Y)® sP(Y,Z) @ TsC(Z,W)
L sP(Y, Z) @ TsA(X,Y) @ TsC(Z, W)
9GPV, Z) @ TsA®(Y, X) @ TsC(Z, W)

AOP C\ 4P
SRR SP(Y, 2) @ sCU(P(Y. 2), PX W)
s®s)1 ev s
LV (v, 2) @ Cu(P(Y, 2), P(X, W) 255 DX, W) S sP(X, )]
since b4 = ybNy : TsAP(Y, X) — TsA(Y, X). We conclude that the left hand side of
(ET9) equals (c® 1)(1®@7®1)(1® R)(s® s)"Levt: s~ where
R = [TsA®(Y,X) @ Ts€(2, W) L_2tHet,
TsA™ (Y, X) © Ts€(Z,W) £ sG,(67(Y, 2), 67(X, W)
o é?b%k
— [TsA™(Y, X) @ TsC(Z, W)
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S0, B TSAP(Y,U) @ TsA® (U, X) @ Ts€(Z,V) @ TsC(V, W)
UeObA,VeObe
ZISEL N gAY, U) @ TSC(Z,V) @ TsA®(U, X) @ Tse(V, V)
UeObA,VeObC
I AN (7Y, 2). 670, V)) @ sCudP (UL V), 6 (X, W)

UcObA,VeObC

Ci

=0, G0V, 2), (X, W))].

By (B2.0) and (B-2.17), it follows that R equals

(B R1+1R%)T — ¢T0% : TsA®P(Y, X) ® TsC(Z, W) — sC (6% (Y, Z), T (X, W)).

By closedness, b” is a flat connection if and only if R = 0, for all objects X,Y € ObA,
Z, W € ObC, that is, if ¢* is an A-functor. O

Let A, € be A-categories. The full subcategory of the differential graded category
T'sA-T'sC-bicomod consisting of dg-bicomodules whose underlying graded bicomodule has
the form T'sA ® sP @ T'sC is denoted by A-C-bimod. Its objects are called A, -bimodules,
extending the terminology of Tradler [59].

4.1.3. Proposition. The differential graded categories A-C-bimod and Ay (A, C;Cy)
are isomorphic.

Proof. Proposition [[.1.] establishes a bijection between the sets of objects of the differen-
tial graded categories A, (AP, C; C,) and A-C-bimod. Let us extend it to an isomorphism
of differential graded categories. Let ¢, 1) : A € — C, be A, -functors, P, Q the corre-
sponding A-C-bimodules. Define a k-linear map

O AL(AP,C;C) (0, 0) — A-C-bimod(P, Q)

of degree 0 as follows. With an element rs~" € A (AP, €; C,) (¢, ¥) an (idrsa, idyse)-bi-
comodule homomorphism ¢ = (rs™")® : TsA®sPRTsC — TsA®sQ®TsC is associated
given by its components

tin = (=) [SA(le Xio1) @+ @ sA(Xy, Xo) ® sP(Xo, Yo)
® sC(Yp, Y1) ® -+ @ sC(Vy—1, V)

TN sP(Xo, Yp) ® sAP(Xo, X1) ® - - - @ sAP(Xp_1, Xi)

® Se()/oa )/1) K- & Se(Ynfla Yn)
S[‘P(X()y )/0) ® Sgk([‘P(X()) }/0)7 Q(Xka Yn))

1®rkn
—

1®s711]

—_— SiP(XOa Yb) ® Qk(SI‘P(X()) }/0)7 SQ(Xka Yn))
ﬂ) SQ(Xk7 Yn)}a kf,?’L P 07
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or more COIlCiSGly,
t= (=) TsAX,Y) @ sP(Y, Z) @ TsC(Z,W)
L sP(Y, Z2) @ TsA(X,Y) @ TsC(Z, W)
L sP(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)
B SP(Y, Z) ® sC (P(Y, Z), Q(X, W)
12 W P (Y, Z) © Cu(sP(Y, Z), sQ(X, W) 25 sQ(X, W),

where 7 = r - pr; : TsA®P K TsC — sC; is the morphism of graded spans that collects
components of r, Obg 7 = Ob ¢, Ob; 7 = Ob . The closedness of gr implies that the map
P A (AP, C; Gy ) (¢, ¢) — A-C-bimod(P, Q) is an isomorphism. Let us prove that it also
commutes with the differential. We must prove that

(rs™)®)d = (s =4 0C0)

for each element r € sAx (A, C; C;)(¢, 1). Both sides of the equation are (idpga, idrse)-bi-
module homomorphisms of degree degr + 1, therefore it suffices to prove the equation
[((rs™H)®)d]Y = [((rB1)s ')®]". Using (=I4), we obtain:

((rs @)Y = (td)" = (£-52)" — (—)'(B°- 1) = t-0° — (—)0” -

® = ((rB;)s )@,

=t b2 (4.1.10)
— () (A0 @1 AN @K @ 1) (4.1.11)
+1-b8 = (DA ®1® Ay (1@ b @1)i (4.1.12)
— ()M R191+19 100 (4.1.13)

Let us compute summands ({.1.10)—({.1.13) separately. According to (H.1.2), expres-
sion ({.I.I0) equals

LD = (Mg @10 A)(1 @@ 1)
= () TsA(X,Y) @ sP(Y, Z) @ TsC(Z, W)

2020, (BTSAX,U) @ TsAU,Y) @ sP(Y, Z) @ TsC(Z,V) @ TsC(V, W)
UeOb A, VeObC

=L (DTSAX,U) @ sP(Y, 2) © TsA(U,Y) @ TsC(Z,V) ® TsC(V, W)
UeObA,VeObC

L 1819y@IeL P TsAX,U) @ sP(Y, Z) @ TsAP(Y,U) @ Ts€(Z,V) @ TsC(V, W)
UeObA,VeObC

LIS, ODTSA(X,U) @ sP(Y, Z) ® sC,(P(Y. 2),QU, V) @ Tse(V, W)
UeObAVeObC

Liower WEL (DTsAX,U) @ sP(Y, Z) @ Cy(sP(Y, Z), s9(U, V) ® TsC(V, W)
UcObA,VeObC

ch
ZEEL N TSAX,U) ® sQU, V) © TsC(V, W)
UeObA,VeObe
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ZEL D sQUV) @ TSA(X,U) & TsC(V, W)
UeOb A,VeObC
PRRLALIN B QU V)@ TsAP(U,X) @ TsC(V, W)
UeOb A,VeObC
Y SQ(U V) @ sC (U V), QX))
UeOb A,VeObC

Ties') P sV V) ®C(sQU, V), sQ(X, W) 20 s0(X, W)
UeOb A,VeODbC

As in the proof of Proposition [[.1.9, the above composite can be transformed as follows:
(=) TsA(X,Y) ® sP(Y,Z) @ TsC(Z,W)
L $P(Y, Z) @ TsA(X,Y) @ TsC(Z, W)

LE20e0ENE0, AN Py, Z) @ TSAP (Y, U) @ TsAP (U, X)

UeObA,VeObC
® TsC(Z,V) @ TsC(V,W)

ZIOECL DY sP(Y. Z) © TsAP(Y,U) © TsC(Z,V) ® TsA®(U, X) ® TsC(V, W)
UeObA,VeObC

PR P sP(Y. 2) @ sC(P(Y, 2),QU, V) @ sC, (AU, V), (X, W)
UeObA,VeObC

S 1es~ 1es 11 P sP(Y, 2) @ C(sP(Y, Z), sQ(U, V) @ C,(sQ(U, V), sQ(X, W)
U€Ob A, VEOD e
> (ev ®1) vt
Llevrelevt, w)].

Applying the already mentioned identities Agc(y ® v) = YA, (eVCH‘@l) eVCk = (1®
ms*) ev, and (s7' @ s ymg* = —bg*s ™!, we find:
t-bY = (=) [TsAX,Y) @ sP(Y, Z) ® TsC(Z, W)
L sP(Y, Z) @ TsA(X,Y) @ TsC(Z, W)
1L $P(Y, Z) @ TsAP(Y, X) @ TsC(Z, W)
1EBE, (N SP(Y, Z) @ TsA(Y.U) @ TsA®(U, X) @ TsC(Z,V) @ Tse(V, W)

UeObA,VeObeC
S, D sP(Y, Z) @ TsA®(Y, U) @ TsC(Z,V) @ TsA™ (U, X) © TsC(V, W)
UeObA,VeObeC
= N sP(Y, Z) © sCu(P(Y. Z), QU, V) ® sC, (Q(U, V), Q(X, W)
UeObA,VeObeC

Ck
=L (Y, Z) @ sCu(P(Y, Z), 9(X, W)

L P (Y. 2) @ (DY, 2), s2(X, W) <5 sQ(X, W)
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Similarly, composite ([.1.11]) equals
— ()M @10 A)1®b] @ 1) =—[TsA(X,Y)®sP(Y,Z) @ TsC(Z,W)
Lo®1880, P TsAX,U) @ TsA(UY) @ sP(Y, Z) @ TsC(Z,V) @ TsC(V, W)

UeOb A, VeObC
2B (NTSA(X,U) @ sP(Y, Z) @ TsA(U,Y) @ Ts€(Z,V) @ TsC(V, W)
UeOb A,VeObC
2 191er9lel, P TsAX,U) @ sP(Y, Z) @ TsAP (Y, U)
UeObA,VeOb €
® TsC(Z,V) @ TsC(V, W)

LI, INTSA(X,U) @ sP(Y, Z) © sC(P(Y, Z), P(U, V) © TsC(V, W)

UeObA,VeObC
571
L W, D TSAX,U) @ sP(Y, Z) © G (sP(Y, Z), sP(U, V) @ TsC(V, W)
UecObA,VeObC
ch

L N TSAX,U) © sP(U, V) © TsC(V, W)

UeObA,VeObC
EL @) V)0 AR ) @ TV IY)

UecObA,VeObC

00 A SPU.V) @ TsAP(U, X) © TsC(V. W)
UeObA,VeObC

LD sPUV) ® G (PU. V), AX, W)
UeObA,VeObC
= evCr
ZI @D sPUV) @ GPUL V), QX W) Z55 s0(X, )]
UeOb A, VeObC
= ()" TsA(X,Y) ® sP(Y, Z) @ TsC(Z, W)

BL sP(Y, Z) @ TsA(X,Y) @ TsC(Z, W)

L02ENER, (AN P(Y, Z) ® TsAP (Y, U) @ TsA® (U, X)

UeObA,VeObC
@ TsC(Z,V) @ TsC(V, W)

LI, P sP(Y, 2) @ TsAP(Y,U) @ TsC(Z,V) @ TsA®(U, X) ® TsC(V, W)

UeObA,VeObe

21 PP, 2) @ sC(P(Y, 2), P(U,V)) @ sC(P(U, V), 9(X, W)
UeObA,VeObC

¥ 1@s~11]@s1[1] EBS(P(Y, Z)®@ C(sP(Y, Z),sP(U,V)) @ Cu(sP(U, V), sQ(X, W))
UeObA,VeObC

5 (v @1) eve
AN

sQ(X, W)]
= (=) [TsA(X,Y) @ sP(Y, Z) @ TsC(Z,W)
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L eP(Y, Z) @ TsA(X,Y) @ TsC(Z, W)

“DEL SP(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)

18208280, P sP(Y, 2) @ TsAP(Y,U) @ TsA® (U, X) ® TsC(Z,V) @ TsC(V, W)
UeOb A, VeObC

ZIOECL D sP(Y. Z) © TsAP(Y,U) © TsC(Z,V) ® TsA®(U, X) © TsC(V, W)

UcObA,VeObC

ZIEEL OB P(Y, Z) @ sC(P(Y, 2), P(U,V)) © sCu(P(U, V), (X, W)

UeObA,VeObC
Ci
1L (Y, 2) @ sCL(P(Y, 2),Q(X, W)
12 W sp(Y, Z) @ Cu(sP(Y, Z), sQ(X, W) <5 sQ(X, W)].

By ([EI2), expression (.I.1J) can be written as follows:
t-be— (=) (A ®@1® Ag)(1®by @ 1)i
=M ®1® Ay)(1®1®1)(pry®1 & pry)bem
— () (A ®1® Ap)(1 @ pry®1 @ pry@1)(1 ® by @ 1)E
=1 - by — (=) (1@ byy ® 1),
therefore
tobg — (9) (Ao ®1@A)(1®by @)= (=) TsAX,Y)®sP(Y,Z) ® TsC(Z,W)

B sP(Y,Z) @ TsA(X,Y) ® TsC(Z, W)
L $P(Y, Z) @ TsAP(Y, X) @ TsC(Z, W)

2, sP(Y, Z) @ sC(P(Y, Z), Q(X, W)

Cy Q
1o SP(Y, Z) @ Cu(sP(Y, Z), sQ(X, W) <5 sQ(X, W) 20 s0(X, W)]
— [TsA(X,Y)® sP(Y,Z) @ TsC(Z, W)
P

1000l P A(X,Y) @ sPY, Z) @ TsC(Z, W)

BL sP(Y,Z) @ TsAX,Y) ®@ TsC(Z, W)

0L $P(Y, Z) @ TsAP(Y, X) @ TsC(Z, W)

= sP(Y, 2) ® sC(P(Y, 2), (X, W))

b (v, 2) © CsP(Y, 2), 59(X, W) 25 5Q(X, W)
= (=) TsAX,Y) @ sP(Y, Z) @ TsC(Z,W)

BL sP(Y,Z) @ TsA(X,Y) ® TsC(Z, W)

0L $P(Y, Z) @ TsAP(Y, X) ® TsC(Z
ﬁ) S:P(Ya Z) 2 Sg]k(:P(Ya Z)a Q(X7 W)

W)

\_//_\
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1®s (1] evCk -bOQOf(bg)(J@l) evCk
—_—

sP(Y,Z) ® Cu(sP(Y, Z), sQ(X, W)) sQ(X, W)).

The complexes sP(Y, Z) and sQ(X, W) carry the differential —b},. Since ev is a chain
map, it follows that ev< by — (b, ®1) ev& = —(1 ®m%”‘) ev®. Together with the relation
brrs~1[1] = s~1[1]mS* this implies that
toby — (5) (Ao ®1@AN1 @b @ 1) = (=) [TsAX,Y) ® sP(Y, Z) ® TsC(Z,W)
BL sP(Y,Z) @ TsA(X,Y) ® TsC(Z, W)
2L $P(Y, Z) @ TsAP(Y, X) @ TsC(Z, W)
bk
L SP(Y, 2) @ sC(P(Y, Z),Q(X, W)
1®s711]
—_—

SP(Y, Z) @ C(sP(Y, Z), sQ(X, W) 25 sQ(X, W)].

Finally, notice that

— ()M R1e1+1010b%i=—[TsAX,Y)®sP(Y,Z) ® TsC(Z,W)
B4 sP(Y, Z) @ TsA(X,Y) @ TsC(Z,W)
DL $P(Y, Z) @ TsA®(Y, X) @ Ts€(Z, W)

10 @1+10b%)7

1@s~11] evCk }

sP(Y,Z) @ C(sP(Y, Z),sQ(X, W)) Z— sQ(X, W)

Summing up, we conclude that (td)" = (=) (c®@ (1 ®v® 1)(1 ® R)(1 ®@ s7[1]) ev%,
where

R = [TsA®(Y, X) @ TsC(Z, W)

Aog®Ag @TS.AOP(Y, U) 2 TS.AOP(U’ X) ® TSG(Z, V) ® TSC(V, W)
UeObA,VEObEC

B (NTSAP (Y, U) © TsC(Z, V) © TsA®(U, X) & TsC(V, W)
UeOb A, VeObC

Yot o T\ Ck
OO S (P(Y, 2), Q(X, W)

F b — (=) (T @1+ 1@b%)F =[S — (=) (" @1+ 1268 = [rB],

by the Proposition B.2.15, which says how to recover the (¢, )-coderivation r from its
components, and by formula (B.3.3) for the component B;. The claim follows.

Let us prove that the constructed chain maps are compatible with composition. Let
o, 0, x : AP, C — G be A-functors, and let P, Q, T be the corresponding A-C-bimodules.
Pick arbitrary r € sAx (A%, C;Cy)(¢,v) and q € sA (AP, C;C,) (¢, x), and denote by
t = (rs1)® and u = (¢s~')® the corresponding bicomodule homomorphisms. We must
show that

tou=((rs' @ gs my="" )0 = () (r @ ) Bys 0.
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Again, it suffices to prove the equation (¢ -u)¥ = (=) ((r ® q)Bys~1)®]V. We have:

(t-u) =t-u=(A®10A)(1®t® 1)U

= (=) [TsAX,Y) @ sP(Y, Z) @ TsC(Z, W)

SEL, (DTSAX,U) @ TsA(U,Y) @ sP(Y, Z) @ Ts€(Z,V) @ TsC(V, W)

UeObA,VeObe

ZEPEL (NTSAX,U) @ sP(Y, Z) © TsA(UY) ® TsC(Z,V) © TsC(V, W)
UeOb A, VeObC

2 181878181, PTsAX.U) @ sP(Y, Z) @ TsA®(Y,U) @ Ts€(Z,V) ® TsC(V, W)

UeObA,VeObC

=L (NTSA(X,U) @ sP(Y, Z) @ sC(P(Y, 2),Q(U, V) @ TsC(V, W)

UeObA,VeObC

w @TsA(X, U)®sP(Y,Z)® C(sP(Y, Z),sQ(U,V)) @ TsC(V, W)
UeOb A, VeObC

P TsAX,U) @ sQU, V) ® TsC(V, W)
UeObA,VeODbC

=L DU, V) © TsA(X, U) @ TsC(V, W)
UeObA,VeObC

=10, (Y sQ(U, V) @ TsA® (U, X) ® TsC(V, W)

UeObA,VeObe

Z1, DY sQ(U, V) © sC, (U, V), T(X, W)
UeObA,VeObC

> 1es711)

=

3 1®evtk @1
_—

52U, V) @ G (sQ(U, V), sT(X, W) =225 57(X, )]
UeOb A, VeObC

— (=) [TsA(X,Y) ® sP(Y, Z) @ TsC(Z, W)
L $P(Y, Z) @ TsA(X,Y) @ TsC(Z,W)
LR, (NSP(Y, Z) @ TsA™ (Y, U) ® TsA® (U, X) © TsC(Z,V) © TsC(V, W)
UceObA,VeObC

B sP(Y, 2) @ TsAP(Y,U) @ Ts€(Z,V) @ TsA®(U, X) @ Ts€(V, W)
UeObA,VeObC

=L PPV, 2) @ sCUPY, 2), (U, V)) @ sC(A(U, V), T(X, W)
UecObA,VeObC

> 1@s~1[1@s1[1] P sP(Y, 2) © Cu(sP(Y, Z), sQ(U, V) ® Cu(sQ(U, V), sT(X, W)
UeObA,VeObC

Y 19181
R

S (evCk ®1) evCr
e

sT(X, W)]
= (=) TsAX,Y) @ sP(Y, Z) @ TsC(Z,W)
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L sP(Y, Z) @ TsA(X,Y) @ TsC(Z,W)
EL SP(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)
1020820, (N sP(Y, Z) @ TsA®(Y,U) @ TsAP (U, X) @ TsC(Z,V) @ TsC(V,W)

UeOb A, VeObC
ZIEEEL PPV, 2) @ TsAP(Y,U) @ TsC(Z,V) @ TsAP(U, X) © TsC(V, W)
UeObA,VeObC
ZI ONGP(Y, Z) @ sC(P(Y. 2), QU V) @ sC (U, V), T(X, W)
UeObA,VeObC

Cy
2y, 7) @ sC(P(Y, Z), T(X, W)

1o W sp(Y, Z) © Cu(sP(Y, Z), sT(X, W) =5 sT(X, W)].

It remains to note that by (B.3.3) and (B-3.4)

[(r®q)Bs]Y = [TSAOP(Y, X)®TsC(Z,W)

20820, P TsAR(Y,U) @ TsAP(U, X) © Ts€(Z, V) @ TsC(V, W)
UeObA,VeObC

2L ONTSA® (Y, U) © TsC(Z, V) ® TsA® (U, X)  TsC(V, W)
UecObA,VeObe

S F®@q @ sC (P(Y,2),9(U, V) ® sC,.(Q(U, V), T(X, W))
U€ObA,VEODE
Cx

=2 SCU(P(Y, Z), T(X, W),

and (=) = (=)et (=) 0Fat D)+l — (et (ydeglr@a)Bal+1 - The claim follows from the
definition of ®.

Both dg-categories A-C-bimod and A (A, C; C,) are unital. The units are the iden-
tity morphisms in the ordinary categories Z°(A-C-bimod) and Z°(Ax (AP, €; C,)). The
dg-functor ® induces an isomorphism Z°® of these categories. Hence, Z°® is unital. In
other words, ® is unital. The proposition is proven. O

Let us write explicitly the inverse map @' : A-C-bimod(P, Q) — A (AP, C; C,) (¢, v).
It takes a bicomodule homomorphism ¢ : TsA ® sP @ TsC — TsA ® sQ ® TsC to an
Aoo-transformation rs™! € A (AP, €; C,)(¢, ¢) given by its components

®1

F= (=) [TsAP(Y,X)®@ TsC(Z,W) — TsA(X,Y) ® TsC(Z,W)
wer, (5P, Z), sP(Y, Z) @ TsA(X Y) ® TsC(Z, W)

SO, ¢ (sP(Y, 2),59(X, W) 2 s (v, 2), 9, W))]. (4.1.14)

The isomorphisms ® and ®~! yield a tool that allows to move back and forth between
the language of A, -functors and A.-bimodules.
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4.2. Regular A, -bimodule

Let A be an A,-category. Extending the notion of regular A,-bimodule given by
Tradler [B9, Lemma 5.1(a)] from the case of A..-algebras to A.,-categories, define the
reqular A-A-bimodule R = R4 as follows. Its underlying graded quiver coincides with A.
Components of the codifferential b® are given by

b = [TsA @ sA @ TsA 225 TsA 2 5A),

where Hrsa is the multiplication in the tensor quiver T'sA, see Remark B.2.11. Equiva-
lently, b, = bt 1., k,n = 0. Flatness of b® in form (1) is equivalent to the A..-iden-

tity b* - b = 0. Indeed, the three summands of the left hand side of ([E1.9) correspond
to three kinds of subintervals of the interval [1,k 4+ 1 + n] N N. Subintervals of the first
two types miss the point k£ + 1 and those of the third type contain it.

4.2.1. Definition. Define an A, -functor Hom, : A®, A — C, as the A,-functor ¢*
that corresponds to the regular A-A-bimodule R = R 4.

The A.-functor Hom,4 takes a pair of objects X,Z € ObA to the chain complex
(A(X, Z), my). Components of Homy4 are found from equation (f.1.7):

(Homa)gn = [TFsAP(X,Y) @ T"sA(Z,W) 225 TFsA(Y, X) @ T"sA(Z, W)
wer C(sAX, Z2), sA(X, Z) @ TR sA(Y, X) @ T"sA(Z, W)

Co(L(e®D)b, 1)

g]k(s‘A(Xa Z)a S‘A(Y W))
[ 1]3
4.2.2. Proposition. For an arbitrary A..-category A,
k Hom,4 = Homy 4 : kA® K kA — K.

Proof. Let X, Y, U,V € ObA. Then

—1

kHomyu = [AP(X,Y) @ A(U, V) SHemahor @xlonjos

C]k

CAX,U), A(Y,U)) @ C(AY,U), A(Y, V) = G (A(X, U), A(Y, V))].
According to (f:2.J) and to the identity [-1] = C,. (s, 1) - G, (1,571),

s(Homy)1os ' = [A(Y X) 5 sA(Y, X) C% C(sA(X, U), sAX, U) @ sA(Y, X))

S0, € (AKX, U), sA(Y, U)) EPERTD, ¢ (X 1), AY, D))

C[A(Y, X) 225 C(A(X, U), AX, U) @ A(Y, X)) =222,

C(1,chbas™1)

Ck( (X> U),S.A(X, U) ®5‘A(K X)) gk(‘A(X7 U)a‘A(K U))]

= [A(Y, X) 255 CA(X, U), A(X, U) @ A(Y, X)) =25,

Qk(1=m2)
—_

gk(‘A(X7 U)7 ‘A(K X) ® ‘A(X’ U)) QH«(‘A(X’ U)’ ‘A(Ya U))} : (4'2'2)
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Similarly we obtain from equation ([L.2.1])

s(Homp)gis™" = [A(U, V) = sA(U,V)

coevTik, Cx Ck(S-A(Y U) S.A(Y U) X S.A(U V))

S, C(sA(Y, D), sAY, V) 0 CUA(Y, U), A(Y, V)]

Ck(l ma)

= [A(U.V) 2% LAY D), AY.U) © AU, V) <572 C(A(Y. D), A(Y, V).

It follows that

kHomy = [A(Y, X) ® A(U,V)

MO, C(A(X, V), A(X,U) @ A(Y, X)) © CAY, U), A(Y,U) ® AU, V)

Qk(lvcm2)®gk(1vm2)

GAX,U), A(Y,U)) @ G (AY, U), A(Y, V)

Cx
My

Equation (B.I1.0]) allows to write the above expression as follows:

kHomy = [A(Y, X) ® A(U,V)
oo, CAX, U, AX, U) @AY, X) @ AU, V)

C(1,ema®1)
= 5

C(AX,U),AY,U) 2 AU, V))

S, (A(X,U),A(Y, V)]

= [A(Y, X)®@ A(U,V)

o, CLAX, U), AKX, U) @ A(Y, X) @ A(U, V)

SO, (AKX, U),AY, X) @ A(X,U) @ AU, V))

G (1,(m2®1)mo)
— (

= Homyg,

by (B:I.2). The proposition is proven. O

4.2.3. The Yoneda A..-functor. The closedness of the multicategory A, implies that
there exists a unique A -functor # : A — A (AP; C,) (called the Yoneda Au-functor)
such that

Hom = [A%P, A 22 A% AL (A C) 225 ¢ ].

Explicit formula (B.3.6) for evaluation component evﬁg" shows that the value of % on an
object Z of A is given by the restriction A..-functor

2% = H? = H = Homu|! : A% — C,, X — (A(X, Z),m1) = Homa(X, Z)
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with the components
HkZ = (HOHlA)kO

= (-D*[T*sAP(X,Y) == = C.(sA(X, 2),sA(X,Z) @ TFsA®(X,Y))

C]k(l“’ b]g.i,-l) 1]5
—_—

C(sA(X, Z), sA(Y, Z)) =255 sC(A(X, 2), A(Y, 2))], (4.2.3)

where w? = (2 e kfl lg) € Gky1, and W? is the corresponding permutation isomor-

phism. By (B:2.19), the & component of Hom, A} equals (1,0b %) evye. Equivalently,
components of the A, -functor HZ : A°®? — C, are determined by the equation

8®kH]€ZS*1 ( 1)k(k+1)/2+1 [Tk AOp(X Y) coevclk

Qk(lvwgmﬁ.t,_l)

Qk(‘A(X7 Z)v‘A(X> Z) ® Tk‘Aop(X7 Y)) QH«(‘A(X’ Z)"A(Yv Z))}

An A -functor of the form HZ : A°® — C,, for some Z € Ob.A, is called a representable
A -functor.

Since evf® vanishes unless m < 1, formula (B:3.7]) for the component evi® implies
that the component (Homy)g, is determined for n > 1, k > 0, by %, which is the
composition of %, with

ry 1 $A (AP C)(H? HY) — Cu(TFsAP(X,Y), sC (X H? Y H™)),
as follows:
(Homu)p, = [TFsAP(X,Y) @ T"sA(Z,W)
L8k, TESAP(X,Y) @ Gy (TFsAP(X,Y), sCL(A(X, Z), A(Y, W)))
o, SCIA(X, Z), A(Y, W))].

Conversely, the component %, is determined by the components (Homy ), for all & > 0
via the formula

D = [T"sA(Z, W) =2 wert, ¢ W(TFsAP(X,Y), TFsAP(X,Y) @ T"sA(Z,W))
g]k( 7(H0mA)kn)
_

Co(TFsAP(X,Y), sC(A(X, Z), A(Y,IV)))].
Plugging in expression (f.2.1]) we get

Dt = [T"sA(Z,W) covte, C (TFsA®(X,Y), TFsAP(X,Y) @ T"sA(Z,W))

Qk(l,coevck)

Co(TFsAP(X,Y),
C(sA(X, Z),sA(X, Z) @ T sA®(X,Y) @ T"sA(Z,W)))

G (.G (1@ (@b, 1)

Co(TFsAP(X,Y), G (sA(X, Z), sA(Y,WV)))

S o (TFsAP(X,Y), sC(A(X, Z), A(Y, W)))].

We will see in Section [I.4 that % is a unital A, -functor if A is a unital A,-category. In
this case, it is homotopy fully faithful as we prove in Appendix [.
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4.3. Operations on A, -bimodules

4.3.1. Restriction of scalars. Let f: A — B, g: € — D be A, -functors. Let P be a
B-D-bimodule, ¢ : B? D — C, the corresponding A..-functor. Define an A-C-bimodule
7P, as the bimodule corresponding to the composite

Ao e L9, oo p 2

Its underlying graded span is given by ;P (X,Y) = P(Xf,Yg), X € ObA, Y € ObC.
Components of the codifferential 6%s are found using formulas ([£1.6) and (1.8):

b7 = [TsA(X,Y) @ sP(Y f, Zg) @ TsC(Z, W)
Bl sP(Y f, Zg) ® TSAX,Y) @ TsC(Z, W)
DL PV f, Zg) @ TsA®(Y, X) ®@ TsC(Z, W)
MO, (v £, 29) © sCUP(Y £ Zg), P(X [, W)
W $P(v 1. Z9) © Cu(sP(Y £, Zg). sP(X [, Wg)) “ sP(X [, Wg)]
= [TsA(X,Y) @ sP(Y [, Zg) @ TsC(Z,W)
8189, PeB(X L, Y ) @ sP(Y f, Zg) @ TsD(Zg, Wg)
L $P(Yf, Zg) @ TsB(X [, Y f) @ TsD(Zg, Wg)
0L sP(Y f, Zg) @ TsBP(Y f, X f) ® TsD(Zg, W
Yf,Zg) Yf,Xf) (Zg,Wg)

120 (Y 1, Z9) © sC(P(Y f, Zg), P(X [, Wg))

Aes711], sP(Yf,Zg9) @ C(sP(Y f, Zg),sP(X f,Wg)) o sP(Xf,Wg)],
57— [TsA(X,Y)® sP(Y f, Zg) @ TsC(Z,W) R
P
sP(Yf, Zg) Joo, sP(Y f, Zg)].

These equations can be combined into a single formula
B0 = [TsA(X,Y) @ sP(Y f, Zg) @ TsC(Z, W) L2,

TsB(Xf,Yf)®sP(Y f, Zg) ® TsD(Zg, Wg) 2 sP(X f,Wg)]. (4.3.1)

Let f: A — B be an A,-functor. Define an (idpg4, ids.4)-bicomodule homomorphism
th : Ry =A — ;B = ;(Rg); of degree 0 by its components

i = [TsA(X,Y) ® sA(Y, Z) ® TsA(Z, W) 2 TsAX, W) L sBOXF, W F)].
or in extended form,
t], = [sA(Xp, Xs—1) @ -+ @ sA(X1, Xo) @ sA(Xo, Zo)

® SA(Zo, Z1) @ -+ @ SA(Zny, Zn) L SB(Xf, Zof)]. (4.3.2)
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We claim that /d = 0. As usual, it suffices to show that (+/d)” = 0. From the identity
) =t/ brFe)r —pRa i = (A @1® Ag)(1 @ @ 1)bF2)s
—('R101+1010 M — (Ag®1® A)(1® ™ @ 1)i
it follows that
(t'd)Y = [TsA(X,Y) ® sA(Y, Z) @ TsA(Z,W)

220, B TsAX,U) @ TsA(U,Y) ® sA(Y, Z)
UVeObA
® TsA(Z,V) @ TsA(V, W)

2SN TSA(X,U) ® TsA(U,V) @ TsA(V, W)
UVeObA

ZEEL Y TSAX.U)@ sBUL V) @ TsA(V, W)
U,VeOb A

ZIEEL D TSBXL,US) @ sBUSVE) @ TsBV S, W)
UVeObA

L1, peB(X W) s sBXF, W )]
— [TsA(X,Y) @ sA(Y, Z) @ TsA(Z, W)

VSISO P A(X,Y) @ sA(Y, Z) @ TsA(Z, W)
Lo, T AX, W) L sB(XF, W )]
— [TsA(X,Y) @ sA(Y, Z) @ TsA(Z, W)

2020, (BTSA(X,U) @ TsA(U,Y) @ sA(Y, Z)
U,VeOb A
® TsA(Z,V) @ TsA(V,W)

2SN TSA(X,U) ® TsA(U,V) @ TsA(V, W)

U,VeOb A
iA
VO, (D TSA(X,U) @ sA(U, V) ® TsA(V. W)
U,VeOb A

ZHTea, s A(X, W) L sB(XF,W )]

Likewise Section [LJ we see that the equation (t/d)Y = 0 is equivalent to f - b® = b* - f.

4.3.2. Corollary. Let f: A — B be an A, -functor. There is a natural A, -transforma-
tion r/ : Homy — (f°P, f) - Homg : A%, A — C, depicted as follows:

‘Aop"A HomA Qk
o
Ber, B

It is invertible if f is homotopy full and faithful.
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Proof. Define 1/ = (t/)®71s € sA (AP, A; C,)(Homy, (f°F, f) Homs), where

O AL (AP A; C,) — A-A-bimod

is the isomorphism of dg-categories from Proposition [E.1.3, and ¢/ : A — ;B is the closed
bicomodule homomorphism defined above. Since ® is an invertible chain map, it follows
that r/ is a natural A,-transformation. Suppose f is homotopy full and faithful. That
is, its first component f; is homotopy invertible. This implies that the (0, 0)-component

xztho = [k 5 G (sA(X, Z), sA(X, 2)) <1,
Cu(sA(X, 2),sB(X [, Z)) 2 sCA(X, 2), B(X f, Z1))],

found from (EI.14)) and (f:3.3), is invertible modulo boundaries, thus r/ is invertible by
Lemma B.4.T1. The corollary is proven. O

4.3.3. Opposite bimodule. Let P be an A-C-bimodule, ¢ : A°®, € — C, the corre-
sponding A..-functor. Define an opposite bimodule PP as the C°P-A°P-bimodule corre-
sponding to the A -functor

A (X; C)(0) = (ide, idger) xz2 ¢ = [Ts€ R TsAP S TsA® R TsC % TsC,].

Its underlying graded span is given by P?(Y, X) = P(X,Y), X € ObA, Y € ObC.
Components of the differential 6™ are found from equations (EL.0) and (E1.3):

b7" = [TsCP(W,Z) ® sPP(Z,Y) @ TsA®(Y, X)
L, ¢P(Y, Z) ® TsCP(W, Z) ® TsA®(Y, X)
L $P(Y, Z) @ TsC(Z, W) @ TsA®(Y, X)
22 $P(Y, Z) @ TsA®(Y, X) @ TsC(Z, W)
198 PV, 2) @ sC(P(Y, Z2), P(X, W)

L PV, 2) @ CL 5PV, 2), PX W) S5 sP(X, W) = sPP(W, X)]

= [TsC®(W, Z) @ sP®(Z,Y) @ TsA®(Y, X)

W, Ps A% (Y, X) @ sP(Y, Z) @ TsCP(W, Z)

1P
1R1®Y TsA(X,Y)® sP(Y,Z) @ TsC(Z,W) >, sP(X, W) = sPP(W, Xﬂ?

pro ®1®prg
_

. P>
by" = [TsCP(W,X)®sPP(Z,Y)®TsA®(Y, X) sP(Y, Z) 22 Py, Z)].
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These equations are particular cases of a single formula

b7 = [TsCP(W,Z) ® sPP(Z,Y) @ TsA®(Y, X)

W s AP (Y, X) @ sP(Y, Z) @ TsCP(W, Z)

B TSA(X,Y) @ sP(Y, Z) @ TsC(Z, W) L5 sP(X, W) = sPP(W, X)]

— —[TsC®(W, Z) ® sP*(Z,Y) @ TsAP(Y, X)
W, ps AP (Y, X) @ sPP(Z,Y) @ TsC®(W, Z)
T, TeA(X,Y) ® sP(Y, Z) @ TsC(Z, W)

P sP(X, W) = sPP(W, X)]. (4.3.3)
4.3.4. Proposition. Let A be an A -category. Then R} = R o0 as A°P-A°P-bimodules.

Proof. Clearly, the underlying graded spans of both bimodules coincide. Computing b%4
by formula ({.3.3) yields

P = —[TsA®(W, Z) @ sA®(Z,Y) @ TsA®(Y, X)

W Ps AP (Y, X) @ sAP(Z,Y) ® TsA®(W, Z)

XY, TSA(X,Y) ® sA(Y, Z) @ TsA(Z, W) 225 TsA(X, W)
P SAX, W)
—[TsA® (W, Z) @ sA®(Z,Y) @ TsA®(Y, X)
praa%® g gor (W, X) L TsA(X, W) 2 sA(X, w)]
since v : TsA® — TsA is a category anti-isomorphism. Since b4 = by, it follows

that 04" = —yb* : TsA®(W, X) — sA(W, X), therefore

b = [TsA®(W, Z) @ sA(Z,Y) @ TsAP(Y, X ) L242,

TsAP(W, X) X0 sA® (W, X)] = b%er
The proposition is proven. 0
4.3.5. Corollary. Let A be an A..-category. Then
Hom gop = [TsA K TsAP S TsA® K TsA 104 TsC,].

4.3.6. Duality A, -functor. The regular module k, viewed as a complex concentrated
in degree 0, determines the duality As-functor D = H* : C,°® — C,.. It maps a complex
M to its dual (C (M, k), m;) = (C(M,k),—Cy(d,1)). Since C, is a differential graded
category, components Dy, vanish if k£ > 1, due to (f:22.3). The component D, is given by

Dy = — [Sglkop(Mv N) = Sgk(Na ) m ¢ (Sgk(Mv k)? Sglk(Ma k) ® Sglk(Na M))
Cye
S, € (5Cu (M, K), G, (N, )
[-1] s
- glk(gk(M’ k)v Qlk(Nv k)) - Sgk(glk(M7 k)’ gk(N’ k))} .
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It follows that

sDys™t = [P (M, N) = C, (N, M) =25,

Cy(Lems)

g]k(gk(Ma k)v gk(Mv k) ® g]k(Na M)) gk(gk(Ma k)v gk(Na k))} )
cf. (£.2.2). Equation (R.1.4) implies that kD = X(—, k) : kC,? = KX°? — kC, = K.
4.3.7. Dual A -bimodule. Let A, C be A, -categories, and let P be an A-C-bimodule
with a flat (1,1, 1, %, b%)-connection bv* : TsA ® sP @ TsC — TsA® sP @ TsC, and let

7 : TsAPRTsC — TsC, be the corresponding A.-functor. Define a dual C-A-bimodule
P* as the bimodule that corresponds to the following A..-functor:

0" = As(X: C)((¢7)P - D) : €, A — C.
Equivalently,

¢7" = [TsCP R TsA 5 TsAR TsCP 22,

TsA®RTsC 25 TsC, 2 TsC 2 TG, (4.3.4)
The underlying graded span of P* is given by Ob, P* = Ob; P = Ob €, Ob, P* = Ob, P =
ObA, P*(X,Y) = C(P(Y,X),k), X € ObC, Y € ObA. Moreover,
0" = ¢ pry
= [TsCP(Y, Z) @ TsA(X, W)

B, s po (W, X) @ TsC(Z,Y)

= SC(P(W, Z), (X, V)
2O G(sCPXY). ), sG(P(XY). B) @ sC(P(W. 2), P(X, )

Qk(l,cbg]k
—_

L Cu(sCu(P(X, V), K), sCu (P(W, Z), )

T CUC(P(X,Y), k), C(P(W, Z), k)

i> Sgk(gk(?(X7 Y)v k)’ gk([‘P(VV’ Z)’ k))}
(the minus sign present in v : sC,°° — sC, cancels that present in D;). According to
(EL9),
b7 = [TsC(X,Y)® sP*(Y,Z) @ TsA(Z,W)
L $PHY, Z) @ TsC(X,Y) @ TsA(Z, W)

L $PHY, Z) @ TsCP(Y, X) @ TsA(Z, W)

28 sPHY, Z) @ TsA(Z, W) @ TsCP(Y, X)

"D, s PHY, Z) @ TsA®(W, Z) @ TsC(X,Y)

1997, P (Y, Z) @ sCu(P(W, X), P(Z,Y))

1®coev k
_—

S:P*(Ya Z) ® gk(sgk(?(za Y)v k),
Sgk(T(Za Y)a k) ® Sg]k(:P(Wa X)v :P(Za Y)))
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1®Qk(1,cb§k) " % % evCk *
— 2 5P, Z) @ Cu(sP*(Y, Z), sPH(X, W) = sP*(X, W)]

= [TsC(X,Y) ® sP*(Y, Z) @ TsA(Z,W)

(123).

—= TsA(Z, W)@ TsC(X,Y) ® sP*(Y, Z)
YR1®1 T TsAP(W, Z) @ TsC(X,Y) @ sP*(Y, Z)
T € POV, X),P(Z,Y)) & 5C(P(Z,Y),K)

Ci

B sCU(PW, X), k) = sPH(X, W],
by properties of closed monoidal categories. Similarly, by (f.1.§)

) pro ®1®prg
_—

by = [TsC(X,Y)® sP*(Y,Z) ® TsA(Z,W

sPH(Y, 7) S

where d is the differential in the complex ¢¥(Z,Y) = P(Z,Y).

4.3.8. Proposition. Let A be an A, -category. Denote by R the regular A-bimodule.
Then

sP (Y, Z)],

¢* =Hom%, -D : AP A — C,.
Proof. Formula ([£.3.4) implies that

6% = [TsAP R TsA < TsARKTsA® 2
TsAP R TsA —25 TsC, 5 TsC® 2 TsC,]

= [TsAP R TsA 220 TsAR TsAP 5
TsAP K TsA =24 TsC, 5 TsC,% 2 TsC,].

By Corollary 3.5, Hom gor = [T'sA K TsA®P % TsA%P K TsA —2 Homa, 7sC «], therefore

HOonp
e

¢% = [TsAP R TsA 25 TsAR TsAP TsC, 5 TsC,%® 2 TsC,]

— [TsA® R TsA —2%, psc,o 2, 7sC,).
The proposition is proven. 0

4.4. Unital A..-bimodules

4.4.1. Definition. An A-C-bimodule P corresponding to an A.-functor ¢ : A, € — C,
is called wunital if the A, -functor ¢ is unital.

4.4.2. Proposition. An A-C-bimodule P is unital if and only if, for each X € ObA,
Y € Ob C, the composites

i(‘? P
[sP(X,Y) = sP(X,Y) @k —2% sP(X,Y) @ sC(Y,Y) 2 sP(X,Y)],

C[sPX,Y) 2 ko sP(X,Y) 2L sA(X, X) @ sP(X,Y) 20 sP(X,Y)]

are homotopic to the identity map.
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Proof. The second statement expands to the property that

sTleyi§pors™!

[sP(X,Y) P(X,Y)® C(PX,Y), PX,Y)) 255 sp(X, V)],

Qxif pros1

[sP(X, Y) = PX,Y)®C(P(X,Y),P(X,Y)) oves, sP(X,Y)]

are homotopic to identity. That is,

Ylo( o1le ) — Lepx,vys € Imby, xig (¢10 %00 ) — Lspxy)s € Imby
for all X € ObA, Y € ObC. By Proposition B.4.§, the A,.-functor ¢ is unital. O
4.4.3. Remark. Suppose A is a unital A,-category. By the above criterion, the regular

A-bimodule R 4 is unital, and therefore the A, -functor Hom, : A°®, A — C, is unital. In
particular, for each object Z of A, the representable A..-functor

H? = Homy|? : A — C,
is unital, by Corollary B-4.9. Thus, the Yoneda A.-functor & : A — A (A%®;C,)

takes values in the full A,-subcategory AZ (AP; Gy ) of A (A°P; Cy). Furthermore, by the
closedness of the multicategory Al , the A -functor % is unital.

Let g : € — A be an A,-functor. Then an A-C-bimodule AY is associated with it via
the A.-functor

AT = [A% € 1% a4 12 pov A (A C) 275 ¢
— [A%P, € 2% AP A 2224, . (4.4.1)

4.4.4. Proposition. Suppose that the A.-categories A and C are unital. Then the
A-C-bimodule AY is unital if and only if g is a unital A..-functor.

Proof. The “if” part is obvious. For the proof of “only if” part, suppose that A.-func-
tor (.4.1) is unital. Let us prove that g : € — A is unital. Denote by f the composite
g-Y :C— AL(AP; Cy). The Aw-functor

=A™, € 1L a0 A (A% C) 275 ¢ ]
is unital by assumption. The bijection

P A (€ A (AP G)) — A (AP, € Cy)
shows that given f’ can be obtained from a unique f. The bijection

M AL (G AL (AP C)) — AL (AP, 6 C,)

shows that such A.-functor f is unital.
Thus, the composition of g : € — A with the unital homotopy fully faithful A..-functor
Y A — AL(AP; G ) is unital. Applying the multifunctor k, we find that the composite

k€ % kA X2 kAL (AP; C,)

is a unital K-functor, and the second K-functor is unital and fully faithful. It is an
elementary category theory fact that kg is a unital K-functor. Indeed, since the above
composite is unital, for each object X of C,

15 u (go Xg X kAS (A°P3Cy)
[k—>k@(X X)—>k.A(Xg,Xg)—>A (AP C ) (H* H g)}:llﬁ .
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On the other hand, since k% is unital, it follows that

k.A ) o
[k X, kA(Xg, Xg) LESN! (Aop C )(ng’HXg)] _ 12%(A ,gk).

Since k% is fully faithful, we conclude that (15¢)kg = 1% o S0 that kg is a unital K-functor,
and therefore ¢ is a unital A-functor. O

As we already noticed, A-C-bimodules are objects of the dg-category A-C-bimod
isomorphic to the dg-category A (AP, €; C,). By Proposition [[.4.9, the full differential
graded subcategory of A-C-bimod consisting of unital A-C-bimodules is isomorphic to the
dg-category AL (AP, C; C,).

4.4.5. Proposition. Suppose A and C are unital A..-categories. There is a homotopy
fully faithful A-functor AL (C; A) — AL (AP, C; Cy), g — AY. In particular, A-functors
g,h : @ — A are isomorphic if and only if the bimodules A9 and A" are isomorphic.

Proof. The functor in question is the composite

AL (1;% P50
BT A (@ AL (AP C,)) S A (A, € C,).

AL(CA)

Since A is unital, # : A — A (A°P; C,) is homotopy fully faithful by Proposition [A.§.
Thus, the claim follows from Lemma B.4.18. O

4.4.6. Proposition. Let A, C be A, -categories, and suppose A is unital. Let P be an
A-C-bimodule, ¢” : A°?, @ — C, the corresponding A..-functor. The A-C-bimodule P is
isomorphic to A9 for some A..-functor g : ¢ — A if and only if for each object Y € Ob C
the Ay-functor ¢*|¥ : A°® — C, is representable.

If conditions of the proposition are satisfied, the A-C-bimodule P is called repre-
sentable, and an A,-functor g : € — A such that P = AY is said to represent P.

Proof. The “only if” part is obvious. For the proof of “if”, consider the A.-functor
f= (") Hp") : € — AL (AP C,). It acts on objects by Y — ¢%|Y, Y € ObG,
therefore it takes values in the dg-subcategory Rep(A°P, C,) of representable A, -functors.
By Corollary A7, the Ay -functor % : A — Rep(A°,C,) is an A-equivalence. Denote
by W : Rep(A°; C,) — A a quasi-inverse A,-functor to #". Let g denote the A.-functor
f-¥:C— A. Then the composite g-% = -V % : C — A (A%®; () is isomorphic to
f, therefore the A..-functor

(g D) = [AP, e 19, gop A A (A% C) ovee, G,

corresponding to the bimodule A9, is isomorphic to = (f) = ¢*. Thus, AY is isomorphic
to P. O

4.4.7. Lemma. If A-C-bimodule P is unital, then the dual C-A-bimodule P* is unital as
well.

Proof. The Ay-functor ¢” is the composite of two A..-functors, (¢7)°P : A, CP — C, P
and D = H* : C,°® — C,. The latter is unital by Remark [EZ.3. The former is unital if
and only if ¢” is unital. O
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4.5. A-modules

As-modules are particular cases of A,-bimodules discussed above. That is why state-
ments about A,,-modules are only formulated for the record.

Consider the monoidal category (2/5, ®) of graded quivers with a fixed set of objects
S. When S is a l-element set, the category (2/S5,®) reduces to the category of graded
k-modules used by Keller [26] in his definition of A.-modules over A.-algebras. Let
C, D be graded coalgebras; let ¢ : ' — D be a morphism of graded coalgebras; let
0: M —- M®Cand § : N - N ® D be counital comodules; let f : M — N be a
y-comodule homomorphism, fé = §(f ® ¢); let £ : C — D be a (¥, 1)-coderivation,
EAg = Ag(v ® €+ £ ®1). Define a (v, f,£)-connection as a morphism r : M — N of
certain degree such that the diagram

M— MeC

rl lf®£+r®1ll

N N®D

commutes, compare with Tradler [F9]. Let (C,b) be a differential graded coalgebra.
Let a counital comodule M have a (1, 1,b%)-connection ¥ : M — M of degree 1, that
is, M6 = (1 @ b° + b ® 1). Its curvature (b*)? : M — M is always a C-comodule
homomorphism of degree 2. If it vanishes, b™ is called a flat connection (a differential)
on M.

Equivalently, we may consider the category (%2/S,®) of differential graded quivers,
and coalgebras and comodules therein. For A.-applications it suffices to consider coal-
gebras (resp. comodules) whose underlying graded coalgebra (resp. comodule) has the
form T'sA (resp. sM® T'sC).

A C-comodule with a (1, 1,b%)-connection is the same as an (A, C')-bicomodule P with
an (id,, id¢, idp, b4, b9)-connection b¥ : P — P of degree 1, where (A,b4) is the trivial
differential graded coalgebra k with the trivial coactions.

Let M € Ob 2/S be a graded quiver such that M(X,Y) = M(Y') depends only on Y €
S. For each quiver € € Ob 2/S, the tensor quiver C' = (T'sC, Ay) is a graded coalgebra.
The comodule § =1 ® Ag: M = sM ® TsC — sM® T's€ ® T'sC is counital. Let (€,b°)
be an A,-category. Equivalently, we consider augmented differential graded coalgebras
of the form (T'sC, Ay, b%). Let ™ : sM ® T'sC — sM ® T'sC be a (1,1, b%)-connection.
Define matrix coefficients of b to be

W= (1®in,) - "M - 1®pr,): sMT"sC — sM®T"sC, m,n > 0.

Coefficients b)% : sSM ® T™s€ — sM are abbreviated to b and called components of ™.
A version of the following statement occurs in [B4, Lemme 2.1.2.1].

4.5.1. Lemma. Any (1,1,b%)-connection b™ : sM @ T's€ — sM @ T'sC is determined in
a unique way by its components b)': sM® T"s€ — sM, n > 0. Matrix coefficients of b™
are expressed via components of b™ and components of the codifferential b® as follows:

L =00, @1+ Y 1R @ 1% sM @ T™sC — sM @ T"sC

p+k+g=m
p+1+g=n

for m > n. If m < n, the matrix coefficient b)\, vanishes.
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The morphism (b™)? : sM ® T's€ — sM ® T's€ is a (1, 1,0)-connection of degree 2,
therefore equation (b™)? = 0 is equivalent to its particular case (b™)?(1 @ pry) = 0 :
sM ® TsC — sM. Thus b™M is a flat connection if for each m > 0 the following equation
holds:

D, @1+ Y (1P bl @199b),, =0: sM@T"sC — sM. (4.5.1)
n=0 pt+k+g=m

Equivalently, a T'sC-comodule with a flat connection is the T'sC-comodule (sM ®T'sC, b™)
in the category (%2/S, ®). It consists of the following data: a graded k-module M(X) for
each object X of €; a family of k-linear maps of degree 1

DM sM(Xo) ® 5C(Xo, X1) @ -+ - @ 5C( X1, X)) — sM(X,), n >0,

subject to equations ([£5.1]). Equation ({E5.1) for m = 0 implies (5)")? = 0, that is,
(sM(X), B)Y) is a chain complex, for each object X € Ob €. We call a T'sC-comodule with
a flat connection (sM® T'sC,b™), M(*,Y) = M(Y), a C-module (an A, -module over C).
C-modules form a differential graded category C-mod. The notion of a module over some
kind of A.-category was introduced by Lefevre-Hasegawa under the name of polydule

4.5.2. Proposition. An arbitrary A.-functor ¢ : € — C, determines a T'sC-comodule
sM @ T'sC with a flat connection b™ by the formulas: M(X) = X ¢, for each object X of

C, ' = s7tds : sSM(X) — sM(X), where d is the differential in the complex X ¢, and for
n >0

b = [sM(Xo) ® sC(Xo, X1) ® - - - ® sC(X—1, X)
1®¢n

— sM(Xp) @ sC (M(Xo), M(X,))

B9 M(X) © Cu(M(X0), M(X,)) S5 M(X,) S sM(X)]. (4.5.2)
This mapping from A.-functors to C-modules is bijective. Moreover, the differential
graded categories A (C; C,) and C-mod are isomorphic.

An A,-module over € is defined as an A-functor ¢ : € — C, by Seidel [A§, Section 1j].
The above proposition shows that both definitions of C-modules are equivalent. In the
differential graded case C-modules are actively used by Drinfeld [IJ].

Notice that a graded quiver M € Ob £2/S such that M(X,Y) = M(Y) depends
only on Y € S is nothing else but a graded span M with Ob;M = {x}, Ob,M = S.
Thus, T'sC-comodules of the form sM ® T's€C are nothing else but T'sA-TsC-bicomodules
TsA ® sM ® TsC for the graded quiver A with one object * and with A(x,*) = 0.
Furthermore, A,-modules M over an A..-category C are the same as A-C-bicomodules.

4.5.3. Definition. Let € be a unital A,-category. A C-module M determined by an
Axo-functor ¢ : € — C; is called unital if ¢ is unital.

4.5.4. Proposition. A C-module M is unital if and only if, for each X € Ob@C, the
composition

1®xi§

[sM(X) = sM(X) ® k SM(X) ® sC(X, X) 2 sM(X)]

is homotopic to the identity map.
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Proof. The second statement expands to the property that

[M(X) & sM(X) @k 29 i(x) @ se(X, X)

Ci

s 1 ev S
S M(X) ® Cu(M(X), M(X)) =5 M(X) 5 sM(X)]
is homotopic to the identity map. That is,
xi§p1s™ = Lo + Um%ka or, xigr = Lyx)s+ ’USb%k-

In other words, the A,-functor ¢ is unital. O






CHAPTER 5

Serre A, -functors

Having worked out A..-bimodules, it is now easy to define Serre A,-functors. Namely,
an A-functor S from a unital A,-category A to itself is a (right) Serre functor if it
represents the dual of the regular A-A-bimodule. Assembling results of Chapters P, f,
and [, we prove that a Serre A,-functor S : A — A gives rise to a Serre K-functor
kS : kA — kA. If k is a field, then the induced functor in the homotopy category H°(A)
is an ordinary Serre functor. Moreover, it turns out that the k-Cat-multifunctor k reflects
Serre functors, meaning that a unital A,-category A admits a Serre A, -functor if and
only if kA admits a Serre K-functor. If k is a field and the cohomology of A is finite
dimensional, then a Serre A, .-functor S : A — A, if it exists, is homotopy fully faithful.
Furthermore, if k is a field and A is closed under shifts, then the existence of a Serre
A-functor is equivalent to the existence of an ordinary Serre functor H°(A) — HY(A).
In particular, if a triangulated category € is the homotopy category of a pretriangulated
A-category A in the sense of [B], and € admits a Serre functor, then A admits a Serre
A-functor.

The definition of Serre A..-functor via A.-bimodules was suggested to the author by
Volodymyr Lyubashenko. It was also his idea to consider as an example the strict case
of Serre A,-functors. Proposition p.2.1] is mainly his contribution. The results of this
chapter have been published in [HT].

5.1. Basic properties of Serre A, -functors

Let us make formal the definition of Serre A..-functor given in the introduction to the
chapter.

5.1.1. Definition (cf. Soibelman [fI]], Kontsevich and Soibelman, sequel to [BI]). A
right Serre Aoo-functor S : A — A in a unital A, -category A is an A.-functor for

Hom 4

which the A-bimodules A° = [AOP,A L5, AP A —— Qk] and A* are isomorphic. If,
moreover, S is an A,-equivalence, it is called a Serre A -functor.

By Lemma [.4.7] and Proposition [l.4:4, if a right Serre A, -functor exists, then it is
unital. By Proposition .43, it is unique up to isomorphism.

5.1.2. Proposition. If S : A — A is a (right) Serre A -functor, then kS : kA — kA is
a (right) Serre K-functor.

Proof. Let p : A — A* be an isomorphism. More precisely, p is an isomorphism

(1,5) - Homy — Hom$,, -D : A, A — C,.

173
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We visualize this by the following diagram:

AOP,ALAOF’,A

p
Homfop l / lHom A

cr—2 ¢
Applying the k-Cat-multifunctor k, and using Lemma B.5.1], Proposition [[.2.3, and results
of Section [.3.6, we get a similar diagram in K-Cat:

KA & kA 2%, | 490 ) kA

k;
Homfjﬁopl / lHomkA
9_{(771]()

KPP —— K

Since kp is an isomorphism, it follows that kS is a right Serre K-functor.
The A.-functor S is an equivalence if and only if kS is a K-equivalence. O

When A is an A-algebra and S is its identity endomorphism, the natural transfor-
mation p : A — A* identifies with an oo-inner-product on A, as defined by Tradler [F9,
Definition 5.3].

5.1.3. Corollary. Let A be a unital A-category. Then A admits a (right) Serre
Ao-functor if and only if kA admits a (right) Serre X-functor.

Proof. The “only if” part is proven above. Suppose kA admits a Serre K-functor. By
Proposition P.2.5 this implies representability of the K-functor

Homy 4 (Y, =) - K(—, k) = k[Hom 4(Y, —)? - D] : kA°® — K = kC,,
for each object Y € ObA. By Corollary A6 the A,-functor
Homa(Y, =) - D = (Hom(}, -D)|} : A — C,

is representable, for each Y € ObA. By Proposition ff.4.§ the bimodule A* corresponding
to the A-functor Hom%,, - D is isomorphic to A for some A-functor S: A — A. O

5.1.4. Corollary. Suppose A is a Hom-reflexive A.,-category, i.e., the complex A(X,Y)
is reflexive in K for each pair of objects X, Y € ObA. If S : A — A is a right Serre
Aso-functor, then S is homotopy fully faithful.

Proof. The X-functor kS is fully faithful by Proposition .2.4. O

5.1.5. Definition. A unital A,-category A is called closed under shifts if the K-category
kA is closed under shifts.

In [B] a different, but equivalent, definition of A.,.-categories closed under shifts is
given. In particular, a pretriangulated A.-category in the sense of [ is closed under
shifts. We are not going to pursue the subject here.

The above corollary applies, in particular, if k is a field and all homology spaces
H™"(A(X,Y)) are finite dimensional. If A is closed under shifts, the latter condition is
equivalent to requiring that H°(A(X,Y)) be finite dimensional for each pair X, Y € ObA.
Indeed, H*(A(X,Y)) = H'(KA(X,Y)) = H'(A(X,Y)[n]) = HO((kA)I(X,0), (V,n))).
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The K-category kA is closed under shifts by definition, therefore there exists an isomor-
phism «a : (Y,n) — (Z,0) in (kA)U, for some Z € ObA. It induces an isomorphism

(kA)I(1,0) : (kAT((X,0), (Y, n)) = (kA((X,0),(Z,0) = kA(X, Z)
in K, thus an isomorphism in cohomology
H"(A(X,Y)) = H'((kA)((X,0), (Y, n))) = H(KA(X, 2)) = H*(A(X, 2)).
The latter space is finite dimensional by assumption.

5.1.6. Theorem. Suppose k is a field, A is a unital A.-category closed under shifts.
Then the following conditions are equivalent:

(a) A admits a (right) Serre A-functor;

(b) kA admits a (right) Serre X-functor;

(c) H'A oo H?(kA) admits a (right) Serre gr-functor;

(d) H°(A) admits a (right) Serre k-linear functor.

Proof. Equivalence of (a) and (b) is proven in Corollary p.I.3. Conditions (b) and (c)
are equivalent due to Proposition P.3.3, because H® : X — gr is an equivalence of sym-
metric monoidal categories. Condition (c) implies (d) for arbitrary gr-category by Corol-
lary R.3.3, in particular, for H*A. Note that H*A is closed under shifts by the discussion
preceding Proposition P.3.§. Therefore, (d) implies (¢) due to Proposition P.3.§. O

An application of this theorem is the following. Let k be a field. Drinfeld’s construc-
tion of quotients of pretriangulated dg-categories [[J] allows to find a pretriangulated
dg-category A such that H°(A) is some familiar derived category (e.g. the bounded de-
rived category D?(X) of coherent sheaves on a projective variety X). If a right Serre
functor exists for H°(A), then A admits a right Serre A, -functor S by the above the-
orem. That is the case of H(A) ~ D’(X), where X is a smooth projective variety [d,
Example 3.2]. Notice that S : A — A does not have to be a dg-functor.

5.1.7. Proposition. Let S : A — A, S’ : B — B be right Serre A, -functors. Let
g : B — A be an A -equivalence. Then the A, -functors S'g: B — A and ¢S : B — A
are isomorphic.

Proof. Consider the following diagram:

o L5 o
Bopr B Bop B
g°P.g y
(r9)°p 1,5 9
HOII]O,BF.Op <N: ‘AOP’A _ ‘AOP7‘A <N: HomB
Aop %‘
D
op
gk glk

Here the natural A, -isomorphism 79 is that constructed in Corollary [£.3.3. The exterior
and the lower trapezoid commute up to natural A..-isomorphisms by definition of right
Serre functor. It follows that the A.-functors (¢°P,S’¢g) - Homy : B°®,B — C, and
(g°?, gS) - Homy : B?, B — C, are isomorphic. Consider the A,-functors
’ 4 A% (9°P;1)
B 20 AL AL (A C) S AL (B C)
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and

y AL (g°P;1
B 25 A 2 AL (A C) S AL(BC)

that correspond to (¢°?,5’g) - Homy : B?, B — C, and (¢°P, gS5) - Homy : B?, B — C,

by closedness. More precisely, the upper line is equal to (fAEO)_l((g"p, S’g) - Homy) and

the bottom line is equal to (¢*>)~1((¢°, gS) - Hom), where

P L AL (B AL (B Cy)) — AL (B, B; C,)

is the natural isomorphism of A.-categories coming from the closed structure. It follows
that the A.-functors S"-g- % - Al (¢g°®;1) and g - S - % - A% (g°P;1) are isomorphic.
Obviously, the A.-functor ¢° is an equivalence, therefore so is the Ao-functor AL (g°P; 1)
since A% (—;C,) is an A -functor, see Example B.4.17 and the discussion preceding it.
Therefore, the Ao-functors S’ - ¢-% and ¢g-S - % are isomorphic. However, this implies
that the As-functors (1,5’g)-Homy = ¢*=(5"-g-%) and (1, ¢S)-Homy = > (g-5-%)
are isomorphic as well. These A,-functors correspond to (A, B)-bimodules A%'9 and A9S

respectively. Proposition [.4.5 implies an isomorphism between the A.-functors S’¢g and
gS. O

5.2. The strict case of Serre A, -functors

Let A be an A, -category, let S : A — A be an A.-functor. The (0, 0)-component of
a cycle p € A (AP, A; C)(AS, A*)[1]7" determines for all objects X, Y of A a degree 0
map

k = TsAP(X, X) @ TsA(Y,Y) 2%
sC(A(X,YS), A*(X,Y)) “ Cu(A(X, Y'S), G (A(Y, X), k).

The obtained mapping A(X,YS) — C, (A(Y, X),k) is a chain map, since pgos 'm; = 0.
Its homotopy class gives ¢y y from (B-2.]]) when the pair (.S, p) is projected to (kS, 1 = kp)
via the multifunctor k.

Let us consider a particularly simple case of an A.-category A with a right Serre
functor S : A — A which is a strict A.-functor (only the first component does not
vanish) and with an invertible natural A..-transformation p : A% — A* : A® A — C,
whose only non-vanishing component is

Poo - TOS‘AOP(Xa X) ® TOS‘A(Yv Y) - Sgk(‘A(Xa YS)7 Qk(‘A(Yv X)a k))
The invertibility of p, equivalent to the invertibility of pyy, means that the induced chain

maps 7o : A(X,YS) — G (A(Y, X), k) are homotopy invertible, for all objects X, Y of
A. General formula (B.3.3) for pB; gives the components (pBi)gy = poob: and

(pB1)kn = ([(1,5) Homa)in @ poo)bs® + (poo ® [Hom<D, - D]xn)bs* (5.2.1)
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for k+n > 0. Since p is natural, pB; = 0, thus the right hand side of (5.2.1]) must vanish.
Expanding out the first summand we get

() [THsA (Xo, Xi) & T"sA(Ya, Vo)
coer™, Ci (8A(Xp, Yp9), sA(Xo, Yo S) @ TFsA®(Xo, Xi,) @ T"sA(Yy, Ya,))

C(1,pe(18FF1RSE™ )by 14nT00)

g]k (S-A(Xm YE)S)a Sgk(‘A(Ym Xk)? k))

s sCy (A(Xo, YS), G (A(Ya, Xi), K))].

Expanding out the second summand we obtain

— (=) [T*sAP(Xo, Xi) @ T"sA(Yy, Ya)

coevk

2 C(sA(Y, Xi), sA(Yn, Xi) ® TFsA®(Xo, Xi) @ T"sA(Yo, Yy))

G (1,(123)c (1018w?))

Co(sA(Y, Xi), T"sA(Y0, Yy) ® sA(Yn, Xi) @ TFsA(Xy, Xo))
Sllboiit), € (SA(Y,, Xi), sA (Yo, Xo)) 5 5Cy (A(Ya, Xi), A(Yo, Xo))
oot L (8A(Xo, Y0S), sA(Xo, YoS) @ sCy (A(Yr, Xi), A(Yo, Xo)))
Ci(1,(roo®1)cba)
—>

Gy (sA(Xo, Y0S), sC(A(Yr, Xi), k)
0 5C, (A(Xo, Y59), Gy (A(Yar, X K)) .

The sum of the two above expressions must vanish. The obtained equation can be sim-
plified further by closedness of Cx. The homotopy isomorphism rgg induces the pairing

eVC
goo = [A(Y, X) @ A(X,YS) “2% A(Y, X) @ Cu(A(Y, X), k) <5 K],
Using it we write down the naturality condition for p as follows: for all £ > 0, n > 0,

[A(Yr, Xp) @ TRA(X, Xo) © A(Xo, YoS) @ T"A(Yp, Yr)

(193©(sS15~ 1)) (1@Mp 4 14n)

A(Y,, X3) @ A(X, YaS) 25 K]

= (=) FFODTA(Y,,, Xi) @ TFRA(X), Xo) @ A(Xo, YoS) @ T"A(Y), V)
(1234

——5 T"A(Yy, Yy) @ A(Y,, Xi) @ TFA(X, Xo) ® A(Xo, YoS)
T A (Yo, Xo) © A(Xo, YoS) M5 K] (5.2.2)
Let us give a sufficient condition for this equation to hold true.

5.2.1. Proposition. Let A be an A -category, and let S : A — A be a strict A-functor.
Suppose given a pairing qoo : A(Y, X)®A(X,YS) — k, for all objects X, Y of A. Assume
that for all X,Y € ObA

(a) qoo is a chain map;
(b) the induced chain map

roo = [A(X, YS) 225 CL(A(Y, X), A(Y, X) @ A(X, Y 5)) =% €, (A(Y, X),K)]

is homotopy invertible;
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(c) the pairing qoo is symmetric in a sense similar to diagram (R.2.11]), namely, the
following diagram of chain maps commutes:

AX,YS) @AY, X) 24X,V S) @ A(Y'S, XS)

Cl = lqoo (5.2.3)

q00

A(Y, X)® A(X,YS) k
(d) the following equation holds for all k > 0 and all objects Xy, ..., Xy, Y:

[A(Y, X)) @ TRA(X, Xo) @ A(Xo, YS) — A(Y, Xi) @ A(X, YS) 2% K]
= (—)I“rl [A(Y, Xi) ® T’“A(Xk, Xo) @ A(Xy, YS)
my4®1 A(Y, X()) ® ,A(X()’ YS) 400, k} (524)

Then the natural A.-transformation p : A5 — A* : A®°, A — C, with the only non-
vanishing component pog : 1 — rqq is invertible and S : A — A is a Serre A -functor.

Notice that (p-2:4) is precisely the case of (p-2-9) with n = 0. On the other hand,
diagram (E:2.11)) written for the X-category € = kA and the pairing ¢ = [goo] says that
(b:2.3) has to commute only up to homotopy. Thus, condition (c) is sufficient but not
necessary.

Proof. We have to prove equation (5.2.9) for all k > 0, n > 0. The case of n = 0 holds by
condition (d). Let us proceed by induction on n. Assume that (5.2.3) holds true for all
k>0,0<n<N. Let us prove equation (5.2.2) for k > 0, n = N. We have

() VO (13524), - (Miy1ix © 1) - doo

—
=

= (=) DD (1354) - (1 @ Migig1) * oo
(—)*"™(12345), - (Mipip1 @ 1) - - qoo

2 (-

= (_

—
=

*(12345). - (Mirs1 ® $S157") - qoo
k2193 © 551571 @ 1) - (12345), - (Mis1 @ 1) - oo

~— ~—

fbyk)l (19 @ sSs @ 1) - (190 @ T (sS15™)) - (1@ Mmkssn) - oo :
This is just equation (5.2.2) for k, n. O

Some authors like to consider a special case of the above in which S = [d] is the shift
functor (when it makes sense), the paring ggo is symmetric and cyclically symmetric with
respect to n-ary compositions, cf. [L0, Section 6.2]. Then A is called a d-Calabi-Yau
Ao-category. General Serre A, .-functors cover a wider scope, although they require more
data to work with. A detailed study of Calabi-Yau A..-categories is a possible subject
for future research.



APPENDIX A

The Yoneda Lemma

A version of the classical Yoneda Lemma is presented in Mac Lane’s book [E4], Sec-
tion I11.2] as the following statement. For any category €, there is an isomorphism of
functors

mCat(G,Set)

evO2 = [@ x Cat(C, Set) L% Cat(€, Set)* x Cat(€, Set) Set],

where % : C°? — Cat(C, Set), X — C(X, —), is the Yoneda embedding. Here we gener-
alize this to A.-setting. The following formulation of the Yoneda Lemma was suggested
to the author by Volodymyr Lyubashenko.

A.1. Theorem (The Yoneda Lemma). For any A.-category A there is a natural A -trans-
formation

Hom A
Q:evh — [A, As (i G) T An(A; G)™, A (i G) ———5 G,

If the A-category A is unital, § restricts to an invertible natural A..-transformation

AU

A A (A &) T Ci

Q
M H %&M@

&(AS Qk)OP,Aé(A;Qk)

Previously published A..-versions of Yoneda Lemma assert that for a unital A -cat-
egory A, the Yoneda A,-functor & : A® — AJ (A;Cy) is homotopy full and faithful

[[6, Theorem 9.1}, [BY, Theorem A.11]. A more general form of the Yoneda Lemma is
con51dered by Seidel [., Lemma 2.12]. We will see that these are corollaries of the above
theorem.

Proof. First of all we describe the A, -transformation €) for an arbitrary A..-category A.
The discussion of Section [.3.]] applied to the A..-functor

Aco (A;Cy)

0= [A A (A C) 270 A (A; G, A (A Cy) — G

presents the corresponding A°P-Ay(A; Cy)-bimodule Q = 5Ax(A; Gy )1 via the regular
As-bimodule. Thus,

(X, f), sboos ™) = (A (A; C)H™, f), sB1s™).
According to (£2.3) H* = A°(—, X) = A(X, —) has the components

HX = (Homae)go = [TFsA(Y, Z) 225 € (sA(X,Y), sA(X,Y) @ TEsA(Y, Z))

G (1,07
SO, ¢ ALY, SAX, 2)) 2

1]3

sCA(X,Y),A(X, Z))]. (A.1.1)

179
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We have b3, = B; and, moreover, by ([£3.1))

b = [TsAP(Y, X) @ sQ(X, f) ® TsAx(A; C) ([, 9)
ZEE, oA (A G (HY , HY) @ sAx(A; C)(HY, f) ® TsAx(A: C)(f, 9)
By sAw(A; C)(HY , g) = s9(Y, 9)].

Since Ay (A; C,) is a differential graded category, B, = 0 for p > 2. Therefore, b2, = 0 if
n > 1, and b, = 0 if £ > 0. The non-trivial components are (for k& > 0)

by = [TFsAP(Y, X) ® sQ(X, ) ® T°sAx(A; C.)(f. f)
T 5P (A C) (HY HY) @ sAs(A; C,)(HY, f)
s sAso(A; G (HY, ) = sQ(Y, £)],
by = [TPsAP(X, X) ® sQ(X, [) ® sAx(A; CG)(f. 9)
s 5Pso(A; G (HY, g) = sQ(X, )], (A.1.2)

Denote by € the A°P-A, (A; C,)-bimodule corresponding to the evaluation A.-functor

: A A% (A; C) — G, For any object X of A and any A-functor f : A — C; the
complex (&(X, f),sbS,s7 ) is (X f,d). According to (E1.6)

be = [TsAP(Y, X) @ s€(X, f) ® TsAx(A; G)(f, 9)
L s&(X, f) ® TsAP(Y, X) ® TsAw(A; C,)(f. 9)
1L sE(X, f) @ TsA(X,Y) @ TsAx(A: C)(f. 9)
199 S€(X, f) @ sC,(X £, Yg)
S X1 @ S A, Yot 25 Vol = sE(Y, g)]

Explicit formulas (B:3.0) and (B=3-7) for evA= show that b$ = 0 if n > 1. The remaining
components are described as

by = [THsAP(Y, X) ® s€(X, f) @ T sAx(A; C)(f, f)
L se(X, f) @ T sA®(Y, X)
T SE(X, f) @ TFA(X,Y)
Bl X1 @ sCUX 1, Y )

1®s7 1]
_—

X fl1] @ Cu(XF1], Y F[1]) <5 Y f1] = sE(Y, f)]
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for £ > 0, and if k£ > 0 there is
b = [T"sAP(Y, X) ® s€(X, f) @ sAx(A; C,)(f, 9)
5 SE(X ) @ THSA(Y, X) © sAn(A; C)(f, 9)
L S8(X, f) @ TFSA(X,Y) ® sAx(A; G (f, 9)
LI SE(X, f) @ THSA(X,Y) @ C(T sA(X,Y), sC(X f,Y g))
12, X f[1) @ sCu(X [, Yg)
S X A1 @ G S Yglt]) 2 Voll] = s€(Y.g)].
The A..-transformation €2 in question is constructed via a homomorphism
U=(Qs P : TsAP ® s ® TsAx(A; C) — TsA® @ sQ @ T'sAx(A; C)
of T'sAP-T'sAx(A; Cy)-bicomodules thanks to Proposition [l.1.3. Its matrix coefficients

are recovered from its components via formula ([L1.3) as

Ukl;mn = Z (1®m ® OPQ & 1®n) :
m+p=Fk

gtn=l
TFsA® @ s€ @ T'sAx(A; ) — T"sA® ® sQ ® T"sAL(A; Cy).
The composition of the morphism
By T75A (X0, X,) © Xpfolt] © TUsA (A G (o, fy) — sAs(A; CH™, £,)
with the projection
pr,, : sAL(A; G (H™, f,) — C(T"sA(Zy, Zy,), sCy (A(Xo, Z0), Znfy)) (A.1.3)

is given by the composite
Opgin = Opq - PI,, = (_)p+1 [TpS-AOp(XOa Xp) ® Xpfol[1] @ TsAx(A; C) (fo, fo)

coevC, C(sA(Xo, Zy) @ T"sA(Zy, Zy,),
sA(Xo, Zo) @ T"sA(Zy, Z) @ TPsA®(Xo, X,) @ Xpfo[l] @ T?sAx(A; C) (fo, 1))

Sx(l,perm) Cu(sA(Xo, Zo) @ T"sA(Zo, Zn),
X, foll] © TPSA(X,, Xo) © sA(Xo, Zo) @ T"sA(Zo, Z,) ® T'5Ass(A: G (fo. £2))

A
Qk(Ll@eVpiolJrn,q)

Cy(sA(Xo, Zo) @ T"sA(Zo, Zn), prO[l] ® Sglk(prOa anq))

SIS, €, (sA(Xo, Z0) © T"sA(Zo, Zo), Xpfoll] © Cul Xy fol1), Zufo 1)

Qk(lvev k

Ci(sA(Xo, Zo) @ T"sA(Zo, Zn), Zn f4[1])

(¢%)~2

E— Qk(T"S.A(ZO, Zn)a gk(S‘A(Xm ZO)a anq[l]))
SO, (175 A(Zo, Z0), sCu(A(Xo, Zo), Zof,))]. (A1.4)

Thus, an element 71 ® -+ ® 2, QY X r; ® --- @1, € TPsAP(X(, X,) ® X,fo[l] ®
T5Ax(A; G ) (fo, fg) is mapped to an A,-transformation (21 ® -+ - ® 2, VYR M @ - ®
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Tq)Opq € sAx(A; C) (H™, f,) with components
(21 @ @z, QY1 Q- ®1y)Vpgln : T"sA(Zy, Zyn) — sC(A(Xo, Zo), Znfy),
20 Q2 (210 Q2L ® QLY ® - ®7¢) U,

where 0/ % (18" @ Upgn) ev® = (187 @ U, - pr,,) ev = (12" @ U,,) evhy is given by

pg;n
Gl = (=P [T A(Zo, Z0) © T7SA™ (X0, X,) @ X, fo[1] @ T95Ase (A3 Co) (o, )
O, C(sA(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z,)
® TPsAP(Xo, Xp) @ X, foll] @ T9sA(A; Co)(fo, fq))
S, ¢ (8A(Xo, Zo), X fol1] ® TPSA(X,, Xo)
® sA(Xo, Zo) @ T"sA(Zo, Zn) @ TsAx(A; ) (fo, fq))

G (1, 1®evA®

pTind) Cu(sA(Xo, Zo), Xp fol1] @ sCu(Xpfo, Znfy))
COT, € (sA(Xo, Zo), Xpfoll] © CulXpfol1], Zufol1))

Cu(sA (X0, Zo), Zufy[1]) 25 5CL(A(Xo, Z0), Zufy)]

It follows that Uy : TPsA®P ® s€ @ T9sAx(A; C,) — sQ vanishes if ¢ > 1. The other
components are given by

= (=) T"sA(Zy, Zn) ® TPsAP(Xo, Xp) @ X, f[1]

Qk(LeVCk)
—

z5;9071
0o, € (sA(Xo, Zo), sA(Xo, Zo) ® T"sA(Zo, Z)
® TPsA (X, X,) © X, f[1])
Cr(sA(Xo, Zy), Xp f[1] @ TPsA(X,, Xo)
® sA(Xo, Zo) @ T"sA(Zo, Zn))

M Cy(sA(Xo, Zo), Xp 1] @ sCu(Xp f, Znf))
S, G (5A(Xo, Z0), X 1] ® G 1), Zuf 1))

—1s

Ck(S.A(XQ,ZQ) Z f[ ]) — ka( (XQ,ZQ),an)] (A15)

Cy (1,perm)

Q]k(lvev k

and

Uy = (=) T"sA(Zo, Z,) @ TPsAP(Xo, X)) @ Xpf[1] @ sAx(A; G (f, 9)
oo, (3A(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)

® TPsA(Xo, X,) ® X, f[1] @ sA(A; G (f, 9))

gk(S.A(Xo, Zo), pr[l] (059 TPS.A(XP, Xo)
® sA(Xo, Zo) @ T"sA(Zo, Zy) @ sAx(A; C)(f, 9))

Qk(171®1®p+1+"®131”p+1+n)

Cy.(1,perm)
= 5

gk(S.A(Xo, Zo), pr[l] (059 TPS.A(XP, Xo)
X S.A(XQ, ZQ) X TnS.A(ZQ, Z, )
® C, (TPsA(X,, Xo) @ sA(Xo, Zo) ® T"sA(Zo, Zn), sCu (XS, Zng)))
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Q]k(lvl®evc]k)

gk(S‘A(XOa ZO)a pr[]'] & Sgk(pra an))
S1e T, ¢ (A (X0, Zo), X, F 1] © Cu (X, f (1), Zug[1)))

Cr(1,evtk)
(—> C (S.A(Xo, ZO)7 an[l])

1]3

sCu(A(Xo0, Zo), Zng)].-

The naturality of the A,-transformation €2 is implied by the following lemma.

A.2. Lemma. The bicomodule homomorphism U is a chain map.

Proof. Equivalently, we have to prove the equation Ub° = b¢0. In components, the
expressions

(O =Y (170 © Bpg @ 150 4o (A.2.1)
m—+p=~k
q+n=lI
. (A;C
OO = Y. (1% ®Le @1 1)@= @15 1 hprey  (A22)
p+tt+q=l
+ ) (15 @5 015 1) Omn (A.2.3)
et
+ Y (12 @b @12, ® Le ® 15 ac))Vatiie (A.2.4)
atu+c=k
must coincide for all k,1 > 0. Let us analyze this equation in detail. Since b2, = 0 unless

n =0 or (m,n) = (0, 1) it follows that the right hand side of ([A.2.1) reduces to

k
> (1% ® Upma)big + (Okim1 @ Liawaic))6-
m=0

Since A (A; Cy) is a differential graded category, sum ([A.2.9) reduces to

l
S (8 @l @15 e @B 1)U
p=1
-
+ (1®kop ® lse ® 1®(p (1) C,) ® By ® 13A( (AC ))6]“ 1-
1

[y

p

Since b = 0 if j > 1, sum (A23) equals

e

-1

(1550 ® b;‘im,o ® 1?&(A;gk))6ml + (124 ® b Aso(A:C, 1) Ok
0

3
Il

k
m -1
+ z : 1;®A°P ® bk m,1 ® 1®( () Q}k))Om,l—l'
m=0
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Sum ([A.2.4) does not allow further simplification. Therefore, the equation to prove is

k
> (120 @ Bpma)big + (Okim1 ® Liaw a6

m=0

I
=2 (10 ®Le® (v (1) c)®b® LAt A (A:C,) ) O
=1
1—1
+Z (125, ® Le@ 1507 @ By @ 150700 10y

m m I—
+ Z 1;®A0P ® b/f—m,O ® 1;8 (A;C) ml =+ Z 1?,40}) ® b/f—m,l ® 1?A(;.o(lf)l;gk))6m,lfl

_'_ Z 1‘(98‘/6{0" ® bﬁOp ® 1§£0P ® 188 ® 1;®Al4.0(‘/4;£k))6a+1+c7l.
at+utc=k

Write it in more detailed form using explicit formulas (E.1.9) for components of b<:

Y QUK —m,1

k
§ LN [TEA™ (X, Xp) @ Xefol1] ® T'sAse (A5 C,) (fo, 1)
m=1

5Poo (A5 C) (HXO, HX™) @ sAog (A; Go) (HY™, f1) 22 sAse(A; G (HY, f1)]
+ [T*sA%(Xo, X3) ® Xifol1] @ T'sAx (A; C) (fo, i) =25
Ace (A: C)(H™, fi) 25 sA(A; G (H™, f)]
1 [TF$AP (X, Xi) © Xifoll] @ T sAso (A C) (fo. fi) —20
A (A; G (H™X, f11) © sA (A5 C) (fin, f1) 22 sAs(A; G) (H, )]

) 1®k®1®1®p71®31®1®kp

[T*sA%(Xo, Xz) © Xy fol1] © T'sAx (A; C) (fo, fi

MN

p=1

Tks_AOP(XO, Xk;) X kao[l] ® TZSA;,O(.A; gk)(fo, fl) O, SA;.O(-A;QH()(HXO, fl)]
-1

[T*s A (Xo, Xi) © X fo[l] © T'sAx (A; G) (fo, fi) eel? ekt
p=1

T*sA®(Xo, X1) ® Xifo[1] © T A (A; C) (fos - -+ fomts fotts - -5 1)
D SAG(A; G (HY, )]

18M@bE_,, @19

M»

[T’“ SA(Xo, Xi) ® Xifo[l] ® T'sAx(A; C) (fo, f1)

3

T™SA™ (Xo, Xn) @ Xon fo[L] ® T'sAse (A; Co) (o, fi) == 5An(A; C) (H™, )]

1omghE_,, @111

M»

[T*sAP(Xo, Xi) @ X fo[1] @ T'sAx(A; §) (fo, fi)

3
=}
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T A% (Xg, X)) @ X fi[1] © T sAs(A: C) (1, fr) =25 sAso(A; C) (HXO, )]

1990 % ©19°0101®

— > [TFsAP(Xo, Xi) @ X fol1] @ T'sAx (A5 C) (fo, 1)
atu+c=k
Ta+1+cSA0p(XO’ s 7Xa7 XaJrua s 7Xk) 02y kaO[l] ® TZSA;”(‘Aﬂ g]k)(an fl)
S AL (A3 C(HY, £)] = 0
The above equation is equivalent to the system of equations
S-pr, = 0: T*sAP(Xo, Xi) @ X fo[1] @ T'sA(A; Co) (fo, f1)
- SC (TnS‘A(Z(]? ) SC (‘A(X07ZO)7anl>>7

where n > 0, and %, ..., Z, € ObA. By closedness, each of these equations is equivalent
to

(12" ® S -pr,)ev = (1®" @ S)evhr =0
T"sA(Zy, Zn) @ TFsAP(Xo, Xi) @ Xpfo[1] © T'sAx(A; C) (fo, 1)
— sC (A(Xo, Z0), Zufi)-

The fact that ev®= is an A-functor combined with explicit formulas (§:3.6) and (B:3.7)
for components of evA>~ allows to derive certain identities. Specifically, restricting the
identity [evA= & — (04K 1+ 1K B)evA~]pr; = 0: T'sA K T'sAy(A; C,) — sC, to the
summand T"sA(Zo, Z) ® sAx(A; C)(h, 1) @ sAx(A; C.) (¥, x) yields

®n

S (2, 22) @ A C)(6 )

KO, s A(Zy, Zi) @ Co(T7$A(Zo, Z), 3Gy (Zob, ZuX)) s 5Cu(Zot, Zo))]
= [T"sA(Zo, Zn) ® sAs(A; C) (0, 1) ® sAs(A; C) (¢, X)

L0 T A Zo, Z) @ 5Pso(As ) (%) s C,(Zot, Zoy))]
= N [T"5A(Zo, Za) @ sPso(A; C) (6, 1) @ 3R (A C) (1, )

p+q=n
perm

—— T"sA(Zy, Zp) @ sAx(A; §)(0,9) @ TUSA(Zp, Z1) ® 5P (A; §) (1, X)

v ® evA°° Sx

p b2
T sC (Zoo, Zy0) @ sC(Zp, Znx) — sCu(Zoo, an)}. (A.2.5)
Restricting the same identity to the summand T"sA(Zy, Z,) @ sAx(A; C,) (¢, 1) yields

[T75A(Zo, Z0) @ 5Po(A; C) (0, 9) 22 T"SA(Zo, Z) @ 5Ase(A5 C,) (6, 1)
LI, TS A(Zo, Za) © Co(T7A(Zo, Z), 5Co(Zo6, Zuth)) 5 5C,(Zo, Zot))]

— [T"5A(Zo, Zn) @ sAse(A; C) (6, 00) 220,
TS A(Zo, Z) © Ao s C) (6 0) 250 5C,(Zoh, Zot)]

Aco C]k

= [T"$A(Zo, Za) ® s (A C)(6,0) T 5C(Zob, Zuth) “ sC(Zob, Zut)]
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+ 3 [T75A(Zo, Z0) © sAo(A; C) (6, ) 22

pt+g=n

T7sA(Zo, Zy) @ sAx ( 1C)(0,0) ® TUsA(Zy, Zn) @ TR (A; C) (1, )

perm

evA"o ® ev Ck

Sl BN $C(Zob, Zpth) @ $Ca (Zyh, Zuth) 2 5Cy (Zoh, Zuth)]
p>0

+ 3 [T"sA(Zo, Z0) @ sAs(A; ) (0, 00)

p+q=n
TpS‘A(ZOa Zp) ® TOSA (‘A gk)(¢7 ¢) ® TqS‘A(Z ) Zn) ® SA (‘A Ck)(¢7 w)

evie ® evA°° Ck

s 5C(Zod, Zyd) @ sC(Zp, Zni)) o, sC.(Zoo, Znt))]

_ B
— Y [T5A(Zo Z0) © sAs(A; G (6,0) B
a+t+pB=n

Ta+1+ﬂ-A(ZOa ceey ZOM ZOH-t) RS Zn) ® SA;OO(‘A’ Qk)(¢7 w)

S0, € (ot )]

= [T"5A(Zo, Z0) ® Al A C)(6.) 55 €, (Zuo, Zu) " 5, (206, 2,0)
i § (T"sA(Zy, Z,) @ sAx(A; Cp) (0, 0) —
pﬂfpsmzo,zp) © 5Aw(A; C)(, 1) © TUsA(Zy, Zy) @ TOsAn(A: C) (4, ¢)

C]k

5, (Zod, Zyh) @ sy (Zyth, Zoth) > 5Co (Zoh, Zoth)]

perm

Aco Aco
evp1 ® evo

p>0
+ 3 [T"A(Zo, Za) © sAs(A; C) (6, 0)

pt+g=n
C

SCuZotb, Zpd) @ 5Cu(Zyb, Zuth) 2 5Co(Zo, Zuh)]

_ B8
— 3T [T7sA(Zo, Z) ® sBoo(A; G () L
a+t+pB=n

Aco
¢P®evql

T PsA(Zo, - Lo Dot - -+ Zn) © 5P (A; §) (0, 10)

evioo
— 5C(Zo¢, Znt))]. (AL2.6)

With identities (A.2.3) and ([A.2.q) in hand, it is the matter of straightforward verification
to check that (1" @ S - pr,,) ev™ admits the following presentation:

k
SN ([TsA(Zo, Zn) @ TFsA®(Xo, Xi) ® X fo[1] @ T'sAx (A; §,) (fo, f1)

m=1 p+q=n
perm

P, TPsA(Zo, Zy) @ T™ s A (X, X)) @ TISA(Zy, Zy,)
® T s AP (X, Xip) @ Xiefo[l] © T'sAx (A: G) (fo, fi)

(Hoonp )pm®U

ol Sg]k(-A(XOa ZO)7 ‘A(Xma Zp)) ® Sg]k(-A(Xma Zp)7 anl)
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L sC(A(Xo, Zo), Zuf)]  (A2.T)
+ [T"sA(Zo, Zn) @ T*s A (X0, Xi) @ Xy fo[1] ® T'sAx(A; C) (fo, 1)
B, (A (X0, Zo)s Zufi) U SCUA(Xo, Z0), Zuf))]  (A2.8)
q>0
+ Z (T"sA(Zo, Zn) @ TFsAP(Xo, Xi) © X fol1] © T'sAse(A; C) (fo, 1)
ptg=n

= TPsA(Zy, Zp) @ T*sA®(Xo, Xi) @ Xifo[1]

® T'sAx (A; C) (fo, fi) @ TUSA(Zy, Z) @ TP sAx (A; G (fis f1)
klp@ev
sCr(A(Xo, 20), Zpf1) @ sC(Zpf1, Znf1)

bk
— sC, (A(Xo, Zo), anz)] (A.2.9)
p>0 - - -
+ Y [T"sA(Zo, Zn) ® T*sAP(Xo, Xi) @ X fo[l] ® T'sAs(A; C) (fo, /1)
ptg=n
XO®U/

Zr P, sCy. (A(Xo, Zo), A(Xo, Zp)) @ sC (A(Xo, Zp), Zn f1)
Cy

o sCA(Xo, Z0), Zafi)] - (A210)
- Z [T"sA(Zy, Zn) @ TFsA(Xo, Xi) @ Xifo[l] @ T'sAx(A; ) (fo, f1)

a+t+6=n
1922b,0190 19k @121%!

TP A(Zy, ..., Dy Lot -5 Z)

® TFsAP(Xo, X)) ®@ X fo[l] @ T sAx (A; C,) (fo, 1)
E@mgsgk( A(Xo, Z0), Zu )] (A2.11)
+ Y [T"sA(Zo, Zn) @ T*s AP (Xo, Xi) © Xy fol1] @ T'sAos (A C) (fo, /i)

pt+q=n
perm

PN TPsA(Zy, Z,) @ THsA®(Xo, Xi) @ X foll]
® T sAs (A5 C) (fo, f1-1) @ TISA(Zp, Zy) @ sAs(A; C) (fior, fi)

U, ‘p®eV2°°
— s 5C(A(X0, Z0), Zpfi1) © 8C(Zp i1, Zn i)
Ci
" sC(A(Xo, Zo), Zuf))] (A2.12)
!
_ Z [TnsA(Zo, Zn) @ TFsAP(Xo, Xi) @ Xifo[l] ® TZSA;W(‘A; Co)(fo, fi)
=1
1®n®1®k®1®1®p_1®31®1®l_p

T"sA(Zy, Z,) @ T AP (X, X})
X kaO[l] & TZSA;.O(‘A) g]k)(an fl)

U/

— sC(A(Xo, Z0), Zuf1)] (A.2.13)
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~
|
—

[T sA(Zo, Zn) @ T*sAP(Xo, Xi) @ Xifo[1] @ T'sAx(A; C) (fo, fi)

1

3
Il

1®n®1®k®1®1®17—1®BQ®1®1—P—1

T"sA(Zy, Z,) @ T*sAP(Xo, X}

02y ka()[l] ® Tl_lSA;OO(‘A;Qk)(fba ey fpfla fp+17 ey fl)

Ohin (AKX Zo), Zaf))] (A2.14)

Mw

[T"sA(Zo, Zy) ® T*sA (Xo, Xi) ® Xifo[1] @ T'sAce(A; C) (fo, /1)

3
Il
o

19n@19mebl (@1

TrsA(Zy, Z) @ T™sAP (X0, Xom)

& X foll] © TsAsg (A Co) (for f1) —™ 5C,(A(Xo, Zo)s Zof))]  (A.2.15)

k
— "[T5 A(Zo, Z) © THSA™ (Xo, Xi) @ Xefol1] © T'sAs(A: C) (for )
m=0

18n@18mebe @181

T"sA(Zy, Z,) ® T™sA®(Xo, Xon)
&® mel[l] & TlilSA;oo('A; Q]k)(fla fl)

/

Dl (A (X, Zo), Zof))] (A.2.16)
— Y [T"sA(Zo, Za) @ TFA (X0, Xi) @ X fo[1] @ T'sAss(A; C) (fo, f1)

atu+c=k
19ng19agpA P ©19cg1g1®!

T"sA(Zy, Zy,)
@ T s AP (Xo, ..., Xay Xasus - -+, Xi)
® Xy fo[l] @ T'sAx(A; C) (fo, 1)

U:m 1+c,lin
—L_) Sgk(-A(XO,Zo),anl)]- (A217)

Appearance of the component (Hom gop ), in term (A2.7) is explained by the identity
(Homor )pm = ((1, %) evA>),,, = (1% @ %;,) ev pl , which holds true by the definition
of the Yoneda A -functor % : A%® — A (A;C,). Expanding (Hom gep ), according to
formula (f.2.7]), term (A:27]) can be written as follows:

— (=) T s A(Zo, Zn) @ TFsA®(Xo, Xi) @ Xpfo[1] © T'sAs(A; C) (fo, f1)
P TPsA(Zo, Z,) @ T™sA(Xo, Xon) @ TUsA(Z,, Z,,)
® T " sAP( X, Xi) @ Xifo[l] @ T'sAx (A; C) (fos 1)
oo Do ¢ (sA(Xo, Zo), sA(Xo, Zo) ® TPsA(Zy, Z,) @ T™sA(Xo, Xon))
® Cy (SA( Xy Zp), $A( Xy Z,) @ TIsA(Zy, Z)
® TF™sAP( X, Xi) @ Xy foll] @ T'sAx (A; C) (fo, £1))
Co(sA(Xo, Zo), T™sA(X m, Xo) @ sA(Xo, Zo) @ TPsA(Zo, Z,))

Gy (1,perm)®C, (1,perm)
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® Cu(8A( X, Z,), Xi fo[1] @ TF s A(Xy, X,n)
Q@ A(Xon, Zp) @ TIsA(Zy, Zy) @ T'sA (A; ) (fo, f1))

A
G (Lbm414p)®C, (1,1®@evy ™ 1y 1)

gk(S-A(Xm ZO)? S‘A(Xma Zp))
X Qk(SA(Xm, Zp)a kao[l] ® Sgk(kaOa anl))

Qk(SA(XO, ZO)v S-A(va Zp))
® Cy(8A(Xom, Zp), Xifo[1] @ Cu(Xifoll], Znfi[1]))

gk(S‘A(Xm 20)7 S'A(Xma Zp)) ® gk(S‘A(va Zp)v anl[l])

1®C, (1,1®s71[1])
_—

1®£}k(1 7ch]k )
—_—>

[-1]s®[-1]s
_

Sgk(‘A(XO’ ZO)’ ‘A(XTm Zp)) ® Sgk(‘A(va Zp)v anl)

B S (A (X0, Zo), Zuf)].

Replacing the last two arrows by the composite m%“‘[—l]s and applying identity (B.1.1])
yields:
— ()T s A(Zo, Z0) @ T A (Xo, Xi) @ Xieol[1] © T'sAx (A C) (fo, i)
0o, ¢ (sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® TFsAP(Xo, Xi) ® Xifo[l] ® T'sAx (A; C) (fo, 1)
Sloem) e (s A(Xo, Zo)s Xifoll] @ T*sA(Xp, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zn) ® T'sAse(A; G) (fo, f1))
A

G (L1@(APF= @by, 14,0191019) evkiom+1+q,l) C

Gy (sA(Xo, Zo), Xifo[1] ® sC (X fo, Znf1))

Ci(sA(Xo, Z0), Xifo[1] © Cu( X fol1], Zn fil1]))

C,(1,evk)

G (1,1@s7[1])
—_—

[—1]s

C(sA(Xo, Zo), Zn fi[1]) — sC(A(Xo, Zo), Znf1)].

Denote d' = s~ lds = s~ 1d*+os = b5, Xpfo[l] = s&(Xp, fo) — Xpfoll] = s&(Xy, fo).
Thus, the shifted complex X}, fo[1] carries the differential —d’. Since m™* = —C,(1,d’) +
C,.(b1,1) : C(sA(Xo, Zo), Znfi[l]) — Cp(sA(Xo, Zo), Zn fi]1]), it follows that term (A.2.§)

equals

(=) [T A(Zo, Za) @ TEsAP(Xo, X3) © Xifo[1] ® T'sAw(A; C) (for f1)
w0, (sA(Xo, Zo), s$A(Xo, Zo) @ T"sA(Zo, Z)
® T*sA%(Xo, X)) @ Xy foll] ® T'sAx (A; Co) (fo, f1))
G (sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

Cy(1,perm)

A
gk(171®evkio1+n,l)

gk(S-A(XOa ZO)a kaO[]'] ® Sgk(kaOa anl))

Gy (sA(Xo, Zo), Xi fo[1] ® Cu( X fo[1], Zn fil1]))

C.(L,1®s™ 1))
_—
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G (1 ,evCi )

Gy (sA(Xo, Z0), Zn fil1])

I, C(sA(Xo, Zo), Zo fill]) 2 G (A(Xo, Zo), Zuf)]

= (=) T sA(Zy, Zy) @ TFsAP(Xo, X)) @ Xifo[1] ® T'sAx(A; C) (fo, fi)
w0, (sA(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z)
® TkSAOp(Xo, Xi) @ Xifoll] ® TlSA;.o(A; Co)(fo, 1)
C(sA(Xo, Zo), Xifoll] ® TFsA(X}, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAL(A; C) (fo, f1))

Cy(1,perm)

A
Ce(11®@evi T 4 1)

Qk(S‘A(Xoa ZO)? kao[l] 02y Sgk(kaOa anl))
G (sA(Xo, Zo), Xk fo[1] ® (X fo[1], Zn fi[1]))

G, (1,— ev®k -d")
= 5

C,(1,1®s71[1])
_—

[-1]s

Co(sA(Xo, Z0), Zafil1]) — sCy(A(Xo, Zo), Zuf)]
— (=) T sA(Zo, Z,) @ T*sA®(Xo, Xi) ® Xp foll] @ T sAs(A; ) (fo, f1)
0, C(5A(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z,)
® TFsAP(Xo, Xi) ® Xifo[l] ® T'sAsx (A; C) (fo, 1)
SR, C (A (X0, Zo), Xefoll] ® THEsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx(A; C) (fo, 1))

C(1L1®(1%* @b @18 @18 eviy, . |)

Gy (sA(Xo, Zo), Xifoll] @ sCy (X fo, Znf1))
Ci(sA(Xo, Zo), Xi fol1] @ Cu(Xifo[1], Zn fil1]))

Qk(l,evck

C.(1,1®s71[1])
—_—

[—1]s

) Gy (sA(Xo, Zo), Zn fill]) — sC,(A(Xo, Zo), Znf1)]-

¢ is a chain map, it follows that

Since ev
—evGd = —(d @ 1) ev +(1@m) ev® : Xy foll] @ Cu( X foll], Zufill]) — Znfill],
therefore term ([A.2.§) equals
(=) T sA(Zo, Zn) @ T sAP(Xo, Xi,) @ Xp fo[1] @ T'sA(A; C) (fo, f1)

coevCk
_—

Co(5A(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Zn)

® Tks.AOp(Xo, Xi) @ Xifo[l] ® TlSA;oo(fh Co)(fos f1))
G (1,perm) C,.(sA(Xo, Zo), Xefoll] @ TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zy, Zy) @ TISA;.O(J% Co)(fos f1))

A Ce
Qk(1,1®eka1+n,l by

s Cu(sA(Xo, Z0), Xifoll] © sCu(Xifor Zufi))

Gy (sA(Xo, Zo), Xi fo[1] ® Cu( X fo[1], Zn fil1]))

Qk(lvevck)
_—

C.(L,1®s™ 1))
_—

[-1]s

gk(S'A(X()v ZO)? anl[l]) - Sglk(‘A(Xm 20)7 anl)]
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+ (=) T sA(Zo, Z) @ TFsA®(Xo, Xi) @ Xifo[1] @ T'sAx(A; C) (fo, f1)
e, (sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® T"sAP(Xo, X3) ® X fo[1] @ T'sAsx(A; C) (fo, £1))

C(sA(Xo, Zo), Xifoll] ® TFsA(X}, Xo) @ sA(Xo, Zo)
® T"sA(Zy, Zy) @ TISA;.O(J% G (fo, f1))

C, (1,perm)

A
G (Ld'®eviP L, 1)

gk(S‘A(X(]a Z0>7 kaO[l] ® Sg]k(kaOa anl))

Gy (sA(Xo, Zo), Xy fo[1] ® Cu (X fo[1], Zn fil1]))
Qk(lae"ck)

G (L1®s~ 1))
_—

1]3

C(sA(Xo, Z0), Zufill]) — sCu(A(Xo, Zo), Zn fi)]
— ()T s A(Zo, Zn) @ T"sA®(Xo, Xi) @ Xifo[1] © T'sAce(A; Co) (o, fi)
w0, (sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® T* s A (Xo, Xp) @ Xi fo[1] @ T'sAxe(A; C) (fo, f1))
C.(sA(Xo, Zo), Xefoll] @ TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) © T'sAso(A; C) (fo, f1))

Cy(1,perm)
= 5

C(L19(1%*F@b1@187 @18 evi® )
FEIE Cu(sA(Xo, Zo), X foll] @ sCy (X fo, Znfi))
Gy (sA(Xo, Z0), Xifo[l] @ Cu (X fol1], Zn fil1]))

G, (1,evCk) [—1]s

S, € (sA(Xo, Zo), Zafill]) T2 sCU(A(X0, Z0), Z0f))]. (A2.18)

C.(1,1®s71[1])
_

Using the identity

Gy (1,ev©

coevSk G (1,1®f)
[ SOBD, (v Y @ Gy, 2) 28 (v, 7))

F=[X 25 (VY ®X)

valid for an arbitrary f € C (X, C, (Y, Z)) by general properties of closed monoidal cate-
gories, term (A72.9) can be written as follows:

— (=) T s A(Zo, Zn) @ TFsAP(Xo, Xi) @ X fo[1] @ T'sAx(A; C) (fo, 1)

22 TPsA(Zo, Z,) @ TFsAP(Xo, Xi) @ Xifo[l] @ T'sAs (A; C) (fo, f1)
® TIsA(Zy, Zy) @ T?sAs(A; C) (1, 1)

Coevk Booevh, Ci(sA(Xo, Zo), sA(Xo, Zo) ® TPsA(Zo, Z,) @ TFsA(Xo, Xi)
®ka0[ ]®TlSA ( )(an l))
® G (Zpfill], Zpfill] ® T A(Zy, Z1) @ TP (A; C) (i, £1)

C,(1,perm T
G, (1L,perm)®1 C(sA(Xo, Zo), Xifoll] ® TkS-A(Xk, Xo) @ sA(Xo, Zo)

® TPsA(Zy, Zp) @ T'sAx(A; C) (fo, £1))
® Co(Zp fil], Zp fil1] @ T'SA(Zp, Zn) @ TsAx(A; C) (1, 1))

Q]k(l,1®ev2f1+pyl)®gk(l,l®ev28°)

Gy (8A(Xo, Z0), X fo[l] @ sCy( Xk fo, Zpf1))
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X Qlk(prl[l]v prl[l] ® Sglk(prla anl))

Gy (sA(Xo, Z0), X fo[1] ® Cu(Xifol1], Z, fi[1]))
&® g]k(prl[l]’ prl[l] ® Q]k(prl[l]’ anl[l]))

Cu(sA(Xo, Zo), Zp fill]) @ C(Zp fi[1], Zn fi[1])
5Cy (A(Xo, 20), Zpf1) @ sC(Zp f1, Zn f1)

b sC(A(X0, Z0), Zuf1)]. (A.2.19)

G (1,1®s 1)) @G, (1,1®s~ ' [1])

Qk(l,evclk)@)gk(l,evck)

[—1]s®[-1]s
—_—

Replacing the last two arrows by the composite m%“‘[—l]s and applying identity (B.1.1])
leads to

— (=) T sA(Zo, Z,) @ T*sA®(Xo, Xi) ® Xp foll] @ T sAso(A; ) (fo, f1)
w0, (5A(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z)
® TkSAOp(Xo, Xi) @ Xifoll] ® TlSA;.o(A; Co)(fo, 1))
C(sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Z) ® T'sAs(A; C) (fo, 1)
Co(sA(Xo, Zo), X foll] @ TFsA(Xy, Xo) ® sA(Xo, Zo) @ TPsA(Zy, Z,)
® T'sAx (A; C) (fo, 1) @ TUSA(Zy, Zn) @ T sAx (A; G ) (i, 1)

A A
Qk(1,1®evki°1+p,l ®evy§©)

Cy(1,perm)

Cy(1,1®perm)
- 5

Cy(sA(Xo, Zo), X foll] ® sCu( Xk fo, Zpfi) @ sC(Zp f1, Znfi))
C(1,1®s7H1]®@s™11])

(A (X0 Zo). Xfoll] ® G (X fol1], Zyfill]) ® Ca(Z, 1), Zufil1]))
SR EN™), ¢ (SA(Xo, Zo), Zufil1]) 25

[—1]s

sC(A(Xo, Z0), Zuf1)]. (A.2.20)
Since
(v @1)ev® = (1® m%”‘) ev©
Xiefo[1] ® G (X fol1], Zpfi[1]) @ Cu(Zp fill], Zu 1)) — Zn fill],
and (s7![1] ® s 1[1])ms* = —bs*s~1[1], we infer that term ([529) equals
(7 TS, 20) & THAP (o, X0) © Xl Tl o o )
w0 (A (Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® T"sAP(Xo, Xp) @ Xp, fo[l] ® TlSA;oo(AJ Co)(fo, f1)
SLP) e (sA(Xo, Zo), Xafoll] © T*sA(Xk, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sA(A; C) (fo, f1))

A A C
Qk(1,1®perm-(eka1+p,l ® evqgo)ka)

Gy (sA(Xo, Zo), Xi foll] ® sCp( Xk fo, Znfi1))

ST, € (sA(Xo, Z0), Xifoll] ® CulXifoll], Zufil1])
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G, (1,evCk) [—1]s

Co(sA(Xo, Zo), Zn fil1]) — sC(A(Xo, Zo), Znf1)]-

Similarly, term (A2.I7) equals
— (=)MHT"sA(Zo, Zy) @ TFsAP(Xo, Xi) @ Xifol[1] ® T'sAx(A; C) (fo, f1)

LB, €, (5A(Xo, Zo), SA(Xo, Zo) © TP5A(Z0, Z,)) © Cu(5A(Xo, Z,),
S.A(Xoa Zp) ® TqS-A(Zpa Zn) ® TkS‘Aop(XOa Xk) ® kao[ ] ® TlSA;OO(‘A; glk)(fo’ fl))

1®Qk(17perm)

gk(S.A(Xo, Zo), S.A(Xo, Zo) X TpS.A(Zo, Zp))
® Cu(8A(Xo, Zp), X fo[1] ® TFsA(Xy, Xo)
® sA(Xo, Z,) @ TIsA(Zy, Zn) @ T'sAL(A; C) (fo, f1))

A
Q]k(lvbp-Fl)®Qk(171®evkiol+q,l)

gk(S‘A(Xm ZO)? S‘A(X()v Zp))
® Cy(sA(Xo, Zp), Xifo[1l] ® sC (X fo, Zn f1))

10C, (1,1®s71[1])
_—

G (sA(Xo, Zo), sA(Xo, Zp)) @ Cy(sA(Xo, Zp), Xifoll] @ G (X fol1], Zn fi[1]))

evCr
R, € (sA(Xo, Zo). sA(Xo, Z,)) © Gy (A(Xo, Zp), Zu fi[1))

Sgk(‘A(XOa ZO)"A(XO’ Zp)) ® Sgk( (XO’ ) nfl)

[—1]s®[—1]s
_

bek

2 $C(A(Xo, Z0), Znf)]
= —(=)" T sA(Zy, Zn) @ T*sA®(Xo, Xi) ® Xi fo[1] ® T'sAx(A; C&) (fo. f1)
w0, (sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® THsAP(Xo, Xi) ® Xifo[1] ® T'sAs(A; ) (fo, £1))
C(sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

Cy (1,perm)

C.(1, 1®(1®k®bp+1®1®q®1®l)evk+1+q D

Gy (sA(Xo, Zo), Xifoll] ® sCp( Xk fo, Znfi))
Gy (sA(Xo, Zo), kao[l] ® Co(Xifoll], Zn fi(1]))

G, (1,ev© [—1]s

Lo, Cu(sA(Xo, Zo), Zn fi[l]) — sC (‘A(X07ZO>7anl>}

C.(L,1®s™ 1))
_—

due to identity (B.I.]). It follows immediately from the naturality of coev® that term

(A2:11) equals
(=)L [T"A(Zo, Za) ® T A (Xo, Xi) @ Xifol1] ® T'sAx(A; C) (fo, £i)
w0, (sA(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z)
® T*sAP(Xo, Xi) © Xifoll] © T'sAx (A; C) (fo, f1))
Sloem) e (s A(Xo, Zo), Xifoll] @ T*sA(Xp, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))
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G (110(1%F @112 @b @19 Q1% Vi, L. 4 )

Gy (sA(Xo, Zo), Xi fol1] @ sC (X fo, Zn 1))
Gy (sA(Xo, Zo), Xy fo[1] ® Cu( X fo[1], Zn fil1]))
S, ¢ (sA(X0 Z0), Zufil1]) T2
Term ([A.2.19) can be written as follows:
— ()M T8 A(Zo, Zn) © TFsAP(Xo, Xi) @ Xifo[1] @ T'sAx(A; §) (fo, f1)
225 TPsA(Zy, Z,) @ TFsAP(Xo, Xi) @ Xifo[l] @ T sA (A; G (fo, fio1)
® qu.A(Zp, Zpn) @ sAs(A; C) (fim1, f1)
Qk(S.A(X(), Z()), S.A(XQ, ZQ) X TpS.A(Z(), Z ) X TkS.AOp(X(), Xk)
®ka0[ ]®Tl 1SAOO( ) )(anfl 1))
® Cu(Zpfir[1], Zpfia[1] @ TUsA(Zy, Z) @ A (A; C) (fio1, i)
Gy (sA(Xo, Zo), X fol1] © T*sA(X, Xo) ® sA(Xo, Zo)
® TPsA(Zo, Zp) @ T' " sAs(A; C) (fo, fi-1))
@ G (Zpfia[1], Zp fra[1] @ TISA(Zy, Zn) ® sAs(A; Gy ) (fiz1, 1))

A A
C(1,1®evy Ty - 1)®C, (1,1®ev, )

C.(1L,1®s™ 1))
_—

1]3

C (‘A(X07 ZO)? anl)} .

coevCEk ® coevCk

|m Ih

C, (1,perm)®1

Gy (8A(Xo, Z0), Xifoll] @ sCy( X fo, Zpfi-1))
® Co(Zp fioa(1], Zpfioa[1]) @ sC(Zp fiz1, Znf1))

Gy (sA(Xo, Zo), Xifoll] ® Cu(Xi fo[1], Zpfia[1]))
® Cu(Zpfiall], Zpfia[l] @ G (Z, fia (1], Zn fi[1]))

Gy (sA(Xo, Z0), Zp fia[1]) © Cu(Zp fi1 (1], Zn fi[1])

G (1,1®s ' 1)) @G, (1,1®s~ ' [1])

g]k(LeVQk )®£k(1,evck)

PUesl-tls, o «(A(Xo, 20), Zp fi-1) @ sC (2, i1, Zn fi) LS < (A(Xo, Zo), Zufi)].

The obtained expression is of the same type as (A.2.19). Transform it in the same manner

to conclude that term ([A.2.12) equals
(=) [T A(Zo, Za) @ TEsAP(Xo, X3) © Xifo[1] ® T'sAw(A; C) (for f1)
w0, C(sA(Xo, Zo), s$A(Xo, Zo) © T"sA(Zo, Z)
® T*sA®(Xo, Xi) ® X fo[1] @ T'sAs(A; C) (fo, /1)
Sulliperm), Cu(sA(Xo, Zo), X fo[l] © T*sA(Xy, Xo) © sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

Cy(1,1®perm - (evk+1+p -1 ®ev )b—k)

Gy (sA(Xo, Zo), X fo[l] ® sCp( Xk fo, Znfi))
Gy (sA(Xo, Zo), Xy fo[1] ® Cu(Xi fo[1], Zn fi(1]))

Cy ,evclk
S, C(sA(Xo, Zo), Zafill]) 2

G (1,1@s7'[1])
—_—

[-1]s

sC (A(Xo, Zo), Zu )]
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Obviously, term ([A.2.13) can be written as follows:

(=) [T A(Zo, Zn) ® THsA™(Xo, Xi) ® Xifo[l] @ T'sAn(A; C) (fo, 11)

coev -k

0o, ¢ (sA(Xo, Zo), s$A(Xo, Zo) @ T"sA(Zo, Z)
X TkS.AOp(XQ, Xk) X kaO[l] ® TlSA;oo(‘Av glk)(f()a fl))
ST, G (sA(Xo, Zo), Xiefolt] @ THSA(Xi, Xo) & 5A(Xo, Zo)
(029 TnS.A(ZO, Zn) (%9 TlSA;oo(‘Av glk)(f()a fl))

C(1L18(1%F 101572187 1@ B @18~ P) evh?, , , )

gk(S‘A(X(]a Z0>7 kaO[l] ® Sg]k(kaOa anl))

Gy (sA(Xo, Zo), Xy fo[1] ® Cu( X fo[1], Zn fil1]))

Qk(lvevck)

C,(1,1®s71[1])
_—

[-1]s

Co(sA(Xo, Z0), Zufill]) —> sCu(A(Xo, Zo), Znf)].
Similar presentation holds for term ([A.2.14):
(=) T sA(Zo, Zn) @ T*sAP(Xo, Xi) ® Xifo[l] ® T'sAx(A; C) (fo, 1)
w0, (sA(Xo, Zo), s$A(Xo, Zo) @ T"sA(Zo, Z)
® TkSAOp(Xo, Xi) @ Xifoll] ® TlSA;.o(A; Co)(fo, 1)
C,.(sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

_ —p— A
G (11019 @119 0197~ 1@ B@1® P eviS | 1 )

Cy(1,perm)

Gy (sA(Xo, Zo), X fo[1] ® sCy (X fo, Znfi))

Ci(sA(Xo, Zo), Xifo[1] © Cu( X fol1], Zn fil1]))

gk(l,evck)
_- 5

G (1,1@s7[1])
—_—

[—1]s

G (sA(Xo, Z0), Znfill]) — sC (A(Xo, Zo), anl)}'
If m =k, term (A2:17) equals
(=) T sA(Zo, Zn) @ TFsAP(Xo, Xi) @ Xifol1] @ T'sAx(A; C) (fo, 1)

coevCEk

Cy(sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Zn)
® T*sA%(Xo, X)) @ Xy foll] ® T'sAx (A; C) (fo, f1))
C(sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAss(A; C) (fo, i)

Cy (1,perm)

A
G (Ld'@evi )

gk(S‘A(X(]a Z0>7 kaO[l] ® Sg]k(kaOa anl))

Ci(sA(Xo, Zo), Xifo[1] © Cu( X fol1], Zn fil1]))

gk(l,evck)
-5

G (1,1@s'[1])
—_—

[-1]s

C(sA(Xo, Z0), Zn fi[1]) — sC(A(Xo, Zo), Znf1)],
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it cancels one of the summands present in (A.2.1§). Suppose that 0 < m < k — 1.
Expressing by_,, , via evz\fm’o, we write term (A.2.15) as follows:
()" T"sA(Zo, Zn) @ T"sA®(Xo, Xi) @ Xifo[l] @ T'sAe(A; C) (fo, fi)
P s A(Zo, Z) @ T AP (Xo, X)) @ Xifo[l] @ TF s A(Xp, X
® TsAx(A; C) (fo, fo) ® T'sAx(A; G (fo, 1)
T"sA(Zo, Zn) @ T™ AP (X0, Xom) @ X fo[1]
® Gy (X fo, Xinfo) © T'sAw(A; G) (fo, fi)
T"sA(Zo, Zn) @ T™sAP(Xo, Xim) @ Xifo1]
® Co (X fo[l], X fo[1]) @ T'sAn (A; C) (fos i)

197@19m@1Rev,y>, @11

1®n®1®m®1®871 [1]®1®l

187197 RevCk @19!

T"sA(Zo, Zn) @ T™ AP (X0, Xin) @ X fo[1] @ T'sAx (A; Cy) (fo, f1)
O, C(5A(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Zn) © T™sA™ (X0, X)
® X fol[1] © T'sAc (A; C) (fo, 1))
SLP) (S A(Xo, Zo)s Xonfol1] @ T™SA(Xom, Xo) © sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

C, (1,1®@evA>

it € (SA(Xo, Z0), Xon foll] @ 5Cu(Xon for Zuf)
SIS, (5A(Xo, Zo)s X foll] @ Co(Xon folL]s Zufill]))

SO, ¢ (5A(Xo, Zo), Zafill]) 2 5C, (A(Xo, Zo). Zofi)]
= (=" T"sA(Zo, Zn) @ T"sAP(Xo, X3,) @ Xifo[l] @ T'sAx(A; C) (fo, 1)

[—1]s

coevCEk

L Cu(sA(Xy, Zy), sA(Xo, Zo) @ T"sA(Zy, Z,) @ TFsAP (X, X5

® Xi.foll] ® T'sAx(A; C) (fo, f1))
Cu(sA(Xo, Zo), Xi fo[1] @ TF s A(X, Xm) @ TsAx (A; C) (fo, fo)
@ T™sA(Xom, Xo) @ sA(Xo, Zo) @ T"sA(Zy, Z) @ T'sAs(A; G (fo, f1))

G (1, 1®evk 1,0 ®evm°i1+n D)

Cy (1,perm)
-

Gy (8A(Xo, Z0), X fo[l] @ sCy(Xi fo, Xin fo) ® sC (X fo, Znfi))

G (1L 1es H1®s 1))
Cy (sA(Xo, Z0), Xk fo[1] ® Cu( X fo[1], Xm fol1]) ® G (X fo[1], Zn fil1]))
SO (A(Xo, Zo), Zufill]) T2 SCLUA (X0, Zo), Zuf)]-

The further transformations are parallel to (A.2.20). We conclude that term ([A.2.15)
equals

[—1]s
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— ()T sA(Zo, Zn) @ TFsA (Xo, Xi) © X fol1] © T'sAxs(A; C) (o, 1)
%, C(sA(Xo, Zo), sA(Xo, Zo) © T"sA(Zo, Z,)
® TkSAOp(Xo, Xi) @ Xifoll] ® TlSA;.o(A; Co)(fo, 1))
C(sA(Xo, Zo), Xifoll] ® TFsA(X}, Xo) @ sA(Xo, Zo)

® T"sA(Zy, Zy) @ TISA;.O(J% G (fo, f1))

C, (1,perm)

A A C
G (L1®(evy>,, o ®evy,d 1, )bs")

Gy (sA(Xo, Zo), X foll] @ sCu( X fo, Znfi))
Ci(sA(Xo, Zo), Xi fol1] @ Cu( Xk fo[1], Zn fil1]))

Qk(l,evck

C.(1,1®s71[1])
—_—

[-1]s

S G (sA(Xo, Zo), Zufl1l)) 2 sCU(A(Xo, Z0), Zuf)]:
The case of term ([A.2.1G) is quite similar, we only give the result:
— (=) T sA(Zo, Z,) @ T*sA%®(Xo, Xi) ® Xp foll] @ T'sAs(A; ) (fo, f1)
0oV, € (3A(Xo, Zo), sA(Xo, Zo) ® T"sA(Zo, Z2)
® TFsAP(Xo, Xi) @ X fo[1] @ T'sAx (A; C) (fo, 1))
Cu(sA(Xo, Zo), X fol1] ® T*sA (X, Xo) @ sA(Xo, Zo)
® T"sA(Zo, Zn) @ T'sAx (A; C) (fo, £1))

Cy (1,perm)

A A C
Ce(L1@perm-(ev, ™, | @evi, %, 1)by")

Gy (8A(Xo, Z0), Xifoll] @ sCp( Xk fo, Znf1))
Gy (sA(Xo, Zo), Xy fo[1] ® Cu(Xi fol1], Zn fi(1]))

gk(l,evck)
-5

G (1,1@s7'[1])
—_—

[-1]s

C(sA(Xo, Zo), Zn fi[1]) — sCu(A(Xo, Zo), Znfi)]-
Finally, using formula (B-5.9) for b, we find that term (A.2.17) equals
(=) [T s A(Zo, Zn) @ T*sAP(Xo, Xi) ® Xifo[1] @ T'sAn(A; ) (fo, 1)
coeve, C(sA(Xo, Zy), sA(Xo, Zo) @ T"sA(Zy, Zp) @ TkS.AOP(XO, Xk)
® Xiofoll] © T'sAs (A; C) (fo, 1))
C,(sA(Xo, Zy), sA(Xo, Zy) @ T"sA(Zy, Zy)
® T AP(Xo, ..o, Xay Xatus - - - Xi) @ Xifo[1] ® T'sAx(A; G (fo, f1))

C, (1,perm)

C (110197212t @12°@10194)

Cu(sA(Xo, Zo), Xp foll] @ TTHsA(Xy, .. ., Xatu, Xa, - - -, Xo)
® sA(Xo, Zo) @ T"sA(Zo, Zn) @ T'sAx (A; G (fo, £1))

A
Qk(1’1®evc-io2+a+n,l)

Gy (sA(Xo, Zo), X fo[1] ® sCp (X fo, Znfi))

Gy (sA(Xo, Zo), X fo[1] @ Cu(Xifol[1], Znfi[1]))

Qk(17® eVC]k)
e

g]k(lv(g)s_l[l})
_—

[-1]s

Gy (sA(Xo, 20), Zn fil1]) — sCy(A(Xo, Zo), Znf1)]
= (—)tutert [T"SA(ZO, Z,) @ TFsA®(Xo, Xi) ® Xifo[l] @ TlSAﬁ(A;Qk)(foa fi)
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0o, (sA(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Z)
® T"sAP(Xo, X3) @ Xpfo[1] @ T'sAx(A; C) (fo, £1))

C(sA(Xo, Zo), Xifoll] ® TFsA(Xy, Xo) @ sA(Xo, Zo)
® T"sA(Zy, Zy) @ TISA;.O(J% C)(fo, f1))

Cy (1,perm)
-

C (1, 1®(1®C®bu®1®a®1®1®"®1®l)evcfQJﬂth D

Cy(sA(Xo, Zo), Xifol1] ® sC (Xi fo, Zn 1))
Cy(sA(Xo, Zo), Xifo[l] ® Co( Xk fol1], Zn fil1]))
™), € (sA(Xo, Zo), Zafi1]) 25

C.(L,1®s™ 1))
_—

1]3

sC(A(Xo, Zo), Znf)]-

The overall sign is (—)*tuterl = (=)L
Summing up, we conclude that

(19" ® S - pr,) ev™ = (=" T sA(Zy, Zy) @ TFsAP(Xo, Xi) @ Xifo[1]
® T'sAx (A; Co) (fo, fi)
e, (sA(Xo, Zo), s$A(Xo, Zo) @ T"sA(Zo, Z)
® T*s A (Xo, Xi) @ Xifo[l] © T'sAx (A: C) (fo, f1))

C(sA(Xo, Zo), Xifoll] ® TFsA(X}, Xo) @ sA(Xo, Zo)
® T"sA(Zy, Zy) @ TISA;.O(J% G (fo, f1))

Cy (1,perm)

m C (s,A(XO, Zo) kao[ ] &® Sgk(kam anl))

G, ¢ (3A(Xo, Z0), Xifoll] © CulXifoll], Zufil1])

C, (1,evk) 1]8
L>Q]k(3J‘L(Xo,ZO) Znfill]) — sC (‘A(XOaZO)aznflﬂ’
where
k
Z Z (1 @ by 14p @ 197 @ 1%7) evip m+1+g,l "‘eV/l;\flJrn,l b
m=1 p+qg=n
q>0
— (1% @b @1%" @ 1%) eviry 0, + Z perm -(evyF ®8VAOO)H€
pt+q=n
p>0
— Z ke bpi1 @ 197 @ 191 er+1+ql
pt+g=n
- Z (1" 21019 ® b ® 197 ® 19 evk+a+2+ﬁl
a+t+LB=n

Ao Asc
+ E perm -(evy ;1 @ evy )b
ptg=n
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l
N Z(1®k+1+n ® 1®p71 ® Bl ® 1®l*p> eV?an,l
p=1
-1
. Z(1®k+1+n ® 1@p—1 ® By ® 1®l*p*1> evﬁfprn,lfl

p=1

k—1 k

Aso Aso Cp Aco Ao Cy

+ E (Vo @ eV, )b + § :perm'(ekam,l ® eVytiini—1)02
m=0

m=0

- > (%@ 1101 @1 evhy L
atutc=k

T*sA(X}, Xo) ® sA(Xo, Zo) @ T"sA(Zo, Zn) @ T' s (A; G (fo, 1)
— sCu( Xk fo, Znf1),

which is easily seen to be the restriction of
(evA>b% — ("R 1+ 1K B)ev™) pr; : TsAK TsAy(A; C,) — sCy

to the summand T*sA (X}, Xo) @ sA(Xo, Zo) @T"sA(Zy, Zn) T sAxo (A; C) (fo, f1) of the
source. Since evA> is an A-functor, it follows that R = 0, and the equation is proven.
That finishes the proof of Lemma [AJ. O

Let A be an A-category, and let f : A — C, be an A -functor. Denote by M the
A-module determined by f in Proposition [.5.3. Denote

T = oo ¢ sE(X, f) = X f1] = sAu(A: Q) (H, f) (A.2.21)

for the sake of brevity. The composition of T with the projection pr,, from (ATI.3) is
given by the particular case p = ¢ = 0 of (AI.4):

T, = —[sM(X)

0, Cu(sA(X, Zo) @ TsA(Zo, Z0), sA(X, Zo) @ T"5A(Zo, Z) @ SM(X)

S, CL(SA(X, Z) © T"sA(Zo, Z),

sM(X) @ sA(X, Zy) @ T"sA(Zy, Zy,))

G ) .
= C(SA(X, Zo) @ T sA(Zo, Zn), sM(Z,))

(%)t

= C (T"sA(Zy, Z,), C, (sA(X, Z), sM(Z,)))
M Qk(TnS.A(ZO, Zn)a gk(‘A(X7 ZO)’ M(Zn)))
M} Q]k(T"Sﬂ(ZO, Zn)a Sg]k(-A(X, Z()), M(Zn)))] )

where n > 0, 7 = (937,11 "3") € Gnio. An element r € sM(X) is mapped to an

Ao-transformation ()Y with components

(") Yy : T"sA(Zo, Z) — sCu(A(X, Zo), M(Z,)), n >0,
210 Qz = (11 Q- @2, 07T,
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where

T}, = —[T"sA(Zo, Zn) ® sM(X)
L, C(SA(X, Zo), SA(X, Zo) © T"sA(Zo, Zn) ® sM(X))

SO, €L (SAX, Zo), sM(X) ® SA(X, Zo) © T"sA(Zo, Zs)

SO0, GA(X, Zo), sM(Z,))

P CLAX, Z0), M(Z0)) 5 sCu(A(X, Zo), M(Z,)].-

Since O is a chain map by Lemma [A.9, vanishing of (.1.13) on sM(X) implies that
the map

Boo = T 1 (sM(X), by = s~ 'd* s = 0") — (sAu(A; G)(H™, ), bgo = B)
is a chain map as well.

A.3. Proposition. Let A be a unital A.-category, let X be an object of A, and let
f+ A — G, be a unital A, -functor. Then the map T is homotopy invertible.

When the author was almost done with writing up the dissertation, he learned that
Proposition [A.3 could also be found in Seidel’s book [4§, Lemma 2.12], where it is proven
assuming that the ground ring k is a field. The proof is based on a spectral sequence
argument. The proof presented here is considerably longer than that of Seidel, however
it works in the case of an arbitrary commutative ground ring.

Proof. The A,,-module M corresponding to f is unital by Proposition [.5.4. Components
of f are expressed via components of b™ as follows (k > 1):

k . 77\/[
fi= [T*sA(Zo. Z4) e, Co(sM(Zo), sM(Zo) @ T*sA(Zo, Z1)) S5,

Cu(sM(Z0), SM(Z4)) — Cu(M(Zo), M(Z4)) > sCu(M(Z0), M(Z1))]. (A3.1)

Define a map «a : sAy(A; ) (HY, f) — sM(X) as follows:

o = [sAs(A; G (HY, f) 2% sC(A(X, X), M(X)) “ Cu(A(X, X), M(X))

(1] (xig'1)

B, (sA(x, X, sM(x)) =2 €k sM(X) = sM(X)]. (A.3.2)

The map « is a chain map. Indeed, pr, is a chain map, and
71[1](:]1(()(10 ) 1)17(31\m =5 ka(Xlo DG (1, bM)
= s (= Cy(1,0") + Cu(b1, 1)) G (x5, 1)
= 57 U Culxig' 1)
= s~ tmi (LG (xig', 1)

= b s UG, (xi7 1),
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since xiy is a chain map, and [1] is a differential graded functor. Let us compute Yo

Ta = Tosfl[l]gk(xiél, 1)

—[sM(X) 2225 € (sA(X, X), sA(X, X) @ sM(X))
S0 (SA(X, X), sM(X) @ sA(X, X))

S, € (sAX, X0, M(X)) S8 ¢ e (X)) = (X))

Gy (xig'1)
—_—

= [sM(X) <2, €, (sA(X, X), sA(X, X ®sM( )

L (1,eb70)

)
C(k, sA(X, X) @ sM(X)) =

C.(1,xiA®1)
_—

Cu(k, sM(X)) = SM(X)]

= [sM(X) 25 % Gk, k @ sM(X)) Gk, sA(X, X) ® sM(X))

SO, e, sM(X)) = SM(X)]
= [sM00) 229 v(x) @ sA(X, X) 2 (X)) (A.3.3)

Since M is a unital A-module by Proposition [l.5.4, it follows that Ta is homotopic to
identity. Let us prove that oY is homotopy invertible.
The graded k-module sAx(A; C)(H™, f)is V =[] —, V., where

Vn - H gk(TnS‘A(ZOa Zn)v SQH{(‘A(X’ ZO)a M(Zn)))

20, ..., Zn€Ob A

and all products are taken in the category of graded k-modules. In other terms, for d € Z,
=112, Vid, where

n=0 "n>

Vi=  JI GT"sA(Z, Zy), sC(A(X, Zo), M(Z,)))".

n
20, ..., Zn€Ob A

We consider V¢ as Abelian groups with discrete topology. The Abelian group V¢ is
equipped with the topology of the product. Thus, its basis of neighborhoods of 0 is given
by k-submodules ®¢ = 0"~ x [[>2 V4. They form a filtration

Vi=ol D> o> dfD
We call a k-linear map a : V' — V of degree p continuous if the induced maps
qddte — a}vd Cyd _, ydte
are continuous for all d € Z. This holds if and only if for any d € Z and m € N there
exists an integer x = x(d, m) € N such that (®%)a C ®4+?. We may assume that
m' <m” implies k(d,m’) < r(d,m"). (A.3.4)

Indeed, a given function m — k(d, m) can be replaced with the function m +— £'(d, m) =
min,, >, k(d,n) and ' satisfies condition (A.3.4). Continuous linear maps a : V — V
of degree p are in bijection with families of N x N-matrices (A%4*P);c of linear maps
Addip . y7d 4P with finite number of non-vanishing elements in each column of A4+
Indeed, to each continuous map a®4? : V¢ — V&P corresponds the inductive limit over
m of x(d,m) X m-matrices of maps Vd/@ﬁ(dm) — V4P /@4 On the other hand, to

each family (A%?*P),c; of N x N-matrices with finite number of non-vanishing elements
in each column correspond obvious maps a®4*? : V¢ — V4P and they are continuous.
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Thus, a = (a%¥*P)4ez is continuous. A continuous map a : V — V can be completely
recovered from a N x N-matrix (@nm )nmen 0f maps a,, = (A%4P) ez 0V, — V,, of degree
p. Naturally, not any such matrix determines a continuous map, however, if the number of
non-vanishing elements in each column of (a,,,) is finite, then this matrix does determine
a continuous map.

def

The differential D = By : V. — V, r — (r)B; = rb — (—)"br is continuous and the
function « for it is simply x(d, m) = m. Its matrix is given by

DO,O DO,l DO,Z
0 Dig Do
D=Bi=110 0 Dy ...|-

where

D= C(1,07) G (Y 197 @b ®1%0,1) : Vi — W,

p+l+q=k
ri Dy = by — (=)' Z (17 ® by ® 19)ry,
p+ltg=k
(one easily recognizes the differential in the complex Vj),
Pk Dist = (s ® U5 + (HY @ r)bs — (=) D (17 @by @ 19)r.
p+qg=k—1

Further we will see that we do not need to compute other components.
Composition of aY with pr,, equals

aT, = —[sAx(A; C) (HY, f) &% sC,(A(X, X), M(X))

sT1 Cu(xigh1)

T (8AX, X, sM(X)) S e e sM(X) = sV(X)

0o, C(sA(X, Zo) ® TsA(Zo, Zn),
SA(X, Zo) @ T"sA(Zo, Zy) © sM(X))

S0 C(sA(X, Zo) @ T"5A(Zo, Z),

SM(X) ® sA(X, Zo) ® T"sA(Zo, Zy))

g]k(17bM

S0, ¢ (SA(X, Zo) @ T"sA(Zo, Zn), sM(Z))

(¢St

—— C, (T"sA(Zy, Zy), C(sA(X, Zo), sM(Z,)))

SO (s A(Zo, Z0), sCu(A(X, Zo), M(Zn)))]-

Clearly, aY is continuous (take x(d,m) = 1). Its N x N-matrix has the form

aY =

S O %
O O ¥
o O *

A.4. Lemma. The map oY : V — V is homotopic to a continuous map V — V', whose
N x N-matrix is upper-triangular with the identity maps id : Vj, — V. on the diagonal.
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Proof. Define a continuous k-linear map K : sAx(A; G )(H™, f) — sAx(A; C)(HY, f)
of degree —1 by its matrix

0 0 0
Ko 0 0
0 )

K=10 Ky,

so k(d, m) = m+1, where Ky maps the factor indexed by (X, Z, ..., Zj) to the factor
indexed by (Z, ..., Zx) as follows:

Kii1 = [Cu(sA(X, Zo) ® TsA(Zo, Zy), sC (A(X, X), M(Zy)))

SO, (GA(X, Zo) @ TsA(Zo, Zi), Cu(sA(X, X), sM(Z4)))

G (1.G, (x1g1))
—_

C,(sA(X, Zo) @ TsA(Zy, Zy,), C.(k, sM(Zy)))

(%)7!

——— C(TsA(Zy, Zy,), C(SA(X, Zy), sM(Z})))

C.(1,[-1]s —
SO, ¢ (TsA(Zo, Z4), sCL(A(X, Zo), M(Zi)))].
Other factors are ignored.

Composition of continuous maps V' — V' is continuous as well. In particular, one finds
the matrices of B1K and K Bj:

[Do1K10 DooKon Dozlza ...
D 1K1y Dis2Ksy Di3Ksp
B K = 0 D2,2K2,1 D2,3K3,2 ,
0 0 D33 K39
C 0 0 0 T
KioDoo KioDo1 Kio0Do2
KB, = 0 Ky1Dy1 Ky1Dq
0 0 Ks2D5 5

We have Dyy1 g1 Kiq1.6+ Kir1,6Dg = 0 for all £ > 0. Indeed, conjugating the expanded
left hand side with C, (1, [—1]s) we come to the following identity:

[Qk(sA(X, Zo) @ TsA(Zy, Z1,), G (sA(X, X), sM(Zy)))

CeLmS) 4 C (5, gy 197 @b ©199,1)

C,(sA(X, Zy) @ TsA(Zy, Zy,), G (SA(X, X), sM(Zy)))

G (1,G, (xig,1))
_— 5

Cu(sA(X, Zy) @ TsA(Zy, Zk), Cy (k, sM(Zy)))

(%)~

——— C(TsA(Zy, Zy), C(sA(X, Zo), sM(Zy))) ]
+ [Cu(sA(X, Zo) ® TsA(Zo, Z1,), Cy(sA(X, X), sM(Zy)))

G, (1,C (xip 1))
_

Cu(sA(X, Zo) ® TsA(Zo, Zr), Ci (k, sM(Zy)))
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(¢Sx)~1

_— gk(TS.A(Zo, Zk), gk(S.A(X, Zo), SM(Zk)))

C
Ce(Lm)+C (Xt i1 1P @D1@2199,1)

Cu(TsA(Zy, Zy), Cu(sA(X, Zy), sM(Zy)))] = 0.

After reducing all terms to the common form, beginning with C, (1, C,(xig', 1)), all terms
cancel each other, so the identity is proven.

Therefore, the chain map a = aY + B1K 4+ KBy is also represented by an upper-
triangular matrix. Its diagonal elements are chain maps agx : Vi — Vi. We are going to
show that they are homotopic to identity maps.

Let us compute the matrix element agy : Vo — Vo = [[cona SC(A(X, Z2), M(2)).
We have

apopry = (Yo + B1K1 o) pry : Vo — Vo 25 sC (A(X, Z2),M(Z)).
In the expanded form these terms are as follows:
s—'[1]

aYopry = —[Vo =5 sCu(A(X, X), M(X)) = G(sA(X, X), sM(X))

G (xig'1)
—_

Gk, sM(X)) = sM(X)

k

%, Cu(sA(X, Z), sA(X, Z) @ sM(X))

Gy (1,eb7") [~1]s

Qk(S'A(Xa Z)v SM(Z)) — Sg]k(‘A(Xa Z)7 M(Z»L

BlKl,O pry = [(1 X fl)b%k —+ (Hix X 1)b§k]K170 Prz,

(1@ fi)bs* = [Vo 25 sC(A(X, X), M(X))

O, C(sA(X, Z), sAX, Z) ® sCu(A(X, X), M(X)))

S0 C(SA(X, 2), sCALX, X), M(X)) @ sA(X, 2)

SN, € (A(X. Z), sCUA(X, X), M(X)) @ 5C, (M(X), M(2)))

C(Lb5

SO, G (sA(X, 2), sC(A(X, X), M(2)))],

(HX @ by = [Vo 2% sC, (A(X, Z), M(2))
wer L (sAX, Z2), sA(X, Z) © sC(A(X, Z), M(2)))

g]1&(171_11)((8)1)
_—

gk(S‘A(X7 Z)7
SQH{(‘A(X’ X)?‘A(X7 Z)) & Sgk(‘A(X7 Z)> M(Z)))

C(1b5

SO, CL(sA(X, 2), sC(A(X, X), M(2)))],
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Kiopry = [Vi —5 G (sA(X, Z), sC(A(X, X),M(Z)))
ST, GAX, Z), Cu(sA(X, X), sM(Z)))
GUELHD), ¢ (sA(X, 2). Cull, sM(2))) = C(sA(X, 2), sM(Z))
B8 G (A(X, 2),M(2))).

We claim that in the sum
apopry; = aYopry, +(1 ® fl)b%kKl,o pry, —I—(Hlx ® 1)b§kK1,0 pry,

the first two summands cancel each other, while the last, (H* ® 1)b§“‘K 1,0, is homotopic
to identity. Indeed, aYopr, +(1 ® fl)bngl,o pr, factors through

— [SCAX. X), M(X)) T € (sA(X, X), sM(X))

)
SO, €k, sM(X)) = DY)
( Qk(l,cb{"[)
)

w0t C(sA(X, Z), sA(X, Z) ® sM(X)) CL(sA(X, Z), sM(2))]
+ [sCy(A(X, X), M(X) %, C(sAX, Z), sA(X, Z) ® sC,(A(X, X), M(X)))
L9, ¢ (5A(X, Z), sC (A(X, X), M(X)) @ sA(X, Z))

SOIE, € (sAX, Z), sC(A(X, X), M(X)) © 5sC,(M(X), M(2)))

S, Co(sA(X, Z), sC(A(X, X), M(2)))
ST, €L (5A(X, 2), Cu(sA(X, X), sM(Z)))
SLELTD), ¢, (sA(X, 2), Culle, sM(2))) = Cu(sA(X, 2), sM(2))].

It therefore suffices to prove that the above expression vanishes. By closedness, this is
equivalent to the following equation:

— [SA(X, Z2) ® sC(A(X, X), M(X)) 2 S A(X, 2) © G (sA(X, X), sM(X))
1BGTD, A(x, 7) @ sM(X) s M(2)]
+ [SA(X, Z) @ sC(A(X, X), M(X)) = sC(A(X, X), M(X)) ® sA(X, Z)

Cy

120, SCU(A(X, X), M(X)) @ sC (M(X), M(Z)) 25 sC(A(X, X), M(2))
T ¢ (A, XD, sM(2)) S, ¢ e sm(2)) = sM(2)] = o.
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Canceling ¢ and transforming the left hand side using (£.5.9) we get:

— [sCL(A(X, X), M(X)) ® sA(X, Z) =
1®f1s~ 1]

L C(sA(X, X), sM(X)) ® sA(X, Z)
Cr(sA(X, X), sM(X)) ® G (sM(X), sM(Z))

C

T G (sA(X, X), sM(2)) S, ¢ sM(Z)) = sM(2)]
+ [SCL(A(X, X), M(X)) @ sA(X, Z) 2L ¢, (sA(X, X), sM(X)) ® sA(X, Z)
L ¢ (A X), SM(X)) ® C(SM(X), sM(2))

Q]k(xiél,l)®l

Culk, sM(X)) @ Cu(sM(X), sM(2)) =5 sM(2)] = 0.

The above equation follows from the following identity which holds by properties of the
closed monoidal category C,:

C

[Ca(SA(X, X), sM(X)) ® Cu(sM(X), sM(Z)) “

CulsACY, X), sM(2)) 28D, ¢ (1, s0(2)) = sM(2)]
= [Cu(sA(X, X), sM(X)) ® C,(sM(X), sM(Z))
SO, € (1, sM(X)) © G (sM(X), sM(2))
= SM(X) @ G (sM(X), sM(2)) 25 sM(2)].

This is a particular case of identity (B.1.3) combined with ([.3.0).
Now we prove that (Hi* ® 1)byK; is homotopic to identity. It maps each factor
sC(A(X, Z),M(Z)) into itself via the following map:

[sCL(A(X, Z), M(2)) <25 C (sA(X, Z), sA(X, Z) @ sC, (A(X, Z), M(Z2)))
SUD, ¢ (sAX, 2), sM(2)) I s (AX, 2), M(2))].

where

Hi' s~ [1]@s ' [1]

P=—[sA(X,2)® sC(A(X, Z),M(Z))
C(sA(X, X), sA(X, Z)) ® C(sA(X, Z), sM(Z)) 22
CSA(X, X),M(2)) Z000, ¢ (I, sM(2)) = s(2)]
= [Sﬂ(XaZ)®S£k(A(X,Z),M(Z))msﬂ(xaz) G (sA(X, Z), sM(Z))
cov @l (SA(X X), sA(X, X) @ sA(X, Z)) ® C,(sA(X, Z), sM(Z))

SO (A, X), sA(X, Z)) @ Cu(sA(X, Z), sM(Z))

SO ¢ (1 SA(X, Z)) @ Cu(sA(X, 2), sM(Z)) 25 sM(2)]
—[sA(X, Z) ® sC(A(X, 2), M(2)) 21 sA(X, Z) © Cu(sA(X, Z), sM(Z))

oL €k k ® SA(Y, 7)) © Cu(sA(X, 2), sM(2))
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Co(L(xig ®1)b2)®1

SA(X, Z2) ® Gy (sA(X, Z), sM(Z)) 225 sM(Z)]

—[sA(X, Z) ® sC(A(X, Z), M(Z)) 1esT]

(xift®1)ba®1
_—

SA(X, Z) ® C,(sA(X, Z), sM(Z))
SA(X, Z) @ Cu(sA(X, Z), sM(Z)) 25 sM(2)]. (A4.1)
It follows that

(HY © 16Ky 0 = — [sC(A(X, 2),M(2)) " C(sA(X, 2), sM(2))
w0t C(SA(X, Z), sA(X, Z) ® Cu(sA(X, Z), sM(Z)))

C]k( (Xl() ®1)ba®1)

C(sA(X, Z), sA(X, Z)®Ck(sﬂ( 7)), sM(Z)))

gk(l,evck)

C(sA(X, 2), sM(Z)) 75 sC(A(X, Z), M(2))].
Since A is a unital A-category, there exists a homotopy A" : sA(X,Z) — sA(X, Z),
a map of degree —1, such that (xif' ® 1)by = —1 + h"b; + byh”. Therefore, the map
considered above is equal to

idac, (acx.z)niz) — [5G (AKX, 2), M(2)) - C(sA(X, 2), sM(Z))

2%, C(sA(X, 2), 5A(X, 2) @ C(sA(X, Z), sM(Z)))
C,(1,(h""b1+b1h")@1)

Cr(sA(X, Z),sA(X, Z) ® C(sA(X, Z),sM(Z)))

G, (1,evCk) 1]s

Qk(S‘A(Xa Z)v‘SM(Z)) Ck( (X7 Z)7M(Z))}
= (idsc, (a(x.2)M(2)) +b; Ky + K()ob%k),
where

-1

Kpy = [sCu(A(X, Z),M(Z)) —— Cu(sA(X, Z), sM(Z))

SO, C(sA(X, 2), M(2)) EI sC (A(X, 2), M(2))].

Indeed, b%kKéo + K(’)Ob%k is obtained by conjugating with [—1]s the following expression:

meCy (R, 1) + Cy(h", 1)ymt* = (—

(17 bg)\/[> + gk(bla 1))£k(h”7 1)
+C (R 1) (—=C (1

Cy
—C (1,5 + G (b1,1)) = —Cp(bih" + 1"by,1). (A4.2)

The rest is straightforward. Therefore, (H{* ® 1)b§kK 1,0 and agp are homotopic to identity.
Now we are proving that diagonal elements ay : Vi — Vj are homotopic to identity

maps for £ > 0. An element 7,1 € Vi1 is mapped to direct product over Zy, ..., 2y €
Ob A of

P Ki ik = coevil g o, Co(sA(X, Zo),r 7 s G, (xi7', 1)) [—1s
TsA(Zy, Zy,) — sC(A(X, Zy), M(Zy)).
Here riﬂfo """ 7 sA(X, Zo) @ TsA(Zy, Zy) — sCu(A(X, X),M(Zy)) is one of coordinates
of Tkt1-
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Thus, r Dy k41 Kk+1x is the sum of three terms (A.4.3d)-([A.4.3d):

c0ev iy 20y Ce(SA(X, Zo), (1 oI g fbgts T )G (xig 1)1 s
TS.A(Z(), Zk) — Sgk(./q.(X, Z()),M(Zk)), (A43a)

where 7’2(’  sA(X, ZO) ® TsA(Zy, Zy_1) — sC(A(X, X), M(Z},_1)). Since b%“‘ =
(s ® 8) tmys = ( 1 ® s )mys, and [1] is a differential graded functor, we have

(re ® f)bzs (1] = —(res '] @ fus™'[1])ms*.
Identity (B-1.2) gives
(i ® f)b5*s 1 Ca(xigh, 1) = —(ries ™' [1] ® fus™ [1])m5*Ci (i, 1)
= —(res ' 1] ® fisT [1)(Culxig' 1) @ Dmz* = (res (UG (xig 1) @ fos™'[1])ms*
(we have used the fact that C,(xiZ', 1) has degree —1 and f1s~" has degree 1).
€00V i 2y Cu(SA(X, Zo), (HTY @ g2 )bys ™ [1]Cy (xig', 1) [=1]s
TsA(Zy, Zi) — sC(A(X, Zo), M(Z)), (A.4.3b)
where 1207 - TsA(Zy, Zi) — sCu(A(X, Zo), M(Z)). Similarly to above
(HY @ )by s~ [1] = (=) (HY s [1] @ s~ [1])ms*,
so that
(HY ® ri)bs*s ' [1)C, (xig, 1) = (=) (H s 1] @ ries ™ 1) (Cu(xif', 1) ® 1)ms*
= (H s '[1]C, (xigh, 1) @ rys ™ [1])ms*

(res~![1] has degree degr + 1 and C; (xif', 1) has degree —1).
For each p, ¢ such that p4+¢q¢ =k — 1,

c0ev iy g0y Ce(SA(X, Zo), (17 @ by © 1%9)res ™ 1] G (i7", 1)) [—1]s -
TsA(Zy, Zy) — sC (A(X, Zy), M(Zy)), (A.4.3¢)
where r, means
e Dt P TSAX, Zoy oy Zy1y Zpirs - -+ Zi) — sCL(A(X, X), M(Z)),
and Z7_; = X.
Thus, ry Dy g1 Kpr16 = COGVE&KX,ZO)’* C(sA(X, Zy), X1)[—1]s, where

G (xigh 1) @ frs™H1])ms*
(H¥s7[1]C, <x10 1) @ 2P s 1] )mge
— (=) (1P @ by @ 190y, 202 T C (gt 1)

_|_

sA(X, Zy) @ TsA(Zy, Zy) — sM(Zy,).
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Similarly, 7Kg g—1Dk—1 is the sum of three terms ([A.4.4d)-([A.4.4d).

(coeveh x 2o Cu(SA(X, Zo), mies  1]C, (xig, 1)) [—1]s
®CO€VSCM(Zk D,8A(Z—1,Zk) C k(SM(Zy-1), by )[_1]5)b%k
= —(c0ev w700 CelSALX, Zo), mas™ NG (i 1))
®CO€VSCM(Zk ,8A(Ze—1,2x) Cp (sM(Zg-1), by )) Ck[ 1]s
=— CO@VS&(X,ZO),* Cu(SA(X, Zy), (res 1] Cp(xig', 1) @ 1)) [—1]s -

TsA(Zy, Zy) — sCu(A(X, Zy), M(Zk)), (A.4.4a)
where 7 means r,f’Zo """ e TSA(X, Zoy -y Z1) — sC(A(X, X), M(Z4_1)). Here we
use formulas (B.1.1]) and (A.3.1]).

(cev e 2oz z) CelAX, Zo) ba) =15
@ coevhx . CulsAX, Z1), s ]Gy (xig', 1) [~1)s) b5
= (=) (coevis x zorsaizo.z S (SAX, Zo), bo)
® coevgz(X’Zl)’* C(sA(X, Z1), res H[1])Cy (xi7 1))) “[—1]s
=(-)" Coevgﬁl(X,Zo),* Cy(SA(X, Zp), (br ® 15F Nyrps  [1)C, (xi7', 1)) [~ 1]s

TsA(Zy, Zy) — sC(A(X, Zo), M(Zk)), (A.4.4b)
where 7y, means 7% TsA(X, 24, ..., Zy) — sCu(A(X, X), M(Z)). We have used
that rps '[1]C, (xiy, 1) has degree degr and formula (B.1.1)).

(1%P @ by @ 197) COQVCjZ x.Z0) S (sA(X, Zo), s [1]C(xi7' 1)) [—1]s
= c0eV iy 7000 Cu(SA(X, Z0), 19771 @ by @ 199)

Qk(S-A(X Zy), Tks_l[l]c (X10> ))[_1]5
= c0evSh 0 Cu(SALX, Zo), (19 @ by © 199) s (1], (i, 1)) [~

TsA(Zy, Zy) — sC(A(X, Zo),M(Z)), (A.4.4c)
where ry is the map

v oIt Be P A(X Zo, o Ly Zgyas - Z1) — sCU(A(X, X), M(Zy)).
Ci

Here we use the naturality of coev
Thus, rpKgg-1Dg—1x = Coeng(XZ me Co(hXZy, %) [—1]s, where

By = —(ry T G D) @ DB
+ (=) (br @ 155 ) BTG (g 1)

— (=T Y (A @by @ 1ot I BT (g 1)
ptq=k—2

sSA(X, Zy) @ TsA(Zy, Zi) — sM(Zy).
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The element 7K has degree degr — 1, so the sign (—)"~! arises. Combining this with the
expression for ry Dy, p11 K41, we obtain

Tka k+1Kk+1 k + TkKk fe— 1Dk 1.k = COQVEA(X Zo) C (S.A(X Zo) 2)[ 1]8,

where ¥ = ¥, +%,. We claim that ¥ = (H¥s 1 [1]C, (xig, 1) @770 Z’“s_l[l])mgk. Indeed,
first of all,

p+g=k—2

= Y (@b @ 1) B A NG (i 1),
p+q=k—1

S = (rp P s G (637 1) @ fus T [L])ms®
+ (HY 57 (xif 1) @ r P s ) mgs — (s T ]G (xdgh 1) @ 16
sA(X, Zy) @ TsA(Zy, Zi,) — sM(Zy).
Note that
ms* = ev® : sM(Z_1) ® C, (sM(Zp—1), SM(Zy,))
= G, (k, sM(Z4—1)) ® Cy(sM(Zi1), sM(Z1)) — sM(Zi) = Gy (k, sM(Z)),

therefore the first and the third summands cancel out, due to (-5.9). Hence, only the

second summand remains in ¥ = (H{¥s 1[1)C, (xig, 1) @ r0 Zeg=11])ms*. Tt follows
that

T D k1 K1k + 6Kk g1 Dp—1.1

= [TsA(Zo, Zy) oev, C.(sA(X, Zy), sA(X, Zy) @ TsA(Zy, Zi))

G (LH{ s~ )G, (xig D)@rys ™! [1])

Gy (sA(X, Zo),
Gk, sA(X, Zo)) © Cu(sA(X, Zo), sM(Zk)))

Cy 1,771%]k 5
?Eljcl%gk(s‘A(Xa Zy), sM(Zy)) —— s, sCu(A(X, Zo), M(Z))]
= [TsA(Zo, Z) W €, (sA(X, Zo), sM(Z)

N, Cu(sA(X, Zo), SA(X, Zy) @ Cy(sA(X, Zo), sM(Z))

X 1
SOHETNGOT VD, e (GA(X, 7o), sA(X, Zo) @ Cu(sA(X, Zo), sM(Z)))

G, (1 ,evC)
5

1]s

Cu(sA(X, Zo), sM(Zy)) — sCu(A(X, Zo), M(Zy,))]

TS~

= [TsA(Zo, Z) ne W ¢ (sA(X, Zo), sM(Z1))
coevS, C.(sA(X, Zy), sA(X, Zy) @ C.(sA(X, Zy), sM(Zy)))

C, (H{ sH1]C, (xig,1),1)

C(sA(X, Zy), sA(X, Zy) @ Cu(sA(X, Zy), sM(Zy)))
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G (1,ev%x) 1]s

Gy (sA(X, Zo), sM(Zk)) — sCy(A(X, Zo), M(Zy))]

= [TsA(Zo, Z) 2 sC(A(X, Zo), M(Z)) b CL(sA(X, Zo), sM(Z))

C(HE s 1] (xig,1),1) [—1]s

Cu(sA(X, Zo), sM(Zi)) — sCL(A(X, Zo), M(Zy))].

Note that
Hlxsfl[l]C (Xlo s 1) (Xlo )b2 =1- h//bl b h// . S.A(X, Zo) — S.A(X, Zo)
(compare with ([A.4.1)). We see that for k& > 0
apk = Dy 1 Kppr o + K1 D1 =1+ g
g]k(TS'A(ZOa Zk)7 Sg]k(‘A(Xv ZO)? M(Zk>>) - gk(TS'A(ZOa Zk)7 Sg]k(‘A(Xv ZO)? M(Zk)))7

where

g=—C(TsA(Zy, Z1.), s [1]C (W"by + bih", 1)[—1]s).
More precisely, Dy pr1Kk115 + Kk r—1Dk—1 is a diagonal map, whose components are
1+ g. We claim that g = mi*K}, + K}, ms*, where

Ky, = Cu(T'sA(Zo, Zy), s [1]C, (R, 1)[1]s).
Indeed, m%”‘ = G, (1, b%k) = GOy (1P ®@ by ® 1%9), 1), so that

m Ky, = (CL0) = G Y 1% @b ©199,1))C, (1, s [1C, (B, 1)[~1]s)

p+g=k—1
= G (1,55 [1]C, (W, 1)[—1]s)
+ G (1, s UG (R, 1)[=1]5) Gy ( 1% @ by @ 177,1),
Ko = G (1,57 1] Cu (A", 1)[=1]s) (G (1, b%k) G Y 1ehe1%,1))

p+q=k—1

|
@)
~
—
V)
L
—
e

(WD) () 1P @b @19 1).
p+q=k—1

Therefore,
Kjymt +mt* Ky, = G (1,0 1]C, (1", 1)[~ s + s [1]C (R”, 1)[~1]sbT)
= G (L s W (my G (W, 1) + C (", 1)my*) [-1]s).
By (A.43) we have m=*C, (1", 1) + C,(h", 1)ms* = C, (b, + by k", 1), so that
KLmS +me K, = —C, (1, s ' [1]C,(h"by + bih", 1)[~1]s) = g.
Summing up, we have proved that
a=aoY+BK+KB =14+BK +K'B;+ N,

where K’ : sAx(A; C)(HY, f) — sAx(A; C)(HY, f) is a continuous k-linear map of
degree —1 determined by a diagonal matrix with the matrix elements

K = G (TsA(Zo, Zi), s UG (R, 1)[=1]s) : Vi, — Vi,
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K, = 0 for k # [, and the matrix of the remainder N is strictly upper-triangular: Ny =0
for all £ > [. Lemma [A] is proven. O

The continuous map of degree 0
aY+B(K—-K)+(K—K)Bi=1+N:V =V,

obtained in Lemma [A.4, is invertible (its inverse is determined by the upper-triangular
matrix Y .- (—N), which is well-defined). Therefore, aY is homotopy invertible. We
have proved earlier that Ta is homotopic to identity. Viewing o, T as morphisms of the
homotopy category X, we see that both of them are homotopy invertible. Hence, they
are homotopy inverse to each other. Proposition [A.J is proven. U

The homotopy invertibility of T = Uy implies the invertibility of the cycle 2oy up
to boundaries. Hence the natural A.-transformation (2 is invertible and Theorem [.]] is
proven. 0

A.5. Corollary. There is a bijection between elements of H*(M(X), d) and equivalence
classes of natural A,-transformations HX — f: A — C,.

The following representability criterion has been proven independently by Seidel [E8,
Lemma 3.1] in the case when the ground ring k is a field.

A.6. Corollary. A unital A, -functor f : A — C, is isomorphic to HX for an object
X € ObA if and only if the K-functor kf : kA — X = kC, is representable by X.

Proof. The A,-functor f is isomorphic to H¥ if and only if there is an invertible natural
Aqo-transformation HX — f : A — C,. By Proposition [A.3, this is the case if and only
if there is a cycle t € M(X) of degree 0 such that the natural A.-transformation (ts)Y
is invertible. By Lemma B.4.T7], the invertibility of (¢s)Y is equivalent to the invertibility
modulo boundaries of the 0'" component (ts)Yg of (ts)Y. For each Z € Ob.A, the element
z(ts) Yo of CL(A(X, Z),M(Z)) is given by

(ts®1)b
AL SN

2(ts)Yo = —[A(X, Z) 2 sA(X, Z) SM(Z) 2 M(2)]

= JA(X, Z) S sA(X, Z) B2 oM(X) @ C(M(X), M(Z))

1®][1]

“EL M(X) @ Cu(sM(X), sM(Z)) 5 sM(Z) = M(2)]
= JA(X, Z) 5 sA(X, Z) ZE oM(X) @ C(M(X), M(Z))
L M(X) ® CM(X), M(2)) 25 M(2)]
= [A(X, 2) 2200 (X)) @ G (M(X), M(2)) 255 M(2)].
By Proposition P10, the above composite is invertible in C,(A(X, Z), M(Z)) modulo

boundaries, i.e., homotopy invertible, if and only if kf is representable by the object
X. O
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A.7. Proposition. The transformation §2 turns the pasting

Hoonp
A, A ) v C,
A (A: C)P, A (4: C,)

into the natural A,-transformation r? defined in Corollary f.3.3. Equivalently, the ho-
momorphism of TsA®-TsA-bicomodules t¥ : Ryor — 7Ax(A; Cy)w coincides with
(1®10%)-U:1€&y — Ax(A; C)w. In other terms,
[TSA® @ sA® @ TsA® L1201 gor 2y sp (A C)]
= [T5AP ® sAP ® TsAP 2222, TS AP @ 58,4 @ TsAx(A; C,) 2 sAx(A; C)].

Proof. Since Uy, = 0 if [ > 1, the above equation reduces to two cases:

[TFSAP @ AP @ T™sA® 2 A (A C,)]
= [Tk SA®P ® s AP @ T™s AP 19* @100,
TFsA® ® 585 ® A (A; C) 25 sA(A; C)]
ifm>0,and if m=0

[TF5A%P ® sAP @ TOsA® 250 A (A; C)]

= [TFsA™ ® sA%P @ TOsAP 22907, Thg Ao @ 58, @ TsAs(A; C,)
%0, sA(A;C)]. (A7)

The first case expands to

[TF A (X, Xi) ® AP (X, Vo) @ T AP (Y, Vo) 27 AL (A; Cy) (HY0, HY )]
= [T*sAP (X, Xi) @ sAP(Xy, Yo) @ T™sAP (Yo, Vi)

125 @18%m, Tksflop(Xo, Xi) ® XkHYO[l] ® SA;w(A?Qk)(HYO’ Hym)

O, sAL(A; C) (Y HY™)].

The obtained equation is equivalent to the system of equations

[TFSA% (Xo, Xi) @ sAP(Xy, Yo) @ T A% (Yo, V) —5
SAx(A; C)(HX, H™) . C(T"sA(Zy, Zn), sC(A(Xo, Zo), AV, Zn)))]
— [TkS,AOP(XO’ Xk) ® S.Aop(Xk, YO) ® TmS‘AOp(Y'O’ Ym)

LRSI, Thg AP (X, X,) @ XpHY[1] @ sAs(A; C)(HYO, HY™)

Ukl n

— Cu(T"sA(Zo, Zy), sC(A(Xo, Z0), AV, Z)))]
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where n > 0, Zy, ..., Z, € ObA. By closedness, each of these equations is equivalent to

[T"$A(Zo, Zn) ® T*sA%(Xo, X3) @ sA” (X}, o) © T"sAP(Yp, Vi)

19" Q% f14m
s

TS A(Zo, Z0) ® shoe(A; C) (0, H'™)

1®”®pr

— O TG A(Zy, Z) @ Cu(T™SA(Zo, Zn), $Cu(A(Xo, Zo), A(Yom, Zn)))

Ck

= Sg]k(‘A(Xm ZO)a ‘A(Yma Zn))]
= [T"sA(Zy, Z,) ® TFsA®(Xo, Xi) ® sA®(Xy, Yo) © T"sAP(Yy, Vi)
LNTCNSn, P (70, Z0) @ TFsAP(Xo, Xi)
® X H[1] @ sAx(A; G ) (H™, H™)

/
k1l;n

8}
2 $C(A(Xo, Zo), AV Z0)]-

The left hand side equals (12"®@% 41 1m) evhr = (1, %) ev™*), ki 14m = (Homgon ) ki1 1m
by the definition of the Yoneda A -functor % : A® — A, (A;C,). The right hand side
equals
(=) T sA(Zo, Z) @ TFsAP(Xo, Xi,) ® sAP(Xp, Yo) @ T™sA® (Yo, Yon)
197219k x10%,

T"sA(Zy, Zy) @ TFsA®(Xo, Xi) @ X H[1] ® sAx (A; C)(HY, H™)

coevCk

EE— Qk(S.A(X(), Z()), S.A(XQ, ZQ) X TnS.A(ZQ, Zn) X TkS.AOp(XQ, Xk)
® X H[1] ® s (A; C,) (HY, HY™))

Qk(l,perm)
N

C(sA(Xo, Zo), X HO[1] @ THsA(Xy, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zn) @ sAco(A; C) (H®, H'™))

A
(IR

G, (sA(Xo, Zo), Xp H®[1] ® sC, (X H™, Z, H™))

S, € (sA(Xo, Zo), Xe HY[1) @ G (X, HY[1), Z,H'™[1]))

G, (1,evk) [—1]s

Ci(sA(Xo, Zo), ZnH'™[1]) Cu(A(Xo, Zo), A(Yom, Zn))]
= (=) T"sA(Zo, Zn) @ T"sAP(Xo, X3,) ® sAP (X, Yo) ® T sA® (Yo, Vi)

coevCk

E— Qk(S.A(X(), Z()), S.A(XQ, ZQ) X TnS.A(ZQ, Zn) X TkS.AOp(XQ, Xk)
® sAP (X, Yo) ® T™sA® (Yo, Yin))

Qk(l,perm)
- =

C(sA(Xo, Zo), X HO[1] @ THsA(Xy, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zy) @ T™sA®P(Yy, Yy))

A
gk(1’1®(1®k+1+n®g]m) evkiol-&-n,l)

C(sA(Xo, Zo), Xpe H[1) ® sC (Xp H™, Z, H"™))

SO, L (sA(Xo, Zo), XeHY[1] ® C (X HY[1], Z,H'™[1]))

G (1,evCx) [-1]s

gk(s‘A(XOa ZO)a ZnHYm[l]) g]k(‘A(Xm ZO)7 ‘A(Yma Zn))]



A. THE YONEDA LEMMA 215
= ()" T"sA(Zy, Zn) @ TFsAP(Xo, Xi) @ SAP (X, Yo) @ T™sAP (Y, V)

oo, L C(sA(Xo, Zy), sA(Xo, Zo) @ T"sA(Zy, Zn) @ TFs AP (X, Xp)
® sAP(Xy, Yo) @ T™sAP(Yy, Yin))

Qk(l,perm)
- =

C(sA(Xo, Zo), X HO[1] @ THsA(Xy, Xo) ® sA(Xo, Zo)
® T"sA(Zo, Zy) @ T™sA®P(Yy, Yy))

G, (1,1®(Hom 4op )kt 14n,m)

G, (sA(Xo, Zo), Xp H®[1] ® sC (X H™, Z, H™))

s—1
S8 WD, ¢ (sA(Xo, Zo), X HY[1] @ C, (X, HY[1], Z,HY"[1]))

Cu(A(Xo, Zo), ZnH'™ (1) T2 C(A(X0, Z0), AV, Z0))] (ALT2)

Q]k(l,evck)

by the same argument. By ([L2.]]), the composite (1 ® (Homop )gt14n.ms '[1]) ev®s from
the above expression is given by
(=)™ [sA(Yo, Xi) @ T"sA(Xy, Xo) @ sA(Xo, Zo) @ T"sA(Zo, Zn) ® T™sAP(Yy, V)

P T s A (Yo, Yo) @ sA(Yy, Xi) @ TFsA(Xy, Xo) @ sA(Xo, Zo) @ T"sA(Zy, Z,,)

bm+1+k+1+n S.A(Ym, Zn)},

therefore (A.7.9) equals
(_)k+1+m [TnS.A(ZO, Zn) ® TkS.AOp(Xo, Xk) ® S.AOp(Xk7 Yb) ® Tms.AOP(Y'O, Ym)

0o, € (3A(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Zo) ® T*sAP(Xy, X)
® SAP (X, Yo) @ T™sAP (Yo, Vi)

Cy (1,perm)

=5 Cu(sA(Xo, Zo), T8 A (Yo, Yo) @ sA(Yy, Xi) @ TFsA(Xp, Xo)
X S.A(XQ, ZQ) X TnS.A(ZQ, Zn))

Q]k(l,b'A 1]8

m+1+k+1+n) QH{(S-A(Xm ZO)) S-A(Ymv Zn)) Clk( (X07 ZO)’ ‘A(Ym’ Zn)):| ’

which is (Homgep )n g114m by (E:2.0)). The first case is proven.
Let us study the second case, which is equation ([A.7.1]). It expands to

[TF5A%(Xo, Xi) @ sA® (X, V) @ TOsAP(Y, V) 225 sAL (A; C) (HY, HY )]
= [TFsAP(Xo, X)) @ XpHY [1] @ TsAx(A; C) (HY , HY)

280, sAL (A G (X HY)]. (A.7.3)

Composing this equation with pr,, and using closedness we turn it into another equation.
By the previous case, the left hand side coincides with

(Homﬂop)n w1 = (=) T sA(Zo, Zy) @ TFsAP(Xo, X)) @ SAP (X, Y)
w0, (sA(Xo, Zo), s$A(Xo, Zo) © T"sA(Zo, Zy) ® TFsA®(Xo, Xp) © sA® (X5, Y))

Qk(l,perm)
—_ 5

Cy.(sA(Xo, Zo), sA(Y, X1) @ TFsA(Xy, Xo) @ sA(Xo, Zo) @ T"sA(Zo, Zy,))

C(Lb 0 40) [-1]s
— " Cu(sA(Xo, Zo), sAY, Z,)) —— sCu(A(Xo, Zo), A(Y, Z,))]
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expressed via ([E.2.0]). This has to equal the right hand side which is
vom = (=) T T A(Zo, Zn) @ T*sAP(Xo, Xi) ® sAP(Xy,Y)

coevCk

C.(A(Xo, Zo), sA(Xo, Zo) @ T"sA(Zo, Zn) @ TFsAP(Xo, X3) @ sA(Y, Xi))

G, (1,perm)
s

Cu(sA(Xo, Zy), sAY, Xp) @ TFsA(Xy, Xo) @ T sA(Xo, Zo, - . ., Zy))

Qk(171®HY

SL18H 1), Ci(sA(Xo, Zo), sA(Y, Xi) @ sC (A(Y, Xi), A(Y, Z0)))

C.(1,1®s7 1))
_

Cy (sA(Xo, Zp), sA(Y, X) @ sC (sA(Y, X), sA(Y, Z,)))

Gy (Lievee) [—1]s

gk(S‘A(Xm ZO)) S‘A(K Zn)) - Sglk(‘A(XOa ZO)) ‘A(K Zn))}
obtained as (A.1.5) with f = HY. The required equation follows from the identity
kaq+n+2 = [S‘A(Ya Xk) ® Tk+1+n8‘A(Xka Zn)

1®HY
S SA(Y, X) @ sCL(A(Y, Xi) A(Y. Z,))

1®

107 SA(Y. X1) ® G(sA(Y, X0). sAY. Z,) “5 sA(Y, 2,)].

which is an immediate consequence of (I1)) written for H)Y,, . We conclude that
Proposition A7 holds true. O

As a corollary, we obtain the following well-known result, cf. [16], Theorem 9.1], [B9,
Theorem A.11].

A.8. Corollary. The A-functor % : A°® — AL (A; C;) is homotopy fully faithful.

Proof. By (A.7.3), we have
@1 = z—;OO : S‘Aop(Xa Y) - S&(‘A;gk)(HxaHY)a

for each pair X,Y € ObA. By Proposition A3, the component Uy is homotopy invert-
ible, hence so is %. O

Let Rep(A, C;) denote the essential image of & : A — AL (A;Cy), ie., the full

differential graded subcategory of Aj (A; C;) whose objects are representable A.-functors

(X)% = HX : A — C,, for X € ObA, which are unital by Remark [.4.3. Thus, the
Yoneda As-functor & : A" — AL (A; Gy ) takes values in the subcategory Rep(A, Cy).

A.9. Corollary. Let A be a unital A,,-category. Then the restricted Yoneda A..-functor
% A°® — Rep(A, C,) is an equivalence.

In particular, each unital A, -category is A, .-equivalent to a differential graded cate-
gory.
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