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1. Introduction

1.1 Motivation

The Robotics Research Lab at the University of Kaiserslautern investigates mobile
service robots in various environments. In order to navigate through unknown terrain
the on site detection of obstacles is a crucial feature. To analyse a scenery obstacles
depth information is very valuable. Stereo vision is a powerful way to extract dense
range information of a complete area of the environment [Schäfer 04]. On the other
hand stereo reconstruction comprises computationally expensive steps which results
in high CPU load. The inherent complexity leaves only one logical consequence. The
computation has be to moved off the CPU and towards a second processing unit.
One solution can be tailor-made stereo vision hardware (see [Kuhn 03]). However,
in recent years Graphic Processing Units (GPU) on consumer-level graphics boards
have become programmable and increasingly powerful. Furthermore the trend in
performance gain is even better than with standard CPUs. Today’s off-the-shelf
GPUs provide extreme parallel processing capabilities at far less cost than custom
made stereo vision hardware. Furthermore this hardware integrates easily with every
reasonably modern standard PC. At the same time the PC and the graphics board
communicate over a super fast bus beating any network solution by far.

For these reasons GPU implementations of stereo algorithms are a very attractive
way to speed up the reconstruction and to unload the main processor freeing re-
sources for further processing.

1.2 Objectives

Goal of this work is to development a fast stereo vision algorithm designed to run
on a standard NVIDIA GPU of the 8800 and above series. The stereo algorithm
needs to be integrated in the MCA framework1, which is commonly used for robotics
applications at the Robotics Research Lab at the University of Kaiserslautern. One
exemplary target application is the lab’s research platform RAVON (see figure 1.1).

1MCA = Modular Controller Architecture (see [Scholl 02, Koch 07] and http://www.mca2.org

http://www.mca2.org
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Figure 1.1: Robust Autonomous Vehi-
cle for Off-road Navigation (RAVON).
Research platform for behavior based
motion, localization, and navigation
strategies in rough terrain. Equipped
with two stereo vision heads.

Figure 1.2: Stereo vision simulation:
Stereo vision supported navigation on
RAVON

Stereo vision has been a research topic for years and is quite well understood.([Schnabl 03]
and chapter 2). The first challenge is therefore to select an approach that works well
in the field of outdoor robotics, at the mean time being suitable for a fast GPU
implementation.

General purpose computation on the GPU requires a new thinking about algorithm
design. Programming strategies that result in a fast CPU implementation do not
necessarily produce fast GPU code. Especially control structures, misaligned mem-
ory access and any kind of serialization slow down GPU programs. In this work it is
investigated how the latest GPU general purpose technology can be applied to the
stereo vision problem.

Finally the algorithms need to be benchmarked and optimized for high framerates.
Additionally simple and fast forms of post-processing and confidence2 computation
are presented as add-on to the core stereo algorithm.

1.3 Structure
This rest of this document is organized into the following chapters

• Chapter 2 explains general stereo vision principles.

• Chapter 3 outlines major design decisions.

• Chapter 4 describes the NVIDIA CUDA framework.

2relyability of reconstructed features
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• Chapter 5 gives an insight on how the presented stereo vision algorithm evolved.

• Chapter 6 describes the integration of the new algorithm into the MCA frame-
work.

• Chapter 7 illustrates the quality and performance results and concludes the
work.

• Chapter 8 concludes this Project Thesis.
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2. Stereo Vision

This chapter provides a brief overview on stereo vision.

2.1 Binocular Stereo Vision

Figure 2.1: General stereo vision geometry (pin-whole camera model). Eleft, Eright:
epipolar points; Fleft, Fright: focal points; P : point in 3D space; Pleft, Pright: pro-
jections on image planes
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Humans are able to perceive depth information with their two eyes. A distant object
is projected onto the retina of the left and right eye. The object’s projections differ
in their position. The human brain is able to come up with a depth judgment for
that object by analyzing the two images.

Computer stereo vision copies this concept. The goal is to reconstruct a depth map
from at least two 2D camera images showing a 3D scene from different observation
points. The depth information can be inferred by matching a point in both images
and looking at the displacement between the matched pair.

Figure 2.1 visualizes the general case of stereo vision geometry with two input images.

A 3D scene is projected onto two 2D virtual image planes. The plane defined by
point P and both focal points Fleft and Fright is called epipolar plane.

The projected line from focal point Fleft to P in the right image is called an epipolar
line. The right image projection Pright of point P can always be found on this
epipolar line. This is called the epipolar constraint and simplifies the correspondence
problem. This constraint only holds for the perfectly rectified images of a pin-whole
camera. In reality, raw camera images are usually distorted. The images have to be
rectified prior to stereo vision processing.

Figure 2.2: Binocular stereo vision setup

A binocular stereo vision system with a canonical stereo geometry consists of two
identical, parallelly mounted cameras. The cameras are setup such that their virtual
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image planes and both epipolar lines fall together. The epipolar lines are aligned
parallel to the x-axis of the image planes.

A point in the observed scene will be projected to pixels on the very same row in
the left and right image (see figure 2.2). Obviously no further calculation for finding
the epipolar line is needed. The displacement between left and right projection is
called disparity d.

2.1.1 3D Reconstruction

In order to reconstruct the 3D scene from disparity values the fixed distance between
the cameras called baseline b and the focal length f of the cameras has to be known.

The stereo vision head coordinate system lies between both cameras on the baseline.
Its orientation is defined according to common decisions in robotics as a right-hand
coordinate system. The x axis pierces perpendicular through the image plane. (see
figure 2.2).

In computer vision image origins usually lie at the top left corner of an image. Here,
the image coordinate systems have their origins translated to the very middle of each
picture, the closest point to the focal point (see figure 2.2). This is not a restriction.
It only simplifies the following derivation and is a common assumption in physics
for the pin-whole camera model.

The exact 3D coordinates x, y and z for two matching pixel (xl, yl) and (xr, yr) can
be calculated using triangulation as shown in figure 2.3.

tan(αl) =
xl

f
=

b
2
− y

x
(2.1)

tan(αr) =
−xr

f
=

b
2

+ y

x
(2.2)

Solving 2.1 and 2.2 for y yields:

y =
−xl · x

f
+

b

2
(2.3)

y =
−xr · x

f
− b

2
(2.4)

Equating 2.3 and 2.4 and solving for x results in:

x =
b · f

xl − xr

(2.5)

Solving for z is even simpler. Since both pixels lie on the same image row yr = yl

holds.
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Figure 2.3: X-Y Plane Triangulation (top view on stereo vision head)

tan(β) =
yl

f
=

z

x
(2.6)

z =
x · yl

f
(2.7)

Substitution of equation 2.5 into 2.7 and 2.3 yields the following formulae for straight
forward computation of y and z.

y =
− b

2
· (xl + xr)

xl − xr

(2.8)

z =
yl · b

xl − xr

(2.9)
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Figure 2.4: X-Z Plane Triangulation (side view on stereo vision head)

The disparity value d calculated by a stereo vision algorithm already equals xl − xr.
Note that the translation of the image origin along the x axis has no effect on the
disparity. Let the left image be the reference image. Then xl and d are known. xr

can easily be calculated as xr = xl − d.

2.2 Stereovision Algorithms

The challenge for a stereo vision algorithm is to solve the correspondence problem,
i.e. finding the right match in the left and right image for a given point in the real
world. The common approach is to declare one input image as the reference image.
For a pixel in the reference image the corresponding match is then searched for in
the second input image.

(a) (b) (c)

Figure 2.5: Scene configurations with half-occluded regions (red highlighted): (a)
occlusions due to thin object at the foreground-scene discontinuity, (b) occlusion due
to a small hole at the foreground-scene discontinuity, (c) occlusion due to surface
variation-surface discontinuity. (source [Kostkova 02])

However, finding the correct match is ambiguous. Due to occlusion some points
may not have a match in both projections (see figure 2.5). Furthermore repetitive
textures may produce multiple matches. Detecting occlusion and finding the right
match determines the quality of a stereo vision algorithm.
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2.2.1 Dense vs. Sparse

Stereo vision strategies can be dense or sparse. Sparse stereo vision concentrates
on selected feature points only. A feature point can be a point of special interest.
Alternatively a feature point may be a point with high likelihood for a good match.
This approach can potentially result in a fast stereo vision algorithm due to the
reduced amount of analyzed points. Dense stereo vision algorithms find matches for
all points in the reference image. (In this work a dense approach was chosen since
distance information for the whole image is required for further processing steps.)
In a complete run of a dense stereo vision algorithm a disparity value is calculated
for each pixel in the reference image. Typically this result is visualized as a gray
scale image, also known as disparity map. In this image each pixel’s brightness
corresponds to a disparity level. High disparity values result in lighter pixels.

2.2.2 Global Optimization vs. Window-Based

Recently high quality results have been achieved in CPU stereo vision applying global
optimization techniques to the stereo vision problem (see [Scharstein 02]). Such
algorithms rank top at the Middlebury evaluation page1. However, these approaches
tend to be slow and thus are not suitable for our near-real-time task. Yang and
Pollefeys [Yang 05] claim that only correlation-based stereo algorithms are able to
provide a dense depth map in real time on standard computer hardware. However,
a fast optimizing stereo vision algorithm for the GPU could be an interesting future
research topic.

Window-based stereo algorithms take two parameters: window width and window
height. The window describes a rectangle areas around the reference pixel. Around
a match candidate in the second image a rectangle of equal size is compared to
the reference window. It is assumed that the areas are most similar for the correct
match.

Figure 2.6: Window based stereo vision

For each disparity step a window based strategy therefore shifts the window along
the epipolar line in the second image. The region in both images is then compared

1http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/
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by a similarity function. The disparity step with the highest similarity provides most
likely the correct match. Common similarity functions are cross correlation, sum of
squared differences (SSD) or sum of absolute differences (SAD).

The performance and quality of a window based algorithm depends on the window
size. Large support regions provide a higher certainty for a correct match even
for low textured input images. Small window sizes speed up the computation and
produce finer grained results. Window based stereo vision requires good textures in
the input images. Luckily in the application field of outdoor robotics such textures
prevail.
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3. Concept

3.1 GPU Computation Technology

A CPU is optimized for general purpose computation. In contrast, GPUs are spe-
cially designed to perform a set of rather simple operations on a large amount of
data. A GPU obtains speed via parallelization. This is achieved by multiple parallel
rendering pipelines. From a general purpose computing point of view a GPU is a
dedicated parallel processor.

Traditionally the rendering pipelines are programmable with vertex- and fragment
programs via a shader language. In this fashion stereo vision systems already
have been implemented [Yang 05]. The Robotics Research Lab has used the CG
framework on NVIDIA graphics hardware for various general purpose computation
[Zolynski 07, Seidler 08] on the GPU.

In all these approaches the application engineers have to reformulate their general
purpose problem in terms of these shader languages. Recently, NVIDIA has come
up with a new approach to general purpose computation on the GPU: the CUDA1

framework. In CUDA there is no need to reformulate the application problem (see
chapter 4). Therefore this new technology will be used in this work to support the
stereo vision implementation.

3.2 Algorithm Selection

As explained in chapter 2 a window-based approach is most promising for near real-
time implementations. Since the technology is brand new, two algorithms are to
be implemented. The first and simple window-based stereo vision algorithm serves
as a test and study object. In the second implementation quality improvements
are targeted. In order to achieve better results a pyramid approach and simple
post-processing are to be incorporated to the implementation.

1CUDA = Compute Unified Device Architecture
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4. CUDA

Figure 4.1: Floating-Point Operations per Second for the CPU and GPU
[NVIDIA 07]

CUDA stands for Compute Unified Device Architecture. It is a new hardware and
software architecture for computation on the GPU. CUDA is available for NVIDIA’s
GeForce 8 Series, Quadro FX 5600/4600, and Tesla solutions [NVIDIA 07].

Programmable graphics hardware has been around for quite a while. Traditionally
this hardware had to be programmed through shader languages and graphics APIs
like CG1. This imposed a high learning curve on developers who were trying to utilize
GPU computation devices for non-graphic tasks. Additionally values could be read

1C for graphics http://developer.nvidia.com/page/cg_main.html

http://developer.nvidia.com/page/cg_main.html
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from but not written to arbitrary memory locations. In CUDA these problems are
overcome.

CUDA provides a standard C programming interface. Inter-thread communication
and general DRAM read and write access is possible with CUDA hardware.

This chapter will briefly introduce the main CUDA capabilities and constraints.
For more detailed information on the CUDA framework please refer to the CUDA
Programming Guide [NVIDIA 07].

4.1 GPU

Figure 4.2: CUDA Hardware Model: A set of SIMD multiprocessors with on-chip
shared memory [NVIDIA 07].

The GPU is a computation device capable of executing a very high number of threads
in parallel. GPUs consist of a set of SIMD 2 multiprocessors (see figure 4.2). Each
Multiprocessor consists of a number of processors, each executing one thread. All
processors within the multiprocessor execute the same instruction. This means that
threads with an identical control flow operating on isolated data can be effectively
computed in parallel on one multiprocessor.

4.1.1 Execution Model

A C function to be executed in parallel on the device is called a kernel. All threads
are split up into a grid of blocks. This is called the kernel’s execution configuration.
Blocks are executed in parallel on the multiprocessors (see figure 4.3). A block is

2SIMD = Single Instruction Multiple Data
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Figure 4.3: CUDA Thread Batching: Each kernel executes as a batch of threads
organized as a grid of thread blocks [NVIDIA 07].

processed only on one multiprocessor, but more than one block can be assigned to the
same multiprocessor concurrently. Each block is automatically split up into SIMD
groups of threads called warps which are then scheduled to the multiprocessor.

Threads within the same block can share data and synchronize with each other.
This is why it is most convenient to have large blocks. However the block size is
limited by the hardware capabilities of the device. Threads in one block have to
share limited resources, for example shared memory.

The execution configuration of a kernel call is declared in the code by a special
CUDA syntax extension to C.

The configuration parameters are:

• grid
is of type dim3 and specifies the dimension of the grid, i.e. the number of
blocks equals grid .x ∗ grid .y. The third dimension grid .z stays unused.

• block
is of type dim3 and specifies the dimension of a block. The number of threads
in the block is block.x ∗ block.y ∗ block.z.

• memsize
is of type size t and specifies the number of bytes that are dynamically allo-
cated per block in addition to the statically allocated memory.
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Take a look at example 4.4.

1 // kernel declaration
2 __global__ void Func(float* parameter );
3 ...
4 // kernel call
5 Func <<< grid , block , memsize >>(parameter );

Figure 4.4: Cuda kernel declaration and call

Note the global CUDA keyword. It declares the function to be executed on the
cuda device, making it a kernel.

The configuration parameters listed above can be accessed from within each thread
through built-in Variables: gridDim and blockDim.

Through the variables blockIdx and threadIdx a thread can also access its grid and
thread coordinates.

To make all this work CUDA code has to be compiled with the special nvcc compiler,
which comes with the CUDA Toolkit.

4.2 Memory

Figure 4.5: CUDA Memory Model: Memory spaces of various scopes [NVIDIA 07].

A kernel thread can access different memory spaces according to table 4.1.

Global, constant and texture memory can be read from and written to by the host
and are persistent across kernel launches.
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Memory Access Scope Persistence Cached Latency3

register read-write thread no 0
local memory read-write thread no 4
shared memory read-write block no 4
global memory read-write grid yes no 400-600
constant memory read grid yes yes 400-600
texture memory read grid yes yes 400-600

Table 4.1: CUDA Memory Scopes

Shared memory is extremely fast and enables inter-process communication between
the threads in one block.

Due to the latencies shown in table 4.1 it has become a common pattern in CUDA
programming to have all threads read data from global, constant or texture memory
to shared memory prior to any computation. Once all needed data is loaded into
the shared memory read and write access is extremely fast. Once the computation
is done the results are written back to the global memory.

For more information please see the CUDA Programming Guide [NVIDIA 07].
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5. Implementation

Prior to implementation it was necessary to become acquainted witch NVIDIA’s
new CUDA technology. In [Yang 05] a stereo vision implementation on commodity
graphics is presented using OpenGL. CUDA enables a completely new approach.
The CUDA framework explicitly targets non-graphical computation on consumer
graphics boards. At the time of writing this novel framework is still under heavy de-
velopment and experimental. During the course of this work CUDA releases changed
three times from version 0.8.2 to 1.0.

5.1 Getting started
Prior to any stereo vision specific solution the CUDA Toolkit had to be setup on a
Linux system. CUDA comes with a set of example applications. Once the toolkit
is installed correctly these examples compile. There are two modes, emulation and
production mode. In the emulation mode no CUDA supported hardware is needed.
The execution is simulated on the CPU. This is quite slow, but useful for debugging.
In production mode the CUDA programs are executed on the graphics hardware. At
the time of writing this only works with a special NVIDIA graphics driver designed
for the CUDA Toolkit available on the CUDA home page1.

In addition up to June 2007 the CUDA framework was only available in version
0.8.2. This version did not yet support the graphic card in our development system,
a NVIDIA GeForce 8600 GT. Kindly, the department of computer graphics2 gave us
permission to run tests on their GeForce 8800 GTX card. Support for the NVIDIA
8600 card was finally available in the 0.9 and 1.0 releases, which were obtained
through the NVIDIA developer early access program.

In order to develop the stereo vision solution IDE, build system, and versioning
system had to be setup. As development platform Eclipse CDT and Emacs was
used. The stereo vision software had to be integrated into the MCA framework3.
For that reason the example make files could not be used. MCA uses the Scons4

1http://developer.nvidia.com/object/cuda.html
2http://www-hagen.informatik.uni-kl.de/
3MCA = Modular Controller Architecture (see [Scholl 02, Koch 07] and http://www.mca2.org
4http://www.scons.org

http://developer.nvidia.com/object/cuda.html
http://www-hagen.informatik.uni-kl.de/
http://www.mca2.org
http://www.scons.org
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build system. This required some Python coding to create a CUDA specific Scons
builder that would integrate nvcc into the exiting Scons framework. As a versioning
system stereovision cuda was setup as a sub project within the MCA subversion
system.

As a first guide to a stereo vision solution the NVIDIA convolution example provided
most useful information to understand the basic concepts in order to solve the stereo
vision problem on CUDA hardware. It describes a convolution filter that analyses
the surrounding rectangle area for each pixel. A similar approach was then used to
obtain the first window based CUDA stereo vision solution.

After three weeks of documentation studies and implementation of prototypes the
first runnable stereo vision system was completed. The here presented version of
the window based stereo algorithm is the optimized and final version of the simple
window based approach. It demonstrates the most important CUDA programming
principles to gain most out of the graphics hardware.

5.2 Window Based Approach

usage: stereovision_cuda_simplewindow left_image right_image

result_image thread_width thread_height

optional arguments are:

-dmin disparity minimum (default: 0)

-dmax dispartiy maximum (default: 32)

-width window_width (default: 5)

-height window_height (default: 5)

-weight_x weight of channel x (default 0.3),

weight sum should be 1

-weight_y weight of channel y (default 0.3),

weight sum should be 1

-weight_z weight of channel z (default 0.3),

weight sum should be 1

-scale scale of output image

(disparity value * scale) (default: 1),

a power of 2

-showResult default: 0 (off)

-showInput default: 0 (off)

The window based algorithm takes two input images of equal size as input and
computes a disparity map in terms of a gray scale image as output.

The input images can be color images. Internally they are converted to HSV (Hue,
Saturation, Value) format. The user can provide weights (wx,wy,wz) for all three
channels. Depending on the image quality it can make a difference of using different
weights. If for example the colors of both images are not well calibrated it can make
sense to concentrate on saturation or value only.

In addition the user should specify the minimum and maximum disparity values and
the window width and height as command line parameters.
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The minimum and maximum disparity depend on the camera setup. With increasing
distance the disparity values converge towards 0. This is why the disparity minimum
is usually assumed to be 0. The maximum disparity value can be identified during
camera calibration, by manually calculating the disparity for a point in 3D space
with minimal distance to the stereo head system. For benchmark images, such as
the Middlebury stero pairs, the maximum disparity is known.

Depending on the image resolution, the window width ww and window height wh
are usually: 3x3, 5x5 or 7x7. Larger values result in smooth but blurry disparity
maps. Small window sizes produce grainy images, with potentially more outliers.

5.2.1 Window Based Kernel

For each pixel (px, py) and disparity step d the algorithm has to compare the window
in the reference image to the window along the epipolar line in the second image.
For a comparison function the sum of absolute differences (SAD) is used.

sad(px, py) =

py+bwh
2
c∑

py=py−bwh
2
c

px+bww
2

c∑
px=px−bww

2
c

 wx

wy

wz

·

 abs(Il(px, py).x − Ir(px − d, py).x))
abs(Il(px, py).y − Ir(px − d, py).y))
abs(Il(px, py).z − Ir(px − d, py).z))


(5.1)

Note that not the whole image can be processed. On the left and right side there
are borders of half the window width. On top and bottom there is a border of half
the window height. The pixel in this rim are not sufficiently padded. Therefore they
are left out in the computation.

The rest of the image is split up into tiles, i.e. rectangular sections of the image (see
figure 5.1). In order to process the image in parallel each kernel block is responsible
for computing the disparity values for one tile. In order to compute the SAD values
for each pixel in the tile a slightly larger rectangular area needs to analyzed by each
kernel. More precisely the area the kernel has to process is the area of the tile plus
half window size towards left and right side and half window with towards top and
bottom. This extra area is called the apron.

The aprons of two adjacent tiles overlap. This means pixels in the apron will be
accessed by multiple kernels. Since interprocess communication is restricted to one
block, it is inevitable that blocks of adjacent tiles will perform multiple read accesses
to the memory to fetch the same pixel.

Access to the texture memory is 100 times slower than accessing a shared memory
location. In order to get the maximum throughput all reference pixels of a block are
loaded in parallel. Each thread loads one pixel into shared memory. From then on
the apron threads are shut down. In CUDA development it is always important to
keep the ration of idle threads to active threads as low as possible. For this reason
it is best to have large tiles. In the presented algorithm the number of threads and
therefore the tile size is maxed out to 512 thread per block5, the current maximum
possible. 6 This translates into a constant block width of bw = 32 threads and a

5blockIdx.x ∗ blockIdx.y ∗ blockIdx.z <= 512
6To make this possible the kernel was optimizing to use only 16 registers.
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Figure 5.1: Image split up into tiles and corresponding thread blocks.

constant block height of bh = 16 threads. The tile height th and tile width tw can
be computed as follows:

tw = bw − 2 · bww

2
c (5.2)

th = bh − 2 · bwh

2
c (5.3)

Obviously the ration of idle to non idle threads depends only on the window size
(see table 5.1). The kernel does not scale with window size. As shown in table 5.1
it has to becomes unefficient with larger windows. At a 7x7 window almost as many
threads are put into idle mode as there are active threads calculating disparities.
The usage of a 9x9 window does not make any sense at all. However, 7x7, 9x9 or
larger window sizes produce blurry images. It is therefore justified to concentrate of
3x3 and 5x5 window sizes.

The tiles are all of equal size, except the ones in the last row and last column. They
may be smaller, since a whole tile might not fit into the image. For this reason the
kernel has guard access to pixel coordinates outside of the image. The algorithm
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window size 3x3 5x5 7x7 9x9
block size 512 512 512 512
active (tw * th) 420 336 260 192
idle 92 176 252 320
idle to active ratio 0.22 0.52 0.97 1.67
idle [%] 18.0 34.4 49.2 62.5

Table 5.1: Idle to active threads ratio

does not prevent access to negative x coordinates in the texture. This happens when
the algorithm analyses pixels on the left side of the reference image. It tries to read
the corresponding pixels that is shifted to the left by the current disparity step. This
pixel may have a negative x coordinate. The texture unit however is adjusted to
return the left-most valid texture value in this case. This special behavior makes
sence. In this area not the whole disparity range can be analyzed. Results here can
not be reliable, yet some pixels may match.
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1 __global__ void StereoKernel( unsigned char* disparity_array ,
2 int wx,
3 int wy,
4 int tile_width ,
5 int tile_height ,
6 int image_width ,
7 int image_height ,
8 float disparity_min ,
9 float disparity_max ,

10 float weight_x ,
11 float weight_y ,
12 float weight_z
13 ) {
14 const int wxh = wx >> 1;
15 const int wyh = wy >> 1;
16 const float px = threadIdx.x + MUL( tile_width , blockIdx.x);
17 const float py = threadIdx.y + MUL( tile_height , blockIdx.y);
18 const int result_index = (int)((py * image_width) + px);
19 float4 d0 = tex2D( tex_image0 , px , py); // left reference image
20 float old_minimal_difference = FLOAT_MAX;
21 for(float disparity = disparity_min;
22 disparity <= disparity_max;
23 disparity ++){
24 // always true.. only to open new var. scope
25 // but compiler ’s liveliness analysis is too bad
26 if(px > 0){
27 // load from right image (cached texture)
28 float4 d1 = tex2D( tex_image1 , px - disparity , py );
29

30 /* calc SAD and store result in shared memory */
31 differences[UMUL(threadIdx.y , blockDim.x) + threadIdx.x] =
32 weight_x * abs( d1.x - d0.x )
33 + weight_y * abs( d1.y - d0.y )
34 + weight_z * abs( d1.z - d0.z );
35 }
36

37 /* make sure all shared memory entries for this block
38 * are calculated and loaded */
39 __syncthreads ();
40

41 /* make sure px,py are not on the apron or image rim */
42 if(!( threadIdx.x < wxh
43 || threadIdx.x >= wxh + tile_width
44 || threadIdx.y < wyh
45 || threadIdx.y >= wyh + tile_height
46 || px >= image_width - wxh
47 || py >= image_height - wyh
48 )){
49 // sum up window
50 float sum = 0;
51 for(int y = 0; y < wy; y++) {
52 for(int x = 0; x < wx; x++) {
53 sum += differences [ MUL (((int)threadIdx.y + y -wyh),
54 blockDim.x)
55 + threadIdx.x + x - wxh];
56 }
57 }
58 /* find minimum */
59 if( sum < old_minimal_difference) {
60 disparity_array[ result_index ] = (unsigned char)disparity;
61 old_minimal_difference = sum;
62 }
63 }
64 /* make sure all threads have calculated the sum
65 * before altering their difference array location again
66 */
67 __syncthreads ();
68 }
69 }

Figure 5.2: Window based stereo kernel
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Figure 5.3: Repetitive textures in area A and B in Tsukuba example are hard to
match correctly.

5.3 Pyramid Based Approach

The straightforward approach presented in the last chapter has two major disadvan-
tages. First of all is the execution time directly dependent on the disparity range
processed. In an outdoor setting larger disparity ranges are common. To keep the
resulting disparity image crisp and to obtain good performance results it is good
to have small window sizes. This however increases the likelihood of matching the
wrong minimum, since the support region is small. The effect can be observed best
on repetitive textures (see figure 5.3).

Figure 5.4: Pyramid of scaled down image copies. Factor 1/4

In order to cope with these problems a pyramid based approach can be applied. In
a pyramid approach the both input images are scaled down several times. Figure
5.4 illustrates one original input image I0 and the scaled down copies I[1..n] as a
pyramid. A stereo algorithm with a fixed window size is then applied on each of
the scaled copies for a reduced disparity range, starting at In. From that result a
rough estimate for D(n−1) can be calculated. For all i ∈ {n, ..., 1} the disparity map



34 5. Implementation

Di serves as a hint for D(i−1) in the corresponding region in the next larger pyramid
level I(i−1) (see figure 5.5).

Figure 5.5: Propagation of disparity estimates

During disparity propagation from Di to D(i−1) the disparity values have to be
adjusted to the larger image resolution. The resolution of Ii is exactly double the
resolution of I(i−1). Therefore the disparity estimates for D(i−1) are computed by
multiplying Di times two. The estimates are all even. In order to close the “gaps”
the stereo algorithm on level I(i−1) has to decide between the even and uneven
disparity step. In order to make the algorithm more robust against initial errors a
slightly larger dispartiy range arround the estimate may be selected. In this fashion
the disparity estimates are refined from coarse to finer grained matches with every
pyramid level. Finally, the procedure yields the result D0.

This algorithm produces finer grained disparity maps at a lesser likelihood of false
disparity matches. This is because the disparity estimates on a small copy are based
on a virtually larger window than the actual window used, since each pixel in a scaled
down copy was obtained by interpolation. Thus, each pixel represents a whole region
of the larger copy.

When the image data is loaded from host memory to GPU texture memory a conver-
sion must take place. The pixel data has to be converted from a 3 times 8 bit format
to a Float4 CUDA type. This type takes care of the correct memory alignment.
As a comparison function this algorithm also uses SAD. The distributive law allows
the weights for all three color channels to be applied already during this conversion.
This way the weight factors are also applied to all scaled down copies.

The factor by which each level is scaled is one forth. This factor translate into half
window width and half window height. This enables very efficient computation of
down scaling as described in chapter 5.3.1.
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Figure 5.6: Linear interpolation on texture

5.3.1 Scale Down Kernel

For input image Ii a scaled down copy I(i+1) with half width and half height has
to be produced. This means each pixel in the result image is assigned the average
value out of 4 pixels in the input image. For an efficient implementation it makes
sense to put the scale down function on the graphics hardware as well. On graphics
hardware the computation of average values is extremely simple and can be done
in parallel. The algorithm (see listing 5.7) takes advantage of the built-in texture
unit. By requesting the value of the texture coordinate right between all four input
images the texture unit returns the linear interpolation of all 4 pixels values in all
three color channels (see figure 5.6 and test results 5.3.1).

Furthermore there is no need to copy each scaled copy to the graphics board memory
for each stereo vision kernel invocation. The scale down kernel’s result stays in GPU
memory and can later be accessed by the stereo vision kernel.

1 /*!
2 * reduces the size of an image a x b to a/2 x b/2 using 9bit
3 * precision floatingpoint interpolation
4 * global kernel texture reference tex_image (input image)
5 * width - width of resulting image
6 * height - height of resulting image
7 * pitch - pitch of 2D global memory array from cudaMalloc2D
8 */
9 __global__ void ScaleDownKernel(unsigned int width ,

10 unsigned int height ,
11 float4* data ,
12 unsigned int pitch) {
13 int px = threadIdx.x + blockDim.x * blockIdx.x;
14 int py = threadIdx.y + blockDim.y * blockIdx.y;
15

16 if(px < width && py < height) { // check px ,py within boundaries
17 float4* row = (float4 *)(( char*)data + py * pitch);
18 row[px] = tex2D(tex_image ,
19 2.0f*(float)px + 1.0f ,
20 2.0f*(float)py + 1.0f);
21 }
22 }

Figure 5.7: Scale Down kernel
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Test Input Image Output Image

Black and white checker board and interpolated result.
Note the gray line resulting from interpolation on the black
and white transition.

Black and white checker board shifted by one pixel hori-
zontally. No gray line visible in interpolated result.

Alternating black and white pixel columns. Resulting im-
age is a solid gray rgb(127,127,127).

Alternating black and white pixel rows. Resulting image is
a solid gray rgb(127,127,127).

Table 5.2: Scale and interpolation test images and results

This kernel is quite simple. It uses only 8 multiprocessor registers and and 32 bytes
of shared memory. Using the CUDA GPU Occupancy Calculator7. the optimal
configuration parameters of 256 threads per block were determined. An occupation
of hundred percent for each multiprocessor was hereby achieved. On bandwidth
bound kernels a high occupation is the only way to let the CUDA framework hide
memory latency by computation.

7Spreadsheet in CUDA Toolkit to calculate GPU occupancy
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5.3.2 Pyramid Stereo Kernel

Figure 5.8: Example: Pyramid stereo kernel thread configuration for window size:
5x5 and disparity range 16.

The pyramid stereo algorithm is also window based. However it uses a different
approach in mapping the images pixels to threads and blocks. In this approach one
block of threads is used to calculate the whole disparity match for one pixel. This
means that the maximum disparity range that can be processed by the algorithm
is limited by the maximum number of threads in one block (currently 512). This
number however is far larger than needed in the pyramid approach. Should there ever
be a need for a larger disparity range an additional pyramid level can be introduced.
The theoretical maximum disparity range equals 512 · 2n where n is the number of
pyramid levels above the original level I0.

To take a closer look at how each thread block can handle the computation of the
whole disparity spectrum it has to be recalled which regions in both input images
are relevant for the calculation of a pixel’s disparity value. Let (px, py) be the pixel’s
coordinates.

In the left window this is an area of window width times window height around the
examined pixel. In the right image all possible match candidates have y-coordinate
(py). Their x-coordinates range from px minus disparity minimum dmin to px mi-
nus disparity maximum dmax. Around each match candidate a rectangular area of
window width times window height needs to be examined. These areas overlap and
form a strip (see figure 5.8).

A block of threads is configured to load all needed image data in parallel. The
configuration is set to be one-dimensional. In sum: ww + (dmax − dmin) + 2 · bww

2
c

threads are started on the x component of the block configuration. The first ww
threads load the reference data from the left image. Threads with id >= ww load the
strip of pixels in the right image. Each thread loads a whole column of window height
pixels into shared memory. During the computation of the best disparity match
threads with id < ww are set to idle. All others are active in the computation of
the SAD for their disparity candidate. This way a bad idle to active ratio is avoided

which can be computed as:
ww+2·bww

2
c

dmax−dmin
. In the end a distributed minimum algorithm

is used to find the correct match (see figure 5.9). This algorithm is very fast, but it
relies on disparity ranges to be a power of two.

For each pyramid level the stereo kernel is invoked once. The disparity map is read
from and written to global memory, which stays persistent in between kernel calls.
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Figure 5.9: Example: distributed minimum calculation for disparity range 16.

After the first run the rough estimates for the disparity values is present in memory.
In order to refine the estimates for each following kernel invocation the disparity
range can be redefined. Theoretically the minimum disparity range would be 2,
since the width is doubled between two pyramid images. This however gave poor
results. The optimum would probably be a value of 5 leaving 2 options to either side
of the current value. However 5 is not a power of two. This is why 4 was chosen as
the disparity range for refinement calls.

1

2 __global__ void PyramidStereoKernel(
3 const float roi_offset_x ,
4 const float roi_offset_y ,
5 const int window_width ,
6 const int window_height ,
7 int* disparity_array , // guess and result
8 const int roi_width ,
9 const unsigned int stride , // >=1.0

10 const float right_image_offset
11 )
12 {
13

14 float4* sm_image = (float4 *) sm_array;
15 int disparity_range = (int)blockDim.x - 2 * window_width + 1;
16 int disparity_min = disparity_array[ stride*blockIdx.y * roi_width
17 + stride*blockIdx.x ]
18 - (int)stride *( disparity_range / 2);
19

20 /** load all columns **/
21 const int window_width_h = (window_width / 2);
22 const int window_width_15 = window_width + window_width_h;
23 const int tx = threadIdx.x; // type conversion
24

25 float px = roi_offset_x +(float)( blockIdx.x + threadIdx.x);
26 float py = roi_offset_y +(float)( blockIdx.y)-(float)( window_height /2);
27

28 if(tx < window_width) {
29 /* threads < window_width load reference region in left image */
30 px += (float) ( - window_width_h ) ;
31 } else {



5.3. Pyramid Based Approach 39

32 /* threads >= window_width load disparity region in right image*/
33 px += right_image_offset - (float)disparity_min / (float)stride
34 + (float)(- disparity_range - window_width_15 );
35 }
36

37 // load column into shared memory
38 for(int i = 0 ; i < window_height; i++) {
39 sm_image[window_height*tx+i] = tex2D(tex_image0 , px, py + i );
40 }
41

42 // make sure all pixels are loaded into shared memory
43 __syncthreads ();
44

45 // create shared memory arrays
46 // (thread configuration reserves device shared memory space)
47 // offset to sm_image array
48 float* sm_sad = (float*) & sm_image[blockDim.x * window_height ];
49 // offset to sm_sad array
50 int* sm_disparity = (int*) & sm_sad[disparity_range ];
51

52 int column_index = tx - window_width_15;
53

54 /** calc sad **/
55 // exclude threads that are not in the disparity range
56 if(tx >= window_width_15
57 && tx < window_width_15 + disparity_range ) {
58

59 // init sad sum
60 float sum = 0;
61 for(int w = 0; w < window_width;w++) {
62 int index0 = window_height * (tx + w - window_width_h );
63 int index1 = window_height * (w);
64 for(int h = 0; h < window_height; h++) {
65 // sad
66 sum += abs(sm_image[index0 ].x - sm_image[index1 ].x)
67 +abs(sm_image[index0 ].y - sm_image[index1 ].y)
68 +abs(sm_image[index0 ].z - sm_image[index1 ].z);
69 index0 ++;
70 index1 ++;
71 }
72 }
73 // write result to shared memory
74 // no * 0.3333f, weights add up to 1
75 sm_sad[column_index] = sum;
76

77 // initialize disparity array with reverse index * stride
78 sm_disparity[column_index] = disparity_min
79 + (int)stride
80 * (disparity_range - column_index );
81 }
82 __syncthreads ();
83

84 /* distributed min */
85 for(int range = 1; range < disparity_range; range += range) {
86 if(tx >= window_width_15
87 && tx < window_width_15 + disparity_range
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88 && column_index % (2* range) == 0) {
89 int column2 = column_index + range;
90 if(sm_sad[column_index] > sm_sad[column2 ]) {
91 // set winner
92 sm_sad[column_index] = sm_sad[column2 ];
93 sm_disparity[column_index] = sm_disparity[column2 ];
94 }
95 }
96 __syncthreads ();
97 }
98

99 /* write disparity: */
100 if(tx == window_width_15) {
101 int stride_h = stride / 2;
102 int result_index = stride * blockIdx.y * roi_width
103 + stride * blockIdx.x;
104 // (+0 ,+0)
105 disparity_array[ result_index] = sm_disparity [0];
106 //(+0,+ stride /2)
107 disparity_array[ result_index + stride_h ] = sm_disparity [0];
108

109 result_index += stride_h*roi_width;
110 //(+ stride /2,+0)
111 disparity_array[ result_index] = sm_disparity [0];
112 //(+ stride /2,+ stride /2)
113 disparity_array[ result_index + stride_h ] = sm_disparity [0];
114 }
115

116 }
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5.3.2.1 Region of Interest

In the field of application certain image regions may be of special interest, while
others are not interesting at all. Therefore the algorithm was adjusted to allow for a
definition of a rectangle area, which represents the region of interest. The disparity
values are only computed for this region. If no region of interest is set the largest
possible region is set by default. The algorithm can quite easily be adapted for
this feature. This is because each result pixel has its own kernel thread instance.
Excluding pixel outside of the region of interset is therefore only a matter of starting
the kernel with an altered configuration. The kernel configuration parameters width
and height had to be adjusted and additional two kernel parameters offset x and
offset y had to be incorporated to consider the shift in input coordinates.

5.3.2.2 Confidence

Figure 5.10: Example: Peak Ratio Metric for SAD distribution with two local min-
ima. (disparity range = 16)

The window based approaches presented here run very fast. As a trade-off they do
not produce state of the art quality results. For real-time robotic applications speed
is more important than quality. However it is still important to have some measure
to judge wether the generated disparity map is reliable or not, since further decisions
might map on the map. For that reason a confidence map is generated as well. A
confidence measure can be calculated using different approaches, of which none is
perfect. (cite ....). In this algorithm a combination of three metrics is used:

• Peak Ratio metric (PKR)
During the calculation of the minimum the difference between SAD values of
winner and runner up can be put in relation to the distance between both
disparity steps. If this slope (see figure 5.10) is very low it indicates that the
match is not reliable. This is not very useful to find overall confidence, since
only the last pyramid level is examined, yet it is very well suited to determine
whether the current distribution is good enough to change the guessed disparity
or not.
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(a) PKR (b) FD (c) MSM

Figure 5.11: Tsukuba example: Confidence Maps

• Feature Density (FD)
Feature density is a measure of diversity of the texture around each given
point in the texture. It is calculated by first determining the average of each
color channel in the window. In a second step the absolute difference between
average and each point is summed up. A window based approach can not work
on featureless textures.

• Matching Score Metric (MSM)
The SAD value of the winning disparity step directly tells how good the best
match actually was. A SAD of zero would indicate a perfect match. The
only problem is that this value can not be easily normalized. It is a very
straight forward method for overall confidence. Yet on low-textured surfaces
this method would give false positives. Therefore it needs to be combined with
feature density multiplicatively.
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5.3.3 Post Processing Kernel

With the confidence values at hand it is possible to do some quick post process-
ing without too much performance overhead. Once a suspicious disparity value is
identified by a low confidence value the question is: How can it be repaired?

Given that for a low confidence pixel most neighboring pixels agree on the same
disparity level and have a higher confidence, chances are good that an outlier was
found and that its true disparity value should be on the very same level.

The GPU algorithm takes advantage of the confidence and disparity values still
being in the GPU memory. For each pixel in parallel three passes are run. First hor-
izontally, then vertically, and horizontally again. Each time the algorithm searches
10 pixels to either side for confidence values 10 percent higher than the pixel’s own
confidence value. Should there be 2 pixels on opposite sides of the current position
with high enough confidence values and matching disparity levels the disparity value
of the current pixel is corrected and its confidence is increased by ten percent.

On the Tsukuba example (see 5.12) this procedure corrected about two percent of
the erroneous pixels. In the example the post processing algorithm closes some of
the gaps in the background. Figure 7.11 in chapter 7 shows that the post processing
step is very cheap compared to the pyramid kernel execution time.

(a) without post processing (b) with post processing

Figure 5.12: Tsukuba example: Post processing
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6. Integration

6.1 MCA Stereo Vision

Figure 6.1: UML: Pyramid Cuda Integration into MCA Framework

The stereo vision algorithm under development was built and tested using a stand-
alone command line program. Both, stand-alone version and MCA version of the
code share the same algorithm core in class tPyramidStereoVisionCuda (see figure
6.2).

In the MCA Stereo Vision project there are already several stereo algorithm imple-
mentations. These implementations are all exchangeable. The is realized through
the strategy design pattern; any stereo algorithm has to extend tDisparityGener-
ationStrategy. Via the factory sDisparityMapGenerationStrategyFactory a concrete
strategy instance can be created.
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According to these patterns tPyramidStereoVisionCudaStrat was created. The new
strategy recieves no command line parmaters but is configured via the MCA config-
uration tree and the MCA Browser(see figure6.3).

In order to keep the coupling between stereo algorithm and MCA framework loose,
the actuall core algorithm tPyramidStereoVisionCuda was hidden via adapter pat-
tern. This way it was possible to continue testing the implementation seperatly.

Figure 6.2: Screenshot of MCA Gui: showing input images and disparity map.

With the MCA Stereo Vision project a configured MCA GUI comes along (see figure
6.2). The two camera input images Cl and Cr are rectified (Il, Ir) and fed into the
stereo algorithm, which yields the disparity map displayed as D.

The MCA Browser (see B in figure 6.3) lets the user choose the input source and
configuration parameters on the fly. In the browser the disparity generator imple-
mentation can be selected and configured as well. In figure 6.3 a region of interest
configuration is shown.

Finally the Birchfield post processor, which was already present in the MCA stereo
vision project, was integrated. Figure 6.4 shows the post processor being applied to
the pyramid algorithm output.
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Figure 6.3: Screenshot of MCA Gui: Region of Interest Feature. B: MCA Browser,
C: MCA Browser Configuration Window, R: disparity map reduced to region of
interest

Figure 6.4: Screenshot of MCA Gui: Birchfield Post Processor activated. P: post
processed output
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7. Performance / Results

7.1 Quality

In order to evaluate the quality of the two stereo vision algorithms the Middlebury
stereo datasets were used (see figure 7.1 and table 7.1). These are image pairs with
known ground truth. They serve as a common benchmark for stereo algorithms.
The error rates were obtained from the Middlebury evaluation page1.

Image Pair image width image height disparity min disparity max scale
Tsukuba 450px 375px 0 15 16
Venus 450px 375px 0 19 8
Teddy 384px 288px 0 59 4
Cones 434px 383px 0 59 4

Table 7.1: Characteristics of Middlebury stero data set.

All tests were run on the color input images with HSV color channel weights 0.2,
0.3, and 0.5. The pyramid version was run with three pyramid levels on top of
the original image. These parameters are slightly optimized towards the Tsukuba
image pair, since this was the image pair mostly used during the development phase.
The Middlebury evaluation page requires that the algorithm is run with unmodified
parameters for all four image pairs.

1http://vision.middlebury.edu/stereo/eval/

http://vision.middlebury.edu/stereo/eval/
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Figure 7.1: Input stereo pairs: Cones, Teddy, Tsukuba, Venus with groundtruth
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7.1.1 Window Based Stereo Kernel Results

Window Size Cones Teddy Tsukuba Venus
3x3 36.5% 45.2% 22.5% 43.0%
5x5 23.0% 33.4% 14.9% 31.9%
7x7 18.2% 27.8% 11.8% 25.3%

Table 7.2: Window Based Kernel: Erroneous pixels in non occluded areas depending
on window size

As explained in the previous section. The input parameters were slightly optimized
for the Tsukuba image pair. For this reason the Tsukuba error rates are slightly
better than in the other input images. Figure 7.2 shows the disparity generated for
all three window sizes. In Figure 7.3 the absolute and signed errors are visualized2.

Table 7.2 clearly shows how error rates drop with increasing window size. The algo-
rithm simply has a larger area to back its decision on the correspondence problem.
The same effect can be observed when looking at the disparity maps generated. In
figure 7.2 from left to right along with the direction of increasing window size the
images become smoother.

On the other hand low-textured and featureless areas produce many outliers (see
figure 7.8 Teddy and Venus example). Subjectively only the 7x7 window examples
produces reasonably sufficient disparity maps.

2Absolute and signed error images are generated by the Middlebury evaluation page
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Figure 7.2: Window Based Kernel: Disparity Maps 3x3, 5x5, 7x7
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Figure 7.3: Window Based Kernel: disparity map 7x7, absolute error, signed error
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Figure 7.4: Pyramid Based Kernel: Cones - disparity and confidence maps 3x3, 5x5,
7x7

7.1.2 Pyramid Based Stereo Kernel Results

For the stereo image dataset in use a“stride max”parameter of eight was determined
by experiments to yield the best quality results. This corresponds to three levels of
scaled down copies on top of the original image.

Window Size Cones Teddy Tsukuba Venus
3x3 27.6% 36.0% 14.3% 32.7%
5x5 21.3% 29.2% 10.7% 24.3%
7x7 19.3% 26.5% 9.67% 20.3%

Table 7.3: Pyramid Based Kernel: Erroneous pixels in non occluded areas depending
on window size

Due to the post-processor the resulting disparity maps appear to be smoother. Mean-
while, errors in disparity maps are quite well predicted in the confidence maps.
Subjectively a 5x5 window already seams sufficient.
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Figure 7.5: Pyramid Based Kernel: Teddy - disparity and confidence maps 3x3, 5x5,
7x7

Figure 7.6: Pyramid Based Kernel: Tsukuba - disparity and confidence maps 3x3,
5x5, 7x7
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Figure 7.7: Pyramid Based Kernel: Venus - disparity and confidence maps 3x3, 5x5,
7x7
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Figure 7.8: Pyramid Based Kernel: disparity map 7x7, absolute error, signed error
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7.1.3 Quality

The Pyramid based stereo algorithm was expected to produce better quality results,
which could be confirmed by the data gathered (see figure 7.9). Especially errors
due to repetitive textures and featureless areas are reduced.

The magnitude of how the error rate decreases with window size is higher in the
window based version. Due to the virtually larger window sizes on the scaled down
copies the pyramid version is less dependent on the window size parameter.
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Figure 7.9: Quality of Window and Pyramid Based Algorithm

The
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7.1.4 GPU Comparison

In order to find out how performance scales with the graphics hardware used the
GPU software was tested with two systems.

The scale down performance was tested with a large 1600x1200 Pixel image. It
was found that the computation speed is not directly proportional to the number of
multiprocessor (see table 7.4). The scale down kernel is memory bound. Therefore
the number of multiprocessors has no large impact.

Graphics Board Multiprocessors CPU Scale Down Kernel
8600 GT 2 Intel(R)Pentium(R) D

3.40GHz
4.42ms

8800 GTS 12 AMD Athlon(tm) 64
3200+

3.31ms

Table 7.4: Scale Down Kernel: GPU Comparison (timings: average of three runs)

In comparison of window based and pyramid based kernels (see figure 7.10) the ad-
vantage of a higher multiprocessor count has more impact. With increasing window
size the computation becomes more calculation intensive. This results in the kernel
being computationally bound. A higher number of multiprocessors results in more
concurrency and enables CUDA to hide the memory latency better.



60 7. Performance / Results

3x3 5x5 7x7

0

100

200

300

400

500

600

Venus

Window  
GF8800GTS
Window  
GF8600GT
Pyramid 
GF8800GTS
Pyramid 
GF8600GT

T
im

e
 [m

s
]

3x3 5x5 7x7

0

50

100

150

200

250

300

350

400

Tsukuba

Window  
GF8800GTS
Window  
GF8600GT
Pyramid 
GF8800GTS
Pyramid 
GF8600GT

T
im

e
 [m

s
]

3x3 5x5 7x7

0

100

200

300

400

500

600

Teddy

Window  
GF8800GTS
Window  
GF8600GT
Pyramid 
GF8800GTS
Pyramid 
GF8600GT

T
im

e
 [m

s
]

3x3 5x5 7x7

0

100

200

300

400

500

600

Cones

Window  
GF8800GTS
Window  
GF8600GT
Pyramid 
GF8800GTS
Pyramid 
GF8600GT

T
im

e
 [m

s
]

Figure 7.10: GPU Comparison
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7.2 Timings and Optimization Techniques

Figure 7.11 shows the distribution of execution time for a disparity map calcula-
tion. The time for scaling, memory copies, and post processing are not dependent
on window size but constant. Besides that the steps taken in these phases are ex-
tremely fast. Obviously the pyramid kernel itself is most promising as a subject to
optimization.

During the course of implementation it was found that a lot of time was wasted
due to casts between data types (unsigned int, int, float). On a GPU floating point
operations are fairly cheap. A floating point multiplication (4 clock cycles) is even
faster than a regular 32bit integer multiplication (16 clock cycles). This resulted in
to two optimization patterns:

• Avoiding unnecessary casts in favor of more general data types or floating point
data types (use of int instead of unsigned int, use of float whenever possible).
This resulted in smaller kernels.

• Instead of 32bit integer multiplication CUDA offers a 24bit variant of unsigned
and signed integer multiplication that computes within 4 clock cycles. 24bit
precision was sufficient in all cases of the presented CUDA code.

During the implementation of the pyramid kernel two textures were used at first,
similar to the first window kernel implementation. One shortcoming of the current
CUDA framework is that no texture reference variables are supported in the kernel.
For that reason the reads from the two textures could not be performed in parallel
but needed to be serialized. This being a crucial bottleneck was avoided by putting
both input images next to each other into one texture.

Considering the findings of chapter 5.2 it really only makes sense to run the algo-
rithms with window sizes 3x3, 5x5, or 7x7. This also means that the kernels can be
optimized for these exact window sizes. Computation on the GPU is only efficient
if the control flow of the programs is quite simple. Constant loop variables help the
CUDA compiler to predict the execution better and to unroll the loops as required.
Therefore three new CUDA kernels were written. Each calling the old kernel, which
was marked device instead of global with constant window size parameters.
This has the effect that the old kernel gets inlined into the three new kernels. For
each new kernel the compiler produces an optimized kernel.

The same trick was applied to the disparity range parameter. While the disparity
range of the first pyramid kernel run on the smallest pyramid level can not be pre-
dicted, the disparity range of all following pyramid steps is already known (constant
4). In total there are now six kernels, three for dynamic disparity ranges and three
for the constant disparity range four.

The optimization results are depicted in figure 7.12. Timing measurements on win-
dow and pyramid based runs are compared in figure 7.13 which is based on data
tables 7.5, 7.6, 7.7, 7.8.
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Figure 7.11: Distribution of execution time on algorithm phases. (run on GeForce
8800 GTS)
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Figure 7.12: Optimization (run on GeForce 8800 GTS)

Cones Window Opt. Pyramid Kernel Opt. Pyramid Total
3x3 19.54ms 43.64ms 55.50ms
5x5 32.93ms 76.65ms 89.23ms
7x7 56.94ms 149.28ms 161.48ms

Table 7.5: Averaged execution timings (run on GeForce 8800 GTS)

Teddy Window Opt. Pyramid Kernel Opt. Pyramid Total
3x3 19.48ms 43.64ms 55.59ms
5x5 32.98ms 77.09ms 93.55ms
7x7 55.54ms 149.42ms 162.52ms

Table 7.6: Averaged execution timings (run on GeForce 8800 GTS)
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Figure 7.13: Execution speed (run on GeForce 8800 GTS)

Tsukuba Window Opt. Pyramid Kernel Opt. Pyramid Total
3x3 5.22ms 28.44ms 37.00ms
5x5 7.56ms 49.84ms 58.52ms
7x7 11.48ms 96.81ms 105.62ms

Table 7.7: Averaged execution timings (run on GeForce 8800 GTS)

Venus Window Opt. Pyramid Kernel Opt. Pyramid Total
3x3 9.11ms 42.94ms 54.99ms
5x5 13.68ms 75.12ms 87.98ms
7x7 20.98ms 146.53ms 159.34ms

Table 7.8: Averaged execution timings (run on GeForce 8800 GTS)



8. Conclusion

Besides the implementation of a stereo vision algorithm on the GPU, goal of this
work was to evaluate CUDA. It was found that once everything was installed it
was quite easy to get started with the CUDA example programs (especially the
convolution example [Howes 07]). Leveraging the tools right, e.g. using the nvcc
compiler and the debugging and simulation features were much more complicated.
Debugging and simulation modes must be used carefully. Without debugging mode
kernels will fail silently. A kernel succeeding in simulation mode is not guaranteed to
work on the card. Most often the failure on the real hardware was due to concurrency
issues, which were impossible to discover in simulation. Most issues however could
be resolved by reading the CUDA Programming Guide ([NVIDIA 07]) thoroughly
or by seeking help at the NVIDIA developer forums. Once everything was setup and
ported from make to Scons, development in CUDA worked like a charm, because of
the seamless transition between CPU and GPU C-programming.

The new technology enables near real-time performance. The stereo kernels have
been proven to run fast and scalable. However it is not easy to predict performance
ahead of time. Many unknown variables are in play: memory access, kernel config-
uration parameters, kernel register count, etc. Optimal results had to be found by
empirical testing.

Looking at the results it was found that the new CUDA framework is very promising
for the stereo vision field of application.

Due to the window-based principle, the stereo-vision algorithms presented here can
not compete against the state of the art stereo algorithms presented at the Middle-
bury evaluation page in terms of error rates. However, these algorithms do not have
to fulfill the same speed requirements.

In a near real-time approach it is more important to generate disparity map fast,
than to elaborate on a perfect match to long. Via the confidence map it is then
possible to decide wether the match was sufficiently good or the result is to be
thrown away.
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The window-based implementation is fast, but produces low quality results. The
pyramid version is slower, but scales better with window size. It also produces
better results and generates the a confidence map.

Depending on speed and quality requirements it may be advisable to choose the sim-
ple window-based approach over the pyramid approach. The experiments showed
that on larger window sizes the difference in quality results becomes smaller. How-
ever it is not fair to compare both algorithms, since the loss in speed is due to the
generation of the confidence map.

Since all top ranking stereo algorithms at the Middlebury evaluation page use color
segmentation and optimization approaches, further work in this field should be con-
ducted porting a global optimization approach to the CUDA hardware.
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