
Bio-Inspired Circuit Sizing and Trimming Methods for Dynamically
Reconfigurable Sensor Electronics in Industrial Embedded Systems

Biologisch inspirierte Methoden zur Schaltungsdimensionierung und Justierung
für dynamisch rekonfigurierbare Sensorelekronik

in industriellen eingebetteten Systemen

vom
Fachbereich Elektro- und Informationstechnik

der Universität Kaiserslautern
zum verleihung des akademischen Grades

Doktor der Ingenierwissenschaften (Dr.-Ing.)
genehmigte Dissertation

von
M. Sc. Peter Messiha Mehanny Tawdross

geb. in Kairo (Ägypten)

D386

Eingereicht am : 24. Oktober 2007
Tag der mündlichen Prüfung: 14. Dezember 2007
Dekan des Fachbereichs: Prof. Dr.-Ing. Steven Liu

Promotionskommission
Vorsitzender: Prof. Dr. Remigius Zengerle
Berichterstattende: Prof. Dr. Andreas König

Prof. Dr. Nikola Kasabov

c© Copyright by Peter Messiha Mehanny Tawdross, 2007.
All Rights Reserved

iii

Abstract

Analog sensor electronics requires special care during design in order to increase the quality and pre-
cision of the signal, and the life time of the product. Nevertheless, it can experience static deviations
due to the manufacturing tolerances, and dynamic deviations due to operating in non-ideal environ-
ment. Therefore, the advanced applications such as MEMS technology employs calibration loop to
deal with the deviations, but unfortunately, it is considered only in the digital domain, which cannot
cope with all the analog deviations such as saturation of the analog signal, etc. On the other hand,
rapid-prototyping is essential to decrease the development time, and the cost of the products for small
quantities. Recently, evolvable hardware has been developed with the motivation to cope with the
mentioned sensor electronic problems. However the industrial specifications and requirements are
not considered in the hardware learning loop. Indeed, it minimizes the error between the required
output and the real output generated due to given test signal. The aim of this thesis is to synthesize
the generic organic-computing sensor electronics and return hardware with predictable behavior for
embedded system applications that gains the industrial acceptance; therefore, the hardware topology
is constrained to the standard hardware topologies, the hardware standard specifications are included
in the optimization, and hierarchical optimization are abstracted from the synthesis tools to evolve
first the building blocks, then evolve the abstract level that employs these optimized blocks. On the
other hand, measuring some of the industrial specifications needs expensive equipments and some
others are time consuming which is not fortunate for embedded system applications. Therefore, the
novel approach “mixtrinsic multi-objective optimization” is proposed that simulates/estimates the set
of the specifications that is hard to be measured due to the cost or time requirements, while it measures
intrinsically the set of the specifications that has high sensitivity to deviations. These approaches suc-
ceed to optimize the hardware to meet the industrial specifications with low cost measurement setup
which is essential for embedded system applications.

iv

Acknowledgements

I would like to acknowledge my supervisor Professor Andreas König for suggestion of the topic, his
support, help, and encouragement. His comments, suggestions, and contributions are very valuable
to this research.

I would like to thank my colleague Senthil Kumar Lakshmanan for his communication and supporting
me with the information about the hardware he is designing, which is employed in this thesis.

I would also like to acknowledge PHYTEC Messtechnik GmbH for partially supporting sub-projects
related to this thesis such as patent study, and feasibility investigation of the generic organic-computing
sensor electronics.

v

To my parents

“If I take the wings of the dawn,
and settle in the uttermost parts of the sea;
even there your hand will lead me,
and your right hand will hold me.” Psalms(139:9-10)

Contents

Abstract . iii

Acknowledgements . iv

1 Introduction 1

1.1 Sensor Electronics Role, Requirements and Design Challenge 1

1.2 State-of-the-Art Evolutionary Electronics . 2

1.3 The Goals of the Thesis . 3

1.4 Thesis Structure . 5

2 Improvement Requirements and Open Issues Sensor Electronics 6

2.1 Sensor Electronics System . 7

2.2 Static and Dynamic Deviations . 8

2.3 Self-Calibration Analog to Digital Converters . 9

2.4 Current Mode Circuits Building Blocks . 16

2.5 Commercial Analog Reconfigurable ICs . 21

2.5.1 Field Programmable Analog Arrays . 21

2.5.2 Trimmable Hardware . 22

2.6 Discussion . 22

3 Evolutionary Computation 25

CONTENTS vii

3.1 Historical Background . 25

3.2 Genetic Algorithm . 27

3.2.1 Initialization . 28

3.2.2 Selection . 28

3.2.3 Crossover . 28

3.2.4 Mutation . 30

3.2.5 Survivor Selection . 30

3.2.6 Genetic Algorithm Techniques . 30

3.3 Genetic Programming . 31

3.4 Particle Swarm Optimization PSO . 32

3.4.1 Modifications of Particle Swarm Optimization 34

3.5 Optimization in Dynamic Environment . 42

3.6 Proposed Approach: Local Parameters PSO . 44

3.6.1 Experimental Setup . 45

3.6.2 Benchmark Test Functions . 47

3.6.3 Results . 50

3.7 Multi-Objective Extension . 60

3.7.1 Weighted Aggregating Function Based Optimization 60

3.7.2 Pareto Based Methods . 61

3.8 Discussion . 61

4 Evolutionary Electronics 63

4.1 Reconfigurable Evolvable Hardware . 63

4.1.1 Coarse Granularity . 64

4.1.2 Fine Granularity . 66

4.2 Evolutionary Computation Adaptation for Evolvable Hardware 72

4.2.1 Evolving the Hardware Topology by Genetic Programming 73

4.2.2 Turtle GA . 74

viii CONTENTS

4.3 Extrinsic Evolution . 75

4.3.1 Extrinsic Evolution as a Synthesis Tool 75

4.3.2 Extrinsic Evolution for a Target Programmable Hardware 76

4.4 Intrinsic Evolution . 79

4.5 Mixtrinsic Evolution . 81

4.6 Fault Tolerance and Dynamic Environment . 83

4.7 Summary . 83

5 Proposed Design Methodology 85

5.1 Aspired Generic Organic-Computing Sensor System 85

5.2 Extrinsic Multi-Objective Evolution . 88

5.3 Intrinsic Multi-Objective Evolution . 89

5.4 Mixtrinsic Multi-Objective Evolution . 91

5.4.1 Simulated Models . 92

5.4.2 Formal Models . 93

5.4.3 Estimation Models . 94

5.5 Dynamic Environment and Fault Tolerance . 96

5.6 Design Flow . 98

5.7 Summary . 102

6 Experimental Work and Case Studies 103

6.1 The Reconfiguration Environment . 103

6.2 Baseline Hardware . 106

6.3 Building Block Level . 109

6.3.1 Operational Amplifier . 109

6.3.2 CCII . 134

6.4 Functional Level . 136

6.4.1 Flash ADC . 137

6.4.2 Low-Pass Filter . 142

CONTENTS ix

7 Conclusion and Summary 146

7.1 Conclusion . 146

7.2 Novel Contributions of the Thesis . 147

7.3 Future Work . 148

7.4 Kurzfassung in Deutscher Sprache . 149

7.4.1 Motivation . 149

7.4.2 Beiträge dieser Arbeit . 150

Bibliography 155

List of Figures 172

List of Tables 180

List of Procedures 182

List of Symbols and Abbreviations 183

CHAPTER 1

Introduction

Although digital electronics has been widely used in many applications as it is easy to design, immune
to noises and deviations, etc., analog electronics is essential for interfacing the real world application
–even if digital electronics are employed– to communicate with the sensors and convert their signal
to the digital domain if it is not processed directly in analog domain. Therefore, the necessity of the
analog circuits in industrial application is unavoidable.

Mimicking the biological systems, evolvable hardware has attempted to include the self-x properties
(self-calibration, self-maintaining, self-repairing, etc.), and to accomplish rapid prototyping analog
hardware. However, it does not concern the industrial requirements, therefore, the returned config-
uration may not have predictable behavior. Thus, this thesis is aimed to purpose a methodology to
evolve the analog hardware for sensor electronics applications in an efficient way to recover from
hardware deviations, and to return a hardware with predictable behavior.

This chapter highlights the motivation of the proposed work in this thesis. Therefore, an overview on
the requirements of the sensor electronics is provided. Afterwards, the state-of-the-art evolutionary
electronics is summarized. Thereafter, the structure of the thesis is provided.

1.1 Sensor Electronics Role, Requirements and Design Challenge

Sensor networks are ubiquitous in the field of modern systems such as automotive, automation, med-
ical engineering, ambient intelligence, etc. Designing the sensor electronics requires special care
such as yield optimization, and worst case design in order to reduce the influences of the deviations.
However, the nominal operating point is assumed in the design phase, and therefore, the influences
of the dynamic deviations are not completely considered. In many applications, trimming in the de-
ployment time is necessary as it is susceptible to manufacturing drift and other static deviations that
affect its target specifications. Self-calibration techniques can cope with some of the dynamic devia-
tions. Nevertheless, not all the deviations are recoverable as the trimming is achieved by employing
few programmable components, and consider only few of the hardware specifications in the loop.

2 INTRODUCTION

For example, the rejustors have introduced by Microbridge Technology Corp., which is an analog
controlled resistor to cope with the dynamic deviation by a feedback signal, this feedback signal is
controlled digitally in many applications. The PGA309 [Ins] is a programmable gain amplifier from
Texas Instruments, which employs digital temperature calibration, and autozeroing to cope with dy-
namic deviations. Thus, the industry attempts to build robust systems, not fault tolerant systems.
Robust systems can cope with the expected deviations, while the fault tolerant systems are designed
to treat the unexpected variations.

For multi-sensor systems, affording special care in the design phase, trimming in the manufacturing
phase, and employing calibration and trimming techniques for each of the sensors increases the sensor
electronics cost. In addition, pluging in new sensors requires many modifications in the hardware.
Rapid prototyping is an open topic that decreases the cost as the same hardware can be programmed
for many sensors and many applications. Therefore, reconfigurable sensor electronics with self-x
properties is desirable.

1.2 State-of-the-Art Evolutionary Electronics

Recently, genetic programming and algorithms are adapted for synthesis of the analog hardware. The
genetic programming has been employed to design hardware with arbitrary topology [KFHBAK97].
This can yield unpredictable behavior and explosion in the design size as many devices can be in-
cluded in an ineffective fashion. On the contrary, genetic algorithm has been applied to synthesize
standard hardware topologies [ZPV02]. Nevertheless, recovering from static and dynamic deviations
can not be considered in these synthesis tools.

On the other hand, analog reconfigurable hardware, –also called evolvable hardware– is aspired to
recover from static and dynamic deviations [SKZ+00]. The state-of-the-art evolvable analog hardware
utilizes the genetic algorithm to invent arbitrary topology [HHE02, SKZ+00, Tre06]. However, the
state-of-the-art evolutionary electronics does not employ dynamic environment suitable approach to
cope efficiently with environmental changes. Indeed, it starts from scratch after any environmental
change [Tho97a, KZJS00, SKZ01, ZGK+04]. No special technique is mentioned in the state-of-the-
art to detect if a hardware deviation has occurred. Instead, the deviations are applied and controlled
manually. In the state-of-the-art evolutionary electronics, the number of the required blocks to find
a suitable design equivalent to the given specifications is not known [Tho96, KFHBAK97, SKZ+00,
Tre06]. Indeed, the maximum number of allowed blocks is determined by trial and error. Thus, the
area of the chip to fulfill a certain functionality is not predictable.

In order to recover from the deviations, the evolution of the hardware has to be achieved intrinsically1.
The open topics that the state-of-the-art evolvable hardware have not considered in order to gain the
industrial acceptance and to recover from deviations are summarized as the following:

• The behavior of the employed topology has to be predictable.

• The industrial specifications of the hardware have to be optimized according to the application
requirements.

1Intrinsic evolution means that the optimization algorithm runs directly on a real hardware.

1.3 The Goals of the Thesis 3

• Measuring the complete specifications of the hardware requires expensive measuring equipment,
which limit the applicability of the approach. Therefore, the state-of-the-art has considered only
the relation between the ideal output and real output of the hardware. Measuring the transient and
the AC characteristics of the hardware is limited to the conversion speed of the employed ADCs
and DACs.

• The calibration loop has to compensate the deviations. As the evolvable hardware mainly mea-
sures the current specifications of the system to evaluate the downloaded configuration, any de-
viation in the measurement equipment propagates to the entire evolvable system. Although this
problem is not treated by the state-of-the-art evolvable hardware, the state-of-the-art ADCs of-
fers self-calibration techniques in both digital [LS92, KLB93, FDLH98, WHL04] and analog do-
main [CGN04, RRS+04]. However, complicate measurement setup requires more care about self-
calibration for each of its components

In the highlight of the mentioned problems above, this thesis is proposed to consider the industrial
requirements of the generic organic-computing sensor electronics for embedded system applications
as described in the next section.

1.3 The Goals of the Thesis

The aim of our group2 is to build reliable rapid prototyping generic sensor electronics front-end with
self-x properties and predictable behavior for embedded systems that gains the industrial acceptance.
This thesis is focused on software and algorithmic aspects, and on manipulating the static deviations
of system in the deployment phase and the dynamic deviation in the operation phase. On the other
hand, a parallel work by MSc. S. Lakshmanan is focused on the hardware aspects of our generic
sensor electronics front-end.

The industrial applications require reliable hardware with predictable behavior according to a set of
industrial specifications. Arbitrary hardware topologies, and optimizing the system only by minimiz-
ing the error between the output and the reference output may return a hardware with unpredictable
behavior, thus, it is objectionable from the industrial point of view. In this thesis, in order to return
hardware with predictable behavior, the hardware flexibility is constrained to the standard topologies
and the hardware standard specifications are optimized, which is a multi-objective optimization crite-
rion as shown in figure 1.1. The values of these specifications are defined according to the application
requirements.

The target hardware for this thesis is a reconfigurable analog hardware with programmable structure
and dimensions as shown in figure 1.2. An example of the target building blocks is the programmable
operational amplifier proposed by Lakshmanan et al. [LK05], where standard topologies are em-
ployed with programmable dimensions and continuous passive components are utilized. Current-
mode designs –which means that the individual circuit elements interacts by means of currents, not
voltages [TLH90]– has proved its ability to work with low voltage supply, high-speed and required
small area in the cost of non-linearity [BG04, Kol00]. In addition, the output of many sensors is cur-
rent output. Thus, the building blocks of the current mode designs are considered in this thesis in
order to achieve a general purpose programmable self-calibration environment.

2Institute of integrated sensors, TU Kaiserslautern.

4 INTRODUCTION

Figure 1.1: The hardware standard specifications are optimized as a multi-objective criterion

Figure 1.2: Conceptual block diagram of the target hardware.

From the algorithm aspects, the complete system is considered in the-state-of-the-art as a single black-
box with a given input-output relation [SKZ+00, Lan05], and the optimization target is to minimize
the error between the actual output and the ideal output. The hardware standard specifications and
the industrial requirements are not considered, specially in the intrinsic approach3. Measuring the
complete hardware specifications using the standard methods and equipment is an expensive and time
consuming approach. Depending on the target specification, the measurement can be time consum-
ing, requires special expensive wide-band setup, etc. For example, measuring the AC-characteristics
of the hardware requires tuning the hardware frequency, which is time consuming process for low
frequencies and requires expensive wide-band setup for high frequencies, measuring the transient
characteristics requires high speed ADCs, etc. Therefore, techniques for assessing the measurement
loop are investigated.

As described above, the state-of-the-art evolutionary electronics starts from scratch after any envi-
ronmental change, which can result in going from operation mode to trimming mode frequently and
for long time-intervals –if no background calibration is utilized– as all the previous knowledge of the
evolution is lost. In order to increase the reliability in dynamic environment, dynamic environment
optimization approaches are investigated in this thesis, which are capable to detect environmental
changes during the evolution and cope with them without starting from scratch after any environmen-
tal change for potential improvement in convergence speed and optimality of the solution. In addition,
potential improvement to the state-of-the-art evolutionary computation is investigated by benchmark

3Parallel to the work pursued in this thesis [TLK05, TK05a, TK05b], Trefzer et al. have included few of the hardware
specifications to evolve the hardware extrinsically [TLMS05], but they have allowed the evolution to invent the hardware
topology, which returns a hardware with unpredictable behavior.

1.4 Thesis Structure 5

functions4.

1.4 Thesis Structure

The structure of the thesis is as the following:

• Chapter 2: An overview of sensor electronics and its requirements is provided. Afterwards, the
significant needs to construct generic organic-computing sensor electronics front-end that fulfill
those requirements is assessed.

• Chapter 3: The background of evolutionary computation is described, the state-of-the-art parti-
cle swarm optimization is illustrated, the dynamic environments suitable approaches are outlined,
an improved version of particle swarm optimization is proposed and compared with the state-of-
the-art particle swarm optimization using the standard test bench problems in static and dynamic
environment, and a brief overview on the multi-objective optimization is provided.

• Chapter 4: Study of the state-of-the-art evolvable hardware, and the missing link to the industrial
acceptance in order to build hardware with predictable behavior.

• Chapter 5: A methodology is proposed to evolve the sensor electronics organic-computing front-
end in order to return hardware with predictable behavior that recovers from deviations, for embed-
ded system applications, where low cost assessment is required.

• Chapter 6: The experimental work on the selected case-studies is described.

• Chapter 7: The thesis is concluded and summarized.

4A benchmark that is commonly used in the comparison of the approaches in order to prove the generality of the
improvement.

CHAPTER 2

Improvement Requirements and Open Issues
Sensor Electronics

Sensor electronics plays an essential role in the interfacing between digital electronics and real world
applications such as analog signal processing and conditioning, industrial process control, motion
control, ambient intelligent and biomedical measurement. The micro-electro-mechanical system
(MEMS) technology allows the design of high performance sensors and actuators, but they require
high performance sensor electronics in order to keep their precision. However, sensor electronics is
susceptible to static and dynamic deviations. Static deviations are due to tolerance during the man-
ufacturing process and dynamic deviations are due to the environmental changes caused by various
operational conditions such as measuring the pressure and flow rate inside a turbine engine for further
control. State-of-the-art sensor electronics attempts to prevent the system from static deviations in the
design phase by yield optimization and worst case design [dMHBL01], or to employ self-calibration
techniques; however, self-calibration techniques considers only few of the system specifications, such
as the auto-zeroing technique that reduces the offset. Future semiconductor technologies will allow a
wide temperature range, which enhance the MEMS technology to design integrated sensors for high
temperature applications. However, it requires more advanced techniques to deal with the deviations
that can occur over the whole operation range. For example, diamond semiconductor technology can
operate at a temperature range up to 1055◦C. Evolvable hardware attempts to eliminate the deviations
by extending the hardware flexibility, but the evolvable hardware assessment tools can also expe-
rience deviations, especially, the analog-to-digital converter (ADC). Nevertheless, innovative ADCs
offer several self-calibration approaches that can cope with the ADC deviations.

In this chapter, an overview of the role of the sensor electronics and the deviations that it can ex-
perience is provided. In order to calibrate the sensor electronics, assessment circuits are required to
measure the hardware specifications as described in chapter 5, however, they can experience the same
deviations. The basic element that is employed in the assessment circuit is the ADCs. Fortunately, the
state-of-the-art ADCs considers the self-calibration as described later on in this chapter. The sensor
electronics can be either voltage- or current-mode circuits. , an overview on the current mode basic
building blocks and their application –which can add flexibility to the target generic reconfigurable
sensor electronics– are provided. Afterwards, the commercial flexible hardware is outlined. Finally,

2.1 Sensor Electronics System 7

the chapter is summarized and concluded.

2.1 Sensor Electronics System

In figure 2.1, an overview of the sensor system is provided. The physical signals are converted to
electrical signals through sensors. Thereafter, appropriate pre-processing is applied to be suitable for
sampling and quantization. Afterwards, the signals are digitalized by employing analog to digital
converters (ADCs) for further digital processing. An example of the pre-processing is filtering the
signal with anti-aliasing filter, amplifying it, convert it from current to voltage signal, demodulate
it, etc. In some applications, the digital system controls the sensor parameters, such as brightness,
speed and resolution of image sensors. The sensor control signal can be processed in analog or
digital domain. In control applications, the digital or analog electronics control the system actuators.
Advanced MEMS sensors may employ an actuator to control the sensor mechanical settings [OC92,
Fra00].

Figure 2.1: Block-diagram of a simplified modern sensor system.

Special care is obliged in designing the analog portion of the sensor electronics system for each
sensor and each actuator separately, which increases the design time and cost. The system can deviate
statically due to the industrial tolerance, or dynamically due to the operating point conditions as
described in section 2.2. In some applications, the sensor signal processing is pre-designed, and
integrated with the sensor or actuator if it is allowed by the technology such as MEMS technology.
Yield optimization and worst case design in the design phase can minimized the system deviations
[AGW93, AGK94, LGA99], but they can not deal with all the deviation problems.

The MEMS micro-stereo-lithography technology allows the design of complicate sensor and actuator
shapes which increases the manufacturing cost in order to increase the sensor electronics accuracy.
Therefore, its stability and reliability are required even if they increases the die area of the sensor
electronics section.

The aim of advancing integration technology is increasing the accuracy, stability, reliability, and con-
sequently, the integration scale, in the cost of the die area. On the other hand, scaling the MEMS

8 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

sensor is constrained due to the physical signal requirements. Therefore, the area employed by the
MEMS sensor is partially technology independent, while the area of the calibration electronics is
technology dependent and thus advancing the integration technology reduce the relative cost of the
calibration electronics.

The fourth generation of MEMS sensors integrates the sensors with their analog signal conditioning,
analog to digital converter, memory cells for calibration- and temperature compensation data, digital
intelligent system to compensate the system deviation. However, the calibration and temperature
compensation is deliberated only in the digital domain. Limiting the calibration of the system to the
digital domain is not sufficient for many applications. For example, the digital domain calibration is
not able to calibrate the system correctly if the analog output is saturated due to deviations such as ,
e.g., the gain is higher than the required gain, or the common mode range or the swing output voltages
are insufficient.

As the MEMS technology integrates the sensor with its electronics in the same chip, its electronics
can experience dynamic deviations more than the conventional electronics. For example, measuring
the flow rate [KS06] of a hot liquid heats up the whole chip, and result in dynamic deviations. The
deviation of the analog domain electronics can be very critical in some application such as medical
equipment. For example, it can change the medicament injection rate for a patient due to high offset,
or gain error.

2.2 Static and Dynamic Deviations

In figure 2.2 varies phases of deviations on the sensor electronics is shown. According to the applica-
tion, the specifications of the required sensor electronics are designated. Thereon, yield optimization
and worst case design are employed to design hardware with low sensitivity to industrial tolerance.
Afterwards, the hardware is manufactured. During the hardware manufacturing, static deviations are
introduced due to industrial process tolerance. For example, deviation of the transistor dimensions,
thickness of the layers, etc. To eliminate the effect of the static deviations, trimming techniques are
employed such as laser trimming, to calibrate the hardware by adjusting the dimensions of some of
the components in the deployment phase to minimize the error. The trimming techniques required
a loop measurement in order to measure the specifications of the design under calibration, and thus
the products are trimmed one by one on a calibration loop. Therefore, trimming is a time consuming
and costly process. However, later on, other static deviations due to aging are introduced to the hard-
ware. Ultimately, after trimming the system against static deviations, dynamic deviations occurs in
the hardware due to environmental dynamics, e.g., operating at different operation point. Although
the conventional electronics operates till 75◦C for industrial applications, and 125◦C for military ap-
plications, few research labs start to focus on high temperature electronics as sensor electronics can
operate at high temperature, e.g., the operational amplifier HT1104 from Honeywell can operates up
to 225◦C, which allows the hardware to operate at high environmental dynamic range. The tempera-
ture operating range of various semiconductors technologies are summarized in table 2.1. The future
technology aims to allow a dynamic operation temperature range up to 1055◦C. Thus, flexibility is
required to reconfigure the hardware components to operate at different operating points with similar
performance.

2.3 Self-Calibration Analog to Digital Converters 9

Figure 2.2: Phases of sensor electronics deviations.

Table 2.1: High temperature semiconductor technologies [Goe98].
Technology Maturity Temp. range Source
Si CMOS Production −55 to 150◦C Multiple
SOI (silicon on insulator) Production −55 to 300◦C Honeywell

and Allied Signal
E/D GaAs Production −55 to 150◦C Vitesse
Complimentary GaAs Development −55 to 350◦C Honeywell
SiC (silicon carbide) Early development −55 to 600◦C CREE
Diamond Early development −55 to 1000◦C Research labs

2.3 Self-Calibration Analog to Digital Converters

The key of the evolvable hardware is evaluating the specifications of each individual and collate them.
Assessing tools such as measurement circuits are employed for the evaluation. As the evolutionary
algorithms run on digital hardware platform, the analog signal of the device under test is converted
to digital signal by employing ADCs. However, as the ADCs are utilized to measure the system
performance, any conversion inaccuracy due to static or dynamic deviations propagates over the entire
system, and thus it may evolve to a faulty system instead of the recovering from deviations. For

10 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

example, if an ADC has high offset or non-linearity, it will propagate to the whole system. Fortunately,
the state-of-the-art ADCs cogitate about the calibration of the ADC.

The employed manufacture technology and the ADC architecture determine the speed, resolution and
cost of the ADC. In figure 2.3, the relation between the architecture, resolution and speed is shown.

����
����
����
����
����
����
����

����
����
����
����
����
����
���� ����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
���� 24

 18

 16

 14

 9
 8

 3

Sigma−DeltaSARPipelinedFlash

b
it
s

ADC Resolution

(a)

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

10G

1G

100M

10M

1M

100k

10k

1k

100

Sigma−DeltaSARPipelinedFlash

S
a

m
p

lin
g

 R
a

te
 (

H
z
)

ADC Speed

(b)

Figure 2.3: Performance of various ADC architectures [Yoo03]. a)ADCs resolution. b) ADCs speed.

The flash ADC converts the signal by comparing the input signal with each of the potential quantiza-
tion levels, and then encodes the outputs of the comparators to binary code. For a b-bit flash ADC,
2b−1 comparators and 2b +1 passive components are required in addition to the digital encoder. The
advantage of the flash ADC is that the conversion time depends only on the propagation delay of the
comparators and the digital encoder. On the other hand, the flash ADCs require large die area as the
die area increases exponentially with the flash ADC resolution. In addition, the time delay of the
encoding and the complexity of the digital encoder are increased by increasing the number of bits.
Hence, it is useful for the application that requires fast conversion and low resolution.

Decreasing the cost of the flash ADC can be accomplished by employing multi-step flash ADCs in
which, each step holds the signal, converts a certain number of bits, and then amplifies the residual
signal to the next step. Producing 8-bits in one step requires 28−1 = 255 comparators, and 28 +1 =
257 passive components, while producing them in two steps –each step produces 4 bits– requires
2 · (24−1) = 30 comparators, 2 · (24 +1) = 34 passive components, a 4-bit digital to analog converter
(DAC) to convert the digital signal of the first stage to analog signal in order to subtract it from the
input signal to obtain the residual signal, and a sample and hold amplifier to amplify the residual
signal by 24 = 16 and hold it to the next step. In many arrangements, multiplying digital to analog
converter (MDAC) is employed as a digital to analog converter, a sample and hold, and an amplifier
to obtain the residual signal. The multi-step ADC can employ only one ADC in which, the residual
voltage is obtained and hold as a input to the same stage, which decreases the cost.

Pipelined ADC is multi-stage analog to digital converter, in which, each stage produces bstage bits
and obtains the residual signal to the next stage. In many implementations, each stage produces one
effective bit, and a fraction of bit as redundant information, e.g., produces 1.5-bits; one effective bit,
and a half-bit as redundancy. The main advantage of the pipelined ADC is that all the stages convert

2.3 Self-Calibration Analog to Digital Converters 11

different samples simultaneously, which means that it produces one sample each clock, but the output
is delayed by b

bstage
clocks as the analog input is converted to digital signal after being handled by

b
bstage

stages. The pipelined ADCs are suitable for moderate and high speed applications as its speed
depends only on the conversion speed of one stage. The delay of each stage depends only on the delay
of both the residue amplifier and the ADC. The disadvantage of the pipelined ADC is that it is very
sensitive to deviations as any error in the early stages is magnified and accumulated each next stage.

The successive approximation ADC (SAR) employs a counter, a DAC to convert the output of the
counter to an analog signal, and a comparator to decide whether to count up if the analog input value
is greater than the DAC output, or count down otherwise. If the resolution of the converter is 10 bits,
the input changes from zero to full-scale, the counter output must be changed from 0 to 1023 in one
sampling period. Thus the SAR ADCs are slow converters. On the other hand, the required die area
of the SAR ADCs is relatively small, and the SAR topology allows high resolution as the conversion
error is dependent only on the comparator offset and DAC error. Thus it can be employed for low
speed but high resolution applications.

The sigma-delta converters employ only one bit ADC (comparator), and integrator to integrate the
error due to the one bit conversion. In order to produce the output, many bits are generated, and
accumulated to the output. Thus sigma-delta ADC is slow, but its conversion resolution is high and it
requires a small die area.

The algorithmic ADC is similar to the pipelined ADC, but it has only a single 1-bit stage. The residual
signal is held after each conversion as an input to the same stage.

The static deviations such as components mismatching, and dynamic deviations due to environmental
operating point changing cause; offset, gain error, and non-linearity error. The offset error is to have a
shift in the entire output signal. The gain error is the difference between the nominal and actual gain
after the offset error has been eliminated. Non-linearity error is to have non-linear relation between
the analog input signal, and the converted signal. The pipelined, algorithmic, and multi-step ADCs
suffer from high non-linearity error due to the gain deviations in each stage.

The state-of-the-art ADCs is concentrated on the pipelined ADC architecture as it balances between
the speed, the chip size, the resolution and the consumed power which is fortunate for evolvable hard-
ware application, and its embedded aspects. For example, the flash converters need many comparators
and passive components, consumes much power and area, and suffers from input capacitance. The
multi-step ADC architecture uses less comparators than the flash ADC, but still it employs a lot of
comparator and consumes more power and area with respect to the pipelined architecture. The algo-
rithmic and the SAR ADCs hold the analog signal, and operate in a loop till they find an equivalent
digital signal, which is a slow approach, but they can be employed for the applications that require
high resolution. On the other hand, the speed and resolution of the state-of-the-art pipelined ADCs
are sufficient to cope with moderate and high speed sensor electronics applications. For example,
AD9230 from analog devices is a 12-bit pipelined ADC with sampling rate of 250 MSPS, and it con-
sumes 434 mW. Increasing the sampling rate of the ADC can be achieved by adopting interleaved
ADCs [BH80]. For example, AD12401 utilizes two interleaved ADCS, consumes 2.2 W with sam-
pling rate of 400 MSPS. However, the offset and the gain difference between the interleaved ADCs
cause strong noise as the output error of each of the converters is different from each other, and thus
the ADCs must be calibrated to have the same offset, gain, and non-linearity error. The calibration
can be done on the background by employing an additional instance of the pipelined ADC [DFLH98]

12 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

in which, each of the interleaved ADC instances is disconnected and swapped with a calibrated ADC,
thereafter, the uncalibrated ADC is calibrated on the background. A reference ADC and a calibration
signal generator are utilized in which, after applying the calibration signal to the ADC under calibra-
tion and the reference ADC, the error between both of them is minimized. All the interleaved ADCs
are calibrated one by one in order to comprise the same the offset and the gain error as in the reference
ADC. However, the reference ADC itself is not calibrated.

In order to minimize the gain error between, the gain of both ADCs is estimated, and the signal of
one of them is divided by its ADC gain, and multiplied by the gain of the other ADC in order to
obtain the same resultant gain as shown in figure 2.4. For estimating the gain of an ADC, a pseudo-
random-number generator is employed to generate uncorrelated signal, then this signal is converted
to analog signal by a 1-bit DAC, added to the original input signal, and sampled again by both ADCs,
afterwards, the random signal is subtract in the digital domain. The pseudo random number generator
produces an uncorrelated signal, and therefore, it can be separated from the input signal and the gain
of the ADCs is thus estimated by the ratio between the random signal before and after and before the
conversion.

Figure 2.4: Simplified diagram of digital background gain calibration of interleaved ADCs
[FDLH98].

After eliminating the gain error, the offset difference between two interleaved ADCs can be minimized
in the digital domain by adding it to one of the ADCs [FDLH98] as shown in figure 2.5. The value of
offset difference that is added to one of the ADCs is estimated by employing a proportional-controller
to minimize the error between the two ADCs.

However, this technique adjusts the offset and the gain of the ADCs to be the same, but it does not
calibrate the ADCs them self to reduce the offset the adjusted the gain towards ideal ones. Thus, a
precise ADC can deviate to an imprecise one in order to reduce the noise which is generated due to
the gain and offset difference. In addition, it assumes that all errors that occurs in the ADC is a single
offset and gain error and ignore the conversion non-linearity.

The calibration of the pipelined ADC can be done either in analog (trimming) or in digital domain.
The background calibration of the pipelined ADCs can be accomplished by employing an additional
stage instance in the pipeline ADC instead of additional complete ADC instance [JW98]. In [ST88],
error averaging technique is employed by resorting the amplifier capacitors to minimize the capaci-
tors mismatching. The disadvantage of the error averaging technique is that it needs extra clocks for
rearranging the capacitor positions of the stages, and it does not consider the whole system deviations,

2.3 Self-Calibration Analog to Digital Converters 13

Figure 2.5: Digital background offset calibration of interleaved ADCs [FDLH98].

such as non-ideal open-loop gain. Self-calibration is achieved in analog domain by employing pro-
grammable capacitors [LKG91] in the stage amplifier, and trim them in order to get precise gain, while
zeroing technique is utilized in each stage to cancel the offset, which has been claimed in [LKG91]
to be faster than the error averaging in [ST88].

The disadvantage of analog calibration (trimming) is that it is technology dependent, and requires high
power while the newer technologies support lower power. In order to achieve the calibration in the
digital domain, redundant bits are required to cope with missing codes. Lee et al. [LS92] introduced
digital domain calibration of a two steps multi-step flash ADC by employing an extra-bit each step
for the calibration with the architecture shown in figure 2.6.

The ADC in [LS92] employs only one flash ADC that is utilized in both steps. The conversion
requires three clocks; in the first clock, the input is sampled in the MDAC capacitor array, and a unity
gain configuration is employed in the MDAC in order to have an amplification of one. During the
second clock, the sampled data is converted into bstep +1, which are the coarse bits. During the third
clock, the residual voltage is converted into bstep + 1 fine bits. The residual signal is amplified by
2bstep in the third clock by employing a capacitor with the value of 2C in the feed back of the MDAC
amplifier. The coarse bstep +1 bits and the fine bstep +1 bits are utilized to generate and correct 2bstep
bits. Lee Assumed that all the non-linearity due too the deviations appear only on the MDAC, and
that the specifications of the flash ADC itself do not deviate. Following this assumption, the error
is measured for each quantization level by applying an equivalent digital value to the MDAC, and
subtracting it from the converted signal.

The redundancy bits for digital domain calibration of pipeline ADC can be achieved by either em-
ploying extra stages and reduce the radix to be less than two [KLB93], or by employing stages that
generates redundant bits per stage locally, e.g., each stage generate 1.5 bits, half bit is redundant for
error correction, and a bit is the converted data. The architecture of the 1.5 bit/stage pipelined ADC
is shown in figure 2.7.

The idea voltage output for one stage is

Vo = 2Vin−Ds ·Vre f

= 2
(

Vin−Ds · Vre f
2

) (2.1)

where Ds is ±1 or 0 depending on the input voltage level.

14 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

Figure 2.6: Digital domain calibration multi-step flash ADC in [LS92].

Figure 2.7: Architecture of 1.5 bits/stage pipelined ADC.

2.3 Self-Calibration Analog to Digital Converters 15

Due to static and dynamic deviations, the radix deviates in each stage [LM03], and their offsets are
accumulated [WHL04]. The voltage output

Vodev = ra ·
(

Vin−Ds ·
Vre f

2

)
+o f f setstage (2.2)

The offset of all the stages can be subtracted in the digital domain at once instead of the subtracting it
in each stage separately [WHL04], and thus

Vodec2 = ra ·
(

Vin−Ds ·
Vre f

2

)
(2.3)

The digital output due to having different radices in each stage is [LM03]

Dout = Db +Db−1 · rab−1 +Db−2 · rab−1rab−2 +Db−2 · rab−1 · rab−2
+...+D1 · rab−1 · rab−2rab−3 · rab−4......ra2 · ra1

(2.4)

This expression can be simplified to [WHL04]

Dout =
a=b

∑
a=1

0.5a ·Da +
a=be

∑
a=1

0.5a · εa ·Da +o f f set (2.5)

where be is the number of the stages that are highly affecting the output because of its deviation; as
shown in equation 2.4, the gain of the first stage rab−1 is propagated to all the other stages, and thus a
small deviation in it result in a large output error, while ra1 is not affecting any other stage, therefore,
a large deviation in it may not strongly affect the output. Experimentally, Wang et al. have found
that be = 5 is adequate to calibrate 12-bit pipelined ADC, and thus estimating five coefficients and an
offset are enough to calibrate 12-bit pipelined ADC.

Most of the calibration schemes are achieved in the foreground during the system power-up or standby
mode [LM03]. The disadvantage of the foreground calibration is that it can not recover from dynamic
deviations such as changing the operating temperature.

In order to achieve background calibration in the pipelined ADC, several schemes are proposed. The
skip and fill scheme [KSB97] occasionally skip a sample from the input and sample a test sample
instead in order to estimate the error. The output of the skipped sample is filled digitally by applying
non-linear interpolation of the sampled data. The bandwidth has to be limited in which the non-linear
interpolation can generate an approximation of the input signal. Correlation based schemes [ML01]
modulate the calibration signal with a pseudo-random-number that is uncorrelated to the input signal,
add it to the input signal, then demodulate it in the digital domain to estimate the error coefficients.
The reported correlation-based schemes are complicate and slow to converge, while it requires a slow
but accurate ADC in each stage to extract the pseudo-random signal. Instead of employing a slow
but accurate ADC in each stage and pseudo-random-number generator, only one redundant slow but
accurate ADC, which has resolution equal to or greater than the target ADC, is employed, e.g., sigma
delta [SSB97] or algorithmic ADC [WHL04]. The error is extracted by sampling the input signal by
both the redundant and the target ADC and subtract them as shown in figure 2.8. The advantage of
employing redundant ADC scheme is that estimating the error does not interrupt the target ADC, its
implementation is simple, and no limitation is introduced to the input signal due to employing this
approach. Furthermore, the redundant ADC can be calibrated in the foreground.

16 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

Figure 2.8: Digital background self-calibration of pipelined ADC based on employing redundant
ADC.

Table 2.2: The achieved bit resolution after calibrations.
Calibration scheme ADC topology Achieved Max. INL1

Nr. of bit [LSB]
Digital-domain [FDLH98] Time-interleaved ADC 10 0.34
Digital-domain [LS92] Multi-step 11 0.9
Nested digital background [WHL04] Pipelined 12 0.47
Error-averaging [CGN04] Pipelined 14 0.54
Capacitor trimming [RRS+04] Pipelined 14 1
Digital-domain [KLB93] Pipelined 15 1.25

Calibration of the algorithmic ADC is very simple; the offset is adjusted to precise zero, and the
radix to precise two which can be achieved in analog domain [LKG91], or in digital domain. Several
approaches to calibrate the algorithmic ADC in digital domain is described in [WHL04]. Calibrating
the sigma delta ADC in analog domain [LSF98] can be achieved by employing programmable devices
to trim the comparator offset, and the programmable integrator gain. A reference input signal in the
feedback circuit is employed for the calibration.

The achieved number of bits by the mentioned calibration scheme regarding the high- and the medium-
speed applications is summarized in table 2.2.

2.4 Current Mode Circuits Building Blocks

Many sensors produce current output, such as photo-diode sensors and many pressure sensors. The
current output of the sensors can be transformed to voltage, or processed directly in current domain,
and converted to digital signal through a current mode ADC. The current mode circuits have the
advantage of low power supply, and high speed [BG04, Kol00] in many designs.

In this section, the building blocks of the second generation current conveyor (CCII), current differ-

1The integral nonlinearity (INL) describes the difference between the actual reference voltages and the ideal reference
voltages at all transitions points

2.4 Current Mode Circuits Building Blocks 17

encing transconductance amplifier (CDTA), and their applications are described briefly as examples
of current mode circuits.

The second generation current conveyor has been introduced by Smith and Sedra in 1970 [Wil90] as
a building block that can be used in voltage or current mode applications. In figure 2.9, the second
generation current conveyor building block symbol is shown. The operation of the CCII is described

Figure 2.9: Second generation current conveyor symbol.

by equation 2.6.

Iy
Vx
Iz

 =

0 0 0
1 0 0
0 s 0

Vy
Ix
Vz

 (2.6)

where s = 1 for CCII+, and s = −1 for CCII-. The voltage at the node x is equal to the voltage the
node y; Vx = Vy, while the output current at the node z is equal to the input current at the node x for
the CCII+; Iz = Ix, and is opposite in sign for CCII-; Iz =−Ix.

Many applications have been proposed using current conveyors, for example, floating frequency de-
pendent negative resistance (FDNR) [Sen84] in figure 2.10, and feedback voltage amplifier [Wil90] in
figure 2.11. More description on CCII and its applications are found in [Wil90, HK05]. As the CCII
block is sufficient as a basic building block for designing many circuits, it is employed for developing
a field programmable analog array [Gau97].

Figure 2.10: CCII based floating FDNR [Sen84].

Figure 2.11: CCII amplifier [Wil90].

In figure 2.12, an example of the CCII implementation [ITF02] is shown. This implementation is

18 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

Figure 2.12: A low-voltage, low-power CCII implementation [ITF02].

simulated by Austriamicrosystems 0.350µm 3.3V CMOS technology spice model. The lengths and
the widths of the transistors are set to 1µm in the simulation. The current transfer characteristics of
IZ and IX is shown in figure 2.13(a). In figure 2.13(b), the voltage VX is plots various IX when the

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

I Z
 [

µ
A

]

I
X
 [µ A]

(a)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

V
X
 [

V
]

I
X
 [µ A]

(b)

Figure 2.13: DC characteristics of the CCII proposed in [ITF02]. a) Current transfer characteristics.
b) The VX vs. IX when VY = 1.65V

voltage VY = 1.65V is shown. The voltage VX is equal to VY for a wide range of the input current.
In figure 2.14, the gain IZ/IX is shown. The 3dB bandwidth of the CCII is about 33MHz. However,
the presented CCII is not optimized. Later on, in chapter 6, it is described that CCII in [ITF02] was
found to be experiemently not stable in many configurations, and therefore, a compensation capacitor
is added to the original design. More about the characteristics of the CCII is found in [ITF02,Wil90].

The CDTA [Bio03] block symbol and an example of its implementation are shown in figure 2.15,
the outputs of the CDTA block are produced by multi-output operational transconductance amplifier
(MOTA). The MOTA input is dependent on the voltage at the point z. The voltage at the point z is
produced due to the current difference between the nodes n and p multiplied by the load impedance
at the node z. If no load is connected to the node z, the current difference between the nodes n and
p is magnified theoretically by Ao → ∞. Thus, Ix+ = (Ip− In) ·Ao, and Ix− = −(Ip− In) ·Ao, which
is similar to the operational amplifier formula. The number of outputs of the CDTA is user defined,
depending on the application requirements.

In figure 2.16, and example of employing the CDTA as an current mode amplifier is shown.

2.4 Current Mode Circuits Building Blocks 19

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

−100

−50

0

50

Freq. [Hz]

|I Z
/I X

|
[d

B
]

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

−2

−1

0

1

2

Freq. [Hz]

∠
 I Z

/I X
 [

ra
d]

Figure 2.14: AC characteristics of the CCII in [ITF02]

CDTA

p

n

x+

x-
z

(a) (b)

Figure 2.15: CDTA block a) Its symbol. b) Its implementation using CCII+ and MOTA.

The flow graph of the CDTA element is shown in figure 2.17(a). The transformation between the
CDTA circuits and flow graph is straight forward, which simplifies the design of current mode circuits.
For example, the flow graph in figure 2.17(b) is implemented using a single CDTA element, while its
implementation in voltage mode requires two operational amplifiers [Bio03].

Employing the gm of CDTA allows the design of gm-C like filters, which is called CDTA-C filters
[BVB05]. The second-order of the well known Kerwin-Heulsman-Newcomb filter (KHN filter) is
implemented in [BVB05] with three CDTA elements and two capacitors as shown in figure 2.18. The

20 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

Figure 2.16: CDTA operating as an amplifier.

1

-1

Z g
m

I

I

I

p

n

xIz
Vz

(a)

1

-1

g
m

I I
in x

I
z

sC 1

G 2

G +sC
2

I
out

(b) (c)

Figure 2.17: a) The flow graph of the CDTA. b) The flow graph of second order LP filter using
CDTA [Bio03]. c) The implementation of the filter in figure 2.17(b) using a single CDTA element.

Figure 2.18: Second-order KHN filter using CDTA [BVB05].

output currents of the filter are
IHP

Iin
=

s2

s2 + ωo
Q s+ω2

o
(2.7)

IBP

Iin
=

ωo
Q s

s2 + ωo
Q s+ω2

o
(2.8)

ILP

Iin
=

ω2
o

s2 + ωo
Q s+ω2

o
(2.9)

where Q is the quality of the filter, and ωo =
√

gm1gm2
C1C2

is the filter corner frequency. However, the
design of this filter is not investigated in this thesis.

2.5 Commercial Analog Reconfigurable ICs 21

More about current mode building blocks are found in [BG04].

2.5 Commercial Analog Reconfigurable ICs

The commercial reconfigurable chips are oriented toward two target approaches:

• Hardware with reconfigurable structure to program the circuit functionality for rapid prototyping.

• Hardware with fixed structure, but few soft-trimmable components in order to control few of its
specifications to recover from deviations.

An overview on the commercial flexible hardware with the programmable functionality and on the
trimmable approaches is provided the following subsections.

2.5.1 Field Programmable Analog Arrays

Rapid prototyping is necessarily in many analog applications for cost reduction if small quantities are
required to be produced. Various flexible hardware have been developed with the motivation of rapid
prototyping rather than self-calibration for non-precise applications.

Field-programmable analog array (FPAA) is an analog integrated circuit which has programmable
connections between the utilized building blocks to implement user defined functionality. The active
components such as operational amplifiers are not programmable, but the passive components can be
programmable to tune the functionality (e.g. to choose the gain of an amplifier).

The basic programmable cell in FPAAs is called CAB (configurable analog block). Each CAB can
be reconfigurable to construct a certain functionality. The connections between the CABs are pro-
grammable in order to build the system functionality.

The IMP, Inc.’s version of the FPAA which is called EPAC (electrically programmable analog cir-
cuit), the Motorolla MPAA020 series, and the Anadigmr FPAA are discrete-time based on switched-
capacitor technology which limits the operation frequency and generates noise and non-linearity due
to the switching activity. Although the bandwidth of the MPAA020 is about 200kHz because of the
discrete components, the typical bandwidth of the Anadigmr AN121E04 is about 2MHz, but the
effective bandwidth is less, depending on the design.

Zetex’s FPAA which is called TRAC (totally reconfigurable analog circuit) is continuous time FPAA
in which, CAB can be configured to a prescribed functionality such as add, negate, non-inverting
pass, log, anti-log, rectifier, or to employ external passive components (e.g., to construct an amplifier,
a filter, etc). The bandwidth of TRAC020 is 4 MHz - 12 MHz depending on the reconfiguration, and
it includes 20 CABs in the chip.

22 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

2.5.2 Trimmable Hardware

Programmable passive components –such as AD8403 [Dev] is a programmable resistor from ana-
log devices, X90100 [Int] is programmable capacitor from intersil– can be employed for trimming
the system as described in section 2.3. It is more preferable in many applications to employ pro-
grammable capacitors rather than programmable resistors in order to avoid integrating the resistors.
However, the employed switches react as a low-pass filter due to its internal resistance and its para-
sitic capacitance, which limit the operation bandwidth. As an example of employing programmable
components with fixed structure is the Texas Instruments smart sensor conditioning chip PGA309,
which has offset adjustment, programmable gain, a look up table is employed to calibrate the error
according to environment temperature, etc.

Rejustors [Tec] are a analog controlled resistors that are introduced by Microbridge Technology Corp.
for sensor electronics calibration. It is based on employing the MEMS technology to place a heater
in the substrate of an integrated resistor. The main disadvantage of the rejustors is that integrating
them with other devices in the same chip may increases the dynamic deviations in the other devices
due to the heat distribution inside the chip. The rejustor development board employs an ADC and a
DAC to adjust the value of the rejustor iteratively. The settling time of the heating system has to be
considered during the iterative adjustment. Due to the self heating of the rejustor, it is useful only for
low power application. The main advantage of the rejustor over the digitally programmable resistor
is that no digital switches are required, and thus, it can be employed in high frequency applications as
it has less parasitic impedance.

Employing programmable or adjustable passive components can adjust few of the hardware specifi-
cations, e.g., offset, closed loop gain, but it can not reconfigure the hardware against strong system
deviations or to suit another application requirements.

2.6 Discussion

Organic systems are realized as a process of enormous complexity [vdM04, MSvdMW04]. Organic-
computing mimicks the abstract behavior of the organic systems; aiming on building a robust, safe,
flexible, high complexity, trustworthy system by including the self-x properties such as self-organizing,
self-configuring, self-optimizing, self-healing, self-protecting, and self-explaining. The state-of-the-
art organic-computing is concentrated in the digital domain. This research contributes to abstract
the organic-computing to the analog domain by including the self-x properties in sensor electron-
ics [KLT06, K0̈6].

Adding the self-x properties (self-organization, self-configuration, self-optimization, self-healing,
etc.) to sensor electronics is essential to keep the precision of the sensor system and cope with
static and dynamic deviations. On the other hand, rapid prototyping reduces the cost of the develop-
ment and design phases especially for low quantity products. The MEMS technology accommodates
manufacturing of high quality complex sensors with the cost of die area and the number of required
masks. However, the state-of-the-art MEMS technology offers only digital domain self-calibration.
The topology of the MEMS sensor electronics can be fixed according to the sensor specifications.
Thus, self-x properties can be included by employing programmable components to the pre-designed

2.6 Discussion 23

sensor electronics hardware in order to extend the hardware specification range without varying the
system functionality [TK05b]. Therefore, adding flexibility allows the system to cope with harsh
environment. Nevertheless, the output signal of the sensor system is application dependent, and thus
expanding the flexibility in the functional level widen the system application range. The high tem-
perature electronics research field aims to improve the semiconductor technology to operate at high
temperature. In the state-of-the-art high temperature electronics, a dynamic operation temperature
range up to 1055◦C has been attained in laboratories by employing diamonds semiconductors. Thus,
it is worth adding flexibility to many of the high temperature sensor electronics applications to keep
the system performance at different operating points. As the die area and the number of masks re-
quired for MEMS technologies is large, increasing the flexibility to the functionality level in order
to widen the range of applications for a single MEMS, and including self-x properties is essential.
Although adding flexibility increases the design die area, extending the flexibility to build general
purpose generic sensor electronics system decreases the cost and the design time as the same hard-
ware can be used for many applications. FPAAs has a programmable hardware functionality for rapid
prototyping in the design phase, but it does not consider the self-x properties, while conventional
self-calibration hardware includes some of the self-x properties in the run time but only against few
of the possible system deviation. For example, auto-zeroing can minimize only the offset, and gain
calibration consider only the closed loop gain.

In order to obtain generic organic-computing sensor electronics, current mode building blocks are
included to extend the hardware flexibility, to simplify the implementation of current mode circuits
instead of converting the signals to voltage mode before applying the required processing, to en-
hances testing new circuits on the rapid prototyping generic sensor system at low cost, and to increase
the hardware speed as current-mode circuits are faster than voltage-mode circuits in the cost of the
linearity [BG04, Kol00].

A blueprint for the target generic organic-computing sensor electronics front-end is shown in figure
2.19. Analog to digital converters and digital to analog converters are required to assess the sensor

Figure 2.19: Generic organic-computing sensor electronic system.

24 IMPROVEMENT REQUIREMENTS AND OPEN ISSUES SENSOR ELECTRONICS

electronics calibration. Any error in the signals of the assessing ADCs propagates to the whole sys-
tem. If the ADCs are calibrated, the DACs can be calibrated easily in analog or digital domain. For-
tunately, the state-of-the-art ADCs employs self calibration techniques to compensate the deviations.
Therefore, simple assessment circuits that contain ADCs, DACs and very few passive components
can be self-calibrated.

CHAPTER 3

Evolutionary Computation

The evolutionary computation methods are applied in a wide range of engineering applications [SD01,
Tho95, Tho97b, PLF+99, Yao99]. They are stochastic search methods inspired from biological sys-
tems. The advantage of the evolutionary computation over exact optimization methods is that the
exact optimization methods consume much time that makes them hard to be applied in many of the
practical engineering applications.

In this chapter, the background of evolutionary computation is described, which is used later on in the
thesis. Adapting the evolutionary computation for dynamic environment is discussed, in which the
algorithm does not lose the previous information after the occurrence of an environmental change.
In addition, a new variant of the particle swarm optimization is described, and its performance com-
pared and tested using the benchmark functions which are widely used for evaluating the evolutionary
computation optimization approaches.

3.1 Historical Background

The evolutionary computation can be considered under the family of optimization techniques as in
figure 3.1, or under the family of computational intelligence as shown in figure 3.2.

The evolutionary methods can be used to program the problem dimensions (e.g., genetic algorithms,
differential evolution, and particle swarm optimization), to design the problem structure (e.g., Ge-
netic programming), to find the optimal path (e.g., ant colony optimization1 [Dor92]), or in pattern
recognition, (e.g., artificial immune system2 [FPP86]). Both particle swarm optimization and ant
colony optimization are members belong to the family of swarm intelligence. The swarm intelligence
inspired from the behavior of the swarm and the interaction between its individuals, while genetic

1Ant colony optimization is inspired from the ant colony and the techniques they use to find the shortest path for the
food, which means, it is a path minimization technique.

2Artificial immune system [FPP86] is inspired from the immune system of the vertebrate and how it recognizes the
foreign objects in the body.

26 EVOLUTIONARY COMPUTATION

algorithms, genetic programming, evolutionary strategies, and evolutionary programming are based
on the Darwinian evolution [ES03].

Figure 3.1: Optimization techniques’ taxonomy [Aff05].

Figure 3.2: Computation intelligence taxonomy [Chr03].

Alan Turing identified [KIAK99] in his paper “Intelligent Machinery” in 1948 [TS00]: “There is the
genetical or evolutionary search by which a combination of genes is looked for, the criterion being
the survival value.”. In his paper in 1950 “Computing Machinery and Intelligence”, Turing further
added: “We cannot expect to find a good child-machine at the first attempt. One must experiment with
teaching some such machine and see how well it learns.

3.2 Genetic Algorithm 27

Structure of the child-machine = Hereditary material
Changes in the child-machine = Mutations
Natural Selection = Judgment of the Experimenter”.
Afterwards, Fraser introduced genetic system which is the early work relied on mutation rather than
mating to generate new gene combinations in [Fra57]. In 1962, Bremermann executed computer
experiment [Bre62] of the genetic system and added a kind of mating where the characteristic of
offspring were determined by summing up corresponding genes in two parents. By the mid-1960’s
Holland had developed the genetic algorithm, that is well suited to evolution by both mating and muta-
tion as presented in [Hol73], while Fogel called it evolutionary programming [FOW65]. Meanwhile,
Rechenberg and Schwefel invented evolution strategies [Rec73b].

The first experiments with Genetic programming were reported by Smith [S.F80] and Crame [Cra85],
then by John Koza [Koz90].

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed
by Eberhart and Kennedy [EK95], inspired by social behavior of bird flocking and fish schooling.

3.2 Genetic Algorithm

In the genetic algorithm (GA), the problem is represented in a chromosome, also called genome. The
genome consists of a gene string. Each of the genes represents a dimension in the problem space.
The genetic algorithm is based on Darwinian evolution theory which assumes that the fitness of the
population improves over the generations. The genetic algorithm is a population based algorithm,
which means, it has a set of solutions each generation (iteration). Each of the solutions is called an
individual. Evaluating the individuals is carried out by a fitness function. The fitness is represented
by a real number, called fitness value, in order to differentiate between the fitness of the individuals
by its value. Evaluating the genome is performed by calling a fitness function which returns a fitness
value corresponding to the gene values. Sometimes a scaling is used after evaluating the individuals.

Procedure 1 Genetic algorithm procedures.
Population.Genome ⇐ Random(seed)
Population.Fitness⇐ Evaluate(Population.Genome,Fitness Function)
Population.Fitness⇐ Scale(Offspring.Fitness)
IterationCounter⇐ 0
repeat

Parents ⇐ Select Parents (Population,Selection Operator)
Offspring.Genome⇐ Produce Offspring (Parents,CrossOver Operator)
Offspring.Genome⇐ Mutute(Offspring,Mutation Operator)
Offspring.Fitness⇐ Evaluate(Offspring.Genome,Fitness Function)
Offspring.Fitness⇐ Scale(Offspring.Fitness)
Population⇐ Insert(Population,Offspring,Population Size,Mixing Operator)
IterationCounter⇐ IterationCounter+1

until IterationCounter>MaxIteration OR TerminationCondition==TRUE

As in procedures 1, the basic operators used by genetic algorithm are the initialization, the selection,
crossover, mutation, and survivor selection.

28 EVOLUTIONARY COMPUTATION

In the following subsections, a brief description of the genetic algorithm operators [ES03] is ex-
pressed.

3.2.1 Initialization

The initializer operator initializes the initial generation by random numbers. The initialization plays
a role in finding a good solution; if the initializer luckily to initialize the genomes with a value near
by the global best solution, it is easier to the algorithm to find the best solution.

An integer called seed is employed by the initializer, in which the initializer produces the same random
number sequence each time the same seed is used.

The main difference between the initializers is the distribution of the random numbers that it gener-
ates. The uniform initializer generates uniform distributed random numbers. It is preferable in many
of the applications to use the uniform initializer as it spreads the individuals over the search space uni-
formly. Some applications need special initializers like the adjacency-type problems, which have an
atomic number in each gene that can not be repeated. The ordered initializer, for instance, initializes
the genome with a given set in which each of the value can appear only in one gene in the genome.

3.2.2 Selection

By applying a selection approach, some of the individuals is selected and recombined in the next
generation. Choosing the parents for mating is one of the key operators in genetic algorithm. A weak
selection method can lead to convergence in a local minima or maxima.

The simplest selection method is the uniform method which selects the parents randomly with uniform
distribution random generator. This method gives all the individuals in the populations the same
chance for mating.

In roulette-wheel selection, each individual is weighted for selection according to its fitness value.
The disadvantage of this method is that it can choose a parent frequently for mating if its fitness is
much higher than the rest of the population. This can trap the population in a local extrema.

The ranking-based selection considers the drawback of the roulette-wheel selection by ranking indi-
viduals instead of weighting them according to their fitness. It sorts the population according to their
fitness, and then selects the individuals by probability according to their rank in sorted list.

Tournament selection method selects randomly two or more individuals, then the fittest of them is
chosen.

3.2.3 Crossover

The crossover is employed to create new offspring from the parents. It can be achieved by choosing
one or more cutting point in the parents, in which the crossover is done at them. For example in figure

3.2 Genetic Algorithm 29

3.3, the parents in figure 3.3(a) produce the offspring in figure 3.3(b) after a one point crossover at the
point ”A” in figure 3.3(a).

101 1 0 1 111 0 00100

A

0 001 0 01110110 0 1

(a)

110 0 1

0 001 0 01110101 1 0

1 111 0 00100

A

(b)

Figure 3.3: Example of one point crossover. a) Parents. b) Offspring.

In figure 3.4, two point crossover is shown, where the parents in figure 3.4(a) produced the offspring
in figure 3.4(b).

101 1 0

A

0 001

1 11100

110 0 1 0 00110

B

0 011

(a)

101 1 0

A

0 0011 11100110 0 1

0 00110

B

0 011

(b)

Figure 3.4: Example of two point crossover. a) Parents. b) Offspring.

The odd-even crossover takes the even bits from one of the parents, and the odd from the other.

Uniform crossover chooses genes from any of the parents randomly; it takes some genes from the first
parent and rest of the other. The uniform crossover produces only one offspring from two parents.

Arithmetic crossover is applied only to real number problems, it generates a new value from the
parents using the following equation:

xO f f spring1 = α ·xParent1 +(1−α) ·xParent2
xO f f spring2 = (1−α) ·xParent1 +α ·xParent2

(3.1)

where α is a parameter needed for arithmetic crossover, xO f f spring1 and xO f f spring2 are two arrays that
contain the values of the genes of the new offspring, while, xParent1 and xParent2 are two arrays that
contain the values of the genes of the parents. If α = 0.5, the arithmetic crossover will return the
average of the parent values, which returns two identical offspring. The offspring need modifications
afterwards in order to have different values, e.g., a big mutation probability.

An example of the arithmetic crossover with α = 0.5 is shown in figure 3.5, where the offspring in
figure 3.5(b) are the average of the parents in figure 3.5(a).

Blend crossover is also applied to real number problems, it generates a new random value based on
the interval between the parents.

30 EVOLUTIONARY COMPUTATION

3 101920 1 458 13 825

4 1136 1 2915 9 2207

(a)

3.5 10.51113 1 3711.5 11 5116

3.5 10.51113 1 3711.5 11 5116

(b)

Figure 3.5: Example of arithmetic crossover with α = 0.5. a) Parents. b) Offspring.

3.2.4 Mutation

A percentage of the genes is required to mutate. A parameter called mutation probability, which
has a value between 0 and 1, is employed to select randomly the genes that will mutate. Before
mutating any gene, first a random number with uniform distribution is generated and compared with
the mutation probability. If the mutation probability is bigger than the generated random number, the
mutation is applied.

The flip mutation or the swap mutation can be used for binary genomes. The flip mutation flips the
gene value. It converts the 1 to 0 and the 0 to 1. The swap mutation swaps the value of two genes in
the offspring.

For real value genomes, the Gaussian mutation can be use. The Gaussian mutation generates a new
random value based on a Gaussian distribution around the current value. This returns a small deviation
in the mutated genes.

3.2.5 Survivor Selection

After generating the offspring, a selection between the offspring and the parents is required in order
to form the new generation. There are several methods for the survivor selection. Age-based replace-
ment removes all the individuals from the generation after a given age. This means that after some
generations, the best individuals will be removed if no improvement in the algorithm in achieved.

Another approach is fitness based replacement which keeps the fitter individuals and replaces the
worse. This method does not control the mixing between the old generation and the new generation.

If only a percentage of the old generation should be kept, elitism can be used to keep only a given
percentage from the old generation. It copies the required most fit percentage of individuals to the
new generation.

3.2.6 Genetic Algorithm Techniques

The simple genetic algorithm technique consists of one population. For each new generation, the
elitism can be used to keep a percentage of the old generation, where choosing the old individuals is
done concerning its fitness.

In the steady state genetic algorithm, only a certain number the individuals are replaced by new
offspring, and the rest of the population is kept. The replaced individuals can be selected according

3.3 Genetic Programming 31

to their fitness, or selected randomly.

3.3 Genetic Programming

Genetic programming (GP) has similar operations like the genetic algorithm; the main difference is
that genetic programming search for mathematical formula, object structure, or a computer program
to solve the problem. The problem is represented as a syntax tree. The leaves of the tree are either
variables or constants, while any other node in the tree is an operator. For example the tree in figure
3.6 represents the mathematical formula (((X +Y)/2)−B).

/

2

X

+

-

B

Y

Figure 3.6: Example of Genetic programming syntax tree.

The fitness of the individual is represented by assigning a value to it like in genetic algorithm, which
has to be minimized or maximized. For generating the offspring in genetic programming, selection,
crossover, mutation and survivor selection operators are utilized. The selection and survivor selections
are similar to the genetic algorithm.

The crossover can be applied on either identical or different parents. It is done by choosing one or
more cutting points in the parents and recombining them at these points.

For example, the parents in figure 3.7 produce the offspring in figure 3.8 after crossover at the cutting
points marked in gray.

Crossover for identical parents is achieved by choosing different cutting point in the parents and
recombining them at these cutting points. As example, the parents in figure 3.9 produce the offspring
in figure 3.10 after recombining at the gray marked points.

After the crossover, some of the nodes (operators, variables or constants) mutate. Mutation probability
is employed for selecting the nodes to mutate.

As example for mutation in shown is figure 3.11. The nodes which are selected for mutation of the
offspring in figure 3.11(a) are marked gray. After mutation, the mutated offspring is in figure 3.11(b).

32 EVOLUTIONARY COMPUTATION

/

2

X

+

-

B

Y

/

B

-

*

2

X

+

Y

2

Figure 3.7: Two selected parents for crossover.

/

2

-

B

*

2

X

+

Y

(a)

/

B

-

2 X

+

Y

(b)

Figure 3.8: The offspring after crossing over of the parents in figure 3.7.

A limitation on the tree size has to be imposed in the evolution to avoid the tree explosion.

3.4 Particle Swarm Optimization PSO

In particle swarm optimization (PSO), the potential solutions are the position of the individuals. The
individuals in PSO are called particles. Each particle flies in the problem space. The speed of each
particle is determined by equation 3.2, where x represents the position of the particle, xt,i is the
position of the particle i at the time (iteration) t, and pt,i is the position of the particle i at the time
t where it has achieved its best fitness value. The particle g is the global best particle, which is the
particle that has achieved the best fitness over all the population. pt,g is the position of the particle g
where it has achieved its best fitness. rand() is a random number generator. w is called the inertia

3.4 Particle Swarm Optimization PSO 33

/

2

X

+

-

B

Y

(a)

/

2

X

+

-

B

Y

(b)

Figure 3.9: Selected parent for identical crossover.

/

2

-

B

B

(a)

/

2

X

+

-

Y

X

+

Y

(b)

Figure 3.10: The offspring after crossover of the identical parents in figure 3.9.

weight, it is introduced by Shi and Eberhart in [SE98b, SE98a]. In the initial PSO, w was equal to
one. C1 and C2 are called the acceleration coefficients. The first part of the equation is its inertia, the
second part is called the “cognitive” part, which represents learning from its own old experience and
the third part is the “social” part, which represents the group flying experience.

vt+1,i = wvt,i +C1 · rand() · (pt,i−xt,i)+C2 · rand() · (pt,g−xt,i) (3.2)

The position of the particle is updated each iteration by equation 3.3

xt+1,i = xt,i +vt+1,i (3.3)

The procedures for traditional PSO are as shown in procedures 2, where xmax is the maximum value
that x can take in any of its dimensions, and vmax is the maximum allowed velocity which is used

34 EVOLUTIONARY COMPUTATION

/

2

-

B

*

2

X

+

Y

(a)

+

2

-

B

*

B

X

+

Y

(b)

Figure 3.11: a) An offspring before applying mutation. b) The offspring in figure 3.11(a) after muta-
tion.

during the initialization, and in some PSO deviations to limit the velocity during the run. Each particle
has knowledge about its current position, its fitness value at the current position, its velocity, the best
fitness value it has achieved and its location, and the global best particle. The fitness value of all the
particles is compared in order to find the global best particle g. 3.

3.4.1 Modifications of Particle Swarm Optimization

Many modifications of the original particle swarm optimization have been developed to improve its
performance. In the following subsections, the PSO variants that are mostly used the literature are
summarized.

Neighborhood Topologies

When all the particles have only one global best, it is called gbest model. It is possible to have local
best lbest model in which the neighbors of each particle is a subset of the population instead of all
the population. As a result, it has a local best particle which is the best particle in its neighbors
[KM02, Men04]. In figure 3.12, an example of a swarm with a population size of 20 particles is
shown with global neighboring. Each particle is aware of the fitness of the others, as a result, all the
particles aware of the best particle and its position. In figure 3.4.1 an example of an lbest model PSO
is shown, in figure 3.13(a), each particle has only 2 neighbors, while in figure 3.13(b), each particle
has 6 neighbors.

3The detection can be done iteratively inside the updating loop after calculating the fitness of each particle
4The comparison operator is < in case of minimization, > in case of maximization.

3.4 Particle Swarm Optimization PSO 35

Procedure 2 Particle Swarm Optimization procedures.
Require: N , FitnessFunction f
Ensure: Find Optimal Solution
{Initialization}
Initialize the random generator with the seed
for i = 1 to N do

xi = (2 · rand()−1) · xmax
vi = (2 · rand()−1) · vmax
fi = f (xi)
pi = xi
p fi = fi

end for
g ⇐ Identify the particle with the global best
{Learning}
for t = 0 to tmax do

for i = 1 to N do
vi = w ·vi +C1 · rand() · (pi−xi)+C2 · rand() · (pg−xi)
xi = xi +vi
fi = f (xi)
if fi <4 p fi then

pi = xi
p fi = fi {p fi is value of the best achieved fitness by the particle i}

end if
end for
g ⇐ Identify the particle with the global best
if TerminationCondition==TRUE then

break
end if

end for

Constriction Factor

Clerc [Cle99] and Clerc and Kennedy [CjK02] introduced the constriction factor into the PSO to
ensure convergence. The constriction factor is utilized to choose the value of C1, C2 and w. The speed
of the particle is updated by equation 3.4 instead of equation 3.2, while the value of χ is calculated
by equation 3.6

vt+1,i = χ · (vt,i +Φ1 · rand() · (pt,i−xt,i)+Φ2 · rand() · (pt,g−xt,i)) (3.4)

Φ = Φ1 +Φ2 (3.5)

χ =
2k

| 2−Φ−
√

Φ2−4Φ | (3.6)

where k ∈ [0,1] and Φ > 4. Usually k is set to 1 and both Φ1 and Φ2 are set to 2.05 [ES00, Tre03].
This variant is called canonical PSO.

36 EVOLUTIONARY COMPUTATION

Figure 3.12: gbest model; each particle is aware of all the population.

(a) (b)

Figure 3.13: lbest model; a) each particle has two neighbor. b) each particle has six neighbors.

Charged PSO

In the charged swarms CPSO in [BB02a], some particles in the swarm are charged. The charged
particles dispel each other. The aim of using charged particles is to maintain the population diversity
[Bla05]. The dispelling is done by adding a new component ai to the velocity equation of the particle
swarm optimization as shown in equation 3.7, which is called extra particle acceleration of the particle
i.

3.4 Particle Swarm Optimization PSO 37

ai = ∑
j 6=i

Qi ·Q j

r2
i j

ri j

ri j
Pcore < ri j < P (3.7)

where ri j = xi−x j, ri j =| xi−x j |, each particle i has a charge of magnitude Qi and current position
x. Neutral particles have no charge, which means Qi = 0 and therefore ai = 0. Repulsion can occur
within the shell Pcore < ri j < P. Pcore is to protect against division by zero, while P specifies the shell
outer radius.

The extra particle acceleration ai is added to the velocity update equation as in equation 3.8

vi,t+1 = w ·vi,t +C1 · rand() · (pi,t −xi,t)+C2 · rand() · (pg,t −xi,t)+mathb f ai (3.8)

In [BB02a], two types of swarms with charged particles were introduced; charged swarm and atomic
swarm. All the particles in the charged swarm are charged. Half the particles of the atomic swarm are
charged, and the rest are neutral. The results Blackwell achieved with the atomic swarm was better
than the results he achieved with the charged swarm.

It is clear in equation 3.7 that the complexity of the CPSO is O(N2) instead of O(N) in the traditional
PSO, where N is the population size.

Quantum Swarm Optimization

The quantum swarm optimizer (QSO) is built on the atomic metaphor of the CPSO. If any particle
gets close to the best particle, a random number is added to it to dispel it into the orbit cloud [Sil07].

Multi-Swarm Particle Swarm Optimizer

In multi-swarm particle swarm optimizer (MSPSO) [BB04], the population of the particle swarm
optimization is divided into nswarm sub-swarms. Each of the sub-swarms has its own attractor, which
is equivalent to the global best particle in the PSO. The attractor is the optimal particle in the sub-
swarm. The optimal value of the swarm is the best over all the sub-swarms. If two sub-swarms
are moving toward the same optimal point, the swarm with the worse attractor will be reinitialized.
Detecting if two swarms are flying toward the same optimal point is based on measuring the distance
between the sub-swarm attractors, then compare it with a minimum allowed distance rexcl . Some of
the particles in the swarm are charged. The charged particles dispel each other as in the CPSO and
QSO.

Hierarchical Particle Swarm Optimizer

The Hierarchical Particle Swarm Optimizer (HPSO) is introduced by Janson and Middendorf [JM03].
All the particles are arranged in a hierarchy tree that defines the neighborhood structure. Each node of
the tree is a particle, each particle flies toward its own best position and toward the best position of the
particle that is directly above it in the hierarchical tree. The neighborhood of the particles in HPSO
does not need extra computation as the tree structure is fixed. The hierarchical tree has branching

38 EVOLUTIONARY COMPUTATION

The global best particle

Worse than all
the particles above

Branching degree =2

Height =4

Figure 3.14: Schema of HPSO with h = 4 and d = 2.

degree d, and height h. It is formed in the initialization phase and updated each iteration. The tree is
formed in which each particle is better than the particle below it in the tree. Thus, the best particle
is the root of the tree. Each new iteration, the tree is updated in which, if the particle in the lower
level is improved to be better than the particle above it, they swap their position in the tree. In the
implemented version; in order to form the tree, the particles are sorted first according to their fitness
value. Then they are assigned to the tree from top to bottom according to their position in the sorted
list.

Adaptive Hierarchical Particle Swarm Optimizer

The adaptive hierarchical particle swarm optimizer (AHPSO) [JM05] decrease the branching degree
during the optimization. In other words, the hierarchy reduce the branching degree from d to d− 1
every fadapt iterations.

Time-Varying Inertia Weight PSO

In [SE98a, SE99], Shi and Eberhart suggest changing the inertia coefficient with the number of it-
erations. Experimentally, they found out that the best results are achieved when w starts with 0.9
and decreases linearly to 0.4. The inertia weight can be increasing [SE98a, SE99, SE98b] or decreas-
ing [ZMZQ03b, ZMZQ03a].

Self-Organized Hierarchical Particle Swarm Optimizer with Time Varying Acceleration Coef-
ficients

In [RHW04], Ratnaweera et al. used time-varying acceleration coefficients (TVAC), in which, C1 and
C2 values are time dependent. The best results were achieved when C2 start by 0.5 increases linearly
to reach 2.5 in the last iteration, and C1 starts with 2.5 and decreases to 0.5 in the last iteration. In case
of no improvement, the velocity can mutate (MPSO) by a given mutation probability. The velocity
mutates by the maximum allowed velocity after multipling it by the mutation step size. In [RHW04],
the mutation step size starts with 1 and decreases linearly to 0.1 in the last iteration. Ratnaweera et

3.4 Particle Swarm Optimization PSO 39

al. has used the time varying acceleration coefficients with PSO (PSO-TVAC) in which the inertia
coefficient is changing as in [SE98b]. The inertia coefficient is set to zero when it is used with HPSO
(HPSO-TVAC). In HPSO-TVAC, if the velocity of any of the dimensions is attenuated to zero, it is
reinitialize. More details about TVAC approaches are found in [RHW04].

Fully Informed PSO

The fully informed particle swarm optimizer (FIPSO) is proposed by Mends et al. [MKN04], instead
of using only best achieved value of only the best particle and the particle i to calculate the velocity
of the particle i, all the population is used as shown in equation 3.9, where N is the set of neighbors
of the particle i, Φ is the acceleration coefficient, and W (j) is the weighing function of the neighbor
j.

vt+1,i = χ ·
[

vt,i + ∑
j∈N

Φ
N
·W (j) · rand() · (pt, j−xt,i)

]
(3.9)

Gregarious Particle Swarm Optimizer

In the gregarious particle swarm optimizer (G-PSO) [PB06], all particles fly only toward the global
best achieved position as in equation 3.10. Any particle very close to the global best is considered
as a trapped particle and its velocity is re-initialized, otherwise,its velocity calculated by the different
between its speed and the position of the global optimal solution multiplied by a γ .

i f (‖xt,i−gt‖ ≤ ε)
vt+1,i = rand(−Vmax,Vmax)

else
vt+1,i = γ · rand(0,1) · (xt,i−gt)

(3.10)

The value of γ is reduced by σ each iteration the swarm improves to have smaller steps in order to
search better, and σ is added to γ if no improvement. There is a range that γ is not allowed go out of
it.

Guaranteed Convergence PSO

The guaranteed convergence particle swarm optimizer (GCPSO) [dB02,dBE02] was mainly designed
in order to avoid premature convergence which can happen when the global best position is equal to
the current position. Thus, only the global particle is treated in special way in GCPSO in which its
velocity is updated by equation 3.11.

vt+1,g =−xt,g +w ·vt,g +ρt(1−2 · rand()) (3.11)

The details of updating ρt is in [dB02, dBE02]. However, GCPSO is likely to trap into local optima
in multimodal functions [dB02].

40 EVOLUTIONARY COMPUTATION

Multi-Start PSO

Multi-start PSO is a modified version of the GCPSO to solve its trapping problem. It saves the optimal
result when the PSO is trapped and re-initialize the population.

Attractive and Repulsive PSO (ARPSO)

Based on the diversity measurment, the ARPSO [RV02] switches between attraction and repulsion
phases. In the attraction phase, ARPSO uses the PSO to allow fast convergence which results in fast
diversity reduction. In the repulsion phase, the population flies far away from the best particle, which
increases the diversity.

Hybrid Approaches

Some hybrid approaches use genetic algorithm, or any of its operators with particle swarm optimiza-
tion. Angeline [Ang98] used the tournament selection method with PSO. Among a group of selected
particles, the winner particle awarded one point in the tournament. Afterwards, the population par-
ticles are sorted according to the number of points each particle awarded. Then the top half of the
population, which has high score is copied over the bottom half which has lower score. However, this
hybrid approach performed worse than the PSO for multimodal functions as its diversity decreases
very fast.

Breeding is introduced by Løvjberg [LRK01]uses arithmetic crossover operator as a breeding oper-
ator. A breeding probability is used as the crossover probability in genetic algorithm. The parents
are replaced with the offspring. This approach performed better than the PSO with multimodal func-
tions [LRK01].

The life cycle model hybridding PSO with GA and hill-climbing by running them after each other
for the same population [Lø02]. It is observed that the original PSO performed well compared to this
hybrid approaches.

Random mutation is employed in [XZY02] in order to prevent premature convergence. Gaussian
mutation is used instead in [HI03].

Craziness

In each iteration, the position of a few particles is randomized, while the velocity of the rest is reini-
tialized to the cognitive velocity component [VSS03].

Self-Organized Criticality PSO

In the self-organized criticality particle swarm optimizer (SOC PSO), the particles close to each others
are reallocated by a measure of the diversity called criticality [Lø02]. Each particle has its critical

3.4 Particle Swarm Optimization PSO 41

value, which is initialized by zero. If the distance between any two particles is less than a given
threshold distance, the critical value of each of them increases by one. The SOC PSO has a global
set criticality limit CL. If the critical value of any particle exceeds this limit, it disperse its criticality
within the surrounding neighbors by increasing the criticality of the first CL neighbor particles by
one, then decrease its critcality by CL. Afterwards, it reallocates itself. The reallocation is achieved
by employing a reallocation schemes, e.g., reinitialize the particle [Lø02].

The SOC PSO requires more operators than the original PSO, and its complexity is O(N2) as the
distance between all particles is measured. On the other hand, its basic principle is similar to charged
PSO, where charged particles that are closed to each other dispel each other by a regular mathematical
formula to keep the diversity.

Fitness-Distance Ratio based PSO

In the fitness-distance ratio based particle swarm optimization (FDR-PSO), a new term is added which
gives the PSO particles the ability to fly to their fittest neighbor. The velocity of each particle is
updated by equation 3.12.

vt+1,i = w ·vt,i +ψ1 ·rand() · (pt,i−xt,i)+ψ2 ·rand() · (pt,g−xt,i)+ψ3 ·rand() · (pt,η −xt,i) (3.12)

The particle η is determined by minizing equation 3.13

η = min
f (xt,i)−pt,η

|pt,η −xt,η | (3.13)

Unified PSO

The Unified Particle Swarm Optimization (UPSO) [PV04], the PSO with global neighboring is merged
with the PSO local neighboring as the following, calculate the global speed update Gt+1,i by equa-
tion 3.14, calculate the local speed update Lt+1,i by equation 3.15, and Update the particle speed by
equation 3.16, where u is a coefficient for mixing the global and local velocities.

Gt+1,i = w ·vt,i +C1 · rand() · (pt,i−xt,i)+C2 · rand() · (pt,g−xt,i) (3.14)

Lt+1,i = w ·vt,i +C1 · rand() · (pt,i−xt,i)+C2 · rand() · (pt,gi −xt,i) (3.15)

vt+1,i = (1−u) ·Lt+1,i +u ·Gt+1,i,u ∈ [0,1] (3.16)

Division of Labor in PSO

Division of labor in particle swarm optimization (DoL PSO) [VRK02] employs the division of labor
model in [BTD96]; a stimuli signal s is associated with local optima search, if the stimuli signal s
is higher than the threshold θ , the particle can start a local search task by the probability given in
equation 3.17. The probability to stop the local search task is a constant.The stimuli s will increase
when the fitness does not improve.

Pl→g,i =
sn

θ n
i + sn (3.17)

42 EVOLUTIONARY COMPUTATION

where n the steepness factor, the higher n, the probability to switch to local search if s need is slightly
higher than the threshold is higher. The threshold θ is updated by equation 3.18, in which, with time,
local search is needed. This helps the swarm to search for global best first, then to local best.

θi(t) = b · e−a·t a,b ∈ R+ (3.18)

Niching Particle Swarm Optimizer

The niching PSO [BEB02] employs the cognition only PSO model [Ken97] such that each particle
search for a local solution around its best achieved fitness value.

vt+1,i = w ·vt,i +C1 · rand() · (pt,i−xt,i) (3.19)

Any particle that shows a little improvement over a small number of iteration creates a new subswarm.
The closest nieghbor to this particle is added to the sub-swarm. The subswarm o has the radius ro =
max‖xo,g−xo,i‖, where g is the best particle in the subswarm, and i represents the other subswarm
particles. Any particle flies inside the subswarm is attracted to it, which means this particle is added
to the sub-swarm. If two subswarm intersect, they merge. The GCPSO is employed in the subswarms,
thus, the velocity of the best particle of any subswarm is updated by equation 3.11, while the velocity
of the rest of the subswarm particles is updated by equation 3.2.

3.5 Optimization in Dynamic Environment

In many engineering systems, the optimization is done under the assumption that the environment is
static, which means that the system at the time t performs with the performance at the time t + t0,
which is not true in real systems. As an example, designing an operational amplifier with some
specifications, and assume that this amplifier behavior does not change during optimization because
of the environmental dynamics. In real systems, the environment is non-stationary, consequently, the
system performance can be changed during or after the optimization.

The main three requirements for dynamic environment optimization approach are continuous adap-
tation, flexibility and robustness. In static environment suitable approachs, most of the individuals
converge to around the best potential solution. In case of dynamic environment, the standard ap-
proaches can not be efficiently used as most of the individuals can get trapped in nearest local optima
after any environmental change. The population diversity must be kept even after finding an optimal
solution.

Branke [Bra04] divided the possible remedies for dynamic environment into five types:

1. To reset the population after every environmental change; for example, the evolvable hardware
in [HHE02, SKZ+00, SZK01] start the optimization from scratch each time the environment is
changed.

2. Generate diversity after detecting environmental changes; for example [Cob90] uses hypermutation
for few iterations after detection environmental change with high enough mutation rate in order that

3.5 Optimization in Dynamic Environment 43

the individuals mutate to far solutions from the local optima. Vavak [VJF97] employed variable
local search which increases the mutation gradually after detecting environmental change. The
disadvantage of this approach is that it destroys the information because of the randomization.

3. Maintain the population diversity during the run; for example, the charged particles [BB02a] dispel
each other to keep the population diversity. According to [Bra04], maintaining the diversity disturbs
the optimization.

4. Memory-enhanced EAs; allow storage of good solution and reuse them. it is useful only if the
environment is changing periodically. It may slow down convergence and favor diversity [Bra99].
This approach is not useful for the evolvable hardware as the environmental dynamics is not peri-
odic, and allowing the store of all the good solutions during the search may consume the embedded
system resources. However, the particle swarm optimization implicitly keeps an optimal solution
for each particle.

5. Multi-Population approaches [Bra04]; for example, in multi-swarm particle swarm optimization
[BB04], the population is divided into several sub-swarms in which each subswarm converges at
a different solution. The diversity in this approach is useful as it is kept at optimal solutions. In
addition, one of this solutions can be the global optimal solution after the environmental change
[Bra01a].

In general, the best achieved fitness value for each particle is not guaranteed to be valid for the new
environment. Carlisle et al. [CD00], proposed a method for adapting particle swarm optimization
for dynamic environment. Their method assumes that the p vector is not useful anymore after any
environmental change as it is not guaranteed to be valid. Thus, the p vectors of all the particles are
resetted to the current positions after any environmental change. In Carlisle et al. experimental work,
the resetting is done either periodically or after an environmental change. Later on, they used one
or more randomly chosen particles to detect the environmental change by reevaluating their fitness
function of their p vectors [CD01]. They called these particles sentries . More than a sentry can be
employed if increasing the probability of detecting localized changes is required.

In [CD02], they modified their method in which the algorithm reevaluate the fitness at the position
best achieved fitness and replace it with the current position only if the fitness of the current position
is better. They called this modification Adaptive Particle Swarm Optimizer (APSO)

Based on Carlisle et al. approach, the unified particle swarm optimization [PV05], multi-swarm
optimization [BB04], and hierarchical particle swarm optimizer [JM04] are modified to dynamic
environment.

Eberhart and Shi [ES01] proposed PSO in which, the weight coefficient is randomized each iteration
within the range [0.5,1.0]. This PSO change the weight coefficient to improve the search, but the
change is not time dependent as in [ES00]. Note that Zheng et al. [ZMZQ03b, ZMZQ03a] showed
that increasing the weight coefficient and decreasing it return the same results.

In [CHR+05], Cui et al. assumed that the environment getting changed each iteration, which means
that the pi vector of the particle i does not have the same fitness value anymore after each iteration. A
new term is introduced, which is the evaporating rate T . This term was introduced first in ant colony
optimization (ACO). Assigning the achieved fitness value f p is updated by equation 3.20 instead of
equation 3.21 for minimization problem. The vector p is updated according to the current value if the

44 EVOLUTIONARY COMPUTATION

fitness of the current value is taken as the best achieved fitness value for the particle.

fi,t+1 =
{

f pi,t ·T f (xi,t+1)≤ f pi,t ·T
f (xi,t+1) f (xi,t+1) > f pi,t ·T (3.20)

fi,t+1 =
{

f pi,t f (xi,t+1)≤ f pi,t
f (xi,t+1) f (xi,t+1) > f pi,t

(3.21)

3.6 Proposed Approach: Local Parameters PSO

The state of the art assumes that all the particles are similar to each other in their behavior, but in real
world, each particle in the swarm has different behavior, and thus different parameters. For example,
a big heavy bird has higher inertia than little light one. This helps the particles to distribute over the
space as each of them flies from its current position by a different path. For example, if we assume
that two particles have the same p and x vectors, they will converge to the same point in the standard
approach (under the fact that the mean value of the random number generator should be 0.5).

In the proposed solution [TK06d], local parameters are employed for each particle, which results
in improvement in the diversity during the search, and thus can improve the quality of the solution.
Similarly, using local learning rate has been successfully applied to neural networks [MPV02] to
improve its effiency.

The velocity of the particle i is computed by equations 3.22 instead of equation 3.2

vi,t+1 = wi ·vi,t +C1,i · rand() · (pi,t −xi,t)+C2,i · rand() · (pg,t −xi,t) (3.22)

where wi, C1,i and C2,i are the local parameters of the particle i. These local parameters are updated
after each iteration by a controller in order to improve itself for each particle individually. The max-
imum velocity can be constrained to be within ±vmax, in the proposed approach. The procedures for
the proposed PSO is shown in procedures 3. The original PSO is printed in gray, the modification is
printed in black.

The inertia coefficient wi is initialized by a random number of the range between 0.5 and 1, while
C1,i and C2,i are initialized by a random number of the range between 1.75 and 2.5. And these local
parameters are updated by a naive algorithm, which is shown in procedures 4, as an example of the
parameter controllers. The basic idea of the update algorithm is that; if the fitness value of a particle
is improving during flying toward the global best particle, then it flies faster toward the global best
particle by increase C2,i. If a particle is not improving, it starts to fly faster toward the position of its
own best achieved fitness and its velocity mutates with a mutation probability of 0.007 (after it finishes
searching for the local optimum around the global best, it searches for the global best distributed in
the search space). In addition, as in [RHW04], if the velocity of any dimension of the particle is
attenuated to zero, it is reinitialized.
More advanced controller can help the global best particle to search for the local optimum, and can
take special care of the parameters after environmental change (e.g., reinitialize the parameters). If
more engineering aspects are known about the application like the dynamic frequency, the parameters
can be updated according to this knowledge. However, it is not expected that the same controller can
work in all the engineering applications efficiently.

3.6 Proposed Approach: Local Parameters PSO 45

Procedure 3 LPSO procedures.
Require: PopulationSize , FitnessFunction
Ensure: Find Optimal Solution
{Initialization}
Initialize the random generator with the seed
for i = 1 to N do

xi = (2 · rand()−1) · xmax
vi = (2 · rand()−1) · vmax
fi = f (xi)
pi = xi
p fi = fi
{C1,i,C2,i),wi} ⇐ InitializeParameters(i)

end for
g ⇐ Identify the particle with the global best
{Learning}
for t = 0 to tmax do

for i = 1 to N do
vi = wivi +C1,i · rand() · (pi−xi)+C2,i · rand() · (pg−xi)
xi = xi +vi
{C1,i,C2,i,wi} ⇐ updateParameters(i)
fi = f (xi)
if fi < 5 p fi then

pi = xi
p fi = fi

end if
end for
g ⇐ Identify the particle with the global best
if TerminationCondition==TRUE then

break
end if

end for

3.6.1 Experimental Setup

As the particle swarm optimization has low sensitivity to the population size [vdBE01], a small pop-
ulation of 20 particles is employed. The benchmark problems in subsection 3.6.2 are employed in the
comparison with state of the art. As the parameters of the proposed approach is changing dynamically,
the approach are compared with the other approaches which tunes the acceleration coefficients of the
particle swarm optimization [RHW04], which are; HPSO-TVAC, MPSO-TVAC, PSO-TVAC. Two
variations are tested with the proposed local parameters approach; local parameters particle swarm op-
timizer (LPSO), and local parameters hierarchical particle swarm optimizer (LHPSO). In [RHW04],
the time variant acceleration coefficient approaches best performance when the algorithm runs for
5000 iterations, thus in the experimental work, running the algorithm for 5000 is chosen. The various
PSO approaches are implemented in C++. Each of the approaches is tested for 30 runs with differ-
ent random number generator seeds, then the mean value and the standard deviation of the 30 runs
are calculated and plotted. The performance of the approaches is investigated in static and dynamic

46 EVOLUTIONARY COMPUTATION

Procedure 4 Procedures to update the local parameters of particle i in LPSO.
Require: PopulationSize , FitnessFunction
Ensure: Find Optimal Solution {Parameters update}

if BestFitnessIterationi == t then
C2,i ⇐C2,i ·α1
if C2,i > 3 then

C2,i ⇐ 2.5
wi ⇐ wi ·β1

end if
else

C2,i ⇐C2,i ·α2
if C2,i < 0.5 then

C2,i ⇐ 0.7
wi ⇐ wi ·β2
if rand3 < MutationProbability then

vi ⇐Mutate(vi,MutationStep)
end if

end if
end if
return {C1,i,C2,i,wi}

environments.

The dynamic environment is modelled by using change severity is 0.2 (20%) with dynamic frequency
[BS02, Bra01b] of 20 iteration, in which the position of any particle deviates by x = x + xdev, where
xdev deviates every 20 iterations by xdev = xdev +0.2 · rand() ·xmax.

It was found that the following parameters are applicable to most of the functions; α1 = 1.05, α2 =
0.9750 and β2 = 1/1.2 for both LPSO and LHPSO, while β1 = 1.2 for LHPSO and β1 = 1.07 for
LPSO. However, the controller parameters are chosen by some testing in static environment, more
adjustments of these parameters according to the application can improve the search.

The sensitivity of the parameters is investigated by varying them randomly by a maximum of±10% of
their original value each run. This approach is applied to the start and the end values of reinitialization
step size , w, C1 and C2 , the mutation probability and the mutation step size for the time variant
acceleration coefficient PSO approaches. On the other hand, α1, α2, β1 and β2 are multiplicative
coefficients that represent the rate of changes each iteration, α1 = 1.05 means rate of change of
5% each iteration, thus the variation of this coefficients is applied to the change rates, e.g. α1d =
1 +(α1− 1) · (1 + 0.1 · (2 · rand()− 1)), where α1d is the coefficient α1 after variation; first one is
subtracted from the coefficient to prepare the change rate, the result of the subtraction is varied by
10%, then add a one to the coefficient. The mean value and the standard deviation of 900 runs with
different parameter values are observed to find out the sensitivity of the parameters to each approach.
The parameters are changed every 30 runs.

3.6 Proposed Approach: Local Parameters PSO 47

3.6.2 Benchmark Test Functions

The benchmark test functions used in [SE98a, Ang98, Sug99, SE99, Ken00, ES00, LRK01, SE01,
vdBE01, BB02b, RHW04, KFFT04] are employed to compare the proposed approach with the state
of the art. These test functions are classified into two classes; unimodal functions, which have only
one peak, and multimodal functions which have more than a peak. In [SE98a, Ang98, Sug99, SE99,
Ken00, ES00, LRK01, SE01, vdBE01, BB02b, RHW04, KFFT04], the sphere function is employed as
unimodal function, while Schaffer, Rastrigin, Rosenbrock, and Griewangk is utilized as multimodal
functions. Axis parallel hyper ellipsoid function is combined with the benchmark as an additional
unimodal function.

Sphere Model

The sphere function [Rec73a, Jon75] in equation 3.23 for D-dimensions has only global minimum
solution at x = 0, it does not have any local minimum.

F(x) =
D

∑
d=1

x2
d (3.23)

The search domain is xd ∈ [5.12,5.12]. In figure 3.15, the function fitness value is shown in two
dimensions.

Figure 3.15: Sphere function in 2D.

48 EVOLUTIONARY COMPUTATION

Axis Parallel Hyper-Ellipsoid Function

The equation of the axis parallel hyper-ellipsoid function is given in equation 3.24. It has only one
minimum solution at x = 0.

F(x) =
D

∑
d=1

i · x2
d (3.24)

The plot of two-dimensions ellipsoid function is shown in figure 3.16 the search space range is xd ∈
[−5.12,5.12]. The global minimum solution of this problem is located at x = 0

Figure 3.16: Two-dimensions ellipsoid function.

Schaffer’s f6 Function

The Schaffer’s f6 is mainly a two dimension function which is defined as maximization problem in
equation 3.25 with maximum point at x = 0,y = 0. However, it is used as a minimization problem
[Mis06] as in equation 3.26 with minimum point at x = 0,y = 0.

F(x,y) = 0.5− sin2 [
x2 + y2]−0.5

[1+0.001 · (x2 + y2)]
(3.25)

F(x,y) = 0.5+
sin2 [

x2 + y2]−0.5
[1+0.001 · (x2 + y2)]

(3.26)

Its search range is (x,y) ∈ [−100,100]. In figure 3.17, schaffer function is shown.

Rastrigin Function

The Rastrigin function is introduced in [TZ89] as a two dimensions function, and is generalized
in [MSB91] to D-dimensions. The search range of xd ∈ [−5.12,5.12]. The equation of Rastrigin

3.6 Proposed Approach: Local Parameters PSO 49

(a) (b)

Figure 3.17: Schaffer function. a) The whole search range. b) Zoomed to the range xd ∈ [−20,20].

is shown in equation 3.27, while, the plot of the Rastrigin function fitness value in two dimensions
search space is shown in figure 3.18.

F(x) = 10 ·D+
D

∑
d=1

x2
d−10 · cos(2 ·π · xd) (3.27)

Figure 3.18: Rastrigin function in 2D.

Rosenbrock Function

The equation of Rosenbrock function [Ros60] is shown in equation 3.28. Its search space range is
xd ∈ [−2.048,2.048]. The Rosenbrock function plot for two dimensions search space is shown in

50 EVOLUTIONARY COMPUTATION

figure 3.19.

F(x) =
D−1

∑
d=1

(100(xd+1− x2
d)

2 +(xd−1)2)) (3.28)

Figure 3.19: Rosenbrock function in 2D.

Griewangk Function

The equation of the Griewangk function [TP89] is shown in equation figure 3.29. The search space
range of the function is xd ∈ [−600,600]. In figure 3.20, plot of the function in two dimensions search
space is shown.

F(x) = 1+
D

∑
d=1

(
x2

d
4000

)−
D

∏
d=1

cos(
xd√

d
) (3.29)

3.6.3 Results

The convergence curve of the mean value of the runs and the standard deviation curve in static envi-
ronment of the sphere, axis parallel hyper ellipsoid, Schaffer, Rastrigin, Rosenbrock, and Griewangk
are shown in figure 3.21, 3.22, 3.23, 3.24, 3.25, and 3.26 respectively.

In table 3.1, the mean value of the last iteration of the optimization in static environment is shown,
while, its standard deviation is shown in table 3.2. The best value for each function is printed in
boldface font.

The mean value and the standard deviation of the local parameter approaches in static environment
overcome the state of the art in all the functions except the schaffer function, where, only the MPSO
converges to zero.

3.6 Proposed Approach: Local Parameters PSO 51

(a) (b)

Figure 3.20: Griewangk function in 2D. a) The search range x∈ [−100,100]. b) Zoomed to the search
range xd ∈ [−10,10].

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−25

−20

−15

−10

−5

0

5

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−25

−20

−15

−10

−5

0

5

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.21: Sphere function. a) The convergence curve of the mean value. b) Standard deviation
curve.

Table 3.1: The mean value of the last iteration in static environment.
State of the art [RHW04] Proposed PSO [TK06d]

HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO
Sphere 1.933 ·10−17 9.66 ·10−6 2.62262 2.179 ·10−22 2.544 ·10−22

Hyper ellipsoid 2.425 ·10−18 149.722 341.85 5.884 ·10−20 6.581 ·10−21

Schaffer 3.239 ·10−4 0 3.239 ·10−4 2.267 ·10−3 3.239 ·10−4

Rastrigin 143.43 263.636 281.142 166.896 94.6978
Rosenbrock 547.825 6.0733 ·104 3.107 ·104 92.6825 273.831
Griewangk 0.0191485 0.0383698 10.9467 0.0249028 0.015994

The convergence curve of the mean value of the runs in dynamic environment –due to the dynamic en-
vironment model described in page 46– of the sphere, axis parallel hyper ellipsoid, Schaffer, Rastrigin,

52 EVOLUTIONARY COMPUTATION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−25

−20

−15

−10

−5

0

5

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.22: Axis Parallel Hyper ellipsoid function. a) The convergence curve of the mean value. b)
Standard deviation curve.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.23: Generalized Schaffer function. a) The convergence curve of the mean value. b) Standard
deviation curve.

Table 3.2: The standard deviation of the last iteration in static environment.
State of the art [RHW04] Proposed PSO [TK06d]

HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO
Sphere 1.951 ·10−17 6.1155 ·10−5 7.9439 1.46 ·10−21 1.02 ·10−21

Hyper ellipsoid 9.793 ·10−18 148.09 226.18 3.11 ·10−19 3.260 ·10−20

Schaffer 0.0017739 0 0.0017739 0.0041796 0.0017739
Rastrigin 39.766 51.766 48.43 56.993 38.996
Rosenbrock 1387.6 1.0751 ·105 81757 114.77 924.79
griewangk 0.03027 0.05377 29.666 0.030546 0.025164

Rosenbrock, and Griewangk are shown in figures 3.27, 3.28, 3.29, 3.30, 3.31, and 3.32 respectively.
The whole convergence curves are shown in figures 3.27(a), 3.28(a), 3.29(a), 3.30(a), 3.31(a), and

3.6 Proposed Approach: Local Parameters PSO 53

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.8

2

2.2

2.4

2.6

2.8

3

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.24: Rastrigin function. a) The convergence curve of the mean value. b) Standard deviation
curve.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

8

9

10

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

3

4

5

6

7

8

9

10

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.25: Rosenbrock function. a) The convergence curve of the mean value. b) Standard deviation
curve.

3.32(a) respectively. Starting from the middle of the optimization (iteration number 2500), the mean
value of each 20 iteration of all the runs are plotted in the figures 3.27(b), 3.28(b), 3.29(b), 3.30(b),
3.31(b), and 3.32(b) respectively. The first 2500 iterations are excluded from taking the average every
20 iterations as they represent convergence speed rather than the stability of the algorithm in dynamic
environment.

The standard deviation curve of the sphere, axis parallel hyper ellipsoid, Schaffer, Rastrigin, Rosen-
brock, and Griewangk are shown in figure 3.33, 3.34, 3.35, 3.36, 3.37, and 3.38 respectively. The
convergence curves of their whole curves are shown in figures 3.33(a), 3.34(a), 3.35(a), 3.36(a),
3.37(a), and 3.38(a) respectively. Starting from the middle of the optimization, the mean value of
each 20 iterations of their standard deviation value are plotted in the figures 3.33(b), 3.34(b), 3.35(b),
3.36(b), 3.37(b), and 3.38(b).

54 EVOLUTIONARY COMPUTATION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

3

4

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.26: Griewangk function. a) The convergence curve of the mean value. b) Standard deviation
curve.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.27: The convergence curve of the sphere function in dynamic environment. a) The whole
curve. b) The mean value of every 20 iterations.

The mean value and the standard deviation of the last iteration of the optimization in dynamic envi-
ronment are shown in tables 3.3 and 3.4 respectively.

As shown in the curves, the local parameter approaches delivers better results than the other ap-
proaches in all the cases except the Schaffer function. The standard deviations of the LPSO and
LHPSO in table 3.4 are better than that of the other approaches as well. As shown in the figures
3.33(a), 3.36(a), and 3.38(a); the standard deviation of the local parameter approaches is high at the
beginning, then it converged to lower value, hence the average of the standard deviation is higher in
the local parameters approaches in figure 3.33(b), 3.36(b), and 3.38(b), and thus in the table as well.
The thickness of the convergence and the standard deviation curves represents the influence of the de-
viation on them. The lines appears thicker when the curve converge more as the results are displayed
in log scale. As the Schaffer function has many oscillations in its surface as shown in figure 3.17, the

3.6 Proposed Approach: Local Parameters PSO 55

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.5

3

3.5

4

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.28: The convergence curve of the Axis parallel hyper ellipsoid function in dynamic environ-
ment. a) The whole curve. b) The mean value of every 20 iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.29: The convergence curve of the Schaffer function in dynamic environment. a) The whole
curve. b) The mean value of every 20 iterations.

Table 3.3: The mean value of the last iteration before the environmental change in dynamic environ-
ment.

State of the art [RHW04] Proposed PSO [TK06d]
HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO

Sphere 16.28 21.04 38.65 24.08 14.75
Hyper ellipsoid 520.81 783.92 1262.4 828.63 370.52
Schaffer 0.10067 0.02856 0.3865 0.34245 0.42165
Rastrigin 484.14 569.41 756.33 489.32 378.95
Rosenbrock 1.41 ·107 1.291 ·107 2.16 ·107 1.12 ·107 8.8 ·106

Griewangk 62.26 73.23 133.7 83.42 51.53

56 EVOLUTIONARY COMPUTATION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.30: The convergence curve of the Rastrigin function in dynamic environment. a) The whole
curve. b) The mean value of every 20 iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
6.5

7

7.5

8

8.5

9

9.5

10

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.31: The convergence curve of the Rosenbrock function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

Table 3.4: The standard deviation of the last iteration in dynamic environment.
State of the art [RHW04] Proposed PSO [TK06d]

HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO
Sphere 3.0943 10.654 20.124 16.061 5.3809
Hyper ellipsoid 135.31 332.26 432.86 443.32 116.82
Schaffer 0.1227 0.0381 0.1064 0.1782 0.127
Rastrigin 39.332 63.536 76.768 63.663 42.269
Rosenbrock 5.2 ·106 5.97 ·106 7.36 ·106 7.9 ·106 3.36 ·106

Griewangk 11.754 36.577 69.09 54.16 18.37

3.6 Proposed Approach: Local Parameters PSO 57

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.32: The convergence curve of the Griewangk function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.33: The standard deviation curve of the sphere function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

variations in the Schaffer function results in strong change of the returned value as shown in figures
3.29 and 3.35.

Although a naive parameters controller is employed to investigate using local parameters in particle
swarm optimization, and the dynamic environment is not considered (e.g., by resetting the param-
eters as any environmental change), it succeeds to deal with the environmental dynamics with high
frequency (an environmental change every 20 iterations).

The sensitivity analysis mean values and standard deviations of the 100 runs last iterations are shown
in table 3.5 and 3.6.

The starting values of C1, C2, and w are initialized randomly in the local parameter particle swarm
optimization, thus it is not sensitive to the starting value of the inertia and acceleration coefficients.

58 EVOLUTIONARY COMPUTATION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.34: The standard deviation curve of the Axis parallel hyper ellipsoid function in dynamic
environment. a) The whole curve. b) The mean value of every 20 iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.35: The standard deviation curve of the Schaffer function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

Table 3.5: The mean value of the last iteration sensitivity analysis.
State of the art [RHW04] Proposed PSO [TK06d]

HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO
Sphere 2.825 ·10−17 5.889 ·10−3 5.483 3.54 ·10−21 5.867 ·10−22

Hyper ellipsoid 8.727 ·10−14 113.627 263.122 1.420 ·10−13 2.347 ·10−16

Schaffer 3.239 ·10−4 0.0 3.239 ·10−4 2.267 ·10−3 3.239 ·10−4

Rastrigin 142.385 249.319 250.283 169.369 94.534
Rosenbrock 196.265 3.64461 ·104 2.8064 ·106 594.9 206.962
Griewangk 2.387 ·10−2 0.10001 19.442 3.575 ·10−2 1.814 ·10−2

3.6 Proposed Approach: Local Parameters PSO 59

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.36: The standard deviation curve of the Rastrigin function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
6

6.5

7

7.5

8

8.5

9

9.5

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.37: The standard deviation curve of the Rosenbrock function in dynamic environment. a)
The whole curve. b) The mean value of every 20 iterations.

Table 3.6: The standard deviation of the last iteration sensitivity analysis.
State of the art [RHW04] Proposed PSO [TK06d]

HPSO-TVAC MPSO-TVAC PSO-TVAC LPSO LHPSO
Sphere 5.462 ·10−17 7.752 ·10−2 12.54 8.216 ·10−20 7.64 ·10−21

Hyper ellipsoid 1.6226 ·10−12 129.3112 301.2758 3.011 ·10−12 6.282 ·10−15

Schaffer 1.774 ·10−3 0.0 1.774 ·10−3 4.18 ·10−3 1.774 ·10−3

Rastrigin 48.002 53.711 57.406 59.344 32.634
Rosenbrock 598.121 8.745 ·104 4.133 ·107 8.3841 ·103 627.04
Griewangk 4.042 ·10−2 4.02 ·10−1 43.4643 5.055 ·10−2 3.148 ·10−2

60 EVOLUTIONARY COMPUTATION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(a)

0 2 4 6 8 10 12 14 16 18 20
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Iterations

lo
g1

0(
fit

ne
ss

)

HPSO−TVAC
MPSO−TVAC
PSO−TVAC
LPSO
LHPSO

(b)

Figure 3.38: The standard deviation curve of the Griewangk function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations.

The achieved results in the sensitivity analysis shows that the proposed controller parameter sensitivity
is acceptable in the proposed PSO as the LHPSO achieved the best results in most of the functions.
The standard deviations of the LHPSO are better than the others in most of the cases, and thus, the
solution achieved each run is closed to the each other.

3.7 Multi-Objective Extension

In multi-objective optimization –also called multi-criteria or multi-vector optimization–, more than
an objective are requireded to be optimized simultaneously. as in equation 3.30.

min f(x) =

f1(x)
f2(x)
f3(x)

 (3.30)

For example, for a given hardware, the complete set of specifications has to be consided in the op-
timization. In subsection 3.7.1, the aggregating function is described, which merge the set of object
functions to one function. In subsection 3.7.2, Pareto based optimization is briefly mentioned.

3.7.1 Weighted Aggregating Function Based Optimization

In this approach, only one function is optimizated [PV02], which the sum of objective functions after
weighting them as in equation 3.31.

Fa = ∑ko · fo (3.31)

This approach succeeds to get solutions from all parts of the Pareto set only for convex problems
[DD96], dynamic weights can be used with non-convex problems to improve its performance [KdW06].

3.8 Discussion 61

3.7.2 Pareto Based Methods

Definition: A point x∗ ∈C is said to be Pareto optimal solution point for the multi-objective problem
iff there does not exist x ∈C such that f(x)¹ f (x∗) with at least one strict inequality.

x is said to dominate y if f (x)¹ f (y). Let Y ⊂C and y ∈ Y . If there is no x ∈ Y , that dominates y, y
is said to be nondominated, where C is the search space of the vector x.

Figure 3.39: Illustrative example of Pareto for a maximization problem of f1 and f2.

All the Pareto based methods employ the nondominated solutions [FF93, HNG94, SD94] during the
optimization, or copy them to external archive [Zit99,DAPM00,Fie04]. For a large number of objec-
tives, the Pareto based methods are not efficient as many individuals are nondominated each iteration.
However, even for big population, it is not expected that Pareto based methods can find good solution
due to the large dimensionality of the solution space [FF95].

3.8 Discussion

A PSO modification that employs local parameters to each particle in the PSO is proposed and in-
vestigated. Including the local parameters for each particle improves the search path of the PSO as
each particle can take the decision which searching path it will take depending on its local parame-
ters, which keeps the diversity, improves the convergence speed and the solution quality in static and
dynamic environments. A naive parameter controller is proposed for investigating the approach, and
was sufficient to overcome the state of the art in most of the benchmark functions [TK06d]. After the
parameters of the particle swarm optimization approaches vary in order to investigate the sensitivity

62 EVOLUTIONARY COMPUTATION

of employing local parameters, the achieved results are better than the other approaches in most of the
benchmark problems. However, the acceleration coefficients of the proposed approach are initialized
randomly in each particle in the initialization phase even without the sensitivity analysis.

As particle swarm optimization is already applied to engineering problems in the design phase (e.g.,
telescope array, Golinski’s speed reducer, satellite design [HCDV05], evolvable hardware [CLA02,
GV04, LCA04, TK05b],etc.), such improvement in the convergence speed and the quality of the solu-
tion in dynamic environment is imperative.

Pareto based multi-objective optimization methods are concentrated on problems pursuing two or
three objectives [FPL05], while many engineering problems requires many objectives optimizations.
On the other hand, weighted aggregating function can be employed to optimize many objectives.
Although quality of the returned solutions depend on the employed weights, it is simple, easy to
implement, consequently, it is favorable for embedded systems.

CHAPTER 4

Evolutionary Electronics

The evolutionary electronics has gained more interest in the last two decades for its rapid prototyping
capability that does not require complete knowledge about the design procedures and the employed
technology, while it embodies self-x properties. For example, if the system is configured at the certain
environment, soon after, its performance deviates due to the environmental dynamics, reconfiguring
the system can improve its performance again towards the specified requirements if a feasible solution
exists. The initial configuration copes with the static and the dynamic deviation of the system at the
deployment phase, then the system is reconfigured to recover from any additional dynamic deviations
at the run time.

The evolution of any system can be carried out extrinsically, intrinsically, or mixtrinsically. The ex-
trinsic evolution evaluates the configurations in simulated hardware, therefore, it is used in the design
phase only. The intrinsic evolution downloads the configurations to a real hardware, and evaluates
it by real measurements. Thus, it can be employed at the deployment phase and the run-time, and
it can cope with static and dynamic deviations. The mixtrinsic evolution contain some intrinsic and
some extrinsic individuals in the same population, the reason on introducing the mixtrinsic evolution
is described later on in this chapter.

The aim of this chapter is to introduce the state-of-the-art evolutionary electronics, compare it with
the industrial requirements, and to show the missing link between them. Thus, a selection of the
evolvable hardware that represents the perspective of the state-of-the-art is presented. Afterwards, the
extrinsic, intrinsic and mixtrinsic evolution approaches, and their evolved circuits from the industrial
point of view are discussed. Later on, the concept of coping with dynamic environment and faults are
outlined. Finally, the chapter is summarized and concluded.

4.1 Reconfigurable Evolvable Hardware

The taxonomy of the evolvable hardware is shown in figure 4.1. It can be either analog or digital evolv-
able hardware. Reconfigurable analog evolvable hardware is analog hardware that embodies flexibil-

64 EVOLUTIONARY ELECTRONICS

Figure 4.1: Evolvable hardware taxonomy

ity in its structure to program its specifications, its functionality, or both. It is called coarse-grained
analog hardware if it incorporates flexibility in the functionality level in which, building blocks such
as operational amplifier are combined with programmable passive components to construct a required
function, where the building blocks are not programmable. If the hardware is programmable in the
transistor level, it is called fine-grained analog hardware. On digital systems, the granularity of the
hardware is referred to the data width of the processing elements. If processing element data width is
one or more bit-wide, but not the whole processing word size such as in the configurable logic blocks
(CLBs) in the FPGAs, it is called fine-grained architecture. If the processing element operates in the
word-width, such as field programmable processor array (FPPA), it is called coarse-grained hardware.

In this section, the basics of the fine- and coarse-grained evolvable hardware are described. The
floating gate approaches [HHA02] are programmable only for a limited number of times, therefore, it
is irrelevant to this thesis as it can be destroyed during the evolution of the hardware.

4.1.1 Coarse Granularity

Programmable digital systems are focused on the fine-grained approaches, but few work are concen-
trated on coarse granularity such as field programmable processor arrays (FPPAs) that target parallel
processing applications and their fault tolerance enhancement.

Coarse granularity evolvable analog hardware such as FPAAs employs building blocks in addition to
passive components if required to accomplish certain functionality.

The commercial FPAAs is described in subsection 2.5.1 employs operational amplifier as a building
block in their architecture.

Non-commercial FPAAs employs other building components such as CCII-FPAA [Gau97] utilizes
CCII as the building block, and two CMOS transistors to synthesis resistors. Other non-commercial
FPAA employs current mirror and current-mode integrator as the building blocks for current mode

4.1 Reconfigurable Evolvable Hardware 65

signal processing [EQO+98]. Others do not require any additional passive components such as Palmo
described below, or target special applications such as OTA-C FPAAs that targets filter applications
is described in this subsection as well.

Palmo

In many applications ramp analog to digital converter topology is employed to convert the signal to
the digital domain in which the analog input signal is compared with a ramp function. The output of
the comparison is a pulse with width proportional to the input analog signal level. The width of this
pulse in encoded to the digital domain by further digital electronics. The Palmo architecture processes
the pulse width directly without encoding it to digital signal.

The Palmo system is named after the Greek word ”Παλ µos” that means series of pulses. It is a
coarse-grained FPAA developed by university of Edinburgh [HPTB98]. It employs the pulse based
technique in which, the input and output signals of the Palmo cells are pulse width modulated signals;
the width of the pulse is equivalent to the signal amplitude, and the level of the clock when the pulse
is occurred represents the signal signs (if the input pulse occurs while the clock level is high the signal
sign is positive, and vice-versa) as shown in figure 4.2.

Figure 4.2: The symbol of Palmo cell

The functionality of each of the Palmo cells is an integrator that has an 8-bit integration constant K as
shown in equation 4.1. Po is the width of the output pulse, and P+ and P− are the widths of the two
inputs of the Palmo cell.

Po = K
(P+−P−)

s
(4.1)

The main advantage of the Palmo cell is that no extra passive components are required; indeed, it
employs K as a programmable component to build filters, etc. Thus, functional level circuits are built
only by choosing the value of K and the connection between the cells. On the other hand, as the
parasitic capacitance of bus switches and their on-resistance react as an RC filter, consequently, it
can reshape the pulses. Thus, the signal has to be coded with wide width pulses which decrease the
operating frequency. In addition, inputs of the Palmo cell control switches, which limit the bandwidth
and add noise and non-linearities due to the switching activities. The operation frequency of the
Palmo cells can not exceed one or two MHz [Pap98]. However, a comparator is employed internally
to convert the level of the analog signal to a pulse. Therefore, the deviations of the comparator such as
the offset effect the output pulse width. Furthermore, the Palmo cells require pre-processing analog
hardware to convert the analog sensor signal to a proper equivalent pulses.

66 EVOLUTIONARY ELECTRONICS

OTA-C Based FPAA

As the resistors are hard to be integrated regarding the consumed die area, and tolerance, many tech-
niques attempt to employ capacitors instead of the resistors such as switched capacitors techniques,
and OTA-C filters. The OTA-C filters employ the transconductance amplification (Gm) of the oper-
ational transconductance amplifier (OTA) and capacitors to build filters without the necessity of any
discrete time components.

Pankiewicz et al. proposed an OTA-C based FPAA for continuous time filter application [PWSS02].
The transconductance amplification (Gm) of each OTA is programmable through programmable cur-
rent mirror. The current mirror is programmable by employing 5-bit programmable transistor. The
employed capacitors are 5-bits programmable capacitors as well. Thus, the Gm-C can be tuned to a
wide range. A single configurable analog block (CAB) is shown in figure 4.3.

Figure 4.3: The CAB of the OTA-C based FPAA [PWSS02].

Pankiewicz OTA-C FPAA consists of 5× 8 CABs and employs 2µm CMOS technology. Its structure
incorporates flexibility that allows it to construct complex OTA-C filter structures. The bandwidth of
the OTA is larger than 20 MHz. Utilizing programmable capacitors and OTAs embodies a possibility
of building filters of frequencies from several kHz to several MHz [PWSS02].

Later on, Becker et al. [BM05] proposed a similar approach, but different architecture; it employs 7
OTAs and their parasitic capacitance. As shown in figure 4.4, the CAB cell has a hexagonal shape.
Thus, it is connected to other 6 CAB cells.

The OTA bandwidth of Becker FPAA is about 293 MHz [BTHM07] which allows the operation at
very high frequency (VHF), on the other hand, Pankiewicz FPAA embodies more flexible structure
and a wider programmable range to each Gm-C element. It has been demonstrated in [BM05] by a
fourth order biquad Butterworth band-pass filter. The disadvantages of the OTA-C FPAA are that it is
limited to filter applications, and it cannot recover from deviations such as offset.

4.1.2 Fine Granularity

Since the 70’s, programmable fine-grained digital chips was available in the market such as PLAs
(programmable logic arrays), GALs (generic array logic), then later on, CPLAs (complex pro-

4.1 Reconfigurable Evolvable Hardware 67

Figure 4.4: The CAB of the OTA-C based FPAA [BM05].

grammable logic arrays) and FPGAs which can construct more complex circuits than PLAs and
GALs. Any reprogrammable digital hardware can be used as an evolvable hardware. The current
technology allows designing complicate digital circuits using FPGAs, thus, FPGAs can be efficient
employed as an evolvable digital hardware [Tho96].

The analog fine-grained hardware started to meet potential interest end of the 90’s. This subsection is
focused on the analog fine-grained evolvable hardware and their architecture.

Programmable Analog Multiplexer Array

Programmable analog multiplexer array (PAMA) [ZVP01] is developed by Catholic University of Rio
de Janeiro. Its structure is shown in figure 4.5.

The PAMA employs arbitrary building components such as resistors, capacitors, transistors, or higher
level components like operational amplifiers. A common N lines analog bus is utilized to allow
connecting all the components to each other. The terminals of each component are connected to an
N× 1 multiplexer in order to have access to any of the analog bus lines. It includes flexibility in
which, any component terminal can be connected to any other one.

The operation frequency of the PAMA depends on the employed components, multiplexer character-
istics, etc. For large number of components, huge number of multiplexers and a very wide analog bus
are required which results in strong parasitic effects and large die area as each component requires
multiplexers of N×1 attached to each of its terminals.

The AC behavior of the PAMA is not published, but it depends on the number of employed compo-
nents and multiplexers, and the behavior of each of them.

68 EVOLUTIONARY ELECTRONICS

Figure 4.5: The PAMA architecture.

Evolvable Motherboard

The evolvable motherboard [Lay98] is a fine-grained evolvable hardware developed by university of
Sussex. It consists of active components such as bipolar or CMOS transistors and many switches to
connect them with one another as shown in figure 4.6. The terminals of any two components can be

Figure 4.6: The architecture of the evolvable motherboard [Lay98].

4.1 Reconfigurable Evolvable Hardware 69

connected by several paths, and by arbitrary number of switches. The evolving motherboard employs
the switch on-resistances to design the system by utilizing more or less switches in the routing path,
such as employing parallel switches to reduce their resultant on-resistance, etc. As each component is
connect to an array of switches, the parasitic capacitance increases dramatically. Thus, the evolvable
motherboard is limited to low frequency application. However, the resistance of the on-switches is
not a constant as the voltage-current relation is non-linear. Therefore, non-linearities are added to the
system in large signal applications.

The number of switches for T terminals is T(T−1)
2 . Thus, for ten transistors, two inputs, one output,

power supply and ground, more than a hundred switches are required.

The AC behavior of the evolvable motherboard is not reported. As many switches are employed that
increases the parasitic effects, its bandwidth is expected to be narrow.

JPL Field Programmable Transistor Arrays

The NASA’s jet propulsion laboratory (JPL) has proposed field programmable transistor array FPTA
[SKT+99] and its recent version FPTA2 [SZF+02]. The structure of the JPL FPTA is shown in
figure 4.7. Each transistor can be disconnected from the circuit, or short-circuited. Many transistors

Figure 4.7: The JPL FPTA [SKT+99].

between the sources and the ground; 4 transistor and 3 switches, although the transistors and its related
switches can be short-circuited according to the configuration, the voltage drop due to employing
many switches may decrease the dynamic operation range. The structure of the JPL FPTA employs
many switches to connect 8 transistors to each other. It is programmable to many arbitrary structures,
but transistor dimensions are fixed. Thus, the hardware standard specifications are not programmable.

The JPL FPTA does not have an output stage, while, the output impedance of the FPTA cell is high
due to employing many switches and transistors between the power supply terminals.

70 EVOLUTIONARY ELECTRONICS

Later on, the JPL group proposed FPTA2, which contains 64 cells, each cell contains three config-
urable stages as shown in figure 4.8, and other programmable resistors and static capacitors [SZF+02]
that are not shown in the figure. An output stage with two transistors and one switch is employed to

(a) (b)

Figure 4.8: JPL FPTA2 [SZF+02] a) Structure of one cell. b) The FPTA2 chip consists of 64 cells.

inherit low output impedance. The three stages of the FPTA2 is suitable to be configured as a com-
plete operational amplifier; the first stage can be configured as differential input stage, second stage
as gain stage, and the third stage as the output stage of the operational amplifier. The configuration
is downloaded to random access memory by 9-bit address bus, 16-bit data bus for fast programming.
The up to 7 transistors can be employed between the source and the ground in first stage which can
results in voltage drop on the switch and therefore, small common mode range. The transistor of the
FPTA2 is not programmable as well. Thus, the hardware topology is programmable, but the spec-
ifications of the hardware are not programmable. On the other hand some of the functional level
specifications can be tuned by employing the mentioned programmable resistors.

The AC characteristics of the FPTA and FPTA2 are not investigated in the published work so far.
However, in [ZSK00], an AM filter with center frequency of about 200kHz was evolved on a sin-
gle FPTA simulated model where the parasitic capacitance of the switches was not included in the
simulations.

University of Heidelberg FPTA

The University of Heidelberg proposed an FPTA that consists of 16 × 16 programmable transis-
tors [Lan05]. Figure 4.9 illustrates the outlines of Heidelberg FPTA. There are two types of transistor
modules, PMOS modules, and NMOS modules. Each transistor module is connected to its north,
south, east and west neighbors transistors –except the transistors at the edges–. It can be programmed
as a wire between any two poles, or as a transistor with a give width and length. The neighbors of
the NMOS transistor module is PMOS modules, and vice versa. The structure of a NMOS transistor

4.1 Reconfigurable Evolvable Hardware 71

Figure 4.9: A simplified structure of the Heidelberg FPTA [Lan05].

Table 4.1: Widths of the employed switches [Lan05].
Switch Type PMOS [µm] NMOS [µm]
Current 30 10
Voltage 1.4 1.4

module is shown in figure 4.10. Each module can be programmed to 6 different lengths, while the
width is programmable by 4 bits. Internally inside each module, all the transistor drain pins are con-
nected together, and similarly the source pins of the transistors. Programming the transistor modules
is achieved by controlling the gate of its internal transistors. Each of the gates of the internal tran-
sistors can be connected to the global gate pin, or to ground inorder to turn the transistor off. Each
drain, source, and gate of a transistor module can be routed to north, west, south, east, power supply,
or ground.

The lengths of all the switches is fixed to 0.6µm, table 4.1 summarize the widths of the employed
switches. As shown, two types of switches are employed, the voltage switches are small in area to
control the gate of the module internal transistors. Thus, the required current that it should conduct is
negligible. The current switches are bigger in area in order to conduct higher current without leaving
the Triode region. The current switches are employed for routing purpose.

In order to accomplish low output impedance and high input impedance, inputs and outputs of the
chip are buffered

Big area is consumed to program the length and the width of the transistor modules. It would be
sufficient to fix the length of the transistor to a reasonal length and size the transistor width to program
its Gm. The Heidelberg FPTA has no passive components in its internal structure, which limit its

72 EVOLUTIONARY ELECTRONICS

Figure 4.10: The structure of a single programmable transistor module of Heidelberg FPTA [Lan05].

application. Moreover, some transistors modules are employed to operate as a wire, which limit
the use of the chip to very small design. For example, 5 × 5 cells are employed to design a logic
gate [LMS02].

Trefzer mentioned an evolved operational amplifier on Heidelberg with 0db frequency of 8MHz
[Tre06].

4.2 Evolutionary Computation Adaptation for Evolvable Hard-
ware

Focusing on evolution of the hardware topology, genetic programming is modified to invent new
hardware topologies. Targeting a given evolvable hardware, the genetic algorithm can be employed
to control the hardware switches. Other modifications of the genetic algorithm for topology optimiza-
tion are accomplished. The relevant modifications of evolutionary computation are described in this

4.2 Evolutionary Computation Adaptation for Evolvable Hardware 73

section.

4.2.1 Evolving the Hardware Topology by Genetic Programming

The genetic programming can evolve the hardware structure [KBA+97] starting from scratch. An
input circuit and output circuit are employed to assess the evolving circuit. As shown in figure 4.11,
the evolving circuit is initialized by having only a wire connecting the output to the input as a primal
soup. This wire is a component that connects the input to the output. In each iteration, any component
can be flipped to another one (e.g. wire to resistor), or divide into several components (e.g. resistor
to resistor-wire-resistor, or resistor to two parallel resistors), the terminals of any component can
be reconnected to another node, etc. The algorithm iterates till it finds a good configuration. For
example, the wire in figure 4.11, can be flipped to any other component, such as resistor as shown in
figure 4.12(a), then the resistor can be divided into two parallel or series resistors as shown in figure
4.12(b).

Figure 4.11: The initial circuit in designing an operational amplifier with GP.

(a) (b)

Figure 4.12: Example of GA operations in circuits. a) Component flipping. b) Component dividing.

Koza et al. have employed the genetic programming to evolve 96 decibel operational amplifier [KFH-
BAK97]. A feedback circuit has been employed as an assessment circuit with closed loop gain

74 EVOLUTIONARY ELECTRONICS

Gclosedloop = 106. Based on the SPICE DC analysis at five points between −10mV and 10mV ; the
gain error, offset and linearity error are weighted, then accumulated in a fitness function.

The selected specifications for the optimization do not have a have strong influence to the industrial
specification, although it has some relations to few of them. For example, the nonlinearity which
was measured depending one the input voltage range between −10mV to 10mV is correlated to the
output swing voltage. If the input voltage is higher than the input level during the evolution, it is not
guaranteed that the same amplifier can operate as the common mode range is not optimized. Koza
claimed that genetic programming designed 96db operational amplifier without taking care of the
industrial specifications that the human consider [KFHBAK97]. Evolving the hardware topologies
increases the possibility of returning hardware with unpredictable behavior. Employing few of the
industrial specifications constructs a poorly specified problem that can return a non-working hardware
that satisfies the problem requirement. For example, a non-stable operational amplifier can be returned
if only DC simulation is considered.

Zebulum et al. [ZPV99] evolved filter circuit starting from scratch. The frequency response of the fil-
ter is optimized by equation 4.2, where fF is the objective function that stands for frequency response
of the filter, fmax is the number of simulated points in frequency domain, Vout(f) is the amplitude of the
output at the frequency f, Vin(f) is the filter input at the frequency f, and wf weight of Vout(f)−Vin(f)
at the frequency f, its value is positive for the passband to maximize gain, and is negative for the
stopband to minimize the gain.

fF =
fmax

∑
f=fmin

wf · (Vout(f)−Vin(f)) (4.2)

Experimentally, Zebulum has chosen the weights 33 for the passband, -4 for the high frequency
stopband, and -1 for low frequency stopband. In addition to the frequency response optimization, Ze-
bulum minimized the power dissipation, etc. However, the industrial specifications are not considered
such as offset, required stopband attenuation, and passband gain, input signal maximum amplitude (in
other words, the common mode range of the active amplifier), etc. are not included in the optimiza-
tions. The topology of the filter is arbitrary as it is designed by the evolution, therefore, its behavior
is unpredictable. The results presented in [ZPV99] have many distortions in the transient analysis.

Applying the genetic programming to evolve a topology of a building block (e.g. operational ampli-
fier, logic gates, etc) intrinsically is not possible as it requires a fully flexible analog hardware that
is hard to be developed with the current technology, therefore, it can be applied only in a simulated
environment.

4.2.2 Turtle GA

The Turtle GA has been invented to evolve Heidelberg FPTA in figure 4.9. It employs the genetic
algorithm (GA) to evolve the hardware aiming to return a hardware without any floating terminals,
and to find a useful dimensions of the employed transistor modules during the search. The following
new operators are added to the basic operators of the GA in chapter 3 section 3.2:

• Random wires (mutation) operator: Randomly select a starting node (a pole at any cell). The
selected node can be connected to any of other three poles in the same module, to any of the

4.3 Extrinsic Evolution 75

internal transistor three terminals, or any of the three poles in the adjacent neighbor cell. Nodes are
recursively connected or deleted till all the nodes are connected.

• Implanting a foreign block of cells (crossover): this operator is done on two stages:

– Choose a random rectangle from the partner, and copy it to the new offspring.

– Connect the floating nodes as in the random wires till no more nodes are floating.

• Logic OR of Individuals (crossover): Merge the partners; all the transistors and the connections of
both are copied to the offspring. If a transistor is used in both parents, the value of aspect ratio of
the first transistor is employed.

In addition to these operators, the aspect ratio of any transistor module mutates by a given mutation
probability and rate.

The Turtle GA search for new topologies as the genetic programming, but it targets hardware that
has less flexibility and does not employ any passive components. It evolves arbitrary structure as the
genetic programming. Therefore, it is not useful for the industrial applications as the behavior of the
arbitrary topologies is not predictable.

4.3 Extrinsic Evolution

The design automation is important to reduce the design time and effort of the hardware. The extrinsic
evolution is either employed as a synthesis tool to design hardware, or utilized to a target hardware
to find a configuration to it. In this section an overview on the state-of-the-art extrinsic evolution is
provided. In the state of the art, it may have the freedom to invent the topology.

4.3.1 Extrinsic Evolution as a Synthesis Tool

Aguirre et al. [ACB99] have employed the genetic programming to construct digital multiplexer tree
structure. The problem has been described by a given truth table. The fitness function consists of two
stages; the first stage is to find working solutions. Therefore, maximizing the number of hits1. Once
a working design is found, the second stage function gives better fitness value for the fully functional
circuits with less multiplexers. Thus, the optimization objective is to find a low cost working design.
The variables are allowed only to control the multiplexers, the input of any multiplexer is either 0
or 1. Although genetic programming is used to construct the multiplexer tree, using multiplexers in
combinational circuits design is well known technique in synthesis of digital circuits. Therefore, the
behavior of the returned hardware is predictable.

Zebulum et al. have synthesized an operational amplifier [ZPV98] by selecting standard amplifier
topology, and dimension its components. Few of the industrial specifications have been included in
the optimization criterion; the open-loop gain, the band-width, phase margin, and power consumption.

1A hit is to get a correct output at a specific input according the truth table. Maximizing the hits minimizes the output
error.

76 EVOLUTIONARY ELECTRONICS

Simplified analytical expressions have been employed to describe the operational amplifier behavior.
Weighted aggregating function based optimization have been utilized to achieve multi-objective op-
timization of the included industrial specifications. The length and the width of the transistors are
represented as real numbers. The genetic algorithm is utilized as the optimization tool. However, for
this problem representation, geometric programming is more powerful [dMHBL01] as it converts the
problem to convex problem with only one optimal solution and employs the convex problem opti-
mization methods to find the optimal solution. The behavior of the operational amplifier that has been
synthesized in [ZPV98] is partially predictable behavior as only few of the standard specifications are
employed in the optimization. The SPICE can be employed instead of the analytical expressions in
order to achieve more accurate results [LMU04]

4.3.2 Extrinsic Evolution for a Target Programmable Hardware

Coello et al. [CLA02] used the hardware in figure 4.13 in which, the evolutionary algorithm chooses
the inputs and the gate type in the initial level gates, and only the type of the gates in the rest of the
levels. The gate type can be AND, OR, NOT, XOR gates, or a wire. As Coello approach employed

Figure 4.13: The simulated hardware used by Coello to synthesis digital combinational circuits, ex-
tract from [CLA02].

standard digital gates well known topology, the behavior of the evolved digital circuit is completely
predictable. Similar to Aguirre [ACB99], Coello employed objective function with two phases; the
first phase is to maximize the number of hits, once a working solution is found, the second stage of the
objective function is applied which, maximizes the number of gates that are employed as a wire. Any
component that is employed as a wire can be removed in the final representation, therefore, maximiz-
ing the components that are used as wires results in minimizing the employed components in the final
design. Although this optimization method targeting a programmable hardware and optimized it, it is
employed as a synthesis tool as the hardware does not exist in a real chip, and the optimization aim is
to minimize the number of components that are employed as a wire, otherwise, the optimization aim
should be maximizing the unused components

The JPL has employed binary genetic algorithm to evolve the FPTA in figure 4.7 by controlling its

4.3 Extrinsic Evolution 77

switches [SKT+99]. In both the extrinsic and intrinsic evolution, the objective is to minimize the
error between an output reference signal and the actual output signal of the FPTA due to a given input
signal, which is a poorly specified problem as the complete industrial specifications are not included
in the optimization. No passive programmable components are integrated in the first version of the
JPL FPTA. The evolution search for a topology, but it does not dimension the transistors to achieve
a given specifications as the transistors dimensions are fixed. The main advantage of employing
the extrinsic evolution to evolve the JPL FPTA is to avoid short circuits as arbitrary topologies is
allowed. However, short circuits can be investigated without a complete simulation. An example of
the achieved results by this approaches is the AND gate evolved extrinsically on the JPL FPTA that
is shown in figure 4.14. A current source is connected to the first input, thus, the first input should

Figure 4.14: An extrinsically evolved AND gate [SZK00].

be able to sink the current. The output is supplied through a transistor that its gate is connected to
a floating terminal. Therefore, it can operate in simulation only when the switches off-resistance is
simulated, and no noise affects the gate. The input impedance is low as one of the inputs is connected
to a current source, while the output impedance is unpredictable as the output is supplied through a
transistor that its gate is connected to a floating terminal. Thus, the output is dependent on the charge
on the parasitic capacitance at the gate terminal. The configuration of the evolved AND gate in figure
4.14 has not worked when downloaded to real chip. The industrial specifications of the designed
AND gate is not considered in the optimization, therefore, the behavior is unpredictable.

The JPL FPTA2 in figure 4.7 is employed to evolve more complicated structures with the same princi-
ple the JPL FPTA used; evolving the topology to optimize the error between the actual and a reference
output [SZF+02]. The number of the required cells to evolve specific design is unknown, and can be
determined by trial and error. Two cells are employed to implement a half wave rectifier, which can
be achieved by single diode. Ten cells are employed to evolve a filter.

Aguirre et al. have employed the same hardware, to optimized digital design DC specifications which
is a multi-objective approach [AZC04], but they do not include the industrial specifications. However,
they considered the outputs of a 2-bit ADC as different objectives, and the levels of the output voltage
as constrains. As the number of objective was small –only the two outputs of the 2-bit ADC–, they

78 EVOLUTIONARY ELECTRONICS

have employed Pareto-based optimization approach. As in the previous work by JPL FPTA, the
topology of the evolved hardware is arbitrary, therefore, the behavior is not predictable.

Parallel to the proposed extrinsically evolution in the next chapter [TLK05], Trefzer et al. evolved
Heidelberg FPTA that is shown in figure 4.9 targeting single objective or few of the industrial specifi-
cations [TLMS05]. The Turtle GA is employed to evolve hardware with arbitrary topology. In order
to include a limited selection of the commercial set of specifications of the hardware industrial spec-
ifications, the hardware is evolved extrinsically, then the returned configuration is downloaded to the
chip assuming that it can work intrinsically. According to Stoica et al. [SZK00] evolved systems ex-
trinsically may not work intrinsically, as the operating condition of the evolved hardware is different
from the real operation conditions.

In figure 4.15, the topology of an evolved operation is shown. The sources of the transistors that are
drawn in gray have no path to the power supply, thus, only their parasitic impedance are affecting
the design. The gate of some of the transistor modules is connected to ground or the power supply,

Figure 4.15: An operational amplifier implemented on Heidelberg FPTA [TLMS05].

therefore, it reacts as an on- or off-switch. The evolution can connect any current path to ground,
which can results in power consumption and self heating. The number of required cells to evolve
hardware is unknown, and can be determined by trial and error.

4.4 Intrinsic Evolution 79

4.4 Intrinsic Evolution

Thompson introduced the first intrinsic evolution in FPGA [Tho96]. He has used the genetic algorithm
to program 10x10 cells in the FPGA through a genome of 1800 bits. The task which the evolution
had to fulfill was to discriminate between 1 kHz and 10 kHz square waves, which is a simple task.
Later on, Thompson et al. analyzed the result of the evolution [TL99]. Evolving a digital system is
more straight forward approach than an analog system regarding the problem representation. Unlike
the analog systems, the specification of the digital systems can be simply defined and measured by
observing the DC behavior. For example, intrinsic evolution of combinational circuits can maximize
the number of succeed hits as the objective function, which is a straight forward approach, especially
that the complete truth table for the digital circuit is optimized. However, if the complete specifi-
cations of the digital system are included, the time delay between the input and the output signals
has to be optimized according to the application requirements as well. The output current, and some
other specifications are already optimized in the technology as the evolution is done at the gate level.
Designing the gates is considered as an analog design as the exact analog level, transient character-
istics, etc. are required to be optimized. Optimizing them considering only the input-output relation
without considering the time delay, the output current, input resistance etc. [TW00,Tho02] is a poorly
specified problem, and the result of the evolution is not guaranteed to work.

Vinger et al. evolved an 8-tab finite impulse response (FIR)-filter on an FPGA [VT03]. The FIR-filter
structure is shown in figure 4.16. The hardware is evolved by tuning the filter parameters, thus, the

Figure 4.16: FIR filter.

behavior of the filter is predictable. However, the fitness value in [VT03] is the difference between
the output of the FIR-filter and the output of a reference output. Thus, a reference FIR-filter has to
be implemented and to process the input signal in order to evaluate the evolving filter. Thus, any
improvement in the filter specifications such as larger stop band attenuation in the evolving FIR-filter
impairs the fitness value of the filter.

Stefatos et al. proposed a low power version of the evolvable FIR-filter [SAKF06] by designing a
digital hardware that includes programmable FIR-filters. Stefatos hardware can recover from perma-
nent errors such as fault latch state or memory cell by finding new coefficient pattern for the FIR
filter [SAKF06]. The advantage of the FPGAs over [SAKF06] is that the fault cells in the FPGA
can detected [ESSA00], then the same FIR-filter configuration can be remapped to the working cells
without the need of a complete reconfiguration loop in order to avoid a training period and learning
loop. However, the fault can occur in the reference FIR-filter, consequently, the functional FIR-filter
can deviate.

80 EVOLUTIONARY ELECTRONICS

Evolving coarse-grained analog hardware is achieved on commercial FPAA chips [FS98] to evolve
arbitrary topology. The objective was to minimize the error between an output and a reference output.
Potential connections may destroy the chips by connecting the power supply terminals with each other
during the optimization. As the FPAA does not utilize programmable building block devices, it does
not embody the self-x properties.

The JPL FPTA and FPTA2 are intrinsically evolved by specifying the relation between the output
and reference output due to a stimuli input signal [SKZ+02]. An example of the evolved hardware is
the AND gate shown in figure 4.17. The evolved AND gate contains transistor gate terminals that are
floating, and the input impedance of the first input is very low. In addition, the structure that is evolved
is not guaranteed to work. The evolved hardware in figure 4.17 does not work in simulation [SZK00].

Figure 4.17: An intrinsically evolved circuit [SZK00].

Amaral et al. have employed genetic algorithm to evolve PAMA [dAdAS+04] with 32 analog mul-
tiplexer, each has 16-to-1 lines. The error between the DC behavior of the output and a reference
output signals stimulated by a reference input is employed as the fitness function. Dangerous con-
nections such as connecting the power supply with the ground has to be detected and removed before
downloading it to the hardware. In figure 4.18, an evolved logarithmic amplifier is shown. As shown,
the evolution employs some non-operating components, connects output of some components to one
of the power supply terminals, leaves some of the terminals floating, connects some resistors between
the supply terminals, etc. Additionally, only single objective function for the DC characteristics is
considered. Thus, the behavior is unpredictable, and some configuration can results in dynamic devi-
ations such as self heating, or even damage the hardware. Therefore, the configuration of the evolved
hardware is not guaranteed to operate again after evolution. The same problems exist for the evolvable
motherboard [Lay98]. The proposed result of evolving a NOT gate in [Lay98] contains many floating
terminals, and useless components.

Langeheine et al. employed the Heidelberg FPTA [LMS03] considering its DC behavior to evolve
logic gates, analog Gaussian function circuit, etc. The evolution invents the topology and searches for
the transistor dimensions. The Turtle GA [TLSM04] guarantees that no floating terminal is found in

4.5 Mixtrinsic Evolution 81

Figure 4.18: An evolved logarithmic amplifier [dAdAS+04].

the design. However, similar to the approaches mentioned above, optimizing only DC characteristics
and employing arbitrary topologies results in unpredictable behavior and can not be accepted by
industry.

4.5 Mixtrinsic Evolution

Mixtrinsic evolution has been introduced by Stoica et al. [SZK00], trying to solve the portability
problem, which is; the hardware designed by intrinsic evolution may not work in simulation and vice-
versa. As shown in figure 4.19, the mixtrinsic approach evolve some individuals extrinsically and the
rest intrinsically in order to improve the portability. However it does not consider complete industrial
specifications of the hardware in the optimization criteria. Indeed, it minimizes the error between
a reference output and the actual output generated by a given test signal. The intrinsic individuals
in figure 4.19 are called “HWi” as their fitness is evaluated by hardware measurement. Similarly,
extrinsic individuals are called “SWi” as their fitness is evaluated by software simulation. The reason
of the portability problem mentioned at [SZK00] is that the hardware structure is arbitrary and the
complete industrial specifications are not included in the optimization. Thus, the evolved hardware is
not guaranteed to work due to any small environmental variation. Two types of mixtrinsic evolution
are described in [SZK00]:

• Combined mixtrinsic evolution: The same objective function of each particle is evaluated both
intrinsically and extrinsically, the final fitness value of the average.

82 EVOLUTIONARY ELECTRONICS

Optimization
algorithm SW2 SWnHW3

population

Intrinisic individuals

Extrinisic individuals

HW1

Figure 4.19: The population in mixtrinsic evolution [SZK00].

• Complementary mixtrinsic evolution: The objective function of each particle is evaluated either
intrinsically and extrinsically, but not both.

For example, an AND gate is evolved extrinsically to the circuit shown in figure 4.14, intrinsically to
the circuit given in figure 4.17, while mixtrinsically to the circuit given in figure 4.20.

Figure 4.20: An evolved circuit mixtrinsically [SZK00].

The circuits that were intrinsically and extrinsically evolved have gate terminals that are floating.
Thus, the output depends on the noise inside the chip during the operation, the charge of the parasitic
capacitance in the previous configuration, the switch off-resistance, output load, etc. The portability
problem is due to employing arbitrary topology, and that the problem is poorly specified without
including the industrial specifications during the evolution of the AND gate. The mixtrinsic evolution
does not solve the problem, but it develops a circuits that are not connected to the power supply,
contains four gate terminals that are floating, and one of the input is connected to a current source.
Therefore, the behavior of the evolved circuit with mixtrinsic evolution is not predictable, and is not
feasible with respect to the industrial requirements.

4.6 Fault Tolerance and Dynamic Environment 83

4.6 Fault Tolerance and Dynamic Environment

Robust systems can deal with problems that are expected to occur, fault tolerant systems can deal with
the unexpected problems. Human tend to design robust systems rather than fault tolerant systems. For
example, auto zeroing can cope with the input offset. On the other hand, the evolution tend to cope
with faults as employing the faulty parts results in declination in the fitness value, consequently, the
evolution abstains from it. Thus, it can adapt the system to operate in harsh environment as well.
Treating the fault is achieved by two means:

• Start the evolution from scratch [Tho97a, KZJS00] in order to find a new configuration that com-
pensates the fault is a feasible solution exists. If the problem is poorly described by the relation
between the output and a reference output, this method is not guaranteed to work well as the fault
cells may affect the other characteristics such as the input and output impedance.

• Detecting the fault cells then map the target functionality to the working cells [ESSA00]. This
method is more efficient in digital systems as the digital hardware is less sensitive to deviations,
and the behavior of all the functional cells is similar. Thus, remapping an old configuration to the
functional cells does not change the hardware behavior.

Coping with dynamic environment is achieved by evolving the hardware in the new environment. The
state-of-the-art evolvable hardware starts optimization from scratch after any environmental change
to find a new configuration that suite the current environment [SKZ01, ZGK+04].

4.7 Summary

Evolvable hardware is aspired to design customized hardware for rapid prototyping to cope with
static and dynamic deviations that are described in chapter 2, which is fortunate for the targeted
generic organic-computing sensor electronics. FPGAs are sufficient platform to evolve digital sys-
tems [Tho96] regarding its flexibility, speed, and applicable design size. Yet, no powerful analog
evolvable hardware is available that contains enough flexibility and components for generic sensor
electronic systems, and returns hardware with predictable behavior which is essential for industrial
acceptance. The state-of-the-art analog evolvable hardware either employs non-programmable build-
ing blocks such as FPAAs, hardware with flexibility in its structure level but fixed devices dimensions
such as JPL FPTA, hardware that employs a huge common analog bus for very few devices such as
PAMA, or hardware that contains no passive components, but employs full flexibility in the width and
length –consequently, increases the cost while programming the length is not useful–, which results
in consuming a big die area for very few functionalities.

The evolution of the hardware can be done extrinsically, intrinsically, or mixtrinsically [SZK00].
Extrinsic evolution evaluates the hardware by a simulation environment. It can be employed for
hardware synthesis [ZPV98], or to find a configuration for an evolvable hardware avoiding danger
configurations such as short-circuits [SKT+99]. The synthesis of the hardware by mean of genetic
programming targeting invention of topology includes only single or few of the industrial speci-
fications in the state-of-the-art. Thus, it employs arbitrary topology without known complete in-
dustrial specifications [KFHBAK97], which results in unpredictable behavior. Extrinsic evolution

84 EVOLUTIONARY ELECTRONICS

targeting a programmable hardware minimizing the error between the output and a reference out-
put to find an arbitrary topology, thus, this configuration may not work when downloaded to the
hardware [SZK00]. However, other work in digital systems employs known topologies such as logic
gates, or multiplexers and program the connection between them to return a hardware with predictable
behavior [CLA02, ACB99].

The state-of-the-art intrinsic evolution suffers mainly from two problems; the first problem is that it
designs the hardware topology, which results in hardware with unpredictable behavior, and the second
problem is that the evolution problem defined in a poorly specified fashion. It employs a reference
output to minimize the error between the actual and the reference output stimulated by a given input
signal [SKT+99]. It can consider phase delay as an error, thus, attempts to decrease the phase margin
which results in evolving an unstable system, etc. However, the evolved system may not work in
simulation [SZK00], as it does not concern the industrial requirement. For example, evolving an
AND gate with low input impedance as shown in figure 4.17, while the terminals of the gates of some
of the employed transistor are floating, and therefore, the output depends on the charge of the parasitic
capacitance due to the previous configuration.

As the simulation of the hardware that is evolved intrinsically may not work in the poorly specified
problems with arbitrary topologies, and downloading a configuration of a hardware that is evolved
extrinsically to real chip may not work as well , Stoica et al. invented the mixtrinsic evolution to
tackle this problem by evolving some individuals intrinsically, and some other extrinsically in the
same population. As shown in figure 4.20, the behavior of the AND gate evolved mixtrinsically is not
predictable as it has many gate terminals of the employed transistors are floating and the low input
impedance. Evolution of the functionality level is done by considering it as a single black-box block
and minimizing the error between the output single and the reference output signal [ZSK00, Lan05],
which can implicitly include few of the hardware specifications, but does not consider the standard
specifications completely. Thus, the state-of-the-art analog evolvable hardware so far is behind the
industrial requirements. In order to returning hardware with predictable behavior, the industrial hard-
ware specifications should be included during the evolution of the hardware, and the hardware topol-
ogy should be constrained standard topologies. Parallel to the proposed extrinsic evolution in chapter
5, Trefzer et al. included few of the hardware specifications in evolving hardware with arbitrary
topology [TLSM04], therefore, its behavior is not completely predictable as it invents topologies with
partially known behavior. The hardware specifications should be included in the intrinsic evolution as
well, which is not concerned in the state of the art. As measuring some of the hardware specifications
require special costly measurements setup, new approaches are required to measure the specifications
with low cost setup. In order to concern the standard specifications of the functional block completely,
hierarchical optimization should be included to evolve the building blocks first, then the functional
level as described in chapter 5 in order to return hardware with predictable behavior.

The evolvable hardware copes with dynamic environment by evolving itself in the new environment
starting from scratch in order to find a new suitable valid configuration [SKZ01], which returns fault
tolerance as well [KZJS00]. Another approach for fault tolerance is to detect the faulty cells and avoid
mapping the hardware to them [ESSA00] –which is useful for digital systems as the deviations does
not have strong effect on the design–. Starting from scratch after any environmental change is time
consuming, while the state of the art evolutionary computation can cope with dynamic environment
without losing all the previous information as described in the chapter 3.

CHAPTER 5

Proposed Design Methodology

The aim of the thesis is to evolve organic-computing analog sensor electronics front-end with pre-
dictable behavior for rapid prototyping in such a way that gains the industrial acceptance, copes with
the dynamic environment, and considers its embedding and integrability. Thus, the industrial speci-
fications are included in the optimization, the standard topologies are employed, and dynamic envi-
ronment suitable approaches are applied to cope with the non-stationary environment without starting
from scratch after any environmental change. The proposed methodology to accomplish those aims
is described in this chapter.

The flow of this chapter is as the following; first the sensor electronics reconfigurable hardware that
is aspired in this thesis is outlined. Afterwards, evolving it extrinsically and intrinsically is described.
As measuring some of the hardware specifications intrinsically requires an expensive setup, while
extrinsic evolution cannot include the self-x properties, a novel proposed mixtrinsic multi-objective
evolution is described, in which; the hardware specifications are partitioned into extrinsic and intrinsic
specification sets according to their features such as sensitivity to deviations, etc., then they are evalu-
ated either extrinsically or intrinsically. Consequently, low cost assessment of the complete industrial
specifications is achievable. After that, the aspired design flow of the analog evolvable hardware is
described. Finally, the chapter is summarized.

5.1 Aspired Generic Organic-Computing Sensor System

The aim of our group1 is to build reliable rapid prototyping generic sensor electronics front-end with
self-x properties and predictable behavior for industrial acceptance. This thesis is focused on software
and algorithmic aspects, and on manipulating the static deviations of system in the deployment phase
and the dynamic deviation in the operation phase. On the other hand, a parallel work by MSc. S.
Lakshmanan is focused on the hardware aspects.

In order to achieve the self-x properties, the behavior of the hardware has to be calibrated in the loop.

1Institute of integrated sensors, TU Kaiserslautern.

86 PROPOSED DESIGN METHODOLOGY

This requires assessment unit to extract hardware current specifications, computational unit to search
for a useful configuration based on bio-inspired techniques, and a pre- and post-processing unit to
communicate between them. Therefore, the aspired organic-computing generic sensor electronics
front-end consists of four main blocks as shown in figure 5.1; the optimization unit, pre- and post-

Figure 5.1: Block diagram of the reconfigurable generic sensor system.

processing unit, and the assessment unit, and the reconfigurable hardware.

The optimization unit adapts bio-inspired optimization algorithm in order to evolve the hardware.
It contains several evolutionary computation approaches such as several PSO implementations and
genetic algorithm in order to find out the optimal algorithm that is suitable for the application. The
state-of-the-art evolutionary computation starts the optimization from scratch after any environmental
change [Tho97a, KZJS00], which is time consuming approach. Therefore, dynamic environment
suitable approaches are included in the optimization unit in order to cope with the non-stationary
environment without starting from scratch after any environmental change.

The pre- and post-processing converts the individuals of the optimization unit to bit-stream config-
urations for intrinsic evolution, to netlist files for extrinsic evolution, or to both for proposed novel
approach multi-objective mixtrinsic evolution which is described later on in this chapter. Afterwards,
it generates the test signal to measure each of the hardware specifications, and extract the hardware
specifications from the measured signals.

The assessment unit contains the necessarily measurement setup for measuring the hardware speci-
fications due to the downloaded configuration. Therefore, the assessment can be achieved intrinsi-
cally, extrinsically, or multi-objective mixtrinsically. The extrinsic evolution is assessed by simulated
measurement setup. Contrarily, the intrinsic evolution is assessed by real measurement setup. The
proposed novel approach multi-objective mixtrinsic evolution is assessed by both real measurement
setup, and simulated measurement setup as described later on in this chapter.

In order to return hardware with predictable behavior, standard building blocks are employed, and
its standard hardware specifications are optmized. Targeting to involve rapid prototyping of current-
and voltage-mode designs, the aspired generic programmable sensor electronic hardware contains the
necessarily building block for both the current- and the voltage-mode circuits as shown in figure 5.2.
For example, the operational amplifier is voltage-mode building block, while the second generation
current conveyor (CCII), the current-differencing transconductance amplifier (CDTA), and the current
splitter are current-mode building blocks. In addition, common blocks are used such as multi-output

5.1 Aspired Generic Organic-Computing Sensor System 87

Figure 5.2: The complete aspired target system.

OTA and passive components that can be employed for current- and voltage-mode circuits. A single
analog configurable block can be programmed to various building blocks. For example, the reconfig-
urable block in figure 5.3 that contains an OTA and an output stage can be programmed either as an
OTA or as an operational amplifier. The disadvantage of employing many different types of building

Figure 5.3: A programmable block that can be programmed as OTA or as operational amplifier.

blocks is that it decreases the efficiency of the hardware as only few of them are employed depending
on the required building blocks for the design. The state-of-the-art FPAAs employs either voltage
mode building blocks such as many commercial FPAA that are based on operational amplifiers as
described in section 2.5, etc., or current mode building blocks such CCII [Gau97], etc.

All building blocks are connected to a programmable analog bus that routes them with each other
in order to build the abstract level. The topology of the building blocks is constrained to standard
topologies, while the dimensions of its devices are programmable. However, only the operational
amplifier is implemented and tested by Lakshmanan et al. in a real chip [LK05,LTK06] as a building
block, and the instrumentation amplifier is implemented and currently in manufacturing phase as a
functional level block, the other blocks are optimized and tested extrinsically. This thesis focus on
the algorithmic aspects, therefore, the optimal interconnections between the blocks, and the selection
of the entire hardware building blocks is not considered in this thesis.

88 PROPOSED DESIGN METHODOLOGY

5.2 Extrinsic Multi-Objective Evolution

State-of-the-art evolutionary electronics adopts the evolutionary computation to invent an arbitrary
hardware topology, which means; the behavior of the returned design is not completely predictable,
while the industrial specifications and requirements of the target design is not considered during the
optimization except in [TLMS05], which is parallel to the proposed work [TLK05, TK05a, TK05b].
Indeed, the error between the required output and the output due to a given test signal is minimized,
which cannot guarantee that the returned design is suitable for industrial applications as only a set
of the industrial specifications is implicitly optimized without considering its values. For example,
if the target hardware is an operational amplifier, the error due to the settling time is usually larger
than the error caused by the offset if the input signal is a rectangular wave. Consequently, minimizing
the signal error can increase the offset and decrease the phase margin to decrease the error that is
produced due to the settling time and the slew rate, which can result in unstable hardware with high
offset.

The extrinsic multi-objective evolution synthesize the hardware in the design time without consider-
ing the hardware deviations. Many synthesis tools employ optimization methods such as geometric
programming [dMHBL01] and genetic algorithm [ZPV98] to dimension the devices of a given hard-
ware topology. Utilizing standard topologies and including the complete hardware specifications
are necessary for industrial acceptance. Aiming to evolve the target generic sensor hardware to return
hardware with predictable behavior that gains the industrial acceptance, the hardware topology is con-
strained to standard topologies, while the evolution optimizes the dimensions of its devices. Parallel
to this work [TLK05, TK05a, TK05b], Trefzer et al. has included few of the industrial specifications
to evolve hardware such as operational amplifier [TLMS05]. However, the evolution has invented the
hardware topology. Thus, its behavior may not be completely predictable.

As shown in figure 5.4, simulation tools such as SPICE are employed to evaluate the hardware per-
formance in the extrinsic evolution. The hardware specifications are measured by employing as-

Figure 5.4: Extrinsic reconfiguration environment.

sessment circuits that are written to netlist files and simulated. The outputs of the simulations are
written to output raw files, then the output signals of the raw files are post-processed to extract the

5.3 Intrinsic Multi-Objective Evolution 89

hardware specifications. The main advantages of employing a simulation tool over estimation mod-
els [Mei96,DGS03,MG05] and formal models [dMHBL01] for the extrinsic approach is that accurate
results can be obtained by employing accurate transistor models in the cost of the computational ef-
fort, while, modeling the complete hardware behavior is not required.

The hardware specifications are application dependent. For example, the operational amplifier for
video applications should be able to operate at high speed, while operational amplifier that is em-
ployed for a sensor application such as measuring pressure should have low offset, and high open-
loop gain, etc. Thus, the hardware specification values are determined by the user according to the
application requirements. As many objectives are optimized, Pareto based multi-objective optimiza-
tion methods cannot be efficiently employed for large number of objectives as described in chapter
3. Thus, weighted aggregating function based multi-objective optimization is employed to evolve
the hardware complete specifications. The required value of the given specification or objective o is
denoted as so. The error of the objective o is calculated by equation 5.1, where mo is the value of the
objective o that the simulation returns, or the measured value for the intrinsic evolution.

fo =

0 ∀ so satis f ied

|mo− so|
so

otherwise
(5.1)

The specification value so is satisfied if the value of fo is better2 than the value of so. The optimization
attempts to fulfill a given specification value for each objective, if the current hardware have some of
the specifications better than the requirement, it does not include them in the aggregating function in
order to improve the other objectives.

The error functions of all the specifications are accumulated to construct aggregating function the by
equation 5.2, where ko is the weight of the objective o.

Fa = ∑ko · fo (5.2)

The dynamic deviations can be partially treated extrinsically by employing the available environmen-
tal information in the simulation, such as measuring the temperature of the hardware and employing
it in the simulation [TK05b].

However, extrinsic evolution cannot treat the static and the dynamic deviations completely. For exam-
ple it cannot detect the dynamic deviations due to different temperature distribution inside the chip,
or self heating during the operation. Thus, it can be employed for rapid-prototyping of sensor elec-
tronics hardware without including the self-x properties. In order to include the self-x properties, the
optimization should be achieved intrinsically to cope with hardware deviations.

5.3 Intrinsic Multi-Objective Evolution

The intrinsic evolution trim the hardware in the deployment and run time to recover from deviations.
The state-of-the-art intrinsic evolution of analog hardware minimizes the error between the output

2“Greater” in case of maximizing an objective, and “less” when minimizing an objective

90 PROPOSED DESIGN METHODOLOGY

signal and reference output signal to invent blackbox hardware without considering the industrial
requirements. Aiming to include the self-x properties to the reconfigurable generic sensor electronics
hardware, standard topologies are employed, and the industrial specifications of the hardware are
optimized intrinsically [TLK06].

The architecture of the implementation of the intrinsic multi-objective evolution environment is shown
in figure 5.5. The blocks marked in gray are implemented in hardware. The configuration is down-

Figure 5.5: The intrinsic evolution environment.

loaded to the hardware in the form of bit stream [LK05] that represents the hardware topology, and
the dimensions of the hardware devices. After downloading the configuration to the hardware, the
suitable assessment circuit is selected to measure each of the specifications, and the appropriate test
signal is generated and fed into the hardware through the DAC (digital to analog converter). After-
wards, the output of the hardware due to the test signal is converted into the digital domain through
the ADC (analog to digital converter), and the necessary post-processing is employed to extract the
hardware specifications from the hardware output.

The limitation of the intrinsic evolution is that it may utilize many assessing circuit which increases
the cost and the hardware area which is not fortunate for embedded systems, while measuring the
AC and transient specifications of the target hardware is limited to the ADC conversion rate, and
the operation bandwidth of the assessment circuits. On the other hand, some other specifications
require complicate assessment circuits. For example, measuring the open loop gain of an operational
amplifier requires assessment circuits that can compensate the operational amplifier offset, scale down
the DAC signal to precise few micro-volts, etc. Increasing the assessment circuit complexity increases
the probability that it deviates, and consequently the whole system.

5.4 Mixtrinsic Multi-Objective Evolution 91

5.4 Mixtrinsic Multi-Objective Evolution

As described above, the extrinsic evolution cannot cope with all the system deviations, while evolv-
ing the system intrinsically requires measuring the hardware specifications with measurement assess-
ment circuits. On the other hand, measuring some of the hardware specifications requires expensive
equipment, while measuring some others is time-consuming approach. In addition, employing many
measurement devices to optimize the hardware in the loop limits its applicability to the laboratory
level as not all the measurement instruments are integratable or embeddable with respect to the cost
and the implementation area.

Thus, a novel approach is proposed that divides the hardware specifications into two sets [TK07].
The first set consists of those specifications, which are hard to be measured due to the cost/time
requirements, and are less sensitive to the deviations such as open-loop gain, phase margin, output
resistance, etc. This set of specifications is evaluated extrinsically. If the target specifications over-
fulfill the application requirement, the influence of deviations on this set of specifications does not
lead to any dramatic specifications variation.

The second set of specifications contains the specifications that are sensitive to deviations and can
cause direct distortion in the signal, while they are easy to measure at low cost such as offset, swing
output voltage, common mode range (CMR), etc. For example, the change of the CMR due to devia-
tions can cause signal distortion, and the offset is very sensitive to deviations and cannot be handled
with simulation. This set of specifications is measured intrinsically. The optimization criteria are
multi-objective optimization where each individual has intrinsic and extrinsic objectives as shown in
figure 5.6.

(a) (b)

Figure 5.6: The mixtrinsic multi-objective evolution a) A single individual. b) The complete popula-
tion.

The two sets of specifications may intersect with each other, which means that some of the specifi-
cations can be treated intrinsically and extrinsically. In this case, the required value of the intrinsic
and extrinsic measurement can be different. For example, the settling time of operational amplifier
can be optimized intrinsically to ensure the stability and the basic operation of the amplifier, while
it is optimized extrinsically as the intrinsic optimization of the settling time is limited to the ADC
conversion speed, therefore, the operational amplifier may become stable within a single sample of
the analog to digital converter.

92 PROPOSED DESIGN METHODOLOGY

The measurable environmental data such as the hardware temperature can be measured and employed
in the evaluation of the extrinsic specification set. Therefore, the complete hardware specifications
are optimized at low cost, with integratable, and embeddable calibration loop.

The term mixtrinsic evolution [SZK00] means the population contains intrinsic and extrinsic individ-
ual as described in chapter 4. The novel proposed mixtrinsic multi-objective evolution employs both
intrinsic and extrinsic evolutions for each individual, but for measuring different objectives.

The extrinsic objectives can be evaluated by employing simulation environment [LMU04], formal
models for the hardware [dMHBL01] or estimation models [Mei96, DGS03, MG05]. The outlines of
their models for mixtrinsic evolution are described in the following subsections.

5.4.1 Simulated Models

The mixtrinsic multi-objective arrangement based on simulated models is shown in figure 5.7. For a

Figure 5.7: The mixtrinsic evolution.

given configuration, the hardware is simulated to extract specifications of the extrinsic set of objec-
tives, and the other set is measured intrinsically. In order to evaluate the extrinsic set of objectives, the
suitable netlist files are generated, and then simulated by a simulation environment such as SPICE.
The simulation environment writes the results of the simulations to RAW files. Afterwards, the re-
sults of the simulations are post-processed to extract the specifications of the target configuration. The
hardware temperature can be measured and included in the simulation, and accurate transistor models
can be employed such as BSIM 3.3, etc., which is more accurate than then formal models and the

5.4 Mixtrinsic Multi-Objective Evolution 93

estimation models but requires more computational effort. Depending on the precision of the assess-
ment circuits and the effect of their susceptibility to noise, the simulated models can be more accurate
than intrinsic measurements for some specifications. For example, measuring the open-loop gain can
be more accurate extrinsically regarding the resolution of the ADCs, the noise effect on the hardware
during the measurement, the bandwidth of the assessment circuits, etc. The main disadvantage of the
simulated models is their computational effort that consumes time and power.

5.4.2 Formal Models

Embedded systems have less resources than the PCs. Running tasks that requires high computational
effort such as simulation tools is not desirable in embedded systems with medium resources, and not
feasible for embedded systems with low resources. In order to determine the hardware specification
values with low computational effort and less hardware resources, lean models can be employed.
Designing the formal models requires complete knowledge about the utilized technology and the
target topology. It obligates modeling the hardware topology for large and small signal analysis.
Although designing the formal models requires high design effort, it is worth making them as they
reduce strongly the computational effort for each instances (individual in the population). In many
sub-circuits, numerical analysis is needed in order to solve the large signal analysis, while analytical
expressions are sufficient for small signal analysis as shown in figure 5.8. The numerical analysis may

Figure 5.8: Determining the hardware specifications by formal models.

converge to non-optimal solution, or may diverge for some configuration as the formal models employ
simple transistor models. Including the temperature in the formal models increases their design effort,
thus, it is not preferable.

Hybrid models can improve the precision and guarantee the convergence of the internal sub-circuits,
while they require less computational effort than the simulated models. For example, the large signal
analysis such as biasing current and voltage should be accurate and may require iterative loop, thus,
it can be simulated. On the other hand, the AC specifications, etc. can be calculated by a single
analytical expression, therefore, a formal model can be employed as shown in figure 5.9, where ϑ is
the environmental temperature. The hardware temperature can be included in the simulated part in
the hybrid model.

94 PROPOSED DESIGN METHODOLOGY

Figure 5.9: Determining the hardware specifications by a hybrid simulated/formal model.

An example of an operational amplifier that employs 10 components is shown in figure 5.10. The
dimensions of the first two components are utilized in the biasing circuit, therefore, only the biasing
circuit is simulated. Afterwards, the transconductance of all the transistors are computed, then the
poles of the amplifier and its specifications.

Figure 5.10: Determining an operational amplifier specifications by first simulating the biasing current
at a given temperature, compute the transconductance of all the transistors, and the poles of the
amplifier, then employing lean models to calculate its specifications.

The main drawback of the formal models is that they require complete modeling of the target hard-
ware, where they employ simple non-accurate transistor modules in order to simplify the modeling.
Besides, it requires numerical optimization to solve the large signal analysis in many circuits. The
estimation modules in the next subsection cope with these drawbacks as described below. Neverthe-
less, commercial tools are available such as Analog Insydes [Ana] to extract the symbolic model that
describes the hardware, which simplifies the design of the formal models.

5.4.3 Estimation Models

Aiming to avoid the necessity of complete knowledge about the hardware technology and topology,
estimation models can be employed, which do not require knowledge about the hardware technology
and topology, but indeed they are trained before being employed in evolution. As shown in figure 5.11

5.4 Mixtrinsic Multi-Objective Evolution 95

a data set generator is employed to produce several configurations. These configurations are simulated

Figure 5.11: Estimation models training.

and its specifications are extracted in the training phase. Accurate transistor modules such as BSIM
3.3 can be employed to obtain accurate training data. In order to estimate the hardware specifications
at different environmental settings such as different temperatures, the various environmental settings
are included in the training set. Afterwards, estimation models are trained off-line by minimizing
the error between the estimated and the simulated specifications when the same configurations are
fed to both. Ultimately, the estimation models are employed to estimate the extrinsic specifications
of the hardware. The estimation models are employed in the state-of-the-art analog synthesis tools,
such as; neural networks [Mei96], automatically created posynomials [DGS03], support vector ma-
chines [KG04], splines [MG05], genetic programming [MG05], etc. An example of the estimation
models using the neural networks is shown in figure 5.12, where n is the number of hardware extrinsic
specifications.

Figure 5.12: Neural network as an estimation model.

In order to obtain estimation models that are accurate for most of the configurations, a sufficient
training data set are demanded. The smaller the number of configurations used in the training of the
models, the more it tends to be specialized to the given data set rather than the hardware itself. The
larger the number of configurations that are engaged in the training, the more it is hard to train the
estimation models. Thus, the relevant inputs for each of the specifications can be clustered and the

96 PROPOSED DESIGN METHODOLOGY

estimation model can be partitioned into smaller models by a clustering algorithm, or by employing
a priori knowledge about the topology to find the relative effective components for each of the spec-
ifications. For example, an estimation model that employs neural network is shown in figure 5.13.
It is partitioned in which, first the large signal parameters such as biasing currents and voltages are

Figure 5.13: A neural network specification estimation model that is partitioned smaller models by
employing a priori knowledge.

estimated, then these biasing signals and the relevant device dimensions are used as input signals to
small estimation models that determine the value of each of the specifications.

Employing the estimation models can be more accurate than the formal models, especially if iterative
computations are required as the formal models utilize simple non-accurate transistor models, while
it requires more computational effort to solve the numerical optimized problem that works iteratively.
If the topology model is well known, a hybrid approach can be engaged in which, internal signals that
require numerical optimizations are evaluated by estimation models to obtain more accurate results
at less computational effort, then analytical expressions are employed to extract the hardware speci-
fications at less computational effort. The example in figure 5.13 is advanced to the model in figure
5.14 that estimate the hardware internal signals by a neural network estimation model, then apply the
formal models to extract the hardware specifications.

5.5 Dynamic Environment and Fault Tolerance

The deviations due to the dynamic environment are treated in the state-of-the-art evolvable hardware
by starting from scratch after any environmental change, which is time consuming process as it loses

5.5 Dynamic Environment and Fault Tolerance 97

Figure 5.14: Extracting the hardware specifications by a hybrid estimation/formal model.

all the previous information. In order to overcome this problem, dynamic environment suitable ap-
proaches are employed [TLK06] as described in chapter 3.

The fault tolerance capability depends on the programmable components design, which is a trade-off
between mitigating the faults, and adding extra-flexibility that increases the die area and reduces the
operation frequency of the hardware. For example, in [LK05], Lakshmanan et al. has proposed a
programmable transistor module that is shown in figure 5.15, any faulty transistor can be completely
disconnected from the design.

Figure 5.15: A programmable NMOS transistor [LK05] of the FPMA.

Regarding the voltage drop that can occur on the switches and the frequency behavior, Lakshmanan
et al. has employed another solution in [LK07] that controls only the gates of the transistors as shown
in figure 5.16. On the other hand, its flexibility does not allow disconnecting the faulty transistors
completely as in [LK05]. Thus, some fault cases cannot be treated such as stuck-at-on faults, which
turns the faulty transistor on without considering the voltage level applied at the transistor gate.

98 PROPOSED DESIGN METHODOLOGY

Figure 5.16: A programmable NMOS transistor [LK07] of the FPMA2.

From the algorithmic point of view, employing faulty transistors results in bad fitness values. Thus,
the optimization tends to find a working solution that fulfills the given specifications by suppressing
the configurations with bad fitness due to using faulty transistors.

5.6 Design Flow

A rough proposed design flow of the aspired generic organic-computing sensor electronics is shown
in figure 5.17. The assignment of each numerated steps in the graph is as the following:

Step 1 (entering the target design): The user enter his target design in different abstract levels using
schematic entry environment, or hardware description language (HDL) such as VHDL-AMS or
verilog-AMS.

Step 2 (convert the design to intermediate HDL): The various entry formats are converted to in-
termediate HDL for further processing.

Step 3 (extract the functional blocks): The hardware should be partitioned to functional blocks, in
which, the required specifications of each of them can be achieved by the available functional
blocks in the hardware, such as, function decomposition of a given function in order to constrain
the returned functional block requirements to be achievable [WV02]. For example, decomposing a
fourth order filter into two second order filters.

Step 4 (topology selection): Specifying the hardware topology depends on the specifications that
each topology can achieve and the required specifications. Therefore, knowledge about the speci-
fication values that each topology can accomplish is needed for the selection. If the user chooses
the specifications from the database, the topology that is suitable for this setting can be mapped
directly. In order to avoid the necessity of expert knowledge, classification models such as neural
networks [PF98] can be utilized to choose the hardware topology. However, the topology of the
unused blocks should be considered during the topology selection.

5.6 Design Flow 99

Figure 5.17: The proposed design flow for generic organic-computing sensor electronics.

100 PROPOSED DESIGN METHODOLOGY

The topology selection is done in both the functional and the building block level. First the topology
of the functional blocks is selected, then the topology of its internal building blocks are choosen.

If the topology of a hardware building block is programmable, all the relevant block transistors and
switches can be employed in the optimization in which; the evolution dimensions the transistors,
and select the topology by controlling the routing switches. However, such representation engages
a very large searching space, and thus, it is hard to find a good solution.

Step 5 (mapping and routing): After the topologies are selected, the hardware blocks should be
mapped to the unused blocks. The placement and routing should consider the parasitic capacitance
during the mapping. Related work is proposed in [WV02, BRL+05] for FPAA applications. If no
enough free resources, error massage should be produced.

Step 6 (hierarchical optimization): Hierarchical optimization, –also called multi-objective bottom-
up methodology [GME05]– is already employed in synthesis tools [GME05], in which, it partitions
the system to components from the lowest level such as building blocks, to the higher level such
as the functional level circuits. Then it dimensions them starting from the lowest level building
blocks, then the upper level such as an advanced building block, or a functional level.

Inspired from the hierarchical optimization that has been developed in the synthesis tools, the
hierarchical optimization is abstracted to size the generic organic-computing sensor electronics,
in which, first the building blocks are dimensioned, then the next level of abstract such as the
functional circuits [TK06b], or more advanced building blocks is optimized.

For example, the operational amplifier can be combined with passive components to build voltage-
mode a filter or an instrumentation amplifier as shown in figure 5.18. First the operational amplifier
is optimized, and then the filter, or the instrumentation amplifier is evolved. The reconfigurable

Figure 5.18: The hierarchical optimization of evolvable hardware, building functional block level
hardware such as filter and instrumental amplifier from programmable operational amplifiers.

instrumentation amplifier is already designed by Lakshmanan et al., and it is currently in the man-
ufacturing phase. The CCII block can be combined with multi-output OTA block to build a CDTA
block [BVB05] as shown in figure 5.19, etc. Therefore, the multi-output OTA and the CCII are
optimized separately.

5.6 Design Flow 101

Figure 5.19: Building CDTA from CCII and MOTA.

The main advantage of the hierarchical optimization over the flat optimization which optimizes the
whole system at once is that the behavior of each component is optimized to a given required spec-
ification set that guarantees that it has predictable behavior, and therefore behavior of the complete
system is predictable. Additionally, the search space is reduced by partitioning the problem which
simplifies the optimization problem [GME05].

Step 7 and 8 (hierarchical dynamic trimming): In this step, the and further deviations that are in-
troduced into the hardware during the operation is compensated. However, the reoptimizing all the
building blocks is time consuming, which may result in going offline for long periods. There-
fore, background calibration can be achieved by using additional building blocks instances in
which a building block is optimized in the background and replaced with a non-calibrated block
[JW98, TK07]. For example, in figure 5.6, the block A is replaced with the trimmed block B then
the optimization of the block A is started. The same principle can be employed in the functional

A

����

B

Figure 5.20: Outlines of background calibration of sensor electronics hardware.

block level as long as enough resources are available. However, if the functional block utilizes
many resources, and not enough resources are available for trimming it in the background, only
the passive components need optimization in the foreground as the other building blocks can be
optimized in the background one by one. The passive components of the functional blocks can be
initialized using the design procedures [TK06b] in order to recover from the deviations after few
iterations. Nevertheless, the initial values of the passive components are often efficient enough at
the operation point if the design procedures are employed. Swapping the blocks adds noise to the
output signal due to the switching activity and the phase shift between the two building blocks.
Therefore, the techniques that can reduce the noise should be used, such as, swapping the blocks in
the period between the sample and hold of two consequent samples if the signal is converted to the

102 PROPOSED DESIGN METHODOLOGY

digital domain as shown in figure 5.6, or employ a zero detect circuit and swap them when the out-
put signal level is zero. All the building blocks are optimized on the background one by one, while

Figure 5.21: Synchronizing the blocks swapping with the sample and hold of the ADC.

the large functional blocks are optimized in the foreground when the system is in standby mode.
The population of each of the building blocks is save in order to keep the previous information of
the evolution, which is necessary to prevent the evolution from starting from scratch.

5.7 Summary

Analog evolvable hardware has emerged in the last decade to support rapid prototyping analog hard-
ware that includes the self-x properties such as self-healing, self-configuring, etc. However, the
state-of-the-art analog evolvable hardware have not considered the industrial requirement to build
the hardware as described in chapter 4. On the other hand, the synthesis tools cannot cope with all
the deviations as hardware specifications are evaluated extrinsically, therefore, employing synthesis
tools to reconfigure the generic organic-computing sensor electronics such as the tools employed in
FPAAs [WV02, BRL+05] returns hardware that does not include the self-x properties.

In this thesis, the design flow for the aspired generic organic-computing sensor electronics is pre-
sented. It employs known hardware topologies, and optimizes its standard specifications in order to
return hardware with predictable behavior. However, including the complete hardware specifications
intrinsically requires expensive equipment that limits the approach to laboratory level only. There-
fore, a novel proposed scheme partitions the hardware specifications according to their sensitivity
and measurement requirements, in which, the specifications that are highly sensitive to deviations are
evolved intrinsically, and the rest of the specifications are measured extrinsically, which allows the
embedding of the aspired generic organic-computing sensor electronics. In order to cope with the
dynamic environment without restarting the optimization after any environmental change, dynamic
environment suitable approaches are employed [TLK06]. Instead of selecting the hardware topology
by expert knowledge [ZPV98,dMHBL01], classification models can be employed to detect the useful
topology for the required specifications as done in synthesis level [PF98]. Hierarchical optimization
is abstracted from the synthesis tools [GME05] as well to optimize first the building blocks, then
employ them in the functionality level. In order to ensure that the system does not go offline for long
time after environmental changes, background calibration can be employed.

Therefore, the proposed methodology affords generic organic-computing sensor electronics that re-
quires low cost integratable assessment for the trimming loop, which is essential for embedded system
applications.

CHAPTER 6

Experimental Work and Case Studies

The contributions of the experimental work are for the marked in gray blocks in the presented design
flow of the aspired generic organic-computing sensor electronics in figure 6.1, which are the hierar-
chical evolution of the generic sensor electronics considering the industrial requirements, its dynamic
trimming, and its assessing. Therefore, the calibration of the building blocks in static environment for
the deployment time, and the dynamic environment for the run-time are demonstrated. These building
blocks are employed afterwards in the hierarchical optimization of the functional blocks. The oper-
ational amplifier is selected as a case study for voltage-mode sensor electronics as it is commonly
used in many applications. As a current-mode case study, the second generation current conveyor
is selected as it is a well known current mode building block, and employed in many applications
such as building FPAAs [Gau97]. As the programmable operational amplifier is already implemented
in [LK05], it is demonstrated for the dynamic reconfiguration by the novel proposed approach mix-
trinsic multi-objective evolution, which assesses the optimization of the hardware against dynamic
deviation at low cost setup, while it considers the industrial requirement in the optimization. The
selected case studies for hierarchical optimization are the filters as it is necessary in many sensor
electronic applications, and the 3-bit flash ADC, which is published in advance [TK06b]. The func-
tional level blocks are optimized extrinsically as the target functional level blocks are not available
currently in a real hardware.

6.1 The Reconfiguration Environment

A block diagram of the implemented reconfiguration environment is shown in figure 6.2. It is a mod-
ular toolbox for evolving the sensor electronics, that can be extended by adding any hardware block
to it. It can evolve the hardware in the deployment phase by the mean of extrinsic evolution, or in the
run-time by the mean of intrinsic and mixtrinsic multi-objective evolution. Models of dynamic and
static variations that can occur in each block can be included to evaluate the hardware behavior in
various operation conditions. The optimization library in figure 6.2 contains several PSO approaches,
and it links GAlib [GAl] that contains several GA operators and approaches to investigate the various
optimization methods regarding their speed, and consequently, the power consumption in the embed-

104 EXPERIMENTAL WORK AND CASE STUDIES

Figure 6.1: The proposed design flow from chapter 5 for the aspired generic organic-computing sensor
electronics, the contributed blocks are marked in gray.

6.1 The Reconfiguration Environment 105

Figure 6.2: Block diagram of the implemented reconfiguration environment.

ded system. The pre- and post-processing library contains the necessary pre- and post-processing of
several building and functional blocks. The currently implemented building blocks are operational
amplifier, second generation current conveyor, multi-output operational transconductance amplifier.
In the functional block level, 3-bits flash converters, and filters are implemented. Only the operational
amplifier is available in a real chip, all the other blocks are evolved extrinsic in the current state of
the research. The pre- and post-processing library is connected to a simulation environment, and to
the reconfigurable chip. It generates netlist files that contain the assessment circuits, the configured
hardware, and the deviation models to extract the specifications of the target configuration by running
a simulation tool such as NGSPICE. A data acquisition (DAQ) card is employed to download the con-
figuration to the chip, to select the assessment circuit, to generate the test signal, and to convert the
output signal to the digital domain. The reconfigurable environment allows installing the DAQ card
in another PC, and communicates with it through a network socket that is developed for the hardware
level communications. The design flow is not fully automated in the current tool implementation.

The experimental setup for the intrinsic multi-objective evolution is simplified in figure 6.3. It consists

Figure 6.3: A simplified block diagram of the intrinsic evolution prototype.

106 EXPERIMENTAL WORK AND CASE STUDIES

of the processing unit that runs the evolutionary algorithm and the necessarily post-processing, a DAQ
card as an interface between the computation unit and the chip, calibration circuits to measure the
hardware specifications, and the evolvable chip. The utilized DAQ card is NI-6229 from National
Instruments. The reconfigurable chip is currently the programmable operational amplifier described
below.

The intrinsic evolution is mapped to the embedded system in figure 6.4. It employs XScale 400MHz
processor, which has the core of the fifth generation of the ARM architecture. Its data bus width is
32 bits. The embedded system contains 64MByte RAMs, LAN, USB, serial port, etc. The intrinsic
environment is compiled to the ARM architecture by ELINOS, which compiles a linux kernel as well
for the embedded system. As the DAQ card is installed in another PC, the embedded system commu-
nicates with the other PC using a network socket as described above. The embedded system supports
mounting an NFS (Network File System) as its root directory during the development. Therefore, the
evolution environment is compiled and copied to a host machine, and the embedded system uses the
NFS to communicate with it. The embedded system gets the kernel image through TFTP (Trivial File
Transfer Protocol). The user interface is through a serial console, which employs the serial port as a
console on a host machine.

Figure 6.4: Photograph of the target embedded system.

6.2 Baseline Hardware

The baseline of the intrinsic hardware evolution is an operational amplifier with programmable di-
mensions that utilizes standard topologies, which is proposed by Lakshmanan et al. [LK05]. The op-
erational amplifier is the basic block of many sensor electronic applications. They have implemented
Miller and folded-cascode topologies. The Miller operational amplifier consists of 13 devices, while

6.2 Baseline Hardware 107

the folded-cascode operational amplifier consists of 25 devices. The experimental work focuses on
Miller topology operational amplifier as it is well known and investigated, and as the folded-cascode
search space is large, and therefore, its optimization consumes more time. In figure 6.5, the schematic
and the layout of a programmable Miller topology operational amplifier [LK05] is shown. The enu-
meration of the devices in figure 6.5(a) is according to the programming sequence in the bitstream.The
schematic of folded-cascode amplifier is shown in figure 6.6. The same transistor and passive com-
ponent modules that are used in Miller topology are employed in the cascode amplifier.

(a) (b)

Figure 6.5: The evolvable chip in [LK05]. a) Reconfigurable Miller module schematic. b) Reconfig-
urable Miller module layout.

Figure 6.6: The schematic of the programmable folded-cascode operational amplifier module in
[LK05].

Each transistor of the amplifier is replaced by an array of parallel CMOS transistors each of them
has electronic switches connected in series with its terminals as shown in figure 5.15. The width of
the programmable transistor module is programmed by connecting the transistors in parallel to each
other through the switches. The implemented chip contains an array of eleven transistors with widths
of 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, and 128 µm [LK05]. Multiple instances of unit width are included

108 EXPERIMENTAL WORK AND CASE STUDIES

in order to improve the tolerance as they can particularly be affected by processing deviations. The
lengths of the transistors are fixed to 1µm [LK05]. Each of the NMOS transistors is replaced with
the programmable module in figure 5.15, each of the PMOS transistors is replaced with an equivalent
module with PMOS transistors. Similarly, the capacitor module consists of a set of capacitors in
parallel and a switch is connected to each of them in series. The capacitor programmable range is from
125 f F to 31.875 pF with a resolution of 125 f F (8-bits). The programmable resistor module consists
of a set of resistors in series, and switches in parallel to each of them. The resistor programmable
range is from 125Ω to 31.875kΩ with a resolution of 125Ω. The hardware is implemented using
Austriamicrosystems 0.35µm 3.3V CMOS technology. Obviously, the same technology is employed
for the extrinsic evolution of the hardware. Therefore, the Cadance technology transistor models are
exported to NGSPICE

The switches of the currently available chip has a narrow width, therefore, they can leave the resistive
region and operate in the saturation region due to low current, which increases the voltage drop over
the switch and limit the flowing current. This problem is treated in the FPMA2 [LK07] by modifying
the transistor module to be programmed by controlling only the gate voltage of the transistors as
shown in figure 5.16.

As the on-resistance of the current switch implementation is in the range of several kilo-ohms, the
programmable resistance range, and the characteristics of the programmable capacitor are affected
by this on-resistance, but are omitted in the experimental works as this problem is considered in
FPMA2 [LK07] by employing wider switches.

Therefore, the behavior of the real chip is declined from the simulated behavior with ideal switches.
However, the mentioned problems above are treated in FPMA2 which is currently in the manufactur-
ing phase.

For the intrinsic evolution of the operational amplifier, only two circuits are needed; the first circuit
with unity gain configuration with a load resistor of 10kΩ to measure the input voltage offset, the slew
rate, the settling time and the common mode range as shown in figure 6.7(a). The second circuit has

(a) (b) (c)

Figure 6.7: The intrinsic measurement circuits. a) Measuring the input voltage offset, slew rate,
settling time, and CMR. b) Measuring the output swing voltage. c) Measuring the current by the
voltage regulator circuit.

loop gain of −10 and is designed for measuring the output swing voltage as shown in figure 6.7(b).
If the quiescent power consumption is required to be measured, an additional circuit is employed
as the power supply regulator to measure the current as shown in figure 6.7(c), note that the opera-
tional amplifier in figure 6.7(c) is not the reconfiguration chip, while it is the reconfigurable hardware

6.3 Building Block Level 109

(the device under test) in figures 6.7(a) and 6.7(b). A batch mode is designed that evaluates all the

(a) (b)

Figure 6.8: Photos of the experimental hardware setup. a) The assessment circuits. b) Heating the
chip by soldering machine for the intrinsic dynamic environment experiment.

population for each of the specifications after selecting the required assessment circuit. Therefore,
each assessment circuit is selected once for the complete generation, which increases the lifetime
of the relays, and reduced the required delay time due to switching activities. In the non-stationary
environment intrinsic experiment, the chip is heated by a soldering machine as shown in figure 6.8(b).

6.3 Building Block Level

6.3.1 Operational Amplifier

The operational amplifier is used in most of the sensor electronics applications. It is a voltage-mode
building block for many circuits such as amplifiers, adders, oscillators, etc. Therefore, the operational
amplifier is selected as a building block case study.

Each component of the operational amplifier is represented by a dimension in the search space. The

110 EXPERIMENTAL WORK AND CASE STUDIES

complete Miller topology programmable operational amplifier has 13 components [LK05], which
means that the search space is R13 space. No symmetry constraints are made as they may obstruct
recovering from static and dynamic deviations. Although omitting these constraints is not necessary
in the extrinsic evolution, while it is essential in intrinsic and multi-objective mixtrinsic evolution, it is
omitted also in the extrinsic evolution as the aim of the extrinsic evolution is to model the behavior of
the intrinsically evolved hardware. Therefore, modeled deviations is applied as well in the extrinsic
evolution. The search space range of the each of the dimensions is constrained to the equivalent
component programmable range. The specifications that are included in the optimization are the
common mode range (CMR), rising and falling slew rate (SR ↑,SR ↓), rising and falling settling time
(Ts ↑,Ts ↓), input offset voltage, swing output voltage, open loop gain (A0), common mode rejection
ratio (CMRR), power supply rejection ratio (PSRR), output resistance (Ro), bandwidth (BW), phase
margin (φ), and quiescent power consumption (Pc). The thermal noise of the amplifier is not optimized
in the experimental work as the noise that the current chip generates is higher than the simulated
thermal noise due to the on-resistance of the switches that are connected to the drain and the source
of each of the programmable transistor module. This noise is minimized in FPMA2 [LK07] which is
currently in manufacturing phase. However, the developed tool support optimizing the noise as well.

The aim of the experimental work of the operational amplifier is to demonstrate the optimization by
various optimizers, to investigate performance of the dynamic environment suitable approaches, to
evolve the standard hardware specifications extrinsically, intrinsically and multi-objective mixtrinsi-
cally, and to obtain the building blocks to the hierarchical optimization of the functional level.

Extrinsic Multi-Objective Evolution

In this experiment, the industrial specifications of the operational amplifier are optimized by several
evolutionary computation optimizers. The extrinsic multi-objective evolution is investigated by three
different required specifications and weights. The required specifications and their weights for the
first, second, and third experiments are shown in tables 6.1, 6.3, and 6.5 respectively. The notation
speco refers to the required specification value of the objective o, fo is an example of the objective
values of the hardware that the optimizer returns.

The optimization of the operational amplifier is investigated extrinsically by HPSO (hierarchical
particle swarm optimization), PSO-TVAC (particle swarm optimization with time-varying acceler-
ation coefficients), MSPSO-TVAC (multi-swarm particle swarm optimization with time-varying ac-
celeration coefficients), HPSO-TVAC (hierarchical particle swarm optimization with time-varying
acceleration coefficients) and GA (genetic algorithm). The original PSO with the commonly used
parameter values was found not to perform well in comparison to GA with the selected parameter
values mentioned below, therefore, it is not included in the experimental work. The results of this
experiment have been partially published in advance in [TK05a, TK05b, TK06c, TK06a]. Evolving
the operational amplifier with few of the standard specifications using GA is published in [TK05a].
the complete hardware specifications presented in this experiment, and comparing it with PSO is pub-
lished in [TK05b], which was good enough to be invited for a book chapter in [TK06c]. Optimizing
an operational amplifier as a comparator using PSO, MSPSO, and HPSO is published in [TK06a].
However, more PSO methods are presented here, and few improvements and debugging is done in the

1This value is selected under the consideration that this amplifier is followed by an ADC with a conversion speed of
10kSPS.

6.3 Building Block Level 111

Table 6.1: The first variant of the target and the achieved specifications for extrinsic evolution of
operational amplifier in static environment.

spec. name ko speco fo
CMR [V] 10 ≥ 2.5 2.53
SR ↑ [V/µsec] 100 ≥ 2 26.34
SR ↓ [V/µsec] 100 ≥ 2 22.16
Ts ↑ [µsec] 100 ≤1001 0.0964
Ts ↓ [µsec] 100 ≤1001 0.3
O f f set [mV] 1 ≤ 1 0.455
Swing [V] 1 ≥ 2.5 2.86
A0 [dB] 15 ≥ 74 83.026
CMRR [dB] 0.1 ≥ 60 80.208
PSRR [dB] 0.03 ≥ 60 67.503
R0 [kΩ] 1 ≤ 20 19.819
BW [MHz] 1 ≥ 10 26.233
φ [◦] 10 ≥ 60 63.78
Pc [mW] Not optimized 22.1

Table 6.2: Transistor widths and passive component values of a returned configuration to the specifi-
cation variant at table 6.1.

Component Returned value
M1 [µm] 1
M2 [µm] 255
M3 [µm] 255
M4 [µm] 255
M5 [µm] 255
M6 [µm] 255
M7 [µm] 237
M8 [µm] 255
M9 [µm] 255
M10 [µm] 1
M11 [µm] 27
R12 [Ω] 125
C13 [p f] 5.75

post-processing to achieve more accurate assessment. In addition, improvement in the GA setting is
demonstrated as well.

The commonly used parameter values are employed in the PSO variants; the inertia weight w starts
by 0.9 and decreases linearly to 0.4, C1 = 2.05 and C2 = 2.05 for constant acceleration coefficients
PSOs, while C1 starts with 2.5 and ends with 0.5, and C2 starts with 0.5 and ends with 2.5 for time-
varying acceleration coefficients approaches. As described in chapter 5, the inertia weight is set to
zero for the HPSO-TVAC, if the velocity becomes zero in any of the dimensions, it is reinitialized.
The population in the PSO variants contains 20 particles. The multi-swarm PSO consists of 4 sub-
swarms, each of them contains 2 charged particles, and 3 neutral particles. The experiment consists of

112 EXPERIMENTAL WORK AND CASE STUDIES

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Iteration

lo
g 10

(F
a)

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.9: The convergence curve of the extrinsic evolution of the operational amplifier in [LK05]
for the requirements in table 6.1.

Table 6.3: The second variant of the target and the achieved specifications for extrinsic evolution of
operational amplifier in static environment.

spec. name ko speco fo
CMR [V] 10 ≥ 2 2.215
SR ↑ [V/µsec] 100 ≥ 2 174.02
SR ↓ [V/µsec] 100 ≥ 2 33.85
Ts ↑ [µsec] 100 ≤ 1 0.2822
Ts ↓ [µsec] 100 ≤ 1 0.3882
O f f set [mV] 1 ≤ 1 0.86
Swing [V] 1 ≥ 2 3.08826
A0 [dB] 15 ≥ 74 87.726
CMRR [dB] 0.1 ≥ 60 79.818
PSRR [dB] 0.03 ≥ 60 80.896
R0 [kΩ] 1 ≤ 40 38.71
BW [MHz] 1 ≥ 10 19.22
φ [◦] 10 ≥ 60 60.616
Pc [mW] 0.01 ≤ 5 2.07

6.3 Building Block Level 113

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

Iteration

lo
g 10

(s
td

(F
a))

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.10: The standard deviation curve of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.1.

Table 6.4: Transistor widths and passive component values of a returned configuration to the specifi-
cation variant at table 6.3.

Component Returned value
M1 [µm] 255
M2 [µm] 149
M3 [µm] 255
M4 [µm] 255
M5 [µm] 255
M6 [µm] 61
M7 [µm] 247
M8 [µm] 255
M9 [µm] 1
M10 [µm] 1
M11 [µm] 234
R12 [kΩ] 31.875
C13 [p f] 0.25

10 runs by each optimizer for each of the three required specification variants. The maximum allowed

114 EXPERIMENTAL WORK AND CASE STUDIES

0 50 100 150 200 250 300
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Iteration

lo
g 10

(F
a)

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.11: The convergence curve of the extrinsic evolution of the operational amplifier in [LK05]
for the requirements in table 6.3.

Table 6.5: The third variant of the target and the achieved specifications for extrinsic evolution of
operational amplifier in static environment.

spec. name ko speco fo
CMR [V] 10 ≥ 2.5 2.516
SR ↑ [V/µsec] 1 ≥ 10 17.84
SR ↓ [V/µsec] 1 ≥ 10 14.815
Ts ↑ [µsec] 1 ≤ 1 0.1584
Ts ↓ [µsec] 1 ≤ 1 0.3667
O f f set [mV] 1 ≤ 1 0.26
Swing [V] 1 ≥ 2.5 2.82
A0 [dB] 5 ≥ 74 83.3
CMRR [dB] 0.1 ≥ 60 81.1
PSRR [dB] 1 ≥ 60 71.14
R0 [kΩ] 1 ≤ 20 20.21
BW [MHz] 1 ≥ 10 15.4
φ [◦] 10 ≥ 60 63.354
Pc [mW] 1 ≤ 5 4.901

6.3 Building Block Level 115

0 50 100 150 200 250 300
−6

−5

−4

−3

−2

−1

0

1

2

3

Iteration

lo
g 10

(s
td

(F
a))

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.12: The standard deviation curve of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.3.

Table 6.6: Transistor widths and passive component values of a returned configuration to the specifi-
cation variant at table 6.5.

Component Returned value
M1 [µm] 184
M2 [µm] 240
M3 [µm] 253
M4 [µm] 255
M5 [µm] 255
M6 [µm] 255
M7 [µm] 237
M8 [µm] 255
M9 [µm] 2
M10 [µm] 3
M11 [µm] 253
R12 [kΩ] 23.875
C13 [p f] 4.875

velocity of each particle is the 254, and 127 for the first specification variant.

116 EXPERIMENTAL WORK AND CASE STUDIES

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

2

Iteration

lo
g 10

(F
a)

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.13: The convergence curve of the extrinsic evolution of the operational amplifier in [LK05]
for the requirements in table 6.5.

As the PSO employs a memory element for each particle, more individuals are employed in GA.
The GA population consists of 30 individuals, the best 10 individuals are kept to the next generation,
and the rest is replaced each generation. The mutation probability in the GA is set to 0.1, and the
crossover probability is set to 0.3. The parents are selected by the tournament selection, and the arith-
metic crossover is employed for combining the parents. These GA parameter values are determined
by extensive effort. The GA with this parameter values delivered better results than the GA in the
previous publications [TK05a, TK05b, TK06c]. Its detailed sensitivity is not investigate here.

The convergence curves of the PSO variants and the GA of the settings in tables 6.1, 6.3 and 6.5 are
shown in figures 6.9, 6.11 and 6.13 respectively. Their standard deviation curve is shown in figures
6.10, 6.12 and 6.14 correspondingly. The required time for a complete run (300 iterations) is about 2
hours on an AMD Athlon64 2.4GHz processor.

An example of the returned configuration for the first, second, and third specification variants are
shown tables 6.2, 6.4, and 6.6.

The AC characteristics curve and the step response of the configuration in table 6.6 is shown in figures
6.15 and 6.16 respectively as an example of the returned results.

The last iteration mean values of all the runs using the GA, HPSO, HPSO-TVAC, MSPSO-TVAC,

6.3 Building Block Level 117

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

2

Iteration

lo
g 10

(s
td

(F
a))

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC
GA

Figure 6.14: The standard deviation of the extrinsic evolution of the operational amplifier in [LK05]
for the requirements in table 6.5.

Table 6.7: The last iteration mean value of all the runs using the GA, HPSO, HPSO-TVAC, MSPSO-
TVAC, and PSO-TVAC.

Target setting Target setting Target setting
in table 6.1 in table 6.3 in table 6.5

GA 0.1727 0.017 0.174
HPSO 0.0959 0 0.1707
HPSO-TVAC 2.363×10−2 0 0.1802
MSPSO-TVAC 7.485×10−2 4.857×10−2 0.1886
PSO-TVAC 6.11−2 0.2502 0.2316

and PSO-TVAC are shown in table 6.7, there standard deviations are given in table 6.8 The HPSO
performed better than the GA in the three experiments. However, the standard deviation of the GA is
better than the HPSO in two of the three experiments.

The behavior of the algorithm is evaluated in dynamic environment by modeling the effect of varying
the temperature of the transistor M8 to 100◦C gradually over 300 iteration. The temperature fluc-
tuation is applied every 20 iterations. This means that each 20 iteration, the temperature of M8 is
increases by 4.8667◦C. The aim of this experiment is to investigate if starting from scratch is neces-
sary after any environmental change, which is done in the state-of-the-art evolvable hardware. The

118 EXPERIMENTAL WORK AND CASE STUDIES

10
−6

10
−4

10
−2

10
0

10
2

−50

0

50

100

Freq. [MHz]

|A
|

[d
B

]

10
−6

10
−4

10
−2

10
0

10
2

−6

−4

−2

0

2

Freq. [MHz]

φ
 [r

ad
]

Figure 6.15: AC characteristics curve of the amplifier with the configuration in table 6.6.

Table 6.8: The last iteration standard deviation using the GA, HPSO, HPSO-TVAC, MSPSO-TVAC,
and PSO-TVAC.

Target setting Target setting Target setting
in table 6.1 in table 6.3 in table 6.5

GA 0.2155 0.05376 0.1223
HPSO 0.3242 0 0.1456
HPSO-TVAC 0.0345 0 0.0733
MSPSO-TVAC 0.1915 0.1279 0.2754
PSO-TVAC 0.1417 0.3955 0.2634

required weights and the values of the operational amplifier specifications are given in table 6.9. In
results published in advance mentioned above [TK05a, TK05b, TK06c, TK06a], the evolution starts
from scratch after the environmental change in order to investigate if the evolvable hardware can
cope with deviations. On the contrary, the results presented here demonstrates an improvement to
the state-of-the-art evolution electronics, where the evolution does not start from scratch after every
environmental change.

The optimization is accomplished by the MSPSO (multi-swarm PSO), and HPSO for dynamic envi-
ronment. The time variant acceleration coefficient approaches are not employed for the non-stationary
environment experiment as the evolution is expected to be employed in the run time of the hardware,
therefore, the number of iterations is not limited as the evolution calibrates the system every time it

6.3 Building Block Level 119

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3
V

in
 &

 V
ou

t [
V

]

Time [µ sec]

Input
Output

Figure 6.16: Step response of the amplifier with the configuration in table 6.6.

Table 6.9: The target specifications for operational amplifier in dynamic environment.
spec. name ko speco

CMR [V] 10 ≥ 2
SR ↑ [V/µsec] 100 ≥ 2
SR ↓ [V/µsec] 100 ≥ 2
Ts ↑ [µsec] 100 ≤1
Ts ↓ [µsec] 100 ≤1
O f f set [mV] 1 ≤ 1
Swing [V] 1 ≥ 2
A0 [dB] 15 ≥ 74
CMRR [dB] 0.1 ≥ 60
PSRR [dB] 0.03 ≥ 60
R0 [kΩ] 1 ≤ 40
BW [MHz] 1 ≥ 10
φ [◦] 10 ≥ 60
Pc [mW] 0.01 ≤ 5

changes. The mean value of 10 runs of the convergence curve during the evolution is shown in figure
6.17. The corresponding standard deviation curve is shown in figure 6.18

120 EXPERIMENTAL WORK AND CASE STUDIES

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Iteration

lo
g 10

(F
a)

HPSO
MSPSO

27oC 100oC

Figure 6.17: The convergence curve of the extrinsic evolution of the operational amplifier in dynamic
environment.

In the figures 6.19 to 6.25, the convergence curve of each of the specifications for one of the runs is
shown.

The environmental change is detected by reevaluating the global best achieved fitness each iteration.
The best achieved fitness values of all the particles are reevaluated if any environmental change is
detected [CD00]. As shown, employing the hardware previous experience reduced the required num-
ber of iterations to find a new suitable solution. In this experiment, the HPSO behaves better then
MSPSO in dynamic environment. Depending on the objective functions, and the dynamic environ-
ment changing rate, etc., the MSPSO may converge faster in some cases as shown below in intrinsic
multi-objective optimization in dynamic environment.

Intrinsic Multi-Objective Evolution

The extrinsic evolution of the hardware cannot cope with the system deviations as it does not has
a complete model about the instant deviations of the hardware. Therefore, the intrinsic evolution

6.3 Building Block Level 121

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Iteration

lo
g 10

(s
td

(F
a))

HPSO
MSPSO

100oC27oC

Figure 6.18: The standard deviation curve of the extrinsic evolution of the operational amplifier in
dynamic environment.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
70

75

80

85

90

95

Iteration

A
o [d

B
]

27oC 100oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

5

10

15

20

25

Iteration

B
an

d
w

id
th

 [M
H

z]

100oC27oC

(b)

Figure 6.19: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) Open-loop gain. b) Bandwidth.

optimizes the hardware by real measurements to recover from deviations. The aim of this experiment
is to evolve the hardware by real measurements to recover from the instant system deviations.

122 EXPERIMENTAL WORK AND CASE STUDIES

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

Iteration

C
M

R
 [V

]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Iteration

O
ut

pu
t s

w
in

g
vo

lta
ge

 [V
]

100oC27oC

(b)

Figure 6.20: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) CMR. b) Output swing voltage.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
40

50

60

70

80

90

100

110

120

Iteration

C
M

R
R

 [d
B

]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

60

70

80

90

100

110

120

Iteration

P
S

R
R

 [d
B

]

100oC27oC

(b)

Figure 6.21: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) CMRR. b) PSRR.

For the evaluation of each individual, the processing unit first downloads the configuration to the
evolvable chip, chooses the required measurement circuits by switching the circuit selection re-
lays, generates the required test signals, measures the output signals, then runs the necessarily post-
processing to extract the hardware specifications from the output signals.

The specifications that are optimized intrinsically in the experimental work regarding the measure-
ment setup cost are common mode range (CMR), swing output voltage, input voltage offset, rising
settling time, falling settling time, rising slew rate, and falling slew rate2. The open loop frequency
response is implicitly optimized by optimizing the settling time and the slew rate3. The required
specification for the settling time is 100 µsec, and its weight is 10, while it is 0.01 V/µsec for the
slew rate and its weight is 103. The required offset is 0.1mV , and its weight is 0.1. For the CMR, the

2The value of slew rate and settling time is limited to the employed ADC conversion speed.
3Therefore, their required values are limited to the conversion speed of the ADC as well

6.3 Building Block Level 123

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

1.2

Iteration

R
is

in
g

se
ttl

in
g

tim
e

[µ
 s

ec
]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

1

2

3

4

5

6

7

Iteration

F
al

lin
g

se
ttl

in
g

tim
e

[µ
 s

ec
]

100oC27oC

(b)

Figure 6.22: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) Rising settling time. b) Falling settling time.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

20

40

60

80

100

120

140

160

180

Iteration

R
is

in
g

sl
ew

 r
at

e
[V

/µ
 s

ec
]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−20

0

20

40

60

80

100

120

Iteration

F
al

lin
g

sl
ew

 r
at

e
[V

/µ
 s

ec
]

100oC27oC

(b)

Figure 6.23: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) Rising slew rate. b) Falling slew rate.

required specification is 1.5V , and its weight is 10, while it is 2.5 for the output swing voltage, and its
weight is 1. The quiescent power consumption is optimized to 10µW for low power applications, its
weight is 1.

The convergence curve of the mean value of 10 runs of the optimization using HPSO, MSPSO-TVAC,
HPSO-TVAC, and PSO-TVAC is shown in figure 6.26, and the standard deviation curve is shown in
figure 6.27.

The population size is 20 particles, and it runs for 100 iterations. The maximum velocity for each par-
ticle is half the search space. The value of the inertia weight w starts with 0.9, and decreases linearly
to 0.4 over the 100 iteration. For the HPSO, C1 = 2 and C2 = 2. For the time variant acceleration
coefficient approaches, C1 starts with 2.5 and decreases linearly to 0.5, while C2 starts with 0.5 and
increases linearly to 2.5. The MSPSO consists of 4 sub-swarms, each sub-swarm has 5 particles, in
which, two of them are charged with a charge of 10.

124 EXPERIMENTAL WORK AND CASE STUDIES

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2

4

6

8

10

12

14

16

18

20

Iteration

In
pu

t v
ol

ta
ge

 o
ffs

et
 [m

V
]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
20

40

60

80

100

120

140

160

180

Iteration

O
up

ut
 r

es
is

ta
nc

e
[k

Ω
]

100oC27oC

(b)

Figure 6.24: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) Offset. b) Output resistance.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
20

30

40

50

60

70

80

Iteration

P
ha

se
 m

ar
gi

n
[o]

100oC27oC

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

1

2

3

4

5

6

7

Iteration

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

100oC27oC

(b)

Figure 6.25: The achieved specifications of the evolution of operational amplifier in dynamic envi-
ronment. a) Phase margin. b) Quiescent power consumption.

The batch assessment mode that is described above is employed in which; an assessment circuit is
selected and the equivalent objectives are evaluated in all the population, then the next assessment
circuit is selected, and so on. This minimizes the need of waiting till the relays are stable, and
increases the life-time of the relays. A photo of the assessment circuits of the chip is shown in figure
6.8(a). The required time for a complete run is about 8 minutes.

A snapshot for the input and the output signals of the circuit in figure 6.7(a) is shown in figure 6.28.
After the configuration had been downloaded, the offset is measured by feeding a signal with virtual
ground to the input, which is 1.65 V, as the chip is implemented by 3.3V CMOS technology as
mentioned above. In order to reduce the noise, the mean value of 4000 samples is taken. Thereafter,
the slew rate and the settling time are measured with the same signal which rises from 1.65V by 0.5V
to 2.15V for 1000 samples, then drop again to 1.65V for 1000 samples in order to measure the rising
slew rate and the rising settling time. The input voltage level for large signal such as measuring the
slew rate should be more than 0.5V with respecting to virtual ground, but the same signal is employed

6.3 Building Block Level 125

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

Iteration

lo
g 10

(F
a)

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC

Figure 6.26: The convergence curve of the intrinsic evolution in the static environment.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

Iteration

lo
g 10

(F
a)

HPSO
MSPSO−TVAC
HPSO−TVAC
PSO−TVAC

Figure 6.27: The standard deviation curve of the intrinsic evolution in the static environment.

for measuring the settling time and slew rate as an approximation to reduce the calibration time, this
input level is selected to compromise on both the settling time and the slew rate. Afterwards, the input
signal drops to 1.15V (which is -0.5 with respect to virtual ground) in order to measure the falling
slew rate and the falling settling time. As the sampling time is 10µsec, the fastest measurable settling
time is 10µsec, which means that the signal is stable in less than a sample. Similarly, the maximum

126 EXPERIMENTAL WORK AND CASE STUDIES

Figure 6.28: Measuring offset, CMR, Ts and SR intrinsically.

Figure 6.29: Measuring the output swing voltage intrinsically.

slew rate is 0.5V
10µsec = 0.05V/µsec. The values shown in the table for both the settling time and the

slew rate are because the signal reached the output in less than one sample. In order to reduce the

6.3 Building Block Level 127

measurement noise, a moving average filter with width of 3 samples is used, and the specification
values are obtained by the mean value of 5 measurements. For measuring the common mode range,
an input signal is generated that starts by 0.5V, and ends by 3V in 100 steps. Each step consists of 20
samples. Then the linear range around the ground is returned. The output swing voltage is measured
by the test signal shown in figure 6.29. The test signal is a linearly increasing signal around the virtual
ground with the range between 1.5250−o f f set and 1.7750−o f f set.

In figure 6.30, an example of the response signal of an individual is shown that is good in most of
the objectives but with small CMR. In figure 6.31, an example of an individual with too a small

Figure 6.30: The effect of small CMR.

phase margin is shown. The output appears to be a thick line because of the oscillations due to the
operational amplifier instability.

The intrinsic evolution is mapped to the embedded system in figure 6.4, the compiled programm size
is 165.388 kBytes. The CPU load is about 1.7%, and the employed memory is 1.2 MBytes. The time
required for one run is about 8 minutes. The HPSO-TVAC with the parameters given above is tested
for checking the required time for one run.

The behavior of the hardware evolution in dynamic environment is investigated by heating the chip
by a soldering machine as shown in figure 6.8(b). First the optimization algorithm is run to evolve
the amplifier at the nominal temperature for 20 iterations, then the soldering machine is turned on.
The temperature of the soldering machine increases gradually to 150◦C. The setup applies irregular
deviation to the chip as the air movement inside the laboratory can change the environmental settings
as it cools down the chip, therefore, the same experimental results are not repeatable. However, aim
of the experiment is to demonstrate coping with non-regulator dynamic deviations. This results are
published earlier in [TLK06].

128 EXPERIMENTAL WORK AND CASE STUDIES

Figure 6.31: The effect of small phase margin.

The evolvable intrinsic evolution is investigated by MSPSO, and HPSO. If any environmental change
is detected, the algorithm reevaluates the fitness of the position equivalent to the best achieved fitness
value (the p vector) of all the particles. The target specifications are the same set of specifications that
are optimized intrinsically above, except that the power consumption and the swing output voltage
are not optimized in this experiment in order to give the freedom to the evolution to find working
configurations in harsh environments even if it consumes more power than the above experiment, and
can drive output signal with smaller peak value. For both HPSO and MSPSO, the population size is
20 particles, they run for 200 iteration. The maximum velocity for each particle is 32. The value of
w starts by 1 and decreases linearly to reach 0.7 at the last iteration, and C1 and C2 are equal 2.05.
Similar to the static environment experiment, the MSPSO consists of 4 swarms, each swarm has 5
particles, and two of them are charged with a charge of 10.

The global best is reevaluated each iteration to detect the environmental changes. In order to decrease
false environmental change detection that can be done because of the noise, 10% of environmental
change is accepted without taking any action. This means, any small deviation when the fitness value
is near zero is treated as an environmental change.

In figure 6.32, the convergence curves of the mean value of 5 runs for both MSPSO and HPSO are
shown, the correspond standard deviation curves are shown in figure 6.33. The discontinuity in the
curve is because log(0) is undefined. In some cases, due to noise, the measured specifications of the
best particle are changed in the first 20 iterations before applying the heating. The static environ-
ment intrinsic evolution above does not converge as fast as here because the power consumption is
optimized in the static environment experiment.

Employing dynamic environment suitable approaches enables the evolution to cope with dynamic

6.3 Building Block Level 129

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

Iteration

lo
g 10

(F
a)

HPSO

Room temperature

Heating the chip gradually to 150oC

(a)

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

Iteration

lo
g 10

(F
a)

MSPSO

Heating the chip gradually to 150oC

Room temperature

(b)

Figure 6.32: The convergence curves of intrinsic evolution in the stationary environment. a) Using
HPSO, b) Using MSPSO.

environment without starting from scratch after every environmental change. The MSPSO coped
with the environmental changes in this experiment better than the HPSO. However, it depends on the
required specifications, weights, the environmental changes, and the noise as well.

130 EXPERIMENTAL WORK AND CASE STUDIES

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

Iteration

lo
g 10

(s
td

(F
a))

HPSO

Room temperature

Heating the chip gradually to 150oC

(a)

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

Iteration

lo
g 10

(s
td

(F
a))

MSPSO

Room temperature

Heating the chip gradually to 150oC

(b)

Figure 6.33: The standard deviation curves of intrinsic evolution in the stationary environment. a)
Using HPSO, b) Using MSPSO.

Mixtrinsic Multi-Objective

Building a complete assessment hardware setup that measures all the hardware specifications is not
desirable regarding its cost and integratability. Therefore, the hardware specifications are partitioned

6.3 Building Block Level 131

Table 6.10: The target and the achieved specifications for operational amplifier.
spec. name Ko speco fo type
CMR [V] 10 ≥ 2 2.176 intrinsic
SR ↑4 [V/µsec] 100 ≥ 0.01 0.0482 intrinsic
SR ↓4 [V/µsec] 100 ≥ 0.01 0.05 intrinsic
Ts ↑4 [µsec] 100 ≤ 100 10 intrinsic
Ts ↓4 [µsec] 100 ≤ 100 10 intrinsic
O f f set [mV] 1 ≤ 1 0.977 intrinsic
Swing [V] 1 ≥ 2 2.16198 intrinsic
A0 [dB] 15 ≥ 74 79.8 extrinsic
CMRR [dB] 0.1 ≥ 60 42.4 extrinsic
PSRR [dB] 0.03 ≥ 60 61.5 extrinsic
R0 [kΩ] 1 ≤ 40 13.9085 extrinsic
BW [MHz] 1 ≥ 10 25 extrinsic
φ [◦] 10 ≥ 60 62.016 extrinsic
Pc [mW] 1 ≤ 5 1.54 intrinsic

into intrinsic specification set and extrinsic specification set as described in chapter 5. The operation
point of the hardware is the most important for its basic operation, while it is sensitive to the devi-
ations. On the other hand, the AC characteristics of the hardware are not strongly affected by the
deviations. Therefore, the DC specifications are evaluated intrinsically by low or moderate speed, but
accurate assessment setup, while, the AC specifications are evaluated extrinsic.

The experimental work is done to fulfill the given specifications in table 6.10. The hierarchical par-
ticle swarm optimization is employed in optimizing the mixtrinsic multi-objective evolution as it is
shown above that it converges well for most of the hardware specifications variants in the previous
experiments. The same setting of the HPSO for extrinsic evolution is employed. The mixtrinsic evo-
lution is investigated by 10 runs; each run consists of 300 iterations. The optimization algorithm and
simulation environment are tested on an AMD Athlon 64 2.4GHz processor, each run takes about
75 minutes. The mixtrinsic multi-objective evolution is published in advance in [TK07]. However
the results in [TK07] are prepared using MSPSO, while this results are prepared by HPSO as it is
experimentally more efficient.

As described above, in the current setup, the noise has relatively high influence on the intrinsic mea-
surement. Thus, the measurement is repeated five times in the intrinsic evaluation, and the mean value
of measurements is returned.

The convergence curve of the mean value of the 10 runs is shown in figure 6.34. Some oscillations
appear in the curve due to the disturbance caused by the noise. The correspond standard deviation
curve is shown in figure 6.35.

In table 6.10 column 3 (fo), the specifications of a best individual during one of the optimization runs
is shown.

4The required value of the settling time and slew rate is limited to the analog to digital converter speed. Improving
the settling time and the slew rate can be done by including them again extrinsically, but it is not necessary as they are
implicitly included in the phase margin and the bandwidth optimization.

132 EXPERIMENTAL WORK AND CASE STUDIES

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

5

Iteration

lo
g 10

(F
a)

HPSO

Measurement error
due to noise

Figure 6.34: Mixtrinsic multi-objective evolution convergence curve.

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

Iteration

lo
g 10

(s
td

(F
a))

HPSO

Figure 6.35: Mixtrinsic multi-objective evolution standard deviation curve.

An example of the returned configurations is shown in table 6.11. The specifications equivalent to
this configuration is shown in table 6.10 column 4.

As shown in all the results, the output resistance of miller topology is high as it does not employ any
output stage. If low output impedance is required, folded-cascode topology can be used. However, as
it employs large search space (R25), it requires more iterations to find good solution. An example of

6.3 Building Block Level 133

Table 6.11: Transistor widths and passive component values of a returned configurations in the mix-
trinsic multi-objective evolution.

Component Returned value
M1 [µm] 1
M2 [µm] 258
M3 [µm] 258
M4 [µm] 258
M5 [µm] 258
M6 [µm] 258
M7 [µm] 258
M8 [µm] 258
M9 [µm] 258
M10 [µm] 3
M11 [µm] 73
R12 [kΩ] 18.375
C13 [p f] 14.25

Table 6.12: Transistor widths and passive component values of a returned folded-cascode operational
amplifier configurations in the mixtrinsic multi-objective evolution.

Component Returned value Component Returned value
M1 [µm] 177 M14 [µm] 255
M2 [µm] 255 M15 [µm] 255
M3 [µm] 255 M16 [µm] 254
M4 [µm] 255 M17 [µm] 204
M5 [µm] 252 M18 [µm] 255
M6 [µm] 255 M19 [µm] 255
M7 [µm] 255 M20 [µm] 115
M8 [µm] 55 M21 [µm] 254
M9 [µm] 255 M22 [µm] 255
M10 [µm] 255 M23 [µm] 69
M11 [µm] 233 R24 [Ω] 375
M12 [µm] 255 C25 [p f] 31.875
M13 [µm] 1

the returned configurations of the mixtrinsic multi-objective evolution for folded-cascode operational
amplifier is table 6.12. The performance of this amplifier and the required performance is shown in
table 6.13. The evolution of this amplifier requires about 500 iteration or more to find a good solution.

As strong dynamic environment is already investigated intrinsically and extrinsically above, the mix-
trinsic multi-objective evolution is investigated only in static environment. However, as shown in
figure 6.34, it copes with environmental dynamics such as noise without starting from scratch. In
order to achieve successful investigation for strong dynamic environment using mixtrinsic evolution,
it is required either to measure the hardware temperature and utilize it in the simulation, or measure
the operating point setting, and employ it in a modeled hardware.

134 EXPERIMENTAL WORK AND CASE STUDIES

Table 6.13: The target and the achieved specifications for folded-cascode operational amplifier.
spec. name Ko speco fo type
CMR [V] 10 ≥ 2 1.95 intrinsic
SR ↑5 [V/µsec] 100 ≥ 0.01 0.0436 intrinsic
SR ↓5 [V/µsec] 100 ≥ 0.01 0.0512 intrinsic
Ts ↑5 [µsec] 100 ≤ 100 10 intrinsic
Ts ↓5 [µsec] 100 ≤ 100 10 intrinsic
O f f set [mV] 1 ≤ 1 0.36 intrinsic
Swing [V] 1 ≥ 2 2.89 intrinsic
A0 [dB] 15 ≥ 86 87.4 extrinsic
CMRR [dB] 0.1 ≥ 60 144 extrinsic
PSRR [dB] 0.03 ≥ 60 70.5 extrinsic
R0 [kΩ] 1 ≤ 6 6.134 extrinsic
BW [MHz] 1 ≥ 10 25 extrinsic
φ [◦] 10 ≥ 60 69.3 extrinsic
Pc [mW] 1 ≤ 5 0.442 intrinsic

6.3.2 CCII

The second generation current conveyor (CCII) is investigated in many current mode application
[Wil90]. FPAA can be developed based on the CCII element [Gau97]. However, it is not com-
mercially available, consequently, no industrial specifications is found describing its behavior so far.
Therefore, the target specifications are chosen as the following:

• Settling time (Ts): The interval of time between step input current at the node X, and the output
current at the node Z to be stable at the same value. The output is assumed to be stable if its ripple is
less than ±5% of the final value. Similar to the operational amplifier, the settling time is optimized
by two objectives; the rising settling time (Ts ↑), and the falling settling time (Ts ↓).

• Slew rate (SR): The maximum rate of change of the output current. It is consists of rising slew rate
(SR ↑) and falling slew rate (SR ↓) as in the operational amplifier.

• Current offset (Io f f set): The input current when the output current is zero.

• Voltage offset (Vo f f set): The voltage at the node Y (with respect to the virtual ground) when the
node X is equal to virtual ground voltage.

• Band width (BW3dB): The frequency range in which the current gain is more than -3dB.

• Linear current range (CR): The range of the input current in which the input-output current relation
(at the nodes X and Z) is linear.

• Linear voltage range (V R): The range of the input voltage in which the input-output voltage relation
(at the nodes Y and X) is linear.

• Current input range that keeps VX = VY when VY is connected to ground (CRVX=VY).

6.3 Building Block Level 135

Table 6.14: The target and the achieved specifications for extrinsic evolution of the CCII.
spec. name ko speco fo
CMRI [µA] 100 ≥ 200 250
CMRV [V] 10 ≥ 1.5 1.534
SR ↑ [µA/µsec] 1 ≥ 50 1896

SR ↓ [µA/µsec] 1 ≥ 50 1926

Ts ↑ [µsec] 10 ≤ 1 0.46

Ts ↓ [µsec] 10 ≤ 1 0.66

Vo f f set [mV] 1 ≤ 10 7.12
Io f f set [µA] 1 ≤ 0.1 0.068
BW3dB [MHz] 1 ≥ 10 316.2
Pc [mW] Not optimized 21
CRVX=VY [µA] 100 ≥ 200 250

The stability of the CCII is implicitly optimized by optimizing the settling time. The CCII in [ITF02]
is chosen as a case study as it employs only 10 components, only two transistors are connected
between the power supply terminals which reduces the voltage drop over the transistors, and con-
sequently enhances the low voltage operation. The schematic of the CCII is shown in figure 6.36.
The compensation capacitor Cc = 50n f is added manually after the reconfiguration as it was found
that although the circuit is stable in transient simulation, it is not stable if the simulation time step
decreased without this capacitor.

Figure 6.36: A low-voltage, low-power CCII implementation [ITF02].

The HPSO is employs to evolve the CCII building block with the same setting that is used to evolve
the operational amplifier. The required specifications speco and their weights ko are given in table
6.14. The lengths of the transistors are fixed to 1µm, and the width is programmable with the range
of 1− 257µm. The HPSO returned the CCII with the dimensions in table 6.15 after 33 iterations.
The achieved specification values fo by the configuration in table 6.15 is given in last column in table
6.14. The frequency response of the evolved CCII is shown in figure 6.37. The frequency response
after adding the compensation capacitor to the original design in [ITF02] is shown in figure 6.38. The
relation between the input current IX and the output current IZ when VY = 0 is shown in figure 6.39.
The relation between the input current IX and the voltage VX when VY = 0 is shown in figure 6.40.

6This values are obtained after adding the compensation capacitor Cc to the circuit

136 EXPERIMENTAL WORK AND CASE STUDIES

Table 6.15: The CCII configuration that the evolution returned.
Transistor name Transistor width
MP1 257
MN1 255
MP1 257
MN2 257
MP3 257
MN3 1
MP4 257
MN4 1
MP5 257
MN5 93

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

−100

−50

0

50

Freq. [MHz]

|I Z
/I X

|
[d

B
]

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

−6

−4

−2

0

2

Freq. [MHz]

∠
 I Z

/I X
 [

ra
d]

Figure 6.37: The frequency response of the evolved CCII.

The step response of the CCII after adding the compensation capacitor is shown in figure 6.41. The
relation between input voltage VY and output voltage VX when IX = 0 is shown in figure 6.42.

6.4 Functional Level

In this section, the hardware is evolved using hierarchical optimization, therefore, the building block
configurations obtained above are employed to evolve the functional level hierarchically. As the target
functional level blocks are not available currently in a real hardware, they are evolved extrinsically.
The instrumentation amplifier is not investigated as it was faulty in the first chip. It will be investigate
intrinsically in the availability of the new chip FPMA2, which is currently in the manufacturing phase.

6.4 Functional Level 137

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

−80

−60

−40

−20

0

Freq. [MHz]
|I Z

/I X
|

[d
B

]

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

−15

−10

−5

0

Freq. [MHz]

∠
 I Z

/I X
 [

ra
d]

Figure 6.38: The frequency response of the evolved CCII after adding the compensation capacitor.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

I Z
 [

µ
A

]

I
X
 [µ A]

Figure 6.39: The relation between the input current IX and the output current IZ of the evolved CCII.

6.4.1 Flash ADC

Analog to digital converters are the interfacing element between the analog and the digital sensor
electronics. In chapter 2, it is described that the state-of-the-art ADCs have self-calibration capability
that enhance coping with static and dynamic deviations. Some sensor electronic applications such as
high speed image sensors require fast ADCs with low resolution. Therefore, slow but accurate ADC
with self-calibration capability can be employed to evolve fast ADC such as flash ADC.

The schematic of the 3 bit flash ADC is shown in figure 6.43. Its evolution is done by hierarchical
optimization [TK06b] in which, first the comparators are optimized to reduce the offset to be less
than 1mV , the propagation delay be less than 20nsec, and the CMR to 2V . Then, they are utilized
in designing the ADC by adding programmable resistors to them, thereafter, ADC is optimized by

138 EXPERIMENTAL WORK AND CASE STUDIES

−150 −100 −50 0 50 100 150

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

V
X
 [

V
]

I
X
 [µ A]

Figure 6.40: The relation between the input current IX and the output voltage VX of the evolved CCII.

0 0.5 1 1.5 2 2.5 3 3.5 4
−30

−20

−10

0

10

20

30

I X
,I Z

 [
µ

A
]

Time [µ sec]

Input current (I

X
)

Output current (I
Z
)

Figure 6.41: The step response of the evolved CCII after adding the compensation capacitor.

programming the passive components. Each of the components is replaced by a programmable one.

The reference voltage of the ADC in the experimental work is 1V with respect to the virtual ground.
The virtual ground is 1.65V , which is half of the supply voltage. Each of the output transition levels
is considered as an objective function. The optimization aim to adjust the transition levels of the ADC
to a reference transition levels, which minimizes the conversion error. These transition levels are the
outputs of the comparators in figure 6.43. The target transition levels are given in table 6.16. The
RMS error between the target and the achieved transition levels is minimized. The speed of the flash
ADC is optimized by optimizing the comparators propagation delay. For simplicity, the optimizing of
the quiescent power consumption is not included in the optimization. The 3-bit flash ADC published
in advance in [TK06b], where the comparators propagation delay was 200nsec, the common mode
range was not optimized, and the objective function was minimizing the total error between the input

6.4 Functional Level 139

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

V
Y
 [

V
]

V
X
 [V]

Figure 6.42: The relation between VX and VY .

Figure 6.43: The target 3 bit ADC flash converter.

single and the quantized signal, which implicitly optimizes the ADC signal, but does not describe the
behavior, in addition, as the RMS error was not optimized, the error in some levels may get high in
order to reduce the error of the others.

A returned comparator configuration is given in table 6.17.

Two deviation models are investigated; the first deviation model is increasing the resistor R5 by
50%, decreasing R6 by 25%, and increasing R8 by 20%, which can occurs due to manufacturing
tolerance, or thermal distribution. The second deviation is a simulated increase of the temperature of
the comparator transistor M8 to 100◦C.

140 EXPERIMENTAL WORK AND CASE STUDIES

Table 6.16: The required and the achieved transition levels for the flash ADC, and the effect of the
deviations on them.

Transition levels Transition Initial Applying Recovering Applying Recovering
figure 6.43 voltage configuration model 1 model 1 model 2 model 2

deviations deviations deviations deviations
O1 [V] 0.0625 0.062 0.058 0.063 0.001 0.063
O2 [V] 0.1875 0.188 0.175 0.187 0.125 0.187
O3 [V] 0.3125 0.312 0.292 0.312 0.25 0.312
O4 [V] 0.4375 0.437 0.408 0.437 0.374 0.437
O5 [V] 0.5625 0.565 0.585 0.568 0.499 0.562
O6 [V] 0.6875 0.684 0.673 0.685 0.625 0.686
O7 [V] 0.8125 0.811 0.789 0.814 0.748 0.811

Table 6.17: Transistor widths and passive component values of a returned comparator.
Component Returned value
M1 [µm] 1
M2 [µm] 257
M3 [µm] 257
M4 [µm] 257
M5 [µm] 257
M6 [µm] 35
M7 [µm] 180
M8 [µm] 181
M9 [µm] 1
M10 [µm] 2
M11 [µm] 1
R12 [kΩ] 31.875
C13 [p f] No used

The HPSO is used in this investigation, its population consists of 20 particles. The algorithm run for
300 iterations. The values of inertia weight and acceleration coefficients are similar to the previous
experiments; w starts with 0.9, and decreases linearly to 0.4, C1 = 2.05 and C2 = 2.05.

An appropriate initializer is implemented that initializes the ADC resistors by generating a single
random number, and employing the design procedures to calculate the value of all the resistors using
this random number. In table 6.18 column 2, the initialization rules for the resistors are mentioned,
where Rrand is an integer random value in the range of 2 to 2×255

3 multiplied by the step size of the
resistance which is 125Ω. This initialization results in finding the initial configuration during the
initialization of the population, and recovering from deviations within few iterations. However, for
strong deviations, uniform initializer performs better.

The output of the comparators are simulated by a thousand sample, therefore, the minimum detectable
transition voltage error is 0.001 V. The achieved transition levels of the initial configuration is shown
in table 6.16 column 3. The initial configuration itself is shown in the third column in table 6.18.
After applying the first deviation model to this configuration, the transition levels deviates to the
transition levels in the fourth column in table 6.16, while after applying the second model of deviation,

6.4 Functional Level 141

Table 6.18: The resistor values before and after recovering.
Resistor Initialization Initial Recovering from Recovering from
name rule configuration first deviation model second deviation model
R1 [kΩ] Rrand

2 5.357 12.5 31.875
R2 [kΩ] Rrand 10.875 25.375 31.625
R3 [kΩ] Rrand 10.875 25.125 31.875
R4 [kΩ] Rrand 10.875 25.250 31.875
R5 [kΩ] Rrand 10.875 17.375+50% 31.875
R6 [kΩ] Rrand 10.875 31.875-25% 31.875
R7 [kΩ] Rrand 10.875 25.75 31.875
R8 [kΩ] 3×Rrand

2 16.250 31.875+20% 31.875

they deviate to the sixth column in the same table. The reconfiguration of the flash ADC finds the
configuration in table 6.16 column 4 and 5 to recover from the first and the second deviation models
respectively. The value of the transition voltage after recovering is given in table 6.16 column 5 and
7 respectively. In figure 6.44, the quantized signal of the initial configuration, the effect of the first
model of deviation on it, and the quantized signal after recovering are shown. Similarly, in figure
6.44, the quantized signal by the initial configuration, the effect of the second model of deviation on
it and the quantized signal after recovering are shown.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Input voltage

Q
ua

nt
iz

ed
 o

ut
pu

t v
ol

ta
ge

Unquantized signal
Initial config.
After deviation
After recovering

Figure 6.44: The quantized signal by the initial configuration, the effect of the first deviation model
on the quantized signal, and the signal after recovering.

142 EXPERIMENTAL WORK AND CASE STUDIES

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Input voltage

Q
ua

nt
iz

ed
 o

ut
pu

t v
ol

ta
ge

Unquantized signal
Initial config.
After deviation
After recovering

Figure 6.45: The quantized signal by the initial configuration, the effect of the second deviation model
on the quantized signal, and the signal after recovering.

6.4.2 Low-Pass Filter

Low pass filters are widely used in sensor electronics to reduce the noise, as an anti-aliasing filter
before the ADCs, etc. Therefore, it is selected as a case study for the hierarchical optimization of the
evolvable hardware. The low pass filter is described by the specification in figure 6.46. It consists of
three bands; the pass band at the frequency zero to fp, the transition region with frequency range fp
to fs, and the stop band which its frequency is greater than fs. The signal gain in the pass band is
greater than 2−δp and less than δp. The stop band gain is less than δs. The amplitude in the transition
region is not defined in the design of the filter. Therefore, δp and δs are optimized in the filter for a
given pass and stop frequency. The tool is design in which any filter can be extrinsically optimized
as it reads the filter netlist from external file that contains information about the filter structure, and
the programmable components. The ranges of the programmable components are given in another
setting file. The schematic of the target filter for this experiment is shown in figure 6.47.

The programmable resistors and capacitor for the filters are 11 bits in order to cover large frequency
range. The resistor programmable range is from 250Ω to 511.75kΩ with resolution of 250Ω. The
capacitor programmable range is from 0.125p f to 255.88p f with resolution of 0.125p f . The filters
are optimized in hierarchy in which, first the building blocks such as operational amplifiers are opti-
mized, then the filter passive components. The amplifier in table 6.6 is employed in this investigation.
Two filter different setting are optimized, the first filter settings is given in the second column in table
6.19, while the settings of the second filter is given in the third column in the same table. The evolu-
tion returns a solution within few seconds. The frequency response of the returned filters is shown in

6.4 Functional Level 143

Figure 6.46: Depiction of filter specification.

Figure 6.47: Schematic of the target voltage mode filter.

Table 6.19: The requirement of the filter.
First filter Second filter

fp [Hz] 10k 100
fs [Hz] 100k 1k
δs [dB] -40 -40
δp [dB] 0.82785 0.82785

figure 6.48 and 6.49 respectively. The dimensions of the passive components that the evolution return
is shown in table 6.20.

The filter in figure 6.50 is an example of the current mode functional level blocks. The optimized
CCII+ dimensions are given in table 6.15. This filter is optimized to the same specifications in table
6.19. The filter response of the first and second filter settings are shown in figures 6.51 and 6.52
respectively. The dimensions of the returned filters are given in table 6.21.

The achieved setting in voltage and current mode circuits are shown in table 6.22. The evolution could

144 EXPERIMENTAL WORK AND CASE STUDIES

−10
10

−8
10

−6
10

−4
10

−2
10

0
10

2

Freq. [MHz]

Figure 6.48: The returned voltage mode filter frequency response of the first setting filter.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Freq. [MHz]

Figure 6.49: The returned voltage mode filter frequency response of the second setting filter.

Table 6.20: Returned voltage mode filter configurations.
Component First filter Second filter
R1 [kΩ] 89.750 487.750
R2 [kΩ] 152.250 260.250
C1 [p f] 255.875 229.25
C2 [p f] 69.625 165.75

Figure 6.50: Schematic of the target current-mode filter.

not find a suitable configuration for the second required filter settings. The weight of the pass band
gain is adjusted higher than the weight of the stop band by the engineering knowledge. Therefore, the
returned filter has acceptable setting due to employing the engineering knowledge even if the filter
structure does not support the requirements.

6.4 Functional Level 145

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Freq. [MHz]

Figure 6.51: The returned current mode filter frequency response of the first setting filter.

−10
10

−8
10

−6
10

−4
10

−2
10

0
10

2

Freq. [MHz]

Figure 6.52: The returned current mode filter frequency response of the second setting filter.

Table 6.21: Returned current mode filter configurations.
Component First filter Second filter
R1 [kΩ] 510.25 165.750
R2 [kΩ] 20 419.250
C1 [p f] 9.875 199.5
C2 [p f] 255.875 206.5

Table 6.22: The achieved filter settings
Voltage mode Current mode

First filter Second filter First filter Second filter
δp [dB] 0.82343 0.010148 0.82785 0.064332
δs [dB] -40.082 -44.844 -21.199 -40.758

CHAPTER 7

Conclusion and Summary

7.1 Conclusion

The analog sensor electronics requires special care in the design time, trimming or calibration in
the deployment time and the run time, which increase the design effort, production time, and conse-
quently the cost. Nevertheless, dynamic deviations cannot be completely considered in the state-of-
the-art sensor electronics. On the other hand, manufacturing a specially designed hardware for each
sensor increases the development time and cost. The state-of-the-art FPAAs offers programmable
analog hardware with flexibility only in the functional level, while its building blocks are not pro-
grammable. Thus, it cannot cope with all the deviations, and its applicability is limited to few of the
sensor electronic applications. Therefore, generic sensor electronics platform that inherent the self-
x properties is desirable. The state-of-the-art evolvable hardware attempts to accomplish the rapid
prototyping and to include the self-x properties. On the other hand, it invents the hardware topology
without considering the industrial requirements, and it does not concern its standard specifications.
Consequently, it returns hardware with unpredictable behavior that cannot be accept in industry.

In this thesis, a design flow for generic organic-computing sensor electronics is presented to synthe-
size the user target design and include the self-x properties, while it considers the industrial require-
ments. The following points are investigated in the presented design flow:

• Evolving the hardware by hierarchical optimization to simplify the hardware search space and
return hardware, in which, the behavior of all its builing blocks are predictable, and consequently,
its entire behavior.

• Optimizing the hardware by employing real measurement for its specifications in order to recover
from deviations.

• Employing low cost integratable assessment setup that is suitable for embedded system applica-
tions.

• Investigate techniques that allow the optimization to use the old information it has during the dy-
namic trimming in order to reduce the reconfiguration time.

7.2 Novel Contributions of the Thesis 147

In order to return hardware with predicable behavior, the hardware topologies are constrained to
the known topologies, and the standard hardware specifications are optimized. In order to recover
from deviations, the evolutionary computation employs intrinsic evolution that measures the hard-
ware specifications by a hardware measurement setup. Apart from the state-of-the-art evolutionary
electronics, the standard specifications of the hardware are evolved intrinsically, and the optimization
does not start from scratch after each environment change in order to reduce the dynamic trimming
required time. However, some of the hardware specifications require special high cost measure-
ment setup, while some others are time consuming, which limit the applicability of the intrinsic
multi-objective evolution. Thus, the novel proposed approach “mixtrinsic multi-objective evolution”
evolves the hardware specifications that are sensitive to deviations intrinsically, and the rest of the
specifications extrinsically. The measurable environmental parameters such as the temperature of the
chip can be included in the extrinsic evaluation to increase the accuracy. The complete sensor elec-
tronic system is evolved in hierarchy in which, the basic blocks are evolved first, then the functional
blocks, etc. Therefore, low cost integratable assessment setup is sufficient for the calibration loop of
the generic organic-computing sensor electronic hardware, which is essential for embedded system
applications. The behavior of the complete system is predictable as it employs standard topologies
and optimizes its specifications. As the complete system is optimized in hierarchy, the optimization
is simplified as the search space is partitioned into sub-problems, and the behavior of the returned
hardware is predictable as standard specifications of the building blocks are optimized.

7.2 Novel Contributions of the Thesis

The design flow for reconfiguring the generic organic-computing sensor electronics presented in fig-
ure 6.1 aim to convert a user given design to a valid configuration, and trim the hardware afterwards
to recover from any further deviations in the run time.

This thesis focuses on blocks marked in gray in figure 6.1; the hierarchical optimization of the generic
sensor electronics, and dynamic trimming of the building and functional blocks. The novelties intro-
duced by this thesis are summarized in the follows:

• Considering the industrial requirements to evolve hardware with predictable behavior.

– Optimizing the industrial specifications of the sensor electronics hardware extrinsically [TK05a,
TLK05, TK06c] and intrinsically [TLK06]

– Adapting the evolutionary computation to constrain the flexibility of the hardware to standard
topologies in current- and voltage- mode circuits during the extrinsic [TK06c], the intrinsic
[TLK06] evolution.

– Evolving the complete system by hierarchical approach in which the building block are evolved
first, then the functional level blocks [TK06b].

– Proposing a rough design flow for the aspired generic organic-computing sensor electronics.

• Investigation embedding the optimization loop with the evolutionary computation algorithm and
the generic reconfigurable sensor electronics hardware without the need of high cost measurement
equipment.

148 CONCLUSION AND SUMMARY

– Proposing and investigating a novel scheme, mixtrinsic multi-objective evolution in which; the
hardware specifications are partitioned into intrinsic and extrinsic sets according to their fea-
tures, then each of them is evaluated intrinsically, extrinsically, or both. The mixtrinsic multi-
objective optimization allows low-cost assessment for reconfigurable sensor electronics [TK07],
which is necessary for embedded system applications.

– Proposing a methodology that can employ estimation or behavioral models to evaluate the ex-
trinsic set of specifications in the mixtrinsic multi-objective optimization in order to reduce the
computational effort. Both models have been applied in synthesis tools, but not in evolvable
hardware.

– Proposing hybrid models that can combine simulation, estimation, and behavioral models to
balance between the computational effort and the accuracy of the evaluation.

• Investigating PSO in optimizing the sensor electronics generic hardware, and search for potential
improvement in the state-of-the-art.

– Employing PSO in extrinsic [TK05b, TK06c], intrinsic [TLK06] and mixtrinsic multi-objective
[TK07] evolution of analog reconfigurable hardware to improve the conversion speed, and sim-
plify the implementation.

– Applying the various state-of-the-art PSO approaches to the target aspired generic reconfigurable
organic-computing sensor electronics hardware, and compare them with each other [TLK06] and
with the GA [TK06c].

– Applying dynamic environment approaches to evolve the sensor electronics reconfigurable hard-
ware without starting from scratch after each environmental change (trimming in dynamic en-
vironment), which results in improvement in the convergence speed and optimality of the solu-
tion [TLK06].

• Improving the particle swarm optimization technique by employing local parameters to each indi-
vidual, and a controller to control them [TK06d].

7.3 Future Work

On the availability of the hardware, further research in decomposition and mapping techniques such
as the techniques employed for FPAAs [WV02, BRL+05] will be abstracted to the generic organic
computing sensor electronics, and topology selection techniques such as classification based selection
techniques [PF98] will be investigated.
After investigating all the design flow components, the user interface will be designed to convert the
user entry into an intermediate hardware description language.

7.4 Kurzfassung in Deutscher Sprache 149

7.4 Kurzfassung in Deutscher Sprache

7.4.1 Motivation

Sensornetzwerke sind allgegenwärtig auf dem Gebiet der modernen Systeme wie der Automobiltech-
nik, der Automatisierungstechnik, der Medizintechnik, ”Ambient Intelligence”, usw. Der Entwurf
von Sensorelektronik erfordert besondere Sorgfalt wie Ausbeuteoptimierung und den Entwurf unter
Berücksichtigung des ungünstigsten Falles um die Einflüsse der Abweichungen zu verringern. Je-
doch wird im Entwurf von typischen Arbeitspunktswerten ausgegangen und daher die Einflüsse der
statischer und dynamischer Abweichungen nicht vollständig berücksichtigt. In vielen Anwendun-
gen, ist die Justierung in der Herstellungsphase von groer Notwendigkeit, da die Sensorelektronik
für Herstellungsabweichungen und andere Einflussgröen anfällig ist, die auf die Zielspezifikationen
Einfluss nehmen könnten. Die Abweichungen aufgrund von Alterung können durch die Kalibrierung
in der Inbetriebnahme behandelt werden, zudem können die Selbst-Kalibrierungstechniken einige
der dynamischen Abweichungen bewältigen. Allerdings sind nicht alle Abweichungen kompensier-
bar, da die Kalibrierung durch den Einsatz wenigen programmierbaren Komponenten erreicht wird
und nur wenige der Hardware-Spezifikationen in die Schleife berücksichtigt werden. Zum Beispiel,
die sogenannten Rejustors von Microbridge Technology Corp., die aus einem analog kontrollierten
Widerstand, um die dynamischen Abweichungen durch ein Rückkopplungssignal zu bewältigen; das
Rückmeldungssignal wird digital in vielen Anwendungen kontrolliert. Der PGA309 ist ein program-
mierbarer Verstärker von Texas Instruments, der digitale Temperaturkalibrierung und sogenanntes
Autozeroing einsetzt, um die dynamischen Abweichungen zu bewältigen. So versucht die Indus-
trie robuste jedoch nicht fehlertolerante Systeme zu bauen. Robuste Systeme können die zu er-
wartenden Abweichungen bewältigen, während die fehlertoleranten Systeme für die Behandlung der
unerwarteten Variationen geeignet sind.

Für Multi-Sensorsysteme, die eine besondere Sorgfalt in der Planungsphase erfordern, eine Justierung
bei der Herstellungsphase, und die Verwendung von Kalibrierungsverfahren für jeden der Sensoren
erhöht die Kosten der Sensorelektronik. Darüber hinaus verursacht das Hinzufügen von neuen Sen-
soren viele Änderungen in der Hardware. Rapid Prototyping ist ein offenes Thema, da die Kosten
verringert werden können für die gleiche Hardware, die für viele Sensoren und viele Anwendungen
programmiert werden kann. Deshalb ist die rekonfigurierbare Sensor Elektronik mit self x Eigen-
schaften wünschenswert.

Kürzlich, wurden genetische Programmierung und genetische Algorithmen für die Synthese der analo-
gen Hardware angepasst zum Einsatz gebracht. Die genetische Programmierung wurde angewendet,
um Hardware mit beliebiger Topologie [KFHBAK97] zu gestalten. Dies kann zu unvorhersehbarem
Verhalten führen und u.a. zu exzessiven Bauelementdimensionen führen Dem gegenüber wurden
genetische Algorithmen zur Synthese von Standardschaltungstopologien [ZPV02] angewandt. Je-
doch können statische und dynamische Abweichungen in diesen Syntheseansätzen nicht oder nur
eingeschränkt berücksichtigt werden.

Auf der anderen Seite bietet analoge rekonfigurierbare Hardware, - auch evolutionären Hardware
genannt, das Potenzial statische und dynamische Abweichungen [SKZ+00] zu kompensieren. Zum
Stand der Technik werden genetische Algorithmen eingesetzt, um beliebige Topologie [HHE02,
SKZ+00, Tre06] analoger Schaltungen zu erfinden. Allerdings der Stand der Technik evolutionärer
Elektronik für ein dynamisches Umfeld kein geeigneter Ansatz, um effizient auf Veränderungen der

150 CONCLUSION AND SUMMARY

Randbedingungen zu reagieren. In der Tat wird nach jeder Veränderung der Umwelt mit dem Op-
timierungsprozess wieder bei Null begonnen [Tho97a, KZJS00, SKZ01, ZGK+04]. Keine spezielle
Technik oder Methode ist auf dem neuesten Stand der Technik aufzufinden, die auftretende Abwe-
ichung in einer Hardware geeignet detektiert. Stattdessen, sind die Abweichungen manuell erstellt
und kontrolliert. Zum neuesten Stand der Technik evolutionärer Elektronik, ist die Zahl der erforder-
lichen Bausteine, um eine geeignete Konstruktion zu finden, die den angegebenen Spezifikations-
forderungen genügt, nicht bekannt, [Tho96, KFHBAK97, SKZ+00, Tre06]. Allerdings wird die max-
imale Anzahl der erlaubten Blöcke durch Versuch und Irrtum bestimmt. Dadurch, ist die verwendete
Fläche des Bausteins zur Erfüllung der gewünschten Funktionalität nicht genau vorhersehbar.

Um auftretende Abweichungen kompensieren zu können, muss die sogenannte intrinsische Evolu-
tion der Hardware angewendet werden. Die offenen Fragen, die zum neuesten Stand der Technik
entsprechender Elektronik zur Kompensation relevanter Abweichungen bei Erlangung industrieller
Akzeptanz noch nicht berücksichtigt sind, sind folgend aufgeführt:

• Das Verhalten der gewählten Topologie sollte vorhersehbar sein und Standards entsprechen.

• Die industrielle Spezifikationen der Hardware muss optimiert sein entsprechend den Anforderun-
gen einer Anwendung.

• Messung der kompletten Spezifikationen der Hardware erfordert teure Messgeräte, die die An-
wendbarkeit des Ansatzes einschränkt. Daher wird zum Stand der Technik hat sich nur die Ab-
weichung zwischen den ideale und den realen Ausgangswerten der vorliegenden Elektronik bes-
timmt. Die Messung der transienten und der Kleinsignaleigenschaften der Hardware ist durch die
Umwandlungsgeschwindigkeit der verwendeten ADCs und DACs beschränkt.

• Die Kalibrierungschleife muss die Abweichung kompensieren. Da die evolutionäre Hardware
anhand der aktuell eingeschriebenen Konfiguration das Verhalten der realisierten Schaltung auf
Konformität mit der gewünschten Spezifikation prüft, gehen alle Abweichungen der verwende-
ten Messungseinrichtung als Fehlerquellen in das Resultat ein. Obwohl dieses Kernproblem zum
Stand der Technik keine adäquate Behandlung erfährt, bietet evolutionäre Hardware prinzipielle
Selbst- oder Eigen-Kalibrierungseigenschaften in digitalen [LS92, KLB93,FDLH98, WHL04] und
analogen Schaltungen [CGN04, RRS+04]. Allerdings erfordern kompliziertere Messungen mehr
Sorgfalt für die Eigen-Kalibrierung in allen Komponenten.

Die vorliegende Arbeit bietet im Hinblick auf den angesprochenen Stand der Technik und verbleibende
Probleme Lösungsansätze für den industriellen Einsatz von generischer, durch Organic-Computing
Ansätze inspirierte Sensorelektronik für eingebettete Anwendungssysteme.

7.4.2 Beiträge dieser Arbeit

Die industrielle Applikation erfordert zuverlässige Elektronik mit vorhersagbaren Verhalten in Überein-
stimmung mit üblichen industriellen Spezifikationen. Die Zulassung beliebiger Schaltungstopolo-
gien und die Optimierung des Systems nur durch Minimierung des Fehlers zwischen Ist- und Soll-
Ausgangsignal wird möglicherweise Elektronik mit unerwarteten, unvorhersagbarem Verhalten ergeben.
Dies wird nur eine sehr eingeschränkte Akzeptanz unter industriellen Gesichtspunkten erwarten lassen.

7.4 Kurzfassung in Deutscher Sprache 151

Damit die Elektronik vorhersagbares Verhalten aufweist, werden Einschränkungen der Hardware-
Flexibilität in Form der Vorgabe von Standardtopologien gemacht. Weiterhin wird die Elektronik
gemä Standardspezifikation optimiert, d.h. ein multikriterielles Optimierungsproblem in Angriff
genommen und eine Lösung gefunden. Die vorgebenenen Spezifikationswerte resultieren aus dem
jeweiligen Bedarf der vorliegenden Anwendung.

Um die sogenannten Self-x Eigenschaften von Organic Computing Systemen zu erzielen muss das
Verhalten der Hardware in einer Kalibrierungsschleife bestimmt bzw. gemessen werden. Dies er-
fordert eine Bewertungseinheit um die Hardwarespezifikation zu bestimmen sowie eine Optimierung-
seinheit um unter Einsatz von biologoisch-inspirierten Verfahren nach einer nutzbaren Konfigura-
tion. Weiter hin wird eine Einheit zur Vor- und Nachbearbeitung und der Kommunikation zwis-
chen den Einheiten benötigt. Daher besteht das angestrebte, durch Organic-Computing-Konzepte
inspirierte, generische Sensorelektronik-Frontend besteht aus vier Blöcken, wie in Abbildung 7.4.2
wiedergegeben, zur Optimierung, Vor- und Nacherarbeitung, der Bewertung, und der rekonfigurier-
baren Elektronik selbst.

Figure 7.1: Block diagram of the reconfigurable generic sensor system.

Die Zielhardware für diese Arbeit ist eine analoge rekonfigurierbare Hardware mit programmier-
barer Struktur funktionaler Ebene und Dimensionen in der Bausteinebene, wie in Abbildung 7.2 zu
sehen ist. Ein Beispiel einen Baustein der Zielelektronik ist der programmierbare, zeitkontinuier-

Figure 7.2: Blockschaltbild der rekonfigurierbaren generische Sensor System.

lich arbeitende Operationsverstärker, vorgeschlagen von Lakshmanan u.a. [LK05], in dem Standard-
schaltungstopologien mit programmierbaren Dimensionen von aktiven und passiven Bauelementen
eingesetzt werden. Der sogenannte ”‘Current Mode”’ oder die strombezogene Schaltungstechnik,
- das bedeutet, dass die einzelnen Schaltelemente durch Ströme, nicht durch Spannungen inter-
agieren [TLH90] - arbeitet mit niedrigen Betriebsspannungen, hohen Geschwindigkeiten und der

152 CONCLUSION AND SUMMARY

notwendigen kleinen Fläche auf Kosten der Nichtlinearität [BG04, Kol00]. Darüber hinaus ist der
Ausgang von vielen Sensoren ein Stromausgang. Daher werden die Bausteine des Strombetriebs
in dieser Arbeit in Betracht gezogen, um ein programmierbares, selbstkalibrierendes vielseitige ver-
wendbares System zu schaffen.

Eine prinzipielle Entwurfsweise und ein erster Entwurfsablauf wird vorgeschlagen, um funktionale
Blöcke des benutzergezielten Entwurfs zu extrahieren, geeignete Topologien für die Blöcke zu wählen,
den Entwurf auf die generische OC Sensorelektronik abzubilden, diese hierarchisch zu optimieren
und dann letztlich dynamisch fortlaufend zu justieren, um weitere, auftretende Abweichungen zu
kompensieren. Der Schwerpunkt der Arbeit liegt auf der hierarchischen Optimierung, deren Ergeb-
nisbewertungen unter den Randbedingungen eingebetteter Applikationen, und der dynamischen, hi-
erarchischen Justierung der betrachteten Schaltungen zur Laufzeit.

Die hierarchische Optimierung wird zur Reduktion des Suchraums und der Erreichung eines vorher-
sagbaren Verhaltens zunächst die Optimierung der Basisbausteine, z.B. Operationsverstärker, vorgenom-
men. Diese werden dann in die funktionalen Blöcke eingesetzt und die Optimierung des jeweiligen
funktionalen mit den passiven Komponenten, z.B. eines Gegenkopplungsnetzwerks vorgenommen.
Die Optimierung erfolgt durch evolutionäre Optimierungstechniken, wie der sogenannten Partikel-
Schwarm-Optimierung. Zum Beispiel, der Operationsverstärker kann mit passiven Bauelementen in
üblicher Form zu einem Filter oder einem Instrumentierungsverstärker kombiniert werden, wie in
Abbildung 7.3 dargestellt. Zuerst werden für den letzteren Fall die Operationsverstärker optimiert,
und dann der Instrumentierungsverstärker.

Figure 7.3: Die hierarchische Optimierung generischer Sensorelektronik, Zusammensetzung zu funk-
tionalen Blöcken, wie Instrumentierungsverstärker aus rekonfigurierbaren Operationsverstärkern und
passiven Komponenten.

Ein rekonfigurierbarer Instrumentierungserstärker wurde bereits von Lakshmanan u.a. entworfen und
befindet sich derzeit in der Herstellung.

Die dynamische Justierung erfolgt durch Justierung der Hardware anhand eines geeigneten Messauf-
baus zur Kompensation von Abweichungen. Dies kann entweder im Vordergrund oder im Hinter-
grund durchgefühtr werden. Die Justierung im Hintergrund kann erreicht werden, indem zusätzliche
Blockinstanzen benutzt werden, von denen ein Block im Hintergrund optimiert wird und solange

7.4 Kurzfassung in Deutscher Sprache 153

durch einen anderen nicht bzw. im vorigen Schritt kalibrierten Block ersetzt wird [JW98,TK07]. Die
Blöcke, die aufgrund der Nichtverfügbarkeit von Ressourcen nicht im Hintergrund justiert werden
können, werden im Vordergrund justiert, wenn das System sich im Standby-Modus befindet.

Messung der Hardware Spezifikationen mittels Standardmethoden und Geräten ist ein teurer und
zeitaufwendiger Ansatz. Abhängig von der Zielspezifikation kann die Messung u.a. sehr zeitaufwendig
sein oder spezielle teure Bandbreiteneinstellung erfordern. Die Messung der Kleinsignaleigenschaften
der Hardware erfordert beispielsweise das Einstellen der Stimulusfrequenz, was für niedrige Frequen-
zen ein zeitaufwendiger Prozess und für hohe Frequenzen eine teure Bandbreiteneinstellung bildet;
die Messung der transienten Eigenschaften erfordert ADCs mit hoher Geschwindigkeit, usw.

Daher wird ein neuartiger Ansatz vorgeschlagen, der die Hardwarespezifikationen in zwei Gruppen
teilt [TK07]. Die erste Gruppe besteht aus den Spezifikationen, die nur schwer wegen der Kosten /
Zeit Anforderungen zu messen sind, und sind weniger anfällig für solche Abweichungen wie Leer-
laufverstärkung, Phasenrand , Ausgangswiderstand, usw. sind. Diese Gruppe von Spezifikatio-
nen werden extrinsisch ausgewertet. Wenn die Zielspezifikationen die Anwendungsanforderungen
übererfüllen, führt der Einfluss von Abweichungen auf dieser Gruppe von Spezifikationen nicht zu
einer dramatischen Veränderung der Spezifikationen. Die zweite Gruppe von Spezifikationen enthält
die Spezifikationen, die empfindlich auf Abweichungen reagieren und dazu führen können, dass un-
mittelbare Verzerrung des Signals auftritt, während sie mit einfachen Mitteln und zu geringen Kosten
zu messen sind wie Spannnungsversatz (Offset), Aussteuerbereich, Eingangsgleichtaktbereich, usw.
Diese Gruppe von Spezifikationen wird intrisisch gemessen. Die Optimierungskriterien der vor-
liegenden Mehrzieloptimierung, in der jeder einzelne hat intrinsische und extrinsische Ziele wie in
Abbildung 7.4.

(a) (b)

Figure 7.4: Die mixtrinsische multikriterielle Evolution a) Ein einzelnes Individuum. B) Die
vollständige Population.

Die beiden Gruppen von Spezifikationen können sich überlappen, was bedeutet, dass einige der Spez-
ifikationen intrinsisch als auch extrinsisch behandelt werden können. In diesem Fall kann sich die
geforderte intrinsische und extrinsische Messung unterscheiden. Daher kann der Operationsverstärker
innerhalb einer einzigen Abtastung des ADC stabil werden.

Die messbaren Umgebungsdaten, wie die Elektroniktemperatur, können gemessen und in der Be-
wertung der extrinsischen Spezifikation verwendet werden. Daher sind die kompletten Hardware-
spezifikationen mit integrierbarer und einbettbarer Kalibrierungsschleife auch bei niedrigen Kosten
optimierbar.

154 CONCLUSION AND SUMMARY

Die mixtrinsische multikriterielle Vorgehensweise, beruhend auf simulierten Modellen, wird in Ab-
bildung 7.5 dargestellt. Für eine bestimmte Konfiguration simuliert die Hardware das Extrahieren der

Figure 7.5: Die mixtrinsische multikriterielle Evolution Umgebung.

technischen Daten der extrinsischen Ziele, während das andere Gerät intrinsisch misst.

Um die extrinsischen Ziele zu beurteilen, werden die passenden Netzlistendateien erzeugt, und dann
durch eine Simulationsumgebung wie SPICE simuliert. Anschlieend werden die Ergebnisse der Sim-
ulationen aufbereitet, um die Spezifikationen der Zielgruppenkonfiguration zu extrahieren. Abhängig
von der Genauigkeit der Bewertungsschaltkreise und der Wirkung ihrer Empfindlichkeit gegenüber
Rauschen, können die simulierten Modelle genauer sein als die intrinsische Messung der Spezifika-
tionswerte.

Zum Stand der Technik beginnt die Rekonfiguration evolutionärer Elektronik nach jeder Veränderung
der Umwelt praktisch bei Null, was dazu führen kann, dass die Häufigkeit und Dauer von Kalibrierungs-
bzw. Justierungsvorgängen erheblich zunimmt, da ständig Vorwissen der Evolution verloren geht. Zur
Erhöhung der Zuverlässigkeit und Effizienz im dynamischen Umfeld, sind in dieser Arbeit Ansätze
zur schritthaltenden Optimierung betrachtet worden, die in der Lage sind, umgebungsbedingten Verän-
derungen während der Evolution zu erkennen und mit der Situation zurecht zu kommen, ohne jeweils
bei Null nach jeder Veränderung der Umwelt anfangen zu müssen. Dieser Ansatz bietet eine erhe-
bliches Potenzial für die Verbesserung von Konvergenzgeschwindigkeit und Lösungsgüte.

Bibliography

[ACB99] A. Hernádez Aguirre, C. Coello, and B. Buckles. A genetic programming approach
to logic function synthesis by means of multiplexers. In Adrian Stoica, Jason Lohn,
and Didier Keymeulen, editors, The First NASA/DoD Workshop on Evolvable Hard-
ware, pages 46–53, Pasadena, California, 19-21 July 1999. Jet Propulsion Laboratory,
California Institute of Technology, IEEE Computer Society.

[Aff05] Michael Affenzeller, editor. Population Genetics and Evolutionary Computation:
Theoretical and Practical Aspects. Reihe C. Technik und Naturwissenschaften.
Schriften der Johannes-Kepler Universität Linz, 2005.

[AGK94] Kurt J. Antreich, Helmut E. Graeb, and Rudolf K. Koblitz. Advanced Yield Optimiza-
tion Techniques, volume 8 (Statistical Appro of advcad. Elsevier Science Publishers,
Amsterdam, 1994.

[AGW93] Kurt J. Antreich, Helmut E. Graeb, and Claudia U. Wieser. Practical methods for
worst-case and yield analysis of analog integrated circuits. International Journal of
High Speed Electronics and Systems (IJHSES), 4(3):261–282, August 1993.

[Ana] http://www.analog-insydes.de/.

[Ang98] P. J. Angeline. Using selection to improve particle swarm optimization. In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 1998), Anchorage,
Alaska, USA, 1998.

[AZC04] Arturo Hernández Aguirre, Ricardo Salem Zebulum, and Carlos A. Coello Coello.
Evolutionary multiobjective design targeting a field programmable transistor array.
In Proceedings of 6th NASA / DoD Workshop on Evolvable Hardware (EH 2004),
pages 199–, Seattle, WA, USA, June 2004. IEEE Computer Society.

[BB02a] T. M. Blackwell and Peter J. Bentley. Dynamic search with charged swarms.
In In Proceedings of the Genetic and Evolutionary Computation Conference 2002
(GECCO), pages 19–26, 2002.

156 BIBLIOGRAPHY

[BB02b] Tim Blackwell and Peter J. Bentley. Improvised music with swarms. In David B.
Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul
Marrow, and Mark Shackleton, editors, Proceedings of the 2002 Congress on Evo-
lutionary Computation CEC2002, pages 1462–1467. IEEE Press, 2002.

[BB04] Tim Blackwell and Jürgen Branke. Multi-swarm optimization in dynamic envi-
ronments. In Proceedings of Applications of Evolutionary Computing, EvoWork-
shops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoS-
TOC, pages 489–500, Coimbra, Portugal, April 2004.

[BEB02] R. Brits, A. P. Engelbrecht, and B. Bergh. A niching particle swarm optimizer. In In
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02), volume 2, pages 692–696, Orchid Country Club, Singapore, November
2002. Nanyang Technical University, 2002.

[BG04] D. Biolek and T. Gubek. New circuit elements for current-mode signal processing.
In International Journal Elektrorevue, www.elektrorevue.cz, May 2004.

[BH80] W.C. Black and D.A. Hodges. Time-interleaved converter arrays. In IEEE Journal of
Solid State Circuits, pages 1024–1029, December 1980.

[Bio03] Dalibor Biolek. CDTA- building block for current-mode analog signal processing. In
Proceedings of the European Conference on Circuit Theory and Design ECCTD03
Krakow, Poland, volume 3, pages 397–400, September 2003.

[Bla05] T. Blackwell. Particle swarms and population diversity. Soft Comput., 9(11):793–802,
2005.

[BM05] J. Becker and Y. Manoli. Eine FPAA-Architektur zur rekonfigurierbaren Instanti-
ierung von zeitkontinuierlichen Analogfiltern. In Advances in Radio Science (ARS),
Kleinheubacher Berichte, volume 3, pages 371–375, 2005.

[Bra99] Jürgen Branke. Evolutionary approaches to dynamic optimization problems - a sur-
vey. In GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, pages 134–137, 1999.

[Bra01a] Jürgen Branke. Evolutionary approaches to dynamic optimization problems - updated
survey. In GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, pages 27–30, 2001.

[Bra01b] Jürgen Branke. Evolutionary optimization in dynamic environments. PhD thesis,
der Fakultät für Wirtschaftswissenschaften, Universität Fridericiana zu Karlsruhe,
Kluwer, 2001.

[Bra04] Jürgen Branke. Optimization in dynamic environments. GECCO Tutorial 2004, June
2004.

[Bre62] H. J. Bremermann. Self-Organizing Systems, chapter Optimization Through Evolu-
tion and Recombination, pages 93–106. Spartan Books, Washington DC, 1962.

BIBLIOGRAPHY 157

[BRL+05] Faik Baskaya, Sasank Reddy, Sung Kyu Lim, Tyson Hall, and David V. Anderson.
Mapping algorithm for large-scale field programmable analog array. In ISPD ’05:
Proceedings of the 2005 international symposium on Physical design, pages 152–
158, New York, NY, USA, 2005. ACM Press.

[BS02] J. Branke and H. Schmeck. Theory and Application of Evolutionary Computation:
Recent Trends, chapter Designing evolutionary algorithms for dynamic optimization
problems, pages 239–262. Springer, 2002.

[BTD96] E. Bonabeau, G. Theraulaz, and J.-L Deneubourg. Quantitative study of the fixed
threshold model for the regulation of division of labour in insect societies. In Pro-
ceedings - Royal Society of London. Biological sciences, pages 1565–1569, 1996.

[BTHM07] Joachim Becker, Stanis Trendelenburg, Fabian Henrici, and Yiannos Manoli. Synthe-
sis of analog filters on an evolvable hardware platform using a genetic algorithm. In
Proceedings of the 9th annual conference on Genetic and evolutionary computation
(GECCO ’07), pages 190–197, New York, NY, USA, 2007. ACM Press.

[BVB05] D. Biolek and V. V. Biolková. Cdta-c current-mode universal 2nd-order filter. In Pro-
ceedings of the 5th WSEAS Int. Conf. on Applied Informatics and Communications,
Malta, pages 411–414, September 2005.

[CD00] A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic envi-
ronments. In Proceedings of International Conference on Artificial Intelligence (ICAI
2000), Las Vegas, Nevada, USA, pages 429–434, 2000.

[CD01] A. Carlisle and G. Dozier. Tracking changing extrema with particle swarm optimizer.
Technical report, Auburn University Technical Report CSSE01-08, 2001.

[CD02] A. Carlisle and G. Dozier. Tracking changing extrema with adaptive particle swarm
optimizer. In Proceedings of the 5th Biannual World Automation Congress, 2002,
volume 13, pages 265–270, 2002.

[CGN04] Yun Chiu, Paul R. Gray, and Borivoje Nikolić. A 14-bit, 12-MS/s CMOS pipeline
ADC with over 100-dB SFDR. IEEE Journal of Solid-State Circuits, 39(12):2139–
2151, December 2004.

[Chr03] George Chronis. Lecture notes: Evolutionary computation; an introductory presenta-
tion, 2003.

[CHR+05] X. Cui, C. T. Hardin, R. K. Ragade, T. E. Potok, and A. S. Elmaghraby. Track-
ing non-stationary optimal solution by particle swarm optimizer. In Sixth Inter-
national Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing and First ACIS International Workshop on Self-
Assembling Wireless Networks SNPD/SAWN′05, pages 133–138, 2005.

[CjK02] M. Clerc and j. Kennedy. The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Computa-
tion, 6:58–73, 2002.

158 BIBLIOGRAPHY

[CLA02] Carlos A. Coello Coello, Erika Hernández Luna, and Arturo Hernández Aguirre.
Use of particle swarm optimization to design combinational logic circuits. Tech-
nical report, EVOCINV-04-2002, Evolutionary Computation Group at CINVESTAV,
Sección de Computación, Departamento de Ingenierı́ a Eléctrica, CINVESTAV-IPN,
México 2002., October 2002.

[Cle99] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In Proceedings of the Congress on Evolutionary Computation,
pages 1951–1957, Washington, DC, 1999. IEEE press.

[Cob90] Helen G. Cobb. An investigation into the use of hypermutation as an adaptive op-
erator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical Report 6760 (NLR Memorandum), Navy Center for Applied
Research in Artificial Intelligence, Naval Research Laboratory, Code 5514, Washing-
ton, D.C. 20375-5320, December 1990.

[Cra85] N. L. Cramer. A representation for the adapative generation of simple sequential
programs. In International Conference on Genetic Algorithms and their Applications
[ICGA85], 1985.

[dAdAS+04] José Franco Machado do Amaral, Jorge Luı́s Machado do Amaral, Cristina Costa
Santini, Marco Aurélio Cavalcanti Pacheco, Ricardo Tanscheit, and Moisés H. Szwar-
cman. Intrinsic evolution of analog circuits on a programmable analog multiplexer
array. In Proceedings of the 4th International Conference of Computational Science
- ICCS 2004, pages 1273–1280, Kraków, Poland, June 2004.

[DAPM00] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A fast elitist
non-dominated sorting genetic algorithm for multi-Objective Optimization: NSGA-
II. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton,
J. J. Merelo, and Hans-Paul Schwefel, editors, Proceedings of the Parallel Problem
Solving from Nature VI Conference, pages 849–858, Paris, France, 2000. Springer.
Lecture Notes in Computer Science No. 1917.

[dB02] Frans Van den Bergh. An analysis of particle swarm optimizers. PhD thesis, De-
partment of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.
Supervisor-A. P. Engelbrecht.

[dBE02] F. Van den Bergh and A. P. Engelbrecht. A new locally convergent particle swarm
optimiser. In Proceedings of 2002 IEEE International Conference on Systems, Man
and Cybernetics, October 2002.

[DD96] I. Das and J. Dennis. A closer look at drawbacks of minimizing weighted sums of
objectives for pareto set generation in multicriteria optimization problems. Technical
Report 96–36, Dept. Of Computational and Applied Mathematics Tech Report 96–36.
Rice University, Houston, TX, 1996.

[Dev] Analog Devices. AD8403 4-channel digital potentiometer.
http://www.analog.com/en/prod/0,,761 797 AD8403,00.html.

[DFLH98] K. Dyer, D. Fu, S. Lewis, and P. Hurst. Analog background calibration of a 10b
40MSample/s parallel pipelined ADC. In Proceedings of the IEEE International
Solid State Circuits Conference (ISSC98), pages 140,141, 1998.

BIBLIOGRAPHY 159

[DGS03] W. Daems, G. Gielen, and W. Sansen. Simulation-based generation of posynomial
performance models for the sizing of analog integrated circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 22:517– 534, May
2003.

[dMHBL01] Maria del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee. Optimal design
of a CMOS op-amp via geometric programming. IEEE Trans. on CAD of Integrated
Circuits and Systems, 20(1):1–21, 2001.

[Dor92] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano, 1992.

[EK95] R. C. Eberhard and J. Kennedy. New optimizer using particle swarm theory. In
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995.

[EQO+98] S. H. K. Embabi, X. Quan, N. Oki, A. Manjrekar, and E. Sánchez-Sinencio. A
current-mode based field-programmable analog array for signal processing applica-
tions. Analog Integr. Circuits Signal Process., 17(1-2):125–142, 1998.

[ES00] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in
particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary
Computation CEC00, pages 84–88, La Jolla Marriott Hotel La Jolla, California, USA,
6-9 July 2000. IEEE Press.

[ES01] R. C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with particle
swarms. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2001), Seoul, Korea, pages 94–97, 2001.

[ES03] A. E. Eiben and J. E. Smith, editors. Introduction to Evolutionary Computing.
Springer, 1 edition, November 2003.

[ESSA00] John Emmert, Charles Stroud, Brandon Skaggs, and Miron Abramovici. Dynamic
fault tolerance in FPGAs via partial reconfiguration. In FCCM ’00: Proceedings of
the 2000 IEEE Symposium on Field-Programmable Custom Computing Machines,
page 165, Washington, DC, USA, 2000. IEEE Computer Society.

[FDLH98] D. Fu, K. Dyer, S. Lewis, and P. Hurst. Digital background calibration technique for
time-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits,
33(12):1904–1011, December 1998.

[FF93] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization. In Genetic Algorithms: Pro-
ceedings of the Fifth International Conference, pages 416–423. Morgan Kaufmann,
1993.

[FF95] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[Fie04] Jonathan E. Fieldsend. Multi-objective particle swarm optimisation methods. Techni-
cal Report 419, Department of Computer Science, University of Exeter, March 2004.

160 BIBLIOGRAPHY

[FOW65] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through a simulation
of evolution, in biophysics and cybernetics systems. In Proceedings of the Second
Cybernetics Sciences Symposium, ed. by M. Maxfield, A. Callahan, and L. J. Fogel,
Spartan Books, Washington, 1965.

[FPL05] Peter J. Fleming, Robin C. Purshouse, and Robert J. Lygoe. Many-objective opti-
mization: An engineering design perspective. In Proceedings of the 3rd International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), pages 14–
32, Guanajuato, Mexico, March 2005. Springer.

[FPP86] J.D. Farmer, N. Packard, and A. Perelson. The immune system, adaptation and ma-
chine learning. In Physica D, vol. 22, pages 187–204, 1986.

[Fra57] A. S. Fraser. Simulation of genetic systems by automatic digital computers. ii: Effects
of linkage on rates under selection. Austral. J. Biol. Sci. 10, 1957.

[Fra00] Randy Frank. Understanding Smart Sensors. Artech House, Inc., Norwood, MA,
USA, 2nd ed. edition, 2000.

[FS98] Stuart J. Flockton and Kevin Sheehan. Intrinsic circuit evolution using programmable
analogue arrays. Lecture Notes in Computer Science, 1478:144–153, 1998.

[GAl] Galib: Matthew’s c++ genetic algorithms library, http://lancet.mit.edu/galib-
2.4/galib.html.

[Gau97] Vincent Charles Gaudet. Design of a CMOS current conveyor-based field pro-
grammable analog array. Master’s thesis, Department of Electrical and computer
Engineering, University of Toronto, 1997.

[GME05] Georges Gielen, Trent McConaghy, and Tom Eeckelaert. Performance space model-
ing for hierarchical synthesis of analog integrated circuits. In Proceedings of the 42nd
annual conference on Design automation (DAC ’05), pages 881–886, New York, NY,
USA, 2005. ACM Press.

[Goe98] Jay Goetz. High temperature electronics for sensor interface and data acquisition. In
Sensors Expo & Conference, 1998.

[GV04] V. G. Gudise and G. K. Venayagamoorthy. FPGA placement and routing using par-
ticle swarm optimization. In IEEE Computer society Annual Symposium on VLSI,
2004, pages 307–308, February 2004.

[HCDV05] R. Hassan, B. Cohanim, O. L. DeWeck, and G. Venter. A comparison of particle
swarm optimization and the genetic algorithm. In AIAA-2005-1897, 1st AIAA Mul-
tidisciplinary Design Optimization Specialist Conference, Austin, Tex, USA, April
2005.

[HHA02] Tyson S. Hall, Paul Hasler, and David V. Anderson. Field-programmable analog ar-
rays: A floating-gate approach. In FPL ’02: Proceedings of the Reconfigurable Com-
puting Is Going Mainstream, 12th International Conference on Field-Programmable
Logic and Applications, pages 424–433, London, UK, 2002. Springer-Verlag.

BIBLIOGRAPHY 161

[HHE02] M. Hartmann, P. Haddow, and F. Eskelund. Evolvable hardware solutions for ex-
treme temperature electronics. In The 2002 NASA/DoD Conference on Evolvable
Hardware, pages 36–45, Alexandria, Virginia, 15-18 July 2002. Jet Propulsion Lab-
oratory, California Institute of Technology, IEEE Computer Society.

[HI03] N. Higashi and H. Iba. Particle swarm optimization with gaussian mutation. In
Proceedings of the 2003 Swarm Intelligence Symposium SIS’02, pages 72–79, 2003.

[HK05] Mohsen Hayati and Umesh Kumar. Novel variable current gain active filters using
current conveyors. Journal of Active and Passive Electronic Devices, 1:91–96, 2005.

[HNG94] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A niched pareto genetic al-
gorithm for multiobjective optimization. In Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational Intelligence,
volume 1, pages 82–87, Piscataway, New Jersey, 1994. IEEE Service Center.

[Hol73] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM j. of
Computing, pages 88–105, 1973.

[HPTB98] Alister Hamilton, Kostis Papathanasiou, Morgan Tamplin, and Thomas Brandtner.
Palmo: Field programmable analogue and mixed-signal vlsi for evolvable hardware.
In ICES ’98: Proceedings of the Second International Conference on Evolvable Sys-
tems, pages 335–344, London, UK, 1998. Springer-Verlag.

[Ins] Texas Instruments. PGA309 voltage output programmable sensor conditioner.
http://focus.ti.com/docs/prod/folders/print/pga309.html.

[Int] Intersil. X90100 non-volatile electronically programmable capacitor.
http://www.intersil.com/cda/deviceinfo/0,0,X90100.html.

[ITF02] Isao Imazeki, Shigetaka Takagi, and Nobuo Fujii. Low-voltage, low-power, second-
generation current conveyors. Electrical Engineering in Japan, 138:41–48, Novem-
ber 2002.

[JM03] S. Janson and M. Middendorf. A hierarchical particle awarm optimizer. In The
Congress on Evolutionary Computation, 2003. CEC’03, volume 2, pages 770 – 776,
December 2003.

[JM04] Stefan Janson and Martin Middendorf. A hierarchical particle swarm optimizer
for dynamic optimization problems. In Guenther R. Raidl, Stefano Cagnoni, Ju-
rgen Branke, David W. Corne, Rolf Drechsler, Yaochu Jin, Colin Johnson, Pe-
nousal Machado, Elena Marchiori, Franz Rothlauf, George D. Smith, and Giovanni
Squillero, editors, Applications of Evolutionary Computing, EvoWorkshops2004:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, volume 3005
of LNCS, pages 511–522, Coimbra, Portugal, 5-7 April 2004. Springer Verlag.

[JM05] Stefan Janson and Martin Middendorf. A hierarchical particle swarm optimizer and
its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
35(6):1272–1282, 2005.

162 BIBLIOGRAPHY

[Jon75] K. D. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, Departament of Computer and Communication Sciences, University of
Michigan, Ann Arbor, 1975.

[JW98] J. Ingino Jr. and B. Wooley. A continuously-calibrated 10 M Sample/s 12 b 3.3 V
ADC. In Proceedings of the 1998 IEEE International Solid-State Circuits Confer-
ence. Digest of Technical Papers. 45th ISSCC 1998, pages 144–145, February 1998.

[K0̈6] Andreas König. Status and perspective of intelligent system design automation. In
HIS ’06: Proceedings of the Sixth International Conference on Hybrid Intelligent
Systems, page 2, Washington, DC, USA, 2006. IEEE Computer Society.

[KBA+97] John R. Koza, Forrest H Bennett III, David Andre, Martin A. Keane, and Frank Dun-
lap. Automated synthesis of analog electrical circuits by means of genetic program-
ming. IEEE Transactions on Evolutionary Computation, 1(2):109–128, July 1997.

[KdW06] Il Yong Kim and Olivier de Weck. Adaptive weighted sum method for multiobjective
optimization: a new method for pareto front generation. Structural and Multidisci-
plinary Optimization, 31:105–116, 2006.

[Ken97] J. Kennedy. The particle swarm: Social adaptation of knowledge. In In Proceedings
of the International Conference on Evolutionary Computation, pages 303–308, 1997.

[Ken00] J. Kennedy. Evolutionary computation, 2000. proceedings of the 2000 congress on.
In Proceedings of the 2000 Congress on Evolutionary Computation, pages 1507 –
1512. IEEE, 2000.

[KFFT04] Thiemo Krink, Bogdan Filipic, Gary Fogel, and Rene Thomsen. Noisy optimization
problems - a particular challenge for differential evolution? In Congress onEvolu-
tionary Computation, 2004. CEC2004., volume 1, pages 332–339, June 2004.

[KFHBAK97] John R. Koza, III Forrest H. Bennett, David Andre, and Martin A. Keane. Evolution
using genetic programming of a low-distortion, 96 decibel operational amplifier. In
SAC ’97: Proceedings of the 1997 ACM symposium on Applied computing, pages
207–216, New York, NY, USA, 1997. ACM Press.

[KG04] Tholom Kiely and Georges Gielen. Performance modeling of analog integrated cir-
cuits using least-squares support vector machines. In DATE ’04: Proceedings of the
conference on Design, automation and test in Europe, page 10448, Washington, DC,
USA, 2004. IEEE Computer Society.

[KIAK99] J. R. KOZA, F. H BENNETT III, D. ANDRE, and M. A. KEANE. Genetic program-
ming: Turings third way to achieve machine intelligence. In 1999 for EUROGEN
workshop, Jyvdskyld, Finland, May-June 1999.

[KLB93] A. N. Karanicolas, Hae-Seung Lee, and K. L. Barcrania. A 15-b 1-Msample/s dig-
itally self-calibrated pipeline ADC. IEEE Journal of Solid-State Circuits, 28:1207–
1215, December 1993.

[KLT06] A. König, S. K. Lakshmanan, and P. M. Tawdross. International Congress Series
Brain-Inspired IT II: Decision and Behavioral Choice Organized by Natural and Ar-
tificial Brains, volume 1291, chapter Towards Organic Sensing Systems-Dynamic

BIBLIOGRAPHY 163

reconfigurable Mixed Signal Electronics for Adaptive Sensing in Organic Computing
Systems, pages 38–45. ELSEVIER, 2006.

[KM02] J. Kennedy and R. Mendes. Topological structure and particle swarm performance.
In David B. Fogel, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark
Shackleton, editors, Proceedings of the Fourth Congress on Evolutionary Computa-
tion (CEC-2002), Honolulu, Hawaii, May 2002. IEEE Computer Society.

[Kol00] Kimmo Koli. CMOS Current Amplifiers: Speed versus Nonlinearity. PhD thesis,
Helsinki University of Technology, Espoo, Finland, November 2000.

[Koz90] J. R. Koza. Genetic programming: A paradigm for genetically breeding populations
of computer programs to solve problems. Technical Report STAN-CS-90-1314, Stan-
ford University Computer Science Department, June 1990.

[KS06] U. Kanne and C. Sauvain. Digital flow sensors: Reaching new levels. Medical device
technology (Med. device technol.), 17:12–14, June 2006.

[KSB97] Sung-Ung Kwak, Bang-Sup Song, and Kantilal Bacrania. A 15 b 5 MSample/s low-
spurious CMOS ADC. In Proceedings of the 1997 IEEE International Solid-State
Circuits Conference. Digest of Technical Papers. 44th ISSCC 1997, pages 146 – 147,
445, February 1997.

[KZJS00] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica. Fault-tolerant evolvable hard-
ware using field-programmable transistor arrays. In IEEE Transactions on Reliability,
volume 49, pages 305–316, September 2000.

[Lan05] Jor̈g Langeheine. Intrinsic Hardware Evolution on the Transistor Level. PhD the-
sis, Electronic Vision(s) Group, Kirchhoff-Institut für Physik, Heidelberg Universität,
2005.

[Lay98] P. Layzell. Evolvable motherboard’: A test platform for the research of intrinsic
hardware evolution, 1998.

[LCA04] E. H. Luna, C. A. Coello Coello, and A. H. Aguirre. On the use of a population-based
particle swarm optimizer to design combinational logic circuits. In Proceedings of the
2004 NASA/DoD Conference on Evolvable Hardware., pages 183–190, June 2004.

[LGA99] Walter M. Lindermeir, Helmut E. Graeb, and Kurt Antreich. Analog testing by char-
acteristic observation inference. IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(9):1353–1368, 1999.

[LK05] S.K. Lakshmanan and A. König. A contribution to reconfigurable analog electronics
by a digitally programmable sensor signal amplifier. In Advances in Radio Science,
2005.

[LK07] Senthil Kumar Lakshmanan and Andreas König. Towards organic sensing system-
first measurement result of self-x sensor signal amplifier. In Proceedings of 7th Inter-
national Conference on Hybrid Intelligent Systems (HIS 2007), Kaiserslautern, Ger-
many, September 2007. IEEE Computer Society.

164 BIBLIOGRAPHY

[LKG91] Y.-M. Lin, B. Kim, and P .R. Gray. A 13-b 2.5-MHz self-calibrated pipelined A/D
converter in 3-µm CMOS. IEEE Journal of Solid-State Circuits, 26:628–636, April
1991.

[LM03] Jipeng Li and Un-Ku Moon. Background calibration techniques for multistage
pipelined adcs with digital redundancy. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 50(9):531–538, September 2003.

[LMS02] J. Langeheine, K. Meier, and J. Schemmel. Intrinsic evolution of quasi DC solutions
for transistor level analog electronic circuits using a CMOS FPTA chip. In The 2002
NASA/DoD Conference on Evolvable Hardware, pages 76–85, Alexandria, Virginia,
15-18 July 2002. Jet Propulsion Laboratory, California Institute of Technology, IEEE
Computer Society.

[LMS03] J. Langeheine, K. Meier, and J. Schemmel. Intrinsic evolution of analog electronic
circuits using a CMOS FPTA chip. In Proceedings of the 5th Conference on Evolu-
tionary Methods for Designing, Optimization and Control (EUROGEN), September
2003.

[LMU04] P. Lakshmikanthan, S. Mulchandani, and A. Núñ (USA). Sizing analog circuits using
an improved optimization-based tool. Journal of Circuits, Signals, and Systems, 449,
2004.

[Lø02] M. Løvbjerg. Improving particle swarm optimization by hybridization of stochastic
search heuristics and self-organized criticality. Master’s thesis, Department of Com-
puter Science, University of Aarhus, Denmark, 2002.

[LRK01] Morten Løvbjerg, Thomas Kiel Rasmussen, and Thiemo Krink. Hybrid particle
swarm optimizer with breeding and subpopulations. In In Proceedings of the Ge-
netic and Evolutionary Computation Conference 2001 (GECCO), volume 1, pages
469–476, 2001.

[LS92] S.-H. Lee and B.-S. Song. Digital-domain calibration of multistep analog-to-digital
converters. IEEE Journal of Solid-State Circuits, 27:1679–1688, December 1992.

[LSF98] C. Azeredo Leme, José B. Silva, and J. E. Franca. A full 12-bit switched-current
delta-sigma modulator with self-calibration. In Proceedings of the 22nd European
Solid-State Circuits Conference ESSCIRC’96, 1998.

[LTK06] Senthil Kumar Lakshmanan, Peter Tawdross, and Andreas König. Towards organic
sensing system-first measurement result of self-x sensor signal amplifier. In Proceed-
ings of 6th International Conference on Hybrid Intelligent Systems (HIS 2006), pages
62–65, Auckland, New Zealand, December 2006. IEEE Computer Society.

[Mei96] Peter Bartus Leonard Meijer. Neural Network Applications in Device and Subcircuit
Modelling for Circuit Simulation. PhD thesis, Technische Universiteit Eindhoven,,
1996.

[Men04] Rui Mendes. Population Topologies and Their Influence in Particle Swarm Perfor-
mance. PhD thesis, Escola de Engenharia, Universidade do Minho, May 2004.

BIBLIOGRAPHY 165

[MG05] Trent McConaghy and Georges G. E. Gielen. Analysis of simulation-driven numer-
ical performance modeling techniques for application to analog circuit optimization.
In In the proceedings of the IEEE International Symposium on Circuits and Systems
2005 (ISCAS 2005), pages 1298–1301, May 2005.

[Mis06] Sudhanshu Mishra. Some new test functions for global optimization and
performance of repulsive particle swarm method. MPRA Paper 2718,
University Library of Munich, Germany, August 2006. available at
http://ideas.repec.org/p/pra/mprapa/2718.html.

[MKN04] Rui Mendes, James Kennedy, and José Neves. The fully informed particle swarm:
Simpler, maybe better. IEEE Trans. Evolutionary Computation, 8(3):204–210, 2004.

[ML01] Jun Ming and Stephen H. Lewis. An 8-bit 80-Msample/s pipelined analog-to-
digital. converter with background calibration. IEEE Journal of Solid-State Circuits,
36:1489–1497, October 2001.

[MPV02] George D. Magoulas, Vassilis P. Plagianakos, and Michael N. Vrahatis. Globally con-
vergent algorithms with local learning rates. IEEE Transactions in Neural Networks,
pages 774–779, 2002.

[MSB91] H. Mühlenbein, D. Schomisch, and J. Born. The Parallel Genetic Algorithm as Func-
tion Optimizer. Parallel Computing, 17(6-7):619–632, 1991.

[MSvdMW04] Christian Müller-Schloer, Christoph von der Malsburg, and Rolf P. Würtz. Organic
computing. Informatik Spektrum, 27(4):332–336, 2004.

[OC92] Y. Ohba and Y. Chba, editors. Intelligent Sensor Technology. John Wiley & Sons,
Inc., New York, NY, USA, 1992.

[Pap98] Konstandinos Papathanasiou. Palmo: a novel pulsed based signal processing tech-
nique for programmable mixed-signal VLSI. PhD thesis, Dept. of Elecrical Engineer-
ing, University of Edinburgh, Scotland, 1998.

[PB06] Srinivas Pasupuleti and Roberto Battiti. The gregarious particle swarm optimizer
(g-pso). In GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pages 67–74, New York, NY, USA, 2006. ACM Press.

[PF98] K. Prakobwaitayakit and N. Fujii. Circuit topology selection based on neural net-
works. In Proceedings of the 1998 IEEE Asia-Pacific Conference on Circuits and
Systems (APCCAS 1998), pages 387 – 390, November 1998.

[PLF+99] J. Pollack, H. Lipson, P. Funes, S. Ficici, and G. Hornby. Coevolutionary robotics.
In Adrian Stoica, Jason Lohn, and Didier Keymeulen, editors, The First NASA/DoD
Workshop on Evolvable Hardware, pages 208–216, Pasadena, California, 19-21 July
1999. Jet Propulsion Laboratory, California Institute of Technology, IEEE Computer
Society.

[PV02] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization method in multi-
objective problems. In SAC ’02: Proceedings of the 2002 ACM symposium on Applied
computing, pages 603–607, New York, NY, USA, 2002. ACM Press.

166 BIBLIOGRAPHY

[PV04] K.E. Parsopoulos and M.N. Vrahatis. A unified particle swarm optimization scheme.
In Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of
the International Conference on Computational Methods in Sciences and Engineer-
ing (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands,
pages 868–873, 2004.

[PV05] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Unified particle swarm opti-
mization in dynamic environments. In Proceedings of Applications of Evolutionary
Computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, Evo-
MUSART, and EvoSTOC, pages 590–599, Lausanne, Switzerland, March-April 2005.
Springer.

[PWSS02] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun. A field programmable
analog array for cmos continuous-time ota-c filter applications. IEEE journal of solid
state circuits, 27(2):125–136, February 2002.

[Rec73a] I. Rechenberg. Evolutionsstrategie-Optimierum technischer Systeme nach Prinzip-
ien der biologischen Evolution. PhD thesis, Stuttgart-Bad Cannstatt: Frommann-
Holzboog, 1973.

[Rec73b] I. Rechenberg. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzip-
ien der Biologischen Evolution. Frommen-Hozlboog Verlag, Stuttgard, 1973.

[RHW04] Asanga Ratnaweera, Saman K. Halgamuge, and Harry C. Watson. Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE
Trans. Evolutionary Computation, 8(3):240–255, 2004.

[Ros60] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a
function. Computer J. 3, pages 175–184, 1960.

[RRS+04] Seung-Tak Ryu, Sourja Ray, Bang-Sup Song, Gyu-Hyeong Cho, and Kanti Bacrania.
A 14-b linear capacitor self-trimming pipelined ADC. IEEE Journal of Solid-State
Circuits, 39(11):2046–2051, November 2004.

[RV02] J. Riget and J. Vesterstroem. A diversity-guided particle swarm optimizer - the arpso.
Technical report, Department of Computer Science, University of Aarhus, 2002.

[SAKF06] Evangelos F. Stefatos, Tughrul Arslan, Didier Keymeulen, and Ian Ferguson. To-
wards the integration of drive control loop electronics of the jpl/boeing gyroscope
within an autonomous robust custom-reconfigurable platform. In Proceedings of First
NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), pages 207–
214, Istanbul, Turkey, June 2006. IEEE Computer Society.

[SD94] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[SD01] Eduardo D. V. Simoes and Keith R. Dimond. Embedding a distributed evolutionary
system into a population of autonomous mobile robots. In Proceedings of the 2001
IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages
1069–1074, 2001.

BIBLIOGRAPHY 167

[SE98a] Y. Shi and R. C. Eberhard. A modified particle swarm optimizer. In Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, 69-73.
Poscataway, NJ: IEEE Press, May 1998.

[SE98b] Y. Shi and R. C. Eberhard. Parameter selection in particle swarm optimization. In
Proceedings of the 1998 Annual Conference on Evolutionary Computation, March
1998.

[SE99] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimization. In Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), Piscat-
away, NJ., pages 1945–1950, 1999.

[SE01] Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization. In Proceed-
ings of the 2001 Congress on Evolutionary Computation CEC2001, pages 101–106,
COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30
May 2001. IEEE Press.

[Sen84] R. Senani. Floating ideal FDNR using only two current conveyors. Electronics Let-
ters, IEE (UK), 20(5):205–206, March 1984.

[S.F80] S.F.Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD thesis,
Univ. of Pittsburgh, December 1980.

[Sil07] Z. K. Silagadze. Finding two-dimensional peaks. Physics of Particles and Nuclei
Letters, 4(1), February 2007.

[SKT+99] A. Stoica, D. Keymeulen, R. Tawel, C. Salazar-Lazaro, and W. Li. Evolutionary
experiments with a fine-grained reconfigurable architecture for analog and digital
CMOS circuits. In Adrian Stoica, Jason Lohn, and Didier Keymeulen, editors, The
First NASA/DoD Workshop on Evolvable Hardware, pages 76–84, Pasadena, Califor-
nia, 19-21 July 1999. Jet Propulsion Laboratory, California Institute of Technology,
IEEE Computer Society.

[SKZ+00] A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, G. Klimeck, Y. Jin,
R. Tawel, and V. Duong. Evolution of analog circuits on field programmable transistor
arrays. In The Second NASA/DoD workshop on Evolvable Hardware, pages 99–108,
Palo Alto, California, 13-15 July 2000. IEEE Computer Society.

[SKZ01] A. Stoica, D. Keymeulen, and R. Zebulum. Evolvable hardware solutions for extreme
temperature electronics. In EH ’01: Proceedings of the The 3rd NASA/DoD Workshop
on Evolvable Hardware, pages 93–97, Washington, DC, USA, 2001. IEEE Computer
Society.

[SKZ+02] A. Stoica, D. Keymeulen, R.S. Zebulum, M.I. Ferguson, and X. Guo. On two
new trends in evolvable hardware: Employment of HDL-based structuring. and de-
sign of multi-functional circuits. In Adrian Stoica, Jason Lohn, Rich Katz, Didier
Keymeulen, and Ricardo Salem Zebulum, editors, The 2002 NASA/DoD Confer-
ence on Evolvable Hardware, pages 56–59, Alexadria, Virginia, 15-18 July 2002. Jet
Propulsion Laboratory, California Institute of Technology, IEEE Computer Society.

168 BIBLIOGRAPHY

[SSB97] T. Shu, B. Song, and K. Bacrania. A 13-b, 10-Msample/s ADC digitally cali-
brated with oversampling delta-sigma converter. IEEE Journal of Solid-State Cir-
cuits, 32:1866–1875, December 1997.

[ST88] Bang-Sup Song and M.F. Tompsett. A 12b 1MHz capacitor error averaging pipelined
A/D converter. In Proceedings of the 1988 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers.ISSCC 1988, pages 226–227, February 1988.

[Sug99] P. N. Suganthan. Particle swarm optimizer with neighborhood operator. In Proc.
IEEE Int. Congr. Evolutionary Computation, volume 3, pages 1958–1962, 1999.

[SZF+02] A. Stoica, R. S. Zebulum, M. I. Ferguson, D. Keymeulen, V. Duong, and X. Guo.
Evolving circuits in seconds: Experiments with a stand-alone board-level evolvable
system. In The 2002 NASA/DoD Conference on Evolvable Hardware, pages 67–75,
Alexandria, Virginia, 12-14 July 2002. Jet Propulsion Laboratory, California Institute
of Technology, IEEE Computer Society.

[SZK00] Adrian Stoica, Ricardo S. Zebulum, and Didier Keymeulen. Mixtrinsic evolution. In
ICES ’00: Proceedings of the Third International Conference on Evolvable Systems,
pages 208–217, London, UK, 2000. Springer-Verlag.

[SZK01] A. Stoica, R. Zebulum, and D. Keymeulen. Progress and challenges in building evolv-
able devices. In The Third NASA/DoD workshop on Evolvable Hardware, pages 33–
35, Long Beach, California, 12-14 July 2001. IEEE Computer Society.

[Tec] Microbridge Technologies. Rejustor primer. http://www.mbridgetech.com/pdfs/MB-
APP01-Rejustor-Primer-AN.pdf.

[Tho95] A. Thompson. Evolving electronic robot controllers that exploit hardware resources.
In F. Morán, A. Moreno, J. J. Merelo, and P. Chacon, editors, Advances in Artificial
Life: Proc. 3rd Eur. Conf. on Artificial Life (ECAL95), volume 929 of LNAI, pages
640–656. Springer-Verlag, 1995.

[Tho96] A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In Tet-
suya Higuchi, Masaya Iwata, and L. Weixin, editors, Proc. 1st Int. Conf. on Evolvable
Systems (ICES’96), volume 1259 of LNCS, pages 390–405. Springer-Verlag, 1996.

[Tho97a] A. Thompson. Evolving inherently fault-tolerant systems. Proceedings of the Insti-
tution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
211:365–371, 1997.

[Tho97b] Adrian Thompson. Artificial evolution in the physical world. In T. Gomi, editor,
Evolutionary Robotics: From intelligent robots to artificial life (ER’97), pages 101–
125. AAI Books, 1997.

[Tho02] A. Thompson. Notes on design through artificial evolution: Opportunities and algo-
rithms. In I. C. Parmee, editor, Adaptive computing in design and manufacture V,
pages 17–26. Springer-Verlag, 2002.

[TK05a] P. Tawdross and A. König. Dynamic reconfiguration algorithm for field pro-
grammable analog scalable device array (FPADA) with fixed topology. In Proceed-
ings of the 10th Online World Conference on Soft Computing in Industrial Applica-
tions (WSC10). Springer, November 2005.

BIBLIOGRAPHY 169

[TK05b] Peter Tawdross and Andreas König. Investigation of particle swarm optimization for
dynamic reconfiguration of field-programmable analog circuits. In Proceedings of 5th
International Conference on Hybrid Intelligent Systems (HIS 2005), pages 259–264,
Rio de Janeiro, Brazil, November 2005. IEEE Computer Society.

[TK06a] P. Tawdross and A. König. An efficient algorithm for reconfiguring a reconfigurable
analog hardware to recover the effect of industrial tolerance and extrema in dynamic
environment. In In Workshop Analog Integrated Circuits, TU Kaiserslautern, March
13-14, 2006, TU Kaiserslautern, March 2006. Springer-Verlag.

[TK06b] P. Tawdross and A. König. Particle swarm optimization for reconfigurable sensor
electronics - case study: 3 bit flash ADC. In Workshop on Intelligent Solutions in Em-
bedded Systems (WISES’06), Vienna University of Technology, Austria, June 2006.

[TK06c] P. Tawdross and A. König. Swarm Intelligent Systems, chapter Comparative Inves-
tigation of PSO vs. GA for Dynamically Reconfigurable Sensor Electronics, pages
67–81. NOVA, 2006.

[TK06d] Peter Tawdross and Andreas König. Local parameters particle swarm optimization.
In Proceedings of the 6th International Conference on Hybrid Intelligent Systems
(HIS’06), page 52, Auckland, New Zealand, December 2006. IEEE Computer Soci-
ety.

[TK07] Peter Tawdross and Andreas König. Mixtrinsic multi-objective reconfiguration of
evolvable sensor electronics. In Proceedings of Second NASA/ESA Conference on
Adaptive Hardware and Systems (AHS 2007), pages 51–57, Edinburgh, Scotland,
United Kingdom, August 2007. IEEE Computer Society.

[TL99] A. Thompson and P. Layzell. Analysis of unconventional evolved electronics. Com-
munications of the ACM, 42(4):71–79, April 1999.

[TLH90] C. Tomazou, F.J. Lidgey, and D.G. Haigh. Analogue IC design: the current-mode
approach. Peter Peregrinus Ltd, 1990.

[TLK05] P. Tawdross, S. Lakshmanan, and A. König. Konzept und erste Ergebnisse zu dy-
namisch rekonfigurierbarer Sensorelektronik für die Mess- und Automatisierung-
stechnik. In In proceedings of der Arbeitkreises der Hochschullehrer für Messtechnik
e.V. (AHMT 2005), September 2005.

[TLK06] Peter Tawdross, Senthil K. Lakshmanan, and Andreas Konig. Intrinsic evolution of
predictable behavior evolvable hardware in dynamic environment. In Sixth Interna-
tional Conference on Hybrid Intelligent Systems (HIS’06), pages 60–63, December
2006.

[TLMS05] Martin Trefzer, Jörg Langeheine, Karlheinz Meier, and Johannes Schemmel. Opera-
tional amplifiers: An example for multi-objective optimization on an analog evolvable
hardware platform. In Proceedings of Evolvable Systems: From Biology to Hardware,
6th International Conference (ICES 2005), pages 86–97, Sitges, Spain, September
2005. Springer.

170 BIBLIOGRAPHY

[TLSM04] Martin Trefzer, Jörg Langeheine, Johannes Schemmel, and Karlheinz Meier. New
genetic operators to facilitate understanding of evolved transistor circuits. In 6th
NASA / DoD Workshop on Evolvable Hardware (EH 2004), pages 217–224, Seattle,
WA, USA, June 2004.

[TP89] A. Törn and A. Pilinskas. Global optimization. In Lecture Notes in Computer Science
350. Springer-Verlag, 1989. Berlin Heidelberg.

[Tre03] Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence anal-
ysis and parameter selection. Inf. Process. Lett., 85(6):317–325, March 2003.

[Tre06] Martin Albrecht Trefzer. Intrinsic Hardware Evolution on the Transistor Level. PhD
thesis, Electronic Vision(s) Group, Kirchhoff-Institut für Physik, Heidelberg Univer-
sität, 2006.

[TS00] C. Teuscher and E. Sanchez. A revival of Turing’s forgotten connectionist ideas: Ex-
ploring unorganized machines. In R. M. French and J. P. Sougné, editors, Connection-
ist Models of Learning, Development and Evolution. Proceedings of the 6th Neural
Computation and Psychology Workshop, NCPW6, Perspectives in Neural Computing,
pages 153–162, Liège, Belgium, September 2000. Springer-Verlag, London.

[TW00] A. Thompson and C. Wasshuber. Evolutionary design of single electron systems. In
Jason Lohn, Adrian Stoica, and Didier Keymeulen, editors, The Second NASA/DoD
workshop on Evolvable Hardware, pages 109–116, Palo Alto, California, 13-15 July
2000. Jet Propulsion Laboratory, California Institute of Technology, IEEE Computer
Society.

[TZ89] A. Törn and A. Zilinskas. Global Optimization. Lecture Notes in Computer Science,
350, 1989.

[vdBE01] F. van den Bergh and A. P. Engelbrecht. Effects of swarm size on cooperative par-
ticle swarm optimisers. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Lang-
don, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk,
Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pages 892–899, San Francisco,
California, USA, 7-11 2001. Morgan Kaufmann.

[vdM04] Christoph von der Malsburg. Vision as an exercise in organic computing. In IN-
FORMATIK 2004 - Informatik verbindet, Band 2, Beiträge der 34. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), Ulm, volume 51 of LNI, pages 631–635. GI,
September 2004.

[VJF97] Frank Vavak, Ken Jukes, and Terence C. Fogarty. Adaptive combustion balancing in
multiple burner boiler using a genetic algorithm with variable range of local search.
In Proceedings of the 7th International Conference on Genetic Algorithms, pages
719–726, East Lansing, MI, USA, July 1997. Morgan Kaufmann.

[VRK02] Jakob S. Vesterstrøm, Jacques Riget, and Thiemo Krink. Division of labor in particle
swarm opimisation. In Proceedings of the 2002 Congress on Evolutionary Computa-
tion CEC ’02., 2002.

BIBLIOGRAPHY 171

[VSS03] G. Venter and J. Sobieszczanski-Sobieski. Particle swarm optimization. In AIAA
Journal, 41(8), pp., pages 1583–1589, 2003.

[VT03] Knut Arne Vinger and Jim Torresen. Implementing evolution of FIR-filters efficiently
in an FPGA. In Proceedings of 5th NASA / DoD Workshop on Evolvable Hardware
(EH 2003), pages 26–32, Chicago, IL, USA, July 2003. IEEE Computer Society.

[WHL04] X. Wang, P.J. Hurst, and S.H. Lewis. A 12-bit 20-Msample/s pipelined analog-to-
digital converter with nested digital background calibration. In IEEE Journal of Solid-
State Circuits, volume 39, pages 1799–1808, November 2004.

[Wil90] B. Wilson. Recent developments in current conveyors and current-mode circuits. In
Circuits, Devices and Systems, IEE Proceedings G, volume 137, pages 63–77, April
1990.

[WV02] Haibo Wang and Sarma B. K. Vrudhula. Behavioral synthesis of field programmable
analog array circuits. ACM Trans. Des. Autom. Electron. Syst., 7(4):563–604, 2002.

[XZY02] Xiao-Feng Xie, Wen-Jun Zhang, and Zhi-Lian Yang. A dissipative particle swarm
optimization. In Congress on Evolutionary Computation (CEC), volume 2, pages
1456–1461, 2002.

[Yao99] Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87:1423–1447,
September 1999.

[Yoo03] Jincheol Yoo. A TIQ Based CMOS Flash A/D Converter for System-on-Chip Appli-
cations. PhD thesis, The Pennsylvania State University, Department of Computer
Science and Engineering, May 2003.

[ZGK+04] R. S. Zebulumand, Xin Guo, D. Keymeulen, M. I. Ferguson, Vu Duong, and A. Sto-
ica. High temperature experiments using programmable transistor array. In Aerospace
Conference, 2004. Proceedings. 2004 IEEE, volume 4, pages 2437–2448, March
2004.

[Zit99] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, ETH Zurich, December 1999.

[ZMZQ03a] Y. Zheng, L. Ma, L. Zhang, and J. Qian. Empirical study of particle swarm optimizer
with an increasing inertia weight. In Proceedings of IEEE Congress on Evolutionary
Computation 2003 (CEC 2003), Canbella, Australia, pages 221–226, 2003.

[ZMZQ03b] Y. Zheng, L. Ma, L. Zhang, and J. Qian. On the convergence analysis and parameter
selection in particle swarm optimization. In Proceedings of International Conference
on Machine Learning and Cybernetics 2003, pages 1802–1807, 2003.

[ZPV98] R. S. Zebulum, M. A. Pacheco, and M. Vellasco. A multi-objective optimisa-
tion methodology applied to the synthesis of low-power operational amplifiers. In
Ivan Jorge Cheuri and Carlos Alberto dos Reis Filho, editors, Proceedings of the
XIII International Conference in Microelectronics and Packaging, volume 1, pages
264–271, Curitiba, Brazil, 1998.

172 BIBLIOGRAPHY

[ZPV99] R. Zebulum, M. Pacheco, and M. Vellasco. Artificial evolution of active filters: A
case study. In Adrian Stoica, Jason Lohn, and Didier Keymeulen, editors, The First
NASA/DoD Workshop on Evolvable Hardware, pages 66–75, Pasadena, California,
19-21 July 1999. Jet Propulsion Laboratory, California Institute of Technology, IEEE
Computer Society.

[ZPV02] R. S. Zebulum, M. A. C. Pacheco, and M. M. B. Vellasco, editors. Evolutionary Elec-
tronics. Automatic Design of Electronic Circuits and Systems by Genetic Algorithm.
CRC Press, 2002.

[ZSK00] Ricardo S. Zebulum, Adrian Stoica, and Didier Keymeulen. A flexible model of a
cmos field programmable transistor array targeted for hardware evolution. In ICES
’00: Proceedings of the Third International Conference on Evolvable Systems, pages
274–283, London, UK, 2000. Springer-Verlag.

[ZVP01] Ricardo Salem Zebulum, Marley Maria Bernard Vellasco, and Marco Aurelio
Pacheco. Evolutionary Electronics: Automatic Design of Electronic Circuits and
Systems by Genetic Algorithms. CRC Press, Inc., Boca Raton, FL, USA, 2001.

List of Figures

1.1 The hardware standard specifications are optimized as a multi-objective criterion . . 4

1.2 Conceptual block diagram of the target hardware. 4

2.1 Block-diagram of a simplified modern sensor system. 7

2.2 Phases of sensor electronics deviations. 9

2.3 Performance of various ADC architectures [Yoo03]. a)ADCs resolution. b) ADCs
speed. 10

2.4 Simplified diagram of digital background gain calibration of interleaved ADCs [FDLH98]. 12

2.5 Digital background offset calibration of interleaved ADCs [FDLH98]. 13

2.6 Digital domain calibration multi-step flash ADC in [LS92]. 14

2.7 Architecture of 1.5 bits/stage pipelined ADC. 14

2.8 Digital background self-calibration of pipelined ADC based on employing redundant
ADC. 16

2.9 Second generation current conveyor symbol. 17

2.10 CCII based floating FDNR [Sen84]. 17

2.11 CCII amplifier [Wil90]. 17

2.12 A low-voltage, low-power CCII implementation [ITF02]. 18

2.13 DC characteristics of the CCII proposed in [ITF02]. a) Current transfer characteris-
tics. b) The VX vs. IX when VY = 1.65V . 18

2.14 AC characteristics of the CCII in [ITF02] . 19

174 LIST OF FIGURES

2.15 CDTA block a) Its symbol. b) Its implementation using CCII+ and MOTA. 19

2.16 CDTA operating as an amplifier. 20

2.17 a) The flow graph of the CDTA. b) The flow graph of second order LP filter using
CDTA [Bio03]. c) The implementation of the filter in figure 2.17(b) using a single
CDTA element. 20

2.18 Second-order KHN filter using CDTA [BVB05]. 20

2.19 Generic organic-computing sensor electronic system. 23

3.1 Optimization techniques’ taxonomy [Aff05]. 26

3.2 Computation intelligence taxonomy [Chr03]. 26

3.3 Example of one point crossover. a) Parents. b) Offspring. 29

3.4 Example of two point crossover. a) Parents. b) Offspring. 29

3.5 Example of arithmetic crossover with α = 0.5. a) Parents. b) Offspring. 30

3.6 Example of Genetic programming syntax tree. 31

3.7 Two selected parents for crossover. 32

3.8 The offspring after crossing over of the parents in figure 3.7. 32

3.9 Selected parent for identical crossover. 33

3.10 The offspring after crossover of the identical parents in figure 3.9. 33

3.11 a) An offspring before applying mutation. b) The offspring in figure 3.11(a) after
mutation. 34

3.12 gbest model; each particle is aware of all the population. 36

3.13 lbest model; a) each particle has two neighbor. b) each particle has six neighbors. . . 36

3.14 Schema of HPSO with h = 4 and d = 2. 38

3.15 Sphere function in 2D. 47

3.16 Two-dimensions ellipsoid function. 48

3.17 Schaffer function. a) The whole search range. b) Zoomed to the range xd ∈ [−20,20]. 49

3.18 Rastrigin function in 2D. 49

3.19 Rosenbrock function in 2D. 50

3.20 Griewangk function in 2D. a) The search range x ∈ [−100,100]. b) Zoomed to the
search range xd ∈ [−10,10]. 51

LIST OF FIGURES 175

3.21 Sphere function. a) The convergence curve of the mean value. b) Standard deviation
curve. 51

3.22 Axis Parallel Hyper ellipsoid function. a) The convergence curve of the mean value.
b) Standard deviation curve. 52

3.23 Generalized Schaffer function. a) The convergence curve of the mean value. b)
Standard deviation curve. 52

3.24 Rastrigin function. a) The convergence curve of the mean value. b) Standard devia-
tion curve. 53

3.25 Rosenbrock function. a) The convergence curve of the mean value. b) Standard
deviation curve. 53

3.26 Griewangk function. a) The convergence curve of the mean value. b) Standard
deviation curve. 54

3.27 The convergence curve of the sphere function in dynamic environment. a) The whole
curve. b) The mean value of every 20 iterations. 54

3.28 The convergence curve of the Axis parallel hyper ellipsoid function in dynamic en-
vironment. a) The whole curve. b) The mean value of every 20 iterations. 55

3.29 The convergence curve of the Schaffer function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations. 55

3.30 The convergence curve of the Rastrigin function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations. 56

3.31 The convergence curve of the Rosenbrock function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations. 56

3.32 The convergence curve of the Griewangk function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations. 57

3.33 The standard deviation curve of the sphere function in dynamic environment. a) The
whole curve. b) The mean value of every 20 iterations. 57

3.34 The standard deviation curve of the Axis parallel hyper ellipsoid function in dynamic
environment. a) The whole curve. b) The mean value of every 20 iterations. 58

3.35 The standard deviation curve of the Schaffer function in dynamic environment. a)
The whole curve. b) The mean value of every 20 iterations. 58

3.36 The standard deviation curve of the Rastrigin function in dynamic environment. a)
The whole curve. b) The mean value of every 20 iterations. 59

3.37 The standard deviation curve of the Rosenbrock function in dynamic environment.
a) The whole curve. b) The mean value of every 20 iterations. 59

176 LIST OF FIGURES

3.38 The standard deviation curve of the Griewangk function in dynamic environment. a)
The whole curve. b) The mean value of every 20 iterations. 60

3.39 Illustrative example of Pareto for a maximization problem of f1 and f2. 61

4.1 Evolvable hardware taxonomy . 64

4.2 The symbol of Palmo cell . 65

4.3 The CAB of the OTA-C based FPAA [PWSS02]. 66

4.4 The CAB of the OTA-C based FPAA [BM05]. 67

4.5 The PAMA architecture. 68

4.6 The architecture of the evolvable motherboard [Lay98]. 68

4.7 The JPL FPTA [SKT+99]. 69

4.8 JPL FPTA2 [SZF+02] a) Structure of one cell. b) The FPTA2 chip consists of 64 cells. 70

4.9 A simplified structure of the Heidelberg FPTA [Lan05]. 71

4.10 The structure of a single programmable transistor module of Heidelberg FPTA [Lan05]. 72

4.11 The initial circuit in designing an operational amplifier with GP. 73

4.12 Example of GA operations in circuits. a) Component flipping. b) Component dividing. 73

4.13 The simulated hardware used by Coello to synthesis digital combinational circuits,
extract from [CLA02]. 76

4.14 An extrinsically evolved AND gate [SZK00]. 77

4.15 An operational amplifier implemented on Heidelberg FPTA [TLMS05]. 78

4.16 FIR filter. 79

4.17 An intrinsically evolved circuit [SZK00]. 80

4.18 An evolved logarithmic amplifier [dAdAS+04]. 81

4.19 The population in mixtrinsic evolution [SZK00]. 82

4.20 An evolved circuit mixtrinsically [SZK00]. 82

5.1 Block diagram of the reconfigurable generic sensor system. 86

5.2 The complete aspired target system. 87

5.3 A programmable block that can be programmed as OTA or as operational amplifier. . 87

5.4 Extrinsic reconfiguration environment. 88

LIST OF FIGURES 177

5.5 The intrinsic evolution environment. 90

5.6 The mixtrinsic multi-objective evolution a) A single individual. b) The complete
population. 91

5.7 The mixtrinsic evolution. 92

5.8 Determining the hardware specifications by formal models. 93

5.9 Determining the hardware specifications by a hybrid simulated/formal model. 94

5.10 Determining an operational amplifier specifications by first simulating the biasing
current at a given temperature, compute the transconductance of all the transistors,
and the poles of the amplifier, then employing lean models to calculate its specifica-
tions. 94

5.11 Estimation models training. 95

5.12 Neural network as an estimation model. 95

5.13 A neural network specification estimation model that is partitioned smaller models
by employing a priori knowledge. 96

5.14 Extracting the hardware specifications by a hybrid estimation/formal model. 97

5.15 A programmable NMOS transistor [LK05] of the FPMA. 97

5.16 A programmable NMOS transistor [LK07] of the FPMA2. 98

5.17 The proposed design flow for generic organic-computing sensor electronics. 99

5.18 The hierarchical optimization of evolvable hardware, building functional block level
hardware such as filter and instrumental amplifier from programmable operational
amplifiers. 100

5.19 Building CDTA from CCII and MOTA. 101

5.20 Outlines of background calibration of sensor electronics hardware. 101

5.21 Synchronizing the blocks swapping with the sample and hold of the ADC. 102

6.1 The proposed design flow from chapter 5 for the aspired generic organic-computing
sensor electronics, the contributed blocks are marked in gray. 104

6.2 Block diagram of the implemented reconfiguration environment. 105

6.3 A simplified block diagram of the intrinsic evolution prototype. 105

6.4 Photograph of the target embedded system. 106

6.5 The evolvable chip in [LK05]. a) Reconfigurable Miller module schematic. b) Re-
configurable Miller module layout. 107

178 LIST OF FIGURES

6.6 The schematic of the programmable folded-cascode operational amplifier module
in [LK05]. 107

6.7 The intrinsic measurement circuits. a) Measuring the input voltage offset, slew rate,
settling time, and CMR. b) Measuring the output swing voltage. c) Measuring the
current by the voltage regulator circuit. 108

6.8 Photos of the experimental hardware setup. a) The assessment circuits. b) Heating
the chip by soldering machine for the intrinsic dynamic environment experiment. . . 109

6.9 The convergence curve of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.1. 112

6.10 The standard deviation curve of the extrinsic evolution of the operational amplifier
in [LK05] for the requirements in table 6.1. 113

6.11 The convergence curve of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.3. 114

6.12 The standard deviation curve of the extrinsic evolution of the operational amplifier
in [LK05] for the requirements in table 6.3. 115

6.13 The convergence curve of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.5. 116

6.14 The standard deviation of the extrinsic evolution of the operational amplifier in
[LK05] for the requirements in table 6.5. 117

6.15 AC characteristics curve of the amplifier with the configuration in table 6.6. 118

6.16 Step response of the amplifier with the configuration in table 6.6. 119

6.17 The convergence curve of the extrinsic evolution of the operational amplifier in dy-
namic environment. 120

6.18 The standard deviation curve of the extrinsic evolution of the operational amplifier
in dynamic environment. 121

6.19 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) Open-loop gain. b) Bandwidth. 121

6.20 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) CMR. b) Output swing voltage. 122

6.21 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) CMRR. b) PSRR. 122

6.22 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) Rising settling time. b) Falling settling time. 123

6.23 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) Rising slew rate. b) Falling slew rate. 123

LIST OF FIGURES 179

6.24 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) Offset. b) Output resistance. 124

6.25 The achieved specifications of the evolution of operational amplifier in dynamic en-
vironment. a) Phase margin. b) Quiescent power consumption. 124

6.26 The convergence curve of the intrinsic evolution in the static environment. 125

6.27 The standard deviation curve of the intrinsic evolution in the static environment. . . . 125

6.28 Measuring offset, CMR, Ts and SR intrinsically. 126

6.29 Measuring the output swing voltage intrinsically. 126

6.30 The effect of small CMR. 127

6.31 The effect of small phase margin. 128

6.32 The convergence curves of intrinsic evolution in the stationary environment. a) Us-
ing HPSO, b) Using MSPSO. 129

6.33 The standard deviation curves of intrinsic evolution in the stationary environment.
a) Using HPSO, b) Using MSPSO. 130

6.34 Mixtrinsic multi-objective evolution convergence curve. 132

6.35 Mixtrinsic multi-objective evolution standard deviation curve. 132

6.36 A low-voltage, low-power CCII implementation [ITF02]. 135

6.37 The frequency response of the evolved CCII. 136

6.38 The frequency response of the evolved CCII after adding the compensation capacitor. 137

6.39 The relation between the input current IX and the output current IZ of the evolved CCII. 137

6.40 The relation between the input current IX and the output voltage VX of the evolved
CCII. 138

6.41 The step response of the evolved CCII after adding the compensation capacitor. . . . 138

6.42 The relation between VX and VY . 139

6.43 The target 3 bit ADC flash converter. 139

6.44 The quantized signal by the initial configuration, the effect of the first deviation
model on the quantized signal, and the signal after recovering. 141

6.45 The quantized signal by the initial configuration, the effect of the second deviation
model on the quantized signal, and the signal after recovering. 142

6.46 Depiction of filter specification. 143

6.47 Schematic of the target voltage mode filter. 143

180 LIST OF FIGURES

6.48 The returned voltage mode filter frequency response of the first setting filter. 144

6.49 The returned voltage mode filter frequency response of the second setting filter. . . . 144

6.50 Schematic of the target current-mode filter. 144

6.51 The returned current mode filter frequency response of the first setting filter. 145

6.52 The returned current mode filter frequency response of the second setting filter. . . . 145

7.1 Block diagram of the reconfigurable generic sensor system. 151

7.2 Blockschaltbild der rekonfigurierbaren generische Sensor System. 151

7.3 Die hierarchische Optimierung generischer Sensorelektronik, Zusammensetzung zu
funktionalen Blöcken, wie Instrumentierungsverstärker aus rekonfigurierbaren Op-
erationsverstärkern und passiven Komponenten. 152

7.4 Die mixtrinsische multikriterielle Evolution a) Ein einzelnes Individuum. B) Die
vollständige Population. 153

7.5 Die mixtrinsische multikriterielle Evolution Umgebung. 154

List of Tables

2.1 High temperature semiconductor technologies [Goe98]. 9

2.2 The achieved bit resolution after calibrations. 16

3.1 The mean value of the last iteration in static environment. 51

3.2 The standard deviation of the last iteration in static environment. 52

3.3 The mean value of the last iteration before the environmental change in dynamic
environment. 55

3.4 The standard deviation of the last iteration in dynamic environment. 56

3.5 The mean value of the last iteration sensitivity analysis. 58

3.6 The standard deviation of the last iteration sensitivity analysis. 59

4.1 Widths of the employed switches [Lan05]. 71

6.1 The first variant of the target and the achieved specifications for extrinsic evolution
of operational amplifier in static environment. 111

6.2 Transistor widths and passive component values of a returned configuration to the
specification variant at table 6.1. 111

6.3 The second variant of the target and the achieved specifications for extrinsic evolu-
tion of operational amplifier in static environment. 112

6.4 Transistor widths and passive component values of a returned configuration to the
specification variant at table 6.3. 113

182 LIST OF TABLES

6.5 The third variant of the target and the achieved specifications for extrinsic evolution
of operational amplifier in static environment. 114

6.6 Transistor widths and passive component values of a returned configuration to the
specification variant at table 6.5. 115

6.7 The last iteration mean value of all the runs using the GA, HPSO, HPSO-TVAC,
MSPSO-TVAC, and PSO-TVAC. 117

6.8 The last iteration standard deviation using the GA, HPSO, HPSO-TVAC, MSPSO-
TVAC, and PSO-TVAC. 118

6.9 The target specifications for operational amplifier in dynamic environment. 119

6.10 The target and the achieved specifications for operational amplifier. 131

6.11 Transistor widths and passive component values of a returned configurations in the
mixtrinsic multi-objective evolution. 133

6.12 Transistor widths and passive component values of a returned folded-cascode oper-
ational amplifier configurations in the mixtrinsic multi-objective evolution. 133

6.13 The target and the achieved specifications for folded-cascode operational amplifier. . 134

6.14 The target and the achieved specifications for extrinsic evolution of the CCII. 135

6.15 The CCII configuration that the evolution returned. 136

6.16 The required and the achieved transition levels for the flash ADC, and the effect of
the deviations on them. 140

6.17 Transistor widths and passive component values of a returned comparator. 140

6.18 The resistor values before and after recovering. 141

6.19 The requirement of the filter. 143

6.20 Returned voltage mode filter configurations. 144

6.21 Returned current mode filter configurations. 145

6.22 The achieved filter settings . 145

List of Procedures

1 Genetic algorithm procedures. 27
2 Particle Swarm Optimization procedures. 35
3 LPSO procedures. 45
4 Procedures to update the local parameters of particle i in LPSO. 46

List of Symbols and Abbreviation

Symbols

Symbol Description
α Arithmetic crossover factor for mixing the parents
α1 A coefficient used in LPSO and LHPSO controller
α2 A coefficient used in LPSO and LHPSO controller
α1d The coefficient α1 after variation for the sensitivity analysis
beta1 A coefficient used in LPSO and LHPSO controller
beta2 A coefficient used in LPSO and LHPSO controller
γ An acceleration coefficient used in gregarious particle swarm optimizer
σ The rate of change of γ per unit iteration
δp The gain of the pass band of a filter is less thanδp and greater than 2−δp
δs The gain of the stop band of a filter
θ Threshold used in division of labor PSO
ϑ The environmental temperature
φ Phase margin
Φ The acceleration coefficient in fully informed PSO
η Index of the fittest neighbor for the particle i in FDR-PSO
χ The constriction factor in particle swarm optimization
εa The error in the bit a of the ADC output due to the gain errors in the previous stages
ρ The mutation step size in guaranteed convergence PSO
ψ1, ψs, and ψ3 The acceleration coefficients in FDR-PSO
a Index to a bit number binary ADC
ai An extra particle acceleration added in charged PSO
Ao Open-loop gain
BW3db The 3db bandwidth
b The bit resolution of an ADC or a DAC

continued on next page

LIST OF PROCEDURES 185

continued from previous page
Symbol Description
bstage the number of effective bits the ADC generates each stage
be The number of the stages that are highly affecting the output because of its deviation
◦C Degree Celsius
C The problem space
C1 The cognitive acceleration coefficient in PSO
C2 The social acceleration coefficient in PSO
C1,i The cognitive acceleration coefficient of the particle i in LPSO and LHPSO
C2,i The social acceleration coefficient of the particle i in LPSO and LHPSO
CL The SOC PSO has a global set criticality limit
CRVX=VY Current input range that keeps VX = VY when VY is connected to ground
Dout The digital output of an ADC
Da The bit number a of the ADC output Dout
Ds The value of the output of single stage in pipelined ADC
D(s) Denominator of a filter transfer function in the s-domain
d The branching degree of the hierarchical tree in HPSO
D The number of dimension in the search space
f(x) An array of objective functions
Fa Aggregation function
fadapt The frequency in which, the AHPSO brunching degree change according to it
fF The objective function to optimized the filter frequency response defined in [ZPV99]
f A variable representing frequency sweeping of AC
fmax The end frequency of AC simulation
fmin The start frequency of AC simulation
fi The fitness value of the particle i
fo The objective function of the objective o

f (x) The fitness function that returns the fitness value equivalent to x
G The global velocity in unified PSO
g The index of the particle with the global achieved fitness in PSO
Gclosedloop Closed loop gain (of an amplifier)
h The number of levels between the root and the leaves in HPSO
IBP Current output of band-pass current-mode filter
IHP Current output of high-pass current-mode filter
ILP Current output of low-pass current-mode filter
Io f f set The input current when the output current is equal to zero ampere
k A coefficient used in enhancing the PSO with constriction factor
K The gain of the Palmo integrator
ko Weight associated to the objective function o

L The local velocity in unified PSO
mo The value of the objective o that the simulation or measurement return
nswarm The number of swarms in multi-swarm PSO
N The number of particles in the population,

or the neighbors of a particle if local best model is used
continued on next page

186 LIST OF PROCEDURES

continued from previous page
Symbol Description
n The steepness factor in division of labor PSO
n The number of hardware extrinsic specifications
O() An operator to show the complexity of an algorithm, for example:

O(N) means that the algorithm is proportional to N
O(N2)means that the algorithm is proportional to N2

o Index to a sub-swarm
o index to an object in multi-objective optimization
o f f spring1 & o f f spring2 Indices of offspring
parent1 & parent2 Indices of parents; particular selected individuals

to generate offspring
P The radius of the shell in which if any particle enter it, it will

dispel the particle in the shell center in charged PSO
Pg→l,i The probability that the particle i will start local search in

division of the labor PSO
Pcore The radius of the shell in which if any particle enter it, it will not

dispel the particle in the shell center to protect division by zero
Po The pulse width of the palmo block output
P+ The pulse width of the palmo block positive input
P− The pulse width of the palmo block negative input
pi The position where the particle i in the

PSO achieved its best fitness value
Pc power consumption
p fi the best achieved fitness value by the particle i
Q Quantity of charge in a particle
Q Quality factor of a filter
rexcl The minimum allowed distance between sub-swarms in multi-swarm PSO
ro The redius of the subswarm o
Ro Output resistance
rand() Random number generator that generates a Random value between 0 and 1
Rrand A random number
ri j The displacement vector between the particle j and the particle i
ri j The euclidean distance between the particle i and the particle j
ra Radix of a given stage in the pipelines ADC
raa Radix of the stage a in the pipelines ADC
s Stimuli signal used in division of the labor in PSO
s The sign associated to the output of the CCII element

its value is equal to 1 for the CCII+, and -1 for the CCII-
so the required specification for the objective o

t Iteration number at a certain time instance
t +1 The next iteration to the iteration t
t + t0 The iteration that is occurred t0 iterations after the Iteration t
tmax The maximum allowed number of iterations (in GA or PSO)

continued on next page

LIST OF PROCEDURES 187

continued from previous page
Symbol Description
T Evaporation rate of the pheromone
Ts Setting time
u A coefficient for mixing the global and local velocities in unified PSO
vmax The maximum allowed speed in PSO
Vodev The output voltage after the deviation
Vo f f set The input voltage when the output voltage is equal to zero volt
Vout(f RMS of the output signal for the frequency f

Vin(f) RMS of the input signal
wi The inertia coefficient of the particle i in LPSO and LHPSO
W (j) A weighting function to acceleration part due to the particle j

in fully informed PSO
wf The weighting value at the frequency f

x A solution in the search space, e.g. position of particle in particle swarm
xmax The maximum value in the search space
xdev The deviation vector which is a random vector added to

the solutions, e.g. position is PSO to model system deviation
optimization, or gnome in genetic algorithm

xd The dimension d in the search space
x Index to a termimal in an analog design
y A solution in the search space
y Index to a termimal in an analog design
z Index to a termimal in an analog design

188 LIST OF PROCEDURES

Abbreviations

Abbreviation Description
ADC Analog to Digital Converter
APSO Adaptive Particle Swarm Optimizer
ACO Ant Colony Optimization
AHPSO Adaptive Hierarchical Particle Swarm Optimizer
AMS Analog Mixed Signal
ARPSO Attractive and Repulsive Particle Swarm Optimizer
BW Bandwidth
CR linear Current Range
CAB Configurable Analog Block
CDBA Current Differencing Buffered Amplifier
CDTA Current Differencing Transconductance Amplifier
CLB Configurable Logic Block
CMR Common Mode Range
CMRR Common Mode Rejection Ratio
CPLA Complex Programmable Logic Array
CPSO Charged Particle Swarm Optimizer
DAC Digital to Analog Converter
DAQ Data Acquisition
DoL PSO Division of Labor in Particle Swarm Optimization
DSP Digital Signal Processor
EHW Evolvable Hardware
EPAC Electrically Programmable Analog Circuit
FDNR Frequency Dependent Negative Resistance
FDR-PSO Fitness-Distance Ratio based Particle Swarm Optimization
FIPSO Fully Informed Particle Swarm Optimizer
FIPSOC Field Programmable System-On-a-Chip
FIR Finite Impulse Response
FPAA Field-Programmable Analog Array
FPGA Field Programmable Gate Array
FPMA Field-Programmable Mixed-Analog-Digital Array
FPPA Field Programmable Processor Array
FPTA Field Programmable Transistor Array
GCPSO Guaranteed Convergence Particle Swarm Optimizer
G-PSO Gregarious Particle Swarm Optimizer
GA Genetic Algorithm
GAL Generic Array Logic
GP Genetic Programming
HDL Hardware Description Language
HPSO Hierarchical Particle Swarm Optimizer

continued on next page

LIST OF PROCEDURES 189

continued from previous page
Abbreviation Description
INL Integral Non-Linearity error
JPL Jet Propulsion Laboratory
KHN filter Kerwin-Huelsman-Newcomb filter
LPSO Local Parameters Particle Swarm Optimizer
LHPSO Local Parameters Hierarchical Particle Swarm Optimizer
MDAC Multiplying Digital to Analog Converter
MEMS Micro-Electro-Mechanical Systems
MOTA Multi-output Operational Transconductance Amplifier
MSPSO Multi-swarm particle swarm optimizer
NFS Network File System
OpAmp Operational Amplifier
OTA Operational Transconductance Amplifier
PD Propagation Delay
PLA Programmable Logic Array
PROM Programmable Read Only Memory
PSO Particle Swarm Optimization
PSRR Power Supply Rejection Ratio
QSO Quantum Swarm Optimizer
RMS Root Mean Square
S&H Sample and Hold
SOC PSO Self-Organized Criticality Particle Swarm Optimizer
SR Slew Rate
TCR Temperature Coefficient of Resistance
TFTP Trivial File Transfer Protocol
TVAC Time-Varying Acceleration Coefficients
TRAC Totally Reconfigurable Analog Circuit
UPSO Unified Particle Swarm Optimization
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VHF Very High Frequency

Lebenslauf

Persönliche Daten
Name: Peter Messiha Mehanny Tawdross
Geboren: 24.März 1978
Staatangehörigkeit: Ägypter
Familienstand: ledig

Bildungsgang
Schule 1983-1989 St. Joseph Maronite School / Kairo , Ägypten

1989-1996 St. Fatima Language School / Kairo , Ägypten

B.Sc. 9/1996-10/2001 Higher Technological Institute, 10th of Ramadan, Ägypten
B.Sc. der Elektroingenieurwesen und Informatik
Abschluss projekt ”Three degree of freedom robot arm
position control using induction motor”

M.Sc. 3/2002-4/2004 TU Kaiserslautern
M.Sc. der Elektrotechnik und Informationstechnik
Master thesis ”Structural decomposition of signal
transition graphs and transformation into XBM machines”

Beschäftigung mit dem 10/2004-2/2005 Tätigkeit als studentische Hilfskraft mit Abschluss bis zur
Ziel der Promotion: Verfügbarkeit einer Landesstelle an der TU Kaiserslautern,

Fachbereich Elektrotechnik und Informationstechnik
Lehrstuhl Integrierte Sensorsysteme.
Von 2/2005-12/2007 Wissenschaftlicher Mitarbeiter am
Lehrstuhl Integrierte Sensorsysteme,
Abschluss der Promotion Dezember 2007.

