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Abstract

The visualization of numerical fluid flow datasets is essential to the engineering
processes that motivate their computational simulation. To address the need for
visual representations that convey meaningful relations and enable a deep under-
standing of flow structures, the discipline of Flow Visualization has produced many
methods and schemes that are tailored to a variety of visualization tasks. The ever
increasing complexity of modern flow simulations, however, puts an enormous de-
mand on these methods. The study of vortex breakdown, for example, which is
a highly transient and inherently three-dimensional flow pattern with substantial
impact wherever it appears, has driven current techniques to their limits. In this
thesis, we propose several novel visualization methods that significantly advance
the state of the art in the visualization of complex flow structures.

First, we propose a novel scheme for the construction of stream surfaces from
the trajectories of particles embedded in a flow. These surfaces are extremely
useful since they naturally exploit coherence between neighboring trajectories and
are highly illustrative in nature. We overcome the limitations of existing stream
surface algorithms that yield poor results in complex flows, and show how the
resulting surfaces can be used a building blocks for advanced flow visualization
techniques.

Moreover, we present a visualization method that is based on moving section
planes that travel through a dataset and sample the flow. By considering the
changes to the flow topology on the plane as it moves, we obtain a method of
visualizing topological structures in three-dimensional flows that are not accessible
by conventional topological methods. On the same algorithmic basis, we construct
an algorithm for the tracking of critical points in such flows, thereby enabling the
treatment of time-dependent datasets.

Last, we address some problems with the recently introduced Lagrangian tech-
niques. While conceptually elegant and generally applicable, they suffer from an
enormous computational cost that we significantly use by developing an adaptive
approximation algorithm. This allows the application of such methods on very
large and complex numerical simulations.

Throughout this thesis, we will be concerned with flow visualization aspect of
general practical significance but we will particularly emphasize the remarkably
challenging visualization of the vortex breakdown phenomenon.
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Introduction

Computers are indispensable tools in the scientific process. Their capability to
process continually increasing amounts of data has enriched many fields of appli-
cation. They enable modeling and simulation of complicated situation in increas-
ing detail, and thereby allow to comfortably and cheaply test hypotheses, examine
possibilities and verify assumptions. Thereby, they open new horizons and push
back the frontiers of our understanding. The field of Scientific Visualization, a
very active discipline of Computer Science, takes a key role in the knowledge gen-
eration process. It is in charge of generating images that further the understanding
and convey meaningful aspects of numerical datasets by exploiting the enormous
aptitude of human beings at comprehending and interpreting visual information.

Among the many disciplines that have profited in an enormous fashion from
increased computational ability is the field of Computational Fluid Dynamics
(CFD). Fluid flows play a very important part in many situations. From the
flow of blood in capillary vessels to global weather dynamics, they govern many
aspects of our everyday lives. The ability to simulate fluid flow on all scales allows
an increased understanding and thereby control of these aspects. However, insight
does not follow from the raw numerical data that is the result of such simulations.
Flow visualization is hence required to provide essential tools that are tailored to
the visualization needs of flow analysis. The approaches devised to extract mean-
ingful structures from a numerical flow description have historically been classified
in three main categories. Each has unique advantages and drawbacks.

The first approach centers on the generation of geometric primitives such as
lines and surfaces using the trajectories of particles embedded in the flow. Many
such conceptions exist, and they are quite intuitive by exploiting natural coher-
ence of particles on the same trajectory or on neighboring trajectories. However,
they are not suited to application problems with a high degree of complexity, for
two main reasons. First, it is often unclear which trajectories exhibit interesting
behavior that allows insightful conclusions. More importantly however, they have
so far applied to three-dimensional flows on in a very limited sense. Line-type
primitives, while simple and reliable to compute, suffer from issues of visual clar-
ity. Surface primitives on the other hand have great illustrative power, but are
difficult to generate numerically due to lack of an algorithm that is applicable to
the intricate flow structures that prevail in modern flow applications.

Secondly, Vector Field Topology strives to interpret flows in the language of
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dynamical systems, thereby leveraging qualitative results from the mathemati-
cally deep and rigorous theoretical framework that has been built around them.
The significance of the resulting symbolic description is therefore without ques-
tion. This topological approach has proven a very reliable tool in the case of
two-dimensional, stationary flows, but has as of yet failed to demonstrate the
same utility in the three-dimensional case. However, the latter is much more rele-
vant from an application point-of-view. Similarly, it has allowed for some limited
treatment of time-varying flows in the context of parameter-dependent topology
but cannot address typical problems in modern applications, owing to limitations
of the theoretical foundation. Especially the last problem has been successfully
addressed by the class of Lagrangian approaches that make use of observing the
trajectories of neighboring particles. Meaningful structures are hence identified by
observing the convergence or divergence of such trajectories. A major hindrance
however is the enormous computational cost associated with these techniques that
is effectively prohibitive for the analysis of large simulation datasets. Furthermore,
the visualization potential of these methods in not fully developed.

Finally, feature-based visualization has taken a more empirical path to insight-
ful images by relying on the identification and depiction of certain types of well-
known structures or features that appear in fluid flow. In contrast to geometric
and topological approaches, these methods have been applied to three-dimensional
datasets successfully. They are not without shortcomings, however, as typically
features are defined in terms of specific conditions on physical variables related to
fluid flow. Therefore, applicability of such definitions is often limited to specific
flow applications. While there are methods known to work well in many settings,
successful visualization through the feature-based approach requires more inti-
mate knowledge of the application under consideration and the available feature
definitions.

In this context, the contributions of this thesis are the following: First, we
develop a state-of-the-art algorithm that enables reliable and fast computation of
stream surfaces [GTSS04, TGB∗04], enabling surface-based geometric visualiza-
tion in three-dimensional datasets (Chapter 3). We demonstrate the expressive
and illustrative power of the resulting flow visualizations that can be achieved with
our algorithm. More importantly we show that when used as a building block it
dramatically enhances advanced visualization techniques in both topological and
feature-based visualization[GTSS04].

Furthermore, we extend two-dimensional topological analysis to the three-
dimensional setting[GTS04] based on a core algorithm for the tracking of the topo-
logical transformations undergone by a parametric vector field in arbitrary space
dimensions (Chapter 4). We show that our method, which leverages the notion of
topological visualization on section planes, achieves a qualitative and quantitative
visualization of complex three-dimensional flow structures[TGK∗04]. Remarkably,
our approach inherits the compactness and high-level abstraction of topological
methods but avoids their traditional drawbacks, namely their occlusion and their
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lack of semantic interpretation. Moreover, we augment the visually sparse topo-
logical information by an application of volumetric visualization and show that
this combination provides ideal visualization properties. We further demonstrate
that application of our algorithm to time-varying three-dimensional flows enables
new insights into the evolution of flow structures[TGar, GLT∗06, LGD∗05].

Next, we propose a novel scheme for the efficient computation of visualiza-
tions based on Lagrangian approaches (Chapter 5). Leveraging the increased
performance available through our method, we study the visualization aspects of
Lagrangian methods on three-dimensional datasets and demonstrate several visu-
alization techniques that reduce the visual complexity of the resulting depictions in
certain typical situations while retaining essential information about the prevalent
flow structures[GGTH07].

Finally, we apply the proposed methods to challenging state-of-the-art datasets
and demonstrate their practical relevance and usefulness well beyond the realm
of academic examples. We emphasize the visualization of vortices and vortex
breakdown. For the latter we provide a detailed discussion of the new insights
gained into this intricate phenomenon through the use of our novel visualization
techniques.

Structure of the text. The basic notions of both modeling and simulation of
fluid flows are first introduced in Chapter 1. To embed this thesis in a proper
context, we discuss fundamental properties and numerical treatment of the under-
lying Navier-Stokes equation and give an overview of terminology specific to this
setting, followed by a description of relevant flow visualization aspects and meth-
ods. Chapter 2 then proceeds to sketch the theoretical foundations of dynamical
systems that we draw on in the remainder of this thesis. Starting with Chapter 3,
we present our new results. First, we present a brief discussion of available stream
surface techniques before we introduce our novel stream surface algorithm that is
based on arc length integration and refined front control. Before concluding this
chapter with a discussion of advanced visualization techniques built on our imple-
mentation, we provide a detailed analysis of the benefits of our novel algorithm in
comparison to the previous state of the art.

We move on to present our general tracking algorithm and show how it can
be applied in various settings in Chapter 4. After briefly discussing the current
state of three-dimensional topological visualization, we develop the moving section
plane approach and demonstrate its good visualization properties, especially in
combination with volumetric methods. We conclude this chapter by using our
scheme to examine the temporal evolution of vortex breakdown bubbles on several
examples and provide a discussion of the novel insights that were obtained.

Next, Chapter 5 is concerned with Lagrangian approaches. After providing a
brief introduction to the topic and prior work, we devise an adaptive approxima-
tion scheme and demonstrate that it allows to significantly reduce the computa-
tional cost typically associated with this type of method. We go on to discuss
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general visualization aspects of Lagrangian methods and explore novel visualiza-
tion approaches based on our efficient algorithm. We conclude each chapter with
a brief discussion of possible future work.

Finally, we present pseudocode for some of the algorithms developed in this
thesis in Appendix A.
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Chapter 1

A Brief Introduction to Flow
Visualization

Fluid flows are essential objects of study in a broad range of scientific, engi-
neering, and medical applications. In particular, the optimization of numerous
industrial processes requires the precise understanding and the control of flows.
Examples include important application areas such as combustion, automotive in-
dustry, aeronautics. The complexity of the considered flows has proven a challenge
to computational ability, and only recently has increased computing power paved
the way for numerical experiments

In this section, we will discuss some of the basic concepts underlying the model-
ing and simulation of technical flows and discuss a number of technical aspects that
are encountered when dealing with simulation output. Furthermore, we present
a short introduction to both feature- and topology-based flow visualization, be-
fore we conclude this chapter with a description of the example datasets used
throughout this thesis.

1.1 Modeling and Simulation

This complexity of fluid flow is an inherent property of the Navier-Stokes equation
that is the basis for modeling and studying of flow physics in many application
areas. In this chapter, we will provide a brief empirical introduction to flow
simulation based on the Navier-Stokes equation. The topic is so broad that we
will only touch the surface to embed this thesis into a proper context. For a more
comprehensive presentation, we refer the reader to [CM04, Lug96]. Furthermore,
we will discuss several practical aspects that appear relevant to the understanding
of the topics discussed in this thesis.
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Chapter 1. A Brief Introduction to Flow Visualization

1.1.1 The Navier-Stokes Equation

The Navier-Stokes equations govern the motion of fluid substances such as liquids
or gases in the subsonic regime. Essentially, these equations state that the motion
of the fluid is governed by Newton’s second law, i.e. the changes in momentum
in an infinitesimal flow volume are the sum of viscous forces, changes in pressure,
and other forces acting inside the volume.

1.1.2 Basic Equation

In their basic form, the Navier-Stokes equations are partial differential equations.
As opposed to classical mechanics, they describe not position but rather velocity.
Therefore, solutions to these equations are called flow fields or velocity fields, and
other quantities of interest such as e.g. the path of a particle may be derived.

Assuming that the fluid is a continuum, the equations describing the velocity
v take the following form:

ρ
Dv

Dt
= −∇p +∇ · T + f (1.1)

The right hand side of this equation is a sum of body forces that contribute to the
change of momentum ρv in a volume element moving with the flow, represented
by the substantial or convective derivative

Dv

Dt
=

∂v

∂t
+ v · ∇v. (1.2)

The forces acting on a volume element are the pressure gradient∇p, which induces
normal stress (acting perpendicular to the boundary of the volume element and
inducing compression or tension), the shear forces ∇ · T (acting tangential to the
boundary), where T is a second order tensor, and other forces, such as for example
gravitation. Besides conservation of momentum, conservation of mass is imposed
by the additional equation

∂ρ

∂t
+ div (ρv) = 0. (1.3)

Equations (1.1) and (1.3) are very general and allow a modeling of many fluids.
They are however rarely applied in this form. Rather, specific assumptions on a
fluid are incorporated. For example, the term ∇·T contains too many unknowns.
For the class of so-called Newtonian fluids, of which water is a representative, it
is replaced by a term µ∆v. This viscosity term is assumed a linear diffusion of
momentum due to friction of neighboring fluid elements. µ is the corresponding
proportionality constant. Furthermore, the vast majority of simulation of flows
is performed under an incompressible flow assumption, i.e. ρ is constant. In this
case, Equation 1.3 takes the simpler form

div v = 0 (1.4)
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Section 1.1. Modeling and Simulation

Interestingly, this assumption typically holds even for compressible substances,
such as air at room temperature, allowing a treatment of many application prob-
lems as incompressible. In addition, further conservation properties are often
necessary to correctly model specific flows. For example, if the temperature of a
fluid may vary, conservation of energy must be imposed.

The Navier-Stokes equations are nonlinear partial differential equations. This
nonlinearity makes most problems difficult or impossible to solve analytically. It
is imposed by the convective acceleration term v · ∇v, which is an acceleration
associated with the change in velocity over position. Therefore, any flow that con-
tains convection is nonlinear. Furthermore, the time-dependent chaotic behavior
seen in many fluid flows is called turbulence. Its manifestation is a consequence
of nonlinearity, and generally related to the inertia of the fluid (the left hand side
of Equation 1.1); hence, flows where inertial effects are small tend to be laminar,
that is, they do no contain turbulence. For any given problem, the appearance
of turbulence can be judged by the Reynolds number that denotes the ratio of
inertial forces to viscous forces. It is typically given as

Re =
ρv2

s/L

µvs/L2
=

ρvsL

µ
, (1.5)

where ρ is density, vs is the mean fluid velocity, L is the characteristic length,
for example the streamwise length of an object embedded in a flow, and µ is
the (dynamic) viscosity. The quantity L

vs
is also called characteristic time. A

flow is laminar at low Reynolds numbers, where viscous forces dominate, and is
characterized by smooth, constant fluid motion. On the other hand, turbulence
appears at high Reynolds numbers. It is dominated by inertial forces and contains
random eddies, vortices and other fluctuations on short time scales. For typical
problems, the transition from laminar to turbulent flow is described by a critical
Reynolds value Recrit. For example, for a flow through a cylindric pipe, the critical
value is 2300. In the case of the delta wing configuration we will examine later, it
is on the order of 105 to 106. Note that the transition from laminar to turbulent
is not sudden but gradual.

In numerical experiment, one usually considers a domain of finite size. In
this case, as for any partial differential equation, boundary conditions must be
prescribed on the boundaries of the domain to fully determine a solution. There
are various types of such conditions that apply to the Navier-Stokes equations, and
they are usually chosen depending on the problem at hand. Of special significance
is the so-called no-slip condition, imposed on the boundaries of solid objects in the
flow, where it states that the tangential component of the velocity relative to the
boundary must be zero due to friction. Obviously, there can be no flow through
the boundary of a solid object, hence, the velocity vanishes completely at such
boundaries.

7



Chapter 1. A Brief Introduction to Flow Visualization

1.1.3 Numerical Representation

To perform numerical simulation of flows along the lines sketched out above, a
discretization of all quantities involved is required. There are many approaches to
this purpose with differing properties, see [QV97]. An application of these gen-
eral principles to flow simulation is called Computational Fluid Dynamics (CFD).
Common to most methods is the use of a computational grid, that is a set of points
connected to form a domain partition into cells. Depending on the chosen method,
these cells can have any shape. The quantities of interest are then given on a per
point, per face or per cell basis. To facilitate a continuous representation, the
grid is typically endowed with an interpolant, giving rise to vector fields for such
variables as velocity, or scalar fields for simple scalar variables such as pressure or
density.

In this thesis, we will be concerned with unstructured grids that are composed
of simple geometric cells such as triangles, quadrilaterals, tetrahedra, prisms, pyra-
mids and hexahedra, and the simulation variables such as velocity or pressure are
given at the points of the grid. Then, the interpolant is constructed per cell and
is linear, bilinear or trilinear, depending on the cell type. We have detailed the
construction of such an interpolant for purely tetrahedral grids in Section 4.3.1.

NACA example with different zoom factors

kdtree of NACA example with alternating (left) and adaptive (right) splitting

pictures of GBK,ICE,DELTA,F6 and BMW datasets with pressure distribution on the surface and planar

cuts through the grid

666

Figure 1.1: Cross-sections through an adaptive unstructured computational grid.

To perform global interpolation on such a discretized domain, it is necessary
to locate the grid cell that the interpolation point is contained in. This problem
is called point location, and several methods exist to solve it efficiently. In this
thesis, we make use of the FAnToM visualization system that incorporates the
point location algorithm given in [LST03]. The latter is efficient and applicable
to large grids and makes use of a hierarchical binary partition of space to quickly
locate the correct cell.

8



Section 1.1. Modeling and Simulation

In modern simulations, computational grids are typically adaptive in resolution
to save on computational effort. Instead of fully resolving the domain of interest
with a very fine grid, the resolution is locally controlled by several criteria that
describe the quality of the solution, which is expected to improve as the resolution
is increased. Typical criteria include gradient magnitudes of velocity and pressure.
Figure 1.1 illustrates an adaptive grid with a strongly increased resolution towards
the wing.

1.1.4 Lagrangian and Eulerian Perspectives

Patterns produced by the movement of fluids are different from static patterns
found in many other contexts, as particles do not have a permanent place but
move. The paths of the particles form flow patterns. Contained in this notion is
the idea that fluid motion can be described in two ways.

The first approach of describing moving individual fluid elements by following
the paths of individual particles is called Lagrangian. Flow properties are inter-
preted as adherent to fluid elements while they move. On the other hand, the
Eulerian perspective describes these flow properties in a fixed, pre-imposed ref-
erence frame. This duality of descriptions is expressed in the difference between
the spatial derivative of a quantity and its convective derivative introduced above
(Equation (1.2)). While, for some quantity q,

dq

dt
= 0

implies that q does not change at some point over time,

Dq

Dt
= 0

expresses the entirely different notion that q does not change on the path of a
particle. The consequences of this difference in meaning are subtle but important.
For example, the concept of steady (i.e. unchanging) flow, is quite simple to
express in the Eulerian perspective as dv

dt
= 0, whereas it is meaningless in the

Lagrangian view. Conversely, the analysis of time-varying flows is often much
simpler in the Lagrangian description.

Historically, the Eulerian perspective was widely preferred in the visualization
of simulated flows. Numerical simulations typically prefer the Eulerian description
since it is quite natural to discretize a given problem based on a fixed description.
Furthermore, in this setting, obtaining the Lagrangian properties of a flow by
computing the paths many of particles is difficult.

In this thesis, we will make use of both concepts where appropriate. Chapter 4
is concerned with the topological analysis of stationary flows and is inherently
based on the Eulerian viewpoint. Conversely, Chapter 5 makes use of the La-
grangian description to allow an analysis of time-dependent flow fields.

9



Chapter 1. A Brief Introduction to Flow Visualization

1.1.5 Flow Features

Flow features allow analysis of flows in qualitative and high-level terms, represent-
ing a skeleton upon which the entire flow is based. The most prominent examples
of features in fluid flow applications include vortices, separation and attachment
lines, shock waves and recirculation zones. We will briefly discuss two feature
types that we will refer to in this thesis.

Vortices A vortex is typically defined as the rotation of fluid elements around
a common center (cf. [Lug96]). These fluid elements cover a finite space, hence a
vortex is a macroscopic of large-scale flow structure in contrast to the movement
of individual fluid elements. The rotating region is typically called vortex core,
and the center of common rotation is often called vortex core line. Vortices exist
on many scales, ranging from large vortices such as those encountered in weather
systems to smallest-scale short lived eddies occurring in turbulence. While the
intuitive conception of a vortex is quite clear, there is a lack of analytic description
that accommodates all types of vortices encountered in various situations [Lug79].
However, vortices exhibit a number of properties, such as low pressure in the center
of rotation, that are often used to define them empirically (see Section 1.2.1).

In technical flows, vortices are of paramount importance since they are re-
sponsible for a great number of both desired and undesired phenomena, such as
material transport, mixing, noise, drag and lift. Therefore, they have been of in-
terest in visualization from the start, and we briefly survey visualization methods
below in Section 1.2.

The related phenomenon of vortex breakdown that designates a sudden loss
of coherent vortical motion has received much attention in recent years (see for
example [Rüt05]). In the same sense that vortices are important in technical
flows, the same is true for vortex breakdown, and its disruptive nature can cause
significant problems for such applications that rely on the existence of vortices.
As for vortices, no analytic description of vortex breakdown exists per se. We will
however describe such a case in detail in Section 1.4.1.

Recirculation The term recirculation region or recirculation zone typically refers
to a flow region that is almost entirely isolated from the rest of the flow. Due to
this isolation, particles do not leave such a region easily, hence, particles often cir-
culate throughout it. A particular example is the vortex ring, where the circulation
pattern takes the form of a ring-shaped, closed vortex.

Separation and Attachment Separation and attachment lines are another
major type of feature. They are defined as the lines along which the flow attaches
or separates from the surface of an embedded object. This phenomenon is induced
by viscous effects that take place in direct proximity of the object. The no-
slip boundary condition implies that the velocity magnitude goes to zero as one

10



Section 1.2. Feature-Based Visualization

approaches the surface along a normal direction. Therefore, such lines are not
described in terms of the velocity field, but instead rely on the so-called shear
stress vector field defined on an object boundary. The connection is based on the
observation that the shear stress field exhibits the same flow patterns as nearby
located streamlines. In particular, flow separation and attachment are reflected in
the existence of curves asymptotic particle convergence. The corresponding three-
dimensional flow pattern is characterized by the presence of a stream surface (see
also Chapter 3) starting or ending along the feature line that, on the other hand,
swirls around a nearby located vortex. As a matter of fact, flow separation and
vortex genesis are two closely related phenomena. Figure 1.2 provides an example
of such a flow configuration.

Due to their skeletonic quality, flow features are ideally suited to visualization
purposes, as we will discuss in the next section.

Figure 1.2: Stream surface starting on a separation line and rolling up into a
vortex (reproduced from [Dal83a])

1.2 Feature-Based Visualization

The goal of feature-based visualization methods is to generate images that restrict
the depiction of complex flow fields to a limited set of points, lines, surfaces and
volumes representing features of particular interest for the considered application.
This yields schematic pictures that convey significant flow properties in a concise
and compact form.

Common to most features is a loosely empiric definition, sometimes even de-
pending on the specific application of study. Concerning visualization, this has
resulted in a variety of algorithms available to locate, identify, and visualize them.

11



Chapter 1. A Brief Introduction to Flow Visualization

This places a feature-based visualization user in the unfortunate position to ex-
perimentally determine which method is best suited for the needs of his particular
application. Further restrictions on the type of method can be imposed by the
size or the structure of the data.

We will next present a brief overview of several commonly used methods
for feature-based visualization. For a more general survey of the field, refer
to [PVH∗03].

1.2.1 Vortices

Vortex extraction and visualization methods are essentially characterized by the
type of ad-hoc vortex criterion they are built on. These criteria are either region-
based (identifying regions of vortical flow behavior) or rely on a line-type descrip-
tion (focusing on the vortical axis or vortex core line), and are typically defined for
steady flow. Region definitions include high vorticity (curl v), helicity (curl v · v)
and low pressure. Most often used in engineering applications is the λ2-definition
by Jeong and Hussain [JH95]. The physical meaning behind this method is a sim-
ilarity measure of the local flow structure to that induced by a pressure minimum.
The major limitation of λ2, however, is a failure to isolate closely neighboring
individual vortices.

Among the line-type definitions, the approach of Sujudi and Haimes [SH95] is
most widely used. The idea here is to perform pattern matching of a rotational
motion against the vector field a cell-wise basis and locally extract linear sections
of the rotation axis. The resulting line segments can be patched together to
approximate the vortex core line. Because of the linear nature of the sought
pattern, the method has issues with vortex core lines that are strongly curved.
Roth and Peikert proposed a higher-order scheme that can extract curved core
lines reliably [RP98]. They also showed in a subsequent paper that this and other
similar methods can be formulated in a unified framework involving their parallel
operator [PR00].

In applying such vortex feature definitions, one is often concerned with Galilean
invariance, i.e. invariance under a constantly moving frame of reference. While
those criteria that rely on derivative quantites are Galilean invariant by definition
(see [SWH05]), the criteria by Sujudi/Haimes and Roth/Peikert are not. Some
of the difficulties in this context arise from the use of an Eulerian description in
most methods. Refer also to the excellent discussion in [Hal05].

1.2.2 Separation and Attachment Lines

Following the original idea of Sujudi and Haimes for vortex core lines, Kenwright
et al. proposed a simple and fast pattern matching method for the extraction of
separation and attachment lines directly from the shear stress vector field [Ken98].
Their basic observation is that these feature lines are present in two linear patterns,
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Section 1.2. Feature-Based Visualization
Extraction of Vortices and Vortex Core Lines, Christoph Garth, Vis 2006

Region-Type Extraction

Threshold on vorticity magnitude

(a) curl v

Extraction of Vortices and Vortex Core Lines, Christoph Garth, Vis 2006

Region-Type Extraction

Threshold on helicity magnitude

(b) helicity

Extraction of Vortices and Vortex Core Lines, Christoph Garth, Vis 2006

Region-Type Extraction

    -criterionλ2 λ2 < 0

(c) λ2 (d) Sujudi-Haimes

Figure 1.3: Vortex feature definitions and resulting visualizations.

namely saddle points and nodes (see section 4). The original method works on a
cell-wise basis and extract these pattern within each triangle. Since the shear stress
field is hard to compute in general and subject to numerical noise due to numerical
derivation, this scheme does not perform well in many cases. Consequently strong
pre-smoothing of the data is often necessary which in turn can deform and shift
the features. Another approach was proposed earlier by Okada and Kao [OK97]
who extend the classical Line Integral Convolution (LIC) algorithm [CL93] by
color coding the flow direction so as to highlight the fast changes in flow direction
that occur as streamlines approach separation respectively attachment lines. The
weakness of this approach lies in the heavy computation associated with LIC on
one hand, and in the fact that the geometry of the feature lines is not extracted.
Instead, the method computes a density function that indicates the proximity /
likelihood of these feature lines.

Using a different approach, Tricoche et al. recently proposed a scheme [TGS05]
designed to overcome the restrictions imposed by the purely local analysis used
in the algorithms mentioned previously. Their method is Lagrangian in nature by
explicitly monitoring particle convergence in the shear stress vector field.
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Chapter 1. A Brief Introduction to Flow Visualization

Recently, Surana et al.[SJH05] have taken a more topological approach to the
extraction of separation and attachment lines. It is based on an identification of
such lines as stable and unstable manifolds of shear stress critical points (see also
Section 2).

1.3 Topology-Based Visualization

Vector field topology is a powerful approach for the visualization of planar flows.
Topology-based methods leverage the basic results of the qualitative theory of dy-
namical systems to generate effective depictions characterized by a high level of
abstraction and an accurate segmentation of the domain in regions where the flow
exhibit a uniform behavior. Formally, this classification is defined with respect to
the limit sets of the streamlines. Additionally, parameter-dependent topology and
the notion of bifurcation can be used to extend this technique to time-dependent
flows and account for the structural transformations that their topology under-
goes over time. We study the theoretical concepts underlying these methods in
Chapter 4. Furthermore, for a comprehensive survey of topological visualization
methods, we point the reader at Handbook in [LHZP05].

Unfortunately, the application of this methodology to three-dimensional prob-
lems has not demonstrated the same usefulness in visualization applications so
far. One explanation is the intricacy of the resulting pictures: the topology of
volume flows involve stream surfaces that are plagued by self-occlusion and visual
clutter. Another problem concerns the lack of intuitive connection between topo-
logical structures and major features of interest in fluid dynamics problems, as
described in the previous section. Neither vortices nor separation lines are topo-
logical elements of the flow velocity vector field. Thus topology-based methods
fail to extract them properly. We will further discuss these issues in Chapter 4
where they overlap with our own work.

1.4 Datasets

In the following, we will present the datasets that were used test and exemplify
the visualization methods developed throughout this thesis.

The delta wing datasets, as well as the rotating lid cylinder and the high-speed
train were made available to us by Markus Rütten at DLR Göttingen.

1.4.1 Delta Wing

The so-called delta wing dataset focuses on the study of the transient flow above
a delta wing (with a triangular wing shape) at low speeds and increasing angle of
attack. The flow over the delta wing is a vortex-dominated flow field. The wing
owes much of the lift that it is able to generate at subsonic speeds to the fact that
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Section 1.4. Datasets

the flow separates at the leading edge of the wing, and this separated shear layer
rolls into a large primary vortex over the leeward side of the wing (cf. Figure 3.7
on p. 56). These primary vortices exhibit a large axial flow component, resulting
in a region of low pressure that generates lift on the wing. At high angles of attack,
vortex breakdown occurs results in the destruction of the coherent primary vortex.
The core becomes highly turbulent, the diameter of the vortex core increases, and
the high axial velocity in the core ceases to exist. It is this last item that is
especially important, because with the loss of axial velocity the wing loses lift.
This is especially troubling if the breakdown is asymmetric, i.e. occurring on one
side of the wing only, as the resulting force imbalance between the two wings can
cause strong roll movements. Even if the breakdown is symmetric, the loss of a
large portion of the aircrafts causes control problems. For these reasons vortex
breakdown is being studied intensively. Several theories exist as to the cause of
vortex breakdown, however, none has been confirmed to this point[Rüt05].

The main goal of the simulation was to numerically investigate the cause of
vortex breakdown that the primary vortices exhibit. The simulation features a
time-varying adaptive grid. Unfortunately, due to its enormous size, only three
non-successive time steps were available to us. Therefore, we are limited to sta-
tionary considerations. The computational grid consists of about 15 million un-
structured cells and poses a significant challenge from a visualization perspective.

1.4.2 Rotating Lid Cylinder

The cylinder dataset is a model dataset for vortex breakdown analysis. It consists
of a closed cylinder with a spinning bottom lid that generates a vortex on the
central axis of the cylinder through viscous effects. In such configurations, the
flow behavior is determined by two parameters: the heigh-to-radius ratio H

R
, and

the rotation Reynolds number ωR2

ν
, where ω denotes the angular velocity of the

rotating lid. Escudier[Esc84] derived an analysis from physical experiment that
describes several possible configurations of vortex breakdown in the steady state
depending on the Reynolds number (see Figure 1.4).

The time-varying boundary condition for the rotating lid was chosen such that
the Reynolds number increases from a value of 1200 to 3100, and several breakdown
bubbles appear and disappear during the course of the time-varying simulation in
accordance with Figure 1.4. The dataset is very well resolved. The computa-
tional grid consists of 752.000 cells, and the temporal evolution encompasses 5000
timesteps.

1.4.3 High-Speed Train

This dataset is the result of a stationary simulation of a high-speed train trav-
eling at at velocity of 250 km/h with wind blowing form the side at an angle of
30 degrees. Empirically, the wind causes vortices to form on the leeward side of
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Chapter 1. A Brief Introduction to Flow Visualization
M. P. Escudier: Observations of the flow produced in a cylindrical container by a rotating endwall 195 
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Fig. 7. Stability boundaries for single, double and triple break- 
downs, and boundary between oscillatory and steady flow, in the 
(Q Rz /o, H/R) plane 

quence of events is again different. At low f2 R2/o, the dye 

filament ahead of the downstream stagnation point ex- 

hibits a spiral form with a pitch which decreases with 

downstream distance. The downstream breakdown ap- 

pears first whilst the middle breakdown never develops 

into a zone with a well-defined internal structure. Also, in 

this case, the downstream breakdown moves away from 

the axis and develops a circular motion. 

The quantitative results of the present experiments are 

summarized in Fig. 7. The three main curves represent the 

three stability limits, i.e. the domains within which suc- 

cessively one, two and three breakdowns of the vortex flow 

could be observed, again using the fluorescent-dye flow- 

visualization technique. The two arrows represent the 

limits of Vogel's (1968, 1975) investigations of single 

breakdowns. The crossover at H / R  = 2.75 of the curves 

for one and two breakdowns reflects the behaviour dis- 

cussed above regarding the first appearance of break- 

down. The broken curve with open V and A symbols in 

Fig. 7 represents the boundary above which the stagnation 

point (for the upstream breakdown in the case of multiple 

breakdowns) begins to oscillate. For values of /2  R=/o just 

above this curve, the oscillation is periodic and axial. 

The A symbols indicate points obtained by increasing 

QR2/v until an oscillation started, whilst the V symbols 

correspond to reducing/2R2/o to a level where the oscil- 

lation just damped out (usually after a considerable 

period of time). As the Reynolds number is increased the 

motion becomes disturbed and ultimately turbulent. For 

H/R  > 3.1, the first sign of non-steady motion is a preces- 

sion of the lower breakdown structure. This is indicated in 

the diagram bY the solid symbols A. 

To conclude, we comment very briefly on two difficul- 

ties encountered in performing the experiments described. 

Provided g2R2/o was well below the boundary at which 

the flow became oscillatory, the flow reached a steady 

state when started from rest in a very short time (typically 

10's of seconds). As the boundary was approached, the 

time to reach steady conditions became very long, even for 

small increases or decreases in rotation speed. With 

patience, however, it was found that the same oscillation/ 

steady-flow boundary was achieved whether the rotation 

rate was increased or decreased, thereby eliminating the 

possibility of hysteresis. The second difficulty concerns the 

problem of introducing dye into the downstream break- 

down zone in the case of a triple breakdown. The tech- 

nique employed for the single and double breakdowns was 

to introduce the dye slowly and continuously until the dye 

had penetrated the recirculation zones. The high concen- 

tration of dye throughout the vortex region then resulted 

in a high contrast compared to the undyed fluid. For the 

triple breakdown situation, this technique could generally 

not be used since most of the dye was recirculated and 

mixed into the bulk of the liquid before a sufficient 

quantity had entered the third breakdown. Under these 

circumstances, dye was first introduced at a slightly lower 

rotation rate than required. Increase in the rotation rate to 

the correct value then resulted in dye being convected into 

all regions of interest during the ensuing transient. It is 

emphasized, however, that all photographs and the ob- 

servations for Fig. 7 were made under steady-state condi- 

tions after the transient had decayed away. 

4 Concluding remarks 

The observations presented reveal the swirling flow in a 

cylindrical container to be far more complicated than has 

been realized hitherto. It is unlikely that a complete 

analytical description of such flows will be achieved in the 

foreseeable future, since the most interesting changes 

occur in the region where viscous and inertia forces are of 

the same magnitude. This may be seen as follows. Based 

upon yon Kfirmfin's (1921) analysis (for an unconfined disk) 

we have an axial velocity ~ V v E2. i f  the breakdown 

region is characterised by a radius r, the corresponding 

Reynolds number is then (r/R) ~(~R2/o) .  The largest 

value of this quantity for the experiments reported here is 

for g2 R2/o=2,500 when r/R ~ 0.25 and (r/R) 

12.5. Numerical approaches to the problem, such as 

that of Lugt and Haussling (1982), should be capable of 

reproducing all the observed flow characteristics, although 

so far this has only been achieved for the single break- 

down bubble. 

Figure 1.4: Vortex breakdown configurations in the rotating lid cylinder (repro-
duced from [Esc84]).

the train. The resulting drop of pressure on this side in combination with the in-
creased pressure on the windward side create a pressure differential that adversely
affects the train’s track holding. The computational grid of contains 2.6 million
unstructured elements.

1.4.4 Kármán vortex street

The Kármán Vortex Street (cf. [Lug96]) is one of the most widely known patterns
in fluid mechanics. It consists of a vortex street behind a cylinder and is a special
case of unsteady flow separation from bluff bodies embedded in the flow. It is quite
well understood and therefore an ideal test case for many applications. We have
computed this dataset for test purposes using the Gerris Flow Solver (described
in [Pop03]).
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Chapter 2

Vector Fields and Dynamical
Systems

This chapter is devoted to the theoretical foundations of vector field topology
as it is defined and used in Scientific Visualization, and particular aspects of its
numerical treatment.

Vector field topology is based on the notion of phase portraits of a dynamical
system and enables a geometric interpretation of vector fields. Critical points,
closed orbits and their connecting manifolds play a key role. Therefore, we present
a qualitative analysis and study some of their properties. Dependence of the
studied vector field on a parameter induces further concepts of structural stability
and bifurcations that naturally describe qualitative changes with respect to a
change of parameter.

In the following, we will introduce and discuss those concepts that are relevant
to the remainder of this thesis, and point out important results. We assume
that the reader is familiar with basic concepts of geometry and analysis of several
variables. For a broad treatment of these topics, including proofs, we refer the
reader to [And73, GH83, ZDHD92]. Furthermore, we will broach the subject of
numerical treatment of dynamical systems. We limit our presentation to Euclidean
space IRn, since it is the case that applies to the remainder of this thesis, but
remark that most of the concepts below generalize to the manifold case.

2.1 Basic Definitions and Fundamental Proper-

ties

In this section, the notions of dynamical system, flow and phase portrait related
to a vector field are defined and the fundamental theorems ensuring the existence
and uniqueness of the solution to the Cauchy problem are given. In the following,
let I ⊂ IR and Ω ⊂ IRn open.
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Chapter 2. Vector Fields and Dynamical Systems

Definition 2.1. A vector field is a vector-valued function

v(t, x) : I × Ω −→ IRn.

The vector field is called continuous resp. differentiable of order k) if v is contin-
uous resp. of class Ck(I × Ω).

We label a vector field stationary if v does not depend on t, or time-dependent
to explicitly state a dependence on t. In the first case, we will simply write v(x).

Definition 2.2. An ordinary differential equation of first order associated with a
vector field v is a vector-valued function y that satisfies

dy

dt
= v(t, y(t)). (2.1)

y is of the same dimension as v.

Introducing an initial condition to Equation (2.1) leads to the Cauchy problem:

Definition 2.3. A differentiable function y is a solution of the Cauchy initial value
problem if it fulfills Equation (2.1) and additionally satisfies the initial condition

y(t0) = y0. (2.2)

for (t0, y0) ∈ I × Ω.

The evolution of points in Ω as solutions of Equation (2.1) is described by the flow
generated by v.

Definition 2.4. Let t ∈ IR, then the vector field v generates a flow, that is a
differentiable function

φt(t0, x0) : I × Ω −→ Ω,

satisfying

d

dt
φt(t0, x0)

∣∣∣∣
t=τ

= v(τ, φτ (t0, x0)) ∀(t0, x0) ∈ I × Ω (2.3)

φ has an intuitive interpretation: φ(t, x) is the new position of a particle located
at (t, x) ∈ I × Ω after time t subject to the flow φ.

Definition 2.5. A dynamical system is a group φ acting on a space Ω. That is,
there is a set of maps

φt : I × Ω→ Ω, t ∈ IR

such that φt is a continuous function and the group properties are fulfilled:

1. φ0(t0, x0) = x0 ∀(t0, x0) ∈ I × Ω
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2. If t0+t, t0+s, t0+t+s ∈ I, then φt(t0+s, φs(t0, x0)) = φt+s(t0, x0) ∀(t0, x0) ∈
Ω.

The set Ω is called the phase space of the dynamical system. It is immediate that
a vector field v induces a dynamical system φ by means of its flow. Conversely, if
φ is well-defined, then v is obtained by Equation (2.4).

If φ ∼ IR, then the dynamical system is called continuous, or discrete if φ ∼ Z.
Furthermore, a dynamical system is called autonomous if v(t, x) is stationary (or
equivalently constant in t), and non-autonomous otherwise. Finally, it is called
global if t can vary in IR.

Remark. For an autonomous dynamical system, φt(t0, x0) does not depend on t0.
We will therefore abbreviate φt(x0) in such cases.

With Definition 2.3, the map

φt(t0, x0) : t 7→ φ(x, t)

is a solution of the Cauchy problem with initial condition

φx(0) = x.

This solution is called integral curve or trajectory through x. The set of points

γx := {φx(t) : t ∈ IR}

is called orbit of x in the phase space Ω. Remark that these definitions are often
applied directly in the context of vector fields, where the dynamical system is
implied by the vector field.

Definition 2.6. The set of all integral curves of Equation (2.1) as subsets of I×Ω
is called phase portrait of the dynamical system.

We will now investigate under which conditions a solution to the Cauchy problem
for φt can be found.

2.2 Existence and Uniqueness

The necessary conditions for existence and uniqueness of φt relies on the notion
of Lipschitz continuity. In the following, let E and F metric vector spaces with
associated norms || · ||E and || · ||F .

Definition 2.7. A function f : V ⊆ E → F is Lipschitz on V if there exists a
positive constant K > 0 such that

||f(x)− f(y)||F ≤ K||x− y||E ∀x, y ∈ Ω

K is called Lipschitz constant of f .
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Essentially, a Lipschitz function is limited in how fast it can change; a line joining
any two points on the graph of this function will never have a slope steeper than
the Lipschitz constant.

Definition 2.8. The function f : V ⊆ E −→ F , is locally Lipschitz for every
x ∈ V if there exists a neighborhood U(x) such that the restriction f |U is Lipschitz.

If f is (locally) Lipschitz, it immediately follows that f is continuous. We are now
equipped to state the fundamental theorem on the local existence and uniqueness
of the Cauchy problem.

Theorem 2.9. Let v a vector field and (t, x) ∈ I×Ω. If v is Lipschitz with respect
to its second argument there exist ε > 0 and a unique solution

y : (t− ε, t + ε) −→ Ω (2.4)

to the Cauchy problem with initial condition y(t) = x.

Theorem 2.9 states the existence of a local neighborhood around t on which the
trajectory starting at (t, x) exists and is uniquely determined. Under specific
circumstances, they can be continued to a larger open interval.

Theorem 2.10. (Picard-Lindelöf) Let v as before and suppose that v is continuous
and locally Lipschitz with respect to its second argument on Ω. Then the local
solution Equation (2.4) of the Cauchy problem can be uniquely extended to the
boundary of I × Ω.

Corollary 2.11. Let M ⊂ Ω a compact set and (v, IR × Ω) a continuous vector
field. If v is locally Lipschitz with respect to its second argument on IRn, then either
the solution to the Cauchy problem Equation (2.4) is unbounded, or it exists on
the interval (−∞, +∞).

In other words, in a global dynamical system a trajectory leaves M or stays in M
forever. Thus, the Cauchy problem is uniquely solvable for vector fields defined on
compact sets, which is a typical case in practice, and existence of a maximal solu-
tion is assured. The next theorem is concerned with the dependence of trajectories
on the initial condition.

Theorem 2.12. Let v a continuous vector field that satisfies a Lipschitz condition
with respect to its second argument on Ω. Then there exists ε > 0 such that φt(x)
exists uniquely for t ∈ (−ε, ε) and is continuous with respect to x.

Remark. In general, φt is not continuous with respect to x for arbitrary t.
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2.3 Orbits and Invariant Sets

From this point on, we will only consider autonomous systems, since some of the
concepts we will define next are not applicable to non-autonomous systems.

Definition 2.13. Let x ∈ Ω, then define the set of points

γ(x) := {φt(x) : t ∈ IR} ⊆ Ω

as the orbit of x. Furthermore, define the positive and negative semi-orbit by

γ+(x) :=
{
φt(x) : t ∈ IR+

}
⊆ Ω

and
γ−(x) :=

{
φt(x) : t ∈ IR−}

⊆ Ω

Thus, an orbit is the set of points that are visited by the trajectory through x.
Remark that y ∈ γ(x) implies y = φt(x) for some t and hence γ(x) = γ(y). In
particular, different orbits are disjoint.

Orbits are classified using the following definitions into fixed, periodic, and
non-periodic orbits.

Definition 2.14. If γ(x) = {x}, then x is called a fixed point of φ.

Equivalently, we find the following definition for the vector field v associated to φ.

Definition 2.15. A critical point x0 of a vector field v is characterized by

v(x0) = 0

It is also called singular point, singularity or simply zero.

Definition 2.16. x is a periodic point of φ if there is some t > 0 such that
φ(t, x) = x. The lower bound of such t is called the period of x. The orbit γ(x) is
called periodic orbit.

It is easy to see that for any periodic orbit, γ+(x) ∩ γ−(x) 6= ∅. Therefore, they
are also called closed orbits.

Definition 2.17. An orbit γ(x) is called non-periodic if x is neither a fixed point
nor a periodic point. x is then called regular point.

Definition 2.18. The ω-limit set ω(x) of a point x ∈ Ω is a subset U ⊂ Ω such
that for each y ∈ U there is a sequence tn →∞ with φ(tn, x)→ y.

Furthermore, the α-limit set α(x) of a point x ∈ Ω is a subset U ⊂ Ω such that
for each y ∈ U there is a sequence tn → −∞ with φ(tn, x)→ y.

Observe that limit sets for points on the same orbit are identical. Naturally, both
fixed points and periodic orbits are limit sets.
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Definition 2.19. A set U ⊂ IRn is called invariant if γ(x) ⊆ U for all x ∈ U .

Lemma 2.20. Let x ∈ Ω. Then the limit sets α(x) and ω(x) are both closed and
invariant.

When considering limit sets, one is interested in the qualitative behavior of in-
tegral curves in a small neighborhood, which is characterized by the concept of
hyperbolicity, given in the next definition.

Definition 2.21. A compact invariant subset C ⊂ Ω is called a hyperbolic set of
the dynamical system φ if for each point x ∈ C there exist non-trivial subspaces of
Es

x and Eu
x for which the following properties hold:

1. There are constants a, b, c > 0 such that the inequalities

||Dφt(x)xs|| ≤ a||xs||e−ct and ||Dφt(x)xs|| ≥ b||xu||ect for t ≥ 0

||Dφt(x)xs|| ≥ a||xs||ect and ||Dφt(x)xs|| ≤ b||xu||e−ct for t ≤ 0

hold for any xs ∈ Es
x and xu ∈ Eu

x .

2. The local tangent space IRn allows a decomposition

IRn = Es
x ⊕ Eu

x ⊕ En
x ,

where En
x is a one-dimensional subspace spanned by the vector dφt

dt
(x) if it

does not vanish, and {0} otherwise.

Es
x and Eu

x are called stable and unstable subspace, respectively.

That is, around any point of the invariant set, the behavior of trajectories parallel
to x can be decomposed into convergent and divergent parts.

Definition 2.22. A fixed point x0 ∈ Ω is called hyperbolic if the Jacobian Dφt(x0)
does not have eigenvalues of unit modulus.

Remark. The definition of hyperbolicity for fixed points is often given by man-
dating non-vanishing real part of the eigenvalues of Dv(x0). Since

Dφt(x0) = etDv(x0),

these definitions coincide.

Furthermore, one introduces the concept of stability to study the long-term be-
havior of trajectories near limit sets. To keep consistent with the Scientific Visual-
ization literature, we will make use of α- and ω-stability as introduced in [Sch99].
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Definition 2.23. A compact invariant set C ⊂ Ω is called ω-stable (resp. α-
stable) if for every open set U ⊃ C there exists an open set U ′ ⊃ U such that
γ+(U ′) ⊂ U (resp. γ−(U ′)). Furthermore, if for any x ∈ U ′

inf
y∈γ+(x),y′∈C

||y − y′|| = 0 (resp. inf
y∈γ−(x),y′∈C

||y − y′|| = 0 )

then C is called ω-asymptotically stable (resp. α-asymptotically stable).

Stability in the sense of Definition 2.23 implies that initially close trajectories stay
close to the limit set, and even converge to it under asymptotic stability. In the
next section, we will see how these ideas are applied in a systematic study of fixed
points of dynamical systems.

2.4 Critical Points

We deal in the following local phase portrait of fixed points. A first characteriza-
tion of critical points is achieved by the following definition

Definition 2.24. Let x0 a critical point of a vector field v. Then x0 is said to be
of first order if the Jacobian matrix Dv(x0) has full rank. Otherwise, it is said to
be of higher order or non-linear.

We will consider the purely linear case first, and we will later show how the study
of general first order critical points can be reduced to this case.

2.4.1 Linear Vector Fields

Linear vector fields provide a fundamental special case in that their critical points
can be completely classified. The following results are taken from [HS74, pp. 82 -
96].

Definition 2.25. A vector field v is (affine) linear if there exists a matrix A ∈
IRn×n and a vector b ∈ IRn such that

v(x) = Ax + b ∀x ∈ IRn.

If b = 0, v is called homogeneous linear and 0 is a critical point.

If A is invertible (i.e. det A 6= 0), letting y := A−1b, we set

v′(x) := v(x− y) ≡ Ax.

Hence, a linear vector field v is equivalent to a homogeneous linear vector field v′

by a translation of the origin. Furthermore, 0 is the only critical point of v′. Since
the notions of stability introduced above are topological in nature, they are not
affected by a coordinate change. Without loss of generality we will limit ourselves
to the homogenous linear case.
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Property 2.26. The critical points of homogeneous vector fields are characterized
by the eigenvalues of their matrix A.

We go on to briefly discuss the possible cases for linear vector fields on IR2 and
IR3 as they typically appear in the Scientific Visualization literature.

Classification in IR2

In the two-dimensional case, the matrix A has two eigenvalues λ1, λ2 ∈ /C. The
possible cases are enumerated next.

• Case 1. A has real eigenvalues with opposite signs. The zero is called a
saddle point.

Saddle point

• Case 2. Both eigenvalues have negative real parts. The zero is called a sink,
because any integral curve tends toward O for t −→∞.

– Case 2a. A is diagonalizable and its eigenvalues are different. The zero
is called a node sink. The eigenvector related to the eigenvalue with
largest (resp. smallest) modulus corresponds to the direction of “fast”
(resp. “slow”) convergence. The special case where the eigenvalues are
equal is called a focus sink.

Node sink Focus sink

– Case 2b. A is not diagonalizable but has one real negative eigenvalue.
The zero is called an improper node sink.

– Case 2c. A has two complex conjugate eigenvalues with negative real
parts. The zero is called a spiral sink.
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Improper node sink Spiral sink

• Case 3. Both eigenvalues have positive real parts. The zero is called a
source, because any integral curve tends toward it for t −→ −∞.

– Case 3a. A is diagonalizable and its eigenvalues are different. The
zero is a node source. If both eigenvalues are equal, the zero is a focus
source.

Node source Focus Source

– Case 3b. A is not diagonalizable but has one real positive eigenvalue.
The zero is called an improper node source.

– Case 3c. A has two complex conjugate eigenvalues with positive real
parts. The zero is called a spiral source.

Improper node source Spiral source

• Case 4. A has pure imaginary (conjugate) eigenvalues. The zero is called
a center.

Center
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Classification in IR3

Likewise, the critical point types in IR3 are classified as follows. We again base the
classification on the (generalized) eigenvalues of A. Remark that the designations
of critical point types in IR3 vary between authors.

• Case 1. The real parts of the eigenvalues have mixed sign. The zero is then
generally called a saddle point and is further labeled by the two-dimensional
critical point type that corresponds to a restriction of A to the eigenspaces
of the eigenvalues of same sign. The

Examples:

Repelling node saddle Attracting spiral saddle

• Case 2. All eigenvalues have negative real part. The zero is called sink
since any integral curve approaches the critical point as t→∞.

– Case 2a. A is diagonalizable. The zero is called a node sink.

– Case 2b. A has a complex conjugate eigenpair and a real eigenvalue.
The zero is called spiral sink.

y

x

z

��

Node sink Swirl sink

– Case 2c. A is not diagonalizable. The zero is called improper node
sink

• Case 3. All eigenvalues have positive real part. The zero is called source
since any integral curve approaches the critical point as t→ −∞.

– Case 3a. A is diagonalizable. The zero is called a node sink.
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– Case 3b. A has a complex conjugate eigenpair and a real eigenvalue.
The zero is called spiral source.

y

x

z

��

Node source Swirl source

– Case 3c. A is not diagonalizable. The zero is called improper node
source

2.4.2 General Case

Moving away from the special case of purely linear vector fields, the study of
critical points concentrates on the local behavior of the phase portrait in a small
neighborhood around the considered critical point. The linearization of a vector
field v around a critical point x0 is a linear vector field

v′(x) := Dv(x0)x.

We recall Definition 2.24 and proceed to investigate first-order critical points first.
Among all possible types of such critical points, special attention is paid to sinks
and sources. Their definition is based on the property of the Jacobian matrix at
their location. They generalize the linear sinks and sources encountered previously.

Definition 2.27. If all eigenvalues of the Jacobian matrix Dv(x0) have negative
real parts, then the critical point x0 is called a sink. Conversely, if all eigenvalues
have positive real parts, x0 is called a source.

The intuitive meaning of this classification is stated more precisely by the following
theorem.

Theorem 2.28. Let x0 be a sink of the vector field v with corresponding flow φ.
Suppose there exists c < 0 such that every eigenvalue of Dv(x0) has real part less
than c. Then there is a neighborhood U of x0 such that

||φ(x, t)− x0|| ≤ exp−tc ||x− x0|| ∀x ∈ U, t ≥ 0.

Corollary 2.29. With the definitions above, a sink (resp. source) is a ω- (resp.
α-) stable critical point. If furthermore Dv(x0) has no eigenvalue with zero real
part, it is ω- (resp. α-) asymptotically stable. Furthermore, both sinks and sources
are hyperbolic in the sense of Definition 2.22.
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The following theorem provides the critical connection between the general and
linear cases. It indicates the fundamental relation between trajectories of a vector
field and those of its linearization.

Theorem 2.30. (Hartman-Grobman) If a critical point x0 of a vector field v is
hyperbolic then there is a neighborhood U 3 x0 and a homeomorphism H : U → IRn

that locally maps the integral curves of the non-linear flow φ induced by v to those
of the corresponding linear flow. The homeomorphism preserves the direction of
integral curves and can be chosen to preserve parameterization of trajectories.

Thus, for hyperbolic critical points, the phase portrait of the integral curves in
their neighborhood will be similar to the linear case. Fig. 2.1 provides an idea of
this correspondence for a two-dimensional vector field. The general classification

curvilinear

sector

critical

points

center type non center type

Figure 2.1: Relation between a linear and a non-linear saddle point in IR2.

of critical points in IR2 distinguishes two types of critical points: center and non-
center types.

Definition 2.31. A critical point in the plane that is not approached by any
integral curve is said to be of center type. If on the contrary, at least one integral
curve converges to it, it is of non-center type (see Figure 2.2).

In the non-center case, the integral curves converging to the critical point deter-
mine so-called sectors. These notions are illustrated in Fig. 2.3 for two-dimensional
situations. Sectors allow a classification of local integral curve behavior into three
types.

Definition 2.32. The sectors of a non-center critical point x0 can be of three
different types. Let ε > 0 and x ∈ ∂Bε(x0), and let φt(x) the integral curve
through x. Let

x+ := lim
t→∞

φt(x) and x− := lim
t→−∞

φt(x)

1. If x+ 6= x0 and x− 6= x0, then x is contained in a hyperbolic or saddle
sector. In this case, integral curves through x belong to separatrices of x0.

2. If x+ = x0 and x− = x0, then x is contained in a elliptic sector.
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curvilinear

sector

critical

points

center type non center type

Figure 2.2: Center and non-center types in IR2

3. If x+ = x0 and x− 6= x0 or x+ 6= x0 and x− = x0, then x belongs to a
parabolic sector.

An illustration of the different sector types for the two-dimensional case is
given in Fig. 2.3.
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Figure 2.3: Sector types

By considering a neighborhood with a small enough radius, one can obtain a de-
composition into the sector types defined above (analytical case). The boundaries
of an elliptic sector cannot be determined locally. If one restricts the study of an
elliptic sector to a neighborhood of the critical point, this sector is always bounded
on both sides by parabolic sectors. The set of integral curves bounding a hyper-
bolic sector is called separatrix because it separates two sets of integral curves
that diverge from one another as t→∞ or t→ −∞. Consequently, any singular
point may be characterized by the type and geometry of its sectors. The precise
meaning of this characterization is the following.

Remark. In the special case of linear vector fields, the only critical point type
presenting hyperbolic sectors and thus separatrices is the saddle point.
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Theorem 2.33. If the structures of two singular points are related through a one-
to-one correspondence between their respective separatrices converging for t→∞,
separatrices converging for t→ −∞ and elliptic regions then there exists a curve-
preserving topological mapping of a neighborhood of the first onto a neighborhood
of the second preserving orientation and direction of t.

Moving away from the vicinity of a critical point to consider its influence on the
global structure of the phase portrait, the notion of a basin is introduced.

Definition 2.34. The union of all trajectories that tend toward a critical point x0

as t→∞ is called the ω-basin of x0. Conversely, the union of all integral curves
tending toward x0 as t→ −∞ is called the ω-basin.

Remark. The ω-basin of a source is reduced to the source itself and the α-basin
of a sink is reduced to the sink itself.

Remark. In the case of a saddle point, α- and ω-basins form manifolds that are
called unstable and stable manifold, respectively, and coincide with the separatri-
ces. In IR2, both manifolds have dimension 1. In IR3, one of these manifolds has
dimension 2 and is frequently called a separation surface in Scientific Visualiza-
tion.

2.5 Topological Graph

The concepts introduced so far are the constituent parts of the structure of the
phase portrait of a dynamical system, also called topological graph or simply
topology. By extension, one calls it topology of the corresponding vector field.
The definition used in the following is given next.

Definition 2.35. The topology of a vector field v consists of all limit sets and
separatrices of v.

The essential property of a separatrix is to separate groups of integral curves that
have different asymptotic behaviors. In other words, a separatrix locally divides
the domain of definition of a vector field into two subdomains inside which all
orbits have the same α− and ω−limit sets. An equivalent definition consists
in considering a separatrix as the intersection of the closure of two basins. An
interesting problem arises when dealing with vector fields defined on compact sets.
In this case, the asymptotic behavior of all integral curves is not only determined
by the limit sets as subsets of the domain but also by the restriction of the vector
field to the boundary of the domain: This boundary can locally act as source
(where the vector field is directed inwards), sink (where the vector field is directed
outwards) or saddle (separating the former two). Therefore, the generalized notion
of separatrix also includes the integral curves starting at the boundary saddles.
A presentation of this topic from the visualization viewpoint can be found in
[SHJK98]. The previous notions are illustrated in Fig. 2.4. Remark that this
topology contains no separatrix emanating from critical points.
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boundary sink

boundary source

boundary sink

sink

source

boundary saddle

boundary saddle
boundary source

boundary saddle

Figure 2.4: Topology of a vector field over a bounded domain

2.6 Poincaré Index

The Poincaré index is a fundamental concept that has been introduced by Poincaré
himself[Poi] in the qualitative theory of dynamical systems. This notion has many
theoretical and practical applications, and the basic idea behind it is the answer
to the question of how many times a vector field “rotates” in the neighborhood of
a point. The definitions are given next as well as fundamental theorems that will
prove useful in the following. The following results are taken from [HS84] where
they are presented in the language of Geometry Algebra.

In the following, let v : Ω → IRn a continuous vector field that contains only
isolated critical points and Cv the set of isolated critical points of v.

Definition 2.36. The map

Γ : IRn\{0} → Sn−1, x 7→ x

||x||
is called the Gauss map.

Simply put, Γ maps any vector to its direction. Note that Γ is idempotent, i.e.
Γ ◦ Γ = Γ. The winding number and index concept for hypersurfaces is defined
next.

Definition 2.37. Let S ⊂ Ω a closed orientable hypersurface. Define winding
numnber of S with respect to a point x /∈ S by

#x(S) :=
1

vol(Sn−1)

∫
S

Γ(x− y)dS(y). (2.5)
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In other words, the winding number is a measure of the signed area on the unit
sphere covered by the point Γ(x− y) as y moves over all of S, relative to the area
of the unit sphere, and is always an integer. Furthermore, it is immediate that
the winding number is homotopically invariant, i.e. it retains its value under a
continuous deformation of S.

Definition 2.38. Let S ⊂ Ω a closed orientable hypersurface that does not contain
a critical point of v, i.e. S ∩ Cv = ∅. Then the index of S relative to v is defined
as

indv(S) := #0 (Γ(v|S)) . (2.6)

Informally speaking, the index measures how often a vector field rotates around
the origin if it is sampled on all of S is traversed. The following fundamental
theorems give deeper insight into the concept.

Theorem 2.39. Let S a closed oriented hypersurface as in the definition above.
If the interior of S does not contain a critical point of v, then indv(S) = 0.

Theorem 2.40. Let S1, . . . , Sm closed oriented hypersurfaces as above and S a
closed oriented hypersurface that encloses all Si. Moreover, S does not enclose
critical points other than those enclosed by one of the Si. Then

indv(S) = indv(S1) + · · ·+ indv(Sm).

Finally, we are able to define the index of a critical point.

Definition 2.41. Let x0 a critical point of v and ε and choose a closed oriented
hypersurface S such that the closure of S contains only the critical point x0, i.e.
S̄ ∩ Cv = {x0}. Then define

indv(x0) := indv(S).

In essence, the index measures how often the vector field covers a sphere in the
vicinity of a critical point. Figure 2.5 illustrates this for the two dimensional case,
where S takes the form of an orientable closed curve or path. An example for a
vector field on IR3 is given in Figure 2.6.

While this conception of the index in terms of closed oriented surfaces is quite
geometric in nature, a deep connection exists between the index and the degree
of a map. More specifically, the wrapping number is provably equal to the degree
of the map (Γ(v|S). The following statement is a result of this connection.

Theorem 2.42. The index of a first-order critical point is ±1. More specifically,

indv(x0) = sign(det Dv(x0)).

By extension, it follows that the index is equal to the sign of the product of the
eigenvalues of the Jacobian eigenvalues. This immediately leads to
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indv(S) = 1

Figure 2.5: Poincaré index in IR2

Corollary 2.43. In IR2 a saddle has index −1. Furthermore, a first-order critical
point with an index +1 either a source or a sink.

In three dimensions, this is more complex.

Corollary 2.44. In IR3 a saddle point has index +1 or −1. Furthermore, a sink
has index −1 and a source has index +1.

2.7 Parameter-dependent Dynamical Systems

The previous sections focused on autonomous dynamical systems. Now, if one
considers a parametric family of vector fields (inducing a parametric family of
dynamical systems), the structure of the phase portrait may change as the value
of this parameter evolves. Therefore, the analysis of the corresponding systems is
concerned with the essential question of structural stability of the phase portrait,
i.e. the ability of a given topology to maintain its qualitative nature under small
changes of the parameter value. This section introduces the notions required to
precisely define structural stability.

The first definition introduces the notion of small changes to a vector field.

Definition 2.45. Let f be a a function of class Cr(IRn), r ≥ 1 and ε > 0. Then
a function g is a C1 ε-perturbation if there exists a compact subset K ⊂ IRn such
that f = g on IRn\K and for all i ∈ {0, .., n− 1}, one has∥∥∥∥ ∂

∂xi

(f − g)

∥∥∥∥ < ε
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Figure 2.6: Poincaré index in IR3

The preservation of the qualitative nature of a dynamical system is intimately
related to the notion of equivalence as defined next.

Definition 2.46. Two Cr vector fields v and ′ are said to be Ck-equivalent (k ≤ r)
if their exists a Ck-diffeomorphism H which takes orbits φv

t (x) of v to orbits φv′
t (x)

of g, preserving sense but not necessarily parameterization by time. If furthermore
h does preserve parameterization by time, then H is called conjugacy and v and
v′ are conjugate or topologically equivalent in the case k = 0.

Remark. This definition implies that for any x and t, there is a t′ such that

H(φv
t (x)) = φv′

t′ (H(x))

Structural stability is now defined as follows.

Definition 2.47. A Cr vector field v is structurally stable if there is an ε > 0
such that all C1 ε-perturbations of v are topologically equivalent to v.

The focus is again on planar vector fields. One first needs to introduce special
cases of separatrices of first order critical points.

Definition 2.48. A separatrix connecting two saddle points is called a heteroclinic
connection. A closed separatrix connecting a saddle point with itself is called a
homoclinic connection.

Saddle connections are shown in Fig. 2.7 for the two-dimensional case.
For two-dimensional vector fields defined on a compact Euclidean domain, the
fundamental Peixoto theorem[Pei62] describes the circumstances that result in
structural stability.
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(a) Heteroclinic (b) Homoclinic

Figure 2.7: Saddle connections

Theorem 2.49. (Peixoto) A Cr vector field v on a two-dimensional compact
planar domain of IR2 is structurally stable if and only if:

1. the number of fixed points and closed orbit of v is finite and each is hyperbolic;

2. there are no orbits connecting saddle points (heteroclinic or homoclinic).

Practically, Peixoto’s theorem implies that a planar vector field typically presents
saddle points, sinks and sources as well as attracting or repelling closed orbits.
Furthermore, it asserts that non-hyperbolic critical points or closed orbits are un-
stable because small perturbations can make them hyperbolic. Saddle connections,
as far as they are concerned, can be broken by small perturbations as well.

For three-dimensional systems, no such conjecture exists, although several
ideas have been formulated (see [Sma67]). In similarity to the two-dimensional
case, non-hyperbolicity and absence of saddle connections seem to play a key role
in the appearance of structural instabilities.

Now that we have defined the concept of structural stability, we will next be
concerned with structural transitions, called bifurcations. The term bifurcation
was originally used in the literature to describe the splitting of equilibrium points
in a parameter-dependent dynamical system, as the value of this parameter comes
to change over its domain of definition: If one depicts the curve describing the
successive positions of the equilibrium over the space embedding euclidean and
parameter space, one notices for a particular parameter value the presence of
a fork that leads to several alternative equilibria. This basic idea is illustrated
in Fig. 2.8 for the simplest case of one-dimensional Euclidean space and one-
dimensional parameter space (variable µ).
The structure associated with the parameter value where the fork occurs is thus
unstable for slight changes of this value can lead to another different structure
(non-equivalent in the sense of Definition 2.46). Therefore, the following definition
is imminent.

Definition 2.50. Let vµ a parametric family of vector fields. A value µ0 of the
parameter µ for which the induced flow φµ is not structurally stable is called a
bifurcation value of µ.
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bifurcation point
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Figure 2.8: Bifurcation diagram

In the definition above, the notion of bifurcation is restricted to a one-dimensional
parameter space. This is motivated by the fact that the approach of structural
stability employed in this thesis is limited to one-parameter families of vector
fields. However, bifurcation problems go far beyond this restriction and actually
apply to any n-dimensional parameter space. For a further treatment, see [GH83].

The mathematical branch of bifurcation theory is concerned with the struc-
tural transitions that occur at the bifurcation values of the parameter. These
transitions may be very complicated and an exhaustive classification is impossi-
ble, even in the simple case treated here. Yet, two categories exist: On one hand,
some bifurcations only affect the nature of a critical point or a closed orbit, and
the corresponding new stable state (reached after transition) is to be found in a
neighborhood. These bifurcations are called local bifurcations. On the other hand,
bifurcations that change the global structure of the flow and cannot be deduced
from local information are called global bifurcations. The planar vector field case
has been treated extensively in the literature, see e.g. [Tri02].

In the local case, recalling Definition 2.22, the non-hyperbolicity of a critical
point is due to the fact that the Jacobian matrix at the corresponding position
has at least one eigenvalue with vanishing real part. An additional constraint
is posed by the continuity of the Poincaré index that dictates that the index in
a local region around the bifurcation remains unchanged. For specific classes of
vector fields, such as piecewise linear fields that vary linearly with a parameter,
these constraints result in a simplification of possible cases. As we apply the
previously defined concepts in this context, we will provide further discussion (cf.
Section 4.3).

The analysis of global bifurcations cannot be reduced to the neighborhood of a
critical point. Their common characteristic is that they involve saddle connections,
and they are unstable in the sense of Definition 2.47.
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2.8 A Note on Divergence-Free Vector Fields

In practical applications, and especially in many cases involving fluid dynamics,
divergence-free vector fields are quite common, i.e.

div v = 0 or equivalently trace Dv(x) = 0.

Hence, there are limitation on the nature of critical points that appear in these
vector fields. Considering that the eigenvalues must sum to zero, one finds

Property 2.51. If v is a divergence-free vector field on Ω ⊂ IR2, all critical
points are of type saddle or center. If v is defined on Ω ⊂ IR3, all critical points
are saddles.

Thus, heteroclinic and homoclinic connections are prevalent in divergence-free
vector fields.

2.9 Lyapunov Exponents and Chaos

Although there is still no unanimously accepted mathematical definition of a
chaotic map, the term chaos in the context of a dynamical system refers to a
sensitive dependence on initial conditions. In other words, as Theorem 2.12 holds,
orbits starting together will stay together for a while. Stability is a different no-
tion: orbits starting together will stay together, forever. In essence, while sensitive
dependence on initial conditions does not contradict continuity, it is at odds with
the stability property.

Among the tools developed to study chaotic behavior in dynamical systems,
the Lyapunov exponent is most prominent. It exploits the fact that arbitrarily
close initial conditions may lead to evolutions that diverge exponentially fast with
time. We return to the non-autonomous case of dynamical systems to define it in
the following.

Definition 2.52. Let φ a dynamical system on IRn and x0 ∈ IRn. Consider two
trajectories φx(t) and φx′(t), starting at x, x′ ∈ Ω, and denote

δx := x− x′ and δφ(t) := φx′(t)− φx(t).

The Lyapunov Exponent is then given by

λ(x) := lim
x′→x

lim
t→∞

1

t
ln
||δφ(t)||
||δx||

.

Roughly speaking, the Lyapunov exponent measures the mean exponential
separation rate

||δφ(t)|| ≈ eλt||δx||
between trajectories that start infinitesimally close. Informally, it allows a brief
classification of orbits as follows.
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λ(x) ≤ 0: The orbit attracts to a stable fixed point or closed orbit. In the case
λ(x) < 0, the fixed point or closed orbit is asymptotically stable.

λ(x) > 0: The orbit is unstable and chaotic. Nearby points result in exponentially
diverging trajectories.

We will require this concept in Chapter 5 where we will replace it with a finite-
time analogue, the Finite Time Lyapunov Exponent, to study the separation char-
acteristics of time-dependent flow fields. Note that the Lyapunov exponent can
also be defined for discrete dynamical systems by replacing time t with iteration
number n.

2.10 Numerical Treatment

In the following, we will briefly present a short overview over the most important
aspects of the numerical solution of ordinary differential equations such as Equa-
tion (2.1). As the topic is very broad, our discussion will be limited to the specific
requirements of this thesis. For an extensive exposition, see [HNW93].

Many differential equations cannot be solved analytically, including such im-
portant cases as interpolated data from numerical simulations. It is the purpose of
numerical integration to provide an approximation to the real solution in this case.
In the following, we will call solutions to this approximation problem integration
methods or numerical integrators.

The basic object of study is the Cauchy problem (Def. 2.3), in this context
often termed initial-value problem (IVP). Theorem 2.10 states that a global solu-
tion is uniquely determined under the condition that the vector field underlying
Equation (2.1) is Lipschitz. The fundamental principle applied by most integra-
tion methods is a piecewise construction of the solution of an ordinary differential
equation along the lines of Theorem 2.9.

2.10.1 Basic Properties

To illustrate the subject and introduce notation, we will first discuss two simple
methods. In the following, let v a Lipschitz continuous vector field defined on
[0, T ] × IRn, T > 0. Replacing the derivative y′(t) := dy

dt
by a finite-difference

approximation in Equation (2.1)

y′(t) ≈ y(t + h))− y(t)

h
(2.7)

and solving for y(t + h) yields the following formula:

y(t + h) ≈ y(t) + hv(t, y(t)). (2.8)
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Choosing a step size h > 0, one can construct a sequence (tn) := nh. We denote
by yn a numerical estimate of the exact solution y(tn). By recursive application
of Equation (2.8), we obtain

yn+1 = yn + hv(tn, yn).

This scheme is called the forward or explicit Euler method. It is the simplest
example of the class of explicit integration methods. The nomenclature signifies
an explicit dependence of yn+1 on yn. In contrast, solving for y(t) in Equation (2.7)
results in the backward or implicit Euler method :

yn+1 = yn + hv(tn+1, yn+1).

In the latter, an equation must be solved to find yn+1. Since v is typically non-
linear, some form of iteration must be employed to accomplish this.

Two basic concepts are used in the analysis of such methods, given next.

Definition 2.53. A numerical method is said to be convergent if the numerical
solution yn approaches the exact solution y(tn) as h → 0. More precisely, we
require that

lim
h→0+

||yn − y(tn)|| = 0.

Both forward and backward Euler schemes are convergent. In fact, it is a
required condition for any integration method.

Definition 2.54. If the scheme is of the form

yn+k = F (tn+k; yn, yn+1, . . . , yn+k; h)

for a function F , then the local approximation error is the error introduced by one
step of the scheme, i.e.

δh
n+k : F (tn+k; yn, yn+1, . . . , yn+k; h)− y(tn+k).

The scheme is called consistent of order p if

δh
n+k = O(hp+1) as h→ 0,

or simply consistent if p ≥ 1.

Again, both Euler methods are consistent of order 1. Typically, the design
goal of many methods is to attain a higher order. Remark that consistency is a
necessary condition for convergence.

Definition 2.55. Consider the ordinary differential equation y′ = ky for k < 0.
The solution

y(t) = ekt (2.9)

approaches zero as t→∞. If the numerical method also exhibits this behavior, it
is called A-Stable or simply stable.
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While the explicit Euler method is not stable, the implicit Euler method is.
The importance of this last criterion is based on the fact that many typical prob-
lems from applications include such exponential behavior (often called stiffness).
Therefore, stability is a required property for such stiff systems.

To present an overview of integration schemes, or even classes of integration
schemes, is an exhaustive task. There are many specialized solutions and methods
that work well for one type of problem break down completely when applied to
another. In the following, we will focus on a class of integration methods that
have been traditionally used in Scientific Visualization to compute solutions of
Equation (2.1) for flow vector fields.

2.10.2 Runge-Kutta Methods

Runge-Kutta methods are available in both implicit and explicit flavors. We will
limit our presentation to explicit schemes. A Runge-Kutta method is of the general
form

yn+1 = yn +
s∑

i=1

biki,

where

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + a21hk1)

k3 = f(tn + c3h, yn + a31hk1 + a32hk2)
...

ks = f(tn + csh, yn + h

s−1∑
i=0

as,iki).

A particular method is thus specified by the integer s (called number of stages)
and the coefficients aij for 1 ≤ j < i ≤ s, bi for i = 1, . . . , s and ci for i = 2, . . . , s.

One of the interesting aspects of Runge-Kutta methods is that their properties
such as convergence and consistency order may be read off their coefficients[HNW93]
in the form of products and sums. One can show that the order of a Runge-Kutta
scheme can be increased linearly with each stage, up to order 5, which already
requires 6 stages. For additional orders, the number of required stages increases
superlinearly, therefore, order 5 is quite common as a good compromise between
high consistency order and limited number of function evaluations. We will go on
to describe two Runge-Kutta schemes that or of interest to this thesis.

Fehlberg’s method is quite interesting in that it offers an automatic, adaptive
choice of step size h. This is achieved by using six stages, and combining them
differently to simultaneously obtain two approximations of order 4 and 5. Runge-
Kutta formulas of this type are called embedded. From a comparison of both,
an estimate of the local approximation error of the fourth-order method can be
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derived, and the step size is controlled such that a specified bound is not surpassed.
The method is often abbreviated Rkf. While the overall accuracy benefits from
an optimal choice of step size, it is now no longer necessary to choose the step
size overly conservative to ensure that the solution is correctly approximated. The
performance increase gained by taking larger steps where possible is substantial
for most applications.

In the spirit of Fehlberg’s method, many embedded Runge-Kutta formulas
have been found. The method by Cash and Karp[CK90] (Rkck or Rk45) is
the de-facto standard in many applications. Its popularity is due to its range
of applicability for generally non-stiff problems, and it is the integration method
given in the widespread Numerical Recipes series[PFTV92]. It is available for
example in the visualization system Vtk.

However, application of these methods in Scientific Visualization is not without
problems. There, it is often required to represent integral curves graphically.
Hence, the sequence of output points yn must be transformed to a continuous
curve that is then depicted. Lacking further information about the solution in
between the yn, approximating the solution curve by a piecewise linear function is
the only possibility. This often leads to severe visual artifacts and is unsatisfactory
in general. Moreover, step size control tends to increase these artifacts. By its
design goal, it ensures that the solution is correctly approximated by a non-linear
polynomial.

In contrast, we make use of the method of Dormand and Prince (Dopri5)
that offers all benefits of an embedded Runge-Kutta pair of orders 4 and 5, but is
additionally capable of dense output. That is, for every step taken there exists a
polynomial pn of order 5 with

pn(0) = yn and pn(1) = yn+1.

Moreover, if un(t) is the local solution of Equation (2.1) with initial condition
un(0) = yn, then pn enjoys the local approximation property

pn(s)− un(sh) ≈ O(h4).

The curve described by joining these polynomials over the sequence (tn) is globally
C1.

There is one slight drawback in that dense output for the Dormand-Prince
scheme requires an additional stage, resulting in a total of seven stages. However,
Dopri5 is an FSAL (first same as last) scheme, meaning that the last stage of a
step is the first stage of the next one. Therefore, in practice, this does not result
in a loss of performance with respect to e.g. Rkck. The interpolation polynomial
is given directly as a combination of the stages k1, . . . , k7 and is therefore available
at no additional cost. For a detailed treatment, we refer the interested reader
to [PD81, Sha85, GSBB87, Hig91]. As to our knowledge this type of integration
method has not been used before in Scientific Visualization, we have provided a
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documented sample implementation in Appendix A.1 for completeness and repro-
ducibility. Note that the Dopri5 method was chosen as the default integration
method for non-stiff problems in the ubiquitous mathematical programming envi-
ronment Matlab for reasons of overall good performance and applicability.
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Stream Surfaces

Stream surfaces, as a natural generalization of streamlines, are a powerful tool for
insightful flow visualization. Essentially a continuum of streamlines, they consti-
tute a surface and allow the application of shading techniques. Hence, in compar-
ison to streamlines or other line-based techniques, they support depth perception
and greatly facilitate the visual understanding of three-dimensional structures.

Stream surfaces appear quite naturally in flow visualization. The groundbreak-
ing drawing work of Dallmann [Dal83b] has shown that flow structures can be well
understood in terms of flow sheets (see Figure 1.2 on p. 11). These sheets repre-
sent precisely chosen stream surfaces that emanate from specific separation and
attachment lines on the surface of objects embedded in a flow (cf. Section 1.1.5),
and often take on the role of flow separators that divide regions of differing be-
havior. In the same sense, stream surfaces appear as two-dimensional separatrices
in three-dimensional vector field topology, where they describe two-dimensional
stable or unstable manifolds of critical points of a vector field. Even if not coupled
to such specific meanings, stream surfaces have great illustrative power.

In recent years, several approaches have been presented for the computation
and graphical representation of stream surfaces in CFD datasets. However, there
has been lack of an algorithm able to deal with the complicated flow structures
contained in state-of-the-art datasets, owing to the difficulties posed by complex
object geometries and associated flow fields. In this chapter, we will present a
novel algorithm for the computation of stream surfaces in steady vector fields. Our
algorithm borrows the basic principle of adaptive front advection first introduced
by Hultquist in [Hul92] and and incorporates accurate arc length integration, exact
sampling, and highly adaptive front control to effectively tackle the challenges
posed by complex, realistic flow data.

We will first discuss the formal setting of stream surface computation and
briefly survey available algorithms. Then, we proceed with an in-depth discussion
of the characteristics of advancing front methods and present our novel approach
based on these principles. Finally, we demonstrate several visualization applica-
tions enabled by the presented algorithm.
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Figure 3.1: A stream surface.

3.1 Formal Definition

In the following, let T > 0, Ω ⊂ IR3, and v : Ω → IR3 a stationary vector field.
Furthermore, let x ∈ Ω.

Definition 3.1. A streamline S(t, x) is an integral curve through x ∈ Ω in the
dynamical system φ generated by v (Definition 2.5).

The second argument x to S denotes the starting point of the streamline, while
the first argument t parameterizes the curve that is the stream line. The intuitive
understanding associated with streamlines is that of massless particles that are
advected through a domain by a stationary vector field as time t increases. Now,
let C : [0, 1]→ Ω a space curve, parameterized by s.

Definition 3.2. A stream surface is a two-dimensional surface S : [0, T ]×[0, 1]→
Ω defined by

S(t, s) := S(t, C(s)). (3.1)

In other words, S is a continuum of stream lines emanating from C. If t ∈ [0, T ]
is fixed, the set S(·, t) is called time line of S at t. The graphical analogy is obvious:
as t increases from 0 to T , the time line S(·, t) traverses all of S. Conversely, fixing s
results in individual streamlines. Figure 3.1 provides a more graphical explanation
of these terms.

Since v is continuous, Equation (2.1) implies that S is differentiable with re-
spect to t. Furthermore, it can be easily derived that S is (piecewise) differentiable
in s if v is (piecewise) differentiable. Even in the presence of hyperbolic limit sets
that may induce an arbitrary divergence of neighboring streamlines (refer also
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to the discussion in Section 5.1), the surface is discontinuous only in the limit
T → ∞. We exclude this as an unreasonable case in good conscience. Hence, S
is a piecewise regular surface and possesses well-defined normals on each s-piece.
Therefore, construction of a high-quality graphical representation is a feasible task.

We note that S has a natural parameterization in the form of (s, t)-coordinates.
Every point on the surface, given its parametric coordinates (s, t), can be computed
by propagating the unique streamline starting at C(s) through the application of
a integration method until it reaches t. The goal of any stream surface algorithm
is then to construct a geometric approximation to Equation 3.1. We proceed to
discuss several approaches that have been proposed in previous work.

3.2 An Overview of Computational Algorithms

The most commonly used algorithm was introduced by Hultquist[Hul92] in 1992
and is based on an advancing front of discrete streamlines spanning the stream
surface. Streamline computation is delegated to a numerical integration method.
Adaptive front resolution is used to handle converging and diverging behavior of
the flow by a simple insertion and merging heuristic that controls the number
of front streamlines. The scheme is straightforward to implement and fast, but
performs well only for simple flows. Stalling [Sta98] augmented Hultquist’s scheme
by incorporating topological information into the triangulation process and slightly
modifying the refinement criteria.

Adopting the advancing front idea of Hultquist, Scheuermann et al.[SBH∗01]
exploit the existence of an analytic flow solution for tetrahedral grids endowed
with linear interpolation to compute a stream surface on a per-tetrahedron ba-
sis. Due to the linear nature of the vector field inside every grid cell, streamline
paths are available as a closed-form solution to Eq. 2.1. Therefore, the use of
a numerical integration scheme is not required. Assuming the intersection of an
existing stream surface piece with the faces of a tetrahedron is given, the surface
can be continued analytically inside the tetrahedron. After computation of the
intersection curves on the remaining faces, the mesh adjacency structure is used
to recursively advance the surface through neighboring tetrahedra, until the full
surface is formed. Hence, the algorithm has characteristics of a marching method.
Moreover, the restriction to piecewise-linearly interpolated vector fields allows a
determination of the topological configuration of the vector field in each tetrahe-
dron that is traversed by the surface. This information is then used to provide
stable and deterministic behavior in the presence of critical points, which account
for surface discontinuities and often pose a difficulty for other stream surface al-
gorithms.

In spite of these positive characteristics, the algorithm is rarely used in practice.
To produce computationally feasible implementations, some simplifications must
be introduced. Typically, the intersections of the stream surface with mesh faces
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are assumed straight lines, restricting the surface inside a cell to a ruled surface.
Moreover, the resolution of the resulting surface is closely tied to that of the
underlying mesh, since at least one triangles is generated for every cell traversed.
Frequently, this causes large triangle sets even for geometrically simple surfaces.
Last, the limitation to tetrahedral grids is a serious impediment to applications
that base model computations on higher-order interpolation schemes.

In contrast to such methods that compute the surface geometry explicitly,
van Wijk[vW93] uses a global approach that implicitly represents a family of
stream surfaces. Through advection of a scalar field from the domain bound-
ary through the flow domain, the computation of a particular stream surface is
transformed into the extraction of an iso-surface. The latter problem is well un-
derstood, and many reliable methods are available[LC87, Nie04]. The generation
of the scalar field itself, however, requires extensive processing. Essentially, the
domain of interest is discretized, and a scalar field is prescribed on the domain
boundary. Then, for every sample point, a streamline is traced until it intersects
the domain boundary, and the sample point is assigned the corresponding scalar
field value. In this fashion, all data points along a single streamline are assigned
similar values, and isosurfaces approximate stream surfaces by representing all
streamlines that share a single isovalue. However, selecting stream surfaces is very
non-intuitive, and defining a suitable boundary field is hard. Cai and Heng[CH97]
have shown that so-called principal stream surfaces can automatically select and
compute interesting surfaces, but their work is limited to irrotational flows. For
state-of-the-art datasets, the algorithm is not applicable, as the required resolution
and hence the number of streamline integrations is prohibitive.

Aside from explicit construction of stream surface geometry, methods exist that
create the visual impression of a stream surface by using particles, e.g. [vW92].
While simple to implement and broadly applicable, the visual clarity of these
schemes is often lacking, as the depth-enhancing quality of shaded surfaces is lost.
Furthermore, by forfeiting an explicit representation of the surface geometry, it
is impossible to use stream surfaces as building blocks for advanced visualization
techniques (cf. Section 3.5).

While all of these methods have different pros and cons, Hultquist’s scheme is
most often used in practical applications as it is comparatively stable and fast, and
applicable to typical vector fields. It should be noted that in principle, Hultquist’s
method should be able to deal with flows of arbitrary complexity if only the
prescribed resolution is high enough since, in the limit, a large enough number of
streamlines is able to provide an approximation of a stream surface of arbitrary
accuracy. However, implementing this basic idea in practice leads to wasteful
computation, and the problem becomes intractable for complex flows.
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3.3 Advancing Front Methods

In a nutshell, advancing front methods approach the problem of constructing a
two-dimensional surface embedded in a three-dimensional flow field by generating
a well-distributed collection of sample points on this surface. From these samples,
a polygonal representation is generated.

3.3.1 Basic Principles

Looking back at Eq. 3.1, a very simple approximation scheme consists of a regular
uniform sampling of the surface based on the (rectangular) parameter domain. The
corresponding finite number of streamlines with parameters (si) may be sampled
by numerical integration to produce a sequence of points (si, t0) through (si, tN).
Here,

si := i∆s and tj := j∆t,

for some choices of ∆s and ∆t. These points then form a simple quadrilateral
description of the surface.

However, typical flow fields exhibit convergent and divergent behavior of stream-
lines and stream surfaces tend to fold and twist. Typically, a uniform sampling
will not result in an adequate discretization of the surface. Therefore, some man-
ner of adaptive sampling is called for, and the local resolution must be based on
the geometry of the surface in physical space.

In order to achieve this, an advancing front is employed that incrementally
traverses the whole surface. This front progresses along a finite set of streamlines,
whose cardinality is increased or decreased based on the observed properties of
the front segments described by these streamlines. Each of the streamlines is in
turn discretized as a number of points. If the current front discretization is found
to become inadequate as the front is advanced, modifications to the streamline set
are performed appropriately.

Making use of the terminology introduced in [Hul92], the stream surface is
described in terms of ribbons that represent the surface area in between two ad-
jacent streamlines (designated as left and right). Through a discretization of the
bounding streamlines, each ribbon contains a front segment that connects a point
on the ribbon’s left streamline to one on the right streamline (cf. Figure 3.2). In
this setting, advancing the front is reduced to picking the next point on either the
left or right streamline on the ribbon, and to generate a new front segment that
reflects this choice. For example, in Figure 3.2, the current front in the leftmost
ribbon is the line segment (L0, R0). The segments (L0, R1) and (L1, R0) are then
candidates for the new front.

A triangular representation of the ribbon is automatically obtained by observ-
ing that a triangle is formed by the old and new front segments, independent of the
side that is chosen to advance. To ensure a consistent front representation across
multiple ribbons, neighboring ribbons must be advanced in turn until the front
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Figure 3.2: An overview of the elements of an advancing front discretization of
stream surfaces.

segments are reconnected. Metaphorically speaking, by advancing one ribbon its
neighbors are dragged along.

3.3.2 Front Resolution Control

During advancement, the front consists of line segments on the stream surfaces
and may be subjected to criteria that determine the quality of the local approxi-
mation. If one of these criteria is not met, a ribbon is split in two, increasing the
local resolution. Conversely, if the resolution can be reduced by joining neighbor
ribbons. In both cases, special triangulation patterns are used (see Figure 3.3).

Until now, we have ignored the case that a streamline cannot be integrated
further, i.e. a next point is not available. Obviously, if a streamline leaves Ω or
reaches integration parameter t, it cannot be integrated further. In such cases,
the front becomes discontinuous, and this is reflected algorithmically by splitting
it into two separate fronts which are then advanced independently.

3.3.3 Hultquist’s Implementation

Hultquist presented the first stream surface algorithm incorporating the above
principles [Hul92]. He used a numerical integration method to discretize individual
streamlines according to a fixed time step ∆t. To generally obtain well conditioned
triangles, he employed greedy minimal tiling by always choosing the shorter of the
two diagonals (L0, R1) and (L1, R0) as the new front segment (Figure 3.2).

Front resolution is controlled by a simple heuristic:

1. If the width of the quadrilateral at the end of a ribbon between two neigh-
boring streamlines surpasses the height by a factor of two, the ribbon is split.
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(a) ribbon split (b) ribbon merging

Figure 3.3: Front resolution control through splitting and merging of ribbons.

A new streamline is inserted into the front at the middle of the line segment
(L1, R1) (cf. Figure 3.3(a)).

2. If the six points given by the quadrilaterals at the end of two neighboring
ribbons (L0, M0, R0, L1, M1, R1) are roughly coplanar and if the merging of
ribbons would not violate criterion 1, then the ribbons are joined (cf. Fig-
ure 3.3(b)).

3. If the streamlines bounding a ribbon diverge in almost opposite directions, or
if one of the streamlines cannot be continued, the ribbon is erased, splitting
the front in two.

These criteria are applied after every iteration of advancement. Furthermore,
Hultquist found it beneficial to incorporate additional logic that works toward
keeping the front locally orthogonal to the flow direction.

Implementation of the algorithm and the corresponding criteria along the lines
sketched out in [Hul92] is not entirely trivial, since it is part recursive, part itera-
tive. While the quality of the resulting surfaces is good for vector fields with low
complexity, the algorithm in its presented form suffers from a number of difficulties
that preclude its application to more complex datasets.

• The primary resolution parameter is ∆t and controls streamline discretiza-
tion. Choosing ∆t right for any given dataset is a hard problem, since
a careful balance is required between precise approximation and computa-
tional effort. However, such a compromise may not exist. If ∆t must be
chosen small to resolve small structures on a small section of the surface, the
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Figure 3.4: Discretization errors introduced by resampling the integration
method’s output points at fixed time intervals.

effective triangle size is limited for the whole surface, at the expense of an
excessive amount of generated triangles. Experience shows that the process
of choosing the ”right” ∆t usually requires a fair amount of trial and error.

• In choosing ∆t fixed for the whole surface, the length of triangle edges along
streamlines is directly coupled to the magnitude of the traversed vector field.
If the magnitude varies strongly between neighboring streamlines, the algo-
rithm generates many skinny triangles, as illustrated in Figure 3.5(a).

• The given refinement criteria are aimed at compensating divergent and con-
vergent flow behavior. Flow sheet folding and twisting are not adequately
handled since the curvature of the front is not taken into account as a crite-
rion for refinement. In our experience, this is the most important shortcom-
ing when applying Hultquist’s algorithm to complicated vector fields.

• Requiring streamlines to be sampled with fixed ∆t-intervals precludes the use
of state-of-the-art numerical integrations schemes that select a step size au-
tomatically based on the characteristics of the vector field (cf. Section 2.10).
Commonly, a benefit in both accuracy and efficiency is achieved. Application
of such modern schemes is still possible by way of resampling the resulting
irregularly-spaced point sequence at regular intervals. However, this may in-
troduce significant approximation errors (refer to Figure 3.4 for a graphical
illustration).

3.4 High-Quality Stream Surface Computation

In this section, we will develop a novel algorithm based on the advancing front
principle using [Hul92] as a backbone.
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3.4.1 Improved Streamline Integration

For the integration of streamlines, it is typical to make use of adaptive timestep-
ping to integrate the underlying ordinary differential equation for reasons of both
accuracy and performance. As discussed in Section 2.10, the sequence of output
points of an adaptive integration scheme has irregular spacing with respect to t.
However, the advancing front principle forces a more or less regular t-spacing,
since large differences in step size between neighboring streamlines lead to ill-
conditioned triangulations and aggravate front resolution control.

An adaptive integration scheme can still be used by interpreting the sequence
of output points as a piecewise linear approximation. Then, resampling can be
employed to generate a t-equidistant sequence. However, this is not optimal since
significant approximation errors are incurred, mitigating the positive aspects of
the superior integration method (cf. Figure 3.4).

Instead, we employ the numerical integration scheme developed by Dormand
and Prince[PD81] (Dopri5 from Section 2.10). It is an adaptive Runge-Kutta
scheme[HNW93] and admits dense output, i.e. a differentiable curve instead of a
discrete sequence of points. A thorough discussion of this scheme is presented in
Appendix 2.10, and a model implementation is given in Appendix A.1

3.4.2 Arc Length Sampling

In regions of inhomogeneous flow, sampling streamlines with a fixed timestep can
result in a low quality triangulation that contains many skinny triangles, see Fig-
ure 3.5(a). On the other hand, we note that sampling at fixed intervals of arc
length (Figure 3.5(b)), triangle size is effectively decoupled from vector field mag-
nitude, resulting in an improved triangulation with fewer triangles. We therefore
make use of an arc step length ∆a as the primary streamline discretization pa-
rameter in our algorithm.

Although ignoring magnitude information in the discretization process may
seem detrimental at first glance, it is quite natural since the definition of a stream
surface (Equation. 3.1) does incorporate it.

The arc length of a parametric curve C(t) is a function of the parameter t ∈
[0, 1] and is usually given in integral form

aC(t) :=

∫ t

t0

||dC

dt
(τ)||dτ for t ∈ [0, 1]. (3.2)

For general parametric curves, it is usually hard to compute arc length at arbitrary
values of t because evaluation of the integral must rely on numerical quadrature.
To address this problem, we reformulate Equation (3.2) as an ordinary differential
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(a) fixed timestep sampling (b) fixed arc length sampling

Figure 3.5: A comparison of triangulations resulting from greedy minimal tiling.
Arc length sampling (right) produces more regular triangulations and less skinny
triangles than timestep sampling (left).

equation:

aC(0) = 0 (3.3)

d

dt
aC(τ) = ||dC

dt
(τ)|| for τ > 0. (3.4)

For the special case of a streamline, it follows directly that (omitting x for sim-
plicity of notation)

d

dt
aS(τ) = || v(S(τ)) | |. (3.5)

Hence, as v is Lipschitz on Ω, aS exists and is unique for any given S (Theo-
rem 2.10). Using an integration scheme with dense output as discussed above, a
continuous representation of aS is easily obtained.

To obtain evenly spaced arc length samples of S, we first note that for any
given streamline, aS is continuous and strictly monotonically increasing and hence
invertible on its image. Therefore, we are able to define

Ŝ(a) := S(a−1(a)) for a ∈ [0, aS(T )].

and replace S by Ŝ to transform the algorithm from time-based sampling to arc-
length sampling.

From a numerical point of view, finding a can be achieved by solving the
simultaneous system of equations(

S
aS

)∣∣∣∣
t=0

:=

(
x0

0

)
(3.6)
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and
d

dt

(
S
aS

)∣∣∣∣
t

:=

(
v(S(t))
||v(S(t))||

)
. (3.7)

using e.g. the Dopri5 scheme. This entails little additional effort, since both
equations rely only on the same values of v. Once both S and aS are available,
Ŝ is then evaluated by inverting aS using a Newton-type method. While requir-
ing a nonlinear inversion procedure for every sample may seem computationally
intensive, we have found its cost to be negligible in our experiments.

Beyond generation of better stream surface triangulations, using an arc length
step ∆a as the primary unit of sampling resolution allows for a more intuitive
understanding of resolution parameters. In contrast to time, arc length has a
geometric significance in physical space and is thus ideally suited to compare
discretization scale to structure size.

3.4.3 Front Resolution Control

To achieve a good front approximation in the presence of strong distortions, we
adopt the front resolution criteria described next.

Divergence / Convergence Monitoring To compensate for convergence and
divergence of neighboring streamlines, we implement a simple distance-based cri-
terion by choosing an upper bound dmax on front segment length. If this threshold
is passed, a ribbon is split. In similar fashion, if the combined front segment
length of two ribbons falls below a prescribed threshold 2 · dmin, these ribbons are
candidates for merging. Naturally, choosing dmin < dmax is sensible.

Curvature Monitoring To control refinement based on front curvature, we in-
troduce the angle α formed by the projection of two adjacent front segments onto
the plane orthogonal to the tangent of the common streamline. See Figure3.6(a)
for a more detailed explanation. If α exceeds a user-defined threshold αmax, the
corresponding ribbons are split, and the criterion is recursively reapplied to the
new front approximation. Since the front is continuous, the piecewise linear front
approximation obtained by successive ribbon splittings converges quickly. There-
fore, infinite refinement is not possible.

In order to disallow merging of adjacent ribbons whose front segments exhibit
too large an angle, we again make use of a threshold αmin to exclude these ribbons
from merging.

Fine-grained Resolution Control To guarantee the optimal application of the
presented criteria, checking the front after each advancing step is not sufficient.
Rather, the criteria must be applied every time a single ribbon is advanced, and
before the generation of output triangles.
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(a) curvature measurement (b) refined front

Figure 3.6: Front curvature measurement is performed by projecting the front
points L and R from two neighboring ribbons onto a D-orthogonal plane through
M (left). If α = ∠(L′, M, R′) exceeds a threshold αmax, the ribbons are split and
a new front approximation is obtained (right).

Exact Streamline Termination Conventionally, a streamline is prematurely
terminated if it leaves the computational domain. In this case, a next sample point
is not available. Through the use of arc length sampling, we have introduced a
similar case: While a streamline takes infinite time to reach a critical point, it
accumulates only a finite arc length. Again, it is not possible to evaluate the next
∆a-sample on the streamline.

Identification of the first case is easily accomplished by checking if the current
integration position is contained in Ω. It is in general beneficial to not terminate
the streamline right away. Rather, using a reduced step length, a last stream-
line sample can be computed as close as possible to the boundary of Ω, and the
streamline is terminated in the successive step. Thus, the front is split close the
boundary instead of some distance away from it. The benefit of this approach lies
in a better front approximation close to geometrically complex domain boundaries.
The reduced stepsize can be found by using a simple interval bisection technique.

The second case is inferred indirectly by observing the magnitude of ||v|| and
terminating the streamline integration if it drops below a minimal threshold. Since
a full step of length ∆a cannot be achieved, the step size is again reduced to
generate a last streamline sample at the vanishing point of v. Together with the
divergence criterion from Section 3.3.2 and front curvature control, this yields
improved front approximations right up to the splitting point and allows for a
reliable treatment of critical points in the vector field without taking local vector
field topology into account explicitly.
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Interestingly, the second case is quite common for typical flow simulation data.
Objects embedded in the flow are often subject to no-slip boundary conditions (cf.
Section 1.1.1), requiring that the flow velocity tends to zero as the boundary is
approached. Approaching such objects, streamlines take an infinite time to reach
the object boundary as the velocity approaches zero. Hence, these boundaries act
similar to critical points concerning the front termination. We have found that
correct handling of these cases improves the quality of the front approximation
greatly.

3.4.4 Implementation

Improved streamline integration and arc length sampling are incorporated into
the advancing front concept in a straightforward fashion. In the simplest form,
a corresponding algorithm is easily implemented in a recursive manner based on
a ribbon data structure. If a ribbon is advanced, the neighboring ribbons must
follow recursively to guarantee a consistent front approximation. However, fine
grained resolution control is at odds with this approach. To control curvature,
for example, requires incorporation of front segments in neighboring ribbons. If
a split is deemed necessary, the triangle that was already generated during the
recursive advancement must be deleted, requiring complex bookkeeping to ensure
that the triangulation remains intact.

We have chosen the more straightforward approach of reformulating an iter-
ative algorithm to the same purpose. Instead of building on a list of ribbons as
the primary data structure, we maintain fronts as list of nodes. Advancement
is then performed by iteration over the nodes in the front. By applying simple
rules, appropriate actions are performed for every node based on the current state
of the front at this node. The reader is directed to Appendix A.2 for a detailed
description of the algorithm and data structure details.

Our stream surface algorithm has been implemented in C++ and incorpo-
rated into the FAnToM visualization system, through which all of the following
experiments were performed.

3.4.5 Experiments

We have tested our algorithm on several application datasets (cf. Section 1.4).
Figures 3.7 through 3.9 provide an impression of the results achievable. In general,
we have found the algorithm to perform remarkably well. It consistently produces
high-quality surfaces, even in the presence of strongly distorting flow.

Throughout this thesis, we place special emphasis on the visualization and
analysis of vortex breakdown (see Section 1.1.5). Figure 3.7(a) provides a stream
surface based overview of the delta wing dataset. The formation of a single break-
down bubble on the right (in direction of flight) vortex is visible. On the left
side, there is not a single bubble but instead a more chaotic structure. Although
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(a) Overview

(b) Vortex Breakdown Bubble (c) Vortex Formation at Wing Apex

Figure 3.7: Several stream surfaces computed in the delta wing dataset. (a)
shows an overview with three stream surfaces. The surface passing the apex is
colormapped according to t. Two surfaces wrapping around the primary vortex
core lines are displayed using an s-colormap to illustrate spiraling of streamlines
around the vortex cores. Breakdown bubbles are clearly illustrated. (b) Close-up
of the breakdown bubble, cut open with a cutting plane, and revealing heavy recir-
culation. (c) Vortex formation at the apex, viewed from upstream (s-colormap).
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Figure 3.8: Semi-transparent stream surfaces in a topological context as nested
separation surfaces of vortex breakdown saddle points.

the right bubble is completely enveloped by the stream surfaces, application of a
simple slicing plane allows insight into the bubble and confirms the recirculation
nature of the contained flow (Figure 3.7(b)). Remark that this image show only
a single stream surface. To further analyze the more irregular left side structure,
we have exploited the fact that this region shows several saddle points (cf. Sec-
tion 4.6.2). Using our stream surface algorithm, we were able to compute the
nested separation surfaces of these critical points 3.8.

3.4.6 Comparison to State Of The Art

In the following, we will briefly compare our algorithm to the method of Hultquist,
which represents the de facto state of the art in stream surface computation. A
direct qualitative comparison in terms of computational complexity cannot be
given, since both algorithms rely on both complex heuristics and work on non-
trivial input data.

To facilitate a quantitative comparison where performance and accuracy are
concerned, we have implemented Hultquist’s algorithm and applied both algo-
rithms to several test cases, one of which we will discuss in the following. All
datasets employed are introduced in Section 1.4.

Figure 3.10 depicts the result of such a comparison. The dataset under consid-
eration is a high-speed train that is exposed to wind blowing at it from the side.
The surfaces are started upstream of the train’s nose and terminated at a fixed
value of t. This test case is interesting in that the surface travels very close to the
object boundary. Furthermore, vortex formation on the side of the train results
in high curvature of the stream surface. For both algorithms, we manually chose
the resolution parameters as low as possible (fewer triangles, conservative split-
ting) such that the surface is still correctly reproduced. As Figure 3.10 shows, we
were able to achieve a significant reduction in number of triangles required. The
original algorithm took 52 seconds to produce a surface of 185K triangles, while
the improved method generated 110K triangles in 27 seconds and shows a marked
improvement. While the results vary between test cases, both increased perfor-
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Figure 3.9: Two stream surfaces illustrate flow of water in a cooling jacket. The
complex geometry with many holes are an ideal benchmark for our improved
stream surface algorithm. While the surfaces are highly convoluted and the fronts
are split many times, the result is of very good quality.

mance and visually improved surface approximations are observed when applying
both algorithms to the same test cases. In more detail:

• More complex refinement criteria typically result in an increased number of
streamlines that need to be computed. Our algorithm splits more aggres-
sively, and merges less frequently.

• This increased computational cost is compensated by a marked increase in
numerical integration performance. In comparison to fixed stepsize integra-
tion, adaptive timestepping requires much fewer evaluations of the vector
field in typical situations. As computational effort is dominated by the lat-
ter, there is a marked increase in performance.

• Especially the curvature criterion results in better surface approximation in
regions of strongly curved flow.

• Exact streamline termination enables the treatment of strongly curved flow
boundaries or sharp edges. In contrast to Hultquist’s algorithm parts of
surface passing the closely to an edge are not discarded by our algorithm, at
the price of extensive front splitting near the boundary.

Choice of Parameters Finally, some remarks are in order on a general strategy
for choosing algorithm parameters. ∆a is of greatest significance and should be
chosen such that it matches the length scale of the smallest structures that are
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(a) Hultquist’s algorithm

(b) Our algorithm

Figure 3.10: A comparison of the same surface generated by both original and
improved algorithms. Individual surface triangles are colored randomly. In the
unmodified algorithm, triangle shape depends on flow magnitude. The improved
method generates a much more balanced triangulation and generates much fewer
triangles to achieve comparable results.
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encountered by the stream surface. While this scale is usually not known a priori,
in our experience only few iterations are required to find a good value for ∆a.

The front segment lengths are controlled by dmin and dmax. Choosing

dmin ' ∆a ' dmax

is a canonical choice that ensures similar discretization behavior in both s- and
t-directions. However, to avoid splits that are immediately followed by a merge
and vice versa, we introduce hysteresis by letting

dmax = 2∆a and dmin =
1

2
∆a.

The front curvature control parameters are typically not dependent on the dataset
under consideration. We typically chose

αmin = cos−1(0.9) and αmax = cos−1(0.95)

to achieve both adequate front refinement and avoid overeager successive splitting
and merging.

3.5 Stream Surfaces as

Visualization Building Blocks

In this section, we will show how stream surfaces can transcend their shaded
surfaces nature in the visualization of complex flow data. In the remainder of this
section, we will discuss several techniques that built on stream surface computation
to achieve improved visualization results.

3.5.1 Enhanced Color Mapping

Stream surfaces are naturally endowed with a simple yet intuitive (s, t)-parameteri-
zation (cf. Section 3.1). While isolines of the s-parameter represent individual
streamlines and indicate the direction of the flow on the surface, curves of constant
t represent time lines. Section 3.4.5 already demonstrated the effect of correspond-
ing color mappings. Löffelmann et al. [LMGP97] took this one step further and
used (s, t)-coordinated for texture mapping purposes. Aside from these simple
mapping choices, there are further possibilities facilitated by the role of stream
surfaces as natural flow probes.

Field Resampling In engineering practice, it is standard procedure to represent
such information by means of a cutting plane and apply a color mapping scheme
for certain components of the dataset sampled on that plane. The very same
approach is easily generalized to stream surfaces. Technically, a stream surface
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(a) pressure and vorticity colormaps (b) helicity colormap

Figure 3.11: Stream surfaces as a generalization of planar sections. Colormap-
ping of dataset samples enhances the perception of the surfaces in terms of flow
behavior.

is computed in the form of a triangle mesh, and quantities of interest can be
evaluated at the mesh vertices. For each vertex, a color is then generated and
used to interpolate throughout the triangles.

Figure 3.11 provides several examples using dataset attributes such as pressure,
helicity and vorticity. In the left image, wake vortex formation is illustrated. The
stream surface passing near the wing tip is colored according to vorticity, while
second surface is passing through the engine and is split into three fronts. Its
colormap illustrates pressure. A color mapping of helicity magnitude (right image)
visualizes a strong correlation between increased helicity and the onset of vortex
breakdown (see also Section 4.6.2).

Surface Curvature Given in the form of a triangular mesh, the geometry of a
stream surface is readily submitted to curvature analysis using discrete curvature
operators supplied, e.g. by Meyer[MDSB02]. Strong bending of the stream surface
serves as an indicator of inhomogeneous flow behavior, and curvature information
is useful in comprehending the three-dimensional flow pattern. Figure 3.12(a)
provides an example using Gaussian curvature.

Stretching Making use of the canonical parameterization of the stream sur-
face, we introduce a quantity ϑ that measures the convergence and divergence of
streamlines in the surface in terms of length changes in time lines. It is defined as
the mixed second derivative

ϑ(s, t) :=
∂

∂t

∂

∂s
S

∣∣∣∣
(s,t)

and is readily computed by applying corresponding differential operators to the
discrete surface representation. A high value of ϑ signifies strong divergence.
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(a) (b)

Figure 3.12: Apex surface in the delta wing dataset, colored according to Gaussian
curvature (left) and streamline stretching (right), revealing geometric properties
of the stream surface.

Again, Figure 3.12(b) demonstrates how ϑ helps an understanding of the flow
sheet represented by the surface.

3.5.2 Geometric Vortex Extraction and Verification

Vortices are at the heart of flow visualization, and many methods have been pro-
posed to extract them from a dataset. We refer the reader to the discussion in
Section 1.2.1 and the survey presented by Post et al.[PVH∗03]. Since most meth-
ods fail in certain situations and can produce false positives, results usually have
to be confirmed by manual inspection.

Manual Verification Stream surfaces can be helpful in this situation: by choos-
ing a starting curve around a candidate vortex core, the resulting stream sur-
face can then be displayed using an s-colormap that allows visual confirmation of
swirling behavior. Figures 3.15(b) and 3.14 provides examples.

Obtaining the starting curve is a simple task. A point xV on the presumed
vortex core line is specified together with a radius estimate rV . Then, surface
computation is initiated from a circle whose center and radius are given by xV

and rV respectively and which is contained in a plane perpendicular to the local
flow velocity v(xV ) (see Figure 3.15(a)).

The radius estimate rV can be user-specified or automatically selected by
matching a physical model of the circumferential velocity against the local flow
field. We have obtained good results by using the Rankine vortex definition
(cf. [Lug96] and Figure 3.13). We have found that a simple algorithm that deter-
mines the best match by comparing the model to successively increasing radii is
sufficient to obtain a good estimate rV (see [GTSS04]).
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Automatic Verification Of special interest in this context is a geometric ap-
proach by Jiang et al.[JMT02]. Their method automates the verification process
by seeding streamlines close to the vortex core line and observing their rotation
with respect to the core axis. As a streamline progresses, its position is projected
onto a plane perpendicular to the core line, and the number of rotations around
the intersection of plane and core line is evaluated. If, for several streamlines,
the number of rotations exceeds a given threshold, the vortex is assumed verified.
Using stream surfaces, we can achieve a similar approach by replacing a small
number of streamlines by an arbitrary number of s-lines on the surface. As an
added benefit over Jiang’s scheme, we are able to harness the adaptive resolution
that generates an optimal surface description. Thus, stream surfaces can be used
to automatically verify swirling motion patterns.

Vortex Core Extraction Vortex core lines are often extracted by a local
matching of flow pattern against a preconception of swirling motion. For example,
the in engineering applications very popular method of Sujudi and Haimes[SH95]
performs such a pattern matching per cell of the computational mesh of a dataset.
The result is a list of disconnected line segments, one per matching cell, that are
indicative of short pieces of vortex core line segments contained in these cells.
While Roth and Peikert’s reformulation of this method in terms of the parallel
operator [PR00] (see also Section 1.2.1) allows for the generation of longer, con-
nected line segments, the resulting curves are not smooth. Furthermore, relying
on second order derivatives, the results are often noisy and of bad visual quality
(compare Figure 3.16). Furthermore, as mentioned above, false positives are not
infrequent.

We therefore propose to use stream surfaces to generate a smooth and con-
tinuous representation of the vortex core line in the following fashion. As in the
previous paragraphs, a surface is seeded on a circle around the core axis. Then,
a sequence of N time lines on this surface is computed and discretized according
to a pre-specified resolution. For the i− th time line, we obtain a sequence of M
points

Figure 3.13: Circumferential velocity vt in Rankine vortex model.
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Figure 3.14: Visual conformation of swirling motion through using appropriately
colored stream surfaces. Surface points along individual streamlines (lines of con-
stant s) are assigned the same color. The surfaces are started on circles contained
in the indicated plane.

T i
j := S(sj, ti), with i = 0, . . . , N − 1 and j = 0, . . . ,M − 1. (3.8)

We then approximate the center of rotation of the stream surface as the center
of gravity of the polygon spanned by connecting T i

j and T i
j+1, where j + 1 is

understood modulo M to close the polygon. The center of gravity is then defined
as

ci :=
1

2ML

M−1∑
j=0

T i
j · (||T i

j − T i
j−1||+ ||T i

j+1 − T i
j ||), (3.9)

where

L =
M−1∑
j=0

||T i
j+1 − T i

j ||.

In other words, every T i
j is weighted by the length of the two polygon edges

connecting to it. These weights account for a possibly uneven sampling of time
lines. In comparison to the unweighed center of gravity, ci is a good approximation
of the center of gravity of the time line itself (cf. Figure 3.15(c) for an illustration).
Now, the polyline defined by the sequence of the ci is taken as a new approximation
to the vortex core line, which we call gravity line.

Given a good starting curve for the stream surface and sufficiently high N
and M , gravity line vortex cores can significantly improve on the results of other
schemes. In Figure 3.16, we demonstrate improved vortex core lines extracted
by our scheme in contrast to the results of the Sujudi-Haimes method (which is
described in Section 1.2.1) on a typical dataset. Remark that while the starting
circle could be chosen manually, this would require several passes of trial and error
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(a) Seeding curve (b) Resulting surface (c) Center of gravity

Figure 3.15: Vortex core verification and vortex core line extraction using stream
surfaces.

if the location of a vortex core line is not exactly known. In this sense, gravity line
vortex core extraction is to be understood as a post-processing tool that improves
on the results of other vortex core extraction algorithms.

3.5.3 Miscellaneous Applications

Stream surfaces have also been employed as key visualization elements by others.
For example, they form the basis for the Saddle Connectors approach of Theisel
et al. [TWHS03]. They essentially make use of stream surfaces to compute in-
tersections between stable and unstable manifolds of interconnected saddle points
to determine the unique streamline that connects them. Thereby, the achieve a
simplified topological description of the corresponding manifolds and connections.

Most recently, Tricoche et al. [TMJ06] have made use of our stream surface
algorithm to visualize bioelectric fields in a torso around the heart region. The
algorithm is applied directly to the electric field, and surfaces are seeded on iso-

Figure 3.16: Stream surface based vortex core line extraction on the ICE train:
Sujudi-Haimes output with false positives indicated by arrows (blue), vortex core
lines computed as gravity lines (magenta), visual verification of the upper vortex
using a wrapping stream surface, with color mapping to show the rotation around
the vortex axis (yellow/green).
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contours of the electric flux. The resulting surfaces visualize the geometry of the
current induced by the dipole equivalent cardiac source and illustrate intercon-
nections that exist between different connections of the heart surface. They also
apply similar techniques to study the electrical fields in the brain.

3.6 Discussion

In this chapter, we have provided an overview of stream surface based visualiza-
tion and presented our contribution in the form of a novel advancing front scheme
that delivers significantly better results than its predecessors. It enables the reli-
able and fast computation of high-quality approximation to complex surfaces in
large datasets. Furthermore, we have demonstrated the use of stream surfaces
as powerful and versatile basic elements that advanced visualization techniques
may be built upon and have pointed out several such examples. An application of
our method to the visualization of application datasets has proven the illustrative
abilities of stream surfaces. Especially the visualization of vortex breakdown with
this technique has yielded heretofore unknown insight into the geometric structure
of the breakdown bubble in the datasets under consideration.

There are several promising directions for future work. First and foremost, a
generalization to path surfaces, i.e. integral surfaces in time-dependent vector
fields, would allow further insight into these types of flows. However, there is a
plethora of technical difficulties that preclude straightforward application of our
algorithm in such settings. For example, the current front advancement scheme
does not guarantee temporal locality of individual front segments. Hence, the en-
tire dataset must be kept available to the algorithm. This poses a major obstacle
for very large, time-dependent datasets. A second problem worth looking at is the
complex algorithmic structure of the presented scheme. Since it is based on heuris-
tic criteria, a rigorous mathematical analysis that would yield e.g. convergence
proofs is not possible. One aspect of this problem is the simultaneous treatment of
both correct mathematical approximation and generation of high-quality graph-
ical output. A separation of these two processes seems promising with respect
to an overall conceptual simplification. This could also lead to much improved
triangulations that take into account a variety of global surface properties that
are not accessible with the current implementation.
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Topology-Based Methods for
Three-Dimensional Datasets

4.1 Motivation

The topological analysis of a vector field enables qualitative understanding of the
dynamical system generated by the field in terms of the phase portrait. How-
ever, a graphical representation of the topological graph is necessary to convey
the structural connections. While such a representation is straightforward for
a two-dimensional domain of definition, with its topological graph consisting of
points and lines, higher dimensions pose serious difficulties. There, the limit sets
that constitute the topological graph may be of dimension greater than one. In
three dimensions, for example, there are separation surfaces and closed invariant
tori. Even in simple cases, a straightforward depiction of the topological graph is
difficult as these surfaces, as opposed to curves, occlude each other.

Furthermore, a straightforward topological analysis of numerical three-dimen-
sional vector field datasets has proven elusive. Critical points and closed orbits are
extracted with relative ease [WS02], but closed invariant surfaces are very hard or
impossible to compute. For vector fields describing technical flows, certain subsets
of the boundary can appear as one-dimensional limit sets of the vector field. This
phenomenon is know as separation or attachment, and a topological graph must be
considered incomplete if it does not take these into account. For the typical case of
an object embedded in a surrounding flow, it is not uncommon that the topological
graph consists exclusively of these separation and attachment manifolds on the
object boundary and their corresponding basin surfaces, and no critical points are
present in the flow vector field itself. While the detection and extraction of such
one-dimensional boundary limit sets has been treated successfully[KHL99, SJH05,
TGS05], the corresponding basin surfaces are not reliably computable owing to
technical difficulties. Moreover, they also contribute to the occlusion problem
mentioned above.
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In this chapter, we will take a different approach and generalize the topology
tracking scheme of Tricoche et al.[TWSH02] to arbitrary dimensions, which we
will then use this scheme as a basis to develop a novel method for the topological
visualization of three-dimensional flow structures based on moving section planes.
We obtain a powerful scheme that is ideally combined with volumetric visualiza-
tion techniques to provide in-context visualization of both flow fields and related
quantities. Furthermore, we apply the tracking directly to the analysis of the
evolution of vortex breakdown bubbles.

We will next briefly consider previous work on topology-based visualization of
three-dimensional flow fields and then present the core algorithm that forms the
basis for the visualization methods presented in this chapter.

4.2 Previous Work

While the two-dimensional case has been treated extensively (cf. [LHZP05] for an
overview and [Tri02] for a comprehensive introduction) and has proven a valuable
tool in the analysis of two-dimensional flows, three-dimensional vector field topol-
ogy has not been able to match this success so far, mostly due to the problems
detailed above.

Among the first to study three-dimensional flow topology were Helman and
Hesselink[HH91]. They proposed methods for detecting and classifying first order
critical points based on the eigensystem of the Jacobian matrix. Simultaneously,
Globus et al.[GLL91] presented a software system for visualizing the topological
skeleton of three-dimensional vector fields. Their work was followed up by Nielson
and Jung[NJ99] who introduced specialized tools to this purpose with increased
efficiency and accuracy for the special case of tetrahedral meshes.

Theisel et al. attacked the problem of mutually occluding separation surfaces
through the use of saddle connectors[TWHS03]. Their idea is based on saddle
connections in the form of a single streamline that corresponds to the intersection
of the stable and unstable manifolds of two saddles. They omit the corresponding
manifolds from the topological skeleton and depict only the connecting stream-
line, in essence providing a further level of topological abstraction. They made
use of stream surfaces to compute these manifolds explicitly and performed the
intersection based on stream surface geometry and subsequently generalized this
method to include boundary information as well [WTHS04].

4.3 Topology Tracking

As discussed in Section 2.7, dynamical systems that depend on a parameter are
well studied. Concerning numerical realization, however, the theory has little to
offer. In the following, we will present an algorithm that allows an analysis of the
structural changes on a special subclass of vector fields, namely piecewise linear
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vector fields that are defined on simplicial meshes of arbitrary dimension. While
this restriction seems enormous at first glance, application datasets resulting from
numerical simulations commonly have this specific form, or are easily converted
to it (cf e.g. [SBM∗05, Wie03]). To be precise in meaning, we will require that the
mesh is a simplicial complex.

4.3.1 Linear Interpolation

Definition 4.1. A simplicial complex K is a set of simplices that satisfies the
following conditions.

1. Any face of a simplex of K is also in K.

2. The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2.

Furthermore, a simplicial n-complex K is a simplicial complex in which the largest
dimension of any simplex in K is n.

For instance, a simplicial 2-complex must contain at least one triangle, and must
not contain any tetrahedra or higher-dimensional simplices. We exploit this rigor-
ous definition to guarantee that a piecewise interpolant on the mesh is well-defined
and continuous. We will introduce its construction next. In the following, let K a
n-simplicial complex embedded in IRn, n > 1.

Let S ∈ K an n-simplex and let pi, i = 0, . . . , n its vertices, i.e. its 0-
subsimplices. Then, the barycentric coordinates of a point x ∈ IRn with respect
to the pi are the coordinates

(β0(x) + · · ·+ βn(x))x = β0(x)p0 + · · ·+ βn(x)pn.

They are linear in x and obey the properties βi(pj) = δij and β0 + · · · + βn = 1.
Barycentric coordinates are the natural coordinates relative to a simplex. When
the βi are not negative, x is contained in S. Next, let vi ∈ IRn, i = 0, . . . , n vectors
associated with the pi. Then we define the linear vector interpolant over S using

v(x) := β0(x)vn + · · ·+ βn(x)vn for x ∈ S.

By taking into account the union of all simplices of K, we obtain a piecewise linear
interpolant v on K. Moreover, v is continuous, since two adjacent simplices share
the same vertices on their common face and whose weights are the only non-zero
weights. However, v is not differentiable across faces and vertices. In each simplex,
the Jacobian Dv is constant.

The linear vector field induced by Dv on any simplex S contains an isolated
critical point if and only if det Dv 6= 0. In this case, its location can be expressed
in barycentric coordinates as a solution to the linear system

v1 − v0

v2 − v0
...

vn − v0




β1(0)
β2(0)

...
βn(0)

 = v0.
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Figure 4.1: Product of two-dimensional complex and parameter space yields pris-
matic cells.

β0 is not explicitly given by the system, but it is implicitly given determined by∑n
i=0 βi(x) = 1. If any of the βi(0) is negative, the critical point is located outside

the simplex and is ignored. Remark that there can be at most one critical point
per simplex, and its Poincaré index is either +1 or −1 (cf. Section 2.6).

4.3.2 Critical Point Paths

In the same sense that we applied linear interpolation to the representation of a
vector field v, we will also use it to model its parameter-dependent cousin vs. We
hence assume the above setting with the modification that every vertex pi of the
simplicial complex K is associated to a sequence of vector values vj

i , j = 0, . . . , N
for an integer N ≥ 1. In other words, the parametric vector field is given as a
finite number of slices vj(x), j = 0, . . . , N along the one-dimensional parameter
axis. The corresponding ascending sequence of parameters is called sj. This allows
us to define a linear interpolant between two slices in the following way:

vs(x) :=
1− sj

sj+1 − sj
vj

s(x) +
s

sj+1 − sj
vj+1

s (x) if s ∈ [sj, sj+1]

This construction corresponds to a tensor product K×[smin, smax] that is composed
of generalized prisms S × [smin, smax] where S ∈ K and smin < smax ∈ IR (see
Figure 4.1).

If vs(x) is found to contain a critical point for sj ≤ s ≤ sj+1 and x, its path
under a change of s can be explicitly computed. Let S the containing simplex
and vj

i its associated sequence of vector values as above. Furthermore, let βi its
barycentric coordinates with respect to S. Then we define

wi(s) :=
1− sj

sj+1 − sj
vj+1

i − s

sj+1 − sj
vj

i

and thus

vs(x) = w0 + β1(x)(w1 − w0) + · · ·+ βn(x)(wn − w0) for x ∈ S.
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(a) entry/exit/bifurcation events (b) reconstructible case (c) undetected case

Figure 4.2: Critical point paths in adjacent tetrahedra and entry, exit and bifur-
cation events.

A straightforward application of Cramer’s rule and expansion of the determinants
yields

β1(s) =
det(−w0(s), w2(s)− w0(s), . . . , wn(s)− w0(s))

det(w1(s)− w0(s), w2(s)− w0(s), . . . , wn(s)− w0(s))
=:

b1(s)

q(s)

with two polynomials p1(s) and q(s) of degree n. A similar construction for i =
2, . . . , n provides us with the coordinates βi(s) of the critical point at parameter
s. Brief computation reveals that the bi and q are polynomials of degree n. By
construction, q(s) 6= 0 if vs has only isolated critical points. Naturally, if βi(ŝ) < 0
for some ŝ ∈ [sj, sj+1], the critical point has moved outside the simplex, in which
case the local perspective offered by S is no longer valid. Therefore, the smallest
root of bi, i = 0, . . . , n determines the intersection of the critical point path with
the cell faces. To determine if the path enters or leaves the cell, we evaluate the
derivative of the corresponding coordinate with respect to s

β′i(ŝ) =

(
bi

q

)′

(ŝ) =
b′i(ŝ)

q(ŝ)
since bi(ŝ) = 0.

If β′(ŝ) > 0, we speak of an entry event, otherwise of an exit event. The case

β′(ŝ) = 0 indicates that the critical point path touches a cell face and remains
inside or outside, respectively. Furthermore, we do not distinguish between spatial
and parameter domains and consider also call intersections of the path with the
prism faces s = sj and s = sj+1 entry and exit events (see also Figure 4.2).

Local bifurcations are in this setting limited to two types only. Of interest here
is the qualitative behavior of a critical point during its motion through the interior
of a prism. As a matter of fact, any bifurcation that would involve simultaneously
two or more critical points present in the cell, either before or after the bifurcation
point, is impossible because of the linear nature of the corresponding interpolant.
Practically, such bifurcations can only be encountered on the common boundary of
two neighboring simplices, as detailed in the following. The kind of bifurcations we
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are interested in here correspond to the transition of a critical point from one type
to another. The spontaneous disappearance (or creation) of a critical point inside a
cell is also impossible, since one would move from a situation where the local index
is ±1 (a singularity is present) to a situation where this index equals 0 (no isolated
critical point in the cell), which would locally break the consistency monitored
by the invariant Poincaré index. Possible bifurcation involve the simultaneous
zero-crossing of the real part of two eigenvalues. In two-dimensions, this type
of bifurcation is called Hopf bifurcation, and only the transition from a sink to
a source is possible except in very degenerate cases that involve a change of the
global index (see also the discussion in [Tri02], p. 129). Over IR3, there are more
possible combinations, for example a transition from a saddle to a source (cf. the
classification on pp. 26). Consequently, we only have to detect such bifurcations
in between entry and exit events by a comparison of the type as determined from
Dv on both entry and exit. If no change is detected, we assume that the critical
point type remains constant along its local path segment. Otherwise, the roots of
q can be used to determine the exact location of the bifurcation.

A local bifurcation that involves more than one critical point can occur on the
simplex boundaries. On a face, it must involve exactly two critical points. Again,
obeying the Poincaré index conservation limits the possible types to creation and
annihilation of critical point pairs with opposite indices. Such bifurcations are
detected if det Dv vanishes on an entry or exit event. Figure 4.2 visualizes these
situations. There is one corner case, however (cf. Figure 4.2(c)). To learn this
type of bifurcations, we must know about one of the involved critical points first.
From this, we can reconstruct the complete picture. However, we typically perform
detection of critical points on parameter slices. Therefore, if a critical point pair
is created and annihilated without passing over a parameter slice sj, it is missed
by our approach. Typically, this is not a problem, since these structural changes
are completely local and short-lived.

Bifurcations involving more critical points can theoretically occur on simplex
edges or even vertices. Here the number of critical points is limited by the number
of simplices adjacent to the edge or vertex. However, these cases are very unlikely,
and especially so under numerical treatment. Therefore, we opt to ignore them in
good conscience.

4.3.3 Algorithm

Having gathered the facts above, we are now in a position to state our tracking
algorithm. As input we assume the simplicial complex K, the sequence of discrete
vector fields vj

i , and the set of all critical points in all parameter slices

Zj :=
{
S ∈ K : S contains a critical point of vj

s(z)
}

, j = 0, . . . , N

The algorithm then constructs the structural graph, i.e. the graph that consists of
all entry/exit/bifurcation events connected by path segments.
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Algorithm 4.2. Path tracking for a single critical point

Assume that a critical point z is located in S ∈ K at parameter sj < s < sj+1.
Then, compute the path in positive parameter direction:

1. Compute bi and q for S and determine entrances and exits by computing all
roots of bi, i = 0, . . . , n.

2. If there is no exit later than s, z exits S at sj+1; the path is complete.

3. If there are exits in S, then z leaves S at the exit with the smallest parameter
s′ greater than s. If Dv on the path at s′ is singular, there is bifurcation and
the path completes on the face on which the exit lies.

4. Determine the adjacent simplex S ′ corresponding to the exit face.

5. z is now in S ′. Assign S ← S ′ and restart at 1.

Following a path in negative parameter direction is achieved in a completely
analogous manner. Both directions are completely equivalent. We use Algo-
rithm 4.2 as a building block for computing the paths of all singularities present
in two consecutive parameter slices sj and sj+1.

Algorithm 4.3. Structural graph construction between sj and sj+1

1. Let B = ∅ be the set of bifurcations encountered in between sj and sj+1 and
let Z0 := Zj and Z1 := Zj+1.

2. for every S ∈ Z0: follow the path of z ∈ S in positive direction

(a) if it ends in S ′ at sj+1, eliminate S ′ from Z1.

(b) if it ends at a bifurcation, add it to B.

3. for every S ∈ Z1 (singularities not reached by paths from sj): follow the path
of z backward in time

(a) it must end at a bifurcation; add it to B

4. for all bifurcations in B: check if B has two paths connecting to it; if it does
not, there must be an unknown critical point involved (Figure 4.2(b)). Follow
its path forward or backward in time depending on whether the bifurcation is
a creation or annihilation event.

(a) the path must end at a bifurcation; add it to B; goto 4.
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The algorithm essentially avoids multiple tracing of the same path by making
use of the equivalence between forward and backward tracing (i.e. if a path ex-
tends from t = 0 to t = 1, we only need to trace it forward). The extra effort in
step 4 is required because non-intuitive situations can occur (see Figure 4.2(b)).
The end result is structural graph that completely describes the continuous struc-
tural variation of the vector field between the two parameter slices. Application
to several successive slices is straightforward as it only involves connecting the
paths from different slices according to which critical point they start/end at. We
next present some examples of successful application of our algorithm in several
situations.

4.3.4 Practical Concerns

Numerical datasets are often subject to noise, especially if the computations in-
volve some kind of differentiation. It is common practice to apply smoothing
operators to datasets in order to undo some of the damage done by previous com-
putations. Numerical noise usually reflects in short-lived pairs of artificial singu-
larities that exist in isolation and are not part of the dataset’s structural evolution
over time (Figure 4.2(c)). It can also occur that a path is “interrupted” by a
pair of artificial bifurcations that enclose a path segment of very short duration
(Figure 4.2(b)).

What seems a drawback at first can be turned into an advantage: instead of
applying extensive smoothing the dataset we filter the resulting set of singularity
paths by removing short paths that last less than e.g. one parameter interval.
Fine-grained filtering can be applied on the structural graph directly and can
be implemented in an efficient way by first removing edges that represent paths
corresponding to short intervals and successively removing all isolated vertices.
In our experiments, we found this method to be very effective in treating noisy
data sets. It turns out that conventional smoothing does not significantly reduce
the number of artificial critical points. It however affects the structure of the
dataset in such a way that the structural evolution is obscured or changed. This
is especially true for minimum/maximum tracking described in the next section.

4.4 Tracking Extremal Values of a Scalar Field

By applying the above approach to gradient fields of scalar quantities, we are able
to track the evolution of minima, maxima and saddle points along the parameter
axis, since these scalar critical points correspond to critical points in the gradient
field.

Moreover, if one is only interested in, for example, minima, the resulting struc-
tural graph can be filtered to only include paths of type attracting node. Remark
that spiraling behavior is not exhibited by gradient fields. We have applied this
methodology in Section 4.6.
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Aside from straightforward tracking of critical point paths and computing the
structural graph of a vector valued dataset, our algorithm permits application in
other contexts as well. We will next describe a visualization technique that is built
on the tracking algorithm.

4.5 Moving Section Planes

In engineering practice, it is quite common to avoid occlusion problems in the
visualization of three-dimensional datasets by employing planar sections. Typi-
cally, color mapping is used to depict scalar quantities of interest on the section
plane. The central idea of the vector field visualization method introduced in
this chapter is to extend these basic and widely used planar sections as tool for
exploring flow volumes of stationary flows. The planes smoothly travel in a con-
tinuous way along curves that can be either obtained automatically by standard
feature extraction schemes or directly provided by the user to explore a particular
region. Building upon our tracking algorithm, we accurately track the vector field
topology observed on the section planes. This allows detection and visualization
of essential properties of a three-dimensional vector field in terms of section plane
representation.

4.5.1 Plane Trajectory

More precisely, we start with a smooth curve C(s), parameterized on [0, 1] through
the domain of definition of a vector field v. Furthermore, let N(s) a curve of unit
vectors on the same interval. Then, for every s, there is a corresponding plane
Ps defined by the point C(s) and the normal N(s). On this plane, define the
restricted and projected vector field

vs(x) := v(x)− < N(s), v(x) >
N(s)

||N(s)||
for x ∈ Ps (4.1)

The plane is topologically equivalent to IR2, therefore, the vs can be treated as
a planar vector field and its topological graph is extracted in a straightforward
fashion. Furthermore, vs is a parameter-dependent vector field, hence its structural
changes can be tracked as the plane travels with increasing s (see Section 4.3).

For typical exploration tasks, the normals are chosen as the normalized tan-
gents to C(s), i.e.

N(s) =
Ċ(s)

||Ċ(s)||
.

However, there are specific situations that suggest a different choice of N(s), for
example if the section plane rotates on an axis. We will discuss several choices in
Section 4.5.4.
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4.5.2 Planar Resampling and Projection

Let Ω ⊂ IR2 a region and vs : Ω→ IR2 a parametric vector field.
To apply the algorithms from Section 4.3, we need to construct a simplicial

complex and a discrete representation of vs thereon. We proceed with the con-
struction as follows:

First, let
xi,k = (∆x0, ∆x1)

T , i, k ∈ IN.

with ∆x0, ∆x1 > 0. Hence, the xi,k describe a uniform grid in IR2. Then, there are
vectors e0

s, e
1
s ∈ IR3 and orthogonal to N(s) such that the P s is given in parametric

form by
Ps(x) = C(s) + x0e

0
s + x1e

1
s x ∈ IR2.

Since Ω is bounded, there are only finitely many points xi,k for which the corre-
sponding sample point Ps(x

i,k) ∈ Ω. We use the following simple triangulation
scheme to generate a simplicial complex Ks from this point set.

Let xi,k, xi+1,k, xi,k+1, xi+1,k+1 four logically adjacent sample points. Then:

• If all four are inside Ω under Ps, then construct two triangles using these
four sample points and add them to Ks.

• If one of the four points is outside Ω under Ps, construct a triangle using the
three other sample points and add it to Ks.

• If less than three points are inside the domain, do not construct a triangle.

Then, for all vertices of Ks, the corresponding associated vector field values are
determined in accordance with Eq. 4.1.

Using this construction, we have constructed a simplicial complex Ks. Hence,
given a sequence

0 = s0 < s1 < · · · < sn = 1

and associated complexes Kj and vector values vi,k
j , application of Algorithms 4.2

and 4.3 is almost straightforward. The only possible issue encountered is that these
algorithms assume that the simplicial complex remains unchanged in between
sj and sj+1. This problem, however, is easily solved by considering only the
intersection Kj ∩ Kj+1.

4.5.3 Section Plane Tracking

The moving section planes in combination with the tracking algorithm provide
a vector field visualization primitive. Given a flow domain of interest, we can
prescribe a trajectory, let the section plane travel along it, and track the resulting
topological changes.

From a theoretical point of view, restriction to planar sections is not an exact
tool in the sense that the topology of the projected vector field on the plane
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Figure 4.3: Different types of moving section plane trajectories

cannot take into account the behavior of trajectories that move away from the
plane. While Poincaré’s return map (which might be understood as an example of
analysis on planar sections, cf. [GH83, Poi]) is a very successful tool for analysis of
closed invariant manifolds, it is built on the fact that trajectories return to it and
that by observing successive returns, one can learn about the trajectory behavior
in a larger part of space. No such property exists in the case of planar sections as
we defined them here.

However, the fact that hyperbolic structures dominate the behavior of a dy-
namical system gives rise to the following argument: Hyperbolicity (Definition 2.21)
implies that the local behavior of trajectories can be decomposed into stable and
unstable parts, both orthogonal to the flow direction. Therefore, if the planar
section is roughly perpendicular to the flow, all information about the hyperbolic
nature of a trajectory intersecting it is preserved in the projected vector field.
While this argument cannot be put in exact mathematical terms, we demonstrate
in Section 4.6 that it gives rise to a visualization method that is both powerful
and intuitive, given some a priori information about the dataset that allows a
selection of planes parallel to structures of interest.

4.5.4 Typical Trajectories

During our experiments (described below), there are several types of trajectories
that follow from specific aspects of a dataset under consideration (cf. Figure 4.3).

Vortex Core Lines A natural idea is to select a vortex core line to serve as tra-
jectory. These feature lines are the center of the swirling flow and are there-
fore natural candidates to capture the local symmetry of the flow. Various
schemes are available that permit their automatic extraction. Essentially, if
the section plane is parallel to the plane of rotation, the component of the
velocity field along the vortex core line is discarded.
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Straight Line A second type of trajectory is a user-selected straight line. This
approach has two major applications. First, if the focus is on large-scale
vortical structures, the mean flow direction in the corresponding region can
be selected along with a convenient start position. We use this technique for
visualizing the primary vortex of the Delta Wing dataset, see Section 4.6.2.
The second application arises when one is interested in a single vortex but
automatic vortex core extraction failed. In this case a straight line can be
selected that approximates the vortex core line.

Recirculation Bubble Axis A last type of trajectory is directly fitted to the
visualization of vortex breakdown. Because this phenomenon implies a dra-
matic change in the vortex structure, schemes for vortex core line fail or at
best provide scattered segments. Fortunately, recirculation bubbles, though
asymmetric in general, usually exhibit a central axis that constitutes their
overall orientation. Therefore we explore such regions by rotating the cutting
plane around this axis. More specifically, the outer boundary of a recircu-
lation bubble is closely related to the existence of two stagnation points
located at both ends. To visualize the flow structures enclosed in the bubble
we select the segment connecting both stagnation points which naturally
yields the required axis for our rotating cutting plane (see Section 4.6.2).

4.5.5 Plane Orientation

The orientation of the plane Ps, along with its trajectory through the volume, is a
critical aspect and must therefore be chosen carefully. Depending on the method
selected to traverse the volume, the orientation of the cutting plane along the path
is either fully determined or must be chosen according to the local flow structure.
The first situation occurs both during investigation of the recirculation bubble of
vortex breakdown or when following a straight line to capture large-scale features.
In the latter case the trajectory provides the plane normal. The second situation
corresponds to the tracking of a single vortex, either along a pre-computed vortex
core line or a straight line approximating its overall orientation. In that case
neither the curve tangent vector nor the local flow direction can be considered as
normal. When dealing with a vortex core line the inaccuracy in the extraction
method results in an approximated position of the actual vortex core which can
have a negative impact on the resulting normal value. The same holds true when
approximating the curved, possibly complex path of a vortex by a straight line
segment, as described previously. For these reasons we devise a way to compute a
suitable normal at each point along the discrete path. Practically, the quality of
a normal is evaluated with respect to the amount vn of (normalized) flow crossing
the corresponding plane:

vn =

∫
P ′

< v, n >

||v|||
, (4.2)
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where P ′ is a small region around the considered point on the plane and n is
the plane normal. To maximize this quantity we adopt the following iterative
scheme: n is initialized as the velocity vector at the considered point along the
line. Next we sample the vector field at a few locations evenly distributed around
this point on the initial plane. We compute the mean vector of the normalized
sample values and the corresponding value of vn. The mean vector then replaces
the current normal in the next iteration. The iteration proceeds until no significant
improvement of vn can be achieved.

4.5.6 In-Context Visualization using Volume Rendering

The sparse visual representation provided by the moving section plane topology is
ideally suited to a combination with other, dense representations. Such dense vi-
sualizations include volume rendering of scalar fields. In the following, we examine
a combination of both methods.

The motivation for using volume rendering within topological analysis analy-
sis is twofold. On one hand, it provides a volumetric context to the topological
structures extracted by the method described previously. This gives additional
cues to understand the three-dimensional structure of the vector field being visu-
alized. On the other hand the framework of multi-dimensional transfer functions
is extremely powerful in allowing for the simultaneous and coherent representation
of complementary derived quantities. We will demonstrate the usefulness of such
an approach in Section 4.6 and consider specific aspects of volume rendering of
flow-related quantities next.

Flow-Derived Quantities

The use of multi-dimensional transfer functions for volume rendering, combined
with an interactive selection technique, was pioneered by Kniss et al.[KKH01,
KKH02]. Multi-dimensional transfer functions are especially effective in visual-
ization of complex flow structures because of the large number of flow-related
variables traditionally used to characterize and quantify local properties of the
flow vector field. As observed in previous work, having more than two domain
variables in the transfer function greatly complicates the user interface, so we
have restricted ourselves to two-dimensional transfer functions here. Thus, the
exploratory visualization process involves finding a pair of variables that proves
most effective in allowing important features to be displayed, and experiment-
ing with transfer functions to highlight different structures and regions of interest
within the flow domain.

Non-trivial flow features do not always have simple and universally accepted
definitions in terms of flow-related variables. We point the reader to Section 1.1.5
for a discussion and commonly used variables. Thus, finding a transfer function
which appropriately highlights a region of interest in the flow feature can be a
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fairly non-intuitive task. Interactive editing and selection of transfer functions
has proven invaluably helpful in our experiments.

For the examples given below, we have used the Simian volume renderer[Kni]
that features interactive user-guided transfer function editing through the use of
dual-domain interaction[KKH01].

4.6 Visualization of Vortices and Vortex Break-

down

In the following, we present a number of visualization experiments based on the
tracking scheme given above. The corresponding datasets are described in Sec-
tion 1.4.

In general, the evolution of vortex breakdown bubbles can be linked to the ap-
pearance of stagnation points in the flow velocity field (cf. Section 1.1.5 and [SVL01]).
These critical points in the instantaneous flow field are both spiral saddles. The
upstream saddle is repelling, forcing the flow around the bubble, while the down-
stream saddle is attracting, inducing recirculation in between the two critical
points (see also Figure 3.7(b) on p. 56). Treating time as a parameter enables
a direct application of Algorithm 4.3 to the problem of tracking the location of
these saddle points. We have examined two datasets that exhibit vortex break-
down with this method.

4.6.1 Rotating Lid Cylinder

Due to the high viscosity of the fluid and the high degree of symmetry the velocity
field is of very good numerical quality. Furthermore, the flow comes close to being
a standard model of vortex breakdown. To adequately visualize the structural
graph, which in itself describes the four-dimensional evolution of critical points, we
have reduced the problem to two dimensions by exploiting the intrinsic symmetry
of the data, as the critical points are known to stay very close to the central axis
of the cylinder.

The tracking results are of almost analytical quality (see Figure 4.4). The
structural graph contains no noise at all, and filtering is not necessary. The break-
down bubbles come into existence in a saddle-saddle creation bifurcation, and
vanish in a saddle-saddle annihilation. Figure 4.4 (green curve) shows these re-
sults. Primary and secondary breakdown each create a pair of stagnation points.
Around timestep 1888, the two phenomena join, only to re-split at timestep 2458
and successively decay.

Besides the direct evolution of the bubble, we examined a number of related
flow quantities that might indicate the cause of the breakdown. Several theories
about vortex breakdown hint at a correlation with critical points in the acceler-
ation field (cf. [Rüt05]). To this purpose, we have also computed the structural
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Figure 4.4: Structural graph of the rotating lid cylinder dataset. The green paths
represent the stagnation points in the velocity field.

graph for the instantaneous acceleration field, which is defined as

a(x, t) = Dv(x) · v(x).

Furthermore, we have applied extremal value tracking (Section 4.4) to a number
of scalar quantities that are derived from the flow field. An interesting correlation
appears between the creation bifurcation and a minimum of signed helicity. The
latter is a quantity that encodes the scalar product of rotation plane normal and
velocity. It is given by

ν :=
< ∇× v, v >

||∇ × v||||v||
.

As both acceleration and helicity are computed as derivatives of the original flow,
some filtering was necessary to remove artifacts. Interestingly, there is a strong
correlation, as the path of acceleration zeros (orange in Figure 4.4 lead right up
to the velocity field bifurcations. Correspondingly, helicity minima appear at the
same time as the bifurcation. Although the dataset had been under close scrutiny
before, these interrelations of velocity, acceleration and helicity had gone unnoticed
before. Our results were confirmed in [Rüt05].

We further note that the structural graph, if a dimensionality reduction is
possible, provides an excellent overview of the structural evolution in a dataset.
It is hence simple to quickly select timesteps of interest for further visualization.
An example is provided in Figure 4.5, where we have selected two timesteps and
visualized the breakdown structure using separation stream surfaces integrated
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Figure 4.5: Two timesteps in the Rotating Lid Cylinder: timestep 1700 (left) and
timestep 4400 (right).
.

from the unstable eigenplane of the repelling saddles: timestep 1700 shows both
breakdown bubbles, while timestep 4400 shows the typical inverted mushroom
shape of the decaying primary breakdown bubble.

In order to apply the moving section plane scheme to a visualization of the
breakdown bubble structure, we let the plane rotate around the central axis of
the cylinder, which coincides with the core line of the (single) central vortex. The
resulting structures are depicted in Figure 4.6. The highly symmetric configura-
tion of the breakdown bubble is visible, as is the nested secondary bubble. The
recirculation centers appear as closed paths of critical points intersects the planes
orthogonally.

4.6.2 Delta Wing dataset

For this dataset, we used the moving section plane method with the intention
to study the vortical system above the wing. Figure 4.7(a) provides an overview
of the flow structures above the wing that results from a plane traveling along
the wing symmetry axis. The primary vortices are featured prominently, and the
vortex axis results from the tracking of the corresponding singularities. Using
the cutting plane orientation scheme described in Section 4.5.5 with the vortex
core as section plane path, both secondary and tertiary vortices are visible (Fig-
ures 4.7(b)). Moreover, the planar sections reveals the nature of interaction be-
tween the three vortices (Figure 4.7(c)). They include the separation between the
primary and secondary vortices and wing edge separation, i.e. the flow sheet that
emanates from the wing edge and separates the flow above the wing from the
surrounding flow. Both appear as a separatrix in the plane. These interactions
are known in theory, but it is not possible to extract them using straightforward
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Figure 4.6: Structure of the vortex breakdown bubbles in the Rotating Lid Cylin-
der. Moving section plane topology is illustrated with stagnation points (red),
critical point paths (yellow), and separatrices (blue). Volume rendering illustrates
additional aspects and provides context to the topological visualization.

topological analysis. Hence, the section planes are an ideal tool for this type of
situation and require little a priori knowledge about the dataset.

The structure of the breakdown bubbles above the wing is visualized by a
moving section plane rotating on an axis coinciding with the overall vortex core
line direction (see Figure 4.8). The right side breakdown is quite asymmetric in
comparison to the very regular case in the rotating lid dataset, and the recircula-
tion core (yellow) is strongly deformed. The red region corresponds to a volume
rendering of regions of flow of negative axial direction, further enhancing the recir-
culation visualization. On the left side, the same visualization yields three different
recirculation regions. However, volume rendering and topological extraction are
not coincident. This is a strong hint at a very transient flow in this region that is
only inadequately described by the stationary vector field we consider.

Furthermore, we have applied the critical point tracking to the three-dimen-
sional evolution of the stagnation points on both sides of the wing. Again, by
observing that the stagnation points move along the core lines of the primary vor-
tices, we were able to reduce depiction of the structural graph to two dimensions.
For this dataset, the results were more strongly afflicted by numerical noise and
yielded a great number of paths in the structural graph. However, applying the
graph filtering described in Section 4.3.4 allowed to simply and effectively discard
numerical artifacts.

The structural graph of the right vortex breakdown region (cf. Figure 4.9(a))
clearly shows the evolution of the stagnation points as they move along the vor-
tex core axis above the wing. Again, acceleration zeros and a helicity minimum
seem to play a role in formation of breakdown, although the correlation is not as
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(a) overview

(b) automatic orientation (c) vortex interaction

Figure 4.7: Moving section planes visualize topological structures above the wing.
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(a) right breakdown bubble (b) left irregular breakdown

Figure 4.8: Volume rendering and in-context visualization of vortex breakdown
above the delta wing.

obvious as in the rotating lid dataset. This is, in part, to be blamed upon the
lack in resolution and the resulting numerical instability of differentiation. The
left region (Figure 4.9(b)) is even more complex, and it is clearly visible how the
stagnation points begin to oscillate and disappear around timestep 730, to be fol-
lowed by what appears to be a sequence of short-lasting vortex breakdowns in
different places. In this case, the structure graph helps in grouping the velocity
field singularities that would otherwise just be isolated singularities in the field
without any context. Using the structural graph as a guide to find interesting
timesteps in the evolution, we produced Figure 3.8 (p. 57) from timestep 760
where the graph indicates the presence of two successive breakdown bubbles. Al-
though this image conveys the basic structure of the breakdown bubbles, for an
accurate interpretation the structural graph is needed.

Figure 4.9(c) gives a direct comparison between the evolution of stagnation
points on the left and right sides and the corresponding flow structures (displayed
by stream surfaces). While the behavior is almost similar in the beginning, the
left side quickly deteriorates and becomes strongly oscillatory. Here, the structural
graph can provide for a direct qualitative comparison that is very hard to achieve
by other means such streamlines or stream surfaces (cf. Figure 4.10).

4.7 Discussion

In the present chapter, we have provided a novel means of topological analysis of
three-dimensional datasets by means of moving section planes [TGK∗04]. Assum-
ing reasonable a priori knowledge of the dataset under consideration, the section
planes provide a valuable tool to examine and visualize flow structures in a topo-
logical context. Furthermore, we have developed a tracking algorithm for critical
points in three-dimensional time-dependent flow fields[GTS04] and have pointed
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Figure 4.10: Stream surfaces depicting vortex breakdown do not provide a detailed
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(a) right breakdown (b) left breakdown

Figure 4.10: Stream surfaces depicting vortex breakdown do not provide a detailed
insight into the breakdown structure.

out how it can be used in the visualization of time-dependent phenomena. Both
visualization methods are based on a single underlying algorithm that is concerned
with tracking of critical points in an n-dimensional setting.

We have successfully applied both methodologies to the analysis and visu-
alization of vortex breakdown and obtained novel insight into the phenomenon,
namely the appearance of helicity minima at the start of the breakdown process.
Furthermore, we have provided a means of depicting the breakdown evolution in
am abstract and schematic way that allows for a qualitative and quantitative com-
parison of such evolutions and the efficient topology-based investigation of very
large transient datasets.

There is ample opportunity for further work: As the control of vortex break-
down is the ultimate goal, we feel that the method we have devised should provide
an objective way to compare breakdown evolutions for example with respect to
modifications of the wing design. Therefore, we would like to apply our method
in such a context. Secondly, aside from tracking only the critical points, the ques-
tion arises whether it is feasible to track their stable and unstable manifolds as
well. While this has already been achieved by Tricoche [TWSH02] in the two-
dimensional case, it seems quite difficult in higher dimensions.

87



Chapter 4. Topology-Based Methods for Three-Dimensional Datasets

88



Chapter 5

Lagrangian Techniques

The notion of Lagrangian Coherent Structures (LCS) and its quantitative as-
sessment using the so-called Finite-Time Lyapunov Exponent (FTLE) provide
a promising alternative that combines a well articulated theoretical basis and a
physical intuition. Specifically, according to the underlying formalism, coherency
in both steady and transient flows can be characterized in terms of repelling and
attracting manifolds. Yet, despite the versatility of this approach and its abil-
ity to re-conciliate in a consistent formalism topological concepts and features of
interest, its practical application is fundamentally hampered by the prohibitive
computational cost associated with the necessary advection of a dense set of par-
ticles across a spatiotemporal flow domain.

In this chapter, we will propose an incremental, data-driven refinement algo-
rithm that permits a reduction of this computational cost by significantly con-
stricting the number of particle trajectories required to perform visualization and
analysis based on FTLE and LCS. We exploit the coherence of particle paths to
generate smooth approximations of the so-called flow map, from which the FTLE
is computed. The presented approach enables high-resolution analysis of com-
plex three-dimensional flows and facilitates insightful visualization and accurate
assessment of coherence.

Furthermore, we show that it is often not necessary to perform full three-
dimensional analysis. In analogy to the moving section plane concept of Sec-
tion 4.5.2, given some a-priori knowledge about the flow field, it is often sufficient
and in some cases even beneficial to consider FTLE on planar subsections, further
reducing computational effort.

In the following, we will first introduce the concepts of FTLE and LCS and
review previous work. We then proceed to present our incremental approxima-
tion scheme and visualization techniques based upon it and describe visualization
experiments in both two and three dimensions. Finally, we conclude this chapter
with a performance analysis of our algorithm.
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5.1 The Finite Time Lyapunov Exponent

We will first present a formal introduction to the topics of FTLE and LCS. A
derivation of FTLE is given in the context of general non-autonomous dynamical
systems. We therefore recall the concepts introduced in Chapter 3. Detailed
references on the topic are given in Section 5.3.

To find separatrices in time-dependent dynamical systems, one might take an
approach similar to the autonomous case and consider critical points of the instan-
taneous vector field and try to grow these by computing trajectories correspond-
ing to the stable and unstable manifolds. However, it can be demonstrated that
separatrices in time-dependent flows are usually not connected to instantaneous
critical points (although they might be located nearby). In general, instantaneous
trajectories may diverge quickly from the actual (time-dependent) trajectories.
Hence, instead of trying to directly compute separatrices, one tries to obtain them
indirectly by considering the behavior of trajectories near such structures. This ap-
proach avoids an explicit a priori determination of limit sets, which is a formidable
undertaking.

Considering a generic hyperbolic point and its associated stable and unstable
manifolds, two trajectories that are initially located on either side of the unstable
manifold will diverge from each other eventually in forward time. The same is
true for the unstable manifold and backward time. In essence, this qualitative
difference is the rationale behind the name ”separatrix”. It seems obvious that by
measuring the divergence of trajectories, the existence of separatrix-like structures
can be inferred. In more detail, forward and backward stretching can be measured.
The Finite Time Lyapunov Exponent is the tool of choice to this purpose.

Let φ a differentiable dynamical system defined on a domain I×Ω with Ω ⊂ IRn

an open region and I ⊂ IR an open interval. In the context of FTLE, the map φ
has historically been termed flow map, and we will adhere to this convention here.
Recalling Definition 2.4, for an arbitrary point (t0, x0) ∈ I × Ω, the flow map

(t0, x0) 7−→ x = φt(t0, x0)

gives the point x on the trajectory through (t0, x0) after some time interval t. Note
that φ has continuous dependence on initial conditions (Theorem 2.10). Therefore,
an arbitrary point x1 close to x0 at t0 will have a similar trajectory, at least locally
in time. As t grows, the distance between φ(t0, x0) and φ(t0, x1) may change, and
one would like to observe this distance. Thus, more formally, we consider a small
perturbation δx0 to x0 and find for its evolution

δx(t) = φt(t0, x0 + δx0)− φ(t0, x0) = Dxφt(t0, x0)δx0 + O(||δx0||2)

by a Taylor series argument. Here, Dxφt denotes the Jacobian of φ with respect
to x. Since ||δx0|| is small, we can neglect the O(||δx0||) term. The magnitude of
the perturbation after time t is then given by

||δx(t)|| =

√
(Dxφt(t0, x0)δx0)

2 =
√

< δx0, Dxφt(t0, x0) , Dxφt(t0, x0)δx0 >.
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Here, Dxφt(t0, x0)
∗ denotes the adjoint of Dxφt(t0, x0). For simplicity, we will

denote

∆t(t0, x0) := (Dxφt(t0, x0))
∗ Dxφt(t0, x0)

Now, letting δx0 vary over all directions, and applying the spectral matrix norm
|| · ||2, one obtains

max
||δx0||=ε

||δx(t)|| = ||∆t(t0, x0)||2 =
√

λmax(∆t(t0, x0))

for some ε > 0 small. Here, λmax denotes the largest eigenvalue. Finally, we define

Definition 5.1. The scalar function σt : I × Ω→ IR given by

σt(t0, x0) =
1

|t|
ln

√
λmax(∆t(t0, x0)). (5.1)

is called Finite Time Lyapunov Exponent

A comparison to Definition 2.52 confirms that this is indeed an appropriate name
and that Eq. 5.1 is a finite-time analogue of the Lyapunov exponent. For the study
of dynamical systems that are bounded in time, the latter is impractical due to
its reliance on t → ±∞ asymptotic analysis. However, the essential idea behind
both concepts is identical.

Note that in Eq. 5.1 we used |t| instead of just t for the normalization of σ.
This accommodates trajectories that are both forward and backward in time.

5.2 Lagrangian Coherent Structures

We formally define Lagrangian Coherent Structures as ridges in the FTLE field.
The ridges (or the ridge set) of a smooth function of several variables is a set of
curves or surfaces whose points are, loosely speaking, local maxima in at least
one dimension. Let f a function on IRn. Clearly, a point x0 is a local maximum
of f if there is a neighborhood of x0 such that f(x0) > f(x) for all x in this
neighborhood. Relaxing this condition such that f(x0) > f(x) holds only for a
(n− 1)-dimensional neighborhood implies that there is one degree of freedom for
points that violate the condition. We call this one-dimensional locus a ridge line.
Note that an analogous construction is possible for local minima and valley lines.

More formally (following [EGMP94]), let U ⊂ IRn an open set, and f : U → IRn

smooth. Let x0 ∈ U and ∇x0f the gradient, and let Hx0f the n × n Hessian
matrix of f at x0. Denote by λ1, . . . , λn the ordered eigenvalues of Hx0f with
corresponding eigenvectors e1, . . . , en.
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Definition 5.2. The point x0 is a point on a k-dimensional ridge of f , k < n, if
the following conditions hold:

1. λn−k < 0

2. < ∇x0f, ei >= 0 for i = 1, 2, . . . , n− k.

Next, we give a formal definition of LCS.

Definition 5.3. For each t, a Lagrangian Coherent Structure (LCS) is a ridge
of the scalar field σt of Definition 5.1.

Since we assumed φt smooth, σt is smooth, and therefore LCS are smooth curves.
However, this assumption is unrealistic for flow applications. [SLM05] have con-
sidered more general assumptions and shown that the concept can still be applied.

5.3 Related Work

An extraction of flow-relevant structures in terms of an instantaneous separa-
tion rate dates back to Okubo[Oku70] and Weiss[Wei91]. The use of FTLE as a
means to characterize coherent Lagrangian structures in transient flows was intro-
duced by Haller (who calls it Discrete Lyapunov exponent or DLE) in his seminal
paper[Hal01b] in 2001. He presented FTLE as a geometric approach, contrasting
it with an analytic criterion that he proposed simultaneously. Both approaches
aim at characterizing coherent structures in terms of preservation of certain stabil-
ity types of the velocity gradient along the path of a particle. This work followed
previous papers by the same author, investigating similar criteria derived from the
eigenvectors of the Jacobian of the flow velocity along pathlines to determine the
location of LCS in the two-dimensional setting[Hal00, HY00].

This initial research generated a significant interest in FTLE and its applica-
tions to the structural analysis of transient flows in the fluid dynamics commu-
nity, both from a theoretical and from a practical viewpoint. Haller provided a
study of the robustness of the coherent structures characterized by FTLE[Hal02]
and showed that they are well applicable even under approximation errors in the
velocity field. In the same paper, he suggests to identify stable and unstable man-
ifolds with ridge lines of the FTLE field. Shadden et al. provided a more formal
discussion of the theory of FTLE and LCS[SLM05] in 2D. One major contribution
of their work was to offer an estimate of the flow across the ridge lines of FTLE
and to show that it is small and typically negligible. An extension of FTLE to
arbitrary dimensions was discussed in[LSM06]. These tools have been applied to
the study of turbulent flows[Hal01a, GRH06, MHP∗06] and used in the analysis of
vortex ring flows[SDM06]. However, the visualizations presented in these papers
were chosen on a case-by-case basis, and no systematic investigation of different
visualization types was considered.
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5.4 Numerical Realization

In practice, a straightforward approach to computing σt for a given time-dependent
vector field is to sample the flow map φt on a regular grid, corresponding to the
domain of interest, and approximate Dxφt numerically, e.g. by finite differences.
The flow map φt itself is computed by numerical integration in the original vector
field (see Section 2.10). Although this is a conceptually simple procedure, the
computational effort in terms of number of pathlines (i.e. trajectories in the time
dependent system) makes this almost infeasible even for low sampling resolutions.
A typical example with good resolution will require millions of flow map evalua-
tions. In the following, we will present an algorithm that adaptively approximates
the flow map for a given domain with a reduced number of actual pathline in-
tegrations, permitting a significant reduction in computation time with respect
to the straightforward approach. Using certain convergence properties of subdi-
vision schemes, we have formulated an algorithm for the incremental refinement
of flow map approximations that estimates the local approximation quality and
refines the approximation only when required. Before we approach the case of
flow maps in two or three dimensions, we will first introduce the basic principle
for the simpler functional case in one dimension.

5.4.1 Incremental Approximation of Maps

Assuming a smooth function f : [0, 1]→ IR on the unit interval, and a discretiza-
tion of [0, 1] with 2l + 1 points

xl
i :=

i

h
, h =

1

2l
i = 0, . . . , 2l

for l > 0, the corresponding discrete samples of the function values at the sample
points are

f l
i := f(xl

i), i = 0, . . . , 2l.

The piecewise linear interpolant Lf l of the f l
i is given by

Lf l(x) =
xl

i+1 − x

xl
i+1 − xl

i

f l
i +

x− xl
i

xl
i+1 − xl

i

f l
i+1 for x ∈ [xl

i, x
l
i+1].

It is readily shown that Lf l converges point-wise to the function as l increases.
More specifically,

lim
h→0
||f − Lf l||∞ ≤ max

[0,1]
(f ′′)h2

holds. Therefore, the local convergence speed as l→∞ allows an estimate of the
local variation of f .
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points of f l where di < ε

points of f l where di > ε

points of f l+1 taken from
prediction f̃ l+1

points of f l+1 computed
using function evaluation

Fig. 1. Incremental refinement form f l to f l+1.

Comparing f̃ l
i and f l

i allows us to estimate the local convergence rate
and hence the quality of the approximation. We define

di := || f̃ l
i − f l

i ||

and construct a new approximation on level l +1 using

f l+1
2i := f l

i

f l+1
2i+1 :=






f̃ l+1
2i+1 ifmax{di,di−1} < ε

f (
2i+1

2l ) otherwise

In other words, if the local convergence rate is acceptable, we use the
predicted value, or replace it with the actual function value otherwise.
If ε is chosen small enough and the second derivative of f is bounded
almost everywhere, we construct approximation sequences that in the
limit converge to the original function in a point-wise sense. For prac-
tical purposes, one is usually satisfied with a maximum discretization
level lmax.

Using linear subdivision in the above derivation is the simplest pos-
sible choice. Unfortunately, the resulting curve is not smooth in the
sense that it has piecewise constant derivatives. To obtain approxima-
tions of a higher degree of differentiability, the linear subdivision can
be replaced by any other type of interpolating subdivision scheme. We
have selected the four-point subdivision scheme (cf. [15]) that pro-
duces C1-interpolants in the limit and reproduces cubic polynomials
exactly. The corresponding subdivision operator S is given by

(S f l)2i := fi

(S f l)2i+1 :=
1
16

(
−1 f l

i−1 +9 f l
i +9 f l

i+1 −1 f l
i+2

)
.

for i = 0 . . .2l . For the boundary points, indices are clamped to 0 and
2l .

For the functional case, four-point scheme subdivision is equiva-
lent to computing the uniform Catmull-Rom spline interpolating f l

and evaluating it at the interval midpoints to generate the odd points
in f̃ l+1. Although both descriptions are straightforward in the one-
dimensional setting, we feel that extension to higher dimensions us-
ing tensor products is much simpler to describe in terms of subdi-
vision. Moreover, the four-point scheme is simply a special case of
Kobbelt’s 2k-schemes [10] that produce Ck−1-interpolants. It is there-
fore quite simple to adapt our approach to produce higher degrees of
smoothness. Care must be taken, however, in choosing an appropriate
k, since higher-order schemes in general tend to overshoot. This is
not a conceptual problem for the approximation algorithm, since these
overshoots will be corrected during the computation. However, more
function evaluations are required.

In this work, the primary application of the presented algorithm
is approximation of flow maps, which are then derived to find FTLE
fields. Therefore, we have chosen the four-point scheme as a good
compromise between required number of evaluations and smoothness
mandated by the actual FTLE computation.
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Fig. 2. Subdivision stencils for the tensor-product four-point scheme in
2D. Left: stencil for face points. Right: edge point stencil.

4.2 Efficient FTLE Computation
It is quite straightforward to generalize the above derivation to arbi-
trary dimensions and vector-valued flow maps. To illustrate the adap-
tive computation, we will describe the refinement algorithm for the 2D
case. An identical construction applies to the 3D case as well.

Typically, the 2D domain under consideration is not the unit square
but rather an arbitrary rectangle positioned somewhere in the flow do-
main. To make the following description simpler, we introduce the
parameterization P from the unit square to the rectangle and approxi-
mate the composition x(t, t0,P(·)). This has no consequences for the
algorithm, but must be kept in mind for later derivative computation
are required. On the same note, the discretization need not have the
same size on both axes of the unit square (this makes sense in the case
of a strongly elongated rectangle), but for the sake of simplicity we
will treat both directions uniformly.

2D refinement algorithm

1. Choose ε > 0, l > 0 (typically l = 4) and compute the initial flow
map approximations f l−1 and f l on the grid with (2l +1)2 points
and spacing h = 1

2l . (Note: f l−1 is a subset of f l and therefore
entails no additional computations).

2. Compute the distance sequence di, j by point-wise comparison of
f l
i, j and f l−1

i, j

3. Subdivide the approximation f l to obtain the prediction f̃ l+1 on
level l +1 (Fig. 2).

4. Set f l+1
i, j = f̃ l+1

i, j if di′, j′ < ε for all grid neighbors that were al-
ready present on level l;
else compute f l+1

i, j = x(t, t0,P( i
2l ,

j
2l )). (cf. Fig. 1)

5. If maximum level not reached, continue at 2.

The end result of this algorithm is a dense flow map approximation
that can then be used for visualization and analysis purposes. Figure 3
illustrates the adaptivity of our algorithm by showing the distribution
of flow map evaluations for a specific example. The ε parameter in-
directly determines the accuracy of refinement. It directly refers to
the distance between predicted and actual flow map result and thus
depends on the scale of the dataset under consideration and the con-
tained structures therein and must be chosen adequately. While this
might seem problematic at first glance, our experiments have shown
that this is not an issue in practice.

An implementation of the incremental refinement scheme is quite
straightforward. Assuming that pathline integration and dataset man-
agement are already provided for (e.g. by an external toolkit), one has
to essentially provide code for n-dimensional array management and
the four-point subdivision scheme. Our model C++ implementation
consists of about 250 lines of code.

Figure 5.1: Incremental refinement form f l to f l+1.

We next define the subdivision operator S corresponding to linear midpoint
subdivision. Its application to f l yields a new sequence Sf 1 with 2l+1 + 1 points,
i.e.

(Sf l)2i := f l
i

(Sf l)2i+1 :=
1

2

(
f l

i + f l
i−1

)
for i = 0 . . . 2l.

Assuming a discretization f l−1 of f exists on level l − 1, we can construct a
prediction f̃ l of the discretization f l on level l by simply letting

f̃ l
i = (Sf l−1)i.

Comparing f̃ l
i and f l

i allows us to estimate the local convergence rate and hence
the quality of the approximation. We define

di := ||f̃ l
i − f l

i ||

and construct a new approximation on level l + 1 using

f l+1
2i := f l

i

f l+1
2i+1 :=


f̃ l+1

2i+1 if max{di, di−1} < ε

f(
2i + 1

2l
) otherwise

In other words, if the local convergence rate is acceptable, we use the predicted
value, or replace it with the actual function value otherwise. If ε is chosen small
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Comparing f̃ l
i and f l

i allows us to estimate the local convergence rate
and hence the quality of the approximation. We define

di := || f̃ l
i − f l

i ||

and construct a new approximation on level l +1 using

f l+1
2i := f l

i

f l+1
2i+1 :=






f̃ l+1
2i+1 ifmax{di,di−1} < ε

f (
2i+1

2l ) otherwise

In other words, if the local convergence rate is acceptable, we use the
predicted value, or replace it with the actual function value otherwise.
If ε is chosen small enough and the second derivative of f is bounded
almost everywhere, we construct approximation sequences that in the
limit converge to the original function in a point-wise sense. For prac-
tical purposes, one is usually satisfied with a maximum discretization
level lmax.

Using linear subdivision in the above derivation is the simplest pos-
sible choice. Unfortunately, the resulting curve is not smooth in the
sense that it has piecewise constant derivatives. To obtain approxima-
tions of a higher degree of differentiability, the linear subdivision can
be replaced by any other type of interpolating subdivision scheme. We
have selected the four-point subdivision scheme (cf. [15]) that pro-
duces C1-interpolants in the limit and reproduces cubic polynomials
exactly. The corresponding subdivision operator S is given by

(S f l)2i := fi

(S f l)2i+1 :=
1
16

(
−1 f l

i−1 +9 f l
i +9 f l

i+1 −1 f l
i+2

)
.

for i = 0 . . .2l . For the boundary points, indices are clamped to 0 and
2l .

For the functional case, four-point scheme subdivision is equiva-
lent to computing the uniform Catmull-Rom spline interpolating f l

and evaluating it at the interval midpoints to generate the odd points
in f̃ l+1. Although both descriptions are straightforward in the one-
dimensional setting, we feel that extension to higher dimensions us-
ing tensor products is much simpler to describe in terms of subdi-
vision. Moreover, the four-point scheme is simply a special case of
Kobbelt’s 2k-schemes [10] that produce Ck−1-interpolants. It is there-
fore quite simple to adapt our approach to produce higher degrees of
smoothness. Care must be taken, however, in choosing an appropriate
k, since higher-order schemes in general tend to overshoot. This is
not a conceptual problem for the approximation algorithm, since these
overshoots will be corrected during the computation. However, more
function evaluations are required.

In this work, the primary application of the presented algorithm
is approximation of flow maps, which are then derived to find FTLE
fields. Therefore, we have chosen the four-point scheme as a good
compromise between required number of evaluations and smoothness
mandated by the actual FTLE computation.
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Fig. 2. Subdivision stencils for the tensor-product four-point scheme in
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4.2 Efficient FTLE Computation
It is quite straightforward to generalize the above derivation to arbi-
trary dimensions and vector-valued flow maps. To illustrate the adap-
tive computation, we will describe the refinement algorithm for the 2D
case. An identical construction applies to the 3D case as well.

Typically, the 2D domain under consideration is not the unit square
but rather an arbitrary rectangle positioned somewhere in the flow do-
main. To make the following description simpler, we introduce the
parameterization P from the unit square to the rectangle and approxi-
mate the composition x(t, t0,P(·)). This has no consequences for the
algorithm, but must be kept in mind for later derivative computation
are required. On the same note, the discretization need not have the
same size on both axes of the unit square (this makes sense in the case
of a strongly elongated rectangle), but for the sake of simplicity we
will treat both directions uniformly.

2D refinement algorithm

1. Choose ε > 0, l > 0 (typically l = 4) and compute the initial flow
map approximations f l−1 and f l on the grid with (2l +1)2 points
and spacing h = 1

2l . (Note: f l−1 is a subset of f l and therefore
entails no additional computations).

2. Compute the distance sequence di, j by point-wise comparison of
f l
i, j and f l−1

i, j

3. Subdivide the approximation f l to obtain the prediction f̃ l+1 on
level l +1 (Fig. 2).

4. Set f l+1
i, j = f̃ l+1

i, j if di′, j′ < ε for all grid neighbors that were al-
ready present on level l;
else compute f l+1

i, j = x(t, t0,P( i
2l ,

j
2l )). (cf. Fig. 1)

5. If maximum level not reached, continue at 2.

The end result of this algorithm is a dense flow map approximation
that can then be used for visualization and analysis purposes. Figure 3
illustrates the adaptivity of our algorithm by showing the distribution
of flow map evaluations for a specific example. The ε parameter in-
directly determines the accuracy of refinement. It directly refers to
the distance between predicted and actual flow map result and thus
depends on the scale of the dataset under consideration and the con-
tained structures therein and must be chosen adequately. While this
might seem problematic at first glance, our experiments have shown
that this is not an issue in practice.

An implementation of the incremental refinement scheme is quite
straightforward. Assuming that pathline integration and dataset man-
agement are already provided for (e.g. by an external toolkit), one has
to essentially provide code for n-dimensional array management and
the four-point subdivision scheme. Our model C++ implementation
consists of about 250 lines of code.

Figure 5.2: Subdivision stencils for the tensor-product four-point scheme in 2D.
Left: stencil for face points. Right: edge point stencil.

enough and the second derivative of f is bounded almost everywhere, we construct
approximation sequences that in the limit converge to the original function in a
point-wise sense. For practical purposes, one is usually satisfied with a maximum
discretization level lmax.

Using linear subdivision in the above derivation is the simplest possible choice.
Unfortunately, the resulting curve is not smooth in the sense that it has piecewise
constant derivatives. To obtain approximations of a higher degree of differentiabil-
ity, the linear subdivision can be replaced by any other type of interpolating sub-
division scheme. We have selected the four-point subdivision scheme (cf. [PBP02])
that produces C1-interpolants in the limit and reproduces cubic polynomials ex-
actly. The corresponding subdivision operator S is given by

(Sf l)2i := fi

(Sf l)2i+1 :=
1

16

(
−1f l

i−1 + 9f l
i + 9f l

i+1 − 1f l
i+2

)
.

for i = 0 . . . 2l. For the boundary points, indices are clamped to 0 and 2l.
For the functional case, four-point scheme subdivision is equivalent to com-

puting the uniform Catmull-Rom spline interpolating f l and evaluating it at the
interval midpoints to generate the odd points in f̃ l+1. Although both descrip-
tions are straightforward in the one-dimensional setting, we feel that extension to
higher dimensions using tensor products is much simpler to describe in terms of
subdivision. Moreover, the four-point scheme is simply a special case of Kobbelt’s
2k-schemes[Kob94] that produce Ck−1-interpolants. It is therefore quite simple to
adapt our approach to produce higher degrees of smoothness. Care must be taken,
however, in choosing an appropriate k, since higher-order schemes in general tend
to overshoot. This is not a conceptual problem for the approximation algorithm,
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since these overshoots will be corrected during the computation. However, more
function evaluations are required.

Here, the primary application of the presented algorithm is approximation
of flow maps, which are then derived to find FTLE fields. Therefore, we have
chosen the four-point scheme as a good compromise between required number of
evaluations and smoothness mandated by the actual FTLE computation.

5.4.2 Efficient FTLE Computation

It is quite straightforward to generalize the above derivation to arbitrary dimen-
sions and vector-valued flow maps. To illustrate the adaptive computation, we
will describe the refinement algorithm for the two-dimensional case. An identical
construction applies to the three-dimensional case as well.

Typically, the domain of interest Ω is not the unit square but rather an arbi-
trary rectangle positioned somewhere in the flow domain. To make the following
description simpler, we introduce the parameterization P : [0, 1]2 → Ω from the
unit square to the rectangle and approximate the composition φt(t0, P (·)). This
has no consequences for the algorithm, but must be kept in mind for later deriva-
tive computation are required. On the same note, the discretization need not have
the same size on both axes of the unit square (this makes sense in the case of a
strongly elongated rectangle), but for the sake of simplicity we will treat both
directions uniformly.

Algorithm 5.4. Incremental Approximation

1. Choose ε > 0, l > 0 (typically l = 4) and compute the initial flow map
approximations f l−1 and f l on the grid with (2l + 1)2 points and spacing
h = 1

2l .

(Note: f l−1 is a subset of f l and therefore entails no additional computa-
tions).

2. Compute the distance sequence di,j by point-wise comparison of f l
i,j and f l−1

i,j

3. Subdivide the approximation f l to obtain the prediction f̃ l+1 on level l + 1
(Fig. 5.2).

4. Set f l+1
i,j = f̃ l+1

i,j if di′,j′ < ε for all grid neighbors that were present on level
l;
else compute f l+1

i,j = x(t, t0, P ( i
2l ,

j
2l )). (cf. Fig. 5.1)

5. If the maximum level is not reached, continue at 2.

The end result of this algorithm is a dense approximation of φt that can then be
used for visualization and analysis purposes. Figure 5.3 illustrates the adaptivity
of our algorithm by showing the distribution of flow map evaluations for a specific
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Section 5.4. Numerical Realization

Figure 5.3: Visualization of the incremental refinement algorithm on the plane
from Fig. 5.6. Black points indicate evaluations of the flow map φt. The right
image shows a close-up of the framed region.

example. The ε parameter indirectly determines the accuracy of refinement. It
directly refers to the distance between predicted and actual flow map result and
thus depends on the scale of the dataset under consideration and the contained
structures therein and must be chosen adequately. While this might seem prob-
lematic at first glance, our experiments have shown that this is not an issue in
practice.

Implementation of the incremental refinement scheme is quite straightforward.
We employ the Dopri5 scheme detailed in Section 2.10 to compute trajectories
of φt.

5.4.3 Ridge Extraction

Numerically, ridge or valley extraction is a difficult task. Both are determined
using the eigenstructure of the local Hessian matrix. This matrix of second order
derivatives is the key obstacle in reliable ridges extraction because of the numerical
noise introduced in the differentiation process.

Nevertheless, several algorithms exist to extract ridges explicitly from a given
discrete scalar field. They exploit a reformulation of the ridge criterion (Defini-
tion 5.2) in the following form: On a d-dimensional ridge in IRn, the eigenvectors
ei of the Hessian matrix corresponding to the (n − d) smallest eigenvalues λi,
i = d + 1, . . . , n, are perpendicular to the ridge. Furthermore, it is required that
the derivative along these directions vanishes, i.e.

< ∇x, ej >= 0. (5.2)

Secondly, the ridge is a local maximum along these directions, hence

λi < 0 (5.3)
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is necessary. Valley lines are defined equivalently using the negative scalar field.
We refer the reader to [EGMP94] for further details.

One-dimensional ridges in a two-dimensional domain are thus brought in a
form that allows an application of the Marching Cubes algorithm[LC87] in the
case of rectangular computational grids. For two-dimensional ridges in a three-
dimensional domain, the lack of orientation of the corresponding eigenvectors pro-
hibits this approach. However, the Marching Ridges approach of Furst et al.[FP98]
and the crease extraction scheme by Kindlmann et al.[KTW06] are inspired by
Marching Cubes and provide different ways to work around this limitation. Sadlo
and Peikert[SP07] have applied these algorithms and demonstrated successful vi-
sualization of FTLE fields using ridge surfaces.

In our experience, however, depiction of LCS directly as ridge surfaces often
fails as a visualization tools for complex three-dimensional datasets. Simultaneous
representation of multiple surfaces often suffers from occlusion problems. A similar
problem occurs in topological visualization of three-dimensional vector fields (see
also Section 4.1). Furthermore, in the datasets we examined, a reliable automatic
extraction of ridges was not feasible due to significant noise (cf. Figure 5.7). After
all, the ridge criterion relies on a second-order derivative of σ, which is in itself
a derivative of φt. Hence, these third-order derivatives introduce an instability
into the ridge surface extraction that does not pay off in terms of effectiveness of
visualization, and we have not applied it here. Remark however that we do use
ridge line extraction on planar sections, as explained below.

5.5 Visualization of Coherent Flow Structures

The algorithm described above bridges the gap between the theoretical concept of
FTLE and an efficient visualization of the resulting structures.

Because of its objective and fully automatic nature, the data-driven FTLE
computation can be carried out in an offline manner. This yields a high-resolution,
two- or three-dimensional time-dependent scalar field that quantifies the structural
coherence of the flow. We now describe how the resulting information can be lever-
aged from a visualization standpoint to produce images that effectively support the
insightful exploration of complex flow structures in practically relevant datasets.
We organize our presentation with respect to the dimension of the considered
FTLE field, which allows us to underscore the specific features associated with
each setting.

For each of the following visualizations, we choose a fixed t > 0 and define
forward and backward FTLE values

σ+ := σt and σ− := σ−t
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0

1
0

1σ−n

σ
+ n

Figure 5.4: Transfer function for the σ+
n × σ−n space.

Furthermore, we compute the extremal FTLE values σmin := min{σ+, σ−} and
σmax := max{σ+, σ−} over the domain of interest and introduce the normalization

σ+
n :=

σ+ − σmin

σmax − σmin
and σ−n :=

σ− − σmin

σmax − σmin
.

that maps the range of the σ± to the interval [0, 1].

5.5.1 Three-dimensional FTLE

FTLE volume data constitute a direct and conceptually straightforward means to
characterize the structural contents of a selected subregion of the flow domain. In
essence, two complementary approaches can be used to visualize this information.
The first one corresponds to displaying the whole three-dimensional FTLE data
in a way that naturally underscores the fuzzy nature of individual coherent struc-
tures. This type of representation is powerful since it offers an overview of the flow
that emphasizes its most prominent features. As such, it also provides a context
for more targeted visualizations. In contrast, the second approach derives sur-
faces from the FTLE volume to create a skeleton-type representation that reduces
the visual complexity of the visualization and explicitly computes a structural
segmentation of the domain.

To transform the FTLE volume data into a volume rendering visualization we
map σ+

n and σ−n to the axes of a two-dimensional transfer function domain (see
Figure 5.4). As demonstrated in Section 4.5.6, this approach permits to identify
interesting correlations between the different dimensions of the transfer function
space and therefore allows for a very selective definition of features of interest. We
use this idea to capture the shape of significant flow patterns and isolate them for
display.
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Note that we do not make use of an explicit depiction of LCS by means of
ridge surfaces, for the reasons explained in Section 5.4.3. Rather, LCS are given
implicitly through our choice of transfer function.

To generate the images in the following, we have used the Simian volume
renderer[Kni].

5.5.2 FTLE on Planar Sections

An FTLE computation on a planar section provides a means to characterize the
structural coherence of trajectories that intersect the plane. Compared to the
three-dimensional case it also dramatically reduces the number of particles that
must be advected and thus the overall complexity of the analysis. While in its
original form, the definition of the FTLE is based on the 3× 3 Jacobian Dxφt of
the flow map, a planar sampling can only provide two spatial derivatives, resulting
in a 3× 2 Jacobian matrix. However, the matrix

∆t = (Dxφt)
∗ Dxφt

is still a 3 × 3-matrix. Hence, the definition of the spectral norm || · ||2 carries
across to these non-square matrices, such that the FTLE derivation can be applied
to planar samplings of the flow map as well. Although there is a conceptual
difference in the sense that planar FTLE captures less information than fully three-
dimensional FTLE computation, our experiments indicate that for many cases,
these differences are insignificant (see also Section 5.6 and Fig. 5.5). Furthermore,
observe that the orientation and the exact position of the plane origin do not
directly impact the ability of the planar FTLE approach to capture coherency
properties, as long as it is chosen in such a way as to intersect the full extent of the
considered region of interest. This basic property is of great significance in practice
since it guarantees the robustness of the corresponding analysis under small but
arbitrary changes of the plane orientation and or location. In turn, this implies
that a small number of planes can be selected a priori (e.g. by exploiting the
overall symmetry of a considered dataset) to obtain the signature of all significant
flow patterns.

Additionally, the analysis applied to the resulting scalar image offers an ef-
fective basis to perform the complex, time-consuming, and typically error-prone
task of seeding integral curves and surfaces to probe a three- or four-dimensional
flow domain. In the course of our experimentation we have investigated several
techniques using this basic idea that we describe next.

Ridge lines The definition introduced for the 3D case applies similarly in the 2D
case to characterize ridge lines. The numerical challenges associated with their ex-
traction are somewhat mitigated by the lower dimension even if it remains difficult.
In a recent paper, Mathur et al.[MHP∗06] proposed an iterative scheme combining
an integration along the gradient and a stop criterion based on Equation 5.2. In
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Figure 5.5: Comparison of planar FTLE vs. a section of three-dimensional FTLE
in the Cylinder dataset (dark areas correspond to high values of σ+

n ). The chosen
section is perpendicular to the lid and contains the cylinder axis.

contrast the solution that we adopted in our work uses smooth and analytic re-
construction kernels for the derivatives of the FTLE field similar to [KTW06] and
applies filtering criteria based on feature length and ridge strength (as measured
by µmin) to discard weak features and false positives. The resulting lines can then
be used to seed a dense set of neighboring particles or a stream surface.

Stochastic particle seeding FTLE can be interpreted as a probability den-
sity function (PDF) for particle seed distribution. The fuzziness of the resulting
representation matches naturally the fuzzy nature of flow coherence and the uncer-
tainty involved in their computational characterization. The resulting pathlines
correspond to trajectories with strong separation behavior. Technically, the seed
points are selected as follows. σ+ is sampled on a computational grid (uniform
sampling in our case) with points xi, i = 0, . . . , N . We then compute a discrete
cumulative distribution functions (CDF), i.e. a sequence (pj), j = 0, . . . , N + 1
with

p0 := 0, pj =

∑j−1
i=0 σ+(xi)∑N
i=0 σ+(xi)

Clearly, the pi induce a partition of [0, 1] into N intervals. To seed a trajectory,
we generate a uniformly distributed sample p ∈ [0, 1] and determine j such that
pj < p ≤ pj+1. Then, the trajectory is seeded at xj. The same construction also
applies to σ−. Figure 5.12 provides an example.

Image-based user interface Planar FTLE images provide the user with a
look-up map over which interesting regions that may be difficult or impossible to
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(a) Separation strength (σ+).

(b) Stream surfaces integrated from ridge lines of σ+.

Figure 5.6: ICE train: Left side separation structures are extracted using a cutting-
plane FTLE analysis with a plane parallel and close to the side of the train.
Extraction of forward FTLE ridges delivers starting curves for stream surface
integration.

extract automatically can be manually and selectively identified by simple brush-
ing to provide a PDF similar to the one mentioned previously but this time geared
towards the specific focus of the analysis. This permits to reduce the visual com-
plexity of the final image, to emphasize most prominent aspects in the data, and
it provides an intuitive interface to do so.

5.6 Visualization Results

In the following, we present some results from our experiments with the visualiza-
tion techniques introduced above. The datasets under consideration are detailed
in Section 1.4.

5.6.1 Choice of Parameters

Until now, we have not discussed a specific choice of trajectory length, i.e. we
have not selected t > 0 for σ+ and σ−. In general, an optimal selection of t is the
subject of an ongoing debate. Choosing t small with respect to the characteristic
time (cf. 1.1.1) emphasizes structures that are coherent on such short time scales.
However, these structures might not be meaningful for the overall structure of the
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Figure 5.7: Close-up of the delta wing tip: planar FTLE reveals highly non-
trivial separation (red) and attachment (blue) structures and demonstrates the
complexity of flow structures in modern CFD datasets.

flow and disappear if t is increased. Conversely, increasing t beyond the charac-
teristic time usually does not change the apparent structures much. Therefore,
setting t greater than the characteristic time seems a good choice. The resulting
coherent structures for different choices of t are demonstrated for a simple example
(von Kármán vortex street) in Figure 5.8.

Through the refinement parameter ε > 0 required as input to Algorithm 5.4
essentially controls the tolerated curvature of the approximand. Therefore, it is
independent of specific datasets. In the following, we have chosen ε = 10−3.

Rotating Lid Cylinder The cylinder dataset is an ideal benchmark dataset.
Due to its high degree of symmetry with respect to the central axis, we have used it
to study the differences between planar FTLE and a slice of the three-dimensional
FTLE field (cf. Section 5.5.2). Fig. 5.5 shows a direct comparison. While the
three-dimensional FTLE slice provides more contrast, the observed structures are
qualitatively identical.

ICE train Fig. 5.9 shows a volume rendering of σ+ × σ− in a box around the
nose of the front wagon of a high-speed train. The images permit a good overview
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Figure 5.8: Effect of variation of integration length on the resulting structures.
Colormap of σ+ × σ−. Integration times are 0.25 (top), 0.5 (middle), 0.75
(bottom).

of the prevalent separation and attachment structures close to the surface. On
the right side, vortex shedding at the top edge of the wagon can be inferred.
On the left side, the separation structures show that a significant volume of air
streams above the top of the wagon and contributes to the vortex shedding on the
right side. To obtain a more detailed depiction of these separation lines, we have
computed a high-resolution planar FTLE section along and close to the left side of
the train (Fig. 5.6(a)). From this section, we extracted ridge lines of forward FTLE
and used them as starting curves for stream surfaces, see Fig. 5.6(b). Using this
approach, it was possible to quickly achieve a detailed picture of these separation
structures.

The stream surfaces were computed using the algorithm given in Section 3.4.

Delta wing From a visualization point of view, the main challenge in this
dataset is the complexity of the flow above the wing with its nesting and in-
teracting coherent structures. Fig. 5.10 provides and overview. The outermost
layers occlude most of the inner structures, therefore, auxiliary techniques such as
clipping planes of volume cropping have to be applied to obtain a good depiction
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Figure 5.9: Volume rendering of σ+
n × σ−n around the nose of an ICE train reveals

separation and attachment structures.

of the flow. Overall, however, the insight provided by 3D FTLE visualizations is
insufficient. To reduce visual complexity, we have again applied the planar FTLE
technique. Fig. 5.12 shows very short streamlines stochastically seeded in regions
of high forward and backward planar FTLE directly above the wing, giving a
very good illustration of alternating surface separation and attachment lines. The
separation surfaces emanating from these lines are further examined using planar
FTLE on an plane perpendicular to the wing axis (cf. Fig. 5.13). The resulting
2D image (Fig. 5.14 shows the impressive complexity of the flow above the wing.
Several vortices are clearly visible, and the separation surface emanating from the
wing edge exhibits a rolling-up type structure. To generate three-dimensional vi-
sualizations from this image, we have employed used-driven fuzzy pathline seeding
(see painted areas in Fig. 5.14 and corresponding streamlines in Fig. 5.13). This
allows a further study of the observed structures. For example, we observed a
point of very high FTLE in the center of the right primary vortex (yellow dot).
The corresponding streamlines show the typical vortex breakdown bubble strength
and explain this point as the strong separation generated by the upstream swirl
saddle that usually accompanies the breakdown bubble.

5.7 Performance Analysis and Discussion

To study the performance of our adaptive approximation, we have examined a
number of test cases (cf. Table 5.1) using a subset of the datasets described in
Section 1.4. Overall, the incremental refinement approach allows a reduction of
computational effort by a factor of 5 to 10. In our experiments, we have found
that in the initial exploration of a dataset, the region of interest is chose such that
it contains a large volume w.r.t. to typical structure size. This is mostly because
the location of these structures is not a-prior known. Hence, this is the case that
profits most from the incremental approximation. As the region of interest is
refined to the scale of the actual structures, the benefits are reduces. We therefore
believe that our algorithm is ideally suited to the exploration of datasets, where
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Dataset time-dep. Resolution #PL rel. l2-error rel. l∞-error
delta wing no 1024× 1153 12% 5.32 · 10−5 7.38 · 10−3

delta wing slice no 2048× 1024 7% 6.64 · 10−5 9.18 · 10−3

Cylinder yes 20482 9% 6.79 · 10−8 9.12 · 10−6

Cylinder yes 1283 14% 9.43 · 10−7 1.33 · 10−1

High-speed train no 2892 × 65 5% 3.81 · 10−4 3.37 · 10−1

delta wing box no 257× 321× 65 25% 9.59 · 10−6 2.6 · 10−3

Table 5.1: Incremental approximation test results.

it can provide significantly reduced computation times.
Furthermore, our numerical experiments show that as the refinement parame-

ter ε decreases, the relative errors with respect to the non-adaptive computation
tend towards zero. Therefore, we are confident that our ideas are applicable to
dataset of even higher complexity than the test cases presented above.

5.8 Discussion

In this chapter, we have presented an incremental algorithm for the computation
of flow map approximations and FTLE fields that allows for a significant reduction
of computational effort, allowing for for high-resolution visualization and analysis
of FTLE and the corresponding Lagrangian Coherent Structures. In all our exper-
iments, our algorithm behaved stable and delivered good performance improve-
ments. Moreover, we have demonstrated the power of FTLE-based visualization
methods on several examples from relevant application areas. Furthermore, we
have shown that even for 3D flows, 2D FTLE analysis and derived methods such
as particle seeding yield insightful results and can further reduces computation
times and facilitate user-guided exploration of datasets.

There are many avenues for future work:

• Here, we have only considered application of the incremental refinement
algorithm in two- and three-dimensional settings. However, it should be
possible to compute time-varying three-dimensional FTLE fields in a four-
dimensional setting using this approach.

• Computation of the flow map is in essence a highly parallel task, since the
pathline computations are mutually independent. It is therefore possible
to exploit parallel machine architectures to further accelerate these compu-
tations. We have proposed a hardware-accelerated implementation on the
graphical processing unit (GPU) in [GLT∗07] that allows a significant per-
formance increase

• While we have provided some effective visualization types, we would like
to devise coherent structure visualization that effectively combine particle,
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Figure 5.10: Volume Rendering of σ+
n ×σ−n (TDELTA). Wing edge separation and

the primary attachment layer. Occlusion is problematic and has to be resolved
through the use of cropping or clipping (Figure 5.11).

Figure 5.11: Crop along the middle third of the left wing edge (cf. Figure 5.10).
The interplay of separation and attachment structures is visible on the front face.
The grey box highlights the separation structure that characterizes a vortex break-
down bubble.
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Figure 5.12: Separation and attachment structures on the wing surface. Pathlines
were seeded according to PDFs of σ+ (red) and σ− (blue).

Figure 5.13: Visualization of primary (red) and secondary (blue) separation struc-
tures. Pathlines seeded according to PDF in Figure 5.14.
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Figure 5.14: Planar FTLE visualization on a section plane perpendicular to the
main flow direction. Darker regions correspond to regions of high σ+. Colored re-
gions indicate user-guided PDFs that were used to seed trajectories in Figure 5.13.

line, surface, and volume representations, possibly in combination with il-
lustrative rendering methods, to convey the progressive transitions between
neighboring or intertwined flow structures. On the same note, we would like
to examine new user interfaces that facilitate working with FTLE-based and
derived visualization types.

• Recently, a number of flow-derived quantities closely related to FTLE, such
as e.g. the Finite Separation Lyapunov Exponent[KL02, JL02] have ap-
peared in the literature. In similarity to FTLE, their computation relies on
the flow map. Therefore, a straightforward application of our algorithm to
the computation of these quantities seems possible and should be investi-
gated.
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Appendix A

Pseudocode

In this appendix, we will discuss implementation details for some of the algorithms
we employ and present pseudocode fragments for specific parts of these algorithms.
While we will stay close to C++ from both a syntactic and semantic point of
view, we have opted to deviate from certain aspects of the language definition
where necessary to keep the presentation simple. In this case, source comments
indicate the intended semantics.

C++ Standard Template Library (STL) datatypes are used throughout the
code. The well-defined list<> and vector<> templates and their corresponding
iterator types free us from the burden to manually specify such data structures
and operations thereon. For a general reference on both C++ in general and STL
datatype operations, we recommend the excellent book by Stroustrup [Str00].

A.1 The Dopri5 Integration Scheme

In this section, we present pseudocode of our implementation of the Dopri5 in-
tergration scheme that is described in Section 2.10.

The implementation focusses on the dense output capability of Dopri5 and
the structure dopri5 step encapsulates one successful integration step and the
capability to interpolate over it. The structure dopri5 encapsulates integrator
state and several control variables, such as the prescribed tolerances in terms of
reltol and abstol. These values are set by the user before or during the integra-
tion. Additionally, it provides the method step() to advance the integration. The
latter returns a structure dopri5 step that contains all information about the last
successful step taken, or an error code in case of failure. In case the user does not
specify an initial step size (h 0̄.0), the method h init() performs an educated
guess by evaluating the vector field in the vicinity of the starting point. To allow
treatment of systems of ordinary differential equations of arbitrary dimension, we
presume the existence of a type value type that encapsulates vector operations.
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// numerical precision
const double epsilon = std::numeric_limits<double>::epsilon();

// coefficients for the stages k1 ... k7
const double
a21 = 0.2,
a31 = 3.0/40.0, a32 = 9.0/40.0,
a41 = 44.0/45.0, a42 = -56.0/15.0, a43 = 32.0/9.0,
a51 = 19372.0/6561.0, a52 = -25360.0/2187.0, a53 = 64448.0/6561.0,
a54 = -212.0/729.0,
a61 = 9017.0/3168.0, a62 = -355.0/33.0, a63 = 46732.0/5247.0,
a64 = 49.0/176.0, a65 = -5103.0/18656.0,
a71 = 35.0/384.0, a73 = 500.0/1113.0,
a74 = 125.0/192.0, a75=-2187.0/6784.0, a76 = 11.0/84.0;

// 4th order approximation coeff.
const double
d1 = -12715105075.0/11282082432.0,
d3 = 87487479700.0/32700410799.0,
d4 = -10690763975.0/1880347072.0,
d5 = 701980252875.0/199316789632.0,
d6 = -1453857185.0/822651844.0,
d7 = 69997945.0/29380423.0;

// error (5th order / 4th order ) approximation coeff.
const double
e1 = 71.0/57600.0, e3 = -71.0/16695.0, e4 = 71.0/1920.0,
e5 = -17253.0/339200.0, e6 = 22.0/525.0, e7 = -1.0/40.0;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

struct dopri5_step
{
value_type p[5]; // coefficients of interpolation polynomial
double t0, t1; // step begin and end time

// interpolate solution over step in [t0, t1]
value_type y( double t )
{
double a = (t - t0) / (t1 - t0);
double b = 1.0 - a;

// Horner−type evaluation of the polynomial
return p[0]+a*(p[1]+b*(p[2]+a*(p[3]+b*p[4])));

}

112



Section A.1. The Dopri5 Integration Scheme

// interpolate derivative over step in [t0, t1]
value_type dy( double t )
{
double a = (t - t0) / (t1 - t0);
double b = 1.0 - a;

value_type pc = p[3]+b*p[4];

// Horner−type evaluation of the polynomial
return (p[1]+b*(p[2]+a*pc)-

a*(p[2]+a*pc-b*(p[3]+(b-a)*p[4])))/(t1-t0);
}

};

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

struct dopri
{
enum result
{

OK,
T_MAX_REACHED,
STEPSIZE_UNDERFLOW,

};

double reltol; // relative tolerance to obey when adapting h
double abstol; // absolute tolerance to obey when adapting h

double h; // last step size
double h_max; // maximal step size (user)
int neval; // number of function evaluations so far

double t; // current integration time
double t_max; // maximum integration time
value_type y; // current integration position
value_type k1; // k1 is stored between steps to ensure

// first−same−as−last (FSAL) principle

double facold; // stepsize control stabilization

public:

// constructor with default values
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dopri5() : reltol( 1e-7 ), abstol( 1e-7 ),
h( 0.0 ), h_max( 0.0 ),
t( 0.0 ), t_max( 0.0 ),
facold( 1e-4 ), neval( 0 )

{
}

// heuristic to determine initial step size
double h_init( function rhs, double h_max )
{
double direction = (tmax-t >= 0) ? 1 : -1;
double h;

h_max = fabs(h_max);

value_type sk = abstol + reltol * abs( y );

double dnf = norm_square( k1 / sk );
double dny = norm_square( y / sk );

if( (dnf <= 1e-10) || (dny <= 1e-10) )
h = 1.0e-6;

else
h = sqrt( dny/dnf ) * 0.01;

h = min( h, h_max );

// perform an explicit Euler step (predictor)
value_type k3 = y + h * direction * k1;
value_type k2 = rhs( t + direction * h, k3 );
n_eval++;

// estimate the second derivative of the solution
sk = abstol + reltol * abs( y );
double der2 = norm( (k2-k1)/sk ) / h;

// step size is computed such that
// h∗∗(1/5) ∗ max( norm(k1), norm(der2) ) = 0.01
double der12 = max( fabs(der2), sqrt(dnf) );

double h1;

if( der12 <= 1.0e-15 )
h1 = std::max( 1.0e-6, h*1.0e-3 );

else
h1 = pow( 0.01/der12, 0.2 );
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h = std::min( 100.0*h, h1 );
h = std::min( h, h_max );

return direction * h;
}

The function step() takes a single integration step of size minh. h contains the
next selected step size. The right hand side of the ordinary differential equation
is evaluated through the function object rhs that can be called in the form rhs(

double t, value type x ) and returns the corresponding vector. Note that the
integrator can be used for both forward and backward integration by specifying
a tmax that is less than t. step() returns OK if a successful step was possible.
The return values TMAX REACHED and STEPSIZE UNDERFLOW indicate the obvious
conditions.

result step( function rhs, dopri5_step& step )
{
return (b >= 0.0) ? fabs(a) : -fabs(a);

const double direction = (t_max - t >= 0) ? 1 : -1;

value_type k2, k3, k4, k5, k6, k7, y_new;
bool reject = false;

// compute maximum stepsize
double local_h_max = h_max;

if( local_h_max == 0.0 )
local_h_max = t_max - t;

// if this is the first step, compute k1 (FSAL)
// also needed for h init()
if( n_steps == 0 )
{
k1 = rhs( t, y );
n_eval++;

}

// determine stepsize if none was given (h == 0.0)
if( h == 0.0 )
h = h_init( rhs, local_h_max );

else
h = direction * h;

// integration step loop
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// this loop is left if a step is accepted
while( true )
{
bool last = false;

// check for stepsize underflow
if( 0.1*abs(h) <= abs(t)*epsilon )
return STEPSIZE_UNDERFLOW;

// ensure that integration does not proceed beyond t max
if( (t + 1.01*h - t_max) * direction > 0.0 )
{
last = true;
h = t_max - t;

}

// perform Runge−Kutta stages
y_new = y + h*a21*k1;
k2 = rhs( t+c2*h, y_new );

y_new = y + h * ( a31*k1 + a32*k2 );
k3 = rhs( t+c3*h, y_new );

y_new = y + h * ( a41*k1 + a42*k2 + a43*k3 );
k4 = rhs( t+c4*h, y_new );

y_new = y + h * ( a51*k1 + a52*k2 + a53*k3 + a54*k4 );
k5 = rhs( t+c5*h, y_new );

y_new = y + h * ( a61*k1 + a62*k2 + a63*k3 + a64*k4 + a65*k5 );
k6 = rhs( t+h, y_new );

y_new = y + h * (a71*k1 + a73*k3 + a74*k4 + a75*k5 + a76*k6 );
k7 = rhs( t+h, y_new );

double err = 0.0, h_new, fac11;

// estimate error
value_type ee = h * ( e1*k1 + e3*k3 + e4*k4 +

e5*k5 + e6*k6 + e7*k7 );

value_type sk = abstol + reltol * max( abs(y), abs(y_new) );
double err = norm_square( ee / sk ) / value_type::size();
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if( err <= 1.0 )
{

// accept step and return

// set values dopri step structure
// interpolation polynomial, time interval etc.
step.p[0] = y;
step.p[1] = y_new - y;
step.p[2] = h*k1 - step_.p[1];
step.p[3] = -h * k7 + step_.p[1] - step_.p[2];
step.p[4] = h * ( d1*k1 + d3*k3 + d4*k4 + d5*k5 + d6*k6 + d7*k7 );
step.t0 = t;
step.t1 = t+h;

// compute next (potential) stepsize
double emax = std::max( err, 1.0e-4 );
double fac = pow( err, 0.17 ) / pow( emax, 0.04 );

if( fac > 5 )
fac = 5;

else if( fac < 0.1 )
fac = 0.1;

h /= fac;

// update integrator state
k1 = k7;
t = t+h;

return last ? T_MAX_REACHED : OK;
}
else
{

// step rejected, must retry with smaller h
double mult = pow( err, 0.17 ) / 0.9;

if( mult > 5 )
mult = 5;

h /= mult;
}

}
}

};
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A.2 Improved Stream Surface Algorithm

This section presents pseudo-code for the improved stream surface algorithm from
Section 3.4. It incorporates basic data structures and an algorithm skeleton. In
the given form, the code has been structured for clarity of presentation.

A typical implementation would incorporate a mesh data structure for stream
surface representation and manipulate it during the integration of the surface. To
keep the code simple, we have omitted this part of the implementation. Further-
more, we have skipped on several heuristics that improve performance but make
the code much harder to understand.

The primary data structure is based on the types node and front. Following
the terminology introduced in Section 3.1, a front is a list of streamlines that
traverse the stream surface as it is integrated. Each streamline is encapsulated
in a node structure to simplify streamline handling and to manage information
about front triangulation. We will not discuss details on streamline integration
here, but refer the reader to Section A.1.

struct node
{
bool open_left; // true if node is not triangulated to the left
bool open_right; // true if node is not triangulated to the right
bool finished; // true if streamline could not be continued

// (set by step())
bool remove; // true if node should be tried to remove

// the next time it is touched

point current; // current sample point on streamline
point last; // previous sample point on streamline

// construct a new node
// − initializes a streamline at p
// − finished, open left, open right, remove are set to false
// − current and last are set to p
node( point p );

// determine the next sample point on the streamline
// − set finished=true if the streamline cannot be continued
// − set last=current, and current is assigned the new sample
step();

};

The flags open left and open right keep track of whether the current sample
point has been used in the front triangulation. By definition, boundary nodes are
assumed to be triangulated to the corresponding side. For example, open left is
always false for the leftmost node.
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The method step() is used to advance a streamline and determine the next sample
point, which is then assigned to current. As the algorithm frequently need the
previous sample point, it is kept in last. A failure of streamline integration is
indicated by finished. The extra flag remove is needed to indicate such nodes

that are eliminated by the merging. The node cannot be deleted right away since
they are needed to finish the merging triangulation as soon as their neighbor nodes
are in the correct state.

typedef list<node> front;
typedef list<front> frontlist;

frontlist fronts;

const double angle_max, angle_min, dist_max, dist_min;

Multiple separate fronts may exist as a result of splitting, and they are stored in
fronts. The variables angle {min|max} and d {min|max} are assumed to be set
according to the thresholds αmin, αmax and dmin, dmax as defined in Section 3.4.3,
and that fronts is populated with the initial front as a discretization of the
starting curve. Note that it is usually best if this discretization does not violate
the front resolution criteria (cf. Sec. 3.4.3).

Nodes and fronts are pointed to by front::iterator and frontlist::iterator,
respectively. We next introduce a short procedure that splits a ribbon (indicated
by two adjacent node iterators) by creating a new node in the middle of the joining
segment. This node is then inserted into the front.

void split_ribbon( frontlist::iterator fi,
front::iterator ni0,
front::iterator ni1 )

{
point p_mid = (ni0->last + ni1->last)/2;

node n( p_mid );

// insert new node before ni1
fi->insert( n, ni1 );

}

The overall algorithm is iterative in nature: in a loop, the current node in the
current front is examined, and based on its state, several possible actions are
undertaken to advance the front. This main loop is encapsulated in the following
procedure:
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void advance_surface()
{
frontlist::iterator fi = fronts.begin();

front::iterator ni_left, ni, ni_right;

ni = fi->begin();

// main loop
while( true )
{

// going beyond the end of the list of nodes
// restart with first node
if( ni == fi->end() )
ni = fi->begin();

// set left and right node iterators
ni_left = ni_right = ni;

if( ni_left != fi->begin() )
--ni_left;

if( ++ni_right = fi->end() )
ni_right = ni;

The iterator fi points to the current front (starting with the first front), while ni

points to the current node of fi (starting with the leftmost node). To simplify
repeated access to neighbor nodes, two iterators ni left and ni right are main-
tained in each loop iteration. To simplify the handling of boundary nodes, we set
the corresponding neighbor iterator to ni if no neighbor node exists. At the start
of each iteration, node and front mangement is performed:

// if there is only one node left in the current front,
// both node and front must be erased
if( ni_left == ni_right )
{

// delete the last node
fi->erase( ni );

// delete the front
fronts.erase( fi );

// start with the next front in the next iteration
if( fronts.empty() )
break;

else
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{
fi = fronts.begin();
ni = fi->begin();

}

// restart loop
continue;

}

If only a single node remains, the current front is finished and is deleted from
fronts.

At a finished node, the front must be split. This is simply achieved by appending
a new front to fronts and splicing all right-hand neighbors of the current front
to the new front. Since there are no triangulation requirements for this case, the
node can be erased from the front right away.

// if ∗ni is finished, the front must be split
if( ni->finished )
{

// is ni at the beginning or end of the front?
// if yes, do not split, just erase
if( ni != ni_right && ni != ni_left )
{
ni_right->open_left = false;

frontlist::iterator fi_new =
fronts.insert( front(), fronts.end() );

fi_new->splice( fi_new->end(), *fi, ni_right, fi->end() );
}

fi->erase( ni );
ni_left->open_right = false;

// restart loop at the beginning of the current front
ni = fi->begin();
continue;

}

If a node marked with removable is encountered, a merging triangulation must be
generated. This is only possible if both left and right neighbors can be triangulated
to the current node. If this condition is not met, we restart the main iteration at
the neighbor that cannot be triangulated.
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// if ∗ni is marked as removable, the triangulation to left
// and right nodes must have to be finished before removal
if ( ni->remove )
{

// can both sides be triangulated at once?
if( ni_left->open_right && ni_right->open_left )
{

// can triangulate to both sides at once
emit_triangle( ni_left->last,

ni_left->current, ni->current );
emit_triangle( ni_left->last,

ni->current, ni_right->last );
emit_triangle( ni_right->last,

ni->current, ni_right->current );

ni_left->open_right = false;
ni_right->open_left = false;

// erase ∗ni and restart loop at next node
ni = fi->erase( ni );
continue;

}
else if( !ni_left->open_right )
{

// cannot triangulate the left node,
ni = ni_left;
continue;

}
else // ni right−>open left == false
{

// cannot triangulate the right node
ni = ni_right;
continue;

}
}

To keep the algorithm simple and avoid unnecessary duplication of symmetric
cases, triangulation is only constructed between the current node and its left
neighbor. If this condition is not met, iteration is restarted at the left or right
neighbors based on their open flags.

// is triangulation to the left possible?
if( ni->open_left && !ni_left->open_right && ni_left!=ni) )
{

// no, continue left until a node can be advanced further
ni = ni_left;
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continue;
}

// is triangulation to the right possible?
if( !ni->open_left && ni->open_right )
{

// no, continue right until a node can be advanced further
ni = ni_right;
continue;

}

A current node that is triangulated to both sides implies that two neighboring
ribbons are abreast, and their leading edges form a front segment. In this situation,
refinement criteria that depend on front segment angle must be checked. If neither
refinement or coarsening are indicated, a step is taken for the current node, it is
marked open to both sides, and the outer iteration is restarted. Otherwise, if the
curvature criterion holds, both ribbons are split. In the third case, the combined
front length falls below dmin, indicating that the ribbons must be merged.

// is the current node completely triangulated?
if( !ni->open_left && !ni->open_right )
{

// for non−boundary nodes that are not to be removed,
// we check refinement criteria
if( ni != ni_left && ni != ni_right &&
!ni_left->remove && !ni_right->remove )

{
point L = ni_left->open_right ? ni_left->last :

ni_left->current;
point R = ni_right->open_left ? ni_right->last :

ni_right->current;
point M = ni->current;

double a = angle( L, M, R );
double d = distance( L, M ) + distance( M, R );

// curvature angle exceeded?
if( a < angle_max )
{

// yes, must split both front segments
split_front( fi, ni_left, ni );
split_front( fi, ni, ni_right );

continue;
}
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// convergence detected?
if( d < dist_min && a > angle_min )
{

// yes, mark node for removal in the next pass
ni->remove = true;
continue;

}
}

// no refining/coarsening triggered
// take an integration step
ni->step();

// mark node open on both sides (after step), but boundary
// nodes are always closed on the corresponding sides
ni->open_left = (ni != ni_left);
ni->open_right = (ni != ni_right);

// restart loop
continue;

}

// now, can triangulate if ni is not on the left boundary
// continue with ni right in that case
if( ni_left == ni )
{
ni = ni_right;
continue;

}

At this point in the iteration the current node is found ready for triangulation
since all other cases have been previously excluded. The actual triangulation is
performed on the ribbon spanned by ni left and ni. According to Hultquist’s
greedy minimal tiling (cf. Section 3.3.1) the shorter of the two diagonals is chosen
as the new leading edge, a triangle is generated, and the open flags are marked
accordingly. Before the ribbon is triangulated, the width of the ribbon is checked
to trigger a ribbon split in the case of flow divergence.

// all quadrilateral points of the ribbon
// ni left −> ni are available
point L0 = ni_left->last;
point L1 = ni_left->current;

point R0 = ni_right->last;
point R1 = ni_right->current;
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// is front distance split criterion fulfilled?
if( distance( L1, R1 ) > dist_max )
{

// yes, split front between L0 and L1
split_front( fi, ni );
continue;

}

// triangulate between ni and ni left
double len0 = distance( L0, R1 );
double len1 = distance( L1, R0 );

if( len0 < len1 )
{

// left diagonal
emit_triangle( L0, R1, R0 );
ni->open_left = false;

}
else
{

// right diagonal
emit_triangle( L1, R0, L0 );
ni_left->open_right = false;

}

// iteration restarts
}
// end of main loop

}

The main loop is left and the function terminated after the last front has been
deleted.
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