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Introduction

An important element of the numerical simulations of partial differential equa-
tions by finite-element or finite-difference methods on general regions is a grid
which represents the physical domain in a discrete form.

The efficiency of a numerical study of a problem is estimated from the
accuracy of the computed solution and from the cost and time of the compu-
tation.

The accuracy of the numerical solution in the physical domain depends on
both the error of the solution at the grid points and the error of interpolation.
Commonly, the error of the numerical computation at the grid point arises
from several distinct sources. First, mathematical models do not represent
physical phenomena with absolute accuracy. Second, an error arises at the
stage of the numerical approximation of the mathematical model. Third, the
error is influenced by the size and shape of the grid cells. Fourth, an error
is contributed by the computation of the discrete physical quantities satisfy-
ing the equations of the numerical approximation. And fifth, an error in the
solution is caused by the inaccuracy of the process of interpolation of the dis-
crete solution. Of course, the accurate evaluation of the errors due to these
sources remains a difficult task. It is apparent, however, that the quantitative
and qualitative properties of the grid play a significant role in controlling the
influence of the third and fifth sources of the error in the numerical analysis
of physical problems.

Two fundamental classes of grids are popular for the numerical solution of
boundary value problems: structured and unstructured.

Many field problems of interest involve very complex geometries that are
not easily amenable to the framework of the pure structured grid concept.
Structured grids may lack the required flexibility and robustness for han-
dling domains with complicated boundaries, or the grid cells may become too
skewed and twisted, thus prohibiting efficient numerical solution. An unstruc-
tured grid concept is considered as one of the appropriate solutions to the
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problem of producing grids in regions with complex shapes.

However, the use of unstructured grids complicates the numerical algorithm
because of the inherent data management problem, which demands a special
program to number and order the nodes, edges faces, and cells of the grid, and
extra memory is required to store information about the connections between
the cells of the mesh. One further disadvantage of tetrahedral unstructured
grids, that causes excessive computational work is associated with increased
number of cells, cell faces, and edges in comparison with those for hexahedral
meshes. For example, a tetrahedral mesh of N points has roughly 6N cells,
12N faces, and 7N edges, while a mesh of hexahedra has roughly N cells,
3N faces, and 3N edges. Furthermore, moving boundaries or moving internal
surfaces in the physical domain are difficult to handle with unstructured grids.
As a result, the numerical algorithms based on unstructured grid topology are
the most costly in terms of operations per time step and memory per grid
point.

The introduction of parallel computers is enabling ever-larger problems to
be solved in such areas as Computational Mechanics (CM), Computational
Fluid Dynamics (CFD) and Computational Electromagnetics (CEM). The
savings in computation time, and in general cost, from these parallel machines
for simulations is clearly advantageous. While many solvers have been ported
to parallel machines, grid generators have left behind. Still the preprocessing
process of mesh generation remains a sequential bottleneck in the simulation
cycle.

Grids in excess of 107 elements have become common for production runs
in CFD [102–106], CEM [100, 101], and CSM. The expectation is that in the
near future grids in excess of 108 − 109 elements will be required [107]. As
mesh cell numbers become as large as this, the process of mesh generation
on a serial computer becomes problematic in terms of computational time as
well as memory requirements. Especially this is true for applications where
remeshing is an integral part of simulations, e.g. problems with moving bodies
or changing topologies, the time required for mesh regeneration can easily
consume more than 50% of the total time required to solve the problem
[107]. Since early 1990s attempts have been made at parallelizing this stage.

Therefore, the need for developing parallel mesh generation technique is
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well justified and caused by the following major factors:

• Lack of memory. Computational meshes exceeding 2.5 · 107 tetrahe-
dra can not be generated on a single CPU because of memory limita-
tions. Many scientific applications suffer from a lack of memory size. The
performance that is achieved by modern processors is often wasted by
starvations due to memory bandwidth.

• Long computational time. Preprocessing, especially mesh generation,
can consume most of the time required to solve the problem. Especially
for applications where remeshing is an integral part of simulations grid
generation procedure is the main bottleneck.

Objectives of this work are:

1. Development of algorithm for automatic parallel generation of unstruc-
tured three-dimensional meshes;

2. Analysis and comparison of algorithms for parallel generation of finite
element tetrahedral meshes;

3. Investigation and analysis of methods and criteria of domain decomposi-
tion for obtaining good load balancing;

4. Implementation and testing automatic parallel grid generation based up-
on developed algorithm;

5. Analysis of efficiency of the developed algorithm on real-life problems
from CSM.

Dissertation consists of introduction, five chapters, fifty three paragraphs,
conclusion and bibliography, it contains 54 pictures and two tables. Size of
dissertation is 123 pages. Bibliography has 145 entries.

The current importance of the work is explained in the introduction. Work
objectives are given and short description of chapters content is introduced.

The first chapter gives a general introduction to the subjects of grids. They
are classified into two fundamental forms of mesh: structured and unstruc-
tured. Advantages and disadvantages of unstructured ones are then described.
The chapter outlines some basic approaches to unstructured grid generation
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and emphasizes methods based upon Delaunay criterion. Comparative table
of different realizations of Delaunay triangulation construction algorithms is
given. Problems of the existence of a solution in two and three dimensions
are discussed and examples of nontriangulable polyhedra are shown. Finally,
overview of works related to unstructured grid generation is done.

The second chapter is devoted to parallelization and domain decomposition
approaches. Here the reasons for parallelization of mesh generation stage are
explained. Advantages and disadvantages of a priori and a posteriori decompo-
sition methods are described. Various domain decomposition approaches such
as prepartition along the same direction, recursive prepartitioning, overde-
composition are shown. Examples of different criteria for setting the cutting
planes up are given: equal volume of subdomains, equal moment of inertia,
equal number of surface elements etc. Then overview of works related to par-
allel mesh generation and some conclusions are given.

The third chapter gives an extensive description of developed parallel mesh
generation algorithms. At first, problem and goals of the work are formu-
lated. Then overview of algorithmic steps are given with following detailed
explanation in corresponding sections: setting up the cutting planes and load
balancing, forming of splitting contour, construction of interface and 2D con-
strained Delaunay triangulation, splitting along the path of edges, overall
domain decomposition and parallel mesh construction. Since at each stage
many different solution techniques may be applied, the reasons for choosing
one, advantages and disadvantages are discussed.

In the fourth chapter the implementation of proposed algorithms is dis-
cussed. Adopted parallel computation model (message-passing) and program-
ming model SPMD (Single Program, Multiple Data) are explained. Then pro-
gramming packages for two-dimensional and three-dimensional triangulations
are described. The organization of interprocessor communications based on
MPI (Message Passing Interface) [131] along with scheme of parallel work or-
ganization of parallel mesh generator are illustrated. Special attention is paid
to integration of parallel grid generator with parallel finite element solver.
Several real-life examples of computation are given.

The fifth chapter discusses results of computations for real-life problems,
where femoral, tibial knee prosthesis components and a bearing cap to fix a
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crank shaft at a motorblock and others are considered. Decomposition and
parallel mesh generation is demonstrated for different mesh sizes and number
of processors. Special attention is paid to surface and volume mesh quality.
Different aspects of computational efforts related to complexity, computa-
tional time, and total area of interfaces are explained. Finally, advantages of
parallel grid generator are pointed out and prospective directions of further
development are specified as a result of analysis of developed algorithm and
of computational results for real-life problems.

Conclusion contains a summary of major results.



Chapter I

General concepts related to
unstructured mesh generation

The first chapter gives a general introduction to the subjects of grids. They
are classified into two fundamental forms of mesh: structured and unstruc-
tured. Advantages and disadvantages of unstructured ones are then described.
The chapter outlines some basic approaches to unstructured grid generation
and emphasizes methods based upon Delaunay criterion. Comparative table
of different realizations of Delaunay triangulation construction algorithms is
given. Problems of the existence of a solution in two and three dimensions
are discussed and examples of nontriangulable polyhedra are shown. Finally,
overview of works related to unstructured grid generation is done.

1.1. Grid and solution

An important element of the numerical simulations of partial differential equa-
tions by finite-element or finite-difference methods on general regions is a grid
which represents the physical domain in a discrete form. In fact, the grid is
a preprocessing tool or a foundation on which physical, continuous quantities
are described by interpolation functions, which approximate the differential
equations interpolating discrete values computed at nodal points. The grid
technique also has the capacity, based on an appropriate distribution of the
grid points, to enhance the computational efficiency of the numerical solutions
of complex problems.

The efficiency of a numerical study of a problem is estimated from the
computational costs at a prescribed accuracy.

The accuracy of the numerical solution in the physical domain depends on
both the error of the solution at the grid points and the error of interpolation.

10
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Commonly, the error of the numerical computation at the grid point arises
from several distinct sources. First, mathematical models do not represent
physical phenomena with absolute accuracy. Second, an error arises at the
stage of the numerical approximation of the mathematical model. Third, the
error is influenced by the size and shape of the grid cells. Fourth, round-
off error contributed by the computation of the discrete physical quantities
satisfying the equations of the numerical approximation. And fifth, an error
in the solution is caused by the interpolation error of the discrete solution.
Of course, the accurate evaluation of the errors due to these sources remains
a difficult task. It is apparent, however, that the quantitative and qualitative
properties of the grid play a significant role in controlling the influence of
the third and fifth sources of the error in the numerical analysis of physical
problems.

Another important characteristic of a numerical algorithm that influences
its efficiency is the cost of solution of (non)linear system of equations. From
this point of view, the process of generating a sophisticated grid may increase
the computational costs for the numerical solution and encumber the com-
puter tools with the requirement of additional memory. On the other hand,
there may be a significant profit in accuracy which allows one to use a smaller
number of grid points. Any estimation of the contributions of these oppos-
ing factors can help in choosing an appropriate grid. In any case, since grid
generation is an important component of numerical modeling, research in this
field is aimed at creating techniques which are not too costly but which give
a significant improvement in the accuracy of the solution. The utilization of
these techniques provides one with the real opportunities to enhance the ef-
ficiency of the numerical solution of complex problems. Thus grid generation
helps to satisfy the constant demand for enhancement of the efficiency of the
numerical analysis of practical problems.

The first efforts aimed at the development of grid techniques were un-
dertaken in 1960s. Now, a significant number of advanced methods have
been created: algebraic, elliptic, hyperbolic, parabolic, variational, Delaunay,
advancing-front, etc. The development of these methods has reached a stage
where calculations in fairly complicated domains and on surfaces that arise
while analyzing multidimensional problems are possible. Because of its suc-
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cessful development, the field of numerical grid generation has already formed
a separate mathematical discipline with its own methodology, approaches and
technology.

At the end of 1980s there started a new stage in the development of grid
generation techniques. It is characterized by creation of comprehensive, multi-
purpose, three-dimensional grid generation codes which are aimed at providing
a uniform environment for the construction of grids in arbitrary multidimen-
sional regions.

The grid must be generated for the region of interest to allow the routine
computational solution of the equations, and this is still remains a challenging
task. When solving three-dimensional (non)linear systems of partial differen-
tial equations in domains with complex geometry, the generation of the grid
may be the most time-consuming part of the calculation. In fact, it may take
more man-hours to generate a grid than it takes to solve discretized system of
equations. This is especially true now that the development of codes for the
numerical solution of partial differential equations has reached a very high
efficiency, while the grid generation field still remains in a nearly teenager
stage of its development. Consequently, the meshes still limit the efficiency of
numerical methods for the solution of partial differential equations.

1.2. Grid classes

There are two fundamental classes of grid popular in the numerical solutions
of boundary value problems: structured and unstructured. These classes differ
in the way in which the mesh points are locally organized. In the most general
sense, this means that if the local organization of the grid points and the
form of the grid cells do not depend on their position but are defined by
a general rule, the mesh is considered as structured. When the connection
of the neighboring grid nodes varies from point to point, the mesh is called
unstructured. As a result, in the structured case the connectivity is taken
into account, while the connectivity of unstructured grids must be explicitly
described by an appropriate data structure procedure. Additionally, structured
grid can be regular and not regular (see Fig. 1.1 ). In case of not regular
structured grid additional memory and efforts are required since sizes of cell
edges should be specified due to not regular cell shape.
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Figure 1.1. Grid types. Left - unstructured grid; middle - structured grid (regular); right
- structured grid (not regular).

The two fundamental classes of mesh give rise to three additional subdi-
visions of grid types: block-structured, overlapping, and hybrid. These kinds
of meshes possess to some extent the features of both structured and un-
structured grids, thus occupying an intermediate position between the purely
structured and unstructured grids.

In the commonly applied block strategy, the region is divided without holes
or overlaps into a few contiguous subdomains, which may be considered as the
cells of a coarse, generally unstructured grid. And then a separate structured
grid is generated in each block. The union of these local grids constitutes
a mesh referred to as a block-structured or multiblock grid. Grids of this
kind can thus be considered as locally structured at the level of an individual
block, but globally unstructured when viewed as a collection of blocks. Thus
a common idea in the block-structured grid technique is the use of different
structured grids, or coordinate systems, in different regions, allowing the most
appropriate grid configuration to be used in each region.

Block-structured grids require partition of the domain into blocks that are
restricted so as to abut each other. Overlapping grids are exempt from this
restriction. With the overlapping concept the blocks are allowed to overlap,
what significantly simplifies the problem of the selection of the blocks covering
the physical region. In fact, each block may be a subdomain which is associ-
ated with only with a single geometry or physical feature. The global grid is
obtained as an assembly of structured grids with which are generated sepa-
rately in each block. These structured grids are overlap each other, with data
communicated by interpolation in overlapping areas of the blocks (Fig.1.2).
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Figure 1.2. Fragment of an overlapped grid.

Hybrid numerical grids are meshes which are obtained by combining both
structured and unstructured grids. These meshes are widely used for the nu-
merical analysis of boundary value problems in regions with a complex geom-
etry and with a solution of complicated structure. They are formed by joining
structured and unstructured grids on different parts of the region or surface.
Commonly, a structured grid is generated about each chosen boundary seg-
ment. These structured grids are required not to overlap. The reminder of the
domain is filled with the cells of an unstructured grid (Fig.1.3). This construc-
tion is widely applied for the numerical solution of problems with boundary
layers.

Figure 1.3. Fragment of a hybrid grid.
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1.3. Unstructured computational grids

Many field problems of interest involve very complex geometries that are not
easily amenable to the framework of the pure structured grid concept. Struc-
tured grids may lack the required flexibility and robustness for handling do-
mains with complicated boundaries, or the grid cells may become too skewed
and twisted, thus prohibiting efficient numerical solution. An unstructured
grid concept is considered as one of the appropriate solutions to the problem
of producing grids in regions with complex shapes.

Unstructured grids have irregularly distributed nodes and their cells are
not obliged to have any one standard shape. Besides this, the connectivity of
neighboring grid cells is not subject to any restrictions; in particular, the cells
can overlap or enclose one another. Thus, unstructured grids provide the most
flexible tool for the discrete description of a geometry.

These grids are suitable for the discretization of domains with a compli-
cated shape, such as regions around aircraft surfaces or turbomachinery blade
rows. They also allow one to apply a natural approach to local adaptation, by
either insertion or removal of nodes. Cell refinement in an unstructured sys-
tem can be accomplished locally by dividing the cells in the appropriate zones
into a few smaller cells. Unstructured grids also allow excessive resolution to
be removed be deleting grid cells locally over regions in which the solution
does not vary appreciably. In practice, the overall time required to generate
unstructured grid in complex geometries is much shorter than for structured
or block structured grids.

However, the use of unstructured grids complicates the numerical algorithm
because of the inherent data management problem, which demands a special
program to number and order the nodes, edges faces, and cells of the grid, and
extra memory is required to store information about the connections between
the cells of the mesh. One further disadvantage of unstructured grids that
causes excessive computational work is associated with increased number of
cells, cell faces, and edges in comparison with those for hexahedral meshes. For
example, a tetrahedral mesh of N points has roughly 6N cells, 12N faces,
and 7N edges, while a mesh of hexahedra has roughly N cells, 3N faces,
and 3N edges. Furthermore, moving boundaries or moving internal surfaces
of physical domain are difficult to handle with unstructured grids. As a result,
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the numerical algorithms based on an unstructured grid topology are the most
costly in terms of operations per time step and memory per grid point.

Originally, unstructured grids were mainly used in computational solid me-
chanics (the theory of elasticity and plasticity), and in numerical algorithms
based on finite-element methods. However, the field of application of unstruc-
tured grids has now expanded considerably and includes computational fluid
dynamics.

1.4. Unstructured grid generation methods

Unstructured grids can be obtained with cells of arbitrary shape, but are
generally composed of tetrahedra (triangles in two dimensions). There are
three fundamental approaches to the generation of unstructured grids: octree
method, Delaunay procedures, and advancing-front techniques.

Octree approach. In the octree approach the region is first covered by
a regular Cartesian grid of cubic cells (squares in two dimensions). Then the
cubes containing segments of the domain surface are recursively subdivided
into eight cubes (four squares in two dimensions) until the desired resolution
is reached. The cells intersecting the body surfaces are formed into irregular
polygonal cells. The grid generated by this octree approach is not consid-
ered as the final one, but serves to simplify the geometry of the final grid,
which is commonly composed of tetrahedral (or triangular) cells built from
the polygonal cells and the remaining cubes (see Fig. 1.4).

The main drawback of the octree approach is the inability to match a pre-
scribed boundary surface grid, so the grid on the surface is not constructed
beforehand as desired but derived from the irregular volume cells that inter-
sect the surface. Another drawback of this grid is its rapid variation in cell
size near the boundary. In addition, since each surface cell is generated by
the intersection of a hexahedron with the boundary there arise problems in
controlling the variation of the surface and cell size and shape.

Delaunay approach. The Delaunay approach connects neighboring
points (of some previously specified set of nodes in the region) to form tetra-
hedral cells in such a way that the circumsphere through the four vertices of
a tetrahedral cell does not contain any other point. The points can be gen-
erated in two ways; they can be defined at the start by some technique or
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Figure 1.4. Octree approach in two dimensions.

they can be inserted within the tetrahedra as they are created, starting with
very coarse elements connecting boundary points and continuing until the el-
ement size criteria satisfied. In the latter case a new Delaunay triangulation
is constructed at every step using usually Watson’s and Rebay’s incremental
algorithm. The major drawback of the Delaunay approach is that it requires
the insertion of additional boundary nodes, since the boundary cells may not
become the boundary segments of the Delaunay volume cells. Either the De-
launay criterion must be mitigated near the boundaries or boundary points
must be added as necessary to avert breakthrough of the boundary.

Advancing front techniques. In these techniques the grid is generated
by building cells progressively one at a time and marching from the boundary
into the volume by successively connecting new points to points on the front
until all previously unmeshed space is filled with grid cells. Some provision
must be made to keep the marching front from intersecting.

To find a suitable vertices for the new cells is very difficult task in this
approach, since significant searches must be made to adjust the new cells to
the existing elements. Commonly, the marching directions for the advancing
front must take into account the surface normals and also the adjacent surface
points. A particular difficulty of this method occurs in the closing stage of the
procedure, when the front folds over itself and the final vertices of the empty
space are replaced by tetrahedra. Serious attention must also be paid to the
marching step size, depending on the size of the front faces as well as the



18

shape of the unfilled domain that is left.
A major drawback remaining for unstructured techniques is the increased

computational cost of the numerical solution of partial differential equations
in comparison with structured grids.

Methods for unstructured grids were reviewed by Thacker (1980) [1], Ho-Le
(1988) [2], Shephard et al. (1988) [3], Baker (1995, 1997) [4,5], Field (1995) [6],
Carey (1997) [7], George and Borouchaki (1998) [8], Krugljakova et al. (1998)
[9]. An exhaustive survey of both structured and unstructured techniques has
been given by Thompson and Weatherill (1993) [10].

1.5. Methods based on the Delaunay criterion

Much attention has been paid in the development of methods for unstruc-
tured discretizations to triangulations which are based upon the very simple
geometrical constraint that the hypersphere of each n -dimensional simplex
defined by n + 1 points is void of any other points of the triangulation.
For example, in three dimensions the four vertices of a tetrahedron define
a circumsphere which contains no other nodes of the tetrahedral mesh.
This restriction is referred to as the Delaunay or incircle criterion, or the
empty-circumcircle property. Triangulations obeying the Delaunay criterion
are called Delaunay triangulations. They are very popular in practical ap-
plications owing to the following optimality properties valid in two dimensions:

1. Delaunay triangles are nearly equilateral;
2. the maximum angle is minimized;
3. the minimum angle is maximized.

These properties give us some grounds to expect that the grid cells of a
Delaunay triangulation are not too deformed. In Fig. 1.5 triangles which do not
satisfy Delaunay criterion are shown on the left. Triangles which satisfy this
criterion are in the middle. Example of Delaunay triangulation is illustrated
on the right part of the figure.

The Delaunay criterion does not give any indications as to how the grid
points should be defined and connected. One more drawback of the Delaunay
criterion is that it may not be possible to realize it over the whole region with
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Figure 1.5. Delaunay criterion. Left - triangles which do not satisfy Delaunay criterion;
middle - triangles which satisfy Delaunay criterion; right - Delaunay triangulation.

a prespecified boundary triangulation. This disadvantage gives rise to two
grid generation approaches of constrained triangulation which preserve the
boundary connectivity and take into account the Delaunay criterion. In the
first approach of constrained Delaunay triangulations the Delaunay property
is overriden at points close to the boundaries and consequently the previously
generated boundary grid remains intact. Alternatively, or in combination with
this technique, points can be added in the form of a skeleton to ensure that
breakthroughs of the boundary do not occur. Another approach, which ob-
serves Delaunay criterion over the whole domain, is to postprocess the mesh
by recovering the boundary simplexes which are missed during the generation
of the Delaunay triangulation and by removing the simplexes lying outside
the triangulated domain.

There are a number of algorithms to generate unstructured grids based on
Delaunay criterion in constrained or unconstrained forms.

Some methods for Delaunay triangulations are formulated for a preassigned
distribution of points which are specified by means of some appropriate tech-
nique, in particular, by a structured grid method. These points are connect-
ed to obtain a triangulation satisfying certain specific geometrical properties
which, to some extent, are equivalent to the Delaunay criterion.

Many Delaunay triangulations use an incremental Bower-Watson algorithm
which can be readily applied to any number of dimensions. It starts with
an initial triangulation of just a few points. The algorithm proceeds at each
step by adding points one at a time into current triangulation and locally
reconstructing the triangulation.
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Table 1.1. Comparative table of different realization of Delaunay triangulation
construction algorithms

Algorithm Complexity
in worst
case

Complexity
in practice

Com-
puta-
tional
time for
10000
points

Reali-
zation
efforts

Iterative algorithms
Simple iterative algorithm O(N2) O(N3/2) 5, 80 *****
Iterative algorithm «Remove and
build»

O(N2) O(N3/2) 8, 42 **

Algorithm with indexing of search-
ing by R-tree

O(N2) O(N log N) 9, 23 ***

Algorithm with indexing of search-
ing by k-D-tree

O(N2) O(N log N) 7, 61 ***

Algorithm with indexing of search-
ing by quad-tree

O(N2) O(N log N) 7, 14 ***

Algorithm of static cashing O(N2) O(N9/8) 1, 68 *****
Algorithm of dynamic cashing O(N2) O(N) 1, 49 *****
Algorithm with stripe points divid-
ing

O(N2) O(N) 3, 60 *****

Algorithm with square points divid-
ing

O(N2) O(N) 2, 61 *****

Layer densening algorithm O(N2) O(N) 1, 93 ****
Algorithm with points sorting along
fractal curve

O(N2) O(N) 5, 01 ****

Algorithm with Z-code point sort-
ing

O(N2) O(N) 5, 31 *****

Merging algorithms
Algorithm «Divide & Conquer» O(N log N) O(N log N) 3, 14 ***
Recursive algorithm with cutting
along diameter

O(N log N) O(N log N) 4, 57 **

Algorithm of convex stripe merging O(N2) O(N) 2, 79 ***
Algorithm of non-convex stripe
merging

O(N2) O(N) 2, 54 ***

Direct construction algorithms
Single-step algorithm O(N2) O(N2) - **
Single-step algorithm with binary
searching tree

O(N2) O(N log N) - **

Single-step cellular algorithm O(N2) O(N) - **
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Algorithm Complexity
in worst
case

Complexity
in practice

Com-
puta-
tional
time for
10000
points

Reali-
zation
efforts

Double-line algorithms
Double-line algorithm «Divide &
Conquer»

O(N log N) O(N log N) 2, 79 ****

Double-line algorithm with cutting
along diameter

O(N log N) O(N log N) 4, 13 ***

Double-line algorithm of convex
stripe merging

O(N2) O(N) 2,56 ****

Double-line algorithm of non-
convex stripe merging

O(N2) O(N) 2,24 ****

Modified hierarchical algorithm O(N2) O(N) 15,42 *****
Algorithm of linear sweeping O(N2) O(N) 4,36 *****
Radial algorithm O(N2) O(N) 4,18 *****
Algorithm of recursive splitting O(N log N) O(N log N) − *
Strip algorithm O(N2) O(N) 2,60 *****

The process allows one to provide both solution-adaptive refinement and
mesh quality improvement in the framework of the Delaunay criterion. The
distinctive characteristic of this method is that point positions and connections
are computed simultaneously.

One more type of algorithm is based on a sequential correction of a given
triangulation, converting it into a Delaunay triangulation.

The most recent review of different algorithm for construction of Delaunay
triangulation was done by Skvortsov [11]. The Table 1.1 of considered by him
algorithms is given below. For each algorithm complexity in practice and in
worst case, computational time spent on 10000 points and authors estimation
of realization efforts (more stars - easier implementation) are given.

In general, according to author’s of paper experience, algorithm of dynamic
cashing made a good showing. Approximately the same efficiency showed the
algorithm of layer densening. It is important to mention that both of them
are easy to program on any data structure. Among other good algorithms it is
necessary to point out the algorithm of non-convex stripe merging and stripe
algorithm but they are not trivial to program.
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1.6. From Dirichlet to Delaunay

Dirichlet [12], at the end of the 19th century, has shown, that for a given set of
points in two dimensions, it is possible to partition the plane into convex cells
using a proximity criterion. At the turn of this century, Voronoi [13], focused
on quadratic forms related to proximity problems. From this are derived a
quite interesting application of the «parallélloédres primitifs», that is, the
elementary polyhedra. As a consequence, Dirichlet’s results can be extended
in the three dimensional space. The concept of a Voronoi diagram, a set of cells
corresponding to the proximity notion for a set of points, is then introduced.

In the 30’s, Delaunay established that it is possible to deduce a triangu-
lation from these diagrams by duality. His name being associated with this
kind of triangulations, the Delaunay triangulation is introduced. Several is-
sues related to this type of triangulation are then established including its
uniqueness. This property is expressed using a key feature, referred as the
empty sphere criterion.

In the 70’s, i.e. approximately 40 years later, Lawson [15], noticed that, in
two dimensions, the Delaunay triangulation and diagonal swapping are closely
related. He shows that a local pattern of two non-Delaunay adjacent elements
can be replaced by a Delaunay configuration by simply swapping the com-
mon edge. As a main cosequence of this result, a Delaunay triangulation can
be derived from any arbitrary configuration using local modifications (edge
swapping) only. Green and Sibson [14] pointed out that Delaunay triangu-
lation enjoys a series of interesting properties. For instance, a «maximum»
criterion is achieved. That is the Delaunay triangulation is the one, among all
the possible triangulation, that maximizes the minimum of the angles formed
by the edges between the elements.

One has still wait until the 80’s to find some effective algorithms for con-
structing the Delaunay triangulations in terms of computational efficiency,
particularly in dimensions higher than two; Hermeline [16] as well as Bower
[17], Watson [18], Avis et al. [19] being the main references related to this
aspect.
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Figure 1.6. Two polyhedra which can not be tetrahedralized. Left - the Schönhardt’s
polyhedron, which is formed by rotating one end of a triangular prism; right - the
Chazelle’s polyhedron, which can be built out of a cube by cutting deep wedges.

1.7. Existence of 2D and 3D triangulations

While the two dimensional problem is successfully solved, the corresponding
three-dimensional problem is still not fully treated. Numerous problems are
still open and, specifically, the existence of a solution is not clearly established.
Nevertheless it does not mean that more or less heuristic methods have not
been developed, which aim at constructing a suitable solution. In practice,
several authors have shown that it is possible to achieve a constrained trian-
gulation in most of the cases.

Some polyhedra do not have triangulation at all [20–23]. In Fig. 1.6 two
examples are given: the Schönhardt polyhedron and Chazelle’s polyhedron.
The Schönhardt polyhedron is a rather simple polyhedron for which it is not
possible to find a triangulation (consisting of strictly positive volume poly-
hedra) without introducing internal point(s). Such points are called Steiner
points.

In this example, this results from the fact that the triangulation without
any internal points contains a tetrahedron whose volume is exactly zero. On
the other hand, a point located anywhere in the interior of polyhedron results
in a valid triangulation.
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This example, while rather obvious, points out a fundamental difference
between the two dimensional and the three-dimensional problem. In two di-
mensions, a solution without (Steiner) points always exist. The example also
leads us to expect some difficulties in detecting this type of problem as well
as in determining the adequate Steiner points.

Thus, an open problem is the determination of the minimum number of
Steiner points required to make the constrained triangulation possible. Anoth-
er open question is that of finding appropriate locations for these points, in a
polynomial complexity. Ruppert and Seidel [24] showed that it is NP-complete
to decide whether a simple polyhedron can be tetrahedralized or not. Never-
theless, any polyhedron is tetrahedralizable as long as additional points can
be inserted. Constrained Delaunay triangulation algorithm insert additional
vertices. A key question, when such additional points are necessary to ensure
the existence, is to decide what is the optimal (minimal) number of additional
points. Another concern, mainly for mesh refinement algorithms, is to avoid
very short edges, which endanger very small tetrahedra, hence the number of
additional points can be undesirably large. Various approaches [25–29] based
on different point insertion schemes for constrained Delaunay triangulation
have been proposed.

1.8. Overview of works regarding unstructured grid gen-
eration

The most recent and comprehensive review of structured and unstructured
mesh generation techniques was done by Liseikin [30]. Unstructured grid meth-
ods were originally developed in solid mechanics. The paper by Field (1995)
[6] reviews some early techniques for unstructured mesh generation that rely
on solid modeling.

Though unstructured technology deals mainly with tetrahedral (triangu-
lar in two dimensions) elements, some approaches rely on hexahedrons (or
quadrilaterals) for the decomposition of arbitrary domains.

Properties of n -dimensional triangulations were reviewed by Lawson
(1986) [31]. The relations between the numbers of faces were proved in the
monograph by Henle [32] and in the papers by Steinitz (1922) [33], Klee (1964)
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[34], and Lee (1976) [35].

The Delaunay triangulation and Voronoi diagram were originally formu-
lated in the papers of Delaunay (1934,1947) [36, 37] and Voronoi (1908) [13],
respectively. Algorithms for computing of Voronoi diagrams have been devel-
oped by Green and Sibson (1978) [14], Brostow, Dussault, and Fox (1978) [38],
Finey (1979) [39], Bower (1981) [17], Watson (1981) [18], Tanemura, Ogawa,
and Ogita (1983) [40], Sloan and Houlsby (1984) [41], Fortune (1985) [42], and
Zhou (1990) et al. [43]. Results of studies of geometrical aspects of Delaunay
triangulation and their dual Voronoi diagrams were presented in the mono-
graphs by Edelsbrunner (1987) [44], Du and Hwang (1992) [45], Okabe, Boots,
and Sugihara (1992) [46], and Preparata and Shamos (1985) [47]. Proofs of
the properties of planar Delaunay triangulations were given by Guibas and
Stolfi (1985) [48] and by Baker (1987,1989) [49,50].

A technique for creating the Delaunay triangulation of an a priori giv-
en set of points was proposed by Tanemura, Ogawa, and Ogita (1983) [40].
The incremental two-dimensional triangulation which starts with an initial
triangulation was developed by Bower (1981) [17] and Watson (1981) [18].
Watson has also shown the visibility of the edges of the cavity associated
with the inserted point. Having demonstrated that the Delaunay criterion is
equivalent to the equiangular property, Sibson (1978) [51] devised and later
Lee and Schachter (1980) [52] investigated a diagonal-swapping algorithm for
generating a Delaunay triangulation by using the equiangular property.

A novel approach, based on the aspect ratio and cell area of the current tri-
angles, to the generation of points as the Delaunay triangulation proceeds was
developed by Holmes and Snyder (1988) [53]. In their approach a new point is
introduced in the existing triangulation at the Voronoi vertex corresponding
to the worst triangle. Ruppert (1992) [54] and Chew (1993) [55] have shown
that in the planar case the procedure leads to a Delaunay triangulation with
a minimum angle bound of 30 degrees. An alternative procedure of inserting
the new point on a Voronoi segment was proposed by Rebay (1993) [56]. A
modification of the Rebay technique was made by Baker (1994) [57]. Haman,
Chen, Hong (1994) [58] inserted point into a starting Delaunay grid in accor-
dance with the boundary curvature and distance from the boundary, while
Anderson (1994) [59] added nodes while taking into account cell aspect ratio
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and proximity to boundary surfaces.

Approaches to the generation of boundary-conforming triangulations based
upon the Delaunay criterion have been proposed by Lee (1976) [35], Le and
Lin [60], Baker [50], Chew [61], Cline and Renka (1990) [62], George, Hecht,
and Saltel (1990) [63], Weatherill (1990) [64], George and Hermeline (1992)
[65], Field and Nehl (1992) [66], Hazlewood (1993) [67], and Weatherill and
Hassan (1994) [68].

Further development of unstructured grid techniques based on the De-
launay criterion and aimed at the solution of three-dimensional problems has
been performed by Cavendish, Field, and Frey (1985) [69], Shenton and Cendes
(1985) [70], Perronet (1988) [71], Baker (1987,1989) [49, 50], Jamson, Baker,
and Weatherill (1986) [72], Weatherill [73]. The application of the Delaunay
triangulation for the purpose of surface interpolation was discussed by DeFlo-
riani (1987) [74].

The octree approach originated from the pioneering work of Yerry and
Shephard (1985) [75]. The octree data structure has been adapted by Lohner
(1988) [77] to produce efficient search procedures for the generation of un-
structured grids by the moving front technique. Octree-generated cells were
used by Shephard et al. (1988) [78] and Yerry and Shephard (1990) [76] to
cover the domain and the surrounding space and then to derive a tetrahedral
grid by cutting the cubes. The generation of hexahedral unstructured grids
was developed by Schneiders and Bunten (1995) [79].

The moving front techniques has been successfully developed in three di-
mensions by Peraire et al. (1987) [80], Lohner [81] and Formaggia (1991) [82].
Some methods using Delaunay connectivity in the frontal approach have been
created by Merriam (1991) [83], Mavriplis (1991,1993) [84, 85], Rebay (1993)
[56], Muller, Roe, and Deconinck (1993) [86], Marcum and Weatherill (1995)
[87].

Advancing-front grids with layers of prismatic and tetrahedral cells were
formulated by Lohner (1993) [88]. A more sophisticated procedure, basically
using bands of prismatic cells and a spring analogy to stop the advancement
of approaching layers, was described by Pirzadeh (1992) [89]. The application
of adaptive prismatic meshes to the numerical solutions of viscous flow was
demonstrated by Parthasarathy and Kallinder (1995) [90].
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Some procedures for surface triangulations have been developed by Peraire
(1988) [91], Lohner and Parikh (1988) [92], and Weatherill et al. (1993) [93].

A survey of adaptive mesh refinement techniques was published by Powell,
Roe, and Quirk (1992) [94]. The combination of the Delaunay triangulation
with adaptation was performed by Holmes and Lamson (1986) [95], Mavriplis
(1990) [96] and Muller (1994) [97]. The implementation of solution adaptation
into the advancing-front method with directional refinement and regeneration
of the original mesh was studied by Peraire (1987) [80]. Approaches based on
the use of sources to specify the local point spacing have been developed by
Pirzadeh (1993,1994) [98,99], and Weatherill et al. (1993) [93].



Chapter II

Parallelization and domain
decomposition approaches

The second chapter is devoted to parallelization and domain decomposition
approaches. Here the reasons for parallelization of mesh generation stage are
explained. Advantages and disadvantages of a priori and a posteriori decompo-
sition methods are described. Various domain decomposition approaches such
as prepartition along the same direction, recursive prepartitioning, overde-
composition are shown. Examples of different criteria for setting the cutting
planes up are given: equal volume of subdomains, equal moment of inertia,
equal number of surface elements and so on. Then overview of works related
to parallel mesh generation and some conclusions are given.

2.1. Need for parallelization of grid generation procedure

The widespread availability of parallel machines with large memory, solvers
that can harness the power of these machines, and desire to model in ever in-
creasing detail geometrical and physical features has lead to a steady increase
in the number of points used in PDE solvers.

While many solvers have been ported to parallel machines, grid generators
have left behind.

Grids in excess of 107 elements have become common for production runs
in Computational Fluid Dynamics (CFD) [102–106], Computational Electro-
magnetics (CEM) [100, 101] as well as in Computational Mechanics [141].
In high frequency CEM, typical simulations employ meshes of five million
triangles in two dimensions and twenty million tetrahedra in three dimen-
sions. In CFD, mesh of at least ten million tetrahedra can be required for a
high Reynolds number viscous turbulent flow simulation over a complete air-

28
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craft.The expectations is that in the near future grids in excess of 108 − 109

elements will be required [107].
For applications where remeshing is an integral part of simulations, e.g.

problems with moving bodies [108–114] or changing topologies [115,116], the
time required for mesh regeneration can easily consume more than 50% of
the total time required to solve the problem [107].

As mesh size becomes as large as this, the process of mesh generation on a
serial computer becomes problematic and sometimes impossible both in terms
of time and memory requirements. As problem sizes grow, mesh generation
on a single processor becomes a computational bottleneck. Parallel computers
afford the potential to remove the bottleneck. Since early 1990s attempts have
been made to parallelize this stage.

Therefore, the need for developing parallel mesh generation technique is
well justified and caused by the following major factors:

• Lack of memory. Computational meshes exceeding 2, 5 · 107 tetrahe-
dra can not be generated on a single CPU because of memory limita-
tions. Many scientific applications suffer from a lack of memory size. The
performance that is achieved by modern processors is often wasted by
starvations due to memory bandwidth.

• Long computational time. Pre-simulation process of mesh generation
can consume most of the time required to solve the problem. Especially
for applications where remeshing is an integral part of simulations grid
generation procedure is the main bottleneck.

2.2. Parallel computing

Parallel computing is a solution to handle large size problems (i.e., with a large
number of unknowns). When coupled with a domains decomposition solution
method, this approach needs to construct the mesh of several sub-domains
whose union covers the entire initial domain. These sub-meshes must enjoy
a series of properties and must make communication possible between sub-
meshes. From the algorithmical point of view, regarding the meshing point of
view, a parallel computation relies on a partitioning of the domain consisting of
several meshes (so as to furthermore distribute the computation on the various
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processors, where on processor is in charge of one sub-mesh). Constructing this
partitioning, as well as constructing each of the sub-meshes, can be achieved
using many different approaches. Actually, several kinds of approaches can be
found that will be considered. In general they are classified into an a priori
and a posteriori methods.

2.3. A posteriori partitioning

Provided a (fine) mesh of the domain under consideration, an a posteriori
partitioning method decomposes this mesh into sub-meshes so as to extract
the sub-domains. Numerous methods exists to address this problem. For more
details, we refer, for instance, Simon [117] or Farhat and Lesonne [118].

The main drawback of this approach is that the necessary memory re-
quirement to complete the partitioning is approximately the sum of the size
needed to store the initial mesh and the size of at least one of sub-meshes. Fur-
thermore, various classical difficulties related to the partitioning methods are
observed (related to the sub-meshes, load balancing, the interface smoothness,
the interface sizes, etc.).

It is necessary to mention that the a posteriori approach is most likely
the worst way to perform the parallelism at the mesh level. Nevertheless, this
method leads to good results for reasonably sized meshes. Conversely, if the
size of the problem is very large (for instance, of the order of ten million
elements), the creation of the initial mesh may not even be possible. For
instance, it is possible to achieve a mesh with about 20 million elements but,
while it is possible to create a mesh a little bit larger, this mesh usually can
not be generated for memory size reason. Hence, the a priori approach
makes sense, even though it requires more efforts in order to make
it reasonably efficient.

2.4. A priori partitioning

Following this approach, we will attempt to avoid the difficulties and weakness
related to the a posteriori method (large memory space requirements, no par-
allelism at the mesh generation step, etc.) by first constructing a partitioning.
This step may start either from a coarse mesh (i.e., with a small number of
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elements) and then by constructing the mesh of the different members of par-
titions concurrently, thus taking advantage of the parallelism from the mesh
generation step. Another approach starts only from the surface mesh of the
domain.

The major difficulty, expected with this method, is to find an appropriate
method ensuring a good load balancing between the sub-domains.

Indeed, the load balancing can be addressed by using the information pro-
vided by either a coarse mesh or the surface mesh. For the first approach, we
can consider a mesh with relatively small number of internal points as the
coarse mesh. For the second approach, the coarse mesh will be constructed
using the surface mesh as sole input data.

Similarly, the sub-domain interface, irrespective of the method, must be
constructed using either the coarse mesh or the surface mesh.

2.4.1. Types and criteria of domain decomposition

There are several major types of domain decomposition approaches which use
different criteria for splitting and defining the cutting planes.

• Prepartitions along the same direction. The object is partitioned
along several partitioning planes which are parallel one to another. A
partitioning of an object into N subdomains would require N−1 parallel
tasks. The partitioning can be done in parallel.

• Recursive prepartitioning. An object is cut into two. Then a new
cutting plane is determined for each part and the parts are cut into two
and so on. Note, that first task is sequential, second task involves two
parallel tasks, and the k − th step involves 2k−1 tasks.

• Overdecomposition. The number of subdomains is much larger than
the number of processors. Then, in the case of load imbalance, the master
process gives the task (subdomain) to idle processor.

These techniques are illustrated in Fig. 2.1 [119].
Several criteria can be used to control load balancing:

• volume of the subdomain enclosed by a triangulation;
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Figure 2.1. Decomposition methods: prepartitioning along the same direction of a
shuttle «Columbia», recursive prepartitioning of a mechanical object, overdecomposition

of a pipe with holes.
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• number of surface nodes in the subdomain;

• number of surface faces in the subdomain;

• moment of inertia of the subdomain.

2.5. Overview of works regarding parallel mesh genera-
tion

Parallel mesh generation is a relatively new research area between the bound-
aries of two scientific computing disciplines: computational geometry and par-
allel computing.

Starting in two dimensions, Verhoeven et al. [120] demonstrated the abil-
ity to produce parallel unstructured Delaunay meshes across a network of
workstations. Topping et al. [121], Lämer et al. [122], Löhner et al. [123],
amongst others, have parallelized the advancing front algorithm. Moving to
three dimensions, the task becomes more complicated. Chew et al. [124],
Chrisochoides et al. [125], Okunsanya et al. [126] have parallelized the Delau-
nay algorithm. Löhner [127] has demonstrated the extension of the advancing
front algorithm to produce tetrahedral elements on parallel platforms. Said et
al. [128] have shown a parallel mesh generation using initial coarse meshing
and decomposition.

The exhaustive survey of parallel mesh generation methods has been given
by Chrisochoides [129]. The parallel mesh generation methods are classified
in terms of two basic attributes: the sequential technique used for meshing
the individual subproblems and the degree of coupling between the subprob-
lems. These methods are based on three widely used techniques: Delaunay,
Advancing Front, and Edge Subdivision.

It takes about ten to fifteen years to develop the algorithmic and software
infrastructure for sequential industrial strength mesh generation libraries.
Moreover, improvements in terms of quality, speed, and functionality are open
ended and permanent which makes the task of delivering state-of-the-art par-
allel mesh generation codes even more difficult.

In area with immediate high benefits to parallel mesh generation is do-
main decomposition. The domain decomposition problem is still open for 3D
geometries and its solution will help to deliver stable and scalable methods
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that rely on off-the-shelf mesh generation codes for Delaunay and Advanc-
ing Front Techniques. The edge subdivision methods are independent of the
domain decomposition.

A longer term goal is the development of both theoretical and software
frameworks to implement new mesh generation methods which can: take ad-
vantage of multicore architectures with more than two hardware contexts for
the next generation of high-end workstations and scale without any substan-
tial implementation costs for clusters of high-end workstations.

Finally, a long term investment to parallel mesh generation is to attract
the attention of mathematicians with open problems in mesh generation and
broader impact in mathematics.



Chapter III

Decomposition and parallel mesh
generation algorithm

The third chapter gives an extensive description of developed parallel mesh
generation algorithm. At first, problem and goals of the work are formulated.
Then overview of algorithm steps are given with following detailed explanation
in corresponding sections: setting up the cutting planes and load balancing,
forming of splitting contour, construction of interface and 2D constrained De-
launay triangulation, splitting along the path of edges, overall domain decom-
position and parallel mesh construction. Since at each stage many different
solution techniques may be applied, the reasons for choosing one, advantages
and disadvantages are discussed.

3.1. Problem formulation and goals of the work

The goal of the work is to create a parallel grid generator for high-quality
tetrahedral grids with good properties (e.g. Delaunay property) for solving
PDEs and suitable for FEM calculations. It should be fully automatic, adap-
tive (via coupling with the solver) and, of course, be able to generate large
meshes. The input data is a CAD surface description of an object. The al-
gorithm should preserve original surface mesh and use boundary description
only, since creation of initial coarse mesh may not be possible for very complex
objects such as fibrous microstructures or porous media (Fig 3.1) which we
intend to work with in the future.

The major goal of the algorithm is not primarily to reduce computational
time. It is to overcome the memory restrictions required to generate very large
meshes. Simulations involving very large meshes, of the order 107 nodes, are
typically performed on large parallel computer platforms.

35
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Figure 3.1. Computer generated stochastic representative volume element (RVE) of
sinter material for the computation of effective elasticity coefficients.

In Fig. 3.2 the main steps of implementation are shown.

3.2. Algorithm steps description

The approach presented here based upon geometrical decomposition of com-
putational domain. The algorithm consists of the following major steps:

1. Decomposition of an object into open non-overlapping subdo-
mains.

(a) computing the center of mass and inertia tensor computation to de-
termine the cutting planes

CAD
Global

surface

mesh

Domain

decomposition

Compatible

surface mesh

generation

Volume

mesh

generation

Figure 3.2. Scheme of major implementation steps of the parallel grid generator.
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(b) extracting of all intersecting edges and construction a cross-section
contour line.

2. Construction of closed and compatible surface mesh for each
subdomain. This step includes: projection of contour nodes on a cut-
ting plane, construction of 2D constrained Delaunay triangulation on
the plane inside the contour and mapping back the contour nodes of the
triangulation to original surface positions.

3. Independent parallel volume meshing (without communica-
tion) within each subdomain based on and compatible with
its surface mesh description.

In Fig. 3.3 on a simple geometry, cylinder, major steps of the algorithm are
illustrated. For simplicity we will stick to this example. In the Chapter 5 de-
voted to results more complex geometries with greater number of subdomains
will be shown.

The main goal of the algorithm is to perform simultaneous construction of
three dimensional computational mesh inside each subdomain. This is com-
putationally the most expensive process.

Decomposition criterion is based upon moment of inertia and principal
inertia axis to achieve better load balancing and to minimize area of interfaces.
So the algorithm is sensitive to both the object shape and the grid resolution.

The advantage of this algorithm is that it allows us to use well tested and
fine-tuned sequential 2D and 3D triangulators, which are capable of produc-
ing high-quality Delaunay meshes with different conditions and constraints.
They are widely available (Triangle, mesh2d, NetGen, TetGen, GRUMMP and
other). So the parallel grid generator can be easily implemented or modified.

Developed algorithm is clearly advantageous in terms of computational
time and memory use compare to an a posteriori partitioning method used by
mesh partitioning libraries such as (PAR)METIS.

It achieves 100 % code re-use and eliminates communication and synchro-
nization since volume meshing is performed independently.

Another important property is that the algorithm preserves original surface
mesh and produces almost plane interfaces, i.e. interfaces with small pertur-
bations, between the subdomains.
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Figure 3.3. Major steps of the algorithm. A – center of mass and inertia matrix
calculation. B – setting up the cutting plane. C – closed loop of intersected edges. D –
smoothing the contour. E – smoothed contour of edges. F – interface triangulation and
mapping the contour nodes back. G – construction of closed and compatible surface
mesh. H – parallel independent construction of volume mesh inside (shown in pink).

In spite of all these advantages the method consists of a sequence of steps,
where almost all of them are simple, as opposite of sophisticated algorithms,
which are used in other mesh generating methods.
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The main disadvantage of this approach is the fact that the associated
«optimal» partitioning problem is NP-complete for general regions. So it can
be used for a certain class of geometric domains only.

The flow chart of parallel grid generator is shown in Fig. 3.4. Details of the
algorithm are given in the following subsections.

Figure 3.4. Flow chart of parallel grid generator.
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Figure 3.5. Evolution of the parallel grid generator: 1 – equidistant axis-aligned cutting;
2 – axis-aligned cutting with volume comparison; 3 – recursive cutting with moment of

inertia equality.

3.3. Setting up the cutting planes and load balancing

3.3.1. Evolution of the load balanced splitting algorithm

Going through developing stages, the parallel grid generator had different
partitioning techniques and splitting criteria (see Fig. 3.5).

In the first versions of parallel grid generator axis-aligned equidistant planes
were used. It could result in unbalanced partitioning depending on the shape
of the object because the scheme it is not sensitive to the object shape and
limited by the same angle of the planes. So it can not give a good result for
any arbitrary shape due to irrational and unbalanced cutting.

Next improvement of the algorithm was using of the axis-aligned cutting
with volume comparison criterion which produces balanced partitioning, but
it also could result in a large interface area, which is not optimal for further
interface triangulation and crucial for a parallel solver, because of communi-
cation overhead between subdomains.

Currently, recursive method of inertia bisection is used, which is based on
surface triangulation. This method minimizes area of interfaces and is sensitive
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to both the object shape and the grid resolution.
Much attention has been paid to the construction of the splitting contour,

which is a key stage in procedure of qualitative decomposition of computa-
tional domain. More detailed description of inertial bisection method used and
of splitting contour construction technique will be given in sections 3.3.4 and
3.4 correspondingly.

3.3.2. Orientation of boundary faces

Due to different operations performed on mesh, such as cutting of triangles,
insertion of new nodes, adding of interface mesh to the original one, boundary
elements could be not properly oriented. The Delaunay grid generator we are
going to use is sensitive to the orientation of the boundary faces, in order to
determine domain to be meshed. Also for different estimations like the volume
enclosed by surface triangulation of the subdomain the boundary faces of all
subdomains have to be correctly oriented.

A technique based on a very simple concept can be applied. Two adjacent
triangles are considered to have the same orientation if the shared edge exists
in order ij on the first triangle, and the same edge ordered ji on the other
triangle. In Fig. 3.6 (A) two correctly oriented triangles are shown.

The original surface faces which remain intact have correct orientation.
Thus, algorithm starts from one of this faces and changes vertices order in
triangles oriented differently.

3.3.3. Comparison of volumes enclosed by surface triangulation

Gaussian integral theorem relates the divergence of a vector field within a
volume to the flux of a vector field through a closed surface by the following:

∫∫∫

V

∇F · dv =

∫∫

S

F · da, (3.1)

where surface S encloses the volume V . The ∇ vector is defined by

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
. (3.2)

When F is set to
F (x, y, z) = (x, 0, 0), (3.3)
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Figure 3.6. Two adjacent faces oriented correctly in (A). Notice the order of the shared
edge in every face.

∇ · F = 1 and equation (3.1) becomes volume equation
∫∫∫

V

1dv =

∫∫

S

F · da (3.4)

Equation (3.4) tells us that the flux of the vector field F through the
closed surface S is equal to the volume enclosed by S . When S is defined
by a set of triangles the enclosed volume is equal to the sum of the flux of
F through every triangle. A straightforward parameterization of the triangle
{v(1), v(2), v(3)} is given by:

e(1) = v(2) − v(1); e(2) = v(3) − v(1); s(u, v) = v(1) + ue(1) + ve(2), (3.5)

where the evaluation of s(u, v) yields any point on the triangle for u ∈ [0, 1]

and v ∈ [0, 1 − u] . Under this parameterization da from equation (3.4) can
be written as:

da = (e(1) × e(2)) dvdu (3.6)

The flux of F through the triangle {v(1), v(2), v(3)} now follows:

Φ =

1∫

0

1∫

0

F (s(u, v)) · (e(1) × e(2)) dvdu (3.7)
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Φ =

1∫

0

1∫

0

(
v(1)

x + ue(1)
x + ve(2)

x

)(
e(1)
y e(2)

z − e(1)
z e(2)

y

)
dvdu (3.8)

The analytical solution to equation (3.8) can be written as:

Φ =
1

6

[(
v(2)

y − v(1)
y

)(
v(3)

z − v(1)
z

)
−

(
v(2)

z − v(1)
z

)(
v(3)

y − v(1)
y

)]
×

×
(
v(1)

x + v(2)
x + v(3)

x

)
(3.9)

The right hand side of equation (3.9) yields the flux of F through the
triangle {v(1), v(2), v(3)} . Given a closed and clockwise wound triangle set
{v(i1), v(i2), v(i3)} for i = {0, 1, 2, ..., n} the enclosed volume is computed by
evaluating the following sum:

V =
1

6

∑

i

[(
v(i2)

y − v(i1)
y

)(
v(i3)

z − v(i1)
z

)
−

(
v(i2)

z − v(i1)
z

)(
v(i3)

y − v(i1)
y

)]
×

×
(
v(i1)

x + v(i2)
x + v(i3)

x

)
(3.10)

3.3.4. Inertia bisection method

At the moment the center of gravity along with moment of inertia criterion
is used. Each object is cut perpendicular to its smallest principal inertia axis.
It means that for each part with the set of nodes V , the inertia matrix I is
computed by:

I =




∑
v∈V

(vy − cy)2 + (vz − cz)2 − ∑
v∈V

(vx − cx)(vy − cy) − ∑
v∈V

(vx − cx)(vz − cz

− ∑
v∈V

(vy − cy)(vx − cx)
∑

v∈V

(vz − cz)2 + (vx − cx)2 − ∑
v∈V

(vy − cy)(vz − cz)

− ∑
v∈V

(vz − cz)(vx − cx) − ∑
v∈V

(vz − cz)(vy − cy)
∑

v∈V

(vx − cx)2 + (vy − cy)2


 ,

where (xc, yc, zc) = (cx, cy, cz) is the coordinate of the center of gravity C

which is calculated by assigning unit mass to each node of the mesh. Thus grid
resolution is also taken into account. Then (one of) the eigenvector(s) with
the smallest eigenvalue is selected (see Fig. 3.7). This procedure defines planes
perpendicular to the smallest principal inertia axis. The actual cutting plane
is chosen to go through the center of gravity. This partitioning technique is
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Figure 3.7. Principal axis of inertia corresponding to eigenvalues of inertia tensor.
Center of gravity of the object defined by surface triangulation.

sensitive to the object shape and grid resolution and can minimize the interface
area.

Nevertheless, it turns out to be hard to find a reasonable criterion for
predicting a good load balancing in advance. Even if the number of tetrahedra
is approximately the same for each subdomain, the CPU time spent for the
volume meshing of each part can be quite different [119].

3.4. Forming the splitting contour

The stage of forming the splitting contour is a key step in the whole process of
getting volume mesh. This is due to the fact that possibility of splitting and
quality of decomposition directly depend on quality of the splitting contour.
It influences adjacent surface elements and, therefore, volume elements too.

Going through different developing stages the parallel grid generator had
various techniques for constructing the splitting contour. First is based on
breaking of intersected triangles up into three smaller triangles and insertion
of new nodes at the points of intersection. It results in triangles of bad quality
and with small area. In order to remove this kind of triangles special mesh
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optimization technique had been used. Second approach is based on idea of
building the splitting contour out of smoothed chain of surface edges, keeping
original surface mesh preserved.

3.4.1. Straight contour by breaking up intersected triangles

In this approach the intersections of the cutting planes with the surface tri-
angles are calculated. Then the intersection points are sorted in a such way,
that they form a closed and continuous cross-section contour. The intersect-
ed triangles are split into three other smaller triangles (Fig. 3.8). One could

Figure 3.8. Construction of splitting contour by breaking up intersecting triangles.

notice that in case of arbitrary plane location this method could result in bad
quality triangles, i.e. triangles with very acute angles or with very small area.
This kind of mesh usually is not suitable for further volume mesh construc-
tion. That is why certain optimization technique had been used for improving
of surface mesh quality.
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3.4.2. Surface mesh optimization

The cutting of a surface mesh, as it could be noticed in Fig. 3.8 results in
bad triangles with very acute angles, which are highly undesirable for further
volume mesh construction and for finite element methods. One of the ways
to get rid of them is to apply some mesh optimization technique. Method
described in [130] has been used for improving of quality characteristics of
surface mesh. Given a set of data points scattered in three dimensions and an

Figure 3.9. Surface mesh optimization.

initial triangular mesh M0 , the task is to produce a mesh M , of the same
topological type as M0 , that fits the data well and has a small number of
vertices.

Here it is important to distinguish connectivity of the vertices and their
geometric positions. Formally a mesh M is a pair (K, V ) , where K is a sim-
plicial complex representing the connectivity of the vertices, edges and faces,
thus determining the topological type of the mesh and V = {v(1), . . . , v(m)} ,
v(i) ∈ R3 is a set of vertex positions defining the shape of the mesh in R3 (its
geometric realization).

We find a simplicial complex K and a set of vertex positions V defining
a mesh M = (K,V ) that minimizes the energy function:

E(K,V ) = Edist(K, V ) + Erep(K) + Espring(K,V ).

The distance energy Edist(K,V ) is equal to the sum of squared distances
from a given set of points to the mesh. It measures the closeness of fit. The
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representation energy Erep(K) is proportional to the number of vertices m

of K . It penalizes meshes with a large number of vertices. The spring energy
Espring(K, V ) places on each edge a spring of rest length 0 and spring constant
k . It guarantees existence of a minimum. More detailed information can be
found in [130].

This optimization method is used in computer graphics applications. In our
specific case, we are optimizing the mesh for further FEM calculations. So in
present work we are not changing the topology of the mesh and the number
of its nodes, but the mesh nodes are moved. As it can be seen in Fig. 3.9 this
optimization technique improves the quality of the mesh a lot.

3.4.3. Improved construction of contour out of surface edges

Once the cutting plane is defined, we can construct a cross-section contour
where 2D constrained Delaunay triangulation will be performed.

Here we present an improved technique of forming the splitting path of
edges. The construction of the contour consists of the following steps:

1. Extract all intersected edges of the surface triangulation.

2. Remove all edges with "hanging"nodes.

3. Sort the edges into a closed loop.

4. Remove multiple paths if any exists.

5. Smooth the contour.

Procedure of forming the contour is shown in Fig. 3.10. For more complex
geometry configurations, especially involving corners and concavities, multiple
paths can occur. Several examples of such incidents are illustrated in Fig.3.11.
Special care is taken in order to remove all of these incidents. The smoothing
step requires more detailed explanation. We consider all triangles attached
to the path of edges and for those triangles, which have two edges in the
path, we replace them with third edge. The smoothing phase is required for
better projection on the cutting plane and construction of 2D triangulation
of interface. Next section is devoted to that problem.
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1. 2.

3. 4.

Figure 3.10. Steps of the contour construction. a – extract all intersected edges; b –
remove edges with “hanging” nodes; c – replace two edges in the loop with third one for

triangles which have three nodes in the path; d – smoothed contour of edges.

3.5. Construction of interface and 2D constrained Delau-
nay triangulation

Two steps are required before the 2D triangulation of the interface can be
done:

1. Projection of the contour nodes on the cutting plane.

2. Rotation into x-y plane for 2D triangulation.

The program Triangle [132] is used for triangulation of the interface.
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Figure 3.11. Incidents of multiple paths in case of concavity and corner.

In three dimensions a coordinate rotation can be described by a 3x3 ma-
trix T , which rotates a coordinate x, y, z by an angle θ around a unit vector
ν :

T (ν, θ) =


cos θ + x2(1− cos θ) (1− cos θ)yx + z sin θ (1− cos θ)zx + y sin θ

(1− cos θ)yx + z sin θ cos θ + y2(1− cos θ) (1− cos θ)zy + x sin θ

(1− cos θ)zx + y sin θ (1− cos θ)zy + x sin θ cos θ + z2(1− cos θ)


 .

After triangulation of the interface with certain constraints on minimal
angle and maximum triangle area, the coordinates are reversed back and the
contour nodes are mapped back on their original surface positions (Fig. 3.12).
This approach to construction of interface preserves original surface mesh and
creates quality 2D mesh on the interface with small deterioration of triangles
with projected vertices.

It has been found that it can result in the intersection of triangular faces of
the interface grid and the original domain surface grid. This happens when a
straight line between two nodes, that form an edge of two-dimensional bound-
ary, can not be drawn in three dimensions without intersection with another
part of the mesh, that does not form part of the interface. This is immediate-
ly detected and the cutting plane is moved on a certain step perpendicular
to the minimal principal inertia axis till there are no any intersections. This
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Figure 3.12. Construction of interface. Red – nodes projected on the cutting plane;
green – rotation of coordinates into X − Y plane; blue – triangulation of interface and

mapping the contour nodes back on original positions.

procedure computationally is not expensive and requires only several recon-
structions of two-dimensional interface mesh.

Described here method enables us to get closed and compatible mesh for
each subdomain.

3.6. Splitting along path of edges

Produced surface meshes have to meet two major requirements: they should be
waterproof, i.e. have no gaps, and consistent. These are necessary conditions
for further generation of tetrahedral mesh inside.

So we have an original surface mesh and triangulated interface. Task is to
split the original mesh and obtain two subdomains with waterproof and con-
sistent meshes. The general splitting rule for triangles is following: a triangle
belongs to a certain part if it has at least two vertices there (Fig. 3.13).

There are some exceptions, where triangulation should be split in a different
way. It concerns cases, where decomposition according to general rule results
in holes in one subdomain and extra triangles in another (see Fig.3.14).
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Figure 3.13. Splitting along path of edges. Red – splitting path of edges, blue – the
mesh. (V1, V2, V3) and (V ′

1 , V
′
2 , V

′
3) vertices of two triangles. Triangle (V1, V2, V3) belongs

to left subdomain and triangle (V ′
1 , V

′
2 , V

′
3) to right subdomain.

Figure 3.14. Hole in the mesh and moving of triangles according to a special rule.



52

3.7. Overall domain decomposition

So far decomposition of an object into two parts was described. For obtaining
the decomposition of more than two parts, the above described algorithm is
applied recursively to each part. New center of mass, eigenvectors and iner-
tia axis are recomputed for each subdomain determining new positions of the
cutting planes. So the overall domain decomposition of an object can be rep-
resented by the binary tree (see Fig. 3.15), where decomposition depth defines
number of resulting subdomains. When the decomposition reaches prescribed
number of subdomains (CPUs) it stops and one subdomain is assigned to each
CPU for further volume mesh construction. By using numeration (shown in
Fig. 3.15) of subdomains, it can be seen that on decomposition level N it is
necessary to consider subdomains with numbers from 2N to 2(N+1) − 1 and
then assign to CPU number peNum subdomain 2(N+1) − 1− peNum .

Program output:
Decomposition Depth = 3 levels (8 subdomains)
indexes level 0 | name of source 1 | product names 2 3
indexes level 1 | name of source 2 | product names 4 5
indexes level 1 | name of source 3 | product names 6 7
indexes level 2 | name of source 4 | product names 8 9

Figure 3.15. Architecture of overall domain decomposition. Decomposition binary tree.
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indexes level 2 | name of source 5 | product names 10 11
indexes level 2 | name of source 6 | product names 12 13
indexes level 2 | name of source 7 | product names 14 15

3.8. Parallel volume mesh generation

When balanced partitioning is done and a closed and compatible surface mesh
is constructed for each subdomain, then the volume meshes are constructed in
parallel. TetGen - a quality tetrahedral mesh generator and three-dimensional
Delaunay triangulator [133] can be used for volume Delaunay tetrahedral-
ization with certain quality bound (radius-edge ratio), a maximum volume
bound, a maximum area bound on a facet, a maximum edge length on a seg-
ment. Fig. 3.16 shows an example of partitioning of cylinder and final tetra-
hedralization inside of the subdomains on 4 CPUs, where TetGen was used.
Time speed up of volume mesh generation time in case of cylinder is shown
in Fig. 3.17. You can notice that it has superlinear scaling. Explanation of
this fact and other related issues will be discussed in the chapter devoted to

first cut

second cut

0.50 sec 0.45 sec

2838 elements, 1421 nodes

6331 tetrahedra 6184 tetrahedra

2.42 sec

0.99 sec 0.94 sec

Figure 3.16. Volume mesh generation in each subdomain. Cutting of volume mesh
(shown in pink)
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results and discussions.
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Figure 3.17. Speed-up of volume mesh generation time for test case of cylinder.



Chapter IV

Implementation of parallel grid
generator

In the fourth chapter the program realization of proposed algorithms is dis-
cussed. Adopted parallel computation model (message-passing) and program-
ming model SPMD (Single Program, Multiple Data) are explained. Then pro-
gramming packages for two-dimensional and three-dimensional triangulations
are described. The organization of interprocessor communications based on
MPI (Message Passing Interface) along with scheme of parallel work orga-
nization of parallel mesh generator are illustrated. Special attention is paid
to integration of parallel grid generator with parallel finite element solver.
Several real-life examples of computation are given.

4.1. Parallel program realization

4.1.1. Architecture of computational system and programming
model of parallel computations

Special feature of MIMD (Multiple Instruction, Multiple Data) is availabili-
ty of distributed (individual) memory only. That is why data is distributed
between nodes. Access to the data on this kind of computational systems is
carried out by inter processor communications (program level) which realized
by network calls. To ensure the effective parallel mesh generation on compu-
tational systems with MIMD architecture employed algorithms should have
minimum of interprocessor exchanges and minimum of data transfered.

Efficiency of using of computational system by parallel algorithm can be
estimated as:

EP =
SP

P
· 100%,

55
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where SP - acceleration of parallel algorithm realization, computed by:

SP =
T1

TP
.

Here T1 and TP computational time on one and P processors. In this work
it is assumed that number of computational nodes is equal to number of
computational processes.

Message-passing model is employed as a model of parallel computations.
Message Passing Interface (MPI) [131] library is a standard of message-passing
model realization. Utilization of the library as a software for inter processor
communications guarantees good portability of programs (on a source code
level) onto most of computers.

If each process is executing the same program in this systems, then they
realize SPMD programming model. In this model all processes executing, in
general case, different branches of the same program (parameterized with
regard to identifier, process or processor) but working with different data.

Algorithms presented in this work have been implemented as an application
software in C programming language with use of MPI library. It provides
opportunity to carry out computations on different computational systems
without any modification in communication part.

Application software realizes SPMD parallel programming model and con-
tain code of managing process (MP) as well as computational processes (CP).
For the computational processes numeration MPI line topology is employed
(processors get numbers from 0 to P − 1 ). Number of processes is equal
to number of computational nodes. Process with number 0 is carrying out
managing functions additionally to functions of CP.

4.1.2. Computational model of parallel grid generator

The main reason for parallelization of grid generation procedure is to get rid
of the most expensive computations associated with construction of volume
mesh. That is why all decomposition operations are taking place before con-
struction of the volume mesh. Since computational cost of operations with
surface mesh is one dimension lower. Based on this fact we can state that the
cost of operations with the surface mesh is incomparably lower than for vol-
ume mesh. Therefore, decomposition of computational domain is performed
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on each processor. Afterwards, one subdomain is assigned to it, where inde-
pendent volume mesh construction takes place. In Fig. 4.1 scheme of parallel
work organization of parallel mesh generation algorithm is shown.

Figure 4.1. Parallel model of grid generator work organization.

4.2. Programming packages for 2D and 3D triangulations

4.2.1. Two-dimensional triangulation. Triangle package.

For the parallel grid generation algorithm program Triangle [132] has been
used. Its function here is construction of 2D constrained Delaunay triangula-
tion on interface. So it helps us to get closed and compatible mesh for each of
subdomain for further independent construction of volume mesh inside.

Triangle is a C program for two-dimensional mesh generation and con-
struction of Delaunay triangulations, constrained Delaunay triangulations,
and Voronoi diagrams. Triangle is fast, memory-efficient, and robust. It com-
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putes Delaunay triangulations and constrained Delaunay triangulations ex-
actly. Guaranteed-quality meshes (having no small angles) are generated us-
ing Ruppert’s Delaunay refinement algorithm. Features include user-specified
constraints on angles and triangle areas, user-specified holes and concavities,
and the economical use of exact arithmetic to improve robustness. Triangle
is freely available from URL «http://www.cs.cmu.edu/ quake/triangle.html»
and from Netlib «http://www.netlib.org/voronoi/triangle.zip».

4.2.2. Three-dimensional triangulation. TetGen package.

For the volume mesh construction TetGen programming package has been
used. It enables us to generate tetrahedral mesh based on given surface trian-
gulation.

The TetGen program generates tetrahedral meshes from three-dimensional
domains. The goal is to generate suitable tetrahedral meshes for numerical
simulation using finite element and finite volume methods. Besides, as a tetra-
hedral mesh generator, it can be used as a meshing component in many sci-
entific and engineering applications.

For a three-dimensional domain, defined by its boundary (such as a surface
mesh), TetGen generates the boundary constrained (Delaunay) tetrahedral-
ization, conforming (Delaunay) tetrahedralization, quality (Delaunay) mesh.
The latter is nicely graded and the tetrahedra have circumradius-to-shortest-
edge ratio bounded. For a three-dimensional point set, the Delaunay tetrahe-
dralization and convex hull are generated.

The code, written in C++, may be compiled into an executable program or
a library for integrating into other applications. All major operating systems,
e.g. Unix/Linux, MacOS, Windows, etc, are supported.

The algorithms used in TetGen are of Delaunay type. TetGen and more
detailed information is available at «http://tetgen.berlios.de/index.html».

4.3. Solution of linear algebra problems. LAPACK pack-
age.

LAPACK is written in Fortran77 and provides routines for solving systems
of simultaneous linear equations, least-squares solutions of linear systems of
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equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are
also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices
are handled, but not general sparse matrices. In all areas, similar functionality
is provided for real and complex matrices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used
EISPACK and LINPACK libraries run efficiently on shared-memory vector
and parallel processors. On these machines, LINPACK and EISPACK are
inefficient because their memory access patterns disregard the multi-layered
memory hierarchies of the machines, thereby spending too much time moving
data instead of doing useful floating-point operations. LAPACK addresses this
problem by reorganizing the algorithms to use block matrix operations, such
as matrix multiplication, in the innermost loops. These block operations can
be optimized for each architecture to account for the memory hierarchy, and
so provide a transportable way to achieve high efficiency on diverse modern
machines. The term «transportable» is used instead of «portable» because, for
fastest possible performance, LAPACK requires that highly optimized block
matrix operations be already implemented on each machine.

LAPACK routines are written so that as much as possible of the computa-
tion is performed by calls to the Basic Linear Algebra Subprograms (BLAS).
While LINPACK and EISPACK are based on the vector operation kernels of
the Level 1 BLAS, LAPACK was designed at the outset to exploit the Level 3
BLAS – a set of specifications for Fortran subprograms that do various types
of matrix multiplication and the solution of triangular systems with multiple
right-hand sides. Because of the coarse granularity of the Level 3 BLAS op-
erations, their use promotes high efficiency on many high-performance com-
puters, particularly if specially coded implementations are provided by the
manufacturer.

Highly efficient machine-specific implementations of the BLAS are available
for many modern high-performance computers. For details of known vendor-
or ISV-provided BLAS, consult the BLAS FAQ. Alternatively, the user can
download ATLAS to automatically generate an optimized BLAS library for
the architecture. A Fortran77 reference implementation of the BLAS is avail-
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able from netlib. However, its use is discouraged as it will not perform as well
as a specially tuned implementation.

For instance, LAPACK is used in inertial bisection method. It was nec-
essary to find eigenvalues and eigenvectors of inertia tensor, then to choose
eigenvector which corresponds to the smallest eigenvalue. For this purpose
DSYEV routine has been used:

NAME
DSYEV - compute all eigenvalues and, optionally,
eigenvectors of a symmetric matrix A

SYNOPSIS

SUBROUTINE DSYEV(
JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO ) FO )

TER JOBZ, UPLO UPLO

R INFO, LDA, LWORK, N K, N

PRECISION A( LDA, * ), W( * ), WORK( * ) * )

PURPOSE
DSYEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix A.

ARGUMENTS
JOBZ (input) CHARACTER*1

= ’N’: Compute eigenvalues only;
= ’V’: Compute eigenvalues and eigenvectors.

UPLO (input) CHARACTER*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.
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N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE PRECISION array,
dimension (LDA, N)
On entry, the symmetric matrix A.
If UPLO = ’U’, the leading N-by-N upper triangular
part of A contains the upper triangular
part of the matrix A. If UPLO = ’L’, the leading
N-by-N lower triangular part of A contains the lower
triangular part of the matrix A. On exit,
if JOBZ = ’V’, then if INFO = 0,
A contains the orthonormal eigenvectors of the
matrix A.
If JOBZ = ’N’,
then on exit the lower triangle (if UPLO=’L’) or the
upper triangle (if UPLO=’U’) of A, including the
diagonal, is destroyed.

LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,N).

W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.

WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the
optimal LWORK.

LWORK (input) INTEGER
The length of the array WORK.
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LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD
returned by ILAENV.

If LWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size
of the WORK array, returns this value as the
first entry of the WORK array, and no error
message related to LWORK
is issued by XERBLA.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an

illegal value
> 0: if INFO = i, the algorithm failed to converge;

i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

The output of results of calculation of minimal principal inertia axis as a
part of parallel grid generator output is shown below.

**********************************************************
Center of mass coordinates
X = 0.207480 | Y = 44.594921 | Z = 2.069526

***********************************************************

INERTIA MATRIX
***********************************************************
20114508.000000 41528.484375 6864.812988
41528.484375 56072332.000000 -124917.062500
6864.812988 -124917.062500 71306504.000000
************************************************************

The eigenvalues in ascending order
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************************************************************
20114459.078229 56071355.865093 71307529.056678
************************************************************

Orthonormal eigenvectors of inertia matrix
************************************************************
0.999999 -0.001155 -0.000137
************************************************************
0.001156 0.999966 0.008198
************************************************************
0.000127 -0.008199 0.999966
************************************************************

More detailed information can be found in LAPACK user’s guide at «http :

//www.netlib.org/lapack/».

4.4. Integration of parallel grid generator with parallel
FEM solver.

4.4.1. DDFEM - parallel solver for 3D linear elasticity steady-state
problems

DDFEM [141] is a linear elasticity solver developed at Fraunhofer ITWM.
Many engineering and scientific applications require the solution of the

linear elasticity equations in arbitrary domains. The corresponding boundary
value problem (BVP) in its displacement formulation is most often discretized
via the finite element method (FEM).

Nowadays the iterative solution of the resulting large scale system of linear
equations has no alternative: The problem possesses quasi-optimal complexity,
providing effective preconditioners have been used. Additionally, the domain
decomposition (DD) techniques and the rapid development of the computer
technologies make it possible to solve this problem in parallel, achieving very
high performance.

The demand for efficient parallel solvers from the practice is growing, and
the numerical theory provides the necessary scientific basis to develop such
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solvers. On the other side, many general purpose commercial parallel solvers
have a performance, which is rather not satisfactory. Therefore, the need of
effective solvers is obvious and DDFEM [141] is an example of such a solver.

The main issue was to develop a reliable, portable and high-performance
application for parallel computers. Tetrahedral finite elements are used, be-
cause they are appropriate for automatic mesh generation, providing at the
same time a good approximation for complicated geometries. DDFEM design
follows the object oriented approach, it has been implemented in C++. The
solver relies on two external libraries:

• METIS [139] for the mesh partitioning in subdomains,

• PETSc [140] for the (parallel) iterative solution of the assembled linear
system.

The iterative linear solver, employed in DDFEM, is the conjugate gradients
method with (block-)Jacobi preconditioning, which are provided by PETSc.

For complicated geometries, where no exact solution can be found, so re-
sults have been compared with those from other solvers, e.g. with ABAQUS,
PERMAS [142]. The comparison shows, that the developed iterative solver
produces the same results, and, as a rule, in a shorter time.

DDFEM has been used at ITWM as both:

• a standalone elasticity solver for complex large-sized problems,

• FE-solver, iteratively referenced to perform structural analysis in a shape-
optimization loop.

A description with ensuing tetrahedral generation would be a direct mesh
description as a set of tetrahedral FEs, together with the corresponding bound-
ary conditions for the problem. Following the latter approach, a special input
language for DDFEM has been designed.

The input language provides an interface between the optimization tool and
the solver in the process of the shape optimization. An example of resolving
such a (real) geometry - part of a casting machine - can be seen on Fig. 4.2.

Let us take up the problem, considered in chapter 5 as an example of real-
life problem. The real boundary conditions for the bearing cap is following:
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Figure 4.2. Closing plate of a casting machine: 384453 nodes, 2003917 FEs

pressure on top of the bore P = 130 N/mm 2 . It simulates prestress of the
screws. At the opposite side object is fixed (displacements are not allowed),
and along semi circle surface distributed pressure P = 100 N/mm 2 . Cast
iron is chosen as material.

Calculations were performed by DDFEM for described above boundary
conditions. In Fig. 4.3 original not deformed bearing cap with stresses is
shown. Under applied forces the bearing cap is deforming and in Fig. 4.4
stress on deformed bearing cap is illustrated (deformation factor is 436.812 ).

The deformation magnitude on original not deformed mesh can be seen in
Fig. 4.5. Deformation of mesh with nodes displacements is shown in Fig. 4.6.
Deformation factor 436.812 is used for better visual perception of the shape
change of the bearing cap.

4.4.2. DDFEM and parallel mesh generator

At present time DDFEM reads sequentially generated volume mesh and then
distribute it between CPUs by using METIS mesh partitioning library. Grid
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Figure 4.3. Stress on original mesh of bearing cap.

Figure 4.4. Stress on deformed mesh of bearing cap.
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Figure 4.5. Nodal displacements on original mesh of bearing cap.

Figure 4.6. Nodal displacements on deformed mesh of bearing cap.
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generation stage and distribution of the mesh remains a bottleneck in the
whole process of getting solution, since these computations are done sequen-
tially. When large meshes are involved it requires a lot of time and memory.

Therefore integration of parallel grid generator with DDFEM enables us to
perform parallel construction of mesh and provides each CPU with required
subdomain. Since all steps on the way to the final solution can be done in
parallel, the integration of parallel grid generator with DDFEM allows us to
achieve throughout parallelization, what increases computational speed dra-
matically (Fig. 4.7).

Figure 4.7. Integration of the parallel grid generator with DDFEM. Achieving of
throughout parallelization at all stages of solution procedure.



Chapter V

Numerical tests and their analysis

The fifth chapter discusses results of computations for real-life problems, where
femoral, tibial knee prosthesis components and a bearing cap to fix a crank
shaft at a motorblock and others are considered. Decomposition and paral-
lel mesh generation is demonstrated for different mesh sizes and number of
processors. Special attention is paid to surface and volume mesh quality. Dif-
ferent aspects of computational efforts related to complexity, computational
time, and total area of interfaces are explained. Finally, advantages of parallel
grid generator are pointed out and prospective directions of further devel-
opment are specified as a result of analysis of developed algorithm and of
computational results for real-life problems.

Figure 5.1. Multigen - full knee prosthesis consisting of several parts.
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5.1. Construction of computational meshes for knee
prosthesis components

In Fig. 5.1 a full knee prosthesis consisting of several components is shown.
As first two examples of volume mesh construction in complex domains by

using described algorithm components of knee prosthesis produced by Lima
Group [144] are taken. In Fig.5.2 and 5.3 an a priori decomposition of original
surface meshes in these two cases are shown (16 and 8 correspondingly). It can
be seen that the algorithm is able to handle relatively complex geometries.

5.2. Construction of computational mesh for bearing cap

Next example is a bearing cap [145] to fix a crank shaft at a motor block
(Fig. 5.4). This example will be further used for more detailed analysis of
algorithm efficiency and quality of produced meshes.

A surface mesh representing the shape of the bearing cap is shown in
Fig. 5.5.

For demonstration reasons decomposition of the computational domain is
done up to 128 subdomains (seven levels of recursion) even need for such a
big number of subdomains is not justified. Then volume mesh is constructed
in each subdomain assigned specific CPU number. The procedure of domain
decomposition and final mesh generation is shown in Fig. 5.6.
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Figure 5.2. An a-priori domain decomposition of knee prosthesis femoral component on
16 subdomains.
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Figure 5.3. An a-priori domain decomposition of knee prosthesis tibial component on 8
subdomains.
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Figure 5.4. Bearing cap in engine.

Figure 5.5. Surface mesh representing the shape of the bearing cap.
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Figure 5.6. An a-priori domain decomposition of bearing cap component into 128
subdomains.
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The simulation was run on the Fraunhofer ITWM cluster with high - band-
width /low-latency myrinet network with 64 nodes. Each node has Dual Xeon
CPU 2.4 GHz, 4GB RAM. Three meshes of different sizes were constructed.
In Table 5.1 generation time on a different number of CPUs is given.

Table 5.1. Computational time for construction of volume meshes of different sizes

Elements/CPUs 1 CPU 2 CPU 4 CPU 8 CPU 16 CPU 32 CPU
4·105 elements 20.91 s 10.26 s 5.78 s 3.30 s 2.54 s 1.25 s
4·106 elements 169.56 s 83.07 s 48.43 s 26.75 s 15.02 s 9.06 s
4·107 elements failed 961.45 s 558.197 s 356.39 s 181.08 s 91.13 s

In case of 400 thousands and 4 millions elements the computational time
was reduced dozens of times owing to developed parallel grid generator. If
generation of these two meshes is still possible on a single CPU due to rea-
sonable size, then sequential generation of the third mesh with more than 40
millions elements fails. Developed parallel grid generator constructs this mesh
on 32 CPUs in approximately 1.5 minutes. Diagram of computational time in
exponential scaling is shown in Fig. 5.7.

Figure 5.7. Computational time for meshes of different size. Logarithmic scaling. First
column corresponds to 400 thousands, second to 4 millions and third to 40 millions

elements.
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The speed-up of volume mesh generation time for the cases of 400 thou-
sands, 4 millions and 40 millions elements are illustrated in Fig. 5.8, Fig. 5.9
and Fig. 5.10 correspondingly. Fig. 5.11 gives the comparison between these
three plots.

Figure 5.8. Speed-up of volume mesh generation time for the bearing cap geometry with
400 thousands tetrahedral elements.

As it is seen in Fig. 5.11 efficiency of parallel grid generator work on 32
CPUs is higher for larger mesh. This is quite reasonable since you provide each
CPU with enough work in case of larger mesh and, clearly parallel realization is
not so efficient if mesh is small. In Fig. 5.12 example of generation of relatively
small mesh of 300 thousands elements on large number of CPUs (up to 128)
is illustrated. One can notice that the efficiency is lower than in all considered
before cases. The highest efficiency which the parallel grid generator reaches
is 70% in case of 40 millions elements.

Developed parallel grid generator helps to remove a computational bot-
tleneck related with sequential construction of volume mesh. It can be used
with parallel solvers providing prepared subdomain for each CPU as well as
with other sequential solvers to reduce mesh generation time. In latter case
subdomains should be joined back together into one global volume mesh (see
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Figure 5.9. Speed-up of volume mesh generation time for the bearing cap geometry with
4 millions tetrahedral elements.

Figure 5.10. Speed-up of volume mesh generation time for the bearing cap geometry
with 40 millions tetrahedral elements.
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Figure 5.11. Speed-up of volume mesh generation time for the bearing cap geometry.
400 thousands, 4 millions and 40 millions tetrahedral elements.

Figure 5.12. Speed-up of volume mesh generation time for the bearing cap geometry in
case of relatively small mesh (300 thousands elements) and big CPU number (up to 128).

Fig.5.13).
Currently, construction of very large meshes (several hundreds of millions
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Figure 5.13. Volume mesh of a bearing cap constructed by parallel grid generator.

elements) is possible. For instance, generation of mesh with 200 millions ele-
ments on 8 CPUs takes less than 10 minutes.

5.3. Quality of computational mesh

5.3.1. Quality of surface triangulation

It was already mentioned that the mesh quality is an important property to
pay attention to. The partitioning algorithm should not adversely affect the
quality of the surface mesh. The most undesirable triangles for FEM com-
putations are those with very acute angles. One of the major goals of the
decomposition algorithm is to make quality loss minimal.

We assume that the original given surface mesh is of good quality. The only
thing that can affect surface mesh quality is construction of triangulation on
interface and projection operations with contour nodes.

The two-dimensional triangulator we employ uses Delaunay refinement
technique. This is a technique for generating triangular meshes suitable for
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use in interpolation, the FEM, and the FVM. The problem is to find a tri-
angulation that covers a specified domain and contains only triangles whose
shapes and sizes satisfy constraints: the angles should not be too small or too
large, and the triangles should not be much smaller than necessary, nor larger
than desired. Delaunay refinement algorithms offer mathematical guarantees
that such constraints can be met. They also perform excellently in practice.

The triangles should be relatively «regular» in shape, because triangles
with large or small angles can degrade the approximation quality of the nu-
merical solution to a finite element problem. In interpolation, triangles with
large angles can cause large errors in the gradients of the interpolated surface.
In the finite element method, large angles can cause a large discretization
error. The solution may be less accurate than the method would normally
promise. Small angles can cause the coupled systems of algebraic equations
that the finite element method yields to be ill-conditioned.

The quality grid generator Triangle is a hybrid of by L. Paul Chew’s and
Jim Ruppert’s Delaunay refinement algorithm. It adds vertices to the mesh
for prevention of angles less than 20o . Clear, that acute angles in input seg-
ment can not be already removed, but it is possible to avoid any other acute
angle. There is a possibility to specify desired minimum angle of a triangula-
tion. If the specified angles are 20.7o or less then convergence is guaranteed.
In practice algorithm works with angles up to 33o and usually does not ter-
minate for angles more than 34o . For some meshes it might be necessary to
reduce minimum angle in order to avoid problems related with accuracy of
the calculations.

In Fig. 5.14 and Fig. 5.15 triangles for prosthesis component with angle
less than 30o and for bearing cap with angles less than 40o are shown before
and after decomposition procedure.

5.3.2. Quality of tetrahedral mesh

The main goal of the parallel grid generator is to produce meshes suitable for
solving partial differential equations (PDEs) by finite element methods (FEM)
and finite volume methods (FVM).

The problem is to generate a tetrahedral mesh conforming to a given (poly-
hedral or piecewise linear) domain together with certain constraints for the
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Figure 5.14. Surface quality for mesh of knee prosthesis before and after partitioning.
Triangles with angles less than 30o .

Figure 5.15. Surface quality for mesh of bearing cap before and after partitioning.
Triangles with angles less than 40o .

size and shape of the mesh elements. It is a typical problem of provably good
mesh generation or quality mesh generation. The techniques of quality mesh
generation provide the «shape» and «size» guarantees on the meshes:
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• All elements have a certain quality measure bounded

• The number of elements is within a constant factor of the minimum
number.

The approaches to solve quality mesh generation include octree, advancing
front, and Delaunay methods.

Delaunay refinement, a Delaunay tetrahedralization is refined by iteratively
adding vertices. The placement of these vertices is chosen to enforce bound-
ary conformity and to improve the quality of the mesh. Delaunay refinement
was successfully applied to the corresponding two-dimensional problem (see
previous section). Such algorithms can be found in the work of Chew, and
Ruppert. However, these algorithms do not remove slivers (very flat and near-
ly degenerate tetrahedra) in three dimensions.

The algorithm TetGen implemented to tackle this problem is a Delaunay
refinement algorithm from Shewchuk [134]. It is a smooth generalization of
Ruppert’s algorithm to three dimensions. Given a complex of vertices, con-
straining segments and facets in three dimensions, with no input angle less
than 90o , this algorithm can generate a quality mesh of Delaunay tetrahe-
dra with radius-edge ratios not greater than 2.0 . Tetrahedra are graded from
small to large over a short distances. The algorithm generates meshes general-
ly surpassing the theoretical bounds and is effectively in eliminates tetrahedra
with small or large dihedral angles.

Except the tetrahedra near small input angles, the sliver is the only type of
badly-shaped tetrahedron which could survive after the Delaunay refinement.
Several techniques [135–137] have been developed to remove slivers from the
mesh. TetGen does a simplified sliver removal step. Slivers are removed by lo-
cal flip operations and peeling off from the boundary. This strategy is effective
to remove most of the slivers but does not guarantee to remove all of them.

There are several quality measures available in literature. For accuracy in
the FEM, it is generally necessary that the shapes of elements have bounded
aspect ratio. The aspect ratio of an element is the ratio of the maximum side
length to the minimum altitude. For a quality mesh, this value should as small
as possible. For example, «thin and flat» tetrahedra tend to have large aspect
ratio.
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A similar but weaker quality measure is radius-edge ratio, proposed by
Miller, Talmor, Teng, Walkington, and Wang [138]. A tetrahedron t has a
unique circumsphere. Let R = R(t) be that radius and L = L(t) the length
of the shortest edge. The radius-edge ratio Q = Q(t) of the tetrahedron is
given by:

Q =
R

L

The radius-edge ratio measures the quality of a tetrahedron. For all well-
shaped tetrahedra, this value is small (Fig. 5.16(A)), while for most of badly-
shaped tetrahedra, this value is large (Fig. 5.16(B)). Hence, in a quality mesh,
this value should be bounded as small as possible. However, the ratio is min-
imized by the regular tetrahedron (in which case the lengths of the six edges
are equal, and the circumcenter is the barycenter), that is

Q ≥
√

6/4 ≈ 0.612

A

B C

Figure 5.16. The radius-edge ratio for some well-shaped and badly-shaped tetrahedra.
A - the radius-edge ratio for some well-shaped tetrahedra; B - the radius-edge ratios for
some badly-shaped tetrahedra; C - sliver (special type of badly-shaped tetrahedron).



84

A special type of badly-shaped tetrahedron is called sliver (see
Fig. 5.16(C)), which is very flat and nearly degenerate. Slivers can have radius-
edge ratio as small as

√
2/2 ≈ 0.707 . The radius-edge ratio is not a proper

measure for slivers. However, Miller, Talmor, Teng, Walkington, and Wang
[138] have pointed out that it is the most natural and elegant measure for
analyzing Delaunay refinement algorithms.

It is possible to control quality of the mesh by specifying upper bound of
the quality coefficient and volume of tetrahedra. The algorithm performs qual-
ity mesh generation by Shewchuk’s Delaunay refinement algorithm. It adds
vertices to the CDT (Constrained Delaunay Triangulation) or a previously
generated mesh to ensure that no tetrahedra have radius-edge ratio greater
than 2.0 . An alternative minimum radius-edge ratio may be specified. If too
small ratio is supplied (smaller than 1.0), algorithm may not terminate.

If no input angle or input dihedral angle (of the Piecewise Linear Complex)
smaller than 60o degree, this algorithm is theoretically guaranteed to termi-
nate with no tetrahedron has radius-edge ratio greater than 2.0 . In practice,
this algorithm often successes for radius-edge ratio be 1.414 or even smaller.

In Fig. 5.17a example is shown. It is a wing of an airplane and a box en-
closed it. The mesh domain is outside the wing and bounded by the box. In
Fig. 5.17b the quality mesh (shown below on the right) is generated. Default,
the radius-edge ratio of each tetrahedron is bounded below 2.0 . You can im-
pose a tight bound, for example 1.2 . So in Fig. 5.17c program generates a
quality mesh which have more points inserted than the mesh created in above.
Another way to refine mesh is to impose a maximum volume constraint on
the mesh. Fig. 5.17d shows a quality mesh which has both radius-edge ratio
bounded by 1.2 and maximum volume bounded by 0.0001 . Tetrahedral grid
generator prints the mesh quality statistics after meshing. It looks like the
follows. The mesh quality is reported in three quality measures, the «tetra-
hedronal aspect ratio», «triangular face angle», and «tetrahedronal dihedral
angle». Each quality measure is presented in a histogram.

Statistics:

Input points: 19202
Input facets: 38400
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Figure 5.17. Quality control of volume mesh. а. — wing of an airplane enclosed in box;
b. — mesh with radius-edge ratio bounded below 2.0 ; c. — mesh with radius-edge ratio
bounded below 1.2 ; d. — mesh with radius-edge ratio bounded below 2.0 and maximum

volume bounded ( 0.0001 ).

Input holes: 0
Input regions: 0

Mesh points: 72582
Mesh tetrahedra: 298490
Mesh faces: 642353
Mesh subfaces: 93078
Mesh subsegments: 58142

Mesh quality statistics:

Smallest volume: 2.6358e-06| Largest volume: 4.0253
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Shortest edge: 0.014807| Longest edge: 4.9446
Smallest dihedral: 5.0016| Largest dihedral:172.7122

Radius-edge ratio histogram:
< 0.707: 9717| 1.6 - 1.8:13561

0.707 - 1 :137380| 1.8 - 2 : 4438
1 - 1.1 : 25801| 2 - 2.5: 27

1.1 - 1.2 : 24218| 2.5 - 3 : 13
1.2 - 1.4 : 49987| 3 - 10 : 5
1.4 - 1.6 : 33343| 10 - : 0

(A tetrahedron’s radius-edge ratio is its radius of
circumsphere divided by its shortest edge length)

Aspect ratio histogram:
1.1547 - 1.5: 0| 15 - 25 :2382

1.5 - 2 : 0| 25 - 50 : 286
2 - 2.5: 7| 50 - 100 : 0

2.5 - 3 : 14905| 100 - 300 : 0
3 - 4 :104588| 300 - 1000 : 0
4 - 6 :138765| 1000 - 10000 : 0
6 - 10 : 32111| 10000 - 100000: 0

10 - 15 : 5446| 100000 - : 0
(A tetrahedron’s aspect ratio is its longest edge
length divided by the diameter of its inscribed sphere)

Dihedral angle histogram:
0 - 5 degrees: 0| 90 - 100 degrees:65684
5 - 10 degrees: 3598| 100 - 110 degrees:67134

10 - 30 degrees:66772| 110 - 120 degrees:53257
30 - 40 degrees:70565| 120 - 130 degrees:30221
40 - 50 degrees:79999| 130 - 140 degrees:17502
50 - 60 degrees:67168| 140 - 150 degrees:10387
60 - 70 degrees:10388| 150 - 170 degrees:10267
70 - 80 degrees: 3990| 170 - 175 degrees: 226
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80 - 90 degrees:39822| 175 - 180 degrees: 0

The quality of the mesh created by the parallel generator should not be
much lower than quality of the mesh constructed sequentially. Below, the
comparison of different mesh quality measures is given in case of tetrahedral
mesh of the bearing cap constructed sequentially and by developed parallel
grid generator (see Fig. 5.18).

Figure 5.18. Result of decomposition and parallel volume mesh generation on 8 CPUs
(shown in different colors). The total number of elements is 430074 .

In Fig. 5.19 - 5.21 comparison of various qualitative measures in normal
and accumulated distribution forms are illustrated such as: minimum and
maximum dihedral angle, minimum and maximum edge, elements volume,
and shape. Where the shape quality of tetrahedra is defined as:

Q =
6
√

2 · V ol∑6
i=1 `3

i

,

where V ol – tetrahedron volume, `i — length of its edge i .
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Figure 5.19. Minimum dihedral angle of tetrahedral mesh elements in accumulated (first
row) and normal (second row) distribution form for meshes constructed sequentially (left)

and by parallel mesh generator (right); Maximum dihedral angle of tetrahedral mesh
elements in accumulated (third row) and normal (fourth row) distribution form for

meshes constructed sequentially (left) and by parallel mesh generator (right).
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Figure 5.20. Minimum edge of tetrahedral mesh elements in accumulated (first row) and
normal (second row) distribution form for meshes constructed sequentially (left) and by

parallel mesh generator (right); Maximum edge of tetrahedral mesh elements in
accumulated (third row) and normal (fourth row) distribution form for meshes

constructed sequentially (left) and by parallel mesh generator (right).
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Figure 5.21. Volume of tetrahedral mesh elements in accumulated (first row) and
normal (second row) distribution form for meshes constructed sequentially (left) and by

parallel mesh generator (right); Shape quality of tetrahedral mesh elements in
accumulated (third row) and normal (fourth row) distribution form for meshes

constructed sequentially (left) and by parallel mesh generator (right).
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For the regular tetrahedron Q = 1 . With deterioration of volume elements
the coefficient value becomes smaller. It can be seen that comparable quality
is achieved. In both cases the greatest number of tetrahedra are between
Q = 0.76 and Q = 0.78 .

5.4. Computational costs and time reduction

Obviously, in comparison with traditional sequential Delaunay triangulators,
the developed parallel generator has two very important advantages: the time
required to construct a mesh is much less and memory requirements for each
processor are lower. It enables us to work with large meshes. Manipulations
with these meshes is not possible in case of traditional mesh generators.

Compare to a posteriori algorithms used by mesh partitioning libraries
such as METIS, CHACO, JOSTLE, the developed parallel generator is also
advantageous in terms of memory and time, since it first decompose the struc-
ture and then construct the volume mesh, while a posteriori methods perform
decomposition of already created volume mesh.

5.4.1. Superlinear scaling effect

TetGen uses the flip-based algorithm. It is incremental and adds points in
a sequence of flips. The algorithm has complexity O(n2) in the worst case.
However, such case will rarely happen. In practice, this algorithm has a nearly
linear complexity O(n log n) .

For some cases, the following interesting fact can be observe. The speed up
of computational time has a superlinear scaling (see chapter III, construction
of volume mesh for cylinder). In our case this can be explained in terms of
complexity.

If decomposition of object is performed in a balanced way and complexity
of calculation associated with volume mesh construction inside is higher than
O(n) (in our case it can be O(n log n) ) then decomposition, say into N parts,
will give you acceleration of time:

n log n
n
N log( n

N )
= N

1

1− log N
log n

.
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Figure 5.22. Example of cube object for estimation of computational time and total
area of interfaces.

The second multiplier here is greater than unit, thus division in N parts could
result in time acceleration more than N times for N CPUs. Nevertheless, in
practice one can not observe this due to many reasons: not perfectly balanced
partitioning, different complexity depending on shape of the object and so on.
So for real practical problems one can notice this for small CPU numbers (see
speed up in case of two CPUs in case of bearing cap).

Let us consider a cube as an example of computational domain (Fig. 5.22).
Knowing algorithm complexity and decomposition principles it is interesting
to investigate how the superlinear effect depends on number of subdomains
and number of grid points. In Fig. 5.23 the difference between superlinear
and linear acceleration ∆t and its dependence on number of subdomains and
number of nodes is shown.
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∆t(n,N) = N(log n/ log(n/N)− 1)

Figure 5.23. Superlinear scaling effect. Difference ∆t between superlinear and linear
accelerations.

5.5. Estimation of total area of interfaces

The total area of interfaces have an undoubted importance for further use by
parallel solver. It is necessary to minimize the total area of interfaces, since
it is directly related with amount of data transfered while problem solution
procedure, and, therefore influences speed of calculations.

Using the cube object as an example, let us try to estimate the change
of total interface area for different numbers of subdomains and grid points.
In Fig. 5.24 dependence graph of ratio f between interface nodes and total
number of grid points is shown.
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f(n,N) = 3n1/3(N 1/3 − 1).

Figure 5.24. Ratio f between interface nodes and total number of grid points.

It is clear that we want to keep this coefficient small. It seems that some-
times it is necessary to decrease number of CPUs in order to reduce the total
interface area, but one should always keep in mind that it might not be pos-
sible due to the memory limitations reasons.

5.6. Advantages of the developed parallel grid generator

As a result of analysis of developed algorithm and of computational results of
real-life problems it is necessary to point out major advantages of developed
parallel grid generator compare to other known decomposition and parallel
grid generation algorithms.

• Algorithm needs lower computational time and lower memory compared
to an a posteriori partitioning method (PARMETIS, CHACO, JOSTLE).
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• Algorithm enables us to use well tested and fine-tuned sequential 2D and
3D triangulators.

• Algorithm achieves 100% code re-use and eliminates need communication
and synchronization.

• All operations performed in algorithm preserve original surface mesh.

• Algorithm produces almost plane interfaces, i.e. interfaces with small
perturbations, between the subdomains.

• Algorithm uses a splitting criterion, which minimizes the interface area
and which is sensitive to both the object shape and the grid resolution.

5.7. Prospective directions of further development

There are many tasks that could be mentioned here, but the most important
directions of further parallel grid generator development are the following:

• Decomposition of more complex geometrical domains.

• To ensure a priori guarantee of domain size, mesh size, and a quality
criterion.

• Improving of load balancing and scalability of parallel generation algo-
rithm.

• Improve programming interface with CAD and FE solvers.

• Perform local adaptive mesh refinement from CAD level based in infor-
mation provided by solver.



Summary and conclusion

1. Novel algorithm for automatic parallel generation of unstructured three-
dimensional mesh by using geometrical decomposition of computational
domain has been developed. Proposed algorithm preserves original sur-
face mesh and produces almost plane interfaces, i.e. interfaces with small
perturbations, between the subdomains.

2. Different domain decomposition approaches (a posteriori, a priori, along
the same direction, recursive, overdecomposition) and criteria (equidis-
tant cutting, volume comparison, moment of inertia) have been investi-
gated. It has been shown that from examined methods recursive cutting
by plane according to moment of inertia criterion gives better result since
the approach minimizes interface area and is sensitive to both object
shape and grid resolution.

3. A software package for parallel grid generation has been created based
upon developed algorithm. It includes well tested and fine-tuned sequen-
tial 2D and 3D triangulators, achieves 100% code re-use and eliminates
need for communication and synchronization. The software is fully auto-
matic and can be used together with FE/FV solvers to overcome memory
limitations as well as to reduce computational time.

4. Different surface and volume mesh quality measures comparison have
been given for sequentially generated meshes and meshes constructed by
the parallel grid generator. It has been demonstrated that comparable
quality is achieved, mesh generation time is reduced significantly due to
developed parallel grid generator. Efficiency analysis of parallel algorithm
and software shows that they are efficient (70% for bearing cap mesh of
40 millions elements on 32 CPUs).

5. Developed algorithm and software were used for solution of real-life prob-
lems: construction of mesh for femoral and tibial knee prosthesis compo-
nents, bearing cap to fix a crank shaft at a motorblock and others. Size

96
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of generated meshes achieved order of 107 − 108 elements. Sequential
construction of meshes of this size is extremely costly.
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