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Abstract. An optimal control problem for a mathematical model of
a melt spinning process is considered. Newtonian and non–Newtonian
models are used to describe the rheology of the polymeric material, the
fiber is made of. The extrusion velocity of the polymer at the spinneret
as well as the velocity and temperature of the quench air serve as con-
trol variables. A constrained optimization problem is derived and the
first–order optimality system is set up to obtain the adjoint equations.
Numerical solutions are carried out using a steepest descent algorithm.
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1. Introduction

Many kinds of synthetic textile fibers, like Nylon, Polyester, etc. are
manufactured by a so–called melt spinning process. In this process, the
molten polymer is extruded through a die called the spinneret to create a
slender, cylindrical jet of viscous polymer, the fiber. Far away from the
spinneret, the fiber is wrapped around a drum, which pulls it away at a
pre–determined take–up speed. The take–up speed is much higher than
the extrusion speed; in industrial processes the take–up speed is about
50m/s and the extrusion speed is about 10m/s, see [2, 6]. The ratio be-
tween the take–up speed vL and the extrusion speed v0 is called draw–ratio
d = vL/v0 > 1. Hence the filament is stretched considerably in length and
therefore it decreases in diameter. The ambient atmosphere temperature
is below the polymer solidification temperature such that the polymer is
cooled and solidifies before the take–up, see Figure 1. In industrial pro-
cesses a whole bundle of hundreds of single filaments is extruded and spun
in parallel, however for the analysis we consider a single filament.

The dynamics of melt spinning processes has been studied by many
research groups throughout the world during the last decades starting with
early works of Kase and Matsuo [4] and Ziabicki [10]. In later works, the en-
ergy balance for the heat transfer was introduced into the model, and more
and more sophisticated descriptions, including material effects, crystalliza-
tion kinetics and viscoelastic behavior, were developed by several authors
in order to achieve a better understanding of the fiber formation process.
Up to now it is possible to use the basic models with more or less modifi-
cations in different technological aspects of the melt spinning process. Due
to the complex behaviour of the polymeric material, several parameters are
included in all the available models. Typically, these parameters are hard to
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Figure 1. Sketch of the melt spinning process.

measure. An identification based on comparing available data and simula-
tions is one way to determine those parameters. Additionally, the outcome
of the melt spinning process depends heavily on the boundary conditions,
e.g. the draw ratio, the ambient temperature, the quench air velocity and
temperature. The question of optimizing the fiber production with respect
to the external variables has not yet been treated in the literature.

The main goal of this study is to optimize the melt spinning process
with respect to the final temperature, the quench air velocity and temper-
ature. To model the fiber spinning process, we consider both a Newtonian
model for the viscosity and a non–Newtonian model, where the viscosity
is temperature–dependent. We formulate the optimal control problem as a
constrained minimization problem, see [3], and derive formally the corre-
sponding first–order optimality system via the Lagrange functional. For the
numerical computation of the optimal control variables we present a steepest
descent algorithm using the adjoint variables.
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The paper is organized as follows. In Section 2, we present the models
and define the cost functional which ought to be minimized. In Section 3,
the first–order optimality system is derived. The steepest descent algorithm
is discussed in Section 4. Finally, some numerical results are presented in
Section 5 and concluding remarks can be found in Section 6.

2. The Optimal Control Problem

2.1. Melt Spinning Model. Considering the basic conservation laws for
mass, momentum and energy of the viscous polymer jet one can obtain
by averaging over the cross–section of the slender fiber the following set of
equations, see [6, 7, 8].

ρAv = W0 .(1a)

ρAv
dv

dz
=

dAτ

dz
−

√
AπCdρairv

2 + ρAg ,(1b)

ρCpv
dT

dz
= −2α

√
π√

A
(T − T∞) ,(1c)

In the mass balance (1a), A denotes the cross–sectional area of the fiber,
v is the velocity of the fiber along the spinline and W0 equals the mass
flux through the spinneret. The density ρ of the polymer is assumed to be
constant. In the momentum balance (1b), z denotes the coordinate along the
spinline, g is the gravitational acceleration and Cd is the air drag coefficient.
The axial stress τ is related via the constitutive equation

(1d) τ = 3η
dv

dz

to the viscosity η. In the energy equation (1c), T and Cp denote the tem-
perature and the heat capacity of the polymer, T∞ is the temperature of
the quench air and α denotes the heat transfer coefficient between the fiber
and the quench air.

According to [6], we assume the following relations for the air drag
coefficient

Cd = 0.37Re−0.61
air

and the heat transfer coefficient

α =
0.21

R0
κRe

1

3

air

[

1 +
64v2

c

v2

]
1

6

depending on the Reynolds–number of the quench air flow

Reair =
2vρair

ηair

√

A

π
.

Here R0 is the radius of the spinneret, ρair, ηair and κ represent the density,
viscosity and heat conductivity of the air and vc is the velocity of the quench
air.

In the Newtonian model, the viscosity η = η0 of the polymer is con-
stant, whereas in the non–Newtonian case, we consider an Arrhenius–type
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temperature dependence

(1e) η = η0 exp

[

Ea

RG

(

1

T
− 1

T0

)]

.

where η0 > 0 is the zero shear viscosity at the initial temperature T0, Ea

denotes the activation energy and RG equals to the gas constant.
The equations (1a)—(1c) are subject to the boundary conditions

v = v0 and T = T0 at z = 0(1f)

v = vL at z = L(1g)

where L denotes the length of the spinline.

2.2. Dimensionless Form. Introducing the dimensionless quantities

v∗ =
v

v0
, z∗ =

z

L
, T ∗ =

T

T0
, A∗ =

A

A0
and q∗ =

q

q0
,

where q = ρAτ
W0

and q0 = ρA0v0η0

LW0
, the system (1) can be formulated in

dimensionless form. Dropping the star, the system reads as

dv

dz
=

qv

3η
,(2a)

dq

dz
= Re

(

qv

3η
− Fr−1

v
+ Cv3/2

)

,(2b)

dT

dz
= −γ

T − T∞√
v

,(2c)

where Re = ρLv0

η0
is the Reynold number, Fr−1 = gL

v2
0

is the inverse of the

Froude number, C = CdρairL
ρR0

is the scaled drag coefficient and γ = 2αL
ρCpv0R0

denotes the scaled heat transfer coefficient.
The viscosity is given by

(2d) η =

{

1 for the Newtonian model

exp
[

Ea

RGT0

(

1
T − 1

)

]

for the non–Newtonian model.

The boundary conditions read as

v(0) = 1 and T (0) = 1 ,(2e)

v(1) = d(2f)

where d = vL/v0 > 1 denotes the draw–ratio.

2.3. Cost Functional. We want to control the temperature profile of the
fiber, such that the final temperature T (1) is below the solidification point
T ∗

s = Ts/T0. On the other hand we want to maximize the outflow, i.e. max-
imize v0. The air temperature T∞ and the air velocity vc can be influenced
and hence serve as control variables. Therefore, we consider the following
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cost functional

J = J(y, u) = J1 + J2 + J3 + J4

= −ω1u3 + ω2(y3(1) − T ∗
s )

+
ω3

2

∫ 1

0
(u2(z) − Tref)

2dz +
ω4

2

∫ 1

0
u1(z)2dz(3)

where y = (v, q, T ) ∈ Y denotes the vector of state variables and u =
(vc, T∞, v0) ∈ U are the controls. The weighting coefficients ωi > 0, i =
1 . . . 4 allow to adjust the cost functional to different scenarios.

Summarizing, we consider the following constrained optimization prob-
lem

(4) minimize J(y, u) with respect to u, subject to (2)

In the sequel, we will address this problem using the calculus of adjoint
variables.

3. The First–Order Optimality System

In this section we introduce the Lagrangian associated to the con-
strained minimization problem (4) and derive the system of first–order op-
timality conditions.

Let Y = C1([0, 1]; R3) be the state space consisting of triples of differ-
entiable functions y = (v, q, T ) denoting velocity, stress and temperature of
the fiber. Further, let U = C1([0, 1]; R2)×R be the control space consisting
of a pair (u1, u2) = (vc, T∞) of differentiable functions, i.e. air velocity and
temperature, and a scalar u3 = v0 interpreted as the inflow velocity.

We define the operator e = (ev, eq, eT ) : Y × U → Y ∗ via the weak
formulation of the state system (2):

〈e(y, u), ξ〉Y,Y ∗ = 0 ∀ξ ∈ Y ∗

where 〈·, ·〉Y,Y ∗ denotes the duality pairing between Y and its dual space Y ∗.

Now, the minimization problem (4) reads as

minimize J(y, u) with respect to u ∈ U , subject to e(y, u) = 0.

Introducing the Lagrangian L : Y × U × Y ∗ → R defined as

L(y, u, ξ) = J(y, u) + 〈e(y, u), ξ〉Y,Y ∗ ,

the first–order optimality system reads as

∇y,u,ξL(y, u, ξ) = 0 .

Considering the variation of L with respect to the adjoint variable ξ,
we recover the state system

e(y, u) = 0

or in the classical form

dy

dz
= f(y, u) , with v(0) = 1, v(1) = d, T (0) = 1(5)
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where

f(y, u) =







qv
3η

Re
(

qv
3η − Fr−1

v + Cv3/2
)

−γ T−T∞√
v






.

Second, taking variations of L with respect to the state variable y we
get the adjoint system

Jy(y, u) + e∗y(y, u)ξ = 0

or in classical form

− dξ

dz
= F (y, u, ξ) , with ξq(0) = 0, ξq(1) = 0, ξT (1) = −ω2 ,(6)

where

F (y, u, ξ) =

(

∂f

∂y

)⊤
ξ .

Finally, considering variations of L with respect to the control variable
u in a direction of δu we get the optimality condition

(7) 〈Ju(y, u), δu〉 + 〈eu(y, u)δu, ξ〉 = 0 .

In the optimum, this holds for all δu ∈ U .

4. Algorithm

To solve the nonlinear first–order optimality system (5), (6) and (7),
we propose an iterative steepest–descent method.

(1) Set k = 0 and choose initial control u(0) ∈ U .

(2) Given the control u(k). Solve the state system (5) with a shooting

method to obtain y(k+1).

(3) Solve the adjoint system (6) with a shooting method to obtain ξ(k+1).

(4) Compute the gradient g(k+1) of the cost functional

(5) Update the control u(k+1) = u(k) − βg(k+1) for a step size β > 0.

(6) Compute the cost functional J (k+1) = J(y(k+1), u(k+1)).

(7) If
∣

∣J (k+1) − J (k)
∣

∣ ≥ Tol, goto 2.

Here, Tol is some prescribed tolerance for the termination of the optimization
procedure. In each iteration step, we need to solve two boundary value
problems, i.e. the state system (5) and the adjoint system (6) in the step 2
and 3 of the algorithm. Both systems are solved using a shooting method
based on a Newton–iteration.

4.1. Shooting Method. Now, we present the main steps of the shooting
method for the state system (5) in particulary. Let us make an initial guess
s for y2(0) and denote by y(z; s) the solution of the initial value problem

(8)
dy

dz
= f(y, u) , with y1(0) = 1, y2(0) = s, y3(0) = 1 .

Now we introduce new dependent variables
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x(z; s) =
∂y

∂s
and define second system as follows

(9)
∂x

∂z
=

(

∂f

∂y

)

x with x1(0; s) = 0, x2(0; s) = 1, x3(0; s) = 0.

The solution of y(z; s) of the initial value problem (8) coincides with
the solution y(z) of the boundary value state system (5) provided that the
value s can be found such that

φ(s) = y1(1; s) − d = 0.

Using the system (9), φ′(s) can be computed as follows

φ′(s) = x1(1; s).

Now, using Newton–iteration a sequence (sn)n∈N is generated by

sn+1 = sn − φ(sn)

φ′(sn)
for a given initial guess s0.

If the initial guess s0 is a sufficiently good approximation to the required
root of φ(s) = 0 the theory of the Newton–iteration method ensures that
the sequence (sn)n∈N converges to the root s.

4.2. Step Size Control with Polynomial Models. Crucial for the con-
vergence of the algorithm is the choice of the step size β (in step 5 of the
algorithm) in the direction of the gradient. Clearly, the best choice would
be the result of a line search

β∗ = argminβ>0J(uk − βdk).

However this is numerically quite expensive although it is a one dimensional
minimization problem. Instead of the exact line search method, we use
an approximation based on a quadratic polynomial method [5] in order to
find β∗ such that which minimize J(uk − βdk). We construct quadratic
polynomial for

Φ(β) = J1(uk − βdk),

using following data points,

Φ(0) = J1(uk), Φ(1) = J1(uk − dk), Φ′(0) = ∇Φ(uk)
Tdk < 0.

Then the quadratic polynomial of β reads as follows,

Λ(β) = Φ(0) + Φ′(0)β + (Φ(1) − Φ(0) − Φ′(0))β2.

The global minimum of Φ is ,

β∗ =
−Φ′(0)

2(Φ(1) − Φ(0) − Φ′(0))
∈ (0, 1).
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Figure 2. Spinline velocity (up-left) and temperature (up-
right) profile, initial (dash) after optimization (solid) and in-
termediate (dot). Air velocity (down-left) and temperature
(down-right) profile, initial (dash) after optimization (solid)
and intermediate (dot).

4.3. Numerics. Both state and adjoint system of ODE were solved using
the Matlab routine ode23tb. This routine uses an implicit method with
backward differentiation to solve stiff differential equations. It is an im-
plementation of TR-BDF2 [9], an implicit two stage Runge-Kutta formula
where the first stage is a trapezoidal rule step and the second stage is a
backward differentiation formula of order two.

5. Results

5.1. Newtonian Model. Figure 2 shows spinline velocity, temperature
and air velocity, temperature profiles before optimization and after opti-
mization for Newtonian model. It also shows some of intermediate profiles.
Corresponding cost functional is shown in figure 3. In this case we use
ω1 = 1, ω2 = 1, ω3 = 1.5 and ω1 = 2.5.

It can be seen that in an optimal state final temperature is below 50◦C.
The extrusion velocity drops from 16.67m/s to 12.65m/s. Optimal air tem-
perature profile is more or less close to 20◦C which we considered as a
reference temperature. In this case optimal air velocity profile is very high
near the spinneret exit point and beyond 30 cm from spinneret exit point it
almost equals to zero.

Figure 4 visualizes the optimal air velocity and air temperature profiles
in Newtonian model for different weighting coefficients.

5.2. Non-Newtonian Model. Figure 5 visualizes spinline velocity, tem-
perature and air velocity, temperature profiles before optimization and after
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Figure 3. Cost functional Newtonian model.
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Figure 4. Optimal air velocity (left), air temperature
(right) profiles in Newtonian model for different weighting
coefficients.

optimization for Non-Newtonian model. Corresponding cost functional is
shown in figure 7. Here we use ω1 = 1, ω2 = 1, ω3 = 1.5 and ω1 = 2.5.

Likes Newtonian model, in the optimal state final temperature is below
50◦C and optimal air temperature profile is more or less close to 20◦C. The
extrusion velocity drops from 16.67m/s to 10.42m/s. In the optimal state,
the air velocity gets high value near the spinneret exit point and just after
this point it almost close to zero.

Figure 6 shows optimal air velocity and air temperature profile in non-
Newtonian model for different cost coefficients.

6. Conclusions

We studied an optimal control problem for a melt spinning process.
The aim was to maximize the outflow, minimize the air velocity and air
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Figure 5. Spinline velocity (up-left) and temperature (up-
right) profile, initial (dash) after optimization (solid) and in-
termediate (dot). Air velocity (down-left) and temperature
(down-right) profile, initial (dash) after optimization (solid)
and intermediate (dot).
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Figure 6. Optimal air velocity (left), air temperature
(right) profiles in non-Newtonian model for the different
weighting coefficients.

temperature and get final spinline temperature below fiber solidification
temperature. Here, Newtonian and Non-Newtonian models were considered.
Defining the cost functional we converted this problem into the constrained
optimization problem and derived the first order optimality system. For
the numerical solution we proposed steepest descent algorithm based on
adjoint variable method. For the step size control, polynomial type model
was considered. Different cost coefficients were considered in both cases.

In an optimal profile, final temperature was below 50◦C in both models
where the air temperature is also reduced to more or less equal to 20◦C
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Figure 7. Cost functional Non-Newtonian model.

(which we used as a reference temperature). Concerning air velocity, both
cases need it only initially (up to 0.2 m). It can be noticed both cases initial
velocity decreased. Clearly, this is success concerning the cost.
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