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Introduction

In recent years a considerable amount of research has been devoted to the

approximation of functions on the surface of the Earth, from discrete data.

These functions can be a representation or a model of environmental phenom-

ena such as magnetic fields, gravitational fields, ocean circulations, melting

polar ice caps, storm or hurricane formation and dynamics, etc. The data are

acquired by terrain stations spread all over the world or by artificial satellites

such as CHAMP, GRACE, and GOCE etc.

Traditionally, the approximation of functions on the sphere (as a model of the

Earth) has been done by Fourier theory in form of orthogonal expansions. To

be more concrete, the approximation of functions on the sphere was based on

the spherical harmonics, which perform a closed orthonormal system of func-

tions in the space of all square integrable functions on the sphere. Because of

the orthogonality of the spherical harmonics, they are ideally localized in the

frequency domain. Moreover, for those applications with polynomial struc-

ture, the spherical harmonics provide a good tool for global approximation. In

spite of these attractive properties, the spherical harmonics have some disad-

vantages. For example, they don’t show space localization at all, and a local

change of measurements affects all Fourier coefficients. They also show huge

oscillation for larger degrees. In addition, the spherical harmonics are not

the appropriate tool for approximation of problems with local dense data on

the sphere. The opposite extreme to the spherical harmonics, in the sense of

ideal frequency localization, is the Dirac functional. Because the Dirac func-

tional contains all frequencies in equal share, it does not show any frequency

localization, but its space localization is ideal.
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Radial basis functions (RBF) provide a compromise between space and fre-

quency localization. They are not new even on the sphere. Indeed, it should

be pointed out that combined polynomial (spherical harmonic) and radial ba-

sis function approximations have often been studied especially in the context

of conditionally (strictly) positive definite functions.

One advantage of using radial basis functions methods for the approximation

of functions is that although the radial basis functions are defined as multi-

variate functions, they are actually one-dimensional functions depending on

the norm of the argument. Because the norm of the argument is a geometric

quantity, it is independent of the choice of the coordinates. Therefore, the ra-

dial basis functions methods are independent of the choice of the coordinates

and consequently, these methods have no artificial boundaries or singularities

intrinsic in other methods of the approximation of functions. Another advan-

tage of the radial basis functions is that the localization in frequency/space

domain can be adapted to the data situation. Unfortunately, because of the

uncertainty principle (cf., [31], [37], [72]), the space and the frequency domain

cannot be made arbitrarily small at the same time, i.e., the reduction of the

frequency localization leads to an enhancement of the space localization, and

vice versa. Thus, the space and the frequency domain localization should be

compromised. This can be achieved by the so-called multiscale approximation

based on the radial basis functions (see, e.g., [27], [34], [40], [41], [68]). These

methods use the radial basis functions at different scales to construct different

stages of the space/frequency localization, thus, a trade-off between the space

and the frequency localization can be found. This idea led to the wavelet

theory during the last decades.

Various concepts of spherical wavelets have been developed by the Geomath-

ematics Group, Technical University of Kaiserslautern ([40], [47], [48], [34],

[35]). As in classical wavelet theory, the mother wavelets are based on the

spherical radial basis functions, where moving the “center” of the spherical

radial basis functions around the sphere, i.e., rotation can be interpreted as

counterpart to translation. For the dilation, different approaches have been

established: In a first one (cf., [47], [48]), starting with a family of scaling func-

tions corresponding to a family of singular integrals, the dilation is understood

as the scaling parameter of the scaling functions. In a second one (as proposed,

e.g., [40]), starting with a continuous version of the Legendre transform which

is monotonically decreasing on [0,∞) and continuous at 0 with value 1, say,

γ0 : [0,∞) → R, the dilation is defined as the usual dilation of this function,

i.e., γj(x) = γ0(2
−jx).
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It should be mentioned that, there exist other approaches for designing spher-

ical wavelets. For example, by Dahlke, Dahmen, Schmitt and Weinreich ([19],

[103]) a C(1)-wavelet basis is constructed in form of a tensor product of two

types of refinable functions: the periodized exponential splines and the bound-

ary corrected polynomial B-splines. Lyche and Schumaker ([60], [61]) also have

done similar work by using L-splines. Other wavelets on the sphere based on

tensor products of Euclidian wavelets involving trigonometric wavelets were

proposed by Potts and Tasche [75]. There are several publications based on

uniform approximation of the sphere by regular polyhedra. For example, start-

ing with a triangulation of the sphere, the spherical Haar-type wavelets were

constructed on triangles (see, e.g., [13], [74], [81], [93], and [99]). A theoretical

continuous wavelet transform on the sphere is presented by Dahlke and Maass

[20] and Holschneider [52] and Antoine and Vandergheynst [4] and Antoine,

Demanet, Jaques and Vandergheynst [3]. A discretization of [3] and [4] is

realized by Bogdavova, Vandergheynst, Antoine, Jaques and Morvidone [12].

Recently, Roşca [82] has proposed a wavelet basis on the sphere by means of

radial projection.

In this work we have developed new biorthogonal systems of zonal functions

(spherical radial functions) which are locally supported. In more detail, we

start with an isolatitude spherical gird, e.g., XN = {ξij|i ∈ I, j ∈ J }, where j

is corresponding to the latitudes. Then by using an arbitrary family of locally

supported kernels, we construct a dual family of locally supported kernels

such that the primal and the dual kernels are biorthogonal, i.e., if {Kj}j∈J
and {K̃j}j∈J are the primal and dual kernels, respectively, then the following

conditions should be valid:(
Kj(ξij , ·) , K̃j′(ξi′j′ , ·)

)
L2(Ω)

= δii′δjj′ , i, i′ ∈ I, j, j′ ∈ J .

This system of biorthogonal scaling functions serves us as scaling functions

at the finest level of a multiresolution analysis for a finite dimensional space

spanned by the primal or the dual scaling functions at the finest scale.

In addition, the biorthogonal system of zonal functions enables us to con-

struct a new kind of spherical wavelets (see [43]) which are inherently locally

supported. Once more, one advantage of these wavelets is that their con-

struction is based on a biorthogonal system of zonal functions, which gives us

almost all advantages of an orthogonal approach. Another advantage is that

the wavelets and the scaling function are based on zonal kernel functions so

that this approach is well–suited for the solution and the regularization of the

rotation–invariant pseudodifferential equations. Finally, because the scaling
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equations are established by only a few coefficients, we end up with a fast and

economical wavelet transform which is completely similar to the algorithms

known from tensor product approaches of Euclidean wavelet theory.

Outline

The background material which is needed during this thesis is summarized in

Chapter 1. The basic notation and definitions and some well-known results

useful for an easy understanding of the whole work are briefly recapitulated.

Moreover, we introduce some differential operators and special functions like

Legendre polynomials, Gegenbauer polynomials, spherical harmonics. Fur-

thermore, we turn to Sobolev spaces and pseudodifferential operators. Finally,

spherical singular integrals and their properties are presented.

In Chapter 2 multiscale approximation based on locally supported zonal func-

tions is presented. Spherical radial basis functions on the sphere are intro-

duced. These functions are a powerful tool for the approximation of functions

on the sphere. Moreover, necessary and sufficient conditions for the (strictly)

positive definiteness of zonal functions on Euclidian spaces and on the sphere

are listed. The smoothed Haar functions and their properties are recapitu-

lated. In addition, by using the Fourier transform of the Haar function, an

explicit formula for their Legendre transform is developed. We conclude the

chapter with the definition of Wendland functions on the sphere. The Wend-

land functions on the sphere as a new strictly positive definite class of locally

supported zonal kernels are developed. Wendland functions are understood as

scaling functions in a multiscale procedure. At the end of this chapter, two

kinds of wavelets are presented, namely wavelets based on the spherical up

functions and spherical difference wavelets.

Chapter 3 deals with the arranging of large (structured) point-sets on the

sphere. Some spherical grids like the regular grid, the quadratic grid, the

Kurihara grid and the block grid are investigated. All these spherical grids are

employed to construct a system of biorthogonal locally supported kernels.

The construction of a system of biorthogonal locally supported zonal kernels

on the sphere is the aim of Chapter 4. For a given family of primal locally

supported kernels on an isolatitude grid, we construct a family of dual locally

supported kernels such that the primal and the dual kernels form a system

of biorthogonal locally supported kernels. The method is built in such a way

that any dual locally supported kernel is a linear combination of the interme-

diate kernels with unknowns coefficients. Numerically, the coefficients within
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the linear combination can be found by solving a moderate linear system of

equations (about 15-25 equations) for each dual kernel.

Chapter 5 is devoted to a new type of spherical wavelets based on the biorthog-

onal locally supported zonal kernels. These wavelets can be constructed on a

hierarchical grid like the Kurihara grid, the block grid (cf. [43]) or the so-

called HEALPix (see, e.g., [50]). In this thesis, however, we only focus on the

wavelets constructed on the block grid. Three kinds of wavelets associated

with three directions (east-west, north-south and diagonal) are discussed. A

multiresolution analysis for the finite dimensional space spanned by the scaling

functions at the scale zero is developed. The chapter ends with examples of

the fast wavelet transforms for two trial functions.

Finally, in Chapter 6 we summarize the results obtained throughout this thesis

and sketch an outlook for further work and challenges.





Chapter 1

Preliminaries

In this chapter, we briefly introduce the notation required in this work. We

review the basic facts which are necessary to motivate and state the main parts

of this thesis. For notation and more details, the reader is referred to [34] and

the literature therein.

1.1 Notation

We denote the sets of positive integers, integers, and real numbers by N, Z,

and R, respectively. The set of all non-negative integer numbers is denoted by

N0. Let R3 denote the three-dimensional Euclidean space. We use x, y, z, . . .

to represent the elements of R3.

Let ε1, ε2, ε3 be the canonical orthonormal basis in R3:

ε1 =


1

0

0

 , ε2 =


0

1

0

 , ε3 =


0

0

1

 .

If x, y ∈ R3 with x = (x1, x2, x3)
T and y = (y1, y2, y3)

T , then x · y represents

the Euclidean inner product, and x∧ y denotes the vector product. Moreover,

the Euclidean norm of x is denoted by |x|. In detail,

x · y = xT · y = x1y1 + x2y2 + x3y3,
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x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)
T ,

|x| =
√
x · x =

√
x2

1 + x2
2 + x2

3.

The unit sphere around the origin in R3 is denoted by Ω. We use the Greek

alphabet ξ, η, . . . to specify the points of the unit sphere Ω in R3. Any point

ξ ∈ Ω can be parameterized by spherical coordinates as follows:

ξ =


sinϑ cosϕ

sinϑ sinϕ

cosϑ

 , ϕ ∈ [0, 2π), ϑ ∈ [0, π]. (1.1)

Using the standard notation t = cosϑ, ϑ ∈ [0, π], we find

ξ =
√

1− t2(cosϕε1 + sinϕε2) + tε3, t ∈ [−1, 1], ϕ ∈ [0, 2π). (1.2)

For later use, we introduce local polar coordinates by using the unit vectors

εr, εϕ and εt = −εϑ. Usually, this system also refers to a local moving triad

on the unit sphere Ω. As is well-known, the relation between the local polar

coordinates and the standard spherical coordinates on the unit sphere Ω is

explicitly given by

εr(ϕ, t) =


√

1− t2 cosϕ
√

1− t2 sinϕ

t

 , (1.3)

εϕ(ϕ, t) =


− sinϕ

cosϕ

0

 , (1.4)

εt(ϕ, t) =


−t cosϕ

−t sinϕ
√

1− t2

 , (1.5)
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where ϕ ∈ [0, 2π) and t ∈ [−1, 1] with t = cosϑ according to (1.1).

In the following, we briefly introduce some differential operators. A more

detailed description of these operators can be found in [34] and [38]. The

gradient operator is given by

∇x =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)T

, (1.6)

and its representation in local polar coordinates x = rξ, ξ ∈ Ω, is known to

be

∇x =
∂

∂r
ξ +

1

r
∇∗, (1.7)

where ∇∗ denotes the surface gradient of the Ω. Its representation in local

polar coordinates x = rξ, ξ ∈ Ω, is given by

∇∗
ξ = εϕ 1√

1− t2
∂

∂ϕ
+ εt

√
1− t2

∂

∂t
. (1.8)

Another important differential operator is the Laplace operator ∆ in R3 defined

in Cartesian coordinates by

∆x =

(
∂

∂x1

)2

+

(
∂

∂x2

)2

+

(
∂

∂x3

)2

, (1.9)

It can be written in terms of polar coordinates as follows:

∆x =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗

ξ , (1.10)

where ∆∗
ξ is the Beltrami operator on the unit sphere Ω at the point ξ:

∆∗
ξ =

∂

∂t
(1− t2)

∂

∂t
+

1

1− t2

(
∂

∂ϕ

)2

. (1.11)

Next, we introduce the operator L∗ξ , i.e., the surface curl gradient on the unit

sphere Ω at ξ, as follows:

L∗ξ = −εϕ
√

1− t2
∂

∂t
+ εt 1√

1− t2
∂

∂ϕ
. (1.12)
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Symbol Differential operator

∇x Gradient operator at x

∆x = ∇x · ∇x Laplace operator at x

∇∗
ξ Surface gradient on Ω at ξ

L∗ξ = ξ ∧∇∗
ξ Surface curl gradient on Ω at ξ

∆∗
ξ = ∇∗

ξ · ∇∗
ξ = L∗ξ · L∗ξ Beltrami operator on Ω at ξ

∇∗· Surface divergence on Ω at ξ

L∗· Surface curl on Ω at ξ

Table 1.1: Differential operators

In Table 1.1, we summarized those differential operators (in coordinate free

representation) which are needed in this thesis.

We use capital letters F, G,. . . for scalar functions and C(k)(Ω), 0 ≤ k ≤ ∞,

for the space of scaler functions F : Ω → R possessing k times continuous

derivatives on the unit sphere Ω. In particular, C(Ω)(= C(0)(Ω)) is the set

of all scalar-valued continuous functions on Ω. As is well-known, C(Ω) is a

normed space equipped with the norm

‖F‖C(Ω) = sup
ξ∈Ω

| F (ξ) | . (1.13)

The space Lp(Ω) is the set of all measurable functions F : Ω → R such that

the quantity

‖F‖Lp(Ω) =

(∫
Ω

| F (ξ) |p dω(ξ)

)1/p

, 1 ≤ p <∞, (1.14)

is finite. The space L2(Ω) is a Hilbert space with respect to the inner product

given by

(F,G)L2(Ω) =

∫
Ω

F (ξ)G(ξ) dω(ξ). (1.15)

L2(Ω) is the completion of C(Ω) with respect to ‖ · ‖L2(Ω), that is

L2(Ω) = C(Ω)
‖·‖L2(Ω) . (1.16)
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For convenience, X (Ω) denotes either the space C(Ω) or L2(Ω) with the corre-

sponding inner product.

1.2 Polynomials

In this section we state some important properties of the Legendre polynomials

and the Gegenbauer (ultraspherical) polynomials. Both of them can be con-

sidered as special cases of the Jacobi polynomials (see, e.g., [57] or [100]). In

addition, we introduce the scalar spherical harmonics. Some of the most im-

portant results of the scalar spherical harmonics are mentioned. More details

about spherical harmonics can be found, e.g., in [21], [62], and [100].

We begin our considerations with the Legendre polynomials.

1.2.1 Legendre Polynomials

As mentioned before, Legendre polynomials are special cases of the Jacobi

polynomials P
(α,β)
n by letting α = β = 0 (For more details see, e.g., [62]). The

Legendre polynomial can be uniquely determined by the following properties:

• Pn, n ∈ N0, is a polynomial of degree n on the interval [−1, 1],

•
∫ 1

−1
Pn(t)Pm(t) dt = 0 for n 6= m, n,m ∈ N0,

• Pn(1) = 1 for all n ∈ N0.

The second property guarantees that the Legendre polynomials are orthogonal.

Note that they are not orthonormal, since we have∫ 1

−1

Pn(t)Pm(t) dx =
2

2n+ 1
δnm, n,m ∈ N0,

where δnm is the Kronecker symbol defined by

δnm =

 1, for n = m

0, for n 6= m
. (1.17)
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We denote the orthonormal Legendre polynomials by P ∗
n , i.e.,

P ∗
n(t) =

√
2n+ 1

2
Pn(t), n ∈ N0.

In other words, the system {P ∗
n}n=0,1,... forms an orthonormal system with

respect to the inner product in L2[−1, 1],

(P ∗
n , P

∗
m)L2[−1,1] =

∫ 1

−1

P ∗
n(x)P ∗

m(x) dx = δnm.

There is another way to define the Legendre polynomials by using the longitude

independent part of the Beltrami operator (1.11). The longitude independent

part of the Beltrami operator which is referred to the Legendre operator Lt, is

defined by:

Lt =
d

dt
(1− t2)

d

dt
. (1.18)

The Legendre polynomials Pn : [−1, 1] → R of degree n, n ∈ N0 are uniquely

defined as the infinitely often differentiable eigenfunctions of the Legendre

operator Lt corresponding to the eigenvalues −n(n+ 1), that is

(Lt + n(n+ 1))Pn(t) = 0, t ∈ [−1, 1],

which satisfy Pn(1) = 1.

It can be shown that the Legendre polynomials satisfy the Rodriguez formula:

Pn(t) =
1

2nn!

(
d

dt

)n

(t2 − 1)n. (1.19)

Based on this formula, it can be seen that the following relations are valid for

n ≥ 1, t ∈ [−1, 1] (cf., e.g., [34]):

(2n+ 1)

∫ t

1

Pn(x) dx = Pn+1(t)− Pn−1(t) (1.20)

P ′
n+1(t)− tP ′

n(t) = (n+ 1)Pn(t), (1.21)

(t2 − 1)P ′
n(t) = ntPn(t)− nPn−1(t), (1.22)
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(n+ 1)Pn+1(t) + nPn−1(t)− (2n+ 1)tPn(t) = 0. (1.23)

Recall that by using the recursive formula (1.23) and the two first Legendre

polynomials, P0(t) = 1, P1(t) = t, it is also possible to introduce the Legendre

polynomials.

From the Rodriguez formula (1.19) we obtain

Pn(t) =
1

2n

bn/2c∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
tn−2k (1.24)

=
1

2n

bn/2c∑
k=0

(−1)k

(
n

k

)(
2n− 2k

n

)
tn−2k, (1.25)

where brc is the floor function that gives the largest integer less than or equal

to r. In (1.24) by setting t = cosϑ we obtain

|Pn(cosϑ)| ≤ 1

2n

bn/2c∑
k=0

(−1)k

(
n

k

)(
2n− 2k

n

)
= Pn(cos 0) = 1, (1.26)

therefore, for n ∈ N0, it follows that

|Pn(t)| ≤ 1, −1 ≤ t ≤ 1. (1.27)

From (1.24), it is clear that the Legendre polynomial Pn(t) is an even function

if n is even, and is an odd function if n is odd, i.e.,

Pn(−t) = (−1)nPn(t), n ∈ N0. (1.28)

The set {Pn}n∈N0 is complete in L2[−1, 1] with respect to ‖ · ‖L2[−1,1] and

closed in the space of all continuous functions on the interval [−1, 1], C[−1, 1],

with respect to ‖ · ‖C[−1,1]. By virtue of the completeness and the orthogonal-

ity properties of the Legendre polynomials, the Legendre polynomials can be

interpreted as a basis in L2[−1, 1] as follows:
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If F is any function of class L2[−1, 1], then the Legendre series of the function

F is given by

F =
∞∑

n=0

2n+ 1

2
F∧(n)Pn, (1.29)

where F∧(n) is the Legendre coefficient of function F given by

F∧(n) = (F, Pn)L2[−1,1] = 2π

∫ 1

−1

F (t)Pn(t) dt, n ∈ N0. (1.30)

Note that, the equality in the relation (1.29) is in the L2[−1, 1]-sense, i.e.,

lim
N→∞

∥∥∥∥∥F −
N∑

n=0

2n+ 1

2
F∧(n)Pn

∥∥∥∥∥
L2[−1,1]

= 0. (1.31)

It should be mentioned that the equality in the relation (1.29) is not guaranteed

for all F ∈ Lp[−1, 1] with p ∈ [1,∞]\(4
3
, 4). For more details, see, e.g., [34].

An another method to characterize the Legendre polynomials is the following

generating series expansion:

1√
1− 2rt+ r2

=
∞∑

n=0

rnPn(t), (1.32)

where r ∈ (−1, 1) and t ∈ [−1, 1].

The following relation, is known as Abel-Poisson kernel, is obtained by the

differentiation of (1.32) with respect to r, |r| < 1, |t| ≤ 1

1

4π

1− r2

(1− 2rt+ r2)
3
2

=
∞∑

n=0

2n+ 1

4π
rnPn(t). (1.33)

For later use, we introduce a class of functions in L2[−1, 1] which can be derived

from the Legendre polynomials.

Definition 1.2.1 (Associated Legendre Functions)

Let n,m ∈ N0 and m ≤ n. The function

Pn,m(t) = (1− t2)m/2 1

2nn!

(
d

dt

)n+m

(t2 − 1)n = (1− t2)m/2

(
d

dt

)m

Pn(t),

(1.34)
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is called the associated Legendre function of degree n and order m.

The associated Legendre functions with negative orders are defined as follows:

Pn,−m(t) = (−1)m (n+m)!

(n−m)!
Pn,m(t), n,m ∈ N0. (1.35)

As we mentioned before, for a fixed m the associated Legendre functions are

orthogonal but not orthonormal in L2[−1, 1], i.e.,

(Pn,m, Pl,m)L2[−1,1] =
2

2n+ 1

(n+m)!

(n−m)!
δn,l, m ≤ n, l. (1.36)

We denote the orthonormal associated Legendre functions by P ∗
n,m, i.e.,

P ∗
n,m(t) =

√
2n+ 1

2

(n−m)!

(n+m)!
Pn,m(t), m ≤ n, (1.37)

thus, we have

(P ∗
n,m, P

∗
l,m)L2[−1,1] = δnl, m ≤ n, l.

Finally, we mention the relation between the associated Legendre functions

and the Gegenbauer polynomials (see Section 1.2.2)

Pn,m(t) = (−1)m (2m)!

2mm!

(
1− t2

)m
2 C

m+ 1
2

n−m (t), m ≤ n, (1.38)

for n,m ∈ N0. More details about the associated Legendre functions and

especially the definition of Pν,µ with unrestricted µ and ν can be found in, e.g.,

[62].

1.2.2 Gegenbauer Polynomials

Gegenbauer polynomials Cλ
n(t) are special cases of the Jacobi polynomials

P
(α,β)
n (see, e.g., [2], [100]) by letting α = β = λ− 1

2
under the normalization

Cλ
n(1) =

(
n+ 2λ− 1

n

)
, (1.39)
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where λ > −1
2
. The Gegenbauer polynomials are also called ultraspherical

polynomials.

The Gegenbauer polynomials can be directly introduced by the expansion

1

(1− 2rt+ r2)λ
=

∞∑
n=0

Cλ
n(t)rn. (1.40)

If λ = 0 then Cλ
n(t) ≡ 0. The Gegenbauer polynomials are orthogonal with

respect to the weight function (1 − t2)λ− 1
2 when λ > −1

2
. The orthogonality

relation for λ > −1
2

reads as follows:∫ 1

−1

Cλ
n(t)Cλ

m(t)(1− t2)λ− 1
2 dt =

√
π Γ(λ+ 1

2
)

(λ+ n)Γ(λ)
Cλ

n(1) δnm, λ 6= 0. (1.41)

The tree-term recurrence relation for the Gegenbauer polynomial is given by

nCλ
n(t)− 2(n+ λ− 1) t Cλ

n−1(t) + (n+ 2λ− 2)Cλ
n−2(t) = 0, (1.42)

for n ≥ 2 and Cλ
0 (t) = 1, Cλ

1 (t) = 2λt.

It is well known that the Gegenbauer polynomials are a solution of the following

differential equation

(1− t2)
d2y

dt2
− (2λ+ 1)t

dy

dt
+ n(n+ 2λ)y = 0. (1.43)

If t ∈ [−1, 1] and λ > 0, then

|Cλ
n(t)| ≤ Cλ

n(1). (1.44)

If Tn(t) denotes the Chebyshev polynomial of the first kind (see, e.g., [62],[1])

then we have

lim
λ→0

Cλ
n(t)

Cλ
n(1)

= Tn(t). (1.45)

Formulas for the integral and the derivative of the Gegenbauer polynomials

are

2(n+ λ)

∫
Cλ

n(t) dt = Cλ
n+1(t)− Cλ

n−1(t), (1.46)∫
Cλ

n(t) dt =
1

2(λ− 1)
Cλ−1

n+1(t), (1.47)

d

dt
Cλ

n(t) = 2λCλ+1
n−1(t). (1.48)
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Finally, the relation between the Gegenbauer polynomials and the associated

Legendre functions (see Section 1.2.1) is known to be

Cλ
n(t) =

(
n+ 2λ− 1

n

)
Γ(λ+

1

2
)

(
t2 − 1

4

) 1
4
−λ

2

P
1
2
−λ

n+λ− 1
2

(t). (1.49)

Especially, if λ = 1
2
, then we have

C
1
2
n (t) = Pn(t), t ∈ R. (1.50)

1.2.3 Spherical Harmonics

This section is devoted to the definition of spherical harmonics and the recapit-

ulation of their main properties. There are various ways to introduce spherical

harmonics. The standard way to introduce spherical harmonics is the restric-

tion of homogeneous harmonic polynomial to the sphere Ω (cf. [34]). For

more details and further references to the literature, see [34], [70], [71] and the

references therein.

Let Hn be a homogeneous polynomial of degree n in R3, i.e.,

Hn(λx) = λnHn(x), x ∈ R3, λ ∈ R,

Furthermore, let Hn be harmonic, that is Hn satisfies the Laplace differential

equation

∆xHn(x) = 0, x ∈ R3.

Then the set of all homogeneous harmonic polynomial of degree n is denoted

by Harmn(R3). The dimension of Harmn(R3) is known to be 2n+ 1.

Definition 1.2.2 (Spherical Harmonics)

Let Hn be in Harmn(R3). The restriction Yn = Hn|Ω is called a spherical

harmonic of degree n. The space of all spherical harmonics of degree n is

denoted by Harmn(Ω).
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Suppose that Hn ∈ Harmn(R3) and Hm ∈ Harmm(R3). By Green theorem

we have

0 =

∫
‖x‖≤1

(Hn(x)∆xHm(x)−Hm(x)∆xHn(x)) dx

=

∫
Ω

(
Hn(ξ)

∂

∂r
Hm(rξ)−Hm(ξ)

∂

∂r
Hn(rξ)

)∣∣∣∣
r=1

dω(ξ)

= (n−m)

∫
Ω

Yn(ξ)Ym(ξ) dω(ξ).

Thus, it is clear that spherical harmonics of different degrees are orthogonal in

the sense of the L2(Ω)−inner product. The dimension of Harmn(Ω) is equal

to the dimension of Harmn(R3), i.e., dim(Harmn(Ω)) = 2n + 1. Note that

any polynomial in R3 with degree ≤ n, n ∈ N0 restricted to the sphere Ω

can be decomposed into a direct sum of the spherical harmonics of degrees

i, i = 0, . . . , n. If we denote the space of all spherical harmonics of degree

≤ n, n ∈ N0, by Harm0,...,n(Ω), then because of the L2(Ω)−orthogonality, we

have

Harm0,...,n(Ω) =
n⊕

j=0

Harmj(Ω), (1.51)

and dim(Harm0,...,n(Ω)) = (n+1)2. By observing this result, the Hilbert space

L2(Ω) can be decomposed into a direct sum of the spaces of spherical harmon-

ics. This fact will be discussed in detail later in the fundamental theorem of

spherical harmonic expansions.

An explicit formula for an orthonormal basis of the space Harmn(Ω) with

respect to (·, ·)L2(Ω) is presented in the following definition.

Definition 1.2.3 (Orthonormal Spherical Harmonics)

Let n ∈ N0 and k ∈ Z with −n ≤ k ≤ n. The function

Yn,k(ξ) =

√
1

π(1 + δ0k)


P ∗

n,k(cosϑ) cos(kϕ), k ≥ 0

P ∗
n,|k|(cosϑ) sin(|k|ϕ), k < 0

(1.52)

is called the normalized spherical harmonic of degree n and order k, where

ϑ ∈ [0, π] and ϕ ∈ [0, 2π) are the spherical coordinates of ξ ∈ Ω and P k∗
n are

the normalized associated Legendre functions defined in (1.37).
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From now on, we denote an orthonormal basis of the space Harmn(Ω) with

respect to (·, ·)L2(Ω) by {Yn,k}k=−n,...,n.

Obviously, Harmn(Ω) is the eigenspace of the Beltrami operator ∆∗
ξ as defined

in (1.11) corresponding to the eigenvalues (∆∗)∧(n) = −n(n+ 1), i.e.,

(∆∗
ξ − (∆∗)∧(n))Yn(ξ) = 0, ξ ∈ Ω, Yn ∈ Harmn(Ω).

The sequence {(∆∗)∧(n)}n=0,1,... is called the spherical symbol of the Beltrami

operator.

Next, we state the addition theorem for spherical harmonics. This theorem is

a bridge between the Legendre polynomials and the spherical harmonics.

Theorem 1.2.4 (Addition Theorem)

Let {Yn,k}k=−n,...,n, n ∈ N0, be a system of orthonormal spherical harmonics

of degree n with respect to (·, ·)L2(Ω), and let Pn be the Legendre polynomial of

degree n. Then, for all ξ, η ∈ Ω,

n∑
k=−n

Yn,k(ξ)Yn,k(η) =
2n+ 1

4π
Pn(ξ · η). (1.53)

An immediate consequence is

n∑
k=−n

(Yn,k(ξ))
2 =

2n+ 1

4π
. (1.54)

In the following the Funk-Hecke Formula is presented. This formula yields

a connection between the integral over the surface of the sphere Ω and the

integral over the interval [−1, 1].

Theorem 1.2.5 (Funk-Hecke formula)

Let G ∈ L1[−1, 1] and let Pn be the Legendre polynomial. Then, for all ξ, η ∈ Ω

and n ∈ N0, ∫
Ω

G(ξ · ζ)Pn(η · ζ) dω(ζ) = G∧(n)Pn(ξ · η), (1.55)

where G∧(n) is the Legendre coefficient of G, i.e.,

G∧(n) = (G,Pn)L2[−1,1].
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As a useful result of Funk-Hecke formula, we mention∫
Ω

G(ξ · η)Yn(η) dω(η) = G∧(n)Yn(ξ), Yn ∈ Harmn(Ω), (1.56)

for all ξ ∈ Ω. The relation (1.56) leads us the concept of spherical convolutions,

see, e.g., [11] or [34].

Definition 1.2.6 (Spherical Convolution)

Assume that F ∈ L2(Ω) and G ∈ L2[−1, 1]. Then the function

(F ∗G)(ξ) =

∫
Ω

G(ξ · η)F (η) dω(η), ξ ∈ Ω, (1.57)

is called the spherical convolution of F and G.

We can rewrite (1.56) by using the spherical convolution as follows:

(G ∗ Yn)(ξ) = G∧(n)Yn(ξ), G ∈ L2[−1, 1], Yn ∈ Harmn(Ω), ξ ∈ Ω. (1.58)

For later use, we define the spherical convolution of a function with itself as

follows:

Definition 1.2.7 (Iterated Spherical Convolution)

Assume that G ∈ L2[−1, 1]. The spherical convolution of function G with

itself is denoted by G(2) and defined by

G(2)(ξ · ζ) = (G ∗G)(ξ · ζ) =

∫
Ω

G(ξ · η)G(η · ζ) dω(η), ξ, ζ ∈ Ω, (1.59)

and the kth iterated spherical convolution of G is denoted and defined by

G(k)(ξ · ζ) = (G ∗G(k−1))(ξ · ζ) =

∫
Ω

G(ξ · η)G(k−1)(η · ζ) dω(η), ξ, ζ ∈ Ω,

(1.60)

for k = 3, 4, . . ..

Clearly, it follows that

(G(k))∧(n) = (G∧(n))k, n = 0, 1, . . . , k = 2, 3, . . . . (1.61)
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Remark 1.2.8

It should be noted that the concept of a spherical convolution (1.57) is funda-

mental for the theory of singular integrals that will be introduced in Section

1.4, and the singular integrals form the essential concept of spherical wavelets

(cf., e.g., [40], [46], [47], [48], [108], [35], and [92]).

The system {Yn,k}k=−n,...,n, n ∈ N0, is closed in (C(Ω), ‖ · ‖C(Ω)). That means

for each F ∈ C(Ω) and any ε > 0 there exist numbers Nε and dn,k such that∥∥∥∥∥F −
Nε∑
n=0

n∑
k=−n

dn,kYn,k

∥∥∥∥∥
C(Ω)

≤ ε. (1.62)

The system {Yn,k}k=−n,...,n, n ∈ N0 is closed in (L2(Ω), ‖ · ‖L2(Ω)). Especially

F =
∞∑

n=0

n∑
k=−n

Fn,kYn,k, (1.63)

for all F ∈ L2(Ω) with respect to ‖ · ‖L2(Ω), where Fn,k is called (spherical)

Fourier coefficients of F

Fn,k =

∫
Ω

F (η)Yn,k(η) dω(η). (1.64)

The relation (1.63) is called the orthogonal expansion (or the Fourier expansion

in terms of spherical harmonics) of F .

Most of the aforementioned results are summarized in the fundamental theorem

of spherical harmonic expansions (cf. [34]):

Theorem 1.2.9 (Fundamental Theorem of Spherical Harmonic Expansions)

The following seven statements are equivalent:

1. {Yn,k}k=−n,...,n, n ∈ N0 is closed in L2(Ω) (closure property).

2. The orthogonal expansion of any F ∈ L2(Ω) converges in the L2(Ω)−norm

to F , i.e.,

lim
N→∞

∥∥∥∥∥F −
N∑

n=0

n∑
k=−n

Fn,kYn,k

∥∥∥∥∥
L2(Ω)

= 0.
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3. Parseval’s identity holds, that is

‖F‖2
L2(Ω) = (F, F )L2(Ω) =

∞∑
n=0

n∑
k=−n

|(F, Yn,k)L2(Ω)|2,

for all F ∈ L2(Ω).

4. The extended Parseval’s identity holds, i.e.,

(F,G)L2(Ω) =
∞∑

n=0

n∑
k=−n

Fn,kGn,k

holds for all F,G ∈ L2(Ω).

5. There is no strictly larger orthonormal system containing the orthonor-

mal system {Yn,k}k=−n,...,n, n ∈ N0.

6. The system {Yn,k}k=−n,...,n, n ∈ N0 has the completeness property, i.e., if

F ∈ L2(Ω) and Fn,k = 0 for all n ∈ N0 and k = −n, . . . , n, then F = 0.

7. Any element F ∈ L2(Ω) is uniquely determined by its (spherical) Fourier

coefficients. That means if Fn,k = Gn,k for all n ∈ N0 and k = −n, . . . , n,
then F = G.

Proof:

See any monograph on functional analysis, for example, [21]. �

1.3 Sobolev Spaces and Pseudodifferential Op-

erators

In this section, we discuss pseudodifferential operators and their so-called na-

tive spaces. Pseudodifferential operators are generalizations of differential and

integral operators. To specify the reference spaces of the pseudodifferential

operators, i.e., the Sobolev spaces, there are at least two approaches. The first

approach is based on the fact that the sphere Ω is a two-dimensional differen-

tiable manifold. By using this approach one can define the Sobolev spaces on

an open subset of the sphere Ω, too. For details on the Euclidian case, see,

e.g., [53] and for the spherical case see, e.g., [98]. The second one is based
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on the Fourier theory. This approach, in our nomenclature, is much easier

than the first one. Therefore, we use the second approach to introduce the

Sobolev spaces on the sphere Ω. Our presentation owes much to [27], [29], [34]

and [32] for the extension to the harmonic case. These papers and textbooks

develop, in a considerably accurate way, the Sobolev spaces and the pseudod-

ifferential operators on the sphere Ω and provide their application preferably

in geosciences.

To introduce the Sobolev spaces, let {An} be a sequence of real numbers with

An 6= 0 for all n ∈ N0. Consider the set E({An}; Ω) of all functions F ∈ C(∞)(Ω)

of the form

F =
∞∑

n=0

n∑
k=−n

Fn,kYn,k,

satisfying

∞∑
n=0

n∑
k=−n

A2
nF

2
n,k <∞. (1.65)

We impose an inner product (·, ·)H({An};Ω) on the space E({An}; Ω) defined by

(F,G)H({An};Ω) =
∞∑

n=0

n∑
k=−n

A2
nFn,kGn,k . (1.66)

The associated norm is given by

‖F‖H({An};Ω) =

(
∞∑

n=0

n∑
k=−n

A2
nF

2
n,k

)1/2

. (1.67)

The Sobolev space is now introduced as follows:

Definition 1.3.1 (Sobolev Spaces)

The Sobolev spaceH({An}; Ω) is the completion of E({An}; Ω) under the norm

defined in (1.67), i.e.,

H({An}; Ω) = E({An}; Ω)
‖·‖H({An};Ω)

.
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Of course, H({An}; Ω) with the inner product given by (1.66) is a Hilbert

space. For convenience, we will simply write

Hs(Ω) = H

({(
n+

1

2

)s

; Ω

})
, s ∈ R. (1.68)

The relation between the norm in Hs(Ω) and L2(Ω)-norm is given by

‖F‖2
Hs(Ω) = ‖(−∆∗ +

1

4
)

s
2F‖2

L2(Ω). (1.69)

In particular, we have H0(Ω) = H({1}; Ω) = L2(Ω). Furthermore, if t < s

then Hs(Ω) ⊂ Ht(Ω) and ‖F‖Ht(Ω) ≤ ‖F‖Hs(Ω).

The next lemma states that under certain circumstances we are still dealing

with continuous functions. In order to explain this result we need, as proposed

in [34], the concept of summable sequences.

Definition 1.3.2 (Summable Sequences)

A sequence {An}n∈N0 is called summable if

∞∑
n∈N (An)

2n+ 1

A2
n

<∞, (1.70)

where N (An) is the set of all n ∈ N0 such that An 6= 0.

Lemma 1.3.3 (Sobolev Lemma)

Let {An} be summable. Then any F ∈ H({An}; Ω) corresponds to a continuous

function on Ω. If, further, F ∈ Hs(Ω) for s > k + 1, then F corresponds to a

function of class C(k)(Ω).

For more details on Sobolev spaces and the proof of the Sobolev Lemma,

see [34] for the spherical case and [32] for the case of harmonic functions

inside/outside a sphere.

In connection to Sobolev spaces, we introduce (invariant) pseudodifferential

operators.

Definition 1.3.4 (Pseudodifferential Operators)

Let {Λn}n∈N0 be a sequence of real numbers. The operator Λ : Hs(Ω) −→
Hs−t(Ω) defined by

ΛF =
∞∑

n=0

n∑
k=−n

ΛnFn,kYn,k, (1.71)
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is called a pseudodifferential operator of order t, if

lim
n→∞

|Λn|
(n+ 1

2
)t

= const 6= 0, (1.72)

for some t ∈ R. The sequence {Λn}n∈N0 is called the symbol of Λ. Moreover,

if the limit relation

lim
n→∞

|Λn|
(n+ 1

2
)t

= 0 (1.73)

holds for all t ∈ R, then the operator Λ : Hs(Ω) −→ C(∞)(Ω) is called a

pseudodifferential operator of order −∞.

It should be mentioned that the equality in (1.71) is understood in theHs−t(Ω)-

topology.

Some interesting properties of the pseudodifferential operators are valid:

(Λ′ + Λ′′)n = Λ′
n + Λ′′

n, n ∈ N0, (1.74)

(Λ′Λ′′)n = Λ′
nΛ′′

n, n ∈ N0. (1.75)

In addition, we have

ΛYn,k = ΛnYn,k, n = 0, 1, . . . , j = 1, . . . , 2n+ 1. (1.76)

The property (1.76) states that the symbol of an pseudodifferential operator

as defined by Definition 1.3.4 is independent of the order of the spherical

harmonic Yn,k, i.e., for an arbitrary but fixed n ∈ N0 we have Λn,k = Λn, for

k = −n, . . . , n.

Remark 1.3.5

Because of the property (1.76), we sometimes call an operator Λ in Definition

1.3.4 the invariant pseudodifferential operator.

Finally, we mention that for all invertible operators Λ on Hs(Ω), i.e., Λn 6= 0

for all n ∈ N0, we have

‖F‖H({ΛnAn};Ω) = ‖ΛF‖H({An};Ω), F ∈ H({ΛnAn}; Ω). (1.77)

In this case, we have H({ΛnAn}; Ω) = Λ−1H({An}; Ω). A more detailed dis-

cussion on the pseudodifferential operators on the sphere Ω can be found in

[34], [16], and [17].
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1.4 Spherical Singular Integrals

As we already stated in Subsection 1.2.3 the concept of the spherical convolu-

tion (1.2.6) enables us to introduce a powerful tool in approximation theory,

the so-called spherical singular integrals (cf., e.g., [8] and [34]).

Definition 1.4.1 (Spherical Singular Integrals)

Let {Kh}h∈(−1,1) be a family of functions in X (Ω) satisfying the conditions

K∧
h (0) = 1 for all h ∈ (−1, 1). The bounded linear operator Ih : X (Ω) → X (Ω)

given by

Ih(F ) = Kh ∗ F, F ∈ X (Ω), (1.78)

is called a spherical singular integral and {Ih}h∈(−1,1) is called a family of spher-

ical singular integrals in X (Ω) and {Kh}h∈(−1,1) is called a family of kernels of

the spherical singular integrals.

Definition 1.4.2 (Spherical Approximate Identity)

Assume that {Ih}h∈(−1,1) is a family of spherical singular integrals in X (Ω).

Then {Ih}h∈(−1,1) is called an approximate Identity in X (Ω) if

lim
h→1−

‖Ih(F )− F‖X (Ω) = 0, (1.79)

for all F ∈ X (Ω).

Recall that in Definition 1.4.1 and Definition 1.4.2, if {Kh}h∈(−1,1) ⊂ L1[−1, 1]

then X (Ω) = C(Ω), and if {Kh}h∈(−1,1) ⊂ L2[−1, 1] then X (Ω) = L2(Ω).

The following theorem presents a necessary and sufficient condition for a spher-

ical singular integral to be an approximate identity.

Theorem 1.4.3

Let {Kh}h∈(−1,1) be a family of kernels of singular integrals {Ih}h∈(−1,1) in

X (Ω). Assume that {Kh}h∈(−1,1) is uniformly bounded, i.e., there is a con-

stant M , independent of h, such that

2π

∫ 1

−1

|Kh(t)| dt ≤M, h ∈ (−1, 1). (1.80)
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Then {Ih}h∈(−1,1) is an approximate identity in X (Ω) if and only if

lim
h→1−

K∧
h (n) = 1, n ∈ N0. (1.81)

Proof:

If {Ih}h∈(−1,1) is an approximate identity in X (Ω), then (1.79) holds for every

F ∈ X (Ω), especially for all spherical harmonics Yn of degree n:

lim
h→1−

‖Ih(Yn)− Yn‖X (Ω) = 0, n ∈ N0. (1.82)

By the Funk-Hecke formula we have

Ih(Yn)(ξ) = K∧
n (n)Yn(ξ), ξ ∈ Ω, (1.83)

thus

0 = lim
h→1−

‖Ih(Yn)− Yn‖X (Ω) = lim
h→1−

|K∧
h (n)− 1| ‖Yn‖X (Ω), n ∈ N0. (1.84)

Because ‖Yn‖X (Ω) 6= 0 for all Yn 6= 0, n ∈ N0, it follows that limh→1− K̃
∧
h (n) =

1, n ∈ N0.

Conversely, suppose that (1.81) holds true. To prove that {Ih}h∈(−1,1) is an

approximate identity in X (Ω) we have to consider two cases as follows:

Case 1 : {Kh}h∈(−1,1) ⊂ L1[−1, 1].

Let Yn be an arbitrary spherical harmonic of degree n ∈ N0. Then similar to

(1.84) we have

lim
h→1−

‖Ih(Yn)− Yn‖C(Ω) = lim
h→1−

|K∧
h (n)− 1| ‖Yn‖C(Ω) = 0, n ∈ N0. (1.85)

Suppose F ∈ C(Ω) is arbitrary. Let ε > 0 be given. By the triangle inequality,

we have

‖F − IF‖C(Ω) ≤ ‖F − LF‖C(Ω) + ‖LF − Ih(LF )‖C(Ω) + ‖Ih(LF )− Ih(F )‖C(Ω) .

(1.86)

Because the system {Yn,k}k=−n,...,n, n ∈ N0, is closed in (C(Ω), ‖ · ‖C(Ω)) (see

(1.62)), then there exists a linear combination

LF =
Nε∑
n=0

n∑
k=−n

dn,kYn,k (1.87)
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such that

‖F − LF‖C(Ω) ≤ min{ε
3
,
ε

3M
}, (1.88)

where M is the constant given in (1.80). Therefore, the first summand in

(1.86) can be estimated by ε/3.

Now, let

C = max
n=0,...,Nε
k=−n,...,n

|dn,k|,

then because of (1.85) there exists some h0 such that for all h ∈ [h0, 1), we

have

‖Ih(Yn,k)−Yn,k‖C(Ω) ≤
ε

3C(Nε + 1)2
, n = 0, . . . , Nε, k = −n, . . . , n. (1.89)

Hence, for the second summand in (1.86), we get

‖LF − Ih(LF )‖C(Ω) ≤
Nε∑
n=0

n∑
k=−n

|dn,k|‖Ih(Yn,k)− Yn,k‖C(Ω) ≤
ε

3
. (1.90)

Finally, to estimate the last summand in (1.86), we observe the uniform bound-

edness of {Kh}h∈(−1,1) as follows:

‖Ih(LF )(ξ)− Ih(F )(ξ)‖C(Ω) = ‖Ih(LF − F )‖C(Ω)

= ‖Kh ∗ (LF − F )‖C(Ω)

≤ ‖LF − F‖C(Ω) ‖Kh‖L1[−1,1]

= ‖LF − F‖C(Ω) 2π

∫ 1

−1

|Kh(t)| dt

≤ ε

3M
M =

ε

3

Case 2 : {Kh}h∈(−1,1) ⊂ L2[−1, 1].

From the uniform boundedness of {Kh}h∈(−1,1) and (1.27) it follows that

|K∧
h (n)| =

∣∣∣∣2π ∫ 1

−1

Kh(t) Pn(t) dt

∣∣∣∣
≤ 2π

∫ 1

−1

|Kh(t)| |Pn(t)| dt

≤ 2π

∫ 1

−1

|Kh(t)| dt ≤M,
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for all h ∈ (−1, 1) and for all n ∈ N0. Therefore,

‖F − Ih(F )‖2
L2(Ω) =

∞∑
n=0

n∑
k=−n

(1−K∧
h (n))2F 2

n,k ≤ (M + 1)2‖F‖2
L2(Ω),

for all h ∈ (−1, 1) and for all F ∈ L2(Ω). Since the upper bound (M + 1) of

|1 − K∧
h (n)| is independent of h, in other words, the limh→1− and the series

may be interchanged,

lim
h→1−

‖F − Ih(F )‖L2(Ω) =

(
∞∑

n=0

n∑
k=−n

lim
h→1−

(1−K∧
h (n))2F 2

n,k

) 1
2

= 0

for all F ∈ L2(Ω). �

We point out that for the non-negative kernels {Kh}h∈(−1,1) the condition

K∧
h (0) = 1 implies that M = 1 in (1.80).

The following theorem lists the equivalent conditions for an approximate iden-

tity with non-negative kernels.

Theorem 1.4.4

Let {Kh}h∈(−1,1) be a family of non-negative kernels in X (Ω) with K∧
h (0) = 1.

Suppose that {Ih}h∈(−1,1) is the spherical singular integral corresponding to the

kernels {Kh}h∈(−1,1). Then the following statements are equivalent:

(i) {Ih}h∈(−1,1) is an approximate identity.

(ii) limh→1− K
∧
h (n) = 1 n ∈ N0.

(iii) limh→1−K
∧
h (1) = 1.

(iv) {Kh}h∈(−1,1) satisfies the “localization property”:

lim
h→1−

∫ δ

−1

Kh(t) dt = 0, for all δ ∈ (−1, 1).

Proof:

See [35] or [40]. �
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In this work, we call the non-negative family of functions {Kh}h∈(−1,1) which

satisfy one of the condition (i)-(iv), as stated in Theorem 1.4.4, a family of scal-

ing functions in X (Ω). In other words, a family of scaling functions generates

a family of approximate identity operators.



Chapter 2

Multiscale Approximation by

Locally Supported Zonal

Kernels

During the last decades, many geoscientists have been using satellites to gather

data from the Earth. These scientific satellites collect a huge amount of data

and send them stations on the Earth’s surface. This information must be

analyzed. There are various methods to analyze these data, and clearly the

specification of an adequate method to analyze these data is very important

(see, e.g., [32] for the determination of the gravity field). For example, consider

the problem of constructing a smooth function over the sphere which interpo-

lates a set of scattered points with associated real values. In other words,

given a set XN = {ξ1, . . . , ξN} of distinct points on the sphere Ω and a target

function F : Ω → R, the problem is to find an interpolant S : Ω → R such

that

S(ξi) = F (ξi), i = 1, . . . , N. (2.1)

There are different approaches to find the solution of this interpolation prob-

lem. One of the most powerful and popular tools used to find an interpolant

S that satisfies the interpolation conditions (2.1) is the radial basis functions

(RBF) approach for the sphere, and this is the main topic of this chapter

(note that in first approximation the Earth’s surface may be understood to be

spherical).
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2.1 Spherical Radial Basis Functions

A radial function, say Ψ : Rd → R, depends only on the distance between

two elements of Rd. In other words, Ψ : Rd → R is a radial function, when

Ψ(x) = ψ(d(x, x)), where ψ : R+ → R and d is a metric on Rd, e.g., the

Euclidean metric on Rd (for more details about metrics and metric spaces, see,

e.g., [83]). From the geometric point of view, a radial function Ψ in R3 can

be generated by rotating the graph of a one-dimensional function ψ : R+ → R
around the axis x = 0.

In this work, we are interested in the concept of spherical radial basis functions

(SRBF). We call the function Φ : Ω → R a spherical radial function, if Φ

depends on the geodetic distance of two points on the sphere Ω, where the

geodetic distance is defined as follows:

Definition 2.1.1 (Geodetic Distance (Metric))

The function d : Ω2 → [0, π], given by

d(ξ, η) = cos−1(ξ · η), ξ, η ∈ Ω, (2.2)

is called the geodetic distance (metric).

Remark 2.1.2

It should be mentioned that because of the equation

‖ξ − η‖ =
√

2(1− ξ · η), ξ, η ∈ Ω, (2.3)

the restriction of a radial function to the sphere Ω is a spherical radial function,

and vice versa.

Definition 2.1.3 (Zonal Function)

For given φ : [−1, 1] → R, the function of the form Kξ : Ω → R defined by

Kξ(η) = φ(ξ · η), η ∈ Ω,

is called a ξ-zonal function on Ω.

It should be mentioned that because of Remark 2.1.2, if ξ ∈ Ω is fixed, then

each spherical radial function is a zonal function on the sphere Ω, and vice

versa.
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Usually, the interpolant S in the SRBF approach is chosen to be a linear

combination of translates (rotations) of a zonal function, i.e.,

S(ξ) =
N∑

j=1

µjφ(ξ · ξj), ξ ∈ Ω, (2.4)

where φ is a zonal kernel on Ω and µj are unknowns. If we apply the inter-

polation conditions (2.1) to (2.4) then we get the following linear system of

equations:

Aµ = b, (2.5)

where

A ∈ RN×N , µ =


µ1

µ2

...

µN

 ∈ R1×N , b =


F (ξ1)

F (ξ2)
...

F (ξN)

 ∈ R1×N . (2.6)

The matrix A is sometimes called the interpolation matrix and its elements

are given by

aij = φ(ξi · ξj), ξi, ξj ∈ XN ⊂ Ω. (2.7)

To find uniquely determined unknowns µj, j = 1, . . . , N, in (2.4), the interpo-

lation matrix A should be non-singular. The non-singularity of A is dependent

on

• the position of points XN on the sphere Ω

• the special choice of the zonal kernel φ.

If for a given zonal kernel, there is a system of points XN such that the in-

terpolation matrix A is non-singular then this system of points is called the

fundamental system of points relative to the space

V = span {φ(ξi·), i = 1, . . . , N} . (2.8)

In addition, if a system of points contains a fundamental system of points

relative to the space V then the interpolation problem is clearly solvable. Such

a system of points that contains a fundamental system of points relative to the

space V is called an admissible system of points relative to the space V .
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Fundamental systems of points relative to Harm0,...,n have been investigated

by several authors. For example, Xu [110], [111] has provided some fundamen-

tal systems of points relative to Harm0,...,n. Further work about specifying

fundamental systems of points relative to Harm0,...,n can be found in [114] and

[25].

As we mentioned before, the solvability (2.5) is dependent on the choice of

the zonal kernel function. In the next section, we will characterize suitable

functions to be used in interpolation in more detail.

2.2 Positive Definiteness of Locally Supported

Kernel Functions

Schonenberg [89] in 1942 investigated the property of kernel functions on the

sphere such that the interpolation problem (2.5) is solvable. His work is based

on the orthogonal expansion of the zonal function in terms of the Gegenbauer

(ultraspherical) polynomials. Because the Legendre polynomials are easier to

handle and much more known tools than the Gegenbauer polynomials, we shall

use the orthogonal expansion of the zonal function in terms of the Legendre

polynomials.

If K ∈ L2[−1, 1], then the zonal function Kξ given by η 7−→ Kξ(η) = K(ξ · η)
is in L2(Ω). Therefore, by Theorem 1.2.9, we have

Kξ(η) =
∞∑

n=0

n∑
k=−n

K∧
ξ (n, k)Yn,k(η), η ∈ Ω. (2.9)

By the Funk-Hecke formula, we have

K∧
ξ (n, k) = K∧

ξ (n)Yn,k(η), η ∈ Ω, (2.10)

where

K∧
ξ (n) =

∫
Ω

Kξ(η)Pn(ξ · η) dω(η) = 2π

∫ 1

−1

φ(t)Pn(t) dt, n ∈ N0. (2.11)

After substituting (2.10) in (2.9) and applying the addition theorem (Theorem

1.2.4), we obtain

Kξ(η) =
∞∑

n=0

2n+ 1

4π
K∧

ξ (n)Pn(ξ · η), η ∈ Ω. (2.12)
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Obviously, the function in terms of Legendre polynomials reads as follows:

φ(t) =
∞∑

n=0

2n+ 1

4π
φ∧(n)Pn(t), t ∈ [−1, 1]. (2.13)

Now, we are able to define (strictly) positive definite functions.

Definition 2.2.1 (Positive Definite Function)

A continuous function φ : [−1, 1] → R is said to be positive definite (PD) on

the sphere Ω if, for any set XN = {ξ1, . . . , ξN} of distinct points on the sphere

Ω and an arbitrary vector µ = (µ1, . . . , µN)T , the quadratic form

µTAµ =
N∑

i=1

N∑
j=1

µiµjφ(ξi · ξj) (2.14)

is non-negative.

Definition 2.2.2 (Strictly Positive Definite Function)

A continuous function φ : [−1, 1] → R is said to be strictly positive definite

(SPD) on the sphere Ω if, for any set XN = {ξ1, . . . , ξN} of distinct points on

the sphere Ω and an arbitrary non-zero vector µ = (µ1, . . . , µN)T , the quadratic

form

µTAµ =
N∑

i=1

N∑
j=1

µiµjφ(ξi · ξj) (2.15)

is positive.

Remark 2.2.3 (Native Space of (S)PD Function)

A (strictly) positive definite function can be considered as the reproducing

kernel of a uniquely determined Hilbert space (this is a theorem by Aronszajn

[5, Sec. 2], although he ascribed it to Moore [69]). We call the Hilbert space

associated with the (strictly) positive definite function ϕ as the native space

of ϕ, and denote it by Nϕ.

Sometimes we would like to point out that if the interpolation data of F in

(2.1) come from a spherical harmonic of degree ≤ m then the interpolant S be

exactly equivalent to F in every point on the sphere Ω (see, e.g., [27]). In other

words, we would like that S has the polynomial precision of order m. In such
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a case, we usually add to S in (2.4) a spherical harmonic from Harm0,...,m(Ω),

i.e.,

S(ξ) =
N∑

j=1

µjφ(ξ · ξj) +
m∑

n=0

n∑
k=−n

νn,kYn,k(ξ), ξ ∈ Ω, (2.16)

From the interpolation conditions (2.1), we get N linear equations in N +M

unknowns, where M is dim(Harm0,...,m(Ω)) = (m + 1)2, and therefore, there

are M degrees of freedom. These extra degrees of freedom can be absorbed by

adding the following constraints

N∑
j=1

µjYn,k(ξj) = 0, n = 0, . . . ,m, k = 1, . . . , 2n+ 1. (2.17)

Thus we have the following system of equations

N∑
j=1

µjφ(ξi · ξj) +
m∑

n=0

n∑
k=−n

νn,kYn,k(ξi) = F (ξi), i = 1, . . . , N,

(2.18)

N∑
j=1

µjYn,k(ξj) = 0, n = 0, . . . ,m, k = 1, . . . , 2n+ 1.

The system of equations (2.18) can be written in matrix form as follows: A Y

Y T 0

 µ

ν

 =

 b

0

 (2.19)

where A, b and µ are the same as in (2.6) and Y ∈ RN×M is the coefficient

matrix of (2.17). Thus the interpolant S in (2.16) can be uniquely found if

and only if the matrix  A Y

Y T 0

 (2.20)

is regular.

Definition 2.2.4 (Conditionally Positive Definite Function)

A continuous function φ : [−1, 1] → R is said to be conditionally positive

definite of order m on the sphere Ω if, for any set XN = {ξ1, . . . , ξN} of
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distinct points on the sphere Ω and all vectors µ = (µ1, . . . , µN)T satisfying

N∑
j=1

µjYn,k(ξj) = 0, n = 0, . . . ,m, k = 1, . . . , 2n+ 1, (2.21)

the quadratic form

µTAµ =
N∑

i=1

N∑
j=1

µiµjφ(ξi · ξj) (2.22)

is non-negative.

Definition 2.2.5 (Conditionally Strictly Positive Definite Function)

A continuous function φ : [−1, 1] → R is said to be conditionally strictly

positive definite of order m on the sphere Ω if, for any set XN = {ξ1, . . . , ξN}
of distinct points on the sphere Ω and all non-zero vectors µ = (µ1, . . . , µN)T

satisfying

N∑
j=1

µjYn,k(ξj) = 0, n = 0, . . . ,m, k = 1, . . . , 2n+ 1, (2.23)

the quadratic form

µTAµ =
N∑

i=1

N∑
j=1

µiµjφ(ξi · ξj) (2.24)

is positive.

In particular, a conditionally (strictly) positive definite function of order m =

−1 is understood to be a (strictly) positive definite function.

Now the question is: under which conditions is a zonal function (strictly)

positive definite? As we mentioned before, the first work in this context is due

to Schoenberg [89]. The following theorem is Schoenberg’s result formulated

in terms of the Legendre polynomials expansion.

Theorem 2.2.6 (Necessary and Sufficient Conditions for PD)

Let φ : [−1, 1] → R be continuous. Suppose that the Legendre coefficients of φ

satisfy
∞∑

n=0

2n+ 1

4π
φ∧(n) <∞. (2.25)

Then, φ is positive definite if and only if φ∧(n) ≥ 0.
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As pointed out in the last section, for the solvability of (2.5) we need the strictly

positive definiteness of the zonal kernel φ. The following theorem states an

equivalent condition for the strictly positive definiteness.

Theorem 2.2.7

Let φ : [−1, 1] → R be continuous. Suppose that the Legendre coefficients of φ

satisfy
∞∑

n=0

2n+ 1

4π
φ∧(n) <∞. (2.26)

Then φ is strictly positive definite if and only if the set {φ(ξ1·), . . . , φ(ξN ·)} is

linearly independent for any choice of pairwise distinct points ξ1, . . . , ξN ∈ Ω.

Proof:

See [34] or [91]. �

In [112], Xu and Cheney have shown that if all the Legendre coefficients φ∧(n)

in (2.13) are positive, then the function φ is strictly positive definite on the

sphere Ω. In [91], Schreiner has improved the result of Xu and Cheney: if the

function φ is positive definite and finitely many of the Legendre coefficients are

zero then φ is strictly positive definite on the sphere Ω. Another important

result for strictly positive definiteness is obtained by Chen, Menegatto and

Sun [15]. In the next theorem, we state their result for the sphere Ω.

Theorem 2.2.8 (Necessary and Sufficient Conditions for SPD)

Let φ : [−1, 1] → R be continuous. Suppose that φ admits the uniformly

convergent series expansion

φ(t) =
∞∑

n=0

2n+ 1

4π
φ∧(n)Pn(t), t ∈ [−1, 1]. (2.27)

Then, φ is strictly positive definite if and only if the set of indices {n ∈
N0|φ∧(n) > 0} contains infinitely many odd integers as well as infinitely many

even integers.

For more discussion on the (strictly) positive definite function on the sphere,

we refer to [80], [79], [64], [65], [15] and the references therein.

Some remarks should be made:
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Remark 2.2.9

Theorem 2.2.8 is also valid for the m-dimensional sphere, m ≥ 2, but it is not

valid for the one-dimensional sphere. In the paper [97] a sufficient condition

for strictly positive definiteness on the circle is given. Moreover, a necessary

and sufficient condition for strictly positive definite kernels on a subset of the

complex plane can be found in [66].

Remark 2.2.10

The restriction of a strictly positive definite function on R3 to the sphere Ω is

a strictly positive definite function on the sphere Ω. In other word if ψ is a

strictly positive definite function on R3 then φ(t) = ψ(
√

2− 2t), t ∈ [−1, 1] is

a strictly positive definite function on the sphere Ω. This is also valid for the

restriction of conditionally strictly positive definite functions to the sphere.

According to Remark 2.2.10, it is possible to extend all results valid in R3 to

the sphere. Before we extend some of these results to the sphere, we mention

the following definition (see, e.g., [24]).

Definition 2.2.11 (Completely Monotone on the Sphere)

A continuous function φ : [−1, 1] → R is said to be completely monotone on

the sphere Ω if φ ∈ C∞(0,∞) and (−1)k dk

dtk
φ(
√
t) ≥ 0, t ∈ (0,∞), for every

k ∈ N0.

Schoenberg [88] has characterized positive definite functions on Rd. As an

extension of Schoenberg’s work, Micchelli [67] stated a sufficient condition for

conditionally positive definite functions on Rd. According to Remark 2.2.10

and Micchelli’s work, we conclude the following theorem.

Theorem 2.2.12

Let φ be continuous on [0,∞) and (−1)mφ(m) be completely monotone on the

sphere Ω and dm+1

dtm+1φ(
√
t) 6= const. Then φ(

√
2− 2t), t ∈ [−1, 1] is condition-

ally strictly positive definite of order m on the sphere Ω.

Gue et al. [51] have proved that the Micchelli’s conditions are also necessary

for the conditionally positive definiteness of a function on Rd.

Another method to characterize positive definite functions is based on the

Fourier transforms of functions. One of the most celebrated works in this

context was established by Bochner [9], [10], and [11]. Here we present a

modified version of Bochner’s characterization for the radial functions on Rd.
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Theorem 2.2.13 (Modified Bochner’s Conditions for PD on Rd)

Let Φ ∈ L1(Rd) be a continuous radial function on Rd. Then Φ is positive

definite on Rd if and only if Φ is bounded and the Fourier transform of Φ,

denoted by Φ̂ and defined by

Φ̂(r) = r−
d−2
2

∫ ∞

0

Φ(t)t
d
2J d−2

2
(rt) dt, (2.28)

is non-negative and non-vanishing, where Jα(t) is the Bessel function of the

first kind.

Proof:

See [107]. �

Remark 2.2.14

We point out that if Φ ∈ L1(Rd) is a continuous radial function on Rd then

from (2.28) it is clear that the Fourier transform of Φ is also a radial function.

A list of conditionally (strictly) positive definite functions on the sphere with

their applications in geosciences can be found in Freeden et al. [34] and [45].

For a similar list of conditionally (strictly) positive definite functions on Rd,

one can refer to, e.g., [76] or [14].

Our next aim is to present a linkage between the Fourier transform of a radial

function Φ(‖ · ‖) on Rd and the Legendre transform of the restriction of Φ to

the sphere. This relation is provided by [73] and [115]. In the next theorem,

we follow the work by [115]. In our proof, we consider d = 3, where the general

case, Rd, is similar.

Theorem 2.2.15 (Relation Between Fourier and Legendre Transform)

Let Φ(‖ · ‖) and Φ̂(‖ · ‖) be in L1(R3), also suppose that

In(Φ̂) =

∫ ∞

0

J2
1
2
+n

(t)Φ̂(‖t‖)t dt, (2.29)

exists for all n ∈ N0. Then

φ∧(n) = (2π)
3
2 Id,n(Φ̂), n ∈ N0, (2.30)

where φ∧(n) is the Legendre transform of φ(x · y) = Φ(‖x− y‖)|x,y∈Ω.
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Proof:

Let x, y ∈ R3 and a = ‖x‖, b = ‖y‖ and c = ‖x − y‖ form a triangle. For

convenience, let Φ(‖z‖) = ϕ(r), where r = ‖z‖. Then from (2.28) we have

ˆ̂ϕ(c) = ϕ(c) =
1√
c

∫ ∞

0

ϕ̂(t)t
3
2J 1

2
(ct) dt

By using Gegenbauer’s addition theorem for Bessel functions (see [102, Sec.

11.4, Eq. (3)])

sin c

c
=

√
π

2

J 1
2
(c)
√
c

= π

∞∑
n=0

(n+
1

2
)
Jn+ 1

2
(a)

√
a

Jn+ 1
2
(b)

√
b

Pn(cosϑ), (2.31)

where ϑ is the angle between a and b, we have

ϕ(c) =
√

2π
∞∑

n=0

(n+
1

2
) Pn(

x · y
ab

)

∫ ∞

0

ϕ̂(t)t2
Jn+ 1

2
(at)

√
at

Jn+ 1
2
(bt)

√
bt

dt. (2.32)

Now, let x and y be on the sphere Ω, from (2.32) we obtain

ϕ(
√

2− 2x · y) = (2π)
3
2

∞∑
n=0

2n+ 1

4π
Pn(x · y)

∫ ∞

0

ϕ̂(t)t J2
n+ 1

2
(t) dt. (2.33)

Because

φ(
√

2− 2x · y) = ϕ(
√

2− 2x · y)|x,y∈Ω = Φ(‖x− y‖)|x,y∈Ω ,

by comparing the coefficients in (2.33) and (2.12) we arrive at

φ∧(n) = (2π)
3
2

∫ ∞

0

ϕ̂(t)t J2
n+ 1

2
(t) dt. (2.34)

This is the desired result. �

An immediate consequence of the last theorem is as follows:

Corollary 2.2.16 (Legendre Transforms of Two Radial Functions)

Let Φ and Ψ be two radial functions such that Φ, Ψ, Φ̂ and Ψ̂ are in L1(Rd),

also suppose that Φ̂ and Ψ̂ are strictly positive and Φ̂ ≤ cΨ̂. Then

0 < φ∧(n) ≤ ψ∧(n), n ∈ N0, (2.35)

where φ∧(n) and ψ∧(n) are the Legendre transforms of the restriction of Φ and

Ψ to the sphere, respectively.
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Proof:

Because Φ and Ψ are strictly positive definite on Rd, the integral (2.2.15) for Φ

and Ψ always exists. By applying (2.30) to Φ and Ψ, we are led to the result.

�

2.3 Zonal Finite Elements

In this section, we focus on a family of locally supported kernels, the so-called

isotropic finite elements on the sphere. In Chapter 4, we shall need them for

the construction of biorthogonal kernels. These kernels have been discussed in

more detail by [98], [87], [36], [18], [45] and [90] but, for our presentation, we

follow the work of Freeden et al. [34] and [44].

We start from the definition of the so-called smoothed Haar functions.

Definition 2.3.1 (Smoothed Haar Functions)

For h ∈ (−1, 1) and λ > −1, the piecewise polynomial function Bh,λ : [−1, 1] →
R given by

Bh,λ(t) =

 0 for t ∈ [−1, h](
t−h
1−h

)λ
for t ∈ (h, 1]

(2.36)

is called the smoothed Haar function.

Remark 2.3.2

It should be noted that for −1 < λ < 0 the function Bh,λ is unbounded.

Nevertheless it is of the class L1[−1, 1].

Let ξ ∈ Ω be fixed. Then, similar to (2.12), the ξ-zonal function Bh,λ(ξ·) :

Ω → R admits the following Legendre series expansion

Bh,λ(ξ·) =
∞∑

n=0

2n+ 1

4π
B∧

h,λ(n)Pn(ξ·), (2.37)

where

B∧
h,λ(n) = 2π

∫ 1

−1

Bh,λ(t)Pn(t) dt, (2.38)
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Figure 2.1: The smoothed Haar function Bh,λ for h = 0.9 and λ = 1

Left: ϑ 7→ Bh,λ(cosϑ), ϑ ∈ [−π, π].

Right: η 7→ Bh,λ(ξ · η) on the sphere Ω, where ξ is the North pole.

and the local support of Bh,λ is

supp Bh,λ(ξ·) = {η ∈ Ω|h ≤ ξ · η ≤ 1}. (2.39)

Figure 2.1 illustrates B0.9,1 in the plane and on the sphere Ω.

The following lemma, which is of great importance for practical purposes,

yields a recursion formula for the Legendre transform of the smoothed Haar

functions (see [17], [36]).

Lemma 2.3.3 (Recursion Formula for the Legendre Transforms)

For h ∈ (−1, 1) and λ > −1, the Legendre transforms of Bh,λ satisfy the

following recursion formula

B∧
h,λ(0) = 2π

1− h

1 + λ
(2.40)

B∧
h,λ(1) =

λ+ h+ 1

λ+ 2
B∧

h,λ(0) (2.41)

B∧
h,λ(n+ 1) =

2n+ 1

n+ λ+ 2
hB∧

h,λ(n) +
λ+ 1− n

n+ λ+ 2
B∧

h,λ(n− 1), n ≥ 1. (2.42)
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Proof:

B∧
h,λ(0) and B∧

h,λ(1) can be calculated by straightforward integration. From

(1.23), it follows that∫ 1

h

Bh,λ(t) ((n+ 1)Pn+1(t) + nPn−1(t)− (2n+ 1)tPn(t)) dt = 0, n ≥ 1.

(2.43)

Therefore,

(n+1)B∧
h,λ(n+1)+nB∧

h,λ(n−1)− (2n+1)(B∧
h,λ+1(n)−hB∧

h,λ(n)) = 0, (2.44)

for n ≥ 1. By using (1.20) and integration by parts, we obtain

(2n+ 1)(B∧
h,λ+1(n) = −(λ+ 1)(B∧

h,λ(n+ 1)−B∧
h,λ(n− 1)), n ≥ 1. (2.45)

Inserting (2.45) in (2.44) we obtain the following recurrence formula

(n+λ+2)B∧
h,λ(n+1)− (2n+1)hB∧

h,λ(n)− (λ+1−n)B∧
h,λ(n−1) = 0, (2.46)

for n ≥ 1. �

Later, we shall construct an approximate identity from the smoothed Haar

kernels, therefore, we normalize the kernel Bh,λ in the sense that its Legendre

transform of order zero be one.

Definition 2.3.4 (Normalized Smoothed Haar Functions)

For h ∈ (−1, 1) and λ > −1, the function Lh,λ : [−1, 1] → R given by

Lh,λ(t) =
1

B∧
h,λ(0)

Bh,λ(t) =

 0 for t ∈ [−1, h]

λ+1
2π(1−h)λ+1 (t− h)λ for t ∈ (h, 1]

(2.47)

is called normalized smoothed Haar function.

Similar to Lemma 2.3.3, there is also a recursion formula for the kernels Lh,λ

as follows:

L∧h,λ(0) = 1, L∧h,λ(1) =
λ+ h+ 1

λ+ 2
, (2.48)

L∧h,λ(n+ 1) =
2n+ 1

n+ λ+ 2
hL∧h,λ(n) +

λ+ 1− n

n+ λ+ 2
L∧h,λ(n− 1), n ≥ 1, (2.49)

for h ∈ (−1, 1) and λ > −1.

The following lemma presents the lower and upper bounds of the Legendre

transforms of Lh,λ In addition, it is shown that the upper bound is the least

upper bound, too.
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Lemma 2.3.5 (Bounds for the Legendre Transforms of Lh,λ)

Let h ∈ (−1, 1) and λ > −1. Then

(i) |L∧h,λ(n)| < 1, n ∈ N,

(ii) limh→1− L
∧
h,λ(n) = 1, n ∈ N0.

Proof:

Part(i) follows from the definition of the Legendre transform and (1.27).

To prove part(ii), from Bh,λ(t) ≥ 0, t ∈ [−1, 1], and by using the Second Mean

Value Theorem for integration we find

lim
h→1−

L∧h,λ(n) = lim
h→1−

2π

B∧
h,λ(0)

∫ 1

−1

Bh,λ(t)Pn(t) dt

= lim
h→1−

2πPn(t0)

B∧
h,λ(0)

∫ 1

h

Bh,λ(t) dt,

where t0 ∈ [h, 1]. Therefor, the desired result follows by Pn(1) = 1. �

Now, Lemma 2.3.5 and the concept of spherical convolution enable us to in-

troduce a singular integral on the unit sphere such that this singular integral

is an approximate identity in X (Ω).

Theorem 2.3.6

Let λ > −1. Suppose that {Lh,λ}h∈(−1,1) is a family of kernels defined by

Definition 2.3.4. Then the singular integral Ih, h ∈ (−1, 1), defined by

Ih(F ) = Lh,λ ∗ F, F ∈ X (Ω), (2.50)

is an approximate identity in X (Ω), i.e.,

lim
h→1−

‖F − Ih(F )‖X (Ω) = 0, F ∈ X (Ω). (2.51)

Next, we would like to find the Legendre transform of Bh,λ for λ > −1.
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2.3.1 Legendre Transform of Smoothed Haar Functions

Schreiner [92] has developed an explicit expression for the Legendre transform

of Bh,λ for λ ∈ N. In this section, we extend his work thereby assuming λ > −1.

The outline of our approach is as follows: first we extend the smoothed Haar

functions to the Euclidean space R3. Then we compute the Fourier transform

of the generalized smoothed Haar functions. By using Theorem 2.2.15 we

are able to find the Legendre transform of the generalized smoothed Haar

functions. Finally, we come back to the sphere Ω, i.e., we determine the

Legendre transform of Bh,λ.

Definition 2.3.7 (Generalized Smoothed Haar Functions on R3)

For λ > −1, the generalized smoothed Haar function in R3 is denoted by Φλ

and defined by

Φλ(x) = φλ(‖x‖) = (1− ‖x‖2)λ
+, x ∈ R3, (2.52)

where the (truncated power) function (t)+ is defined by

(t)+ =

 t for t ≥ 0

0 for t < 0
. (2.53)

It is clear that the support of Φλ is

supp Φλ = {x ∈ R3; ‖x‖2 ≤ 1}.

Later, we will show how to control the support of Φλ.

The following lemma gives us the Fourier transform of the radial function φλ.

Lemma 2.3.8

Let φλ be the generalized smoothed Haar functions as defined in (2.52), where

λ > −1. Then the Fourier transform of φλ is

φ̂λ(r) = 2λΓ(λ+ 1)
Jλ+ 3

2
(r)

rλ+ 3
2

. (2.54)
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Proof:

We use (2.28) to compute the Fourier transform of φλ as follows:

φ̂λ(r) =
1√
r

∫ ∞

0

φλ(t)t
3
2J 1

2
(rt) dt

=
1√
r

∫ ∞

0

φλ(
u

r
)
(u
r

) 3
2
J 1

2
(u)

1

r
du

=
1

r3

∫ ∞

0

(
1− u2

r2

)λ

+

u
3
2J 1

2
(u) du

= r−2λ−3 Iλ(r),

where

Iλ(r) =

∫ r

0

(
r2 − u2

)λ
u

3
2J 1

2
(u) du.

This integral may be found in [49, eq. 2.20]:

Iλ(r) =
Γ(λ+ 1)

23/2Γ(λ+ 5
2
)
r2λ+3

1F2

(
3

2
;

3

2
, λ+

5

2
;
−r2

4

)
,

where pFq are the hypergeometric functions (see, e.g., [1] or [102]) defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

r=0

(a1)r . . . (ap)r

(b1)r . . . (bq)r

xr, (2.55)

where the Pochhammer’s symbol (a)r is defined by

(a)r = a(a+ 1) . . . (a+ r − 1) r ≥ 1, (2.56)

and (a)0 = 1. Therefore, we have

φ̂λ(r) =
Γ(λ+ 1)

23/2Γ(λ+ 5
2
)

1F2

(
3

2
;

3

2
, λ+

5

2
;
−r2

4

)
. (2.57)

By using the cancellation rule of the hypergeometric functions

p+1Fq+1(a1, . . . , ap, c; b1, . . . , bq, c; x) = pFq(a1, . . . , ap; b1, . . . , bq; x),

and the formula ([1, eq. 9.1.69])

0F1(ν + 1;
−r2

4
) =

Γ(ν + 1)

(r/2)ν
Jν(r),
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we have

φ̂λ(r) = 2λΓ(λ+ 1)r−
3
2
−λJλ+ 3

2
(r).

This is the assertion of this lemma. �

Theorem 2.2.15 together with Lemma 2.3.8 enables us to determine the Leg-

endre transforms of φλ as follows:

Theorem 2.3.9

Let φλ be the generalized smoothed Haar functions as defined in (2.52), where

λ > −1. Furthermore, suppose that the integral∫ ∞

0

J2
n+ 1

2
(t)φ̂λ(t)t dt, (2.58)

exists, then the Legendre transform of φλ is given by

φ∧λ(n) = 3
λ+1

2 πPn,−λ−1 (1/2) , n ∈ N0. (2.59)

Proof:

From Theorem 2.2.15 we have

φ∧λ(n) = (2π)3/2

∫ ∞

0

J2
n+ 1

2
(t)φ̂λ(t)t dt,

for each n ∈ N0. By substituting (2.54) in the above relation we get

φ∧λ(n) = (2π)3/2

∫ ∞

0

J2
n+ 1

2
(t)2λΓ(λ+ 1)

Jλ+ 3
2
(t)

tλ+ 3
2

t dt

= (2π)3/22λΓ(λ+ 1)

∫ ∞

0

J2
n+ 1

2
(t)Jλ+ 3

2
(t)t1−(λ+ 3

2
) dt,

for each n ∈ N0. The integral in the last relation is known from [77, Sec.

2.12.42 Eq. 22] and with our notation we obtain∫ ∞

0

J2
n+ 1

2
(t)Jλ+ 3

2
(t)t1−(λ+ 3

2
) dt =

3
λ+1

2

2
2λ+3

2
√
π
Pn,−λ−1 (1/2) , (2.60)

for λ > −1, where Pν,µ is the generalized associated Legendre function as

defined in (1.34) (the definition of Pν,µ with unrestricted µ and ν can be found

in, e.g., [62]).
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Thus

φ∧λ(n) = 3
λ+1

2 πPn,−λ−1 (1/2) , n ∈ N0.

�

As we stated before, we would like the support of Φλ to be controllable with re-

spect to its size. Therefore, we define the generalized smoothed Haar functions

with controllable support as follows:

Φλ, ρ(x) = φλ, ρ(‖x‖) =

(
1− ‖x‖2

ρ2

)λ

+

, x ∈ R3. (2.61)

where λ > −1 and ρ ∈ (0, 2).

Let ρ =
√

2− 2h where h ∈ (−1, 1). Then the restriction of Φλ to the sphere

Ω is Bh,λ , i.e.,

φλ,
√

2−2h

(√
2− 2t

)
= Bh,λ(t), t ∈ [−1, 1]. (2.62)

In particular, φλ = B1/2,λ. Therefore, from Theorem 2.3.9 we have

Corollary 2.3.10

Let λ > −1. Then

B∧
1/2,λ(n) = 3

λ+1
2 πPn,−λ−1 (1/2) , n ∈ N0. (2.63)

It should be noted that in analogy to Theorem 2.3.9, the Legendre transform

of Φλ,
√

2−2h for arbitrary λ > −1 and h ∈ (−1, 1) can be detected, but we

postpone it for later.

2.4 Zonal Wendland Kernel Functions

In this chapter, we would like to discuss a special class of locally supported

positive definite functions on Ω. This class of functions was firstly constructed

in the Euclidian space Rd by Wendland [104], [105],[106]. In this work, we

restrict ourselves to functions on the sphere Ω. Our manipulation enables us

to control the support of these functions. To define the Wendland functions,

we need to introduce the following operators.
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Definition 2.4.1 (Operators I and D)

(i) Let ϕ be a function such that t 7→ tϕ(t) is of the class L1[0,∞). Then

we define

I(ϕ)(t) =

∫ ∞

t

rϕ(r) dr, (2.64)

for every t ≥ 0.

(ii) Let ϕ be a function of class ϕ ∈ C2(R). Then we let

D(ϕ)(t) = −1

t

d

dt
ϕ(t) (2.65)

for every t ≥ 0.

In the following, the relation between the operators I and D and their Fourier

transforms is presented.

Lemma 2.4.2 (Properties of Operators I and D)

Let Φ be a radial function on Rd, i.e., Φ(x) = ϕ(‖x‖), x ∈ Rd. Suppose that

Φ is a continuous function on Rd. If ϕ̂d denotes the Fourier transform of ϕ

on Rd as defined in (2.28), then the following statements are valid:

(i) If t 7→ tϕ(t) is of the class L1[0,∞) then DIϕ = ϕ.

(ii) If ϕ ∈ C2(R) and also ϕ′(t) ∈ L1[0,∞) then IDϕ = ϕ.

(iii) If Φ ∈ L1(Rd) then ϕ̂d = Iϕ̂d−2, d ≥ 3.

(iv) If ϕ ∈ C2(R) and also tdϕ′ ∈ L1[0,∞) then ϕ̂d = Dϕ̂d−2.

(v) If Φ ∈ L1(Rd), d ≥ 3, then Φ is positive definite on Rd if and only if Iϕ
is positive definite on Rd−2.

(vi) If ϕ ∈ C2(R) and also tdϕ′ ∈ L1[0,∞) then Φ is positive definite on Rd

if and only if Dϕ is positive definite on Rd+2.

Proof:

See [86] and [107]. �

Indeed, the operators I and D are inverse in the sense of Lemma 2.4.2. More-

over, they walk through the space dimension in steps of width 2. An extension
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of these operators with steps of arbitrary width can be found in [86] and [109].

In this work, we restrict ourselves to R3. The general case can be found in

[104].

Next, by using the operator that has been defined in (2.4.1), we define the

Wendland functions as follows:

Definition 2.4.3 (Wendland functions on R3)

For k ∈ N0, the radial function Φk : R3 → R is defined by

Φk(x) = ϕk(‖x‖) = Ik(1− ‖x‖)k+2
+ (2.66)

where the function (t)+ is given by (2.53).

From Definition 2.4.3, it is clear that supp ϕk = [0, 1].

We next list some important properties of the function ϕk defined in (2.66).

Further results can be found in [105] or [104].

Theorem 2.4.4 (Properties of Wendland functions)

(i) The function Φk is positive definite on R3.

(ii) Φk is of class C2k(R3)

(iii) ϕk is of the form

ϕk(r) =

 pk(r) for 0 ≤ r ≤ 1

0 otherwise
(2.67)

with a univariate polynomial pk of degree 3k+2. The function ϕk is of

minimal degree for given smoothness 2k on R3 and is up to a constant

factor uniquely determined by this setting.

(iv) The polynomial pk in (2.67) has the representation

pk(r) =
3k+2∑
j=0

dj,kr
j,
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where the coefficients are recursively calculable for 0 ≤ s ≤ k − 1:

dj,0 = (−1)j

(
k + 2

j

)

d0,s+1 =
k+2s+2∑

j=0

dj,s

j + 2
, d1,s+1 = 0 s ≥ 0

dj,s+1 = −dj−2,s

j
, s ≥ 0, 2 ≤ j ≤ k + 2s+ 4

Furthermore, precisely the first k odd coefficients dj,k vanish.

(v) There exist constants c1, c2 > 0, depending only on k, such that the

Fourier transforms of Φk, k ∈ N0, satisfy in the following bounds:

c1
(1 + r2)k+2

≤ ϕ̂k(r) ≤
c2

(1 + r2)k+2
, k ∈ N0, (2.68)

for each r ≥ 0, where Φk(x) = ϕk(‖x‖), x ∈ R3 and k ∈ N0.

Proof:

See [104]. �

The next section is devoted to the restriction of Wendland functions on the

sphere Ω. Moreover, we also discuss the behavior of the Legendre transform

of Wendland functions.

2.4.1 Wendland Functions on the Sphere

Because in this work we are interested in the functions on the unit sphere, thus

we define

Definition 2.4.5 (Restriction of ϕk to Ω)

For k ∈ N0, the restriction of ϕk to the sphere Ω is defined by

φk(ξ · η) = ϕk(
√

2− 2ξ · η) = Ik(1−
√

2− 2ξ · η)k+2
+ , (2.69)

where ξ and η are elements of the sphere Ω.
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k φk(t)

k = 0 φ0(t) = (1−
√

2− 2t)2
+

k = 1 φ1(t)=̇
(
1−

√
2− 2t)4

+(4
√

2− 2t+ 1
)

k = 2 φ2(t)=̇
(
1−

√
2− 2t

)6
+

(
18
√

2− 2t− 70t+ 73
)

k = 3 φ3(t)=̇
(
1−

√
2− 2t

)8
+

(
32
√

(2− 2t)3 + 8
√

2− 2t− 50t+ 51
)

Table 2.1: The functions t 7→ φk(t), k = 0, 1, 2, 3

(=̇ denotes equality up to a constant).

Moreover, let ξ · η = t then we obtain from (2.69)

φk(t) = ϕk(
√

2− 2t) = Ik(1−
√

2− 2t)k+2
+ , k ∈ N0. (2.70)

Clearly, the support of φk is [1
2
, 1]. Later we shall see how can we control the

support of φk.

In Table 2.1 the functions φk, k = 0, 1, 2, 3, are listed.

Remark 2.4.6

According to Theorem 2.4.4, the functions Φk, k ∈ N0 and consequently

ϕk, k ∈ N0 are positive definite on R3. Therefore, by using Remark 2.2.10, the

functions φk, k ∈ N0 are positive definite on the sphere Ω, too. In addition,

φk, k ∈ N0, possesses 2k continuous derivatives on the sphere Ω.

Figure 2.2 illustrates the functions ϑ 7→ φk(cosϑ), ϑ ∈ [−π
2
, π

2
], for k =

0, 1, 2, 3.

Example 2.4.7

In this example, we would like to discuss ϕ0 in more detail. We have

Φ0(x) = ϕ0(‖x‖) = (1− ‖x‖)2
+, x ∈ R3. (2.71)

By restricting ϕ0 to the sphere Ω in the form

φ0(ξ · η) = ϕ0(‖ξ − η‖)|ξ,η∈Ω,
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Figure 2.2: The function ϑ 7→ φk(cosϑ), ϑ ∈ [−π
2
, π

2
], for k = 0, 1, 2, 3.

we are led to

φ0(ξ · η) = (1− ‖ξ − η‖)2
+ = (1−

√
2(1− ξ · η))2

+, ξ, η ∈ Ω. (2.72)

Setting t = ξ · η, we, therefore, obtain

φ0(t) = (1−
√

2(1− t))2
+ =

 3− 2t− 2
√

2− 2t for 1
2
≤ t ≤ 1

0 for −1 ≤ t < 1
2

.

(2.73)

Figure 2.3 illustrates the function defined in (2.72) for fixed ξ (the North pole)

on the sphere Ω.
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Figure 2.3: The function η 7→ φ0(ξ · η) on the sphere Ω,

Where ξ is the North pole.

We now turn to the problem of finding the Fourier transforms of ϕ0. In the

next lemma, for convenience, we simply replace ϕ0 by ϕ.

Lemma 2.4.8

Let ϕ be the function defined in (2.71). Then the Fourier transform of ϕ is

ϕ̂(r) =
1

15
√

2π
1F2

(
2; 3,

7

2
;
−r2

4

)
, (2.74)

where pFq is the hypergeometric function (see, e.g., [102]) defined in (2.55).
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Proof:

We use (2.28) to compute the Fourier transform of ϕ as follows:

ϕ̂(r) =
1√
r

∫ ∞

0

ϕ(t)t
3
2J 1

2
(rt) dt

=
1√
r

∫ ∞

0

ϕ(
u

r
)
(u
r

) 3
2
J 1

2
(u)

1

r
du

=
1

r3

∫ ∞

0

(
1− u

r

)2

+
u

3
2J 1

2
(u) du

= r−5 I(r),

where

I(r) =

∫ r

0

(r − u)2 u
3
2J 1

2
(u) du. (2.75)

This integral is done in [23, Sec. 13.1, Eq. 56]:

I(r) =

√
2

π

r5

30
1F2

(
3

2
, 2;

3

2
, 3,

7

2
;
−r2

4

)
.

Therefore, we have

ϕ̂(r) =
1

15
√

2π
1F2

(
2; 3,

7

2
;
−r2

4

)
,

�

It should be noted here that the integral (2.75) has another representation (see

[49, Eq. 2.15]):

I(r) =

∫ r

0

(1− cosu)(1− cos(r − u)) du.

Thus another equivalent form for the Fourier transform of ϕ can be found:

ϕ̂(r) =
2
√

2

r5
√
π

(2r + r cos r − 3 sin r). (2.76)



2.4. Zonal Wendland Kernel Functions 63

Remark 2.4.9 (Strictly Positive Definiteness of φk)

We know that from Theorem 2.4.4, Φk, k ∈ N0 are positive definite on R3 and

by using Remark 2.2.14 the Fourier transforms of Φk, k ∈ N0 are also radial

functions. In addition, from (2.68), it follows that the function r 7→ r2ϕ̂k(t) is

of the class L1[0,∞), k ∈ N0 or equivalently Φ̂k ∈ L1(R3), k ∈ N0. Therefore,

from Theorem 2.2.15, it implies that φk, the restriction of Φk to the sphere Ω,

is strictly positive definite on the sphere Ω.

Asymptotic Behavior of Legendre Transform

To find the asymptotic behavior of the Legendre transform of φk, k ∈ N0, let

Ψs(x) =

∫
R3

eix·y

(1 + ‖y‖2)s
dy, x ∈ R3. (2.77)

Clearly, Ψ is strictly positive definite on R3 and

Ψ̂s(r) =
1

(1 + r2)s
, r ≥ 0.

In [73], it is proved that the Legendre transforms of Ψ have the following

asymptotic behavior:

ψ∧s (n) = O(n−2s− 3
2 ), (2.78)

for large n ∈ N0, where ψs is the restriction of Ψs to the sphere Ω. Therefore,

from (2.68) and Corollary 2.2.16, it follows that

φ∧k (n) = O(n−2k− 3
2 ), (2.79)

for large n ∈ N0.

Figure 2.4 illustrates the asymptotic behavior of the Legendre transform of φ0.

Remark 2.4.10 (Native Spaces of φk)

By using (2.68) and from the classical theory of Sobolev spaces (cf., e.g., [95],

[84] or [113]), it can be deduced

Nϕk
= Hk+2(R3), k ∈ N0. (2.80)
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In addition, the asymptotic behavior of the Legendre transform of φk, k ∈ N0,

implies that

Nφk
= Hk+ 3

2
(Ω), k ∈ N0, (2.81)

where φk, defined in (2.69), is the restriction of the functions Φk, k ∈ N0 to

the sphere Ω. Therefore, we can conclude that the restriction of the functions

Φk, k ∈ N0 to the sphere Ω changes the space Hs(R3) to Hs− 1
2
(Ω).
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Figure 2.4: Comparison of φ∧0 (n) and n−
3
2 for n = 30, . . . , 100.

We here point out that it is possible to perform an error analysis for the

spherical spline with the kernel φk, k ∈ N0 but we postpone it for future work

(for detailed accounts on the well-developed theory of spherical spline and its

application in geosciences, we refer to [27], [26], [101], [28], [39], [29], and [30]).
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Wendland Functions as Scaling Functions

In this section, we would like to interpret the Wendland functions as scaling

functions. We start by the following definition.

Definition 2.4.11

For k ∈ N0 and h ∈ [1
2
,∞), the function φk,h : [−1, 1] → R is defined by

φk,h(t) = Ik(1− h
√

2(1− t))k+2
+ , (2.82)

where the operator I is defined by (2.4.1).

Note that φk,h inherits the essential property of φk. In particular, φk,h possesses

2k continuous derivatives and also φk,h is strictly positive definite on the sphere

Ω.

One can see by definition (2.4.11) that

supp φk,h =

[
1− 1

2h2
, 1

]
,

for k ∈ N0 and h ∈ [1
2
,∞). Clearly, if h1 < h2 then

supp φk,h2 ⊂ supp φk,h1 .

Figure 2.5 illustrates the functions ϑ 7→ φ2,h(cosϑ), ϑ ∈ [−π, π], for h =
1
2
, 1, 2.

From now on, because of numerical purposes, we only focus on φ0,h. For

simplicity, we denote φ0,h by φh. It should be noted that many of the following

results are also valid for φk,h, k ∈ N0. In particular, Theorem 2.4.16 is also

true for the general case.

From Definition 2.4.11 for k = 0, it follows that

φh(t) =

 1 + 2h2 − 2h2t− 2h
√

2− 2t for 1− 1
2h2 ≤ t ≤ 1

0 for −1 ≤ t < 1− 1
2h2

. (2.83)

It is clear that if t ∈ [−1, 1], then

0 ≤ φh(t) ≤ 1, h ∈ [
1

2
,∞). (2.84)
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Figure 2.5: The function ϑ 7→ φ2,h(cosϑ), ϑ ∈ [−π, π], for h = 2
3
, 1, 2.

Note that φ2,h possesses four continuous derivatives.

If t ∈
(
1− 1

2h2 , 1
)
, then we have

0 < φh(t) < 1,

for h ∈ [1
2
,∞).

The following lemma shows us that, for a fixed n ∈ N0, the Legendre transform

φh is a monotonically decreasing function with respect to variable h ∈ [1
2
,∞).

Lemma 2.4.12 (Monotonicity of φ∧
h(n) w.r.t. h)

For any n ∈ N0, there exists a value h0 ∈ [1,∞) such that, for every h1, h2

with h1 ≥ h0 and h2 ≥ h0

h1 < h2 implies φ∧h1
(n) > φ∧h2

(n).
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Proof:

Let n ∈ N0 be fixed. Because the Legendre polynomial, is continuous at t = 1

and Pn(1) = 1, there is an ε > 0 such that

Pn(t) > 0, t ∈ [1− ε, 1].

Now, we choose h0 such that supp φh0 ⊂ [1− ε, 1]. Therefore, if h0 ≤ h1 < h2

we have

φ∧h1
(n)− φ∧h2

(n) = 2π

∫ 1

−1

(φh1(t)− φh2(t))Pn(t) dt

= 2π

∫ 1

1− 1

2h2
1

(φh1(t)− φh2(t))Pn(t) dt > 0.

�

An elementary integration yields

φ∧h(0) =
π

6h2
, φ∧h(1) = π

10h2 − 1

60h4
,

for h ∈ [1
2
,∞).

Our aim is to build a scaling function from φh. According our definition of

singular integrals in Section 1.4, a necessary condition for a family of functions

to be a family of scaling functions is that the Legendre transform of order zero

of these functions is one. For this reason, we normalize the functions φh in the

sense that its Legendre transform of order zero be one.

Definition 2.4.13 (Normalization of φh(t))

For h ∈ [1
2
,∞), the function Kh : [−1, 1] → R is defined by

Kh(t) =
6h2

π
φh(t).

Figure 2.6 illustrates the functions ϑ 7→ Kh(cosϑ), ϑ ∈ [−π, π], for different

values h.

An immediate result from (2.84) is that Kh(t) is uniformly bounded:
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Figure 2.6: The function ϑ 7→ Kh(cosϑ), ϑ ∈ [−π, π], for h = 1, 1.2, 1.7, 2.

Lemma 2.4.14 (Uniformly Boundedness of Kh)

The function defined in Definition 2.4.13 is uniformly bounded, i.e., there exists

a positive constant M, independent of h, such that

2π

∫ 1

−1

|Kh(t)| dt ≤M,

for h ∈ [1
2
,∞).

Proof:

Let h ∈ [1
2
,∞). From (2.84), we can conclude that

0 ≤ Kh(t) ≤
6h2

π
, h ∈ [

1

2
,∞),
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for t ∈ [−1, 1]. Thus

2π

∫ 1

−1

|Kh(t)| dt = 2π

∫ 1

1− 1
2h2

Kh(t) dt

= K∧
h (0) = 1.

�

Next, we drive a bound for the Legendre transform of Kh. In addition, we

show that this bound is the least upper bound. In other words, we prove that

the functions {Kh}h∈[ 1
2
,∞) are scaling functions.

Lemma 2.4.15

Let h ∈
[

1
2
,∞
)
. Then

(i) 0 < K∧
h (n) < 1, n ∈ N

(ii) limh→∞K∧
h (n) = 1, n ∈ N0.

Proof:

Part(i) is easy to verify, since | Pn(t) |< 1, t ∈ (−1, 1).

To prove part(ii), we have by Definition 2.4.11 that Kh(t) ≥ 0, then

lim
h→∞

K∧
h (n) = lim

h→∞
12h2

∫ 1

−1

φh(t)Pn(t) dt

= lim
h→∞

12h2

∫ 1

1− 1
2h2

φh(t)Pn(t) dt

= lim
h→∞

Pn(t0)12h
2

∫ 1

1− 1
2h2

φh(t) dt,

where t0 ∈ [1− 1
2h2 , 1]. The desired result follows from Pn(1) = 1 and φ∧h(0) =

π
6h2 . �

Figure 2.7 shows the Legendre transform of Kh for different values h.

We arrive at the point that we can realize our aim of this section: By Lemma

2.4.15 and the concept of spherical convolution we can introduce a singular

integral on the sphere Ω such that this singular integral is an approximate

identity in X (Ω).
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Figure 2.7: The Legendre transform of Kh for n = 0, . . . , 50

and h = 1, 3, 5, 7, 9.

Theorem 2.4.16

Let Kh be a subfamily defined by Definition (2.4.13). Then the singular integral

Ih, h ∈ [1
2
,∞), defined by

Ih(F ) = Kh ∗ F, F ∈ X (Ω)

is an approximate identity in X (Ω), i.e.,

lim
h→∞

‖F − Ih(F )‖X (Ω) = 0, F ∈ X (Ω).

Later, we will see that by constructing the so-called up-function, it is possible

to establish a multiresolution analysis based on the Wendland functions.



2.5. Infinite Convolution of Locally Supported Zonal Kernels 71

2.5 Infinite Spherical Convolution of the Lo-

cally Supported Zonal Kernels

Now, we study the so-called up-function. The classical variant of the up-

function is defined for the one dimensional Euclidean space (see, e.g., [85]) and

it was developed for the spherical case by [34], [44], and [92]. The main idea

of the up-function is to construct an infinite spherical convolution of locally

supported kernels.

In the following, we first define the up-function then we use them to construct

the so-called multiresolution analysis based on the smoothed Haar functions

(cf. [44]) and the Wendland functions.

Let χk(x) : R → R, be given by

χk(x) =

 2k for 0 ≤ x ≤ 2−k

0 otherwise
,

where k ∈ N0. Then the up-function is defined by the infinite spherical convo-

lution product

Up = χ0 ∗ χ1 ∗ . . . .

It follows from this definition that the up-function is supported in the interval

[0, 2] and is infinitely smooth.

Dyn and Ron [22] have used the up-function in a multiresolution analysis on

the Euclidean space R and Freeden et al. [34], Freeden and Schreiner [44] and

Schreiner [92] have developed a multiresolution analysis on the unit sphere.

Similar to [44], we use the locally supported kernels to build the up-function.

Definition 2.5.1 (Spherical Up-function)

Suppose that h ∈ (−1, 1) and 0 < q ≤ 1
2
. Let ϕ0 = arccosh and hi =

cosϕi, i ∈ N, where ϕi = qiϕ0, i ∈ N. Moreover, assume that {Khi
}i∈N is

a family of locally supported scaling functions such that 0 < K∧
hi

(n) ≤ 1 and

supp Khi
= [hi, 1]. We introduce

Kj
h = Kh1 ∗ Kh2 ∗ . . . ∗ Khj

=
j

*i=1
Khi

.
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Then the function Kph defined by

Kph = lim
j→∞

Kj
h =

∞

*i=1
Khi

is called spherical up-function.

It should be mentioned that by changing q, it is possible to control “speed

decay” of the radius of the support Khi
. Furthermore, because in our study q

in Definition 2.5.1 is fixed, for convenience, we don’t use q in our notation for

the spherical up-function.

Clearly, the function ϑ 7→ Kph(cosϑ) has the support [0,
∑∞

i=1 ϕi] = [0, ϕ1

1−q
].

Thus supp Kph(t) = [arccos( ϕ1

1−q
), 1].

From (1.61), it follows that

(Kj
h)
∧(n) =

j∏
i=1

K∧
hi

(n), (2.85)

for all n ∈ N0. Therefore, by Theorem 1.4.4, we have

lim
h→1−

(Kj
h)
∧(n) = 1, n ∈ N0. (2.86)

From Definition 2.5.1 and (2.86), it is clear that

Kp∧h(n) =
∞∏
i=1

K∧
hi

(n), n ∈ N0, (2.87)

and

lim
h→1−

Kp∧h(n) = 1, n ∈ N0. (2.88)

Moreover, from (2.79) and (2.85), it follows that the Legendre transform of

Kph decays for n → ∞, faster than any rational function. In other words,

Kph(η.) ∈ C(∞)(Ω) for every η ∈ Ω.

In addition, Kph, as a zonal function, can be expressed by the following uni-

formly convergent series.

Kph(t) =
∞∑

n=0

2n+ 1

4π
Kp∧h(n)Pn(t), (2.89)
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for all t ∈ [−1, 1].

Finally, because of (2.88), it is possible to introduce a family of singular in-

tegrals with the kernels Kph such that this family of singular integrals is an

approximate identity in X (Ω). The following theorem state this fact precisely.

Theorem 2.5.2

Suppose that {Kph}h∈(−1,1) is a family of kernels defined by Definition 2.5.1.

Then the singular integral Ih, h ∈ (−1, 1), defined by:

Ih(F ) = Kph ∗ F, F ∈ X (Ω), (2.90)

is an approximate identity in X (Ω), i.e.,

lim
h→1−

‖F − Ih(F )‖X (Ω) = 0, F ∈ X (Ω). (2.91)

From the numerical point of view, it is impossible to realize an infinite spherical

convolution in the definition of Kph. To overcome this problem, we have to

replace the infinite spherical convolution with the finite one with arbitrary

accuracy. In other words, let ε > 0 be arbitrary and for N ∈ N0 we split Kph

as follows:

Kph(t) = KN
h ∗

∞

*i=N+1
Khi

(t), t ∈ [−1, 1],

then we are interested in finding N ∈ N0, if it is possible, such that

|KN
h (t)−Kph(t)| < ε,

for all t ∈ [−1, 1]. Freeden and Schreiner [44] have done it for the smoothed

Haar functions as choice for the scaling function. Here, we use their approach

for the general cases. We start with a series of lemmata.

Lemma 2.5.3

Suppose that K is a non-negative locally supported zonal function in X (Ω) with

K∧(0) = 1 and supp K = [h, 1]. Then, for every F ∈ C(Ω),

‖K ∗ F − F‖C(Ω) ≤ max
ξ·η≥h

|F (η)− F (ξ)|. (2.92)
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Proof:

For ξ ∈ Ω we have

|K ∗ F (ξ)− F (ξ)| =

∣∣∣∣∫
Ω

K(ξ · η)F (η) dω(η)− F (ξ)

∣∣∣∣
=

∣∣∣∣∫
Ω

K(ξ · η)[F (η)− F (ξ)] dω(η)

∣∣∣∣
≤

∫
Ω

K(ξ · η) dω(η) max
ξ·η≥h

|F (η)− F (ξ)|

= max
ξ·η≥h

|F (η)− F (ξ)|.

�

Lemma 2.5.4

Suppose that K is a non-negative locally supported zonal function in X (Ω)

with K∧(0) = 1 and supp K = [h, 1]. Assume that H ∈ C(Ω). Then, for every

t ∈ [−1, 1],

|K ∗H(t)−H(t)| ≤
√

2
√

1− h2 max
τ∈[−1,1]

|H ′(τ)|. (2.93)

Proof:

We deduce from the last lemma, that for every ξ, η ∈ Ω

|K ∗H(ξ · η)−H(ξ · η)| ≤ max
η·ζ≥h

|H(ξ · η)−H(ξ · ζ)|.

For η · ζ ≥ h we have

|ξ · η − ξ · ζ| = |ξ · (η − ζ)| ≤
√

(η − ζ)2

=
√

2− 2η · ζ
≤

√
2
√

1− h2.

Hence, the result stated in Lemma 2.5.4 easily follows from the Mean Value

Theorem. �

Lemma 2.5.5

Let K ∈ H2(Ω), i.e.,

∞∑
n=0

2n+ 1

4π
(K∧(n))2

(
n+

1

2

)4

<∞.
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Assume further, that K∧(n) ≥ 0 for all n ∈ N0. Then K is continuously

differentiable and

|K′(t)| ≤ K′(1) =
∞∑

n=0

2n+ 1

4π

n(n+ 1)

2
K∧(n).

Proof:

It follows from the Sobolev Lemma 1.3.3 that K is continuously differentiable.

Furthermore, we obtain the uniformly convergent series

|K′(t)| =

∣∣∣∣∣
∞∑

n=0

2n+ 1

4π
K∧(n)P ′

n(t)

∣∣∣∣∣
≤

∞∑
n=0

2n+ 1

4π
K∧(n)P ′

n(1)

=
∞∑

n=0

2n+ 1

4π

n(n+ 1)

2
K∧(n)

= K′(1),

�

By using the above results, we are able to prove our promised result as follows:

Theorem 2.5.6

Let Kph and Kj
h be the same functions as defined by Definition 2.5.1. For a

given ε > 0 choose N ∈ N0 such that KN
h ∈ H2(Ω) and√

1− h2
N ≤ ε√

2 d
dt
KN

h (1)
.

Then

|KN
h (t)−Kph(t)| < ε,

for all t ∈ [−1, 1].

Proof:

The proof follows easily by applying Lemma 2.5.4. �
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By using the spherical up-function, we are able to make a multiresolution

analysis. In the next two sections, we do it for the smoothed Haar functions

and Wendland functions. A multiresolution analysis based on the smoothed

Haar functions is known from [34], [44], and [92], but a multiresolution analysis

based on Wendland functions seems to be new.

2.5.1 Multiresolution Analysis by Means of Up-function

As we mentioned before in Section 2.4.1, if the Legendre transforms of the

locally supported scaling functions are not monotonically decreasing with re-

spect to h, then it is impossible to have a multiresolution analysis based on

the locally supported scaling functions. To prevail this trouble, we use the

concept of the up-function.

Definition 2.5.7 (Complementary of Kj
h)

Suppose that {Khi
}i∈N is a family of locally supported scaling functions as

defined in Definition 2.5.1. We define

K̄j
h = Khj+1

∗ Khj+2
∗ . . . =

∞

*i=j+1
Khi

. (2.94)

By Definition 2.5.1, it follows that

K̄0
h = Kph.

Moreover, we have

Kj
h ∗ K̄

j
h = Kph.

It is also clear that supp K̄j
h = [arccos(

ϕj+1

1−q
), 1] and we have the refinement

equation

K̄j+1
h ∗ Khj+1

= K̄j
h (2.95)

Similarly to Theorem 2.5.2, we are able to define a singular integral based on

K̄j
h as follows:

Theorem 2.5.8

Let K̄j
h defined by (2.94). Then the singular integral Ij defined by

Ij(F ) = K̄j
h ∗ F, F ∈ L2(Ω)
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is an approximate identity in L2(Ω), i.e.,

lim
j→∞

‖F − Ij(F )‖L2(Ω) = 0, F ∈ L2(Ω).

Proof:

We show that

lim
j→∞

(K̄j
h)
∧(n) = 1,

for all n ∈ N0. By using Definition 2.5.7, we have

lim
j→∞

(K̄j
h)
∧(n) = lim

j→∞

Kp∧h1
(n)

(Kj−1
h1

)∧(n)
=
Kp∧h1

(n)

Kp∧h1
(n)

= 1. (2.96)

Recall that, according to Definition 2.5.7, (Kj−1
h1

)∧(n) 6= 0, j ∈ N. �

Since (K̄j
h)
∧(n) ≤ (K̄j+1

h )∧(n), then it follows that

‖K̄j
h ∗ F‖L2(Ω) ≤ ‖K̄j+1

h ∗ F‖L2(Ω) (2.97)

for every F ∈ L2(Ω). Moreover, by Young’s inequality (cf., e.g., [34] or [55])

and the fact (K̄j
h)
∧(0) = 1 we have

‖K̄j
h ∗ F‖L2(Ω) ≤ ‖F‖L2(Ω), (2.98)

for every F ∈ L2(Ω).

Now, we introduce the linear bounded operator Tj : L2(Ω) → L2(Ω) by

Tj(F ) = Ihj
(F ) = K̄j

h ∗ F, j ∈ N0. (2.99)

From Theorem 2.5.8, it follows that Tj(f) is an approximation of F at the

scale j. Thus K̄j
h can be interpreted as a low-pass filter and consequently we

can introduce the scale spaces Vj as follows:

Vj = {Tj(F )|F ∈ L2(Ω)}, j ∈ N0. (2.100)

In other words, the scale space Vj is the image of L2(Ω) under the operator

Tj. Finally, the scale space Vj defines a multiresolution analysis(MRA) in the

following sense:
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Theorem 2.5.9 (MRA by Mean of the Up-function)

Let {hj}, j ∈ N0 be a monotonically increasing sequence in (−1, 1). The family

of scale spaces

Vj = {Tj(F ) = K̄j
h ∗ F |F ∈ L2(Ω)}, j ∈ N0

defines a multiresolution of L2(Ω) in the following sense:

(i) Vj ⊂ Vj′ ⊂ L2(Ω), j < j′, j, j′ ∈ N0

(ii)
∞⋃

j=0

Vj = L2(Ω)

(iii)
∞⋂

j=0

Vj = V0

Proof:

The statement (i) follows from (2.97) and (2.98). The statement (ii) follows

from Theorem 2.5.8 and (iii) is trivial. �

Now, we have a multiresolution analysis based on scaling functions K̄j
h, where

these scaling functions, as said before, are a sequence of low-pass filters. The

difference between two low-pass filters gives us a band-pass filter. More pre-

cisely, based on the refinement equation (2.95), we can construct locally sup-

ported spherical wavelets. More details about this kind of wavelets can be

found in [44].

2.5.2 Examples

We present two examples for the MRI by means of the up-function. In the first

example, we use the smoothed Haar functions as the scaling functions and in

the second example, we use the Wendland’s functions as the scaling functions.

The first example is known from [44], but the second one seems to be new.

Multiresolution Analysis Based on Infinite Spherical Convolution of

Smoothed Haar Functions

We use the iterated spherical convolution of the normalized smoothed Haar

functions defined by Definition 2.3.4 to construct a multiresolution analysis.

We follow the work by Freeden and Schreiner [44].
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Definition 2.5.10 (Up-function Based on Smoothed Haar Functions)

Let L
(2)
h,λ be the iterated spherical convolution of the normalized smoothed Haar

functions defined by Definition 2.3.4. Suppose that h ∈ (−1, 1) and λ > −1.

Let ϕ0 = arccosh. We introduce

ϕi = 2−iϕ0, hi = cos
ϕi

2
, i = 1, 2, . . . ,

and

U j
h,λ = L

(2)
h1,λ ∗ L

(2)
h2,λ ∗ . . . L

(2)
hj ,λ, j ∈ N.

Then Uph,λ defined by

Uph,λ = lim
j→∞

U j
h,λ = L

(2)
h1,λ ∗ L

(2)
h2,λ ∗ . . . =

∞

*i=1
L

(2)
hi,λ

is called up-function based on the smoothed Haar functions. We also define

the complementary of U j
h,λ by

Ū j
h,λ = L

(2)
hj+1,λ ∗ L

(2)
hj+2,λ ∗ . . . =

∞

*i=j+1
L

(2)
hi,λ

, j ∈ N.

Figure 2.8 shows the functions Ū j
h,λ for different values of j.

Because the support of L
(2)
hi,λ

(t) is [hi, 1], it follows that supp Uph,λ = [h, 1].

Moreover, in [44] is shown that for every F ∈ L2(Ω)

lim
j→∞

‖F − Ū j
h,λ ∗ F‖ = 0.

Therefore, the operators Tj : L2(Ω) → L2(Ω) defined by

Tj(F ) = Ij(F ) = Ū j
h,λ ∗ F, j ∈ N0, λ > −1

construct a family of approximate identity on L2(Ω). In addition, if we define

the scaling spaces Vj as follows:

Vj =
{
Tj(F )|F ∈ L2(Ω)

}
,

for all j ∈ N0, then we get a multiresolution analysis of L2(Ω) in the following

sense:
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Figure 2.8: The functions ϑ 7→ Ū j
h,λ(cosϑ), ϑ ∈ [−π/2, π/2], for j = 0, 1, 3,

and λ = 1, where hj = cos( π
2j3

) for j ∈ N0.

(i) Vj ⊂ Vj′ ⊂ L2(Ω), j < j′, j, j′ ∈ N0

(ii)
∞⋃

j=0

Vj = L2(Ω)

(iii)
∞⋂

j=0

Vj = V0

Multiresolution Analysis Based on Infinite Spherical Convolution of

Wendland Functions

As we stated before in Subsection 2.4.1, the Legendre transforms of the Wend-

land’s function are not monotonically decreasing with respect to h. Therefore,
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it is impossible to construct a multiresolution analysis of L2(Ω) by using the

Wendland functions. To prevail this trouble, we use the concept of the up-

function introduced in Subsection 2.5.1.

Definition 2.5.11 (Up-function Based on Wendland Functions)

Let h ∈ [1
2
,∞) and 0 < q ≤ 1

2
and ϕ0 = arccos(1− 1

2h2 ) and hi = (
√

2− 2 cosϕi)
−1,

where ϕi = qiϕ0, i ∈ N. Suppose that {Khi
}i∈N0 is a family of the Wendland

scaling functions defined in (2.4.13). We introduce

Kj
h = Kh1 ∗Kh2 ∗ . . . Khj

, j ∈ N.

Then Kph defined by

Kph = lim
j→∞

Kj
h = Kh1 ∗Kh2 ∗ . . . =

∞

*i=1
Khi

is called up-function based on the Wendland functions. We also define the

complementary of Kj
h by

K̄j
h = Khj+1

∗Khj+2
∗ . . . =

∞

*i=j+1
Khi

,

for all j ∈ N0.

Clearly, the function ϑ 7→ Kph(cosϑ) has the support [0,
∑∞

i=1 ϕi] = [0, qϕ0

1−q
].

Thus supp Kph(t) = [arccos( qϕ0

1−q
), 1]. Similarly, supp K̄j

h(t) = [arccos(
qϕj

1−q
), 1].

Figure 2.9 shows the functions K̄j
h for different values of j.

It is clear that we have the refinement equation

K̄j+1
h ∗Khj+1

= K̄j
h (2.101)

Because {K̄j
h}j∈N0 is a family of scaling functions, we can define an approximate

identity based on K̄j
h in L2(Ω) as follows:

Ij(F ) = K̄j
h ∗ F, F ∈ L2(Ω)
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Figure 2.9: The functions ϑ 7→ K̄j
h(cosϑ), ϑ ∈ [−π/2, π/2], for j = 0, 1, 2, 3,

where hj = j + 1 for j ∈ N0. It shows also when h→∞ then K̄j
h converges

to the Dirac delta function.

Similar to last example, if we define the scaling spaces Vj as follows:

Vj =
{
K̄j

h ∗ F |F ∈ L2(Ω)
}
,

for all j ∈ N0, then we get a multiresolution analysis of L2(Ω) in the following

sense:

(i) Vj ⊂ Vj′ ⊂ L2(Ω), j < j′, j, j′ ∈ N0

(ii)
∞⋃

j=0

Vj = L2(Ω)

(iii)
∞⋂

j=0

Vj = V0
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Finally, we mentioned that based on the refinement equation (2.101), we are

able to construct locally supported spherical wavelets based on Wendland func-

tions. We postpone this topic for later work.

2.6 Spherical Difference Wavelets

In this section, our interest is to introduce the so-called spherical difference

wavelets. These kinds of wavelets are developed, for the first time, by Freeden

and Schreiner [40]. The idea of construction of these wavelets is as follows: As

we stated before in Theorem 1.4.4 a family of non-negative scaling functions

{Kh}h∈(−1,1) can generate an approximate identity. This approximate iden-

tity provides nothing else than a sequence of low-pass filters. The difference

between these low pass filters provide band pass filters. We consider these

band pass filters as the spherical difference wavelets. The presentation in this

section follows the paper by Freeden and Hesse [35].

In Subsection 2.6.1 the basic definitions will be given and the decomposition

and the reconstruction of the approximation of F with spherical difference

wavelets will be developed. In Subsection 2.6.2 the spherical difference wavelets

will be computed for the generalized smoothed Haar kernels introduced in the

last section.

2.6.1 Decomposition and Reconstruction Formula

Definition 2.6.1 (Spherical Difference Wavelets)

Let {Ih}h∈(−1,1) be an approximate identity in C(Ω) or L2(Ω), generated by

the scaling function {Kh}h∈(−1,1) ⊂ L1[−1, 1], and {Kh}h∈(−1,1) ⊂ L2[−1, 1],

respectively. Suppose that {hj}j∈N0 ⊂ (−1, 1] is a strict monotonically increas-

ing sequence with limj→∞ hj = 1. Define the sequence {Tj}j∈N0 of bounded

linear operators

Tj : X (Ω) → X (Ω), F 7→ Tj(F ) = Ihj
(F ) = Khj

∗ F,

where X (Ω) = C(Ω) for {Kh}h∈(−1,1) ⊂ L1[−1, 1], and X (Ω) = L2(Ω) for

{Kh}h∈(−1,1) ⊂ L2[−1, 1], respectively. The family {Ψj}j∈N0 ⊂ L1[−1, 1], and

{Ψj}j∈N0 ⊂ L2[−1, 1], respectively, given by

Ψj = Khj+1
−Khj

(2.102)
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is called spherical difference wavelet corresponding to the scaling function

{Khj
}j∈N0 . Furthermore, define a family {Rj}j∈N0 of bounded linear opera-

tors

Rj : X (Ω) → X (Ω), F 7→ Rj(F ) = Ψj ∗ F.

Remark 2.6.2 (Locally Supported Spherical Difference Wavelets)

Note that it is also possible to define the locally supported spherical difference

wavelet based on the locally supported scaling functions. To be more precise,

let {Kh}h∈(−1,1) ⊂ L1[−1, 1] or {Kh}h∈(−1,1) ⊂ L2[−1, 1] be a locally supported

scaling function, and let {hj}j∈N0 ⊂ (−1, 1] be a strict monotonically increasing

sequence with limj→∞ hj = 1. Then {Ψj}j∈N0 , defined by

Ψj = Khj+1
−Khj

, j ∈ N0

is called a locally supported spherical difference wavelet corresponding to the

locally supported scaling function {Khj
}j∈N0 . The operators Tj and Rj for the

locally supported difference wavelets are the same as Definition 2.6.1.

From Section 1.4, it is clear that for each family of non-negative scaling func-

tions {Kh}h∈(−1,1) we have (Kh)
∧(0) = 1. Therefore, the spherical difference

wavelets satisfy in the zero mean property of wavelets as follows:

Lemma 2.6.3 (Zero Mean Property of Difference Wavelets)

Let {Ψj}j∈N0 be the spherical difference wavelets defined in Definition 2.6.1 and

Remark 2.6.2. Then these wavelets satisfy the zero mean property of wavelets:∫ 1

−1

Ψj(t) dt = 0

for all j ∈ N0.

The next theorem shows, that the low-pass filter TJ , J ∈ N0, can be de-

composed into a sum of the low-pass filter TJ0 and the band-pass filters Rj,

j ∈ {J0, J0 + 1, . . . , J − 1} and, thus, be reconstructed as a sum of the latter.

Theorem 2.6.4 (Decomposition and Reconstruction Formula)

Let the assumptions and the notation be as in Definition 2.6.1. Then,

lim
J→∞

‖F − TJ(F )‖X (Ω) = 0,
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for all F ∈ X (Ω), where

TJ(F ) = TJ−1(F ) +RJ−1(F ) = TJ0(F ) +
J−1∑
j=J0

Rj(F ) (2.103)

for all J, J0 ∈ N0, 0 ≤ J0 < J .

Equation (2.103) is called a reconstruction of the approximation TJ(F ). Par-

ticularly,

F = TJ0(F ) +
∞∑

j=J0

Rj(F ) (2.104)

in X (Ω)-sense.

Proof:

Equation (2.103) is a consequence of the definitions of the operators Tj and

Rj:

TJ(F ) = KhJ
∗ F = (KhJ−1

+ ΨJ−1) ∗ F = TJ−1(F ) +RJ−1(F ).

This proves the first equality. The second equality follows analogously by

repeating this process for TJ−1(F ), . . . , TJ0+1(F ). Equation (2.104) is a conse-

quence of Equation (2.103) and the fact that TJ(F ) converges to F (in X (Ω))

for J →∞. �

In the following, the spherical difference wavelets are computed for the locally

supported scaling functions defined by Definition 2.3.4.

2.6.2 Locally Supported Difference Wavelets Based on

Normalized Smoothed Haar Kernels

Let λ ∈ N0. To emphasize the assumptions that λ is an integer, we denote

the normalized smoothed Haar scaling functions defined in Definition 2.3.4 by

{Lhj ,k}j∈N0 . Moreover, suppose that hj = 1− 1
2j then the normalized smoothed

Haar scaling functions {Lhj ,k}j∈N0 ⊂ Ck−1[−1, 1] , k ∈ N0, are

Lhj ,k(t) =

 0 for t ∈ [−1, 1− 1
2j )

2j(k+1)−1(k+1)
π

(t− 1 + 1
2j )

k for t ∈ [1− 1
2j , 1]

.
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The corresponding smoothed Haar wavelets are the families {Ψj,k}j∈N0 ⊂
Ck−1[−1, 1], k ∈ N0, of functions Ψj,k : [−1, 1] → R, t 7→ Ψj,k(t), given by

Ψj,k(t) =



0 for t ∈ [−1, 1− 1
2j )

−2j(k+1)−1(k+1)
π

(t− 1 + 1
2j )

k for t ∈ [1− 1
2j , 1− 1

2j+1 )

2j(k+1)−1(k+1)
π

(2k+1(t− 1 + 1
2j+1 )

k−

(t− 1 + 1
2j )

k) for t ∈ [1− 1
2j+1 , 1]

.

In Figure 2.10 we show Haar scaling functions Lhj ,0 for j = 1, 2, 3 and the cor-

responding Haar wavelets Ψj,0 for j = 1, 2, 3. Figure 2.11 illustrates smoothing

Haar scaling functions Lhj ,2 for j = 1, 2, 3 and the corresponding smoothing

Haar wavelets Ψj,2 for j = 1, 2, 3.

Remark 2.6.5

We point out that, the formulation of difference wavelets for the Wendland

functions is straightforward and is omitted.
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Figure 2.10: The normalized Haar functions Lhj ,0 and the Haar wavelets Ψj,0.

Left: ϑ 7→ Lhj ,0(cosϑ), ϑ ∈ [−π
2
, π

2
] for j = 1, 2, 3.

Right: ϑ 7→ Ψj,0(cosϑ), ϑ ∈ [−π
2
, π

2
] for j = 1, 2, 3.
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Figure 2.11: The normalized smoothed Haar functions Lhj ,2 and the Haar

wavelets Ψj,2

Left: ϑ 7→ Lhj ,2(cosϑ), ϑ ∈ [−π
2
, π

2
] for j = 1, 2, 3.

Right: ϑ 7→ Ψj,2(cosϑ), ϑ ∈ [−π
2
, π

2
] for j = 1, 2, 3.





Chapter 3

Spherical Grids

The problem of arranging a dense structured lattice of points over the sur-

face of a sphere is an interesting and widely studied problem. This problem

has numerous applications in various areas of science such as crystallography,

tomography, molecular structure and especially, in our interest, geosciences.

Clearly, every field has different conditions for distributing a certain number

of points over the surface of the sphere and, consequently, it yields different

grids on the sphere Ω. In geosciences, the adequate condition for distributing

points on the sphere Ω is a better approximation of a function on the Earth.

For example, the choice of a spherical grid is very important for approximate

integration by using mean values of a function on the grid. For more discus-

sion of grids and adequate conditions see [34], [56], [78], and [94]. The purpose

of this study is to compare some grids and to look for a grid such that the

variation in the number of points within every spherical cap centered by a

point of the grid with a prescribed radius is minimized. In other words, if

XN = {ξ1, . . . , ξN} is a set of pairwise distinct points on the sphere Ω and

Di = {ξj ∈ XN | d(ξi, ξj) ≤ ri}, where ri, 1 ≤ i ≤ N , is a prescribed radius,

then the aim is to find a grid on the sphere Ω such that

δ = max1≤i≤N#Di −min1≤i≤N#Di, (3.1)

is minimized in this grid. On the other hand, if δ
′
, the total number of distances

between every two points in the grid, is defined as follows:

δ
′
= # {d(ξi, ξj)| ξi, ξj ∈ XN} , (3.2)

then we are interested in amounts of δ
′
as small as possible. As we will notice

in Chapter 4, the amount of δ
′

is related to the number of equations in a
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system of equations that should be solved. Because we have to solve a lot of

such systems, the numerical efforts will be decreased if we can find a grid with

smaller amount of δ
′
.

In the following, we first explain the regular grid. This grid is obtained from

the projection of a regular grid from the plane onto the sphere Ω. Then we

develop a latitude-longitude grid on the sphere Ω. Because each cell in this

grid is as quadratic as possible, we call it quadratic grid. In Section 3.3 we

describe Kurihara grid on the sphere Ω. This grid shows more homogeneous

distribution of points for the sphere Ω than other ones. Finally we discuss the

block grid on the sphere Ω. The block grid was introduced for the first time

by Freeden and Schreiner [43].

3.1 Regular Grid

Let ϕ ∈ [0, 2π), θ ∈
[−π

2
, π

2

]
and Mϕ, Nθ be the number of longitudes and

latitudes, respectively. To construct the longitudes, we divide [0, 2π) into Mϕ

equal share as follows:

ϕi =
2π

Mϕ

i, i = 0, . . . ,Mϕ − 1. (3.3)

For the latitudes, also, we divide
[−π

2
, π

2

]
into Nθ equal share as follows:

θj =
π

Nθ

j, j = 0, . . . , Nθ. (3.4)

The regular grid is the simplest grid on the sphere Ω but unfortunately, for

large Mϕ and Nθ, there are too many points near the poles than near the

Equator.

Figure 3.1 shows one octant of the regular grid.

3.2 Quadratic Grid

Let ϕ ∈ [0, 2π), θ ∈
[−π

2
, π

2

]
and Mϕ and Nθ be the number of longitudes

and latitudes, respectively. Moreover, suppose that Nθ is an odd number. To

construct the longitudes, we divide [0, 2π) into Mϕ equal share as follows:

ϕi =
2π

Mϕ

i, i = 0, . . . ,Mϕ − 1. (3.5)
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Figure 3.1: One octant of the regular grid for Mϕ = 91 and Nθ = 71.

For the latitudes, first we arrange all the latitudes in the northern hemisphere

and after that, in a flip way, we build the grid points in the southern hemi-

sphere. We start from the Equator, θ′0 = 0, and move toward the North pole.

We set

θ′j+1 = θ′j + ∆θ′j, j = 0, . . . ,
Nθ − 3

2
, (3.6)

θ′Nθ−1

2

=
π

2
, (3.7)

where ∆θ′j in (3.6) is defined by

∆θ′j = 2 arcsin

(
cos(θ′j)sin(

π

Mϕ

)

)
, j = 0, . . . ,

Nθ − 3

2
. (3.8)

Note that it is possible that for some j in (3.6), say j = j0, we get θ′j0+1 ≥ π
2
.

In such a case we should change the amount of Nθ with a new Nnew
θ provided

that

Nnew
θ ≤ 2j0 + 3.
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Now, we extend the latitudes over the whole of the sphere Ω as follows:

θ0 = −π
2
, θ1 = −θ′Nθ−3

2

, . . . , θNθ−1

2

= 0, θNθ+1

2

= θ′1, . . . , θNθ−1 =
π

2
. (3.9)

Finally, the points ξij defined by

ξij =


cosϕi cos θj

sinϕi cos θj

sin θj

 , i = 0, . . . ,Mθ − 1, j = 0, . . . , Nθ − 1. (3.10)

generate the quadratic grid on the sphere Ω. For a given Mϕ and Nθ, the

total number of points in the quadratic grid is Mϕ(Nθ − 2) + 2.

Algorithm 1 generates the quadratic grid on the surface of the sphere. Figure

3.2 shows one octant of quadratic grid.

Algorithm 1 (Quadratic Grid)

Given Mϕ and Nθ, the number of longitudes and latitudes, respectively. The

purpose of the algorithm is to produce the quadratic grid XN = {ξ1, . . . , ξN}
in spherical coordinates (θi, ϕi)i=1,...,N .

Start:

for i = 0 to Mϕ − 1 do

ϕi = i 2π
Mϕ

end for

θ′0 = 0

for j = 0 to Nθ−3
2

do

∆D = 2Arcsin
(
cos(θ′j)sin( π

Mϕ
)
)

θ′j+1 = θ′j + ∆D

end for

θ′Nθ−1

2

= π
2

for j = 0 to Nθ−1
2

do

θj = −θ′Nθ−1

2
−j

end for

for j = Nθ+1
2

to Nθ − 1 do

θj = θ′
j−Nθ−1

2

end for

XN = {θi | 0 ≤ i ≤ Nθ − 1} × {ϕi | 0 ≤ i ≤Mϕ − 1}
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Figure 3.2: One octant of quadratic grid for Mϕ = 91 and Nθ = 71.

The advantage of the quadratic grid is that all cells except “pizza slices” ringing

each pole are as possible as quadratic. This property is the reason that every

cap centered by grid points has the same number of points as another one,

except for those caps containing one or more of the “pizza slices” around the

poles. In Figures 3.3 and 3.4, one can see the difference between the quadratic

grid and the regular grid.

We mention here that the quadratic grid has “the pole problem”, too. That

means, there are too many points of the grid near the poles than near the

Equator. Also this grid is not a hierarchical grid, that means the grid with

higher number of points does not include another one with smaller number of

points.

In the next section, we will introduce Kurihara grid on the surface of sphere.

This grid is more uniform than the quadratic grid and it is a hierarchical grid.
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Figure 3.3: Quadratic grid

In this example, the number of longitudes and latitudes for Mϕ = 91 and

Nθ = 71, respectively. In the quadratic grid, every cap contains the same

number of points as another one.

3.3 Kurihara grid

In 1965 Kurihara [56] proposed a grid such that its density on the surface of

the sphere is nearly homogeneous. In this grid, the pole problem does not

occur. It is overcome by placing smaller number of points at those latitudes

that are close to the poles. Let ϕ ∈ [0, 2π) and θ ∈
[−π

2
, π

2

]
. Suppose that the

resolution of the grid, denoted by N , is given. To construct the latitudes of

the grid, we divide
[
0, π

2

]
to N equal share as follows:

θj =
π

2

(
1− j

N

)
, j = 0, . . . , N, (3.11)

where θ0, as a latitude, is the North pole and θN is the Equator. Then for

j = 0 we set ϕ0,0 = 0 and for j = 1, . . . , N we set

ϕi,j =
π

2

i

j
, i = 0, . . . , 4j − 1. (3.12)
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Figure 3.4: Regular grid

In this example, the number of longitudes and latitudes are Mϕ = 91 and

Nθ = 71, respectively. In the regular grid, the caps near the poles have more

number of points than the caps near the Equator.

The points ξij defined by

ξij =


cosϕi,j cos θj

sinϕi,j cos θj

sin θj

 , j = 0, . . . , N, i = 0, . . . , 4j − 1. (3.13)

generate the Kurihara grid on the northern hemisphere. The grid points for

the southern hemisphere can be easily determined in a flip way of the grid

points of the northern hemisphere. For a given N , the resolution of the grid,

the total number of grid points on the surface of the sphere is 4N2 + 2.

Algorithm 2 generates the Kurihara grid on the surface of the sphere.



96 3. Spherical Grids

Algorithm 2 (Kurihara Grid)

Given N , the resolution of the grid. The purpose of the algorithm is to produce

the Kurihara grid XM = {ξ1, . . . , ξM} in spherical coordinates, where M is

4N2 + 2.

Start:

θ0 = π
2
, ϕ0,0 = 0 (North Pole)

for j = 1 to N do

θj = π
2

(
1− j

N

)
for i = 0 to 4j − 1 do

ϕi,j = π
2

(
i
j

)
end for

end for

for j = 1 to N − 1 do

θN+j = −θN−j

for i = 0 to 4(N − j)− 1 do

ϕi,N+j = ϕi,N−j

end for

end for

θ2N = −π
2
, ϕ1,2N = 0 (South Pole)

XM = {(θi, ϕi,j) | 0 ≤ j ≤ N, 0 ≤ i ≤ 4j − 1}
∪ {(θi, ϕi,j) | N + 1 ≤ j ≤ 2N, 0 ≤ i ≤ 4N − 4j − 1}

As we mentioned before, the Kurihara grid is a hierarchical grid. That means

if we double the resolution of the grid, N , we get a hierarchical grid. In other

words, if KN denotes the Kurihara grid for the resolution N , then we have

. . . ⊂ KN
2
⊂ KN ⊂ K2N ⊂ K4N . . . . (3.14)

Note that by using the hierarchical grids, one can construct a multiresolution

analysis. Later, we will describe this method in Chapter 4. Figure 3.5 shows

one octant of Kurihara grid.

3.4 Block Grid

The block grid was proposed for the first time by Freeden and Schreiner [43].

One of the nice properties of this grid is that the amount of δ in (3.2) is
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Figure 3.5: One octant of the Kurihara grid

The Kurihara grid for resolution N = 30 (left) and N = 10 (right).

The figure on the right hand side is from [56].

smaller than the quadratic grid or the regular grid. On the other hand, the

block grid has solved the “the pole problem”. In other words, the block grid

has all advantages of the three aforementioned grids: the Kurihara grid , the

quadratic grid and the regular grid. The block grid is constructed based on

this idea: first, we start with a grid similar to the regular grid and divide its

latitudes in some blocks. Then we delete some longitudes in each block in such

a way that we eliminate more longitudes in those blocks which are near the

poles rather than those blocks which are near the Equator. In the following

we describe this idea for the northern hemisphere in detail (cf. [43]). The

southern hemisphere grid is a mirror of the northern hemisphere grid.

Suppose that the resolution of grid, N, N ≥ 2 is fixed. We divide [0, 2π) to

2N+2 equal share, then we have

ϕi = iπ2−(N+1), i = 0, . . . , 2N+2 − 1. (3.15)

For the latitudes, we arrange 2N − 1 points between
(
0, π

2

)
as latitudes in the

following way

0 < θ0 < . . . < θ2N−2 <
π

2
. (3.16)

The points mηij on the the sphere Ω are defined by

mηij =


cosϕi cos θj

sinϕi cos θj

(−1)m sin θj

 , i = 0, . . . , 2N+1 − 1, j = 0, . . . , 2N − 2, (3.17)

where m = 0 is for the northern hemisphere and m = 1 is for the southern

hemisphere.
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Note that to obtain the block grid, too many of the points mηij should be

deleted. Now in a south–north direction, for the finest level, l = 0, we separate

the latitudes in N blocks such that the kth block has 2N−k−1 latitudes for

k = 0, . . . , N − 1. For the coarser level, l = 1, . . . , N , we reduce the number of

latitudes and longitudes by factor 2. In more detail, for level l and for blocks

k, k = 0, . . . , N − l − 1,, we define the index sets as follows:

I(l)
k =

{
i| i = 0, 2k+l, . . . , 2N+1 − 2k+l

}
×
{
j| j = 2N − 2N−k,

2N − 2N−k + 2l, . . . , 2N − 2N−k−1 − 2l
}
, (3.18)

and for the special situation k = N − l when l > 0, the index set I(l)
N−1 would

be empty using the relation (3.18). For this reason, we set

I(l)
N−l =

{
(0, 2N − 2l), (2N , 2N − 2l)

}
, l = 1, . . . , N. (3.19)

By definition, all other I(l)
k are equal to the empty set. In addition, we let

I(l) =
N−l⋃
k=0

I(l)
k . (3.20)

For a given N , we have, therefore, defined the following non-empty index sets:

I(0)
0 , . . . , I(0)

N−1, I
(1)
1 , . . . , I(1)

N−1, I
(2)
1 , . . . , I(2)

N−2, . . . , I
(N)
0 .

As an example, we have listed the index sets for the case N = 3 in Table 3.1.

Based on the points mηij defined in (3.17) and the index sets defined in (3.18)

and (3.19), the grid points in the block k and the level l for the northern

hemisphere are defined as follows:

NB
(l)
k =

{
0η2i+(2k−1) j | (i, j) ∈ I(l)

k

}
, k = 0, . . . , N − l − 1, l = 0, . . . , N.

(3.21)

Clearly, the collection of grid points of all blocks in the set

NB(l) =
N−l−1⋃

k=0

NB
(l)
k , l = 0, . . . , N, (3.22)

gives us a block grid for the northern hemisphere in the level l, l = 0, . . . , N.
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Level Block I(l)
k

l = 0 k = 0 {0, 1, 2, . . . , 15} × {0, 1, 2, 3}

k = 1 {0, 2, 4, . . . , 14} × {4, 5}

k = 2 {0, 4, 8, 12} × {6}

l = 1 k = 0 {0, 2, 4, . . . , 14} × {0, 2}

k = 1 {0, 4, 8, 12} × {4}

k = 2 {0, 8} × {6}

l = 2 k = 0 {0, 4, 8, 12} × {0}

k = 1 {0, 8} × {4}

l = 3 k = 0 {0, 8} × {0}

Table 3.1: Index sets for the case N = 3

As aforementioned, to extend the block grid to the whole sphere Ω, it suffices

to mirror the northern hemisphere grid. To be more precise, if SB
(l)
k denotes

the grid points in the block k and the level l in the southern hemisphere then

SB
(l)
k =

{
1η2i+(2k−1) j | (i, j) ∈ I(l)

k

}
, k = 0, . . . , N − l − 1, l = 0, . . . , N.

(3.23)

Similar to the northern hemisphere, if SB(l) denotes the grid points in the

southern hemisphere for the level l then we have

SB(l) =
N−l−1⋃

k=0

SB
(l)
k , l = 0, . . . , N. (3.24)

Therefore, if the block grid for the whole of the sphere Ω for the level l is

denoted by B(l) then we have

B(l) = NB(l) ∪ SB(l), l = 0, . . . , N. (3.25)

Figure 3.6 illustrates one octant of the block grid N = 4.

The block grid is a hierarchical grid. That means

B(N) ⊂ B(N−1) ⊂ . . . ⊂ B(0). (3.26)
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Figure 3.6: One octant of the block grid for N = 4.

Block 0: ∗, block 1: ◦, block 2: �, block 3: 4.

By using the relation (3.26) it is possible to construct a multiresolution analysis

and therefore, according to the work of Freeden and Schreiner [43], it is possible

to construct locally supported wavelets.

Now, to obtain the number of points in block grid, we have

#B(l) = # NB(l) + # SB(l)

= 2# NB(l)

= 2#I(l)

= 2
N−l∑
k=0

#I(l)
k

= 2
N−l−1∑

k=0

4N−k−l + (1− δl0)

=
8

3
(4N−l − 1) + (1− δl0),

where δij is the Kronecker symbol defined in (1.17). This yields the following

lemma.
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Lemma 3.4.1

For N ≥ 2, the total number of points in the block grid in the level l is

#B(l) =
8

3
(4N−l − 1) + (1− δl0), l = 0, . . . , N. (3.27)

Finally, we summarize the method of generating the block grid in Algorithm

3. Note that in this algorithm, we start with a regular grid but one can start

with a grid in which the interval (0, π
2
) is not divided in equal share.

Algorithm 3 (Block Grid)

Given N , the resolution of the grid and l, the level of the grid. The purpose

of the algorithm is to produce the block grid B(l) = {ξ1, . . . , ξNl
} in spherical

coordinates where Nl is 8
3
(4N−l − 1) + (1− δl0).

Start:

for i = 0 to 2N+2 − 1 do

ϕi = i π
2N+1

end for

Const = π
2(N+1)−2

for j = 0 to 2N − 2 do

θj = Const ∗ (j + 1
2
)

end for

for k = 0 to N − l − 1 do

I
(l)
k =

{
i| i = 0, 2k+l, . . . , 2N+1 − 2k+l

}
J

(l)
k =

{
j| j = 2N − 2N−k, 2N − 2N−k + 2l, . . . , 2N − 2N−k−1 − 2l }

NB
(l)
k = {(ϕ2i+(2k−1), θj)|i ∈ I(l)

k , j ∈ J (l)
k }

end for

if l#0 then
NB

(l)
N−l = (ϕ2N−l−1, θ2N−2l)

end if
NB(l) =

⋃N−l−1
k=0

NB
(l)
k %The block grid for the northern hemisphere.

SB(l) = mirror( NB(l)) %The block grid for the southern hemisphere.

B(l) = NB(l) ∪ SB(l)





Chapter 4

Biorthogonal Locally Supported

Radial Basis Functions on the

Sphere

In many problems of approximation theory on the sphere, there are matrices

with elements similar to

Ki ∗Kj(ξ
m
i · ξn

j ), (4.1)

where Ki and Kj are zonal functions and ξm
i and ξn

j are points from a spherical

grid. For example, these elements appear in the interpolation matrices, the

least square matrices or in the stiffness matrices (overlap matrices). If there

is a system of biorthogonal kernels then these aforementioned matrices are

diagonal or block diagonal matrices and, therefore, working with them is very

easy, fast and efficient. How can one construct such biorthogonal kernels on

the sphere? This chapter is devoted to answering this question.

4.1 Biorthogonal Locally Supported Zonal Ker-

nels

Let XN = {ξij| (i, j) ∈ Γ} ⊂ Ω be an isolatitude grid (cf. Chapter 3) on the

sphere Ω, where Γ is a set of ordered pairs indices corresponding to longitudes

and latitudes, respectively, with #Γ = N . Let J be the set of all latitudes

indices, i.e.,

J = {j | (i, j) ∈ Γ} .
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Now, we introduce

Definition 4.1.1 (Biorthogonal Kernels)

LetXN be an isolatitude grid on the sphere Ω. Two families of kernels {Kj}j∈J

and {K̃j}j∈J in L2[−1, 1] are called a system of biorthogonal kernels on the

sphere Ω if the following conditions are satisfied:(
Kj ∗ K̃j′

)
(ξij , ξi′j′) =

(
Kj(ξij , ·) , K̃j′(ξi′j′ , ·)

)
L2(Ω)

= δii′δjj′ , (4.2)

for all i, i′ ∈ I and all j, j′ ∈ J .

From now on, we call {Kj}j∈J and {K̃j}j∈J primal and dual kernels. Our

purpose is to construct a system of biorthogonal locally supported zonal kernels

by using families of locally supported zonal kernels in L2[−1, 1]. To begin our

approach, let {Kj}j∈J be an arbitrary family of locally supported zonal kernels

in L2[−1, 1], where the support of Kj is [hj, 1]. As we will describe later, the

value of hj is important to have a good approximation and on the other hand

to minimize computational efforts of finding the biorthogonal kernels.

Suppose that j ∈ J is arbitrary and fixed. Let {K̃jl}l∈Sj
be an arbitrary

family of locally supported zonal kernels in L2[−1, 1], where Sj is an index

set. Moreover, suppose that the support of K̃jl is a subset of the support of

Kj for all l ∈ Sj. For convenience, we call the locally supported zonal kernels

{K̃jl}l∈Sj
the intermediate locally supported zonal kernels.

To construct dual kernels, we replace K̃j in (4.2) with a linear combination

of intermediate locally supported zonal kernels with unknown coefficients. In

other words, we substitute K̃j in (4.2) by the following term:

sj∑
l=1

xjlK̃jl, (4.3)

where xjl, l = 1, . . . , sj, are unknowns and sj, j ∈ J , is the number of un-

knowns and K̃jl, l = 1, . . . , sj, j ∈ J , are the intermediate locally supported

zonal kernels in L2[−1, 1] such that their support fulfills the following condi-

tions:

supp K̃j1 = supp Kj, j ∈ J , (4.4)

supp K̃jl ⊂ supp Kj, l = 2, . . . , sj, j ∈ J . (4.5)
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After substituting (4.3) instead of K̃j in (4.2), we get the following linear

systems of equations:

sj′∑
l=1

xj′l

(
Kj ∗ K̃j′l

)
(ξij , ξi′j′) = δii′δjj′ , i, i′ ∈ I, j′ ∈ J , (4.6)

for all j ∈ J .

Remark 4.1.2

It should be noted that if i 6= i′ and j 6= j′ and also

d(ξij , ξi′j′) ≥ cos−1(hj) + cos−1(h′j), (4.7)

where d(ξij , ξi′j′) is the geodetic distance between ξij and ξi′j′ , then the sup-

ports of the corresponding kernels don’t have any intersection with each other.

Therefore, the corresponding equation in (4.6) is already satisfied.

Remark 4.1.3

BecauseKj∗K̃j′l, l = 1, . . . , sj and j, j′ ∈ J are zonal functions some equations

in (4.6) are repeated. These equations are corresponding to those pair of points

(ξij , ξi′j′) that the geodetic distance between them are equal for a fixed j ∈ J .

After eliminating the satisfied and repeated equations from (4.6), we obtain

#J number of linear systems of equations as follows:

AjXj = bj, j ∈ J , (4.8)

where

Aj ∈ Rqj×sj ,Xj =


xj1

xj2

...

xjsj

 , bj =


1

0
...

0

 ∈ R1×qj , (4.9)

and qj is the number of equations corresponding to the jth latitude. As we

shall see in our examples, the amount of qj is not big (about 15-25 for our

examples). Therefore, in the case of solvability the linear systems of equations

(4.8), numerical effort for solving them is relatively small.

Note that for an adequate choice of primal and intermediate kernels, the linear

systems of equations (4.8) are solvable. However, for a certain choice of primal
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and intermediate kernels, it is possible that some of linear systems of equations

in (4.8) are not solvable. In such a case, increasing the number of unknowns,

sj, may be help us to solve these linear system of equations. Note that, the

number of equations in (4.8) does not depend on the number of unknowns, i.e.,

increasing the number of unknowns do not change the number of equations.

By using the solution of (4.8), we can define the dual locally supported zonal

kernels as follows:

Definition 4.1.4 (Dual Locally Supported Kernel)

Let xjl, l = 1, . . . , sj, j ∈ J , be the solution of (4.8). Then the dual locally

supported zonal kernel of Kj, j ∈ J , is denoted by K̃j, j ∈ J , and defined

by

K̃j =

sj∑
l=1

xjlK̃jl, (4.10)

for j ∈ J .

Now, we are able to state the main theorem of this section.

Theorem 4.1.5 (Biorthogonal Locally Supported Zonal Kernels)

Suppose that {Kj}j∈J and {K̃jl}l=1,...,sj , j∈J are families of locally supported

kernels in X (Ω). Let

K̃j =

sj∑
l=1

xjlK̃jl, j ∈ J , (4.11)

where the coefficient xjl, l = 1, . . . , sj, are solutions of systems of linear equa-

tion (4.8). Then the system
{
Kj, K̃j

}
j∈J

is a biorthogonal system of locally

supported zonal kernels on the sphere Ω in the sense of the L2(Ω)−inner prod-

uct.

If at the beginning of our biorthogonalization process, we start with a family

of primal and intermediate zonal kernels with K∧
j (0) = K̃∧

jl(0) = 1, and we

would like that K̃∧
j (0) = 1, then we should impose the following constraint to

the unknowns of (4.6):
sj∑

l=1

xjl = 1. (4.12)
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Remark 4.1.6

It should be noted that in the biorthogonalization approach if we start with

the (strictly) positive definite primal and intermediate kernels then it is NOT

necessary that the dual kernels are (strictly) positive definite. However, if

we would like that the dual kernels K̃j, j ∈ J be (strictly) positive definite

then we must start with the (strictly) positive definite primal and intermediate

kernels and also we should impose the following constraint to the unknowns of

the system of linear equations (4.6):

xjl ≥ 0, l = 1, . . . , sj. (4.13)

Solving such a problem can be done by using linear programming. However,

the solvability of this linear programming problem must be discussed and it

can be a future work.

Next, we present some examples of the construction of biorthogonal kernels on

the sphere Ω.

4.1.1 Biorthogonal Kernels on the Quadratic Grid

In this section, we use the quadratic grid on the sphere Ω (see Section 3.2) as

the system of points on the sphere Ω. In addition, we choose the piecewise

polynomial locally supported zonal kernels introduced in Section 2.3 as the

primal zonal kernels, i.e.,

Kj(t) = Lhj ,λ(t), j ∈ J , (4.14)

where the support of Lhj ,λ is [hj, 1], j ∈ J . Suppose that j ∈ J is fixed. As we

mentioned before, the amount of hj is of great importance for practical aims.

In detail, as in Figure 4.1 is shown, the support of Kj(ξij, ·) and consequently

the support of Lhj ,λ(ξij, ·) is a spherical cap with center ξij and radius rj, where

the relation between rj and hj is:

rj = cos−1(hj), j ∈ J . (4.15)

Note that in (4.15), we use the geodetic metric for the distance between two

points on the sphere Ω. If hj is near 1 then the amount of rj is very small.

Then the support of the kernel only contains the center of the spherical cap

and, therefore, an approximation by using this kernel maybe contains an un-

acceptable error. On the other hand, if hj is near −1 then the support of
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Figure 4.1: The support of η 7→ Kj(ξij, ·η) in the quadratic grid.

The support of ϑ 7→ Kj(ξij, ·η) is a spherical cap with the center ξij and the

radius rj = cos−1(hj).

the kernel contains a lot of grid points and consequently the linear system of

equations (4.8) will be very big. Therefore, in our example, we have chosen the

amount of hj such that only those points of grid which are the “neighborhood”

of the center of the spherical cap should be in the support of the kernel.

Figure 4.1 illustrates a “spherical support cap” with radius rj. The neighbor-

hood points of the center and the center of spherical cap are shown by the

solid circles.

The succeeding step would be the selection of kernels K̃jl, l = 1, . . . , sj. We can

do it in two different ways. One way is the picking of kernels K̃jl, l = 1, . . . , sj

the same as Kj but with different radius of support cap. In other words, we

choose K̃j1 = Kj and for K̃j2, . . . , Kjsj
the same as Kj but with smaller radius

of the support cap, i.e., if r̃jl denotes the radius of the support cap of K̃jl then
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r̃j1 = rj > r̃j2 > . . . > r̃jsj
> 0 (4.16)

Remark 4.1.7

Note that with a “bad” choice of {r̃jl}l=1,...,sj
, it is possible that in (4.8), for

example, we get some equations that only one coefficient is non-zero and all

the rest coefficients are zero. Clearly, the solution of such equations is zero but

we don’t have any interest in these kinds of solutions.

Another way is the picking of the kernels K̃jl, l = 1, . . . , sj, with the same

radius of the support cap but with different smoothness, i.e.,

K̃jl = Lhj ,λ+l−1, l = 1, . . . , sj. (4.17)

It should be mentioned that with this choice of kernels, we do not have the

problem explained by Remark 4.1.7.

After selecting the primal kernels and intermediate kernels
{
K̃jl

}
l=1,...,sj

we

can get the dual kernels, K̃, by solving the linear system of equations (4.8).

For this example, the system (4.8) has about 10–25 equations and sj unknowns.

Figure 4.2 shows the dual kernels for the quadratic grid with Mϕ = 21 and

Nθ = 17.

4.1.2 Biorthogonal Kernels on the Block Grid

In this section, we use the block grid on the sphere Ω (see Section 3.4) as the

system of points on the sphere Ω. Similar to the previous section, we choose

the piecewise polynomial locally supported zonal kernels Lhj ,λ introduced in

Section 2.3 as the primal kernels: Kj(t) = Lhj ,λ(t), j ∈ J with the support

[hj, 1]. Again, we choose the intermediate kernels
{
K̃jl

}
l=1,...,sj

as in the last

section:

K̃jl = Lhj ,λ+l−1, l = 1, . . . , sj.

After solving the linear system of equations (4.8), we get the dual kernel

K̃j, j ∈ J , by letting

K̃j =

sj∑
l=1

xjlK̃jl, j ∈ J .
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Figure 4.2: The dual kernels K̃j on the quadratic grid.

The dual kernels K̃j in the northern hemisphere for the quadratic grid with

Mϕ = 21 and Nθ = 17. The first dual kernel, K̃1, is corresponding to the

Equator and the K̃8 is corresponding to the last latitude near the North pole.
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Figures 4.3 and 4.4 show the dual kernels for the block grid with the grid resolu-

tion N = 3. The dual kernels are only computed for the northern hemisphere.

To compute the dual kernels in Figure 4.3, we don’t impose the constraint

(4.12) to the unknowns. But for computing the dual kernels in Figure 4.4, we

enforce the restriction (4.12) to the system of linear equations (4.8).

4.2 Approximation Using Biorthogonal Ker-

nels

In this section, we describe how we can apply the biorthogonal locally sup-

ported zonal kernels to approximate a function on the sphere Ω. Again let

XN = {ξij| (i, j) ∈ Γ} ⊂ Ω be an isolatitude grid on the sphere Ω (cf. Chapter

3) where Γ is a set of ordered pair indices corresponding to longitudes and

latitudes, respectively. Suppose that {Kj, K̃j}j∈J is a family of biorthogonal

locally supported zonal kernels on the sphere Ω. Now, for every point of the

grid XN we define two zonal functions Kij and K̃ij as follows:

Kij = Kj(ξij, ·), (i, j) ∈ Γ, (4.18)

K̃ij = K̃j(ξij, ·), (i, j) ∈ Γ. (4.19)

By using the zonal functions K̃ij, we define the space V with respect to the

L2(Ω)−inner product as follows:

V = span
(i,j)∈Γ

{
K̃ij

}
. (4.20)

Also, we define the projection operator P : L2(Ω) → V as follows:

P (F ) =
∑

(i,j)∈Γ

(F,Kij)L2(Ω) K̃ij. (4.21)

The projection operator P defined in (4.21) is an orthogonal projection oper-

ator from L2(Ω) to the space V , because

(F − P (F ), Kij)L2(Ω) = (F,Kij)L2(Ω)
− (P (F ), Kij)L2(Ω)

= (F,Kij)L2(Ω)
−

∑
(i′,j′)∈Γ

(F,Ki′j′)L2(Ω)
(K̃i′j′ , Kij)L2(Ω)

= (F,Kij)L2(Ω)
−

∑
(i′,j′)∈Γ

(F,Ki′j′)L2(Ω)
δii′δjj′

= 0.
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Figure 4.3: The dual kernels K̃j for the block grid.

The dual kernels K̃j for the northern hemisphere. In this example, the system

of points on the sphere Ω is the block grid with the resolution of grid N = 3.
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Figure 4.4: The dual kernels K̃j for the block grid.

The dual kernels K̃j for the northern hemisphere for the block grid. The

resolution of grid is N = 3. In this example we impose the constraint (4.12)

to the system of equations (4.8).



114 4. Biorthogonal Locally Supported RBF on the Sphere

Remark 4.2.1

It should be mentioned that the operator P defined in (4.21) approximate the

function F ∈ V precisely, i.e., if F ∈ V then P (F ) = F .

In the next chapter, we will introduce three kinds of wavelets based on the

system of biorthogonal locally supported kernels.



Chapter 5

Fast Spherical Wavelet

Transform Based on

Biorthogonal Zonal Kernels

In this chapter we discuss a new kind of spherical wavelets which were con-

structed, for the first time, by Freeden and Schreiner [43]. These wavelets are

based on the biorthogonal locally supported zonal kernels constructed in Chap-

ter 4. In comparison with Euclidean wavelet theory, these kinds of wavelets

are similar to the tensor product wavelets (for detailed literature on the tensor

product wavelets in Euclidean space see [59] or [63]). Because of their con-

struction, these kinds of wavelets are locally supported and also are easy to

derive from scaling functions. Another property which can be an advantage or

a disadvantage is that these wavelets are not isotropic. This property enables

us to detect point singularities.

Although we can construct the biorthogonal zonal kernels on all the grids

introduced in Chapter 3, it is not possible to construct these wavelets on non-

hierarchical grids. In other words, these wavelets are based on a hierarchical

grid like Kurihara grid, the block grid (see Chapter 3) or HEALPix (see, e.g.,

[50]). In this work, we only focus on the wavelets constructed on the block

grid.
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5.1 Biorthogonal Scaling Functions

Let {Kj, K̃j}j∈J be a biorthogonal system of locally supported zonal kernels

on the block grid (see Section 4.1.2). By using this biorthogonal system of

kernels, we define the scaling function for the scale l = 0 as follows:

Definition 5.1.1 (Scaling Function for the Scale l = 0)

Let {Kj, K̃j}j∈J be a biorthogonal system that comes from Theorem 4.1.5

with K∧
j (0) = K̃∧

j (0) = 1, j ∈ J . The primal scaling function for the scale

l = 0 is defined by

mφ
(0)
ij = Kj

(
mη2i+(2k−1)j·

)
, (i, j) ∈ I(0), m = 0, 1, (5.1)

similarly, the dual scaling function for the scale l = 0 is defined by

mφ̃
(0)
ij = K̃j

(
mη2i+(2k−1)j·

)
, (i, j) ∈ I(0), m = 0, 1, (5.2)

where the index set I(0) is defined by (3.20).

According to our construction, it is clear that∫ m

Ω

φ
(0)
ij (ξ) dω(ξ) =

∫ m

Ω

φ̃
(0)
ij (ξ) dω(ξ) = 1,

for all (i, j) ∈ I(0). Moreover, from the construction of the biorthogonal system

{Kj, K̃j}j∈J , it implies that both mφ
(0)
ij and mφ̃

(0)
ij are locally supported zonal

kernels with

supp mφ
(0)
ij = supp mφ̃

(0)
ij = [hj, 1],

for all (i, j) ∈ I(0).

We construct inductively the primal and dual scaling functions for other scales.

To find the scaling function for the scale l, we compute the mean of the four

scaling functions at the scale l − 1 corresponding to four neighboring indices.

It should be noted that there are some cases that there are no four scaling

functions at the scale l− 1 in a block. In such cases, we compute the mean of

the scaling functions in this block and the neighboring block, if it exists, in the

direction of the North (South) pole for the northern (southern) hemisphere.

Figure 5.1 illustrates the idea of constructing the scaling function for the scale

l.
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Figure 5.1: Scaling function for the scale l.

The scaling function for the scale l, except for some special cases, is the mean

of four scaling functions at the scale l − 1 corresponding to four neighboring

indices.

Definition 5.1.2 (Scaling Function for the Scale l)

Suppose that the primal and dual scaling functions for the scale l−1 are given.

Then for k = 0, . . . , N−l−1 and m = 0, 1 and (i, j) ∈ I(l)
k we define the primal

scaling functions for the scale l as the following

mφ
(l)
ij =

1

2

(
mφ

(l−1)
ij + mφ

(l−1)

i+2k+l−1 j
+ mφ

(l−1)

i j+2l−1 + mφ
(l−1)

i+2k+l−1 j+2l−1

)
, (5.3)

and also for the dual scaling functions for the scale l we define

mφ̃
(l)
ij =

1

2

(
mφ̃

(l−1)
ij + mφ̃

(l−1)

i+2k+l−1 j
+ mφ̃

(l−1)

i j+2l−1 + mφ̃
(l−1)

i+2k+l−1 j+2l−1

)
. (5.4)

For k = N − l we have to distinguish two cases.

• If l = 1, for the primal scaling function we assign

mφ
(l)
ij =

1√
2

(
mφ

(l−1)
ij + mφ

(l−1)

i+2k+l−1 j

)
, (i, j) ∈ I(1)

N−1, (5.5)

and for the dual scaling function we assign

mφ̃
(l)
ij =

1√
2

(
mφ̃

(l−1)
ij + mφ̃

(l−1)

i+2k+l−1 j

)
, (i, j) ∈ I(1)

N−1. (5.6)
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• If l 6= 1 then we set for the primal scaling function

mφ
(l)
ij =

1

2

(
mφ

(l−1)
ij + mφ

(l−1)

i+2k+l−1 j
+ 2 mφ

(l−1)

i j+2l−1

)
, (i, j) ∈ I(l)

N−l, (5.7)

and similarly for the dual scaling function:

mφ̃
(l)
ij =

1

2

(
mφ̃

(l−1)
ij + mφ̃

(l−1)

i+2k+l−1 j
+ 2 mφ̃

(l−1)

i j+2l−1

)
, (i, j) ∈ I(l)

N−l. (5.8)

Note that the primal and the dual scaling functions inherit being biorthogonal

from Kj and K̃j. The following theorem states this fact precisely.

Theorem 5.1.3 (Biorthogonalization of Scaling Functions)

For each scale l, (
mφ

(l)
ij ,

m′
φ̃

(l)
i′j′

)
L2(Ω)

= δii′δjj′δmm′ . (5.9)

It should be mentioned that the support of the primal (dual) scaling functions

for the scale greater than zero is the union of the support of the primal (dual)

scaling functions which it is built with (see Figure 5.1).

Because of the construction of the scaling functions, only the scaling functions

for the scale l = 0 are zonal functions and the scaling functions for the scale

greater than zero are not more zonal functions.

5.2 Wavelets Based on the Biorthogonal Scal-

ing Functions

In this section, we construct three kinds of wavelets by using the biorthogonal

scaling functions introduced in the last section. The idea of construction is as

follows: Suppose that we made the scaling functions at each point of the block

grid at the level l − 1. Then consider a point of block grid at the level l. We

compute the mean of four scaling functions at the scale l− 1 of this point and

three of its neighboring points from the block grid at the level l−1, where two

of them are multiplied by −1. Depending on in which direction we multiply

the scaling function of the scale l − 1 with −1, we get East-West wavelets,

North-South wavelets or Diagonal wavelets. In the following, for each of these

wavelets, this idea is separately elaborated in detail (see also [43]). Note that,

during our construction, we suppose that the scale l, l = 1, . . . , N is fixed.
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Figure 5.2: The East-West wavelets for the scale l.

5.2.1 East-West Wavelets

We construct the East-West wavelets for the scale l from the scaling functions

of the scale l−1. The East-West wavelet for the scale l, except for some special

cases, is the mean of four scaling functions at the scale l− 1 corresponding to

four neighboring indices where two scaling functions in the East are multiplied

by −1. The idea of the construction of East-West wavelets is shown in Figure

5.2.

The primal East-West wavelets for the scale l are the differences between the

primal scaling functions for the scale l − 1 in direction East-West as follows:

m
EWψ

(l)
ij =

1

2

(
mφ

(l−1)
ij − mφ

(l−1)

i+2k+l−1 j
+ mφ

(l−1)

i j+2l−1 − mφ
(l−1)

i+2k+l−1 j+2l−1

)
, (5.10)

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l− 1. For the dual wavelets for the scale

l, we define

m
EW ψ̃

(l)
ij =

1

2

(
mφ̃

(l−1)
ij − mφ̃

(l−1)

i+2k+l−1 j
+ mφ̃

(l−1)

i j+2l−1 − mφ̃
(l−1)

i+2k+l−1 j+2l−1

)
, (5.11)

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l − 1.

Similar to the scaling function we have to consider the special case k = N − l

separately as follows: The primal wavelets are

m
EWψ

(l)
ij =

1√
2

(
mφ

(l−1)
ij − mφ

(l−1)

i+2k+l−1 j

)
, (i, j) ∈ I(1)

N−l, (5.12)



120 5. FWT Based on Biorthogonal Zonal Kernels

Figure 5.3: The North-South wavelets for the scale l.

and the dual wavelets are

m
EW ψ̃

(l)
ij =

1√
2

(
mφ̃

(l−1)
ij − mφ̃

(l−1)

i+2k+l−1 j

)
, (i, j) ∈ I(1)

N−l. (5.13)

5.2.2 North-South Wavelets

Analogously to the East-West wavelets, we construct the North-South wavelets

for the scale l from the scaling functions of the scale l − 1. The North-South

wavelet for the scale l, except for some special cases, is the mean of four

scaling functions at the scale l − 1 corresponding to four neighboring indices

where two scaling functions in the south are multiplied by −1. The idea of the

construction of North-South wavelets is shown in Figure 5.3.

The primal North-South wavelets for the scale l are the differences between

the primal scaling functions for the scale l− 1 in the North-South direction as

follows:

m
NSψ

(l)
ij =

(−1)m

2

(
mφ

(l−1)
ij + mφ

(l−1)

i+2k+l−1 j
− mφ

(l−1)

i j+2l−1 − mφ
(l−1)

i+2k+l−1 j+2l−1

)
,

(5.14)

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l− 1. For the dual wavelets for the scale

l we define

m
NS ψ̃

(l)
ij =

(−1)m

2

(
mφ̃

(l−1)
ij + mφ̃

(l−1)

i+2k+l−1 j
− mφ̃

(l−1)

i j+2l−1 − mφ̃
(l−1)

i+2k+l−1 j+2l−1

)
,

(5.15)
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Figure 5.4: The diagonal wavelets for the scale l.

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l − 1.

Similar to the scaling function we have to consider the special case k = N − l

separately as follows:

• If l = 1, because the block NB
(0)
N (or SB

(0)
N for the southern hemisphere)

does not exist, we cannot define the North-South wavelet for this case.

• If l 6= 1 then we set

m
NSψ

(l)
ij =

(−1)m

2

(
mφ

(l−1)
ij + mφ

(l−1)

i+2k+l−1 j
− 2 mφ

(l−1)

i j+2l−1

)
, (i, j) ∈ I(l)

N−l,

(5.16)

and similarly for the dual wavelets:

m
NS ψ̃

(l)
ij =

(−1)m

2

(
mφ̃

(l−1)
ij + mφ̃

(l−1)

i+2k+l−1 j
− 2 mφ̃

(l−1)

i j+2l−1

)
, (i, j) ∈ I(l)

N−l.

(5.17)

5.2.3 Diagonal Wavelets

The diagonal wavelet for the scale l, except for some special cases, is the mean

of four scaling functions at the scale l − 1 corresponding to four neighboring

indices where two scaling functions in the diagonal are multiplied by −1. The

idea of the construction of Diagonal wavelets is shown in Figure 5.4.
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We define the primal diagonal wavelets for the scale l as follows:

m
Dψ

(l)
ij =

(−1)m

2

(
mφ

(l−1)
ij − mφ

(l−1)

i+2k+l−1 j
− mφ

(l−1)

i j+2l−1 + mφ
(l−1)

i+2k+l−1 j+2l−1

)
,

(5.18)

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l − 1. For the dual diagonal wavelets for

the scale l we define

m
D ψ̃

(l)
ij =

(−1)m

2

(
mφ̃

(l−1)
ij − mφ̃

(l−1)

i+2k+l−1 j
− mφ̃

(l−1)

i j+2l−1 + mφ̃
(l−1)

i+2k+l−1 j+2l−1

)
,

(5.19)

where (i, j) ∈ I(l)
k for k = 0, . . . , N − l − 1.

Since for the case k = N − l there are only two scaling functions in a block,

we cannot construct the diagonal wavelets for this case.

Remark 5.2.1 (Zero Mean Property of the X-Wavelets)

It should be mentioned that all of the three kinds of wavelets constructed above

have the zero mean property, i.e., for l = 1, . . . , N we have∫
Ω

m
Xψ

(l)
ij (ξ) dω(ξ) =

∫
Ω

m
Xψ̃

(l)
ij (ξ) dω(ξ) = 0, (i, j) ∈ I(l)

k , k = 0, . . . , N− l−1,

(5.20)

where X ∈ {EW,NS,D}.

5.3 Multiresolution Analysis

In this section a multiresolution analysis for the space V defined by (4.20)

will be introduced. Most of the multiresolution analysis are for the space of all

square integrable functions, but here, our multiresolution analysis is for a finite

dimension subspace of the space of all square integrable functions. Indeed, from

a numerical point of view, this is what has to be done for practical applications

(cf. [43]).

Similar to (4.20), we introduce the scaling spaces as follows:

Definition 5.3.1 (Scaling Spaces)

Let N ≥ 2 be fixed, and mφ̃
(l)
ij be the scaling functions defined in Definitions

5.1.1 and 5.1.2. Then we define the scaling space Vl by

Vl = span
(i,j)∈I(l)

{
0φ̃

(l)
ij ,

1φ̃
(l)
ij

}
, (5.21)
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for l = 1, . . . , N .

Note that the scaling spaces form a nested sequence of subspaces in the form

{0} ⊂ VN ⊂ VN−1 ⊂ . . . ⊂ V1 ⊂ V0 ⊂ L2(Ω). (5.22)

Again, similar to (4.21), by using the biorthogonality property of the scaling

functions we define projection operators Pl : L2(Ω) → Vl by

Pl(F ) =
∑

(i,j)∈I(l)

( 0φ
(l)
ij , F ) 0φ̃

(l)
ij +

∑
(i,j)∈I(l)

( 1φ
(l)
ij , F ) 1φ̃

(l)
ij , (5.23)

for l = 0, . . . , N − 1, where, as always, (·, ·) is understood in the topology of

L2(Ω).

Recall that similar to Remark 4.2.1, if F ∈ Vl then Pl(F ) = F . In the sense of

signal processing, the projection operators Pl can be associated with low–pass

filtering. The difference between two succeeding scale spaces is collected in a

detail space. Therefore, we define

Definition 5.3.2 (Wavelet Spaces)

Let m
X ψ̃

(l)
ij , X ∈ {EW, NS, D} be the available dual wavelets defined in

Section 5.2. Then we define the wavelet space Wl by

Wl = span
(i,j)∈I(l)

X∈{EW, NS, D}

{
0
Xψ̃

(l)
ij ,

1
Xψ̃

(l)
ij |when available

}
, (5.24)

for l = 1, . . . , N .

It should be mentioned that, for example, in the definition of wavelet spaces

by using the diagonal wavelets, there are not any diagonal wavelets in the last

block near the pole. In such a case, we use another available kind of wavelets,

e.g., East-West wavelets, to define the diagonal wavelet spaces.

Because of the decomposition of Vl−1 as a direct sum of Wl and Vl, i.e.,

Wl ⊕ Vl = Vl−1, l = 1, . . . , N, (5.25)

we are able to deduce
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Lemma 5.3.3

For N ≥ 2 fixed,

V0 = VN ⊕
N⊕

l=1

Wl. (5.26)

The space Wl contains the detail information of a signal F . In fact, our method

enables a dynamical space-varying frequency distribution of a function F ∈
L2(Ω). Consequently, the wavelet analysis is not only related to a frequency

band (according to the scale l), but also scale–dependent spatial information

is provided.

The analysis is performed by the wavelets transform that is defined as follows:

For the scale l and the index (i, j) ∈ I(l),

m
X WT(l; i, j;F ) = (m

Xψ
(l)
ij , F ), F ∈ L2(Ω), (5.27)

where m = 0, 1 and X ∈ {EW,NS,D} (when defined). Due to the biorthog-

onality of the wavelets and the dual wavelets, we are able to introduce the

operators Rl : L2(Ω) −→ Wl by

Rl(F ) =
1∑

m=0

∑
(i,j)∈I(l)

∑
X∈{EW,NS,D}

(m
Xψ

(l)
ij , F ) m

X ψ̃
(l)
ij . (5.28)

These operators act as band–pass filters on a signal F ∈ L2(Ω).

The wavelet analysis and the reconstruction can be summarized in the follow-

ing theorem:

Theorem 5.3.4 (Reconstruction Formula)

For F ∈ L2(Ω),

P0(F ) =
1∑

m=0

 ∑
(i,j)∈I(0)

( mφ
(N)
ij , F ) mφ̃

(n)
ij

+
N∑

l=1

∑
(i,j)∈I(l)

∑
X∈{EW,NS,D}

(m
Xψ

(l)
ij , F ) m

X ψ̃
(l)
ij

 .

The wavelet analysis and the reconstruction can be organized as a fast wavelet

transform. Basis for these algorithms are the filter coefficients in the scale
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relation, which are implicitly defined in Definition 5.1.1 and 5.1.2. For example,

it follows from (5.10) that

m
EWWT(l; i, j;F ) =

1

2

(
(mφ

(l−1)
ij , F )− ( mφ

(l−1)

i+2k+l−1 j
, F )

+ ( mφ
(l−1)

i j+2l−1 , F )− ( mφ
(l−1)

i+2k+l−1 j+2l−1 , F )
)
.

In fact, we end up with a fast tree algorithm of the following structure:

Wavelet Decomposition

The reconstruction can be organized as follows:

Wavelet Reconstruction

5.4 Examples

In this section, we present two examples for the wavelet techniques described

in Section 5.2. Both examples illustrate the gravity potential of buried point

masses with different depths. The first example is harmonic and globally

supported while the second example is non-harmonic and locally supported.
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Example 5.4.1

The function ξ 7→ F (ξ) defined by

F (ξ) =
4∑

i=1

1

‖ξ − hiηi‖
, ξ ∈ Ω (5.29)

is chosen as the trial function, where ηi, i = 1, . . . , 4 are four fixed points on the

sphere Ω. The fixed parameters hi, i = 1, . . . , 4 are equal to 0.9, 0.8, 0.7, 0.6,

respectively. Figure 5.5 illustrates this function on the sphere Ω. As we

mentioned before, this function is harmonic and globally supported on the

sphere Ω. The function is sampled at the block grid with N = 11 with about

11,200,000 points on the sphere. Because the grid is rather dense for this func-

tion, we decided to approximate (mφ
(0)
ij , F ) just by the value F (mη2i+2k−1,j).

The scaling functions at the different scales are represented in Figure 5.6. The

wavelet transforms at different scales of types EW, NS and D are plotted in

the figures 5.7, 5.8 and 5.9, respectively. Note that the wavelet transforms at

the scale j are multiplied with a factor 2−j to get comparable results.

Figure 5.5: The function defind by (5.29),

where h1 = 0.9, h2 = 0.8, h3 = 0.7 and h4 = 0.6.
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Figure 5.6: The scaling functions of Example 5.4.1

at the scales 0, 2, 4, 5, 6, 7.
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Figure 5.7: The value of East-West wavelet transforms for the trial function

of Example 5.4.1 at the scales 1, 3, 4, 5, 6, 7.
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Figure 5.8: The value of North-South wavelet transforms for the trial function

of Example 5.4.1 at the scales 1, 3, 4, 5, 6, 7.
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Figure 5.9: The value of Diagonal wavelet transforms for the trial function

of Example 5.4.1 at the scales 1, 3, 4, 5, 6, 7.



5.4. Examples 131

Figure 5.10: The value of EW+NS+D wavelet transforms of Example 5.4.1

at the scales 1, 3, 4, 5, 6, 7.



132 5. FWT Based on Biorthogonal Zonal Kernels

Example 5.4.2

In this example, the trial function is composed by three normalized Wendland

functions. The function is illustrated in Figure 5.11 on the sphere Ω and in

Figure 5.12 in two-dimensional plane. The function is sampled at the block

grid with N = 10. Thus we have about 2,800,000 points on the sphere. Similar

to Example 5.4.1, we approximated (mφ
(0)
ij , F ) just by the value F (mη2i+2k−1,j).

Figure 5.13 illustrates the scaling functions at the different scales. The wavelet

transforms at different scales of types EW, NS and D are plotted in the figures

5.14, 5.15 and 5.16, respectively.

Figure 5.11: The trial function of Example 5.4.2 composed of three

Wendland’s functions: K1.5, K2.7 and K3.
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Figure 5.12: The Wendland Function ϑ 7→ Kh(cosϑ), ϑ ∈ [−π/2, π/2],

for h = 1.5, 2.7, 3.
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Figure 5.13: The scaling functions of Example 5.4.2

at the scales 0, 1, 2, 3, 4, 6.
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Figure 5.14: The value of East-West wavelet transforms of Example 5.4.2

at the scales 1, 3, 4, 5, 6, 7.
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Figure 5.15: The value of North-South wavelet transforms of Example 5.4.2

at the scales 1, 3, 4, 5, 6, 7.
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Figure 5.16: The value of Diagonal wavelet transforms of Example 5.4.2

at the scales 1, 3, 4, 5, 6, 7.



Chapter 6

Summary and Outlook

In this thesis we have discussed locally supported zonal kernels as a powerful

tool for the multiscale approximation of functions on the sphere. We have

investigated the smoothed Haar functions and, by a new technique, we have

extended the explicit expressions for the Legendre transforms of the smoothed

Haar functions proposed by [92]. Moreover, we have extended the Wendland

functions to the sphere. These functions have appealing properties: They are

strictly positive definite on the sphere and are locally supported on the sphere

and their native space is known, thus an error analysis is possible.

Based on the locally supported zonal kernels, we have developed a system of

biorthogonal locally supported zonal kernels on the sphere. This system of

biorthogonal zonal kernels has almost all advantages of an orthogonal system

of functions. In fact, the numerical effort for the construction of this system

is low, and also, all the tasks are easy to perform.

We have used the system of biorthogonal zonal kernels as the scaling functions

at the scale 0 for a biorthogonal multiscale analysis on the sphere. Upon the

biorthogonal scaling functions, we have investigated a system of biorthogonal

locally supported wavelets. Because the wavelet analysis benefits the local

support and biorthogonal properties of the scaling functions and the wavelets,

we have therefore obtained fast algorithms that are easy to implement, espe-

cially, we have established a fast wavelet transform. Furthermore, this method

enables fast approximations of local phenomena, too. Even more, it should be

mentioned that it is possible to apply the described concept in a fully local

framework.

Further investigations need to be done for the implementation of the fast
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wavelet analysis for the problem involving the rotational invariant pseudodif-

ferential operators, especially with real satellite data. For example, a future

task is to formulate this method for the problem of downward continuation by

means of inverse Abel–Poisson–type operators (see [32], [34], [42], [92]).
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tions to Geoscience), Birkhäuser Boston Inc., Boston, MA, 2004.

[39] W. Freeden and R. Reuter, Spherical Harmonic Splines: Theoretical and

Computational Aspects, Approximation and Optimization in Mathemat-

ical Physics (Oberwolfach, 1982), Vol. 27, Methoden und Verfahren der

Mathematischen Physik, Lang, Frankfurt am Main, 1983, pp. 79–103.

[40] W. Freeden and M. Schreiner, Non-Orthogonal Expansions on the Sphere,

Mathematical Methods in the Applied Sciences 18 (1995), no. 2, 83–120.

[41] W. Freeden and M. Schreiner, Orthogonal and Nonorthogonal Multireso-

lution Analysis, Scale Discrete and Exact Fully Discrete Wavelet Trans-

form on the Sphere, Constructive Approximation 14 (1998), no. 4, 493–

515.

[42] W. Freeden and M. Schreiner, Spaceborne Gravitational Field Determi-

nation by Means of Locally Supported Wavelets, Journal of Geodesy 79

(2005), 431–446.

[43] W. Freeden and M. Schreiner, Biorthogonal Locally Supported Wavelets

on the Sphere Based on Zonal Kernel Functions, Journal of Fourier Anal-

ysis and Applications (2006), (accepted for publication).



Bibliography 143

[44] W. Freeden and M. Schreiner, Multiresolution Analysis by Spherical Up

Functions, Constructive Approximation 23 (2006), 241–259.

[45] W. Freeden, M. Schreiner, and R. Franke, A Survey on Spherical Spline

Approximation, Surveys on Mathematics for Industry 7 (1997), no. 1,

29–85.

[46] W. Freeden and U. Windheuser, Earth’s Gravitational Potential and

its MRA Approximation by Harmonic Singular Integrals, Zeitschrift für

Angewandte Mathematik und Mechanik (ZAMM), SII 75 (1995), 633–

634.

[47] W. Freeden and U. Windheuser, Spherical Wavelet Transform and its

Discretization, Advances in Computational Mathematics 5 (1996), no. 1,

51–94.

[48] W. Freeden and U. Windheuser, Combined Spherical Harmonic and

Wavelet Expansion—A Future Concept in Earth’s Gravitational De-

termination, Applied and Computational Harmonic Analysis 4 (1997),

no. 1, 1–37.

[49] G. Gasper, Positive Integrals of Bessel Functions, SIAM Journal on

Mathematical Analysis 6 (1975), no. 5, 868–881.
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