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Abstract

A modular level set algorithm is developed to study the interface

and its movement for free moving boundary problems. The algorithm

is divided into three basic modules initialization, propagation and con-

touring. Initialization is the process of finding the signed distance func-

tion Φ from closed objects. We discuss here, a methodology to find an

accurate Φ from a closed, simply connected surface discretized by tri-

angulation. We compute Φ using the direct method and it is stored

efficiently in the neighborhood of the interface by a narrow band level

set method. A novel approach is employed to determine the correct

sign of the distance function at convex-concave junctions of the sur-

face. The accuracy and convergence of the method with respect to the

surface resolution is studied. It is shown that the efficient organiza-

tion of surface and narrow band data structures enables the solution

of large industrial problems. We also compare the accuracy of Φ by

direct approach with Fast Marching Method (FMM). It is found that

the direct approach is more accurate than FMM.

Contouring is performed through a variant of the marching cube

algorithm used for the isosurface construction from volumetric data

sets. The algorithm is designed to keep foreground and background

information consistent, contrary to the neutrality principle followed for

surface rendering in computer graphics. The algorithm ensures that the

isosurface triangulation is closed, non-degenerate and non-ambiguous.

The constructed triangulation has desirable properties required for the

generation of good volume meshes. These volume meshes are used in

the boundary element method for the study of linear electrostatics.

For estimating surface properties like interface position, normal and

curvature accurately from a discrete level set function, a method based

on higher order weighted least squares is developed. It is found that

least squares approach is more accurate than finite difference approx-

imation. Furthermore, the method of least squares requires a more

compact stencil than those of finite difference schemes. The accuracy

and convergence of the method depends on the surface resolution and

the discrete mesh width.

This approach is used in propagation for the study of mean cur-

vature flow and bubble dynamics. The advantage of this approach is



that the curvature is not discretized explicitly on the grid and is es-

timated on the interface. The method of constant velocity extension

is employed for the propagation of the interface. With least squares

approach, the mean curvature flow has considerable reduction in mass

loss compared to finite difference techniques.

In the bubble dynamics, the modules are used for the study of a

bubble under the influence of surface tension forces to validate Young-

Laplace law. It is found that the order of curvature estimation plays a

crucial role for calculating accurate pressure difference between inside

and outside of the bubble. Further, we study the coalescence of two

bubbles under surface tension force. The application of these modules

to various industrial problems is discussed.
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CHAPTER 1

Introduction

Interface modeling is a vital step in the study of the free surface of

a moving boundary problem. These free surfaces are represented im-

plicitly or explicitly in the simulations and propagated by a prescribed

velocity given on the interface or on an underlying grid. The algorithm

designed for the surface representation must be fast, memory efficient,

and accurate. Apart from these desired properties, the algorithm must

also be robust to handle topological changes like tearing, stretching

and merging during surface evolution and should be generic for solving

various applications from elasticity in solids or from two phase flows

in fluid dynamics. During propagation, it may be also necessary to

estimate surface parameters like normals and curvatures accurately on

the interface.

1.1. Classification of different methods

There are different approaches used for the treatment of the in-

terface. Commonly, these approaches can be classified into two main

categories viz., tracking methods and capturing methods. We review

these two methods briefly.

1.1.1. Tracking methods. In the tracking method the interface

is tracked explicitly along the trajectories. It can be purely Lagrangian

as in the boundary integral [67] and particle schemes [54]. In the

Eulerian set-up it is further divided into surface and volume tracking

methods. The surface tracking Eulerian method constructs the inter-

face explicitly as a series of interpolated curves from discrete points.

In the conventional front tracking algorithm, these interface points and

connections are saved at each time step [90]. In the new front tracking

approach these connections are saved as level curves instead of stor-

ing the connectivity information [84]. In the volume tracking Eulerian
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method, the interface is reconstructed from cell by cell with marker par-

ticles, as in the classical marker-and-cell (MAC) approach [36]. These

markers indicate the status of the cell. For example, in the simula-

tion of viscous fluids with the free surface, this marker indicates the

position of the fluid cell which are then moved with a prescribed veloc-

ity [56]. There are also other types of tracking methods which combine

Lagrangian and Eulerian approaches. For example in the the partial

moving mesh algorithm [41], some part of the grid is fixed and some

part around the interface is moved in a Lagrangian way.

1.1.2. Capturing methods. In the capturing method, the inter-

face is constructed from field values. These field values may be dis-

continuous variables like fluid fractions, or continuous zero level sets of

some implicit function.

The algorithm which captures the interface from the discontinuous

field of fluid fractions is referred to as volume of fluid (VOF) method.

The original VOF model by Noh and Woodward uses the Simple Line

Interface Construction (SLIC) [60]. This was later improved upon by

Chorin [16] and Hirt and Nichols [38]. Youngs [98], [99] designed a

Piecewise Linear Interface Construction (PLIC) which was analyzed

in detail by Pilliod [66]. Presently, there are many variations of VOF

methods available in the literature. For details of different state-of-

the-art VOF models see Pucket et al. [68], Rider and Kothe [69] and

Scardovelli and Zaleski [76], [77].

The continuous representation on the other hand, captures the in-

terface from the zero level sets of some implicit function. This is

chiefly referred to as level set methods which was started by Osher

and Sethian [63]. The power of this approach can be evidenced by

widespread use of this method in the literature to variety of problems

ever since its introduction. Mentioning here the different applications

of this method is quite exhaustive. But to name a few, this method

has been used and validated in the field of material science [1], [2], [4],

fluid mechanics [89], [11], [48], image enhancement [50], image seg-

mentation and vision [51], [26], [30], [88], [100], geometry and grid

generation [81] and so on. The books of Sethian [83] and Osher and

Fedkiw [62] gives a comprehensive overview and covers the application

of this method to a variety of problems.
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1.2. Level set methods

Both tracking and capturing methods have their own merits and

de-merits and it is beyond the scope of this thesis to go into details of

each method. In the numerical modeling, choosing a type or combina-

tion of methods is often a strategy for treating the interface. For our

study, we require, a method which is robust with respect to changes

of the interface structure and is designed in a modular way for various

applications. In this context, level set methods are better suited for

our study as it can easily handle complex topological changes of the

interface during the evolution process. As we have discussed in the last

section, it has also been proven to be very efficient in a wide variety

of problems. Furthermore, the surface parameters like normals and

curvatures can be estimated from the level set function in a straight

forward way [63], [83], [62]. Before we go into the details of our objec-

tive, we describe here different steps involved in modeling the interface

by a level set method.

In the level set approach, the treatment of the interface can be

divided into three basic steps: (i) initialization, (ii) propagation and

(iii) contouring. In the simulation, these three processes are performed

iteratively and each is a research topic of its own as one can find a

variety of techniques and algorithms in the literature.

1.2.1. Initialization. Given the surface in an implicit or in a dis-

cretized (say triangulated surface) form, the first step is to construct

the level set function Ψ. The level set function can be a signed distance

function which we denote by Φ.

Definition 1. Signed distance function: Let Ω be a closed domain

and Ω− ⊂ Ω ⊂ R
3 with piecewise smooth boundary Γ. Then the signed

distance function Φ is defined by

(1.1) Φ(~x) =

{

−d(~x, Γ) ~x ∈ Ω−,

d(~x, Γ) ~x ∈ Ω /∈ Ω−,

where the distance function d(~x, Γ) is given by

(1.2) d(~x, Γ) := inf
~p∈Γ

|~x − ~p|,

as shown in Figure 1.1.
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Φ<0 Ω
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Figure 1.1. Definition of the signed distance function Φ.
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Figure 1.2. Representation of (a) torus, and (b) initial

seed for a dendrite crystal.

The signed distance function for simple geometries can be obtained

from an implicit representation. For instance, the implicit function of

a torus with center (xc, yc, zc) is

Φ(x, y, z) =
√

(a − R)2 + (z − zc)2 − r = 0,(1.3)

where a =
√

(x − xc)2 + (y − yc)2, r is the radius of the tube and R is

the distance between the center of the tube to the center of the torus

as shown in Figure 1.2(a). Similarly, for the study of dendrite crystal

growth the initial seed Φ is given by

(1.4) Φ = min(Φ1, min(Φ2, min(Φ3, min(Φ4, min(Φ5, Φ6))))),

where Φ1 . . .Φ6 are the implicit representations of six spheres of radius

r with centers shifted by r/2 along six Cartesian directions as shown

in Figure 1.2(b).

For a complex geometry, when the surface is not given by an implicit

function, Φ is estimated from a discrete surface representation. In real

life applications, most commonly surface triangulations are used.
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1.2. Level set methods

There exists a variety of algorithms to compute Φ, which can be

classified into two categories:

(i) Direct methods: The signed distance function is computed

from the surface directly.

(ii) PDE methods: The signed distance function is found from a

viscosity solution of the Eikonal equation, i.e.

(1.5) |∇Φ| − 1 = 0 ∀ ~x ∈ Ω− ∪ Ω+ with Φ(~x) = 0 ∀ ~x ∈ Γ.

In practice, Φ is calculated by solving a time dependent pde [89]

(1.6) Φt(~x, t) = sgn(Φ0)(1 − |∇Φ|) with Φ(~x, 0) = Φ0(~x),

where the zero level set Φ0 represents the location of the inter-

face. When this equation is solved for time tc, then Φ(~x, tc) is

the signed distance for the points within the distance tc from

the interface as the speed is unity here. Sethian [83] employed

a similar approach based on crossing times, by solving

(1.7) Φt + |∇Φ| = 0,

forward and backward in time at a particular grid point from

the initial estimate of Φ. To solve this equation efficiently,

Adalsteinsson and Sethian proposed a Fast Marching Method

(FMM) [5]. The initial estimate of Φ is computed from an

implicit representation or by a direct method.

In the literature, category (ii) is preferred over (i), as (i) is slow and

costly [89], [5]. On the other hand, direct computations can be im-

proved by using a narrow band, also referred to as local level set meth-

ods [5], [64], where Φ is defined within a small region around the

interface. In any case, if the given surface is complex and cannot be

represented implicitly, then the signed distance function can only be

obtained by a direct method from a discretized surface.

1.2.2. Propagation. From Φ and the velocity field on the discrete

grid the normal velocity F is found on the interface and extended

appropriately to the grid points. The interface is then propagated

according to the level set equation [63], [83],

(1.8) Φt + F |∇Φ| = 0.
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Numerically, equation (1.8) is solved by explicit forward Euler stepping

in time and by first order upwinding for |∇Φ|. For high order approxi-

mations, methods like ENO [37] or WENO [45] for spatial derivatives

and the Runge-Kutta approach for temporal discretization is used. The

normal velocity F is found from the discrete velocity field and from the

normal estimated by the level set function ~n = ∇Φ
‖∇Φ‖

. In some applica-

tions, like in free moving boundary problems, the discrete velocity field

is known only on one side of the interface. To estimate F on the other

side, extrapolation based on upwinding information is used. Some of

the commonly used approaches are constant velocity extensions [5],

ghost fluid methods [25] and the method of characteristics [6].

1.2.3. Contouring: After propagating for finite time steps, it is

desirable that Φ retains the property of signed distance function. The

initialization of Φ to become a signed distance function again is usually

referred to as reinitialization. There are two ways to perform this task.

(1) Explicit methods: In this method Φ is computed from the iso-

surface. This isosurface can be constructed from the zero level

set, for instance, by a marching cube algorithm [46]. This is

also referred to as Contouring.

(2) Non-explicit methods: In this method Φ is reinitialized to be a

sign distance function by solving either equation (1.6) or equa-

tion (1.8) by a fast marching method, instead of constructing

the isosurface explicitly.

The advantage of an explicit construction is that accuracy of Φ is main-

tained with respect to surface resolution, and the parameters needed for

propagation, like projection points on the surface can be estimated ac-

curately on the surface. On the other hand, constructing triangulations

and reinitializing Φ by a direct method increases the computational

time, especially when the narrow band is broad. In the non-explicit

construction, the reinitialization is performed fast, and doesn’t need a

surface triangulation to compute Φ. However, estimating the projec-

tion point accurately on the surface is not straight forward. Moreover,

it is found that improving the order of initial estimation of Φ pro-

posed by Chopp [14], leads to a set of equations that are not trivial to

solve [62].
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1.3. Estimation of surface properties

Apart from these aforementioned three processes, certain surface

properties, such as position, normal, and principal curvatures, and

their directions, should be computable precisely on the interface from

a discrete level set function. Applications, where knowledge of surface

properties is necessary, are as follows:

(1) In the context of Explicit-Jump Immersed Interface Methods

(EJIIM) [94], [95] for solving elliptic boundary value problems

in a complicated geometry, the quality of the result depends

crucially on the accuracy of the position and on the accuracy

of the normal on the surface [71], [72], [74]. It is natural to

look for the principal curvature directions rather than choosing

arbitrary tangents at a particular point on the surface.

(2) To extract a surface triangulation from CAD data, an accurate

estimate of position and curvature on the surface is desirable.

The estimation is used for the construction of a better confor-

mal triangulation on the surface. Extensive literature is now

available on this topic. In [55], [92], [65], the triangulation of

surfaces in the context of level set methods is discussed.

(3) In modeling the force on the interface in Stefan problems or

in multi-phase flows, the surface tension balances the jump of

the normal stress on the surface Γ [35], i.e.

[σ~n]Γ = τH~n.(1.9)

Here ~n = ~nΓ is the outer unit normal, τ is the surface tension

coefficient, H is the curvature, and σ is the stress tensor on

the interface. The accuracy of H is crucial for a good imple-

mentation of the jump condition.

(4) In surface diffusion flow, in metal reflow in semiconductor man-

ufacturing, or in sintering and elastic membrane simulation, it

is necessary to model the motion of curves and surfaces under

the intrinsic Laplacian of curvature. The inherent difficulty in

this method is the numerical estimation of 4th order deriva-

tives in space, which is usually very unstable. Using finite dif-

ferences for discretizing the higher order derivatives decreases

accuracy [15].

7
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1.4. Outline of the thesis

This dissertation discusses a level set algorithm for the treatment of

interfaces which is particularly suited for estimating surface properties

accurately. The algorithm is designed in a modular way to be applicable

for various industrial problems. The objectives of this thesis are:

(1) To estimate the signed distance function accurately from a

complicated geometry discretized by triangles. Moreover, the

methodology of estimation must be fast and robust.

(2) Given one or more closed contours, the surfaces should be

moved according to the velocity prescribed on the discrete grid.

The velocity from the grid is extrapolated on the surface and

the grid inherits the normal velocity from the interface.

(3) To construct an isosurface from the level set function using a

variant of the marching cube algorithm. The resulting isosur-

face should be closed, non-degenerate and also account for non

neutrality.

(4) To estimate accurately the interface position, normal, prin-

cipal curvature and its direction from the level set function

during the contouring process.

(5) To investigate the influence of curvature estimation for differ-

ent applications like mean curvature flow and bubble dynam-

ics.

The dissertation is structured exactly in accordance to these goals.

The review of different existing methods for each module is explained in

each chapter separately. Similarly the proposed new method/algorithm

and their novel applications to industrial problems can be found in each

chapter.

Chapter 2 deals with initialization. A detailed analysis of construct-

ing the signed distance function especially from the discretized triangu-

lated surface is explained. Here, the signed distance is calculated only

within the narrow band of the interface. The methodology involved

to get a appropriate data structure, and the speed the of signed dis-

tance computation are elaborated. We compare the estimation of Φ of

our approach with the first and the second order FMM. The applica-

tions of this module to various industrial problems are also discussed.

8



1.4. Outline of the thesis

Chapter 3 deals with the isosurface construction from the Φ values i.e.

contouring. A variant of the marching cube algorithm is explained in

detail in this chapter. The algorithm is designed to keep foreground and

background information consistent, contrary to the neutrality princi-

ple followed for surface rendering in computer graphics [91]. Chapter 4

discusses the method based on least squares for estimating surface prop-

erties like position, normal and curvature with high order of accuracy

from a discrete level set function. An arbitrarily oriented torus is taken

as test case to compare our results with known analytical solutions.

This method is also compared with the conventional finite difference

techniques, used predominantly in the literature [15]. In Chapter 5,

we present some of the applications of our approach to the propagation

problems. We investigate the effect of high order curvature estimation

in the study of mean curvature flow and bubble dynamics. The method

is compared to regular benchmark problems. We verify Young-Laplace

law for spherical bubble from our least squares curvature estimation

and study the coalescence of two bubbles under surface tension force.

We also present briefly, a study of VOF-levelset coupling for the in-

jection mold flow problems with software SIGMASOFT. Finally, in

Chapter 6 we summarize and give an outlook on future extensions of

this approach.

9





CHAPTER 2

Computation of signed distance functions from

surface triangulations

In this chapter, a procedure is elaborated for estimating the dis-

crete signed distance function from surface triangulations. The surface

and narrow band data structures are constructed for computing and

storing Φ efficiently. These data structures are not only important for

the computation of Φ, but also for processing CAD data for various

industrial problems.

2.1. Surface data structure

We assume that the triangulation of the surface fulfills the basic

criteria required for the definition of a topological space like a simplex

and a simplicial complex (for definitions refer to Spanier [86]). In brief,

the simplicial complex relates points, line segments, triangles and the

n-dimensional counterparts. It should be noted that a 0-simplex con-

sists of single point, a 1-simplex is the line segment (here we refer to

as an edge), a 2-simplex is a triangle with interior, a 3-simplex is a

tetrahedron with interior and so on. In the triangle the points, edges

and face are given by

points : {P1}, {P2}, {P3}
edges : E1 = {P1, P2}, E2 = {P2, P3}, E3 = {P3, P1}
faces : F = {P1, P2, P3},

as shown in Figure 2.1. Here, we give definitions and notations re-

quired for signed distance computations from surface triangulations.

2.1.1. Definitions and conventions.

Convention 1. Orientation: The points and edges are numbered

in the counterclockwise direction as shown in Figure 2.1. That is, if

the points are ordered as {P1}, {P2}, {P3}, then the edges are defined

11
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1P n

E1 E

E

2

3 P3

P
2

Figure 2.1. Simplicial complex K of a triangle.

in this order: E1 = {P1, P2}, E2 = {P2, P3}, E3 = {P3, P1},
and the face normal ~nF is given by

~nF =
( ~P3 − ~P2) × ( ~P2 − ~P1)

||( ~P3 − ~P2) × ( ~P2 − ~P1)||
,

where ~Pi are the coordinates of Pi, i = 1, 2, 3.

Convention 2. Surface triangulation information: The surface

triangulation information is given as a list of unique point coordinates
~Pi, and by their indices, i = 0, 1, 2, . . . , np − 1 where np is the total

number of points of a surface triangulation. The faces are represented

as triples, {Pi, Pj, Pk}, i, j, k = 0, 1, 2, . . . , np − 1 where the triangles

are connected by three edges El
1 = {Pi, Pj}, El

2 = {Pj, Pk} and El
3 =

{Pk, Pi} for i 6= j, i 6= k, j 6= k, 0 ≤ l < nf .

Definition 2. Regular triangulation: The surface triangulation is

regular if

(i) for any i, k, 0 ≤ i < np and 0 ≤ k < np, i 6= k, ~Pi 6= ~Pk

(uniqueness of the point),

(ii) for any l, 0 ≤ l ≤ nf , the edge El
m = {Pi, Pj}, m ∈ {1, 2, 3},

does not repeat again in the same orientation (uniqueness of

the edge). Here, it must be noted that, {Pi, Pj} 6= {Pj , Pi}, if

Pi 6= Pj.

In the above Definition 2 the points violating (i) are called col-

lapsed points, and the edges violating (ii) are called repeating edges.

12



2.1. Surface data structure

Definition 3. Closed triangulation: The surface triangulation is

closed if ∀ m ∈ {1, 2, 3} and for ∀ l ∈ {0, 1, . . . , nf}, ∃ l′ ∈ {0, 1, . . . , nf}
and ∃ m′ ∈ {1, 2, 3} such that the edge El

m = {Pi, Pj} repeats once in

the reverse orientation i.e. El′

m′ = {Pj, Pi}.

Edges that violate the condition in Definition 3, are called open

edges or hanging edges.

Remark 1. If the triangulation is regular and closed, then the num-

ber of edges ne is given by

ne =
3nf

2
.

Remark 2. Convention 2 forms the basis of polygonal models like

object file format(off) [31], PoLYgon file format(PLY) or Stanford

Triangle Format [9]. These formats contain the information:1

(1) np, nf and ne

(2) ~Pi, i = 0, 1, . . . , np − 1

(3) P1j
, P2j

and P3j
, j = 0, 1, 2, . . . , nf − 1

Remark 3. The industrial standard for surface triangulations is

the stereo lithography (stl) format. Typically, the stl format (ASCII or

binary) has information for each triangular face, the normal and its

three coordinates, viz., ~nfi
, ~P1i

, ~P2i
and ~P3i

, i = 0, 1, . . . , nf − 1.

For the computation of signed distance functions, we need infor-

mation about the points, edges and faces. On the other hand, in the

above formats, there is no explicit information about the edges. Hence,

edges have to be constructed from the point coordinates in the stl and

from the indices in off format. In the off format the edges can be con-

structed while processing the point indices, but for stl formats a good

algorithm to compute point indices is necessary. It is found that stor-

ing and processing off or PLY type information is fast and useful for

the estimation of Φ. Therefore, we process the triangular information

based on the off format.

Also, in our algorithm we extensively use the neighborhood infor-

mation (like neighborhood of faces, edges and points). Therefore, it is

1PLY format has additional information like color and transparency, surface

normals, texture coordinates and data confidence values.
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desirable to construct data structures according to geometrical infor-

mation.

Definition 4. Second tangent of adjacent triangles: Let F1 and

F2 be two triangles which are closed,regular and adjacent to each other.

Let ~nF1
and ~nF2

are the normals and (P1, P2, P3) and (P1, P4, P2), are

point indices of the triangles respectively. The second tangents due to

F1 and F2 are given by

~pF1
=

~nF1
× ( ~P2 − ~P1)

‖~nF1
× ( ~P2 − ~P1)‖

, ~pF2
=

( ~P2 − ~P1) × ~nF2

‖( ~P2 − ~P1) × ~nF2
‖
.

Proposition 1. Let F1 and F2 be two triangles which are closed,

regular and adjacent to each other having second tangents ~pF1
and ~pF2

.

Then, ~pF1
· ~nF2

> 0(< 0) implies ~pF2
· ~nF1

> 0(< 0) and vice versa.

Proof.

~pF1
· ~nF2

=
1

C1
(~nF1

× ( ~P2 − ~P1)) · ~nF2

=
1

C1
(~nF2

× ~nF1
) · ( ~P2 − ~P1),(2.1)

where C1 = ‖~nF1
× ( ~P2 − ~P1)‖ > 0. Similarly

~pF2
· ~nF1

=
1

C2
(( ~P2 − ~P1) × ~nF2

) · ~nF1

=
1

C2
(~nF2

× ~nF1
) · ( ~P2 − ~P1),(2.2)

where C2 = ‖( ~P2 − ~P1) × ~nF2
‖ > 0. Thus, from equation (2.1) and

(2.2), we find

C1~pF1
· ~nF2

= C2~pF2
· ~nF1

.(2.3)

As C1, C2 > 0, we find

~pF1
· ~nF2

> 0(< 0) ⇔ ~pF2
· ~nF1

> 0(< 0).

�

Motivated from Definition 4 and Proposition 1, we define different

edge types.

Definition 5. Convex, concave and parallel edge types: An edge

is called

14



2.1. Surface data structure

(i) Convex if ~pF1
· ~nF2

> 0 or ~pF2
· ~nF1

> 0,

(ii) Concave if ~pF1
· ~nF2

< 0 or ~pF2
· ~nF1

< 0,

(iii) Parallel if ~pF1
· ~nF2

= 0.
This is shown schematically in Figure 2.2.
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(a) (b) (c)

Figure 2.2. (a) Convex, (b) concave and (c) parallel edges.

The edge type Et is defined by

Et =











1 if the edge is convex,

−1 if the edge is concave,

0 if the edge is parallel.

(2.4)

Having defined the quantities required to denote the neighborhood

of faces and edges, we now study the neighborhood of points.

Definition 6. Convex, concave, parallel and CeCe point types :

Let nPi
be the number of edges that meet at point index Pi (see Fig-

ure 2.3). Then the point is called a

(i) Convex point if all edges are convex or combinations of convex

and parallel types,

(ii) Concave point if all edges are concave or combinations of

concave and parallel types, and

(iii) Parallel point if all edges are parallel,

(iv) Convex edge Concave edge (CeCe) point if the edges are

of convex and concave type. The point type Pt is represented

by

Pt =























1 if the point is convex,

−1 if the point is concave,

0 if the point is parallel,

2 if the point is CeCe

(2.5)
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Figure 2.3. Edges meeting at point Pi.

Point data Edge data Face data

Number of points (np) Number of edges (ne) Number of faces (nf )

Coordinates (~Pi) Point index (P1, P2) Edge index

(E1, E2, E3)

Edges to point Neighboring Normal to face

indices (ep) face index (fl, fr) (~nF )

Point type (Pt) Edge type (Et)

(convex/concave/ (convex/concave/

CeCe) parallel)

Neighboring face normal

(nl, nr)

Table 2.1. Surface triangulation data structure for

points, edges and faces.

Later, we show that special care must be taken to get the correct

sign of the distance function at CeCe points. The relevant parameters

of the surface data structure are tabulated in Table 2.1.

2.1.2. Processing input triangulations. From stl-type real world

coordinates, we extract the information about a surface, i.e. points and

edges that are shared between faces. The first task is to construct point
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2.2. Narrow band data structure

indices from the coordinate information. The main aim in this task is to

quickly decide if a new point coordinate ~Pi is already present. Naively

comparing against all previously considered points gives an O(N2
p ) al-

gorithm, where Np = 3nf in the stl format. To extract this information

fast, we use a hashing method [78], [52]. Here, we form a hash table

where the face index is represented by a distinct hash key constructed

from the coordinates of the triangle. The performance of hashing is

therefore O(Np), which is much faster than the naive method.

The next task is to quickly build the edge information of the sur-

face. One way to construct edges is to form a look-up table from

point indices. To compare against every previously constructed edge,

again gives a quadratic algorithm. For a surface having a large num-

ber of triangles, this procedure is costly. To avoid this, we record the

constructed edge with its two end points. Now for a new edge, only

the edges where two end points has been generates must be compared

against. This results in an O(Ntc) algorithm, where Nt is the number

of edges and c is the maximum number of edges emanating from a point

given by the “edges to points” (ep) index.

From the above discussion we observe that accessing points from

edges and faces and vice versa is organized efficiently. Therefore, this

surface data structure can be used as a modular application to many

geometrical processing problems. Before discussing these applications

we would like to explain in detail the narrow band data structure used

for our Φ computation.

2.2. Narrow band data structure

Let a discrete Cartesian mesh be given. There are two ways to treat

the interface and its movement:

(1) Fixing a global cuboid around an object, and estimating Φ at

each grid point within the box is referred to as full grid method.

The advantage of this method is that the data structure is

simple, but it is memory intensive. For large geometries it

may not be practical.

(2) To restrict Φ only to a neighborhood of the interface known is

referred to as narrow band method. The data structure in this

case is intricate, but it is memory efficient. The efficiency in
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Figure 2.4. Fixing a global box around the suction filter

with long slender pipe.

speed can also be attained by constructing the data structure

appropriately.

Here we will consider only the narrow band method and its associated

data structure. In this method, there are two ways to construct Φ:

(1) From a discrete mesh, i.e., finding the minimum distance to

the surface by going through each grid point in the narrow

band. Mauch [53] finds Φ by using this method for solving

the static Hamiltonian - Jacobi equation.

(2) From a surface triangulation, i.e., iterating through grid points

on the local cuboidal grid around each triangle, and estimating

Φ by a direct method.

We use the second method to compute Φ. There are many algorithms

to treat the narrow band method efficiently with respect to memory

and time. The next subsection reviews some of the important narrow

band methods used in various applications.

2.2.1. Brief review of (other) narrow band methods. The

methodology even though known as narrow band, may require storage

of full 3D grid indices [64]. Generally, a global box is fixed from the

minimum and maximum coordinate values of the object coupled with

the offset due to the narrow band width. This may result in unnecessary

storage of grid index information. For example, Figure 2.4 shows a

suction filter which has a long slender pipe attached to a thin box.

Fixing a global box in this case, results in storing a large number of

indices around the pipe outside the surface.

To avoid this there exist data structures like quad-trees in 2D [87]

and octrees in 3D [49]. But these tree methods are slow when accessing
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2.2. Narrow band data structure

the neighboring indices of a particular grid point during propagation.

Recently, Losasso et al. [48] showed, that these tree methods can be

accessed efficiently by considering uniform grids, where every cell is an

octree of its own. There are other techniques used to reduce memory

and increase computational speed. Bridson [10] stores Φ on a coarse

uniform grid, which nests a finer uniform grid that intersects the sur-

face. He proposed to use hashing for the expansion of the grid, but did

not demonstrate it. Nielson and Museth employed a method known

as Dynamical Tubular (DT) grid [58]. In this method Φ is efficiently

stored along the tubular region around the interface, by a compressed

row storage technique derived from the well-known sparse matrix rep-

resentation. The performance was compared with different octree and

other narrow band methods. It was found that the DT-grid size is pro-

portional to the size of the interface. Houston et al [39] used another

approach known as Hierarchical run length encoding (H-rle) represen-

tation which combines the idea of rle sparse level set [40] and DT-grid

technique to obtain a memory efficient algorithm.

2.2.2. Our approach. Our aim is to design a data structure being

efficient for the propagation of the interface. Therefore, we propose

two algorithms in this perspective: The first algorithm constructs the

narrow band dynamically where we can access/modify the entries in

a simple way. For memory intensive problems, the second algorithm

based on a hashing procedure is used to access/modify the data inside

the narrow band.

2.2.3. Dynamic narrow band construction. The schematic

representation of a dynamic narrow band is shown in Figure 2.5. The

two main data structures in this approach are termed PhiList and Phi-

Pointer.

(1) PhiList stores the relevant information during the estimation

of Φ. The following information is stored for computation:

(i) Projection point P (xp, yp, zp),

(ii) Projection object type Ot ∈ {0, 1, 2}. This is the region

of projection. It may project onto the face (Ot = 0), edge

(Ot = 1) or on to the corner point (Ot = 2) of the triangle.
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  // Projection vector

Φ
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P
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};
O     

 // Signed distance

i

t
 // Object type

 // Object Index

(i , j , k  )

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)

(...........)(...........)

(...........)
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PhiBank (PB  ) PhiBank (PB  ) PhiBank (PB   )
 1  2  m

ListBank (LB  ) ListBank (LB  ) ListBank (LB  )
 1  2     n

Figure 2.5. Dynamic narrow band data structure.

(iii) The object number Oi. This is the index corresponding

to Ot. It may be the index number of the face, edge or

point.

These information play a vital role in deciding the sign of

the distance function at CeCe points. It is also required for

the estimation of velocities on the surface during propagation.

We can see from Figure 2.5 that the structure grows dynam-

ically by memory chunks known as “ListBanks”, denoted by

LB1, . . . , LBn where n is the number of banks. This approach

is similar to the idea of container classes used in the stan-

dard template library in C++. Φ is computed/updated only

in the neighborhood of each triangle inside the narrow band.

“ListIndex” gives 3D grid indices (i, j, k) to the PhiPointer.

The number of ListIndex noL in each bank is fixed a priori.

(2) PhiPointer returns the index Ii of the grid if it is inside the nar-

row band, otherwise it returns null. This information is kept

as “PhiIndex” and grows also in chunks called “PhiBanks” de-

noted by PB1, . . . , PBm, where m is the number of banks.
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Figure 2.6. Schematic representation of the hashing procedure.

From the index number Ii we can get the bank number PB

and the PhiIndex.

The basic memory storage depends on the size of the banks PB

and LB which are certainly not optimum compared to DT- grid [58]

or H-rle [39] methods. On the other hand, the above data structure is

convenient for the computation of Φ and for the propagation.

2.2.4. Hash data structure. The basic memory storage in this

method is proportional to the narrow band width w. We create a hash

table of certain length M and a hash key Ki, i = 1, . . . , M , is chosen

on the basis of the hash function from the grid index (i, j, k) as shown

in Figure 2.6. The speed of computation depends on fixing the initial

size and finding the key without much collision of the hash table. The

hash table is resized, whenever a narrow band entry increases above the

fixed size. During propagation, to increase the speed of computation,

we store the neighboring information a priori.

2.3. Initialization

Having established an efficient surface and narrow band data struc-

ture, we explain in detail the estimation of Φ from the triangulated

surface. As mentioned earlier, we march through the neighborhood of
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Figure 2.7. Narrow band around (a) a triangle in 3D

and (b) a closed curve in 2D.

each triangle and estimate Φ within the narrow band. The neighbor-

hood N is a cuboid fixed from the coordinates of the triangle (x1, y1, z1),

(x2, y2, z2), (x3, y3, z3) and the narrow band offset w given by

N ∈ [min(x1, x2, x3) − w, max(x1, x2, x3) + w] ×
[min(y1, y2, y3) − w, max(y1, y2, y3) + w] ×
[min(z1, z2, z3) − w, max(z1, z2, z3) + w] .(2.6)

The narrow band for a 3D geometry is shown in Figure 2.7(a). The

shaded region around the triangle W is the list of narrow band candi-

dates. We show in Figure 2.7(b) the intersection between the neigh-

boring narrow bands in 2D since it is very difficult to visualize in 3D.

Using expression (2.6) for fixing the local box may not be an opti-

mum solution. To illustrate this in 2D, Figure 2.8(a) shows the local

window over the line segments2. For the same segment this can be

divided into two smaller windows as shown in Figure 2.8(b), reducing

the number of grid points for the estimation of Φ.

In 2D, we can estimate a priori the number of local windows from

the segment angle and narrow band width.

Theorem 1. Optimal box length depending on the angle of a seg-

ment: Let segment S of length L be inclined at an angle α to the x-

direction on a uniform Cartesian mesh of width h and narrow band

2In 2D we have line segments instead of triangles.
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Figure 2.8. Local window construction by (a) a rectan-

gular window over the line segment and (b) by splitting

into small windows.

width w. Then, the optimum local window length l, is given by

l = h2w
cos α + sin α

sin α − cos α
,(2.7)

such that S can be separated by L/l pieces.

Proof. Let Ng be the number of grid points in the local window.

Then for, given α, w and h, it can be seen from Figure 2.8, that

Ng = (l cos α/h + 2w)(l sin α/h + 2w).(2.8)

The minimum local window length is therefore,

dNg

dl
= 0 ⇒ l = h2w

cos α + sin α

sin α − cos α
.(2.9)

�

2.3.1. Regions of projection in 3D. In 3D finding an optimum

box length is intricate as we have two different angles (polar and az-

imuth) for a triangle depending on three edges. Therefore, we use here

the cuboid around each triangle Fi, where i = 1, . . . , nf from the ex-

pression (2.6). Let us assume that the grid point P in this rectangular

box is projected on the plane of the triangle at Pb. This ground pro-

jection point Pb can fall on any one of the seven regions in and around

the neighborhood of Fi as shown in Figure 2.9.

The point of projection can be found from the definition of si and

li.

23



Estimation of Surface Parameters by Level Set Methods

s
1
 ≤ 0

s
2
 ≤ 0

s
3
 ≤ 0

s
1
 > 0

l
1
 ≥ 0

l
1
 ≤ 1

s
2
 > 0

l
2
 ≥ 0

l
2
 ≤ 1

s
3
 > 0

l
3
 ≥ 0

l
3
 ≤ 1

l
1
 > 1

l
2
 < 0

l
1
 < 0

l
3
 > 1

l
3
 < 0

l
2
 > 1

E
1

E
2

E
3

P
1

P
2

P
3

l
1
=0 l

1
=1

l
2
=0

l
2
=1l

3
=0

l
3
=1

(I) 

(II) 

(III) (IV) 

(V) (VI) 

(VII) 

Figure 2.9. The seven regions where the grid point P

can be projected based on the signs of si,li, i = 1, 2, 3.

Definition 7. Projection regions: Let ~Ei, i = 1, 2, 3 be an edge

vector corresponding to the point ~Pi, i = 1, 2, 3 for a triangle Fi.

Let si := ‖~Pb − ~Ei‖2, li := ~Pb · ~Di, i = 1, 2, 3 , where ~D1, ~D2, and

~D3 are given by ~D1 =
(~P2 − ~P1)

‖(~P2 − ~P1)‖
, ~D2 =

(~P3 − ~P2)

‖(~P3 − ~P2)‖
, and ~D3 =

(~P1 − ~P3)

‖(~P1 − ~P3)‖
. Then regions of projections (see Figure 2.9) are defined

by

(I) if s1 ≤ 0, s2 ≤ 0, s3 ≤ 0,

(II) if s1 > 0, 0 ≤ l1 ≤ 1,

(III) if s2 > 0, 0 ≤ l2 ≤ 1,

(IV) if s3 > 0, 0 ≤ l3 ≤ 1,

(V) if l1 < 0, l3 > 1,

(VI) if l1 > 1, l2 < 0 and

(VII) if l2 > 1, l3 < 0.

From Definition 7 we can get the projection point ~Pp and the local

signed distance function φF for all seven regions provided we know the

face normal of the triangle ~nF , the edge type Et and the point type Pt.

The signed distance Φ is found from minimum values of φF over all the

triangles. Here, we define the local signed distance function φF of the

grid point ~P from the surface triangle for all regions. For ~P projecting
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to a CeCe point we find the sign of the distance function later using

Proposition 2.

Definition 8. Local signed distance function φF and the projection

point ~Pp from surface triangle: From Definition 7, ~Pp, φF can be defined

for each region as follows:

For region (I) (Projecting onto the face F ):

~Pp = ~Pb,

φF = sgn(( ~Pp − ~P ) · ~nF ) ‖~P − ~Pp‖2.

For region (II) (Projecting onto the Edge E1):

φF =

{

Et1‖~P − ~Pp‖2 if E1 is convex or concave,

sgn((~P − ~Pp) · nF )‖~P − ~Pp‖2 if E1 is parallel.

For region (III) (Projecting onto the Edge E2):

φF =

{

Et2‖~P − ~Pp‖2 if E2 is convex or concave,

sgn((~P − ~Pp) · nF )‖~P − ~Pp‖2 if E2 is parallel.

For region (IV) (Projecting onto the Edge E3):

φF =

{

Et3‖~P − ~Pp‖2 if E3 is convex or concave,

sgn((~P − ~Pp) · nF )‖~P − ~Pp‖2 if E3 is parallel.

For region (V) (Projecting onto the Point P1):

~Pp = ~P1

φF =











Pt1‖~P − ~P1‖2, if P1 is convex or concave,

sgn((~P − ~P1) · nF )‖~P − ~P1‖2 if P1 is parallel,

±‖~P − ~P1‖2, if P1 is CeCe.

For region (VI) (Projecting onto the Point P2):

~Pp = ~P2

φF =











Pt2‖~P − ~P2‖2, if P2 is convex or concave,

sgn((~P − ~P2) · nF )‖~P − ~P2‖2 if P2 is parallel,

±‖~P − ~P2‖2, if P2 is CeCe.

25



Estimation of Surface Parameters by Level Set Methods

���
���
���
���

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Positive cone

PP

P

12

3

Φ>0

Φ<0

Φ=0

Negative cone

Ω+

Ω−

E
1

E2

E3

E0

P

P

P

P

4

5

6

7

E

E

E

4

5

6

Figure 2.10. Projection cones in 2D.
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Figure 2.11. Illustration of CeCe points P0 and P1.

For region (VI) (Projecting onto the Point P3):

~Pp = ~P3

φF =











Pt3‖~P − ~P3‖2, if P3 is convex or concave,

sgn((~P − ~P3) · nF )‖~P − ~P3‖2 if P3 is parallel.

±‖~P − ~P3‖2, if P3 is CeCe.

The signed distance function is then given by

(2.10) Φ = min
0≤F≤nf

(φF ) .

To understand the projection to the corner point we illustrate the

2D analog of concave and convex edges in Figure 2.10. In 2D the angle

between the edges determines whether they are convex or concave. For

example, point P1 between E0 and E1 is a concave (or negative) cone,

i.e. it can have a projection only from Ω−. Similarly point P2 between

E1 and E2 is a convex (or positive) cone as it can have a projection

only from Ω+. On the other hand in 3D we have a family of edges
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Figure 2.12. Projection of the grid point Pg to the

CeCe point Pe and its δ neighborhood.

meeting at a point which can be concave or convex or a combination

of both. Figure 2.11 shows an example of CeCe points. Here, all the

edges are convex except the edge joining P0 and P1, which is a junction

of a concave and convex edge. Therefore, P0 and P1 are CeCe points.

For the determination of the sign in the distance function at a CeCe

point we require a definition of an active plane and an active edge.

Definition 9. Active plane and active edge: Let a grid point Pg be

projected to a triangular corner point Pe where n edges E1, E2, . . . , En

meet as shown in Figure 2.12. Let PE1
, PE2

, . . . , PEn
be a point on the

edge E1, E2, . . . , En, respectively, such that

‖ ~Pe − ~PE1
‖2 = ‖ ~Pe − ~PE2

‖2 = · · · = ‖ ~Pe − ~PEn
‖2 = δ.

Here, 0 < δ < C, where C is small (say l/100, where l is smallest

edge length of all the triangles). Then Ei is called active edge, if PEi

satisfies

d =
n

min
j=1

(‖ ~Pg − ~PEj
‖2) = ‖ ~Pg − ~PEi

‖2.(2.11)

The corresponding triangular plane containing (Pg, PEi
, Pe) is called

active plane (for the grid point Pg).

We use Definition 9 in the following proposition for the determina-

tion of the sign of the distance function at CeCe points.

Proposition 2. Determination of the sign at CeCe points: Let Pg

be a grid point projecting to a CeCe point Pe, and have n connecting
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edges E1, E2, . . . , En. Then from equation (2.11) and Definition 8, the

signed distance function at Pg is given by

(2.12) ΦPg
=

{

Eti |φF | if (Eti = 1) ∨ (Eti = −1)

sgn((~Pg − ~Pi) · ~nfj
)|φF | if Eti = 0

where φF is the local signed distance function and Eti is the edge type

of Ei.

Proof. Since Ei is an active edge, and (Pg, PEi
, Pe) is an active

plane, due to minimum distance criteria we can inherit the sign of the

edge if (Eti = 1) ∨ (Eti = −1). Therefore, Φ given by,

(2.13) ΦPg
= Eti |φF | if (Eti = 1) ∨ (Eti = −1).

When the edges are parallel, i.e. Eti = 0, we can select the normal

from the left or the right as they are equal3. Therefore,

(2.14) Φ = sgn((~Pg − ~Pi) · ~nfj
)|φF | if Eti = 0.

�

Remark 4. The above Proposition 2 is a vital step in the determi-

nation of the sign of Φ for the grid point projecting to a CeCe point Pe.

In the Φ computation, we check for the projection point object type Oti.

If Oti = 2 and Pti = 0, then we correct the sign by iterating through

different edges at Pe. Thus, the variable “edges to point” (ep) forms

an important component in the surface data structure.

To summarize, the following algorithm is used for the calculation

of the signed distance function by the narrow band method.

Algorithm 1. Signed distance calculation by the narrow band method

(1) Find the global cuboid around the object and fix the initial size

of PhiPointer and PhiList in the case of a dynamic narrow

band. For hashing, fix the size of the hash table.

(2) Iterate through each triangle F , and fix the local cuboid.

(3) Find the regions of projection and φF . If it is on the:

• face - find the sign from the normal of the triangle nF ,

3The normal will not be equal only when the particular edge/face is collapsed,

which is not possible from our assumption.
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• edge - multiply with the sign of the edge if Et 6= 0. Oth-

erwise, determine the sign from the neighboring face.

• non CeCe point - multiply with the sign of point type Pt,

if Pt 6= 0. Otherwise, determine the sign from the neigh-

boring face.

• CeCe point - find the correct sign from equation (2.12).

2.4. Results

We grouped our results according to our two basic data structures,

surface and the narrow band. In the next subsection we discuss the

results of the surface data structure. Later, we investigate the estima-

tion and accuracy of Φ due to the narrow band structure. We also per-

formed a detailed analysis of speed and memory usage of the dynamic

narrow band and hashing method. For the estimation of Φ, hashing is

roughly 1.2 times faster than the dynamic narrow band method, pro-

vided we have a good a priori estimate of the hash table length and

the proper hash function. Moreover, the advantage of hashing over the

dynamic narrow band methods is that it requires less memory. On the

other hand, the dynamic narrow bands method have a simple struc-

ture where data storage is sequential. Therefore, accessing/modifying

in the dynamic narrow band method is simple compared to hashing

where the entries in the table are almost random.

2.4.1. Results of surface data structure. We construct the

surface triangulation by using Definition 2 and 3. For each triangular

face F if all three neighboring faces are processed, then it completes a

closed object. This concept is used to split the various closed compo-

nents separately, if the given surfaces have many closed volumes. The

software tool LevelSplit R© is developed to split various components

of stl files.

The algorithm is designed to process surface data structures fast.

Figure 2.13 shows the plot of CPU seconds for processing different

numbers of triangles for a torus geometry. (continuous line is the best

linear fit). These tests were performed on a 32-bit dual AMD processor

system of clock speed 2.5GHz. To process as many as 11.52 million

triangles it takes just under 80 seconds to read the stl format and

process the surface data structure.
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Figure 2.13. Time to process the surface data structure.
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Figure 2.14. Coordinate system of torus.

2.4.2. Accuracy of Φ. We have taken a arbitrarily oriented torus

as a test example to investigate the accuracy of the signed distance

function. The estimated signed distance function from the surface tri-

angulation is denoted by Φc and the known analytical function Φ is

found from the implicit level set of the torus given by

Φ =
√

((a − R)2 + (Zco − Zc)2) − r = 0,(2.15)

where a =
√

(Xco − Xc)2 + (Yco − Yc)2 is described in the usual Carte-

sian coordinate system with torus center (Xc, Yc, Zc). (Xco, Yco, Zco) is

the center of the torus in a local coordinate system (~t1, ~t2, ~n), as shown

in Figure 2.14. The parameter r is the radius of the tube, and R is the

distance of the center hole to the center of the tube.

Figure 2.15 shows the error in the estimation of Φ in the L∞ norm

for different surface resolutions. We measure the surface resolution

by number of triangles nf . Here, nf varies from 80000 to 11.2 million

triangles. From the best liner fit, it is found that the numerical accuracy
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Figure 2.16. CPU time required to estimate Φ for (a)

number of triangles and (b) narrow band width

of Φc is of first order with respect to the triangulations. Therefore, a

good surface resolution is necessary to get an accurate signed distance

estimate from the triangular surface.

Figure 2.16(a) is the plot of the computation time versus number of

triangles. In our approach, since we march through the neighborhood of

each triangle to estimate Φ, we see that the computation time increases

linearly with the number of triangles. Figure 2.16(b) is the plot of

the computation time for different narrow band width. Here, we have

taken h = 0.01 and the surface resolution as 2 million triangles. The

computation speed increases cubically with the increase in narrow band

width, as we fix locally a cuboid neighourhood N around each triangle

(see equation (2.6) in Section 2.3). Thus, the speed of estimating Φ

results in nfNg operations, where Ng is the number of grid points inside

the local cuboid window. To increase the speed of computation without

loosing the accuracy, it is better to choose the narrow band width as

small as possible.
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Grid Direct FMM1 FMM2

resolution Accuracy CPU Accuracy CPU Accuracy CPU

Gs = 4/h of Φ speed of Φ speed of Φ speed

(L∞) (sec) (L∞) (sec) (L∞) (sec)

203 3.37×10−6 302.42 0.1638 7.00 0.0545 7.01

403 3.42×10−6 304.14 0.0707 7.16 0.0260 7.20

503 3.417×10−6 305.68 0.0496 7.27 0.0173 7.24

1003 3.426×10−6 309.04 0.0210 7.50 0.0126 7.70

2003 3.426×10−6 318.15 0.0131 10.72 0.0060 12.36

4003 3.42×10−6 334.33 0.0083 69.51 0.0032 109.21

5003 3.425×10−6 336.81 0.0070 181.04 0.0026 294.52

6003 3.417×10−6 348.15 0.0053 670.60 0.0017 1084.78

Table 2.2. Accuracy and computational time for esti-

mating Φ by the direct method and FMM for fine (5.2

million) surface triangle with w = 4h.

2.4.2.1. Comparison of the direct method with FMM. In the litera-

ture, the fast marching method (FMM) of Adalsteinsson and Sethian [3]

is mostly preferred for the computation of Φ. In this method as men-

tioned in Chapter 1, the initial Φ is estimated around a thin layer which

may be one or two mesh widths thick. Then Φ is computed at the de-

sired grid point from these initial estimates by solving the Eikonal equa-

tion. The grid points near to the interface are updated first and then

the subsequent layer inside the narrow band is processed. This process

is efficiently performed by the heap sort algorithm [5], [14], [82].

Here, we compare the computational speed and accuracy of Φ es-

timated from the direct method with FMM. We fix the narrow band

width w = 4h. We investigate the results for two cases: (1) with fine

and (2) coarse surface triangles. For FMM, the initial estimate of the

signed distance function around a layer of grid points i.e. within w = h

is obtained by the direct method. It should be noted that the accuracy

of FMM depends on the grid width and not on the surface triangulation.

The uniform mesh width h is given by 4/Gs, where Gs is the grid reso-

lution. For our test, we use 203, 403, 503, 1003, 2003, 4003, 5003 and 6003

grids.
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Table 2.2 shows the errors in the L∞- norm for the estimation of

Φ by first order and the second order FMM (denoted by FMM1 and

FMM2) and the direct method for fine surface triangles. Also shown

in this table are the computational time for the FMM and the direct

method. It is found that FMM2 is more accurate than FMM1 but

the order of convergence for both methods is roughly of O(h). On

the other hand, the direct method are more accurate than FMM1 and

FMM2 and as expected the order of convergence is independent of

mesh width. With regards to the speed, for a coarse grid, FMM1 and

FMM2 is much more faster than the direct method. But for very fine

mesh width, we find the direct method is faster and still more accurate

than FMM1 and FMM2. The reason is that the efficiency of the heap

sort mechanism in FMM is proportional to Nglog(Ng), where Ng is the

number of trial values. For a very fine mesh width Ng becomes very

large and hence the computation of FMM takes a longer time than

the direct method. We have found a similar result also for very coarse

triangles as shown in Table 2.3.

One way to tackle this problem is to increase further the order of

FMM approximation. But this requires an initial estimate of Φ for a

thick layer of grid points around the interface, which in turn increases

the computation time. Later in Chapter 4, we show that that the

direct method is also more accurate than FMM for determining the

surface parameters. Therefore, for our application the direct method

offer more advantages and hence preferable than FMM.

2.5. Applications

This algorithm has been applied to various industrial problems as

pre- and post-processor. An obvious application of this approach is

to estimate Φ for any complex geometry where the surface is given by

triangulation. Figure 2.17 illustrates a complex object in casting where

this approach is used for initializing Φ for the study of topological

optimization by level set methods [79] , [96]. We list here some more

applications of our algorithm to various industrial problems.

2.5.1. Smoothing of the surface geometry. The point edges

data structure is also very useful during regularization of the surface

geometry. For instance in the study of elastic deformation, to avoid
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Grid Direct FMM1 FMM2

resolution Accuracy CPU Accuracy CPU Accuracy CPU

Gs = 4/h of Φ speed of Φ speed of Φ speed

(L∞) (sec) (L∞) (sec) (L∞) (sec)

203 1.20×10−4 8.47 0.1638 0.25 0.0545 0.26

403 1.20×10−4 8.71 0.0708 0.29 0.0260 0.31

503 1.230×10−4 8.77 0.0497 0.31 0.0173 0.33

1003 1.221×10−4 9.29 0.0211 0.52 0.0126 0.64

2003 1.231×10−4 10.34 0.0131 3.16 0.0060 4.77

4003 1.232×10−4 12.64 0.0083 58.39 0.0033 98.42

5003 1.233×10−4 13.74 0.0070 167.30 0.0026 274.78

6003 1.233×10−4 15.95 0.0054 642.21 0.0017 1039.82

Table 2.3. Accuracy and computational time for es-

timating Φ by the direct method and FMM for coarse

(80000) surface triangles with w = 4h.

Figure 2.17. Illustration of a complex object in casting

where Φ is used as a “initialization step” for the study of

topological optimization.

singular sharp corners, a smoothing is required before proceeding to

the solver part. Here, we propose a smoothing similar to the Laplace-

Beltrami operator for smoothing of edges.

Definition 10. Let nj be the number of edges meeting at point P0,

with coordinates ~Pi, i = 1, . . . . , nj. Then, the weight of smoothing wi
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(a) (b)

Figure 2.18. Structure of a (a) non-smooth and (b)

smoothed fiber with w0 = 0.1.

at this point due to edge Ei is given by

wi = w0 +
1

di

(1 − w0)

w̄
,

where

w̄ =

nj
∑

i=1

1

di

.

Here, 0 ≤ w0 ≤ 1 is the global weighting parameter and di = ‖ ~P0− ~Pi‖2.

The new coordinate ~P0

′
is given by

~P0

′
= w0

~P0 +

nj
∑

i=1

wi
~Pi.

Figure 2.18(a) and (b) show the non-smoothed and a smooth fiber

structure for w0 = 0.1, respectively. This smoothing and the estimation

of Φ thereafter, is used in Explicit-Jump Immersed Interface Methods

(EJIIM), for solving elliptic boundary value problems in complicated

geometries [73], [74].

2.5.2. Grid identification in flow solvers. Up to now, we have

confined our discussion within the narrow band around the surface

for a given closed object. Away from the narrow band, one can get

the information about the volume enclosed by the surface commonly

referred to as out-of-box level set methods in the literature [58]. For

instance, in the study the flow through porous media, we have a finite

volume solver called SuFiS, which uses this information to know the

status of grid points.

Figure 2.19(a) shows a schematic representation of a suction filter

which has inlet, outlet, and a porous filter medium supported by solid
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(a) (b)

Figure 2.19. A suction filter with (a) inlet and outlet

closed and (b) fluid and porous medium.

(a) (b)

Figure 2.20. Separation of the (a) solid outer part and

(b)fluid part.

ribs. When standard CAD software like PRoE is used to triangulate

(without filter medium) with closed inlet and outlet, it produces two

parts, viz, outer solid part and the inner fluid region. For the flow

computations we require only the fluid region and the filter medium

as shown in Figure 2.19(b). This is performed by running “LevelSplit”

which splits the inner fluid part from the solid part as shown in Fig-

ure 2.20(a) and (b), respectively. The grooves on the upper part in

Figure 2.20(b) are the impression of the ribs from the solid portion.

With this triangulation, we estimated Φ in a neighborhood of the

surface by a narrow band method. To calculate the status of other

grid points, we used a ray tracing method for each xy plane and stored

the information efficiently by run length encoding (rle). Figure 2.21

shows the cross section of fluid cells at a particular z plane. This

plane is the region, where the solid rib pierces the fluid cells. Here, the
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2.5. Applications

Figure 2.21. Cross section of the suction filter at a par-

ticular z plane where solid ribs cut the fluid part. Blue

region is the fluid part and the white is the solid part.

blue color is the fluid and the void regions are the solid cells. With

this crucial information, we can do a local refinement to get a better

representation of the ribs. This method is found to be useful in the

study of flow characteristics around the ribs. The important aspect

in this application is the speed of preprocessing this information. For

the surface resolution of around 2 million triangles, it takes around

28 seconds to process 12.31 million grid points on a 32-bit dual AMD

processor system, of clock speed 2.5GHz. This approach is currently

used for similar type of applications to extract the volume information

from the surface triangulations.
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CHAPTER 3

Marching cube algorithm for isosurface

construction

Reinitialization is a powerful tool used in level set methods, for

keeping Φ to be a signed distance function. As discussed in Chap-

ter 1, there are two ways of reinitializing Φ viz., the explicit contour-

ing approach and the non-explicit representation. Here, we discuss

the explicit contouring approach in detail. The aim of this chapter

is as follows: Let Φ(x, y, z) be given on a discrete cuberille grid i.e.

Φi,j,k = Φ(xi, yj, zk), (i, j, k) ∈ I ⊂ Z
3. Then, we construct the isosur-

face Γ, such that

(3.1) Γ = Φ0 = {(x, y, z) : Φ(x, y, z) = 0}.

Φ(xi, yj, zk) is also referred to as discrete field function. A variant of the

marching cube algorithm is used for constructing the isosurface from

discrete field function. The algorithm is designed to keep foreground

and background information consistent, contrary to the neutrality prin-

ciple followed for surface rendering in computer graphics.

3.1. Introduction

The Marching Cube(MC) algorithm due to Lorensen and Cline [46]

is a popular method for isosurface contouring from discrete scalar field

values. It essentially constructs the isosurface from thresholded field

values on the corner points of each cell by marching along a particular

direction. Even though there are 256 possible sign combinations in a

cell, they can be generally grouped into 14 basic topological cases [97].

The construction of the isosurface using these 14 topological cases alone

leads to ambiguity of joining edges [20]. To avoid this, more cases are

proposed either by looking at the adjacent cube [97] or by consistent

triangulation representation of the surface by asymptotic decider [59].

Alternative strategies to remove the ambiguity are saddle points [57],
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(a) (b)

Figure 3.1. The triangulation of (a) Ni - foam and its

corresponding (b) porous structure discretized by a 128×
128 × 128 geometry.

sub-classification of the topological cases [13], and trilinear surface rep-

resentation [17]. In the field of computer graphics, certain objectives

are followed during the isosurface construction. Van Gelder and Wil-

helms [91] list six main objectives:

(1) The construction algorithm should yield a continuous surfaces.

(2) The surface should be a continuous function of the input data.

(3) The surface should be topologically correct.

(4) The algorithm should be neutral with respect to positive and

negative sample data values (relative threshold). Multiplying

the samples (threshold) by -1 should not alter the surface.

(5) The algorithm should not create artifacts not implied by the

data.

(6) The algorithm should be efficient for real time visualization.

From the above objectives, (4) is considered as crucial and also contro-

versial [91]. Many algorithms and definitions satisfy these criteria. In

some applications, objective (4) may contradict the correct topological

description of (3). For example, Figure 3.1(a) shows the structure of

a nickel foam in a cubic volume. For the study of elastic deformation

of foam, triangulation of these structures are necessary. On the other

hand, for the treatment of porous media, we need the triangulation of

the pore space shown in Figure 3.1(b).
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For our application therefore, objective (4) should account for non-

neutrality. Further, we need two more criteria:

(7) The algorithm should give closed contour.

(8) The surface triangles should not degenerate.

The algorithm described here, constructs the isosurface, continuous and

consistent with the foreground and background information. Here we

follow certain conventions with which we can get the surface construc-

tion correctly without ambiguity.

3.2. Definitions and Conventions

We present definitions of basic terminologies and conventions used

in our MC algorithm.

Definition 11. Voxel: Voxel stands for volume element. It is

analogous to pixel in 2D. A data sample is referred to as voxel.

Definition 12. Cell and Cell vertices: The cubical region formed

by eight grid points (i, j, k), (i + 1, j, k), (i + 1, j + 1, k), (i, j + 1, k),

(i, j, k + 1), (i + 1, j, k + 1), (i + 1, j + 1, k + 1) and (i, j + 1, k + 1) is

a cell and its grid points are cell vertices.

Convention 3. Sign Conventions: The grid point (i, j, k) is as-

signed positive if Φ(i, j, k) > 0 and negative if Φ(i, j, k) < 0, such that

Φ = 0 at the isosurface. The closed region where Φ(i, j, k) < 0 is

represented by Ω− and its complimentary region as Ω+.

Convention 4. Intersection Point Pi: In any of the cell, if some

of the vertices are positive and some negative, then the isosurface passes

through that cell. The intersection point Pi is a point on the isosurface

that crosses the edge between different signs of the cell vertices.

Convention 5. Normal ~n to the isosurface : To be consistent

with our notation (see Convention 1), the positive normal defined on

the isosurface Γ points towards the region Ω+.

In our MC algorithm the 14 topological cases are grouped according

to the number of negative signs and their position in a cell as shown

in Figure 3.2. These cases are labeled as A (no negative), B (one neg-

ative), C (two negatives), D (three negatives) and E (four negatives).
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Figure 3.2. The basic 14 topological cases in an MC algorithm.

The sub cases are the relative position of negative signs within a cell.

For instance C1 has negative signs on the same edge, C2 on the face

diagonal and C3 on the leading diagonal of a cell. Similarly, D has

three sub cases and E six sub cases.

The triangulation in all these topological cases follows certain con-

vention, otherwise the isosurface connection will be ambiguous within

the cell or on the face of the cell. The ambiguous cell contains diago-

nally opposite pair of positive vertices and a diagonally opposite pair of

negative vertices in the cell (eg., case C3). Similarly an ambiguous face

contains a diagonally opposite pair of positive vertices and a diagonally

opposite pair of negative vertices on the face of the cell (eg., right face

of D2). To make the connection non-ambiguous, we follow

Convention 6. In a cell the Ω− part is connected.

For instance if we have a face ambiguous case as shown in Fig-

ure 3.3(a) then from Convention 6, Figure 3.3(a) is right, and 3.3(b) is

wrong. Following this convention, the triangulation of 14 and their

symmetrical topological cases are constructed as shown in Figure 3.4.

Due to non-ambiguous connections in the triangulation, the symme-

try need not be maintained in all complimentary cases (for instance,

C3,D3 cases).
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Figure 3.3. Convention for joining the edges for a face

ambiguous case: (a) is correct and (b) is false.
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Figure 3.4. The surface triangle construction in the ba-

sic 14 topological and its corresponding symmetrical case

inside the cube.

LEFT RIGHT

BACK

FRONT

TOP

BOTTOM

X

Y

Z

Marching Direction 

Figure 3.5. Direction of marching and conventional

names of six faces
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Figure 3.6. A hole inside the surface due to the non-

closure of planar triangles.

Convention 7. The marching direction of visiting each cube is

from left to right. The six faces are termed as left, right, front, back,

bottom and top as shown in Figure 3.5.

3.3. Extension of topological cases

The above convention solves the internal ambiguity of each cell in

an MC algorithm, but it does not deal with other ambiguous cases like

formation of holes. For example, let us consider a situation where D3

and B cases exist next to each other as shown in Figure 3.6. Consid-

ering the above topological cases only for isosurface generation leads

to a hole between the cells as there are no rules to triangulate the cell

face. For this problem, to avoid ambiguous representation, there are

algorithms with extended cases [13], [44], [17].

In an usual MC algorithm due to neutrality principle a facial trian-

gle on the cube is avoided [44], [91]. On the contrary as we account for

non-neutrality we need facial triangles for the continuity and closed-

ness of isosurface. The two facial triangles which we call a diamond is

constructed based on the signs of cell vertices on the adjacent cube.

3.3.1. Criteria for placing diamonds. We discuss here the cri-

teria for placing a diamond between the cells. Figure 3.7(a) show an

example where D3 and B− cases existing next to each other. From

Convention 6 we construct triangulation such that Ω− is connected in

each cell. To be consistent with this convention we follow the same

convention to the adjacent cube also i.e., the Ω− in D3 and B− is con-

nected. Therefore there should not be a diamond between the cells in

this case as all vertices of the right face of B− are negative. On the
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Figure 3.7. Criteria for placing a diamond on the face

of the cube. (a) No diamond constructed and (b) dia-

mond constructed.

other hand in Figure 3.7(b), following this convention, Ω− from D3

should be closed within D3 as all vertices of the right face of D3 are

positive. Therefore, we should construct a diamond on the face of the

cube. Similar approach is followed on the back and on the top part

of the cube. The placing of diamond is decided only when visiting

the adjacent cube. This will clear the ambiguity and also ensure no

collapsed surface is formed during marching. By this way, we do not

require to consider extra case for solving the ambiguity which is usually

handled in an MC algorithm (see [44], [17] for the details).

Remark 5. In a sense, having a decision to place a diamond leads

to a large number of cases apart from 256 cases within the cell. It re-

quires another 16 cases on the adjacent cubes along x, y and z directions

which results in 256 × 16 × 3 = 12288 cases as depicted in Figure 3.8.

3.4. Implementation

In order to realize each case, we use certain notation here. Fig-

ure 3.9 shows the notation for vertices v1, . . . ,v8 and the intersection
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16 combinations
256combinations

Total combinations = 256 x 16 x 3 = 12288.
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Figure 3.8. Total number of combination in our MC algorithm
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Figure 3.9. Vertex representation and intersection

point indices for MC algorithm.

points on the surface p1, . . . ,p12. For clarity, we have shown the inter-

section points on the middle of cell edge. In a general situation it can

lie anywhere on the edge depending on the field values at the corner

of the cell. Each vertex is indexed by a bit representation, i.e., indices

of v1 = 1,v2 = 2, . . . ,v8 = 128 and is active when the sign is neg-

ative. For example if v1,v2 and v3 are negative the case number is

1 + 2 + 4 = 7. If all the vertices are negative the case is 255 and their

complimentary case is 0. This representation helps to identify different

topological cases easily.

For using this algorithm for the propagation and reinitialization of

the interface, it is necessary that triangulation notations are consistent

with the definitions discussed in Chapter 2. Therefore, when a new

point is added during marching we store its coordinates ~Pi and carry

its indices Pi to the right, back and top of the cube as we march from

left to right.
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3.5. Quality of the surface triangulation

3.5. Quality of the surface triangulation

Apart from the eight objectives mentioned in Section 3.1, we in-

vestigate also quantitatively the constructed isosurface by our MC al-

gorithm. For the generation of volume mesh from surface mesh, it is

necessary that surface triangulation should have good properties. One

of the important property is the angular characteristics i.e, the maxi-

mum and the minimum angle over all triangles in a surface mesh. We

investigated the angles from various synchrotronic and Reflection Elec-

tron Microscopy (REM) grey scale images. If the field values are given

as “on” and “off” information like in binary images then we have an

important result:

Proposition 3. Let Φ ∈ [0, 1] ⊂ I (as in binary images). Then the

constructed triangle from an MC algorithm, has angle α in the range

300 ≤ α ≤ 1200.

Proof. When the field values are given as 0 (inside) and 1 (out-

side), then the intersection point lies at the center of the edge in a

cube. From the topological cases we can find the the maximum and

the minimum angle of each triangle by law of cosines. It is seen that

this angle α is bounded by 300 ≤ α ≤ 1200. �

Remark 6. Relation between the aspect ratio ar and the angle: For

describing the quality of the mesh, sometimes aspect ratio is used in-

stead of angular representation. The aspect ratio ar is defined as the

ratio of longest edge to the shortest altitude of the triangle. Neverthe-

less, we can relate these two properties. If α1 and α2 are the minimum

and the maximum angle over all the triangles in the surface mesh, re-

spectively then, ar is bounded by [8]

|1/sinα2| ≤ ar ≤ |2/sinα1|.

In our case ar is bounded by 1.1547 ≤ ar ≤ 4.

Figure 3.10 shows the fibre structure, triangulated from the bi-

nary representation. The histogram of the maximum and minimum

angles and the aspect ratio of this fibre are shown in Figure 3.11. It

is seen that the angle and aspect ratio are desirable for meshing the

volume (say by tetrahedron) from the triangulation. This mesh is used
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Figure 3.10. Structure of fibre in 2563 resolution.
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Figure 3.11. Histogram of largest and smallest angle

and the aspect ratio.

in Boundary Element method to study linear electrostatics [61], and

also in Explicit Jump Implicit Interface Method (EJIIM) for linear

elasticity problems [74].

It is found that on a standard desktop of 2.5Ghz clock speed, it takes

around 32 seconds of CPU time to triangulate the surface from the field

values of 5123 by our MC method. Figure 3.12 shows the plot of CPU

time with respect to different grid resolutions Gs (323, 643, 1283, 2563

and 5123). Also, the algorithm is found to be robust and can triangulate

for various spatial resolution. Figure 3.13, shows a portion of of nickel

foam geometry for 323, 643 and 1283 resolutions, where the isosurface

is constructed from synchrotronic data sets.
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Figure 3.12. CPU seconds to triangulate different grid resolutions.
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Figure 3.13. A portion of nickel foam geometry having

(a) 323 (b) 643 and (c) 1283 resolutions.

Therefore, our structure generator GeoDict R© [93] uses this al-

gorithm for isosurface generation, as the triangles have a good aspect

ratio and are constructed fast from grey scale images.

3.6. Limitation due to resolution

The algorithm even though rectify the usual ambiguities, it may not

yield a correct topology under very coarse resolution. It may produce

locally a closed component or non existing bridge when a part or two

different surfaces are not overlapped within a voxel. To illustrate a 2D

representation of this problem is shown in Figure 3.14. Figure 3.14(a)

is the original disjoint surface within a cube and 3.14(b) is the outcome

as a result of our convention. We can also see these kinds of variation

in topology in Figure 3.13 under different resolutions. For these special

cases one can go for a local refinement of grid or field values at the center
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Figure 3.14. Topological modification of (a) given sur-

face and (b) constructed from marching cube algorithm

with our convention.

of the cube to get exact surface representation [91] or use trilinear

surface representation [17] within the cell.
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CHAPTER 4

Higher order estimation of surface parameters

In the previous chapter, we described a rigorous way of constructing

an isosurface by a marching cube method from a discrete level set func-

tion. During the isosurface construction, our goal is also to compute

the surface properties from the level set functions accurately. In other

words, if Φ is known on grid points, with Φi,j,k = Φ̃(xi, yj, zk), (i, j, k) ∈
I ⊂ Z

3, then we estimate the position, normal, principal curvatures,

and their directions accurately on the isosurface Φ̃ = 0. These prop-

erties, especially the normal and the curvature are needed for various

applications as discussed in Chapter 1

Currently, various techniques are used, especially for the estimation

of curvature. In the finite element framework the equations are rewrit-

ten so that the second derivatives emerging from the curvature terms

are avoided. The forcing term is modeled based on a weak formulation

of the Laplace-Beltrami operator [21], [18], [35]. In the finite difference

framework, central differences and interpolation or correction are used

to calculate the curvature term on the surface [11], [12]. For instance,

in the non-degenerate case the normal to an isosurface

~n =
∇Φ̃

|∇Φ̃|
=

(Φx, Φy, Φz)

(Φ2
x + Φ2

y + Φ2
z)

1/2
,

is approximated at grid points by finite differences. The expression is

then interpolated to obtain an approximation of the normal ~nc at an

approximate interpolation point P c
i [15].

Similarly the mean curvature

H =
(

Φ2
xΦyy − 2ΦxΦyΦxy + Φ2

yΦxx + Φ2
xΦzz − 2ΦxΦzΦxz+

Φ2
zΦxx + Φ2

yΦzz − 2ΦyΦzΦyz + Φ2
zΦyy

)

/2|∇Φ|3,(4.1)
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and the Gaussian curvature

K =
{

Φ2
x(ΦyyΦzz − Φ2

yz) + Φ2
y(ΦxxΦzz − Φ2

xz)+

Φ2
z(ΦxxΦyy − Φ2

xy) + 2 [ΦxΦy(ΦxzΦyz − ΦxyΦzz)+

ΦyΦz(ΦxyΦxz − ΦyzΦxx) + ΦxΦz(ΦxyΦyz − ΦxzΦyy)]} /

(Φ2
x + Φ2

y + Φ2
z)

2,(4.2)

are discretized at grid points by a higher order central difference scheme

and then interpolated to the surface by cubic splines [15], [85]. This

information is also used for meshing the surface geometry. For instance,

Persson [65] estimates the curvature at regular grid points by central

differences and adds a correction term from the signs of the distance

function.

Here, we propose an alternative method based on weighted least

squares for finding the surface parameters from a discrete level set

function. With this approach, it is possible to reach an arbitrarily

high order of approximation of surface properties. This is achieved

by choosing a high degree of the local polynomial model and a large

number of grid points (referred to as stencil) in the neighborhood of

the interface.

4.1. Least squares approach

The least squares method is derived via a local polynomial model.

Depending on the desired order of accuracy, the stencil and degree of

the local polynomial model are chosen. Let (x̄, ȳ, z̄) be the point of

interest. For local coordinates ξ = x− x̄, η = y − ȳ, ζ = z − z̄, the mth

order local polynomial in R
3 has l = Cm+3

m = (m +1)(m + 2)(m +3)/6

coefficients, where by convention the constant functions are termed

0th order polynomials. First we order the coefficients according to the

order of the polynomial term and second preferring the x direction over
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the y and z directions, and the y direction over the z direction, e.g.

f(ξ, η, ζ) = ĉ0 + ĉ1ξ + ĉ2η + ĉ3ζ +
ĉ4

2
ξ2 +

ĉ5

2
ξη +

ĉ6

2
ξζ +

ĉ7

2
η2 +

ĉ8

2
ηζ +

ĉ9

2
ζ2 +

ĉ10

6
ξ3 +

ĉ11

6
ξ2η +

ĉ12

6
ξ2ζ +

ĉ13

6
η2ξ +

ĉ14

6
ξηζ +

ĉ15

6
ζ2ξ +

ĉ16

6
η3 +

ĉ17

6
η2ζ +

ĉ18

6
ζ2η +

ĉ19

6
ζ3 + · · · + ĉl

m!
ξm.(4.3)

This can be written in generalized form as

f(ξ, η, ζ) =
m

∑

k=0

∑

i=0,
p,q,r≥0,

p+q+r=k

1

(p + q + r)!
ĉ 6=(p,q,r)ξ

pηqζr.(4.4)

In (4.3), ĉ0 is the constant term, ĉ1, ĉ2, ĉ3 are the first derivatives, ĉ4 to

ĉ9 are the second derivatives, and the remaining terms are higher order

derivatives of the polynomial model. For sufficiently smooth functions

Φ̃, one can obtain approximate derivatives to any desired accuracy by

appropriate choice of mesh width and appropriate polynomial degree

m.

This can also be used to derive the expressions for finite difference

approximations [43]. For instance, if we choose the above polynomial

to be of order m = 2, assume the uniform mesh width h, set the point of

interest to the origin (x̄, ȳ, z̄) = (x0, y0, z0), and require f to interpolate

Φ at three points along the x direction

f1 := Φ0,0,0, f2 := Φ−1,0,0, f3 := Φ1,0,0,

then the solution of the resulting three by three linear system of equa-

tions

(4.5)







1 0 0

1 −h h2/2

1 h h2/2













ĉ0

ĉ1

ĉ4






=







f1

f2

f3






,

is given by

ĉ0 = f1, ĉ1 =
f3 − f2

2h
, ĉ4 =

f3 − 2f1 + f2

h2
.(4.6)

ĉ1 and ĉ4 are the usual central difference approximations of the first

and the second derivative of a function, respectively. The matrix in

(4.5) is known as a (one-dimensional) Vandermonde matrix. Similarly,
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Figure 4.1. The 20 points stencil for a tri-quadratic

polynomial. The intersection passes through the point

blue star when marching along the x-direction.

one can also choose the stencil in a particular way and can get the

mixed derivatives to the desired order of accuracy. Appendix A gives

the sixth order finite difference expression for the first and the second

derivatives. If a polynomial f of degree m with l = C
(m+1)
m coefficients

should approximate Φ at Nr ≥ l stencil points, the coefficients c should

minimize

(4.7) min
ĉ∈Rl

||Aĉ− f ||2,

where A ∈ R
Nr×l is the three-dimensional Vandermonde matrix. In

the case of interpolation, A is square (i.e. Nr = l) and has a non-

vanishing determinant, and simply ĉ = A−1f . The dependence of this

determinant on the stencil geometry is investigated in [47]. When Nr >

l, the minimum in (4.7) is in general not zero, and f does not interpolate

Φ, but approximates Φ. Thus, the method to derive interpolation-based

derivative information is viewed as a special case of an approximation-

based setting. Recall that we consider a uniform mesh width h. To

achieve O(h3) error in position, O(h2) error in the normal direction and

O(h) error for the principal curvatures and directions, it is sufficient to

choose a tri-quadratic polynomial as local model. For symmetry and

compactness, a twenty point stencil is selected in the neighborhood of

the interface point as shown in Figure 4.1. Grid function values at

these stencil points are used to determine the least squares estimate of

the 10 coefficients of the local tri-quadratic model. The values of f are

given by

(4.8) fijk := Φijk = f(ih, jh, kh).
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The 10 unknown coefficients of the local model are overdetermined by
the 20 equations at the 20 stencil points. In the x-direction, the system
reads
(4.9)
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 0 0

1 −h 0 0 h2/2 0 0 0 0 0

1 h 0 0 h2/2 0 0 0 0 0

1 2h 0 0 2h2 0 0 0 0 0

1 0 −h 0 0 0 0 h2/2 0 0

1 0 h 0 0 0 0 h2/2 0 0

1 0 0 −h 0 0 0 0 0 h2/2

1 0 0 h 0 0 0 0 0 h2/2

1 h −h 0 h2/2 −h2/2 0 h2/2 0 0

1 h h 0 h2/2 h2/2 0 h2/2 0 0

1 h 0 −h h2/2 0 −h2/2 0 0 h2/2

1 h 0 h h2/2 0 h2/2 0 0 h2/2

1 0 −h −h 0 0 0 h2/2 h2/2 h2/2

1 h −h −h h2/2 −h2/2 −h2/2 h2/2 h2/2 h2/2

1 0 −h h 0 0 0 h2/2 −h2/2 h2/2

1 h −h h h2/2 −h2/2 h2/2 h2/2 −h2/2 h2/2

1 0 h −h 0 0 0 h2/2 −h2/2 h2/2

1 h h −h h2/2 h2/2 −h2/2 h2/2 −h2/2 h2/2

1 0 h h 0 0 0 h2/2 h2/2 h2/2

1 h h h h2/2 h2/2 h2/2 h2/2 h2/2 h2/2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

:=A

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

ĉ0

ĉ1

ĉ2

ĉ3

ĉ4

ĉ5

ĉ6

ĉ7

ĉ8

ĉ9

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

:=ĉ

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

.

| {z }

:=f

For each direction, the system can be expressed in the form Aĉ = f with

A ∈ R
20×10, ĉ ∈ R

10 and f ∈ R
20. This in turn is solved in the least

squares sense (4.7) by ĉ = (ATA)−1AT f = MT f , where M ∈ R
10×20

depends only on the stencil.

4.1.1. Stencil selection and weighted least squares. In the

computation by least squares, selecting a good stencil is crucial. The

two pitfalls are large stencils and singular ATA. Lorentz in [47] gives

a closed expression for computing the determinant of ATA for the 2D

case, which could be extended to 3D models. Instead, in our case of

a uniform grid and fixed stencils, we simply evaluate the determinant

apriori. We choose the stencil by looking in the neighborhood of the

interface, and then increase the search radius until (ATA)−1 is regu-

lar [79].

Distance-dependant weights ensure that the approximation is better

at points close to the reference point (x̄, ȳ, z̄) at the cost of deteriorat-

ing the approximation at points further-away. In this weighted least

55



Estimation of Surface Parameters by Level Set Methods

squares approach, ĉ is given as (ATW2A)−1ATW2f , where W is a di-

agonal matrix of size Nr. In the usual weighted least squares approach,

weights are based on the Euclidean distance from the reference point.

In our approach, we use weights based on Φ as in [79], i.e.

Wij =







h2

h2 + |Φij |
when i = j,

0 otherwise.
(4.10)

Hence the weights are large near the interface and small far away from

it. The weights based on Φ give more strength to our method as they

limit the stencil to a narrow band around the interface. This is in

contrast to a high order finite difference approach which selects points

far away from the interface, since the stencil is chosen along certain

preferred direction (see Appendix A). In a general setting, when the

interface is moving with velocity v, WENO methods choose the weights

not only based on Φ, but also in accordance with upwinding directions.

4.1.2. Surface information estimation from a tri-quadratic

local model. If the polynomial is tri-quadratic, an approximate im-

plicit representation of the surface in local coordinates with reference

point (xi, yj, zk) is given by

f(ξ, η, ζ) = ĉ0 + ĉ1ξ + ĉ2η + ĉ3ζ +
ĉ4

2
ξ2 +

ĉ5

2
ξη +

ĉ6

2
ξζ +

ĉ7

2
η2 +

ĉ8

2
ηζ +

ĉ9

2
ζ2 = 0.(4.11)

Let us consider the situation as in Figure 4.1, where the intersection

point lies between two indices along the x direction. That is η = 0 and

ζ = 0 are fixed to identify a grid line. The intersection point may lie

between (xi, yj, zk) and (xi+1, yj, zk) if either Φi,j,k > 0 and Φi+1,j,k ≤ 0

or Φi,j,k ≤ 0 and Φi+1,j,k > 0. Candidates for the local x-coordinate ξc
∗

of the intersection point (ξc
∗, 0, 0) are the roots of the quadratic equation

ĉ0 + ĉ1ξ +
ĉ4

2
ξ2 = 0.(4.12)

These roots are

ξc
∗ =

{

− ĉc
1

ĉ4
±

√

( ĉ1
ĉ4

)2 − 2ĉ0
ĉ4

, if ĉ4 6= 0,

− ĉ0
ĉ1

otherwise.
(4.13)
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4.1. Least squares approach

Because the local polynomial does not interpolate the values Φi,j,k nor

Φi+1,j,k, f may not reproduce the sign change of Φ. To ensure ξc
∗ ∈

(0, h], we need a linear correction.

Remark 7. Linear Correction: From the first row of equation (4.9),

we observe that ĉ0 = f1. When solving in the sense of least squares, it

may happen that ĉ0 is not equal to f1, resulting in ξc
∗ /∈ (0, h]. To ensure

ξc
∗ ∈ (0, h], we correct the coefficients ĉ0 and ĉ1 by a linear function. If

the intersection lies along the x direction, the corrected coefficients ĉc
0

and ĉc
1 are

ĉc
0 = ĉ0 − g0,(4.14a)

ĉc
1 = ĉ1 − (g1 − g0)/h,(4.14b)

where g0 := ĉ0 − f1 and g1 := ĉ0 + hĉ1 + ĉ4
2
h2 − f3. This will make

(4.15) ĉc
0 = f1 and ĉc

1 =
ĉ4

2
h +

f3 − f1

h
.

Similar relations also hold for the y and z directions.

Remark 8. We use the corrected coefficients ĉc
0, ĉ

c
1, ĉ

c
2 and ĉc

3, only

for the estimation of the interface position. For the estimation of the

normal, we use ĉ1, ĉ2, and ĉ3.

The correction ensures that (4.13) has a unique root in (0, h].

Theorem 2. Given Φ(xi, yj, zk), (i, j, k) ∈ I ⊂ Z
3, such that the in-

terface point lies between Φi,j,k ≤ 0(Φi,j,k > 0) and Φi+1,j,k > 0(Φi+1,j,k ≤
0), and the coefficients are linearly corrected by equations (4.14a) and

(4.14b), then there exists one and only one intersection point (ξc
∗, 0, 0)

satisfying equation (4.11).

Proof. If ĉ4 = 0, there is only one root because the equation is lin-

ear and ĉc
1 6= 0. Otherwise, it will violate the change in sign conditions

between (i, j, k) and (i + 1, j, k). If ĉ4 6= 0, the polynomial equation

is quadratic. We should first prove that the polynomial of order less

than two i.e., first order does not vanish. That is, the derivative of

the quadratic polynomial should not vanish in the interval (0, h]. This

means

ĉc
1 + ĉ4h 6= 0.
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In other words, if ĉc
1 < 0, then ĉc

1 + ĉ4h should also be less than zero

or if ĉc
1 > 0, then ĉc

1 + ĉ4h should also be greater than zero. From the

linear correction equation, we find

ĉc
1 + ĉ4h = 2(f3 − f1),(4.16)

which cannot be equal since equation (4.16) implies Φ(i, j, k) = Φ(i +

1, j, k), violating the change in sign condition. It is also seen when

ĉc
1 < 0, then

Φ(i + 1, j, k) − Φ(i, j, k) = f3 − f1 < 0 ⇒ ĉc
1 + ĉ4h < 0,

and vice versa. Similarly, the intersection point along the y and z

directions can be shown to be unique. �

For the estimation of the surface properties at the intersection point

P c
i , we follow four steps:1

(1) Normal ~n: The normal, defined as ~n = ∇Φ
‖∇Φ‖2

can be written

in terms of the coefficients of the local polynomial. For the

tri-quadratic polynomial, the approximate normal at the in-

tersection point (ξc
∗, 0, 0), can be obtained through ∇f ≈ ∇Φ,

given by

~nc = [ĉ1 + ĉ4ξ
c
∗, ĉ2 + ĉ5ξ

c
∗/2, ĉ3 + ĉ6ξ

c
∗/2]T .(4.17)

(2) Normal curvature Hc: The normal curvature is found from the

Hessian ∇·∇f ≈ ∇·∇Φ(xi + ξc
∗, yj, zk). For our tri-quadratic

polynomial approximation, it reads

H
c =







ĉ4 ĉ5 ĉ6

ĉ5 ĉ7 ĉ8

ĉ6 ĉ8 ĉ9






.

(3) Tangent plane Tp: Now let ~t and ~s be orthonormal tangents

to ~nc, i.e. ~nc ·~t = ~nc ·~s = ~s ·~t = 0, ‖~s‖2 = ‖~t‖2 = 1. These two

vectors span the tangent plane.

1For the definition and analysis of surface properties we refer to [19], [29]
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4.1. Least squares approach

(4) Principal curvatures λc
1, and λc

2: These are the eigenvectors of

the Weingarten’s matrix ac [33] with

ac =

[

ac
11 ac

12

ac
12 ac

22

]

=

[

~t

~s

]

H
c
[

~t ~s
]

=

[

t1 t2 t3

s1 s2 s3

]







ĉ4 ĉ5 ĉ6

ĉ5 ĉ7 ĉ8

ĉ6 ĉ8 ĉ9













t1 s1

t2 s2

t3 s3






.

The Eigenvalues of ac are given by

λc
1 =

ac
22 + ac

11

2
+

√

(ac
11 − ac

22)
2

4
+ (ac

12)
2 and(4.18a)

λc
2 =

ac
22 + ac

11

2
−

√

(ac
11 − ac

22)
2

4
+ (ac

12)
2,(4.18b)

with Eigenvectors

~e1 =

[

ac
12

λc
1

]

, ~e2 =

[

λc
1

−ac
12

]

.(4.19)

The Eigenvalues λc
1, λc

2 are the approximate principal curva-

ture with corresponding principal direction estimates ~pd
c

1 and
~pd

c

2 given by






pdc
11 pdc

21

pdc
12 pdc

22

pdc
13 pdc

23






=







t1 s1

t2 s2

t3 s3







[

ac
12 λc

1

λc
1 −ac

12

]

.(4.20)

Remark 9. Mean and Gaussian curvature

The approximate mean curvature can be found from

Hc =
1

2
trace(ac) =

ac
22 + ac

11

2
,

and the approximate Gaussian curvature from

Kc = det(ac) = ac
11a

c
22 − (ac

12)
2.

Hence,

λc
1,2 = Hc ±

√

(Hc)2 − Kc(4.21)

is the relation of the principal curvature to the mean and Gaussian

curvatures.
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4.1.3. Surface properties from a general order local model:

In subsection 4.1.2, we confine our discussion to the tri-quadratic poly-

nomial case. In a general situation, the intersection point P c
i (ξc

∗, η
c
∗, ζ

c
∗)

along the prescribed direction is found from

P c
i = f(ξ, η, ζ) = ĉ0 + ĉ1ξ + ĉ2η + ĉ3ζ +

ĉ4

2
ξ2 + · · ·+

ĉ10

6
ξ3 + · · ·+ ĉl

m!
ξm + · · · = 0.(4.22)

For m > 5, a simple closed relation is not possible. Hence, one can

form a companion matrix (even for m < 5) to get the roots from the

eigenvalues. The coefficients are corrected as in the quadratic case by

equation (4.14), with

g0 = f1 − ĉ0,

and

g1 = ĉ0 + ĉ1h + ĉ2h + ĉ3h +
ĉ4

2
h2 + · · ·+ ĉl

m!
hm + . . .

The unique root is determined from the condition that it is real and it

lies between the change in signs of Φ. If we follow the similar convention

of polynomial expansion as in equation (4.3), the normal estimation is

~nc = (nc
x, n

c
y, n

c
z) where

nc
x = ĉ1 +

1

2!
[2ĉ4ξ

c
∗ + ĉ5η

c
∗ + ĉ6ζ

c
∗] +

1

3!
[3ĉ10(ξ

c
∗)

2 + . . . ] + · · · +
1

(m − 1)!
ĉl(ξ

c
∗)

m−1 + . . . ,(4.23a)

nc
y = ĉ2 +

1

2!
[ĉ5ξ

c
∗ + 2ĉ7η

c
∗ + ĉ8ζ

c
∗] +

1

3!
[ĉ11(ξ

c
∗)

2 + . . . ] + · · · +
1

m!
ĉl+1(ξ

c
∗)

m−1 + . . . and(4.23b)

nc
z = ĉ3 +

1

2
[ĉ6ξ

c
∗ + ĉ8η

c
∗ + 2ĉ9ζ

c
∗] +

1

3
[ĉ12(ξ

c
∗)

2 + . . . ] + · · ·+
1

m!
ĉl+2(ξ

c
∗)

m−1 + . . . .(4.23c)

The normal curvature, defined through the Hessian Hc by the direc-

tional derivative of the normal ∇ · ∇f ≈ ∇ · ∇Φ(xi + ξc
∗, yj, zk), is

H
c =







H
c
11 H

c
12 H

c
13

Hc
12 Hc

22 Hc
23

Hc
13 Hc

23 Hc
33






,(4.24a)
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where

H
c
11 = ĉ4 +

1

3!
[6ĉ10ξ

c
∗ + 2ĉ11η

c
∗ + 2ĉ12ζ

c
∗] + · · ·+

ĉl

(m − 2)!
(ξc

∗)
m−2 + . . . ,(4.24b)

H
c
12 =

1

2
ĉ5 +

1

3!
[ĉ11ξ

c
∗ + 2ĉ13η

c
∗ + ĉ14ζ

c
∗] + · · ·+

(m − 1)ĉl+1

m!
(ξc

∗)
m−2 + . . . ,(4.24c)

H
c
13 =

1

2
ĉ6 +

1

3!
[2ĉ12ξ

c
∗ + ĉ14η

c
∗ + 2ĉ15ζ

c
∗] + · · ·+

(m − 1)ĉl+2

m!
(ξc

∗)
m−2 + . . . ,(4.24d)

H
c
22 = ĉ7 +

1

3!
[2ĉ13ξ

c
∗ + 6ĉ16η

c
∗ + 2ĉ17ζ

c
∗] + · · ·+

2ĉl+3

m!
(ξc

∗)
m−2 + . . . ,(4.24e)

H
c
23 =

1

2
ĉ8 +

1

3!
[ĉ14ξ

c
∗2 + 2ĉ17η

c
∗ + 2ĉ18ζ

c
∗] + · · · +

ĉl+4

m!
(ξc

∗)
m−2 + . . . and(4.24f)

H
c
33 = ĉ9 +

1

3!
[2ĉ15ξ

c
∗ + 2ĉ18η

c
∗ + 6ĉ19ζ

c
∗] + · · ·+

(m − 2)ĉl+5

m!
(ξc

∗)
m−2 + . . . .(4.24g)

4.1.4. Convergence of the surface parameters with respect

to the grid resolution. We introduce some notations and assump-

tions before proving the convergence of surface parameters. We denote

the order of a polynomial by O() and the order of convergence by O().

The exact surface properties viz., the intersection point is represented

by Pi(ξ∗, η∗, ζ∗), the normal by ~n, the mean curvature by H , and the

Gaussian curvature by K. The corresponding approximate values are

P c
i (ξc

∗, η
c
∗, ζ

c
∗), ~nc, Hc, and Kc, respectively. For the Hessian, the ex-

act components are represented by H11, H12, . . . , H33 corresponding to
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their approximate values H
c
11, H

c
12, . . . , H

c
33, respectively. The error

terms in the Hessian components are defined by

ǫ11 := |H11 − H
c
11|, ǫ12 := |H12 − H

c
12|, . . . , ǫ33 := |H33 − H

c
33|.

Let c0, c1, c2, . . . , cl, be the exact coefficients corresponding to their ap-

proximate values ĉc
0, ĉ1, ĉ2, . . . , ĉl. The error terms due to the approxi-

mation of coefficients are defined by

e0 := c0 − ĉc
0, e1 := c1 − ĉ1, . . . , el := cl − ĉl.

Similarly, let a11, a12 and a22 be the elements of the exact Weingarten

matrix corresponding to their approximate elements ac
11, a

c
12 and ac

22.

Theorem 3. Let f be the mth order polynomial which approximates

the smooth function Φ : R
3 → R in the least squares sense. Then, the

estimated surface properties, through the sequence of functions fh where

h is the uniform mesh width, converge to the exact surface properties

with the order of

(i) O(hm+1) for the interface position,

(ii) O(hm) for the normal,

(iii) O(h(m−1)) for the mean curvature,

(iv) O(h(m−1)) for the Gaussian curvature,

(v) O(h(m−1)) for the principal curvatures and

(vi) O(h(m−1)) for the principal directions.

Proof. (i) Interface position:

Let us consider the intersection in x direction. Then, ξ∗ can be found

from

c0 + c1ξ +
1

2
c4(ξ)

2 + · · ·+ 1

m!
cl(ξ)

m = 0,(4.25)

and ξc
∗ from

ĉc
0 + ĉ1ξ

c +
1

2
ĉ4(ξ)

2 + · · · + 1

m!
ĉl(ξ)

m = 0,(4.26)

where l = m(m + 1)(m + 2)/6.

The term ĉ0 is the constant, (ĉ1, ĉ2, ĉ3) are the first derivatives,

(ĉ4, . . . , ĉ9) are the second derivatives, and the remaining terms are

higher order derivatives. If the approximate interface position is of

O(hm+1) then,

|ĉc
0 − c0| = O(hm+1).
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Similarly, if the first derivative is approximated by O(hm) then,

|ĉ1 − c1| = O(hm),

and if the second derivative is of O(hm−1) then,

|ĉ4 − c4| = O(hm−1).

Proceeding in this manner, we find

|ĉl − cl| = O(h).

For the estimation of the interface, we first ensure that the linearly

corrected ĉ1 does not alter the order of convergence. Therefore, from

equation (4.14b) we find

(ĉc
1 − c1)ξ = (

1

2
c4h +

1

3!
c10h

2 + · · · + 1

m
cm−1
l − f1 − f3

h
− c1)ξ

being of O(hm+1) since ξ ∈ (0, h] and f1, f3 are Φ values at the grid

points. Therefore, the root estimated from equation (4.26) can be

written as

(c0 − e0) + (c1 − e1)ξ +
1

2
(c4 − e4)ξ

2

+ · · ·+ 1

m!
(cl − el)ξ

m = 0.(4.27)

Separating the error from the exact terms yields

c0 + c1ξ +
1

2
c4ξ

2 + · · ·+ 1

m!
clξ

m −

(e0 + e1ξ +
1

2
e4ξ

2 + · · ·+ 1

m!
elξ

m) = 0.(4.28)

As ξ∗ ∈ (0, h], each error term in equation (4.28) is O(hm+1). Therefore,

(4.29) |ξ∗ − ξc
∗| ≈ O(hm+1).

Similar results hold for the intersection in y and z direction.

(ii) Normal:

The approximate normal nc
x at P c

i (ξc
∗, η

c
∗, ζ

c
∗) along the x-direction is

given by

nc
x = ĉ1 +

1

2
[2ĉ4ξ

c
∗ + ĉ5η

c
∗ + ĉ6ζ

c
∗] +

1

3!
[3ĉ10(ξ

c
∗)

2 + . . . ] +

1

4!
[4ĉ20(ξ

c
∗)

3 + . . . ] + · · · + ĉl

(m − 1)!
(ξc

∗)
m−1.(4.30)
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The exact normal nx at Pi(ξ∗, η∗, ζ∗) along the x-direction is

nx = c1 +
1

2
[2c4ξ∗ + c5η∗ + c6ζ∗] +

1

3!
[3c10(ξ∗)

2 + . . . ] +

1

4!
[4c20(ξ∗)

3 + . . . ] + · · ·+ cl

(m − 1)!
(ξ∗)

m−1.(4.31)

As |ĉ1 − c1| = O(hm), |ĉ4 − c4| = O(hm−1), . . . , we can compute the

error in the estimation of the normal by

|nc
x − nx| =

∣

∣

∣

∣

e1 +
1

2
[2ĉ4(ξ

c
∗ − ξ∗) − 2ê4ξ∗+

c5(η
c
∗ − η∗) − e5η∗ + c6(ζ

c
∗ − ζ∗) − e6ζ∗] +

1

3!
[3c10((ξ

c
∗)

2 − (ξ∗)
2) − 3e10(ξ∗)

2 + . . . ]+

1

4!
[4(c20((ξ

c
∗)

3 − (ξ∗)
3) + . . . ] + · · ·+

1

(m − 1)!
[cl((ξ

c
∗)

m−1 − (ξ∗)
m−1) + . . . ]

∣

∣

∣

∣

.(4.32)

Since ξ∗, η∗, ζ∗ ∈ (0, h], we immediately see that each error term in the

equation (4.32) is O(hm), i.e.

|nx − nc
x| ≈ O(hm).(4.33)

Likewise, we can show that the order of convergence is O(hm) for ny

and nz.
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(iii) Mean curvature:

We can write the approximate Hessian entries as

H
c
11 = (c4 − e4) +

1

3!
[6(c10 − e10)ξ

c
∗ + 2(c11 − e11)η

c
∗+

2(c12 − e12)ζ
c
∗] + · · · + cl − el

(m − 2)!
(ξc

∗)
m−2

= H11 − ǫ11,(4.34a)

H
c
12 =

1

2
(c5 − e5) +

1

3!
[2(c11 − e11)ξ

c
∗ + 2(c14 − e14)η

c
∗+

(c19 − e19)η
c
∗] + · · · + (m − 1)(cl+1 − el+1)

m!
(ξc

∗)
m−2

= H12 − ǫ12,(4.34b)

H
c
13 =

1

2
(c6 − e6) +

1

3!
[2(c12 − e12)ξ

c
∗ + 2(c17 − e17)ζ

c
∗+

(c19 − e19)η
c
∗] + · · · + (m − 1)(cl+2 − el+2)

m!
(ξc

∗)
m−2

= H13 − ǫ13,(4.34c)

H
c
22 = (c7 − e7) +

1

3!
[6(c13 − e13)η

c
∗ + 2(c14 − e14)ξ

c
∗+

2(c15 − e15)ζ
c
∗] + · · · + (m − 2)(cl+3 − el+3)

m!
(ξc

∗)
m−2

= H22 − ǫ22,(4.34d)

H
c
23 =

1

2
(c8 − e8) +

1

3!
[(c19 − e19)ξ

c
∗ + 2(c15 − e15)η

c
∗+

2(c18 − e18)ζ
c
∗] + · · · + (cl+5 − el+5)

m!
(ξc

∗)
m−2

= H23 − ǫ23 and(4.34e)

H
c
33 = (c9 − e9) +

1

3!
[(c15 − e15)ξ

c
∗ + (c16 − e16)ζ

c
∗+

(c18 − e18)η
c
∗] + · · · + (m − 2)(cl+4 − el+4)

m!
(ξc

∗)
m−2

= H33 − ǫ33.(4.34f)

The approximate Weingarten matrix ac is then given by

[

ac
11 ac

12

ac
12 ac

22

]

=

[

~s

~t

]

H

[

~s ~t
]

−
[

~s

~t

]

ǫ
[

~s ~t
]

,(4.35)
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where ~s = (s1, s2, s3), ~t = (t1, t2, t3) and

ǫ =







ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33






.(4.36)

The approximate mean curvature Hc = 1
2
trace(ac), i.e.

ac
11 + ac

22

2
=

(s2
1 + t21)(H11 − ǫ11)

2
+

(s2
2 + t22)(H22 − ǫ22)

2
+

(s2
3 + t23)(H33 − ǫ33)

2
+

(s1s2 + t1t2)(H12 − ǫ12)

2
+

(s1s3 + t1t3)(H13 − ǫ13)

2
+

(s2s3 + t2t3)(H23 − ǫ23)

2
:= A − Ae,(4.37)

where

A =
(s2

1 + t21)H11

2
+

(s2
2 + t22)H22

2
+

(s2
3 + t23)H33

2
+

(s1s2 + t1t2)H12

2
+

(s1s3 + t1t3)H13

2

(s2s3 + t2t3)H23

2
(4.38)

and

Ae =

[

(s2
1 + t21)ǫ11

2
+

(s2
2 + t22)ǫ22

2
+

(s2
3 + t23)ǫ33

2
+

(s1s2 + t1t2)ǫ12

2
+

(s1s3 + t1t3)ǫ13

2
+

(s2s3 + t2t3)ǫ23

2

]

.(4.39)

The error in the estimation of the mean curvature is

|H − Hc| = |a11 + a22 − ac
11 − ac

22

2
| = Ae.(4.40)

We observe that the error terms ǫ11 . . . ǫ33 of Ae from equations (4.34(a)

- 4.34(f)) is O(hm−1). Since s1, s2, s3, t1, t2, t3 ∈ [0, 1], we have

(4.41) |H − Hc| ≈ O(hm−1).

(iv) Gaussian curvature:

The estimated Gaussian curvature Kc from equation (4.18) is ac
11a

c
12 −
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(ac
12)

2. This is given by

Kc = ((H11 − ǫ11)(H22 − ǫ22) − (H12 − ǫ12)
2)(s1t2 − s2t1)

2 +

(H11 − ǫ11)(H33 − ǫ33) − (H13 − ǫ13)
2)(s3t3 − s1t3)

2 +

(H22 − ǫ22)(H33 − ǫ33) − (H23 − ǫ23)
2)(s3t2 − s2t3)

2 +

2((H23 − ǫ23)(H11 − ǫ11) − (H12 − ǫ12)(H13 − ǫ13))

(t21s2s3 + s2
1t2t3 − t1t2s1s3 − t1t3s1s2) +

2((H12 − ǫ12)(H23 − ǫ23) − (H12 − ǫ12)(H13 − ǫ13))

(t1t2s2s3 − t1t3s
2
2 − t22s1s3 + t2t3s1s2).(4.42)

The error in the Gaussian curvature has two parts. The first term is

the product of error and the exact Hessian such as H11ǫ22. The second

is the product within the error terms such as ǫ11ǫ22. Therefore,

|K − Kc| = |K − (K1 + K2)|,(4.43)

where K1 is

K1 = (s1t2 − s2t1)
2(ǫ11H22 + ǫ22H11 − 2ǫ12H12) + (s3t3 − s1t3)

2

(ǫ33H11 + ǫ11H33 − 2ǫ13H13) + (s3t2 − s2t3)
2(ǫ33H22 +

ǫ22H33 − 2ǫ23H23) + 2(ǫ11H23 + ǫ23H11 − ǫ13H12 − ǫ12H13)

(t21s2s3 + s2
1t2t3 − t1t2s1s3 − t1t3s1s2) + 2(ǫ23H12 + ǫ12H23 −

ǫ12H13 − ǫ13H12)(t
2
1s2s3 + s2

1t2t3 − t1t2s1s3 − t1t3s1s2)(4.44)

and K2 is

K2 = (ǫ11ǫ22 − ǫ2
12)(s1t2 − s2t1)

2 + (ǫ33ǫ11 − ǫ2
13)(s3t3 − s1t3)

2 +

(ǫ33ǫ22 − ǫ2
23)(s3t2 − s2t3)

2 + 2(ǫ11ǫ23 − ǫ13ǫ12)

(t21s2s3 + s2
1t2t3 − t1t2s1s3 − t1t3s1s2) +

2(ǫ23E12 − ǫ12ǫ13)(t
2
1s2s3 + s2

1t2t3 − t1t2s1s3 − t1t3s1s2).(4.45)

From equations (4.44) and (4.45), we find that K1 is O(hm−1) and K2

is of O(h2(m−1)). Therefore,

(4.46) |K − Kc| ≈ O(hm−1).

(v) Principal curvature:

For the principal curvature estimation, we need the error for the terms
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(ac
11 − ac

22)
2 and ac

12. Therefore, we define B by

B :=
1

2

[

(t21 − s2
1)H11 + (t22 − s2

2)H22 + (t23 − s2
3)H33+

(t1t2 − s1s2)H12 + (t1t3 − s1s3)H13 + (t2t3 − s2s3)H23] ,(4.47)

and the error term Be by

Be :=
1

2

[

(t21 − s2
1)ǫ11 + (t22 − s2

2)ǫ22 + (t23 − s2
3)ǫ33+ (t1t2 − s1s2)ǫ12 +

(t1t3 − s1s3)ǫ13 + (t2t3 − s2s3)ǫ23] .(4.48)

Similarly,

C := [t1s1H11 + t2s2H22 + t3s3H33 + (t1s2 + t2s1)H12+

(t1s3 + t3s1)H13 + (t2s3 + t3s2)H23] ,(4.49)

and the error term,

Ce := [t1s1ǫ11 + t2s2ǫ22 + t3s3ǫ33 + (t1s2 + t2s1)ǫ12+(4.50)

(t1s3 + t3s1)ǫ13 + (t2s3 + t3s2)ǫ23] .(4.51)

The approximate principal curvature is

λc
1,2 = A − Ae ±

√

(B − Be)2 + (C − Ce)2.(4.52)

For λc
1, the error is given by

|λc
1 − λ1| = |Ae +

√

[B2 + C2 − 2(BBe − CCe) + (B2
e + C2

e )] −√
B2 + C2|.(4.53)

We see that Ae is of O(hm−1) and the term
√

[B2 + C2 − 2(BBe − CCe) + (B2
e + C2

e )],

can be written as

√
B2 + C2

[

1 − 2(BBe − CCe) + (B2
e + C2

e )

B2 + C2

]1/2

≈
√

B2 + C2

[

1 − 2(BBe − CCe) + (B2
e + C2

e )

2(B2 + C2)

]

as (BBe−CCe+B2
e+C2

e ) < (B2+C2), which is of O(h(m−1)). Therefore,

|λ1 − λc
1| ≈ O(h(m−1)).(4.54)

Likewise, we observe that

|λ2 − λc
2| ≈ O(h(m−1)).(4.55)
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(vi) Principal direction:

The principal directions are given by equation (4.20) as

~pd1 = (pd11, pd12, pd13)

= (t1a12 + s1λ1, t2a12 + s2λ1, t3a12 + s3λ1),(4.56a)

~pd2 = (pd21, pd22, pd23)

= (t1λ
c
1 − s1a12, t2λ

c
1 − s2a12, t3λ

c
1 − s3a12).(4.56b)

Therefore, the error in the approximate ~pd
c

1 is

| ~pd1 − ~pd
c

1| = (|(a12 − ac
12)t1 + (λ1 − λc

1)s1|,
|(a12 − ac

12)t2 + (λ1 − λc
1)s2|,

|(a12 − ac
12)t3 + (λ1 − λc

1)s3|) .(4.57)

From equation (4.51), we know

(a12 − ac
12) = Ce.

Therefore, from equation (4.51)

(a12 − ac
12)t1 + (λ1 − λc

1)s1 =
[

t21s1ǫ11 + t2s2t1ǫ22 + t3s3t1ǫ33+

(t1s2 + t2s1)t1ǫ12 + (t1s3 + t3s1)t1ǫ13+

(t2s3 + t3s2)t1ǫ23] + (λ1 − λc
1)s1.(4.58)

Again, by looking at ǫ11, . . . , ǫ22 and (λ1 − λc
1), we obtain the following

result

| ~pd1 − ~pd
c

1| ≈ O(h(m−1)).(4.59)

Similarly, we show that | ~pd2 − ~pd
c

2| is also O(h(m−1)).

�

4.2. Analytic test case

To study the accuracy and convergence of our method, we compare

our estimation of surface parameters with known analytical results.

For this purpose, as in Chapter 2 we take an arbitrarily oriented torus

as a test example. We recall the following notation which is used for

describing surface parameters:
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P c
i , Pi - estimated and analytic interface position

~nc, ~n - estimated and analytic normal vector

Hc and H - estimated and analytic mean curvature

Kc and K - estimated and analytic Gaussian curvature

Φc and Φ - estimated and exact signed distance function
~pd

c

1,
~pd

c

2, - estimated principal curvature direction
~pd1, ~pd2 - analytical principal curvature direction

The signed distance function Φ is constructed in two different ways:

(1) from the implicit representation of the surface which we call

exact signed distance and

(2) from the triangulated surface.

We study the convergence of surface parameters in both cases sepa-

rately. In each of them, we show the results of least square method for

2nd, 3rd, and 4th order polynomials (denoted as LS) and the interpo-

lated sixth order finite difference scheme (see Appendix A). Without

loss of generality, this finite difference method is referred to as FD inter-

polation method hereafter. All plots are in log-log scale and the results

for different orders of polynomials are shown with different colors. For

each color, the discrete points are the results from our simulation and

the continuous line is the best linear fit in the log-log scale. The slope

of this line is taken as the approximate order of convergence in our

study.

4.2.1. Exact signed distance from a torus. The exact signed

distance from a torus is found from equation (2.15). The exact surface

parameters can be obtained from the parameterization of the torus,

given by

X(θ, φ) = ((R + r cos θ) cos φ, (R + r cos θ) sin φ, r sin φ),

θ, φ ∈ (0, 2π],

with the analytical normal

~n(θ, φ) = (cos θ cos φ, cos θ sin φ, sin φ),

(4.60)

and the mean and Gaussian curvature given by(see [19])

H = − R + 2r cos θ

2r(R + r cos θ)
and K =

cos θ

R + r cos θ
.
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As before the parameter r is the radius of the tube, and R is the

distance of the center hole to the center of the tube in a local coordinate

system (~t1, ~t2, ~n), as shown in Figure 2.14. We have,

~t1 = (0.5, 0.0, 0.866025), ~t2 = (0.0, 1.0, 0.0)

and ~n = (−0.866025, 0, 0.500000), with R = 0.6 and r = 0.2.

The uniform meshwidth is given by 4/Gs, where Gs is the grid

resolution. For our test, we use 203, 403, 503, 1003, 2003, 4003, and 8003

grids. Figure 4.2 shows the plot of the infinity norm of the error of the

surface parameters, with respect to different grid resolutions, taken

uniformly in all three directions.

For the interface position we can see that the interpolation gives

better estimations than the 2nd, 3rd, or 4th order least squares ap-

proach, but the error is also found to be more oscillatory. As expected

from Theorem 3, for the position, the 2nd, 3rd and 4th order polyno-

mials give 3rd, 4th and 5th order of convergence, respectively. It is

found that 2nd, 3rd, and 4th order polynomials produce 2nd, 3rd, and

4th order of convergence for normals as expected. For the mean and

Gaussian curvatures, it is found that 2nd, 3rd, and 4th order polynomi-

als produce approximately 1st, 2nd, and 3rd order of convergence. For

the principal directions, we also found that the least squares method

gives better estimations than the interpolation. Here, we have not

shown lower order finite difference interpolation as it is found that the

rate of convergence is much lower than sixth order.

Therefore it is clear that for the estimation of normal, and cur-

vatures, and their directions on the surface, the least squares method

is accurate and has better order of convergence than higher order in-

terpolation methods used in the literature. Further, the advantage of

the least squares method is that it needs only very thin narrow band

around interface. For instance, the 4th order least squares method

needs only 57 points and it is enough to have narrow band width of

just four times the mesh width. On the contrary, the finite difference

technique requires nine times the mesh width.

Table 4.1 shows the order of convergence for surface parameters for

various orders.
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Figure 4.2. Discretization error of different surface pa-

rameters with respect to grid resolutions.

4.2.2. Signed distance function from a surface triangula-

tion: In Chapter 2 we showed that the estimation of signed distance

functions by the direct method depends chiefly on the surface resolu-

tion, i.e. triangulation. Here, we investigate two types of convergence:

(1) based on different surface resolutions for a fixed mesh width,

and

(2) based on different mesh width for a fixed triangulation.
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Method Polynomial Position Normal H K pd1 pd2

Order

Least squares 2 3.06 1.89 0.86 0.95 0.79 0.80

Least squares 3 4.02 3.03 1.94 1.95 1.75 1.67

Least squares 4 5.32 4.04 3.06 3.04 2.78 2.74

FD Interpolation 6 6.70 1.90 2.00 2.15 1.80 1.93

Table 4.1. Order of convergence for surface parameters

by different methods for torus where Φ is an exact signed

distance. H - Mean curvature, K- Gaussian curvature,

pd1 and pd2 are the principal directions.

Figure 4.3 show the error in the estimation of surface parameters for

various surface resolutions (from 80000 to 5.12 million triangles) with

fixed meshwidth of 0.01 for the same torus (r = 0.2 and R = 0.6).

For the interface position, we find that the FD interpolation has the

same order of convergence as the 4th order least squares method. Also,

we find the fourth order least squares approach is accurate than FD

method.

Thus, from the above discussion we can conclude that a good surface

resolution is neceessary for estimating surface parameters accurately by

higher order least squares approach. For the second order least squares

or FD interpolation, increasing the surface resolution will not help in

estimating surface parameters accurately.

Figures 4.4 shows the error in the estimation of surface parameters

for different mesh width with fine surface resolution (around 2 million

triangles). Table 4.2 shows the order of convergence for surface param-

eters of the torus. We observe that the order of estimation is lower than

the corresponding parameters estimated with the exact signed distance

case (see Table 4.1). This indicates that the results are sensitive to the

signed distance function, which in turn depends on the triangulations.

4.2.3. Coarse surface and mesh resolutions. We observe, from

Figure 4.3, that there is a fluctuation of the error for the first few sur-

face resolutions. To study the effects of coarse triangulation with the

fixed grid, Figure 4.5 shows the plot of surface parameters for different
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Figure 4.3. Discretization error of the surface param-

eters with different surface resolution for h = 0.01.

grid resolutions with a fixed number of surface triangles (80000 faces).

In all these plots, we find that the results are highly oscillatory and

therfore, we cannot ascertain the order of convergence. Similarly, to

analyze the effects of coarse mesh width for various surface resolutions,

we show the error plot of surface parameters in Figure 4.6 for a fixed

mesh width h = 0.08 for different polynomial orders. In all these plots

we find the results are accurate with the higher order least squares, but
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Figure 4.4. Discretization error of the surface param-

eters for different mesh resolutions with fixed surface tri-

angulation.

it fails to converge even with very large number of triangles (around

5 million). Therefore, optimum mesh resolution is also a necessary

condition to reach the correct rate of convergence.
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Method Polynomial Position Normal H K pd1 pd2

order

Least squares 2 3.09 1.83 0.74 0.97 0.64 0.64

Least squares 3 3.67 2.99 1.89 2.03 1.59 1.58

Least squares 4 4.20 3.85 2.48 2.32 2.38 2.25

FD Interpolation 6 4.13 2.07 1.74 1.95 1.90 2.41

Table 4.2. Order of convergence for surface parameters

by different methods for torus, where Φ is calculated from

triangulation. H - Mean curvature, K- Gaussian curva-

ture, pd1 and pd2 are the principal directions.

4.2.4. Heuristic results. Therefore, we can reach some impor-

tant heuristic conclusions, while dealing with the higher order approx-

imation of surface parameters, when the surface is discretized by a

triangulation:

Remark 10. Conditions for convergence:

(i) Decreasing the mesh width is not useful when the number of

triangles are not sufficient to resolve the surface accurately.

(ii) Increasing the surface triangulation does not improve the re-

sults if the order of least squares approximation is small.

(iii) Increasing the surface triangulation, while using the coarse

mesh, will also not help to bring the convergence of the sur-

face parameters to the desired order. The mesh width should

be sufficiently fine to get the correct order of convergence.

Therefore, the choice of the right order of least squares approxi-

mation, a moderately fine mesh width, and a sufficiently fine surface

triangulation are crucial for obtaining an accurate estimate of surface

parameters.

4.2.5. Comparison of the Direct least squares method with

FMM. In Chapter 2 we compared the direct method with FMM and

showed that for the estimation of Φ, the former is more accurate than

the latter. Here, we investigate a similar type of study for the estima-

tion of surface parameters. To be precise, we investigate four different

approaches:
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Figure 4.5. Discretization error of surface parameters

with different mesh width for coarse triangulations.

(1) fourth order least squares with Φ computed by the direct

method,

(2) fourth order least squares with Φ computed by first order FMM

(denoted by FMM1),

(3) fourth order least squares with Φ computed by second order

FMM (denoted by FMM2) and
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Figure 4.6. Discretization error of the surface param-

eters for various orders of polynomial with coarse mesh

width h = 0.08.

(4) sixth order finite difference interpolation with Φ computed by

the direct method.

We recall that in FMM, the initial Φ is computed within a distance

of h from the interface by the direct method. Figure 4.7 shows the

plot of surface parameters with different methods for various grid res-

olutions. For conciseness, we show here only the accuracy of interface
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Figure 4.7. Accuracy of surface parameters estimated

by 4th order least squares method with Φ estimated by

direct, FMM1 and FMM2 approaches and sixth order FD

interpolation

position, normal, mean and Gaussian curvatures for different grid res-

olutions. It is clearly seen that estimating surface parameters by least

squares with Φ computed by the direct method is more accurate and

has better order of convergence than FMM1 or FMM2. For estimating

interface position and normal the difference in the order of convergence

between the FMM1 and FMM2 is not significant. On the other hand

FMM2 has a better convergence rate than FMM1 in the estimation of

mean and Gaussian curvature, but still cannot match the accuracy and

convergence order of the direct method. We find also that FD inter-

polation has a lower order of convergence than FMM2 except in the

estimation of the interface position. It is clear from this investigation

that one needs higher order FMM to get an accurate estimation of sur-

face parameters. On the other hand, as we mentioned before, this may
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not be efficient, as for a higher order FMM we need initial Φ values for

a larger width (at a distance ≥ 2h) from the interface, which decreases

the speed of computation. Therefore, by looking into these aspects, we

find that the least squares approach with Φ computed by the direct

approach is more accurate and efficient than the FMM aproach for the

computation of the surface parameters on the interface.
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CHAPTER 5

Propagation - Application to moving interface

problems

We now study the propagation of the interface by an externally

generated velocity field ~v. The original level set equation proposed by

Osher and Sethian [63] uses a simple advection equation

Φt + ~v · ∇Φ = 0,(5.1)

to track implicitly the evolution of the interface,. Here it must be

remembered that ~n and ∇Φ point in the same direction. Therefore, it

is not necessary to specify the tangential component ~t, of the velocity as

~t ·∇Φ = 0. For instance, in two dimensions, if F is the normal velocity,

G is the tangential velocity, and ~v = F~n + G~t, then equation (5.1)

becomes

Φt + F~n · ∇Φ = 0,(5.2)

since ~t · ∇Φ = 0. As

~n · ∇Φ =
∇Φ

|∇Φ| · ∇Φ =
|∇Φ|2
|∇Φ| = |∇Φ|,

equation (5.2) becomes

Φt + F |∇Φ| = 0.(5.3)

As we mentioned in Chapter 1, this also known as level set equation

in the literature [83]. Here we use equation (5.3) for propagating the

interface.

5.1. Estimation of F on grid points

The first step in the study of propagation by level set methods is

the estimation of the normal velocity F on the grid point from the

velocity field ~v. In the Cartesian coordinate system if the velocity field

~v = (vx, vy, vz) is known at each grid point, then the normal velocity

F can be estimated by computing the normal using ~n = ∇Φ
|∇Φ|

. But in
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many cases, especially solvers using MAC grid, vx, vy and vz are stored

in a staggered way. Furthermore, in the study of free moving boundary

problems, sometimes the discrete velocity field ~v is known only on one

side of the interface. Therefore, we need an approach to extrapolate

the velocity across the interface. In the literature, there are many

approaches used to extrapolate velocity across the interface. To name

a few, ghost fluid techniques [25], the method of characteristics [6] and

the constant velocity extension [3] are some of the methods used in the

literature.

Here, we use the constant velocity extension method to extend nor-

mal velocity from the interface to the grid point. The velocity field from

the grid is first extrapolated to discrete points on the the interface by

a least squares approach as discussed in the previous chapter. In our

study, these discrete points are the set of projection points of grids

inside the narrow band. This is schematically shown in Figure 5.1(a).

We use the same equation (4.9) for finding the velocity on the inter-

face, where f is the velocity component vx, vy and vz of length Nr, the

number of sample points within search radius r. If the velocity compo-

nents are given in a staggered form as shown in Figure 5.1(b), then the

equation (4.9) is solved (in a least square sense) for each component

separately. As before, the grid matrix A is of length Nr × l, where

l depends on the order of approximation. If (ATA) is singular, then

the search radius is increased to accommodate more points. If it is

not possible to increase the number of sample points then the order of

extrapolation is reduced. The normal velocity F at a grid point ~P is

found from the velocity field ~vs at the interface point ~Pp by

F = ~vs ·
(~P − ~Pp)

‖(~P − ~Pp)‖2

(5.4)

5.2. Applications

We investigate three different applications:

(1) Mean curvature flow: In this study, the interface is propa-

gated under its mean curvature. The curvature is estimated

by higher order least squares from the discrete level set func-

tion as discussed in the previous chapter.
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P
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Figure 5.1. (a) Least square extrapolation of velocity

field and (b) staggered representation of velocity compo-

nent.

(2) Bubble dynamics: The level set algorithm is coupled with

Lattice-Boltzmann (LB) code to investigate the movement of

interface. Here, we verify the Young-Laplace law for the pres-

sure of a spherical bubble under surface tension forces. Fur-

ther, we give an example of level set LB coupling viz., the

coalescence of bubbles due to surface tension effects.

(3) VOF-coupling in the mold flow: The level set algorithm is

coupled with VOF representation in the study of an injection

mold-flow using SIGMASOFT software.

5.2.1. Mean curvature flow. The evolution of a hypersurface

moving according to its mean curvature has been studied in various set-

tings. In the parametric setting, for instance Gage and Hamilton[28],

Grayson [34], Huisken [42] investigated self similar flows due to shrink-

ing of a closed curve. In the level set methodology, we look for Γ(t) as

the zero level set of function Φ : R
n+1 × [0,∞) → R, i.e.

Γ(t) = {x ∈ R
n+1|Φ(x, t) = 0}.

Thereby, we use equation (5.3) with F = −H , where H is the mean

curvature. This equation is of interest for the study of geometric curve

and surface evolution in image processing [75] and in the modeling of

dendrite growth [83]. Numerically, equation (5.3) is solved with a small

regularizing parameter ǫ such that

Φt − Hǫ|∇Φ| = 0.(5.5)

The proof for the existence of a solution based on viscosity solution

for equation (5.5) is well known [23], [24]. In the discretized form if
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Φ(xi, yj, zk) at time t = n is represented by Φn
i,j,k, then at time t = n+1

it is,

Φn+1
i,j,k = Φn

i,j,k − ∆tǫHn
i,j,k|∇Φn

i,j,k|.(5.6)

The time step ∆t satisfies the CFL condition such that |F |ǫ∆t
h2 < 1.

In the finite difference setting, the mean curvature H (given by equa-

tion (4.1)) is discretized by higher order central differences. The prop-

agation equation (5.6) is then updated for each time step with sim-

ple Euler stepping and |∇Φ| is discretized using a first order upwind

method [83].

If Φ is signed distance function then,

∇ · ∇Φ

|∇Φ| = ∆Φ.(5.7)

Therefore, equation (5.5) becomes a heat equation. For this type of

equation, recently, a fourth-order finite difference scheme has been ap-

plied by Gibou and Fedkiw [32] for the study of Stefan problems. The

advantage of the heat equation is that one can go for the implicit time

discretization, thereby a larger time steps can be used in the compu-

tation. Unfortunately, one cannot generally substitute equation (5.7)

with equation (5.5) for the study of mean curvature flow. The reason is

that Φn may be a signed distance function, but Φn+1 will generally not

be a signed distance function. In other words, ∆Φn may be equal to

Hn|∇Φn|, but ∆Φn+1 will in general not be equal to Hn+1|∇Φn+1|. To

solve for large time steps, recently a semi implicit method is proposed

by Smereka [85]. In this approach Smereka used a higher order finite

difference scheme for the estimation of curvature at each grid point.

Here, we follow a different approach. As we found in the last chap-

ter, the curvature estimated by the FD method is not accurate and

also has a poor rate of convergence, we estimate it on the surface using

a higher order least squares method. Therefore, the curvature term is

not discretized explicitly on the grid points. In our approach, as we

have the normal on the interface, the velocity F at the grid points can

be estimated easily from the projection point. By doing this we not

only estimate the curvature accurately, but also avoid back and forth

extrapolation of normal velocity on the grid.
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5.2.1.1. Validation with analytical results. In the context of level set

method, the numerical validation for the study mean curvature flow of

closed contour is analyzed in detail in [64], [70], [27]. The important

aspect investigated in all these studies is the mass loss during surface

evolution. This is because the level set method has a tendency to loose

mass in the under resolved regions. Further, during reinitialization of

Φ, the interface may move from the zero level set making it vulnerable

for mass loss/gain locally. To avoid this, several corrective measures

are used during reinitialization [89], [70], [22]. In all these models, the

curvature term is discretized by central differences. Our intention here

is to investigate further the influence of curvature estimation on the

mass loss. Therefore, for a fixed reinitialization step, we perform three

sets of experiments.

(1) The mean curvature H , given by equation (4.1), is discretized

by higher order central differences at each grid point (i, j, k)

inside the narrow band. We call this a classical approach.

(2) The discrete mean curvature found from equation (4.1) is ex-

trapolated to the interface by cubic splines. Then the grid

points inside the narrow band inherit the normal velocity from

the interface by the method of constant velocity extension.

This is called the FD interpolation approach.

(3) The curvature H is not discretized at each grid point. We

use the curvature estimation on the interface by least squares

method described in Chapter 4. The grid points inside the

narrow band inherits the normal velocity by the method of

constant velocity extension. This we call the least squares

approach.

We use then equation (5.5) for propagation. Here, we use explicit Euler

time stepping and |∇Φ|i,j,k, is discretized by a first order upwinding

method [83]. For the mean curvature flow, it is found that the first

order upwinding is sufficient [62].

A first benchmark experiment is the shrinking of a sphere centered

at (0, 0, 0) of initial radius r0 = 1, with mesh resolution h = 0.0002,

smoothing parameter ǫ = 1.0e−2 and ∆t = 0.006. Explicit reinitializa-

tion is performed every 100 time steps by the marching cube algorithm
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Figure 5.2. Shrinking of a sphere by mean curvature

flow using the classical approach.

(see Chapter 3). Thereby Φ is estimated again from the surface trian-

gulation (see Chapter 2). Analytically, it can be shown that the radius

at time t is given by rt =
√

(r0 − 2ǫnt∆t), where nt is the number of

time steps.

Figure 5.2 shows the cross section of the shrinking of sphere by

classical approach. It can be seen very clearly that in principle the

shrinking of the surface follows self-similarity according to the theory,

but the estimated mean curvature flow is faster than the analytical

solution. At each step it looses mass drastically and shrinks completely

well before the expected time. Figure 5.3 displays the shrinking of the

sphere using the FD interpolation. The shrinking and the mass loss

in this method is found to be very similar to the classical approach.

Figure 5.4 shows the shrinking of the sphere with the second order

least squares method with constant velocity extension. We can see

here that the shrinking is better compared with the analytical solution

than in the classical or FD approaches at least for the first few time

steps. Table 5.1 shows the percentage of accumulative mass loss at
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Figure 5.3. Shrinking of a sphere by mean curvature

flow using the FD interpolation approach.

Time Accumulative mass loss (in %)

Classical FD interpolation Least squares

0.06 2.87 0.24 2.6

0.12 9.442 3.90 9.3

0.18 20.13 8.56 20.67

0.24 35.74 37.24 13.16

0.30 58.54 61.53 25.78

0.36 90.87 94.113 47.37

Table 5.1. Accumulative mass loss for classical, FD in-

terpolation and least squares methods using the same

reinitialization step.

various time steps for the classical, FD and least squares approaches.

Therefore, the accuracy of the curvature estimation is also a important

in the study of mean curvature flow.

It is observed that results are not affected by using WENO schemes

for |∇Φ| or Runge-Kutta (RK) methods for temporal discretization in
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Figure 5.4. Shrinking of a sphere by mean curvature

flow using the higher order least squares approach.
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Figure 5.5. Cross-section of the dumbbell geometry.

equation (5.6). One way to reduce the mass loss, is to not to reini-

tialize very often and to make the narrow band broad. On the other

hand, this will increase the computation time drastically as discussed

in Chapter 1.

To investigate the pinching process due to mean curvature flow, we

have taken a three dimensional dumbbell geometry. The cross section

of this shape is shown in Fig 5.5. We have taken the dimension of

the dumbell same as that of Sethian [80] to compare the result of our
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Figure 5.6. Shrinking of a dumbbell by mean curvature

flow using the classical approach.

approach, with the classical method. Figures 5.6 and 5.7 show the

shrinking process at various times for the classical and least squares

approach, respectively. Here, also, we find that volume of shrinking by

the classical method is different from the higher order method at various

time steps. The main interest lies at the time during the pinch-off,

where classical approach predicts rapid and sudden change, as shown

in Figure 5.6 at t=1.12. On the other hand, the least squares approach

(Figure 5.7(at t= 1.2)), pinches off slowly by stretching the surface and

then separates into two closed surfaces.

A similar observation we found also for the mean curvature flow of

the double dumbbell shape as shown in Figure 5.8. The above examples

suggest that curvature estimation also plays a major role during the

pinch-off process.

5.2.2. Bubble dynamics.

5.2.2.1. Young-Laplace Law. To study the bubble dynamics, the

Lattice Boltzmann code is coupled with the level set approach for the

treatment of the interface. The first test we performed here is to imple-

ment the surface tension through the curvature in the Young-Laplace

experiment. The Young-Laplace law states that the pressure p inside
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Figure 5.7. Shrinking of a dumbbell by mean curvature

flow using the higher order least squares approach.

Figure 5.8. Shrinking of a double-dumbell by mean cur-

vature flow using higher order least squares

a spherical bubble of radius r surrounded by a second fluid is pro-

portional to the surface tension coefficient σ. Thus, according to the

Young-Laplace law,

(5.8) p =
2σ

r
= 2σH.
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Figure 5.9. Grid convergence pressure for different or-

der of least square estimation of curvature

A bubble of radius r = 0.25 is kept at the center of an unit cube [0, 1]3.

For the simulations we used an equidistant grid of Ng nodes in each

coordinate direction and periodic boundary conditions at the sides of

the cube. For the fluids, the viscosities were chosen equal νi = 1/6

and the densities were ρ1 = 1 and ρ2 = 10. We started with zero pres-

sure difference and stopped when the initial fluctuations were damped

sufficiently. Here, we show only the grid convergence of the pressure

error in Figure 5.9 (for other details see [7]). As the Young-Laplace

pressure is sensitive to curvature errors, it is found that the order of

convergence is influenced by the order of the curvature reconstruction.

It reveals that using third and fourth order least squares estimation

gives approximately a second order convergence of the pressure.

5.2.2.2. Coalescence of bubbles. The dynamics of coalescence of bub-

bles plays a major role in many engineering processes like sintering [83].

The numerical simulation of coalescence is a test of robustness of inter-

face modeling as the drops can undergo stretching, tearing and folding

during mixing processes. We simulated the coalescence processes cou-

pling level set and LB method. Initially at t = 0, two balls of radius

r = 6 were placed in 643 computational domain. The center of the

domain lies at the junction between the two balls. We have used the
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Figure 5.10. Coalescence of bubbles driven by surface

tension using a coarse grid.

second order least squares estimation of curvature in this simulation.

The simulation of the two bubbles is driven not only by the surface

tension forces, but also has a velocity due to buoyancy. We conducted

this experiment with two types of grid resolutions. Figure 5.10 shows

the simulation where level set algorithm has the same grid as that of

LB solver. Figure 5.11 is same as that of Figure 5.10, but the level set

grid is refined by a factor of 2 along the interface.

As we see from Figure 5.10, the mixing for first few steps is in

accordance with the physical processes, but later oscillations starts ap-

pearing along the base of the ball junction. In Figure 5.11, we find, due

to refinement of grid there is no oscillation and the entire coalescence

is much smoother than the coarser one. We also find the time of coa-

lescence is different in the fine grid. In the coarse grid the coalescence

starts much earlier. Moreover, we find a variation in the shape at var-

ious time steps when comparing two grid resolutions. Therefore, it is

clear that in the study of coalescence of bubbles, the grid refinement is

crucial to capture the interface correctly.

5.2.3. Injection mold-flow. An important aspect in the simu-

lation of injection mold-flow is the representation of the free surface.

The software SIGMASOFT R© simulates injection mold-flow processes,
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Figure 5.11. Coalescence of bubbles driven by surface

tension using a level set grid twice finer in the narrow

band.

including the cooling and heating phase for thermo-plastics, elastomers

and thermosets (see http://www.sigmasoft.de/ for details). This soft-

ware uses 3D volume elements to solve the flow equation with the VOF

method for representing the surface. To investigate the behavior of the

interface with the level set method, we coupled our approach with VOF

for some standard benchmark geometries. In this study, the volume of

fraction computed from SIGMASOFT is corrected by the level set es-

timation. The reinitialization is done explicitly with Φ estimated from

the triangulation. We used the least squares method for the extrapo-

lation of the velocity field and constant velocity extension for finding

the normal velocity on the grid points. We took the same coarse grid

used by the SIGMASOFT flow solver (without refinement) for storing

the level set data.

We simulated the mold-flow of SIGMASOFT with and without level

set coupling for some standard geometries. Here, we present two ex-

amples. Figure 5.12 shows the first example where the object has a

varying thickness along the xy plane. Figure 5.12(a) is the fill-up of

mold flow over time without and 5.12(b) with level set coupling. We

found that the evolution of the free surface at each fill-up time with

the level set coupling is smooth, and has a sharp jump across different
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(a)

(b)

Figure 5.12. Flow fill-up over time for non-uniform

thick object (a) without and (b) with level set coupling.

thickness. On the other hand, the evolution of the free surface without

level set coupling is found to be oscillatory and has a smeared jump

across different thickness.

The second example is a spherically symmetric mold with inlet at

the center. Figure 5.13(a) is the fill-up without and 5.13(b) with level

set coupling. Similar to the first example, the free surface evolves

smoothly with the the level set coupling. The interesting aspect in
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(a)

(b)

Figure 5.13. Flow fill-up over time for spherically sym-

metric object (a) without and (b) with level set coupling.

this study is the pattern of filling with and without level set coupling.

Since the mold is uniformly thick, the filling at each time step should

be spherically symmetric. It is found that the simulation with the level

set coupling maintains this spherically symmetric pattern as shown in

Figure 5.13(b). On the contrary, the filling pattern without level set

coupling lacked spherical symmetry at each time step and the transport

of flow has a preferential direction along the diagonal.
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This simulation suggests that the level set method can be advan-

tageous for the treatment of the interface for the mold-flow problems.

The main disadvantage we faced in the above experiment is the “mass

loss ” at each time step as we have used a very coarse grid from the

flow solver. Thus, the filling was found to be slower with the level

set coupling than without it at each time step. This increases the

computational time, especially for large geometries. For these prac-

tical applications level set methods require a refined mesh along the

interface combined with robust mass correction algorithms. But incor-

porating the refinement and the mass conservation algorithm, without

increasing the computational time is a real challenge for the treatment

of the interface.
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CHAPTER 6

Summary and Conclusions

A modular level set algorithm is developed to study the interface

and its movement for free moving boundary problems. The algorithm

is divided into three basic modules initialization, propagation and con-

touring.

A methodology is discussed to find an accurate signed distance

function Φ from a closed, simply connected surface discretized by tri-

angulation. We compute Φ using the direct method and it is stored

efficiently in the neighborhood of the interface by a narrow band level

set method. A novel approach is employed to determine the correct

sign of the distance function at convex-concave junctions of the sur-

face. The accuracy and convergence of the method with respect to the

surface resolution is studied. It is shown that the efficient organiza-

tion of surface and narrow band data structures enables the solution

of large industrial problems. We compared the accuracy of Φ by the

direct approach with the Fast Marching Method (FMM). It is found

that the direct approach is more accurate than FMM. With respect to

the speed of computation, FMM is faster than the direct method for

coarse meshes. On the other hand, the direct method is faster than

FMM for fine mesh width.

Contouring is performed through a variant of the marching cube

algorithm used for the isosurface construction from volumetric data

sets. The algorithm is designed to keep foreground and background

information consistent, contrary to the neutrality principle followed for

surface rendering in computer graphics. The algorithm ensures the

isosurface triangulation is closed, non-degenerate and non-ambiguous.

The constructed triangulation has desirable properties required for the

generation of good volume meshes. These volume meshes are used in

the boundary element method for the study of linear electrostatics.

For accurately estimating surface properties like interface position,

normal and curvature from a discrete level set function, a method based
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Estimation of Surface Parameters by Level Set Methods

on higher order weighted least squares is proposed. An arbitrarily ori-

ented torus is taken as a test object to study the accuracy for the

estimation of surface parameters. It is found that the least squares

approach is more accurate than finite difference approximations. Fur-

thermore, the method of least squares requires a more compact stencil

than those of finite difference schemes. If the object is given as a sur-

face triangulation, then the accuracy and convergence of the method

depends on the surface resolution and the discrete mesh width. More-

over, we find the surface parameters estimated by the direct method is

accurate than FMM.

This approach is used in the propagation for the study of mean

curvature flow and bubble dynamics. The advantage of this approach

is that the curvature is not discretized explicitly on the grid and is

estimated on the interface. The method of constant velocity extension

is employed for the propagation of the interface. With the least squares

approach, the mean curvature flow has a considerable reduction in mass

loss compared to finite difference techniques. In the bubble dynamics,

the modules are used for the study of a bubble under the influence

of surface tension to validate Young-Laplace law. It is found that

the order of curvature estimation plays a crucial role for calculating

accurately the pressure difference between inside and outside of the

bubble. Further, we study the coalescence of two bubbles under surface

tension forces.

Our approach is coupled with VOF for the study of mold filling

simulation using SIGMASOFT. It is found from the benchmark ex-

periment, that the interface evolves smoothly with the level set-VOF

coupling. On the other hand, filling is found to be slow due to mass

loss in the under resolved regions.

Future Aspects

The future study which we would like to incorporate in our approach

for various modules are as follows:

(1) Initialization:

• We showed that CPU time to estimate Φ varies cubically

with the narrow band width w and linearly with the num-

ber of surface triangles. This is due to the fact that we
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6.0. Future Aspects

have chosen a local cuboid around each triangle. In 2D,

we showed that we can split up the local window to sub

windows to reduce the number of grid points within the

narrow band. A similar result is also required in 3D. This

will be useful, especially to reduce the computational time

for the estimation of Φ by the direct method.

(2) Contouring:

• We showed the topological modification of the isocontour

with different mesh resolution in Chapter 3. For practical

applications it is desirable to have a robust algorithm,

such that the change in the topology of the isosurface is

not drastic. There are many strategies to do this task.

One option is to look for a larger number of neighboring

cubes during marching. Another approach is to go for

a local refinement of grid or field values at the center of

the cube to get exact surface representation [91] or use

trilinear surface representation [17] within the cell.

• We found that the quality of the surface triangles is good

when field values are given like a binary image. On the

other hand, if the field values are real and close to the

given threshold value, then the marching cube can gen-

erate a small and skewed triangle. Generating a volume

from the surface mesh in this case is difficult. A good

option is to change the edge connectivity for these small

triangles and then quality of triangles can be improved

upon without compromising the quality of isosurface.

(3) Propagation:

• It is well known that level set methods tend to lose mass

during propagation. Here, we have not addressed this

problem in our study. It is found that during reinitial-

ization of Φ, the interface may move from the zero level

set making it vulnerable for mass loss/gain locally. To

avoid mass loss, several corrective measures are used in

the literature during reinitialization [89], [70], [22]. In

the context of level set coupling with Lattice-Boltzmann
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code, we are using the principle of dilation locally to con-

serve mass. We need to investigate further this aspect so

that it can be suitable for variety of applications.

Apart from these modules, we are working to parallelize the modules

to be able to to solve over larger problems.







APPENDIX A

Higher order finite difference scheme

Let discrete Φijk is given on each grid node for a uniform mesh

width h. We give here the sixth order finite difference formulas for the

derivatives at (i, j, k). For Φx we have

Φx ≈ 1

60h
[−Φi−3,j,k + Φi+3,j,k + 9Φi−2,j,k−

9Φi+2,j,k − 45Φi−1,j,k + 45Φi+1,j,k] ,(A.1a)

and a similar relation holds for Φy and Φz along j and k direction

respectively. For Φxx we have

Φxx ≈ 1

90h2

[

Φi−3,j,k + Φi+3,j,k −
27

2
Φi−2,j,k−

27

2
Φi+2,j,k + 135Φi−1,j,k + 135Φi+1,j,k − 245Φi,j,k

]

,(A.1b)

and a similar relation holds for Φyy and Φzz along j and k direction

respectively. For the mixed derivatives Φxy we have

Φxy ≈ 1

360h2
[Φi+3,j+3,k − Φi+3,j−3,k − Φi−3,j+3,k+

−Φi−3,j−3,k + 27Φi+2,j+2,k + 27Φi+2,j−2,k+

27Φi−2,j+2,k − 27Φi−2,j−2,k] ,(A.1c)

and a similar relation holds for Φxz and Φyz along (i, k) and (j, k)

direction respectively.
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