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Chapter 1

Introduction

When one looks at a digital image, it is impossible to avoid seeing in them
structures, which in a fraction of a second, can be identified with real objects.
To teach a computer to carry out this task, which is easy for a human, is one
of the most difficult problems of image processing and analysis. Foremost,
the only information which computer gets is the intensity values at pixels,
and the whole processing of an image is usually divided into several stages:
filtering, segmentation, classification and finally recognition.

Fig. 1.1: The image of a leather with defects

In order to explain each of these individual stages, as an example, let us
consider the real problem1 concerning detection and recognition of defects
on a leather. In Fig. 1.1, one can distinguish various imperfections such as

1The problem comes from the Image Processing Department of the Institute for In-

dustrial Mathematics in Kaiserslautern
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scratches (straight lines), bites (black dots) and shingle (light stain). The
first step in the processing of such image is filtering. The aim of this technique
is not only to remove a noise and smoothening parts of leather, where it is
inhomogeneous because of its complex structure, but also to enhance details
of interest that are obscured. Shortly speaking, filtering should be performed
in such a way to simplify the problem of segmentation. Segmenting an image
consists of finding its meaningful regions or its edges. With reference to the
mentioned example, the meaningful regions should correspond to defects and
edges to their apparent contours. Once all defects are detected, we have to
classify them. It means, we have to divide the set of these defects based on
its attributes (straight, black, light, round, etc.) into three classes. Finally,
the problem of the recognition is reduced to assigning the respective name
to each of the class. Therefore, at the final result, the important influence
has all previous stages of processing and the approach chosen to solve the
problem on each of them, should simplify the problem on the next one.

In this thesis we consider theoretically and numerically the first problem of
the above described example. This refers to the problem of filtering with pre-
serving and enhancing edges. Nowadays, there are a large number of methods
originated in many mathematical theories, which have been proposed for this
problem. From stochastic and statistical modeling [14, 26, 34, 36] through
signal processing techniques, including wavelets [28, 27] and other transform
theories to approaches based on partial differential equations [62, 48, 10].
We refer to the book of Chan and Shen [22] for complete and informative
review of all mentioned approaches as well as to the paper of Mrázek et al.
[50], where authors deal with establishing relations between number of widely
used nonlinear filters in image processing.

In the further part of thesis, we focus only on techniques based on partial
differential equations (PDEs). The starting point to first mathematical jus-
tifications of this approaches, was the simple observation of Koenderink [41]
that commonly used as a filter, convolution of an image with the Gaussian
kernel at each scale is equivalent to the solution of linear diffusion problem
with this image as an initial condition. The next, an important step in devel-
opment of this theory was introduction by Perona and Malik in [52] nonlinear
diffusion model with a more accurate edge detection. In this publication au-
thors, as a first, state explicitly a maximum principle as a basic requirement
in image processing, cf. [2]. The Perona and Malik model was later axiom-
atized [2], regularized [18] and modified [3] by Lions and Morel et al. The
important contribution to diffusion filter theory is also the work of Weickert
[63], where author proposed an extension of the model presented in [18] to
the anisotropic case.
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Let us now explain the main idea of the nonlinear diffusion filtering. For
that, first we have to define what do we mean by a digital image. From the
mathematical point of view, digital image is a bounded function f defined
on domain Ω in R2, assigning a value f(x) to each point x in this domain. In
the case of gray images this value is a real number and in the case of colour
images, it is a real valued vector with three components. The main idea
of the nonlinear diffusion filtering is based upon adaptation of the diffusion
process to the image structure. Such an approach allows us to perserve or
even enhance edges and at the same time to smooth regions of an image,
which do not contain any important information that could be used in the
next stages of processing. The main problem, when we want to define a
nonlinear filter is to know a position of objects boundary. Of course, this
information is not known in advance and the best what we can do is to
estimate the boundary location by some edge detector. This means, we have
to do preliminary step toward segmentation. In the introduction of the book
[49], Morel and Solimini write

(...) most segmentation algorithms try to minimize, by several
very different procedures, one and the same segmentation energy.
This energy measures how smooth the regions are, how faithful
the analyzed image to the original image and the obtained edges
to the image discontinuities are.

In the continuous setting this energy has been defined by Mumford and Shah
in [51], as follows

J(u,E) :=
1

2

∫

Ω

(u− f)2 dx +
1

2

∫

Ω\E
|∇u|2 dx+ H1(E) (1.1)

where E denotes the set of edges and H1(E) its one-dimensional Hausdorff
measure. Let us now assume that the set E1 better approximates the set of
edges in image f than E2, and that the function u minimizes functional J .
Then, obviously we have

J(u,E1) ≤ J(u,E2)

Based on this idea, our approach proposes to consider the following functional

Jε(u) :=
1

2

∫

Ω

(u− f)2 dx+
1

2

∫

Ω

αε|∇u|
2 dx (1.2)
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with the piecewise constant function αε, defined by

αε(x) :=











α if x ∈ Bj
ε , j = 1, ..., m

1 if x ∈ Ω \
m
⋃

j=1

B̄j
ε

In the above definition α ≪ 1 is a positive constant and Bj
ε , for j = 1, ..., m,

are small inhomogeneities, centred at points belonging to the set of edges E.
Following the above reasoning, we can write

Jε(u) ≤ J0(u) (1.3)

where functional J0 is defined by

J0(u) :=
1

2

∫

Ω

(u− f)2 dx+
1

2

∫

Ω

|∇u|2 dx

Let us assume that function uε is a global minimizer of functional Jε. Then,
we have Jε(uε) ≤ Jε(v) for any function v. Using this fact and inequality
(1.3), we obtain

Jε(uε) ≤ J0(u0)

where function u0, taken as v, is a global minimizer of functional J0. This
observation gives us motivation to investigate an asymptotic behavior of the
following difference

Jε(uε) − J0(u0) (1.4)

as ε tends to 0. The main goal of this thesis is to find an explicit formula
for a dominant term in an asymptotic expansion of expression (1.4). The
theoretical background of our approach is based on the idea of the topolog-
ical sensitivity analysis. In the classical formulation, this theory, provides a
variation of a given functional J with respect to subtraction from the do-
main Ω a small ball Bε. This variation is a scalar function, independent on
ε, called the topological derivative or the topological gradient and is used as
a descent direction to solve various problems, among other things topolog-
ical shape optimization [59, 1, 20], inverse problems [32], and recently also
image segmentation and restoration [45, 11]. For the first time, the defini-
tion of topological gradient has been introduced in the context of compliance
optimization for linear elasticity problems by Schumacher in [57]. The first
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mathematical justification of this method has been done by Soko lowski et
al. in [58, 59]. In [35], using an adaptation of the adjoint method [19] and a
domain truncation technique, Garreau et al. presented a method to obtain
the topological asymptotic expansion. This approach was later investigated
also by Feijóo et al. in [33]. In [9, 7] Amstutz et al. modified the defini-
tion of the topological gradient and have proposed to provide a variation of
a functional with respect to a change of some material properties. Recent
results concerning an incorporation of the topological derivative into level set
method are presented in [8, 16]. In this thesis, we based on ideas presented
by Garreau et al. in [35] and by Amstutz et al. in [6, 9].

Since PDEs are written in the continuous settings, once the filter model is
defined, we have to discretize it in order to find a numerical solution. For
this purpose, several kinds of approaches can be considered. In the image
processing community the finite difference method is the most popular one.
There are many publications where the continuous model of nonlinear dif-
fusion filters [18, 63, 64], are discretized using this technique. However, as
the structure of digital image is a set of uniformly distributed pixels, the
approximation on cell-centred grid using the finite volume method, seems to
be a natural choice for image processing applications, mainly for the shake of
a more clear description of an image boundary and thereby treatment of the
boundary condition. Another advantage of this method is its easy implemen-
tation along with the possibility of discretizing the problem on a nonuniform
grid, adapted to the local structure of an image. Such an approach has prac-
tical importance in the case of solving real problems like the one described
in the beginning of this introduction. Usually, in solving such problems we
have to deal with images of large sizes, while regions containing important
information often take only a few percent of the whole image. In order to
substantially save computer storage during processing of such images one
can apply the grid coarsening technique which allows to reduce the size of
data rapidly. Among the many publications that consider the finite volume
discretization of the PDEs on uniform and nonuniform [30, 31] grids, there
are only a few which are suggested for image processing applications. The
numerical solution of the Catté et al. model [18] using the semi-implicit finite
volume approximation scheme and the proof of its convergence was proposed
by Mikula and Ramarosy in [47]. In papers [44] and [43] the coarsening strat-
egy for the computational method has been presented. The adaptivity for the
finite element method in image processing applications has been suggested
in [12] and generalized to the three dimensional case in [13]. The approach
given in [12] has been modified by Preusser and Rumpf in [54]. In this paper,
authors improve and discuss storage requirements for the method.
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The thesis is organized as follows. In Chapter 2, we give a brief overview
of the well known PDE-based methods to image filtering and explain some
its theoretical and practical difficulties. The main result of this thesis is
contained in Chapter 3. In the first section of this chapter, we formulate
mathematical problem and prove its well-posedness. Next part is devoted to
asymptotic analysis of expression (1.4). In Section 3.2 of Chapter 3, based
on results of Vogelius et al. [61], we derive an asymptotic formula for uε−u0

on the boundary of inhomogeneity, which we apply in the proof of Propo-
sition 3.1. In Section 3.3 of Chapter 3, explicit formulas of the topological
gradient for two different shapes of inhomogeneities are presented. At the
end of Chapter 3, we give some remarks and discuss problems which appear,
when we try to apply some of existing method of the topological sensitivity
analysis to our particular problem. In Chapter 4, we propose discretization of
the Catté [18] and the Weickert [63] model based on finite volume technique
using the integro-interpolation method introduced by Samarskii in [56]. Pro-
posed discretization is derived for the case of the uniform as well as for the
case of nonuniform cell-centered grid obtained by application of the adaptive
coarsening strategy. Numerical experiments are presented in Chapter 5. At
the end some conclusions are given. In Appendix A, we list the fundamental
theorems and definitions used in the thesis.



Chapter 2

An overview of diffusion filters

The aim of this chapter is to present some classical PDE-based method for
image filtering and discuss its practical and theoretical difficulties. In this
thesis, for a simplicity of the presentation, we will consider only gray images.
This means, that we will assume that the initial image f is a real function in
class L∞(Ω), defined on an open and bounded domain Ω ⊂ R

2. Values f(x)
represent brightness or gray level of the image at each point x ∈ Ω.

2.1 Linear diffusion filter

As we have already mentioned, the oldest and most investigated PDE in
image processing is the parabolic linear diffusion equation of the form

∂u

∂t
(x, t) = ∆u(x, t) (x, t) ∈ R

2 × (0,∞) (2.1)

with the initial condition u(x, 0) = f(x) for any x ∈ R
2. Note that we have

here x ∈ R2. In fact, we consider that f is primarily defined only on the
domain Ω. Nevertheless, by symmetry and then periodicity we can extend it
to R2. This method of extension is typical in image processing.

The underlying idea to apply equation (2.1) in image processing comes from
the early work of Koenderink [41], who noticed that widely used in denoising,
convolution of the image f with the Gaussian kernel, defined by

Gσ(x, y) :=
1

2πσ2
exp

(

−
|x− y|2

2σ2

)

(2.2)

is equivalent to the solution u of problem (2.1) for t = 1
2
σ2, that is
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u(x, t) = (G√
2t ∗ f)(x) =

∫

R2

G√
2t(x, y) f(y) dy

The above formula gives the correspondence between the time t and the scale
parameter σ of the Gaussian kernel Gσ.

Fig. 2.1: Input image f ∈ [0, 255],
Ω = [0, 256]2

Fig. 2.2: Application of the lin-
ear diffusion filter with parameters
τ = 0.5, iter = 10

The linear diffusion filter has one serious disadvantage. As a matter of fact,
it smoothens an image but at the same time blurs important features such
as edges (see Fig. 2.1 and Fig. 2.2) making it difficult to identify on the next
stage of image analysis, namely segmentation. To overcome this problem one
should consider a nonlinear filter, adapted to the local image structure.

2.2 Nonlinear isotropic diffusion filter

2.2.1 The Perona and Malik model

For the first time a nonlinear diffusion filter was introduced by Perona and
Malik in [52]. They proposed to replace (2.1) by a nonlinear diffusion equa-
tion with homogeneous Neumann conditions on the boundary ∂Ω and to
solve the following problem in order to obtain the smoothened version of the
initial image f
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∂u

∂t
= ∇ · (d(|∇u|2)∇u) (x, t) ∈ Ω × (0, T ]

u(x, 0) = f x ∈ Ω

∂u

∂n
= 0 (x, t) ∈ Ω × (0, T ]

(2.3)

In the first equation, the diffusivity d is a positive, monotonically decreasing
function, defined in a way, such that the smoothing of image is conditional
and depends on its structure. If |∇u|2 is large, then the diffusion is low
and therefore the exact location of the edges is kept. If |∇u|2 is small, then
the diffusion tends to smooth more around x. Of course, there exist several
possible choices for the diffusivity d. As an example, authors proposed to
consider the following definition

d(s) :=
1

1 + s/µ
(2.4)

where the parameter µ > 0 plays the role of a threshold. The plot of this
function is presented in Fig. 2.3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1
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0.4
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Fig. 2.3: Plot of the diffusivity
d(s) = 1

1+s/µ
with a threshold µ = 2
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−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.4: Plot of the function
b(s) = d(s) + 2s d′(s)

However, the Perona and Malik model has several practical and theoretical
difficulties. If the image is noisy, then the noise would introduce very large
oscillations of the gradient ∇u. Therefore, the adaptive smoothing intro-
duced by the model (2.3) would not give good results, since all these noise
edges will be kept. The second difficulty arises from the fact that we obtain
a backward diffusion equation for |∇u|2 > µ, which is a classical example of
the ill-posed problem. In practice, it implies that very similar images can
give divergent solutions and therefore different edges.
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Let us explain the second problem in detail. For that, let η = ∇u/|∇u|
and ν = ∇u⊥/|∇u| be a vector parallel and perpendicular, respectively, to
the gradient ∇u and let us decompose the divergence operator in (2.3) using
directions η and ν. We have

∇ · (d(|∇u|2)∇u) = d(|∇u|2)∆u+ 2 d′(|∇u|2)〈∇u,∇2u∇u〉 (2.5)

where the expression 〈∇u,∇2u∇u〉 is nothing but the second order derivative
of the function u in the gradient ∇u direction.

From the other side, we have

∂2u

∂η2
= 〈η,∇2u η〉 =

1

|∇u|2

[

(

∂u

∂x1

)2
∂2u

∂x2
1

+ 2
∂u

∂x1

∂u

∂x2

∂2u

∂x1∂x2
+

(

∂u

∂x2

)2
∂2u

∂x2
2

]

and

∂2u

∂ν2
= 〈ν,∇2u ν〉 =

1

|∇u|2

[

(

∂u

∂x2

)2
∂2u

∂x2
1

− 2
∂u

∂x1

∂u

∂x2

∂2u

∂x1∂x2

+

(

∂u

∂x1

)2
∂2u

∂x2
2

]

Thus, the first equation in (2.3) may be written as follows

∂u

∂t
= d(|∇u|2)

∂2u

∂ν2
+ b(|∇u|2)

∂2u

∂η2
(2.6)

where b(s) = d(s) + 2sd′(s). Thus, we can interpret equation (2.6) as the
sum of a diffusion in the η and ν directions, with functions d and b acting as
weighting coefficients.

Let us first check the parabolicity of equation (2.6) for an arbitrary function
d. From Evans [29, page 350], we have the following definition

Definition 2.1 The partial differential operator ∂
∂t

+ L, where

Lu = −
N

∑

i,j=1

aij(x, t)
∂2u

∂xixj
+

N
∑

i=1

bi(x, t)
∂u

∂xi
+ c(x, y)u
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is parabolic for given coefficients aij, bi, c (i, j = 1, . . . , N) if and only if
there exist constant C > 0, such that

N
∑

i,j=1

aij(x, t)ξiξj ≥ C|ξ|2

for all (x, t) ∈ Ω × (0, T ] and ξ ∈ RN .

We observe that equation (2.6) may be written as follows

∂u

∂t
= a11(|∇u|2)

∂2u

∂x2
1

+ 2 a12(|∇u|2)
∂2u

∂x1x2

+ a22(|∇u|2)
∂2u

∂x2
2

(2.7)

with

a11(|∇u|2) = 2

(

∂u

∂x1

)2

d′(|∇u|2) + d(|∇u|2)

a12(|∇u|2) = 2
∂u

∂x1

∂u

∂x2
d′(|∇u|2)

a22(|∇u|2) = 2

(

∂u

∂x2

)2

d′(|∇u|2) + d(|∇u|2)

According to Definition 2.1, equation (2.7) is parabolic if and only if

∑

i=1,2

aij(|∇u(x, t)|2)ξiξj > 0

for all (x, t) ∈ Ω × (0, T ] and all ξ ∈ R2.

An easy calculation shows that this condition reduces to the single inequality

b(s) > 0

Let us now examine problem (2.3) with the diffusivity d defined as in (2.4).
We have

d′(s) =
−1

µ(1 + s/µ)2

and
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b(s) = d(s) + 2sd′(s) =
µ(µ− s)

(µ+ s)2

Therefore, we get b(|∇u|2) ≤ 0 for |∇u|2 ≥ µ. This implies that the model
(2.3) with diffusivity d defined in (2.4) fulfill our expectations: it is a back-
ward in the direction perpendicular to ∇u allowing us to sharpen edges.
However a unique solution to problem (2.3) does not exist.

2.2.2 Regularization of the Perona and Malik model

One way to deal with an ill-posed problem like (2.3) is to introduce regu-
larization, which would make the problem well-posed. Then, by reducing
the amount of regularization and observing the behavior of the solution of
the regularized problem, we can obtain information about the initial one. In
the first time, the method to regularize the Perona and Malik problem was
proposed by Catté et al. in [18]. To avoid both of mentioned in the previous
subsection problems, they suggested to replace the gradient ∇u in the diffu-
sivity d(|∇u|2) by its estimate ∇uσ := ∇Gσ ∗ u, where Gσ is the Gaussian
kernel as defined in (2.2). They have also proven that this slight change is
sufficient to ensure existence and uniqueness of the solution to the problem
(2.3). This result gives the following theorem

Theorem 2.1 Let d : R+ ∪ {0} → R+ be smooth, decreasing with d(0) = 1,
lims→∞ d(s) = 0. If f ∈ L2(Ω), then there exists an unique function u(x, t) ∈
C([0, T ];L2(Ω)) ∩ L2((0, T );H1(Ω)) satisfying in the distributional sense























∂u

∂t
= ∇ · (d(|∇uσ|2)∇u) (x, t) ∈ Ω × (0, T ]

u(x, 0) = f x ∈ Ω

∂u

∂n
= 0 (x, t) ∈ ∂Ω × (0, T ]

(2.8)

Moreover, |u|L∞((0,T );L2(Ω)) ≤ |f |L2(Ω) and u ∈ C∞((0, T ) × Ω̄)

Proof.
Here we give only the main idea of the proof. For the complete proof we
refer to [18].

To prove uniqueness, we use energy estimates for the difference of two so-
lutions to problem (2.8), so that the Gronwall inequality can be applied.
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Then, uniqueness follows from the fact that both solutions start with the
same initial values.

The proof of existence is based on the Schauder fixed point theorem. We
consider a variational version of the problem (2.8) with diffusivity d depend-
ing on some function w instead of u. This problem is now linear in u and
has a unique solution uw in space W (0, T ), defined by

W (0, T ) :=
{

w ∈ L2((0, T );H1(Ω)),
dw

dt
∈ L2((0, T );H1(Ω)′)

}

Next, we can prove that w → S(w) ≡ uw is a weakly continuous mapping
from a non empty, convex and weakly compact subset W0 of W (0, T ) into
itself. Owing to the Schauder fixed point theorem, there exists w ∈W0 such
that w = S(w) = uw. Thus, the function uw solves the problem (2.8).

The regularity follows from the general theory of parabolic equations

�

Another recent approach to regularize the Perona and Malik equation has
been introduced by Amann in [4]. Instead of the above mentioned space
regularization, he proposed to consider regularization in time. Analytical
results presented in his paper based on a new sharp existence and uniqueness
theorem for quasilinear parabolic evolution equations.

Fig. 2.5: Application of the non-
linear isotropic diffusion filter with
parameters µ = 20, σ = 1, τ =
0.5, iter = 10

Fig. 2.6: Application of the nonlin-
ear anisotropic diffusion filter with
parameters µ = 20, σ = 1, ρ = 1,
τ = 0.5, iter = 10
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2.3 Nonlinear anisotropic diffusion filter

2.3.1 The Weickert model

Despite of the advantages of the isotropic diffusion filter, there is still one
imperfection: when the diffusion process is stopped near the boundary of
an object, it preserves the edges but also leaves a noise at these positions
(see Fig. 2.5). To avoid this effect, Weickert in [63] suggested to modify the
diffusion operator so that it diffuses more in direction parallel to edges and
less in the perpendicular one. In order to filter an image, he proposed to
consider the following problem



















∂u

∂t
= ∇ · (D(Sρ(∇uσ))∇u) (x, t) ∈ Ω × (0, T ]

u(x, 0) = f x ∈ Ω

〈D(Sρ(∇uσ))∇u, n〉 = 0 (x, t) ∈ ∂Ω × (0, T ]

(2.9)

where D(Sρ(∇uσ) is symmetric, positive semidefinite matrix, called the dif-
fusion tensor and it is constructed in the way described below.

To avoid false detections of edges due to the presence of noise, we first con-
volve u with the Gaussian kernel Gσ and calculate the matrix

S0(∇uσ) := ∇uT
σ∇uσ (2.10)

This matrix possesses an orthogonal basis composed of eigenvectors v1, v2

with v1 ‖ ∇uσ and v2 ⊥ ∇uσ. The corresponding eigenvalues are equal to
|∇uσ|2 and 0, respectively, and give contrast in direction of eigenvectors.

In the next step, the local information is averaged by convolving S0 com-
ponentwise with the Gaussian kernel Gρ. As a result we obtain symmetric,
positive semidefinite matrix

Sρ(∇uσ) := Gρ ∗ S0(∇uσ) :=

[

s11 s12

s21 s22

]

(2.11)

The matrix Sρ is called the structure tensor and possesses orthonormal eigen-
vectors v1, v2 with v1 parallel to

[

2s12

s22 − s11 +
√

(s11 − s22)2 + 4s2
12

]
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The corresponding eigenvalues are given by

µ1 =
1

2

[

s11 + s22 +
√

(s11 − s22)2 + 4s2
12

]

and

µ2 =
1

2

[

s11 + s22 −
√

(s11 − s22)2 + 4s2
12

]

The diffusion tensor D(Sρ(∇uσ)) should have the same set of eigenvectors as
the structure tensor Sρ, and the choice of corresponding eigenvalues should
depend on the desired goal of the filter. Further, we will introduce two
possible choices of eigenvalues λ1 and λ2 of D(Sρ(∇uσ))

In [63], Weickert has presented the following result

Theorem 2.2 Let us assume that:

(i) The diffusion tensor D(Sρ(∇uσ)) belongs to C∞(S2×2)

(ii) For all w ∈ L2(Ω,R2) with |w(x)| ≤ k on Ω̄, there exists a positive
lower bound ν(k) for the eigenvalues of D(Sρ(w))

Then for all f ∈ L∞(Ω) problem (2.9) has unique solution u(x, t) satisfying

u ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω))

∂u

∂t
∈ L2([0, T ];H1(Ω))

Moreover, u ∈ C∞((0, T )× Ω̄). This solution depends continously on f with
respect to the L2-norm, and it satisfies the extremum principle

inf
Ω
f(x) ≤ u(x, t) ≤ sup

Ω
f(x)

Proof.
Existence, uniqueness and regularity are straightforward anisotropic exten-
sions of the proof for the isotropic case (see proof of Theorem 2.1). The
proof of the maximum and minimum principle is based on the Stampacchia
truncation method. For the complete proof we refer to [63]

�
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Related results have been proved for semi-discrete and fully discrete version
of the model. We refer to Weickert [63] for further proofs of properties
(invariances, image simplification properties, behavior as t tends to infinity).

2.3.1.1 Definition of the diffusion tensor

Let us now describe how to define the diffusion tensor D(Sρ(∇uσ)) such that
the anisotropic filter (2.9) could be applied to particular problems.

Since the eigenvectors of the diffusion tensor should reflect the local image
structure, one sholud choose the same orthonormal basis of eigenvectors that
one gets from the structure tensor Sρ. Following Weickert [63], we introduce
here two possible choices of eigenvalues λ1 and λ2 of D(Sρ(∇uσ))

Edge-enhancing anisotropic diffusion. If one wants to smooth an im-
age within some region and wants to preserve edges, then one should reduce
the diffusivity λ1 perpendicular to edges more if the contrast given by the
greatest eigenvalue µ1 of the structure tensor Sρ is large. This behavior may
be accomplished by the following choice of eigenvalues

λ1 :=







1 if µ1 ≤ 0

1 − exp

(

−3.315

µ4
1

)

if µ1 > 0

λ2 := 1

Coherence-enhancing anisotropic diffusion. If one wants to enhance
coherent structures, then one should perform smoothening, preferably along
the coherence direction v2 with diffusivity λ2, which is increasing with respect
to the coherence (µ1 − µ2)2. This may be achieved by the following choice
for the eigenvalues of the diffusion tensor

λ1 := α

λ2 :=







α if µ1 = µ2

α + (1 − α) exp

(

−1

(µ1 − µ2)2

)

otherwise

where α ∈ (0, 1) is a small positive parameter which keeps the diffusion tensor
D(Sρ(∇uσ)) uniformly positive definite.



Chapter 3

Topological sensitivity analysis

In this chapter, based on the idea presented by Amstutz et at. in [7, 9],
we investigate an asymptotic behavior of the cost function Jε, defined as in
(1.2), with respect to the change of diffusivity1. Unlike Amstutz et al. we
provide an asymptotic expansion of the form

Jε(uε) − J0(u0) = ε2g(x) + o(ε2) (3.1)

where functions uε and u0 are global minimizers of the functionals Jε and J0,
respectively. This means

Jε(uε) = min
u∈V

Jε(u) and J0(u0) = min
u∈V

J0(u)

The essential contribution for this chapter is Theorem 3.4 proposed and
proved by Vogelius and Volkov in [61]. In this publication, authors pro-
vide asymptotic formulas for perturbations in the electromagnetic fields due
to the presence of small inhomogeneities. The function uε, being the asymp-
totic behavior they consider is a solution of the problem







∇ ·

(

1

µε
∇uε

)

+ ω2
(

ǫε + i
σε

ω

)

uε = 0 x ∈ Ω

uε = f x ∈ ∂Ω

(3.2)

where ω > 0 is a given frequency. The electric permability is defined as
follows

1In the sequel, we will use the term ‘topological gradient’ or ‘topological derivative’

despite we do not change the topology of the domain Ω.
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µε(x) :=











µj if x ∈ Bj
ε , j = 1, ..., m

µ0 if x ∈ Ω \
m
⋃

j=1

B̄j
ε

(3.3)

In the above definition, the numbers µ0 and µj, for j = 1, ..., m, are constant.
The electric permittivity ǫε and electric conductivity σε in the first equation
of problem (3.2) are defined analogously.

3.1 Formulation of the problem

Let Ω be a bounded open domain in R2 with C1 boundary ∂Ω, in particular,
Ω can be consider as a rectangle. Our goal is to prove that for sufficiently
small ε ≥ 0, there exists a function g, independent on ε, such that the
following topological asymptotic expansion holds

Jε(uε) − J0(u0) = ε2g(x) + o(ε2)

Let us recall that the functional Jε : H1(Ω) → R in the above expression, is
defined by

Jε(u) :=
1

2

∫

Ω

(u− f)2 dx+
1

2

∫

Ω

αε|∇u|
2 dx (3.4)

where the image f is a given function in L∞(Ω) and piecewise constant
diffusivity αε is defined as follows

αε(x) :=











α if x ∈ Bj
ε , j = 1, ..., m

1 if x ∈ Ω \
m
⋃

j=1

B̄j
ε

(3.5)

The positive constant number α ≪ 1 is a regularization parameter and Bj
ε =

xj + εB, for j = 1, ..., m, are small inhomogeneities centred at the point
xj ∈ Ω. The fixed, bounded open domain B ⊂ Ω describe their relative
shape.

The functions uε and u0 are minimisers of functionals Jε and J0, respectively,
where J0 is defined by

J0(u) :=
1

2

∫

Ω

(u− f)2 dx+
1

2

∫

Ω

|∇u|2 dx (3.6)
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Let us remark that the cost function Jε is defined similarly to the Mumford-
Shah functional (1.1), introduced in the context of variational approach to
image segmentation in [51] and investigated in the book of Morel and Solimini
[49]. The first term in (3.91) ensures that the minimizer of the functional Jε

is close to the input image f and the second term imposes to smooth u only
within homogeneous regions.

Let us consider the minimization problem

Find u ∈ H1(Ω) such that Jε(u) = min
v∈H1(Ω)

Jε(v) (3.7)

We will show that for fixed αε, the minimum of the functional Jε is achieved
at uε ∈ H1(Ω), solution of the problem







uε −∇ · (αε∇uε) = f x ∈ Ω

∂uε

∂n
= 0 x ∈ ∂Ω

(3.8)

The function uε ∈ H1(Ω) on the boundary ∂Bj
ε satisfies







u+
ε − u−ε = 0 x ∈ ∂Bj

ε

∂u+
ε

∂n
− α

∂u−ε
∂n

= 0 x ∈ ∂Bj
ε

(3.9)

for j = 1, ..., m.

The weak formulation associated with problem (3.8) is as follows

{

Find u ∈ H1(Ω)

aε(u, v) = l(v) ∀v ∈ H1(Ω)
(3.10)

where the bilinear form aε : H1(Ω) ×H1(Ω) → R is defined by

aε(u, v) :=

∫

Ω

uv dx +

∫

Ω

αε∇u · ∇v dx (3.11)

and the linear form l : H1(Ω) → R by

l(v) :=

∫

Ω

fv dx (3.12)

To prove an equivalence of the three above mentioned problems we will make
use of following lemmas
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Lemma 3.1 Let v ∈ L1
loc(Ω), where Ω is a domain in RN and let

∫

Ω

vϕ dx = 0

holds for any function ϕ ∈ C∞
0 (Ω). Then v ≡ 0 almost everywhere.

Lemma 3.2 Let Ω ⊂ R
2 be a bounded domain with C1 boundary ∂Ω. Then

C∞
0 (Ω) is a dense subset of H1(Ω).

Lemma 3.1 is called the fundamental lemma of calculus of variations and the
proof can be found in [39, page 6]. The proof of Lemma 3.2 can be found in
[38, page 117].

Theorem 3.1 The three problems (3.7), (3.8) and (3.10) are equivalent.

Proof.
(3.8) ⇒ (3.10)

Suppose u ∈ H1(Ω) is a solution of problem (3.8). Let us multiply the first
equation in (3.8) by an arbitrary test function ϕ ∈ C∞

0 (Ω) and then apply
the Gauss theorem. We have

∫

Ω

uϕ dx+

∫

Ω

αε∇u · ∇ϕdx =

∫

Ω

fϕ dx ∀ϕ ∈ C∞
0 (Ω) (3.13)

From Lemma 3.2 we know that C∞
0 (Ω) is dense in H1(Ω), which means that

for any v ∈ H1(Ω) there exists a sequence ϕn ∈ C∞
0 (Ω) such that lim

n→∞
ϕn = v

in H1(Ω). This implies

∫

Ω

uv dx +

∫

Ω

αε∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ H1(Ω) (3.14)

(3.10) ⇒ (3.8)

Suppose now u ∈ H1(Ω) is a solution of problem (3.10). By taking v ∈
C∞

0 (Ω) ⊂ H1(Ω) and applying integration by parts formula we obtain

∫

Ω

[u− f −∇ · (αε∇u)] v dx+

∫

∂Ω

αε
∂u

∂n
v ds = 0 (3.15)

Using Lemma 3.1 and assuming v ∈ C∞
0 (Ω) is an arbitrary function, we

obtain the desired result.
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(3.10) ⇒ (3.7)

Let us write the functional (3.91) with the help of bilinear (3.11) and linear
(3.12) form as follow

Jε(u) =
1

2
aε(u, u) − l(u) +

1

2

∫

Ω

f 2 dx

and suppose u ∈ H1(Ω) is solution of problem (3.10). We have to show that
u ∈ H1(Ω) is a minimizer of the functional Jε, which means

Jε(u) ≤ Jε(v) ∀v ∈ H1(Ω)

Therefore, let v ∈ H1(Ω) be an arbitrary function. We have

Jε(v) − Jε(u) =
1

2
aε(v, v) − l(v) −

1

2
aε(u, u) + l(u)

=
1

2
aε(v, v) − aε(u, v) −

1

2
aε(u, u) + aε(u, u)

=
1

2
[aε(u, u) − 2aε(u, v) + aε(v, v)] =

1

2
aε(u− v, u− v) ≥ 0

(3.7) ⇒ (3.10)

Suppose u ∈ H1(Ω) is a solution of problem (3.7). Then for an arbitrary
τ ∈ R and v ∈ H1(Ω) we have

Jε(u) ≤ Jε(u+ τv)

Let us introduce a function j : R → R defined by j(τ) = Jε(u+ τv). Since j
has a minimum at τ = 0, then j′(0) = 0. We have

j′(0) =
d

dτ

[

1

2
aε(u+ τv, u+ τv) − l(u+ τv) +

1

2

∫

Ω

f 2 dx

] ∣

∣

∣

∣

τ=0

=
d

dτ

[

1

2
aε(u, u) − l(u) + τaε(u, v) − τl(u) +

τ 2

2
aε(v, v) +

1

2

∫

Ω

f 2 dx

] ∣

∣

∣

∣

τ=0

= [aε(u, v) − l(u) + τaε(v, v)]
∣

∣

τ=0
= aε(u, v) − l(u) = 0

�
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Theorem 3.2 The problem (3.10) has a unique solution uε ∈ H1(Ω) which
depends continuously on the data.

Proof.
The proof is a simple application of the Lax-Milgram theorem. Using the
Cauchy-Schwarz inequality we obtain

|aε(u, v)| ≤ |a0(u, v)| = 〈u, v〉H1(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω) (3.16)

Since 0 < α < 1 we have

aε(u, u) ≥ α a0(u, u) = α ‖u‖2
H1(Ω) (3.17)

Using the Hölder inequality and the Sobolev imbedding theorem we obtain

|

∫

Ω

f v dx| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω) (3.18)

It is not difficult to prove that the bilinear form aε is symmetric. From
inequalities (3.16) and (3.17), it follows that aε is continuous and elliptic.
Continuity of the linear form l follows from inequality (3.18)

�

Corollary 3.1 The function uε ∈ H1(Ω) is the unique solution of problem
(3.7) and problem (3.8).

Proof.
This corollary is an immediate consequence of Theorem 3.1 and Theorem 3.2

�

Remark 3.1 In particular, for ε = 0, to prove Theorem 3.2 is enough to
apply the Riesz reprezentation theorem.

Proof.
Note that the bilinear form aε is nothing but the H1(Ω) scalar product and
the linear form l is the scalar product in L2(Ω). Using that L∞(Ω) ⊂ L2(Ω) ⊂
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H1(Ω)′ we can extend problem (3.10) by including f ∈ H1(Ω)′, then the
corresponding weak formulation is given by

{

Find u ∈ H1(Ω)

〈u, v〉H1(Ω) = 〈f, v〉H1(Ω)′ ∀v ∈ H1(Ω)
(3.19)

The unique solution u ∈ H1(Ω) of problem (3.19) follows immediately from
the Riesz representation theorem

�

Theoretically, without lost of generality, we will further consider the case of
a single inhomogeneity Bε = εB, centred in the origin 0 ∈ B.

3.2 Asymptotic analysis

The purpose of this section is to prove that asymptotic expansion (3.4) holds
and to derive an explicit formula for its dominant term g.

3.2.1 Preliminaries

Let us first introduce two basic definitions, commonly used in the asymptotic
analysis

Definition 3.1 We write

f1(x) = O(f2(x)) as x→ a

if and only if there exist a number δ > 0 and constant C > 0, such that

|f1(x)| ≤ C|f2(x)| for |x− a| < δ

Definition 3.2 We write

f1(x) = o(f2(x)) as x → a

if and only if

lim
x→a

|f1(x)|

|f2(x)|
= 0
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In the first step, we derive energy estimates for difference uε − u0. We have
the following lemmas

Lemma 3.3 For sufficiently small ε ≥ 0, the following estimation holds

‖uε − u0‖H1(Ω) = O(ε)

Proof.
Since the diffusivity αε is positive, uniformly bounded and

1

α
αε =







1 if x ∈ Bε

1

α
> 1 if x ∈ Ω \ B̄ε

we have

∫

Ω

|∇(uε − u0)|
2 dx ≤

1

α

∫

Ω

αε|∇(uε − u0)|
2 dx

∫

Ω

(uε − u0)
2 dx ≤

1

α

∫

Ω

(uε − u0)
2 dx

From the two above inequalities and definition of the bilinear form aε we
obtain

‖uε − u0‖
2
H1(Ω) ≤

1

α
aε(uε − u0, uε − u0) (3.20)

From (3.10) and properties of a bilinear form it follows that

aε(uε − u0, uε − u0) = l(uε − u0) − aε(u0, uε − u0)

= a0(u0, uε − u0) − aε(u0, uε − u0)

= (1 − α)

∫

Bε

∇u0 · ∇(uε − u0) dx

(3.21)

Therefore, combining (3.20) and (3.21), we obtain

‖uε − u0‖
2
H1(Ω) ≤

1

α
(1 − α)|

∫

Bε

∇u0 · ∇(uε − u0) dx|

Application of the Cauchy-Schwarz inequality to the above integral yields
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‖uε − u0‖
2
H1(Ω) ≤ C‖∇u0‖L2(Bε)‖∇(uε − u0)‖L2(Bε)

≤ C‖∇u0‖L2(Bε)‖∇(uε − u0)‖L2(Ω)

≤ C‖∇u0‖L2(Bε)‖uε − u0‖H1(Ω)

Dividing both sides of inequality (3.22) by ‖uε − u0‖H1(Ω), we get

‖uε − u0‖H1(Ω) ≤ C‖∇u0‖L2(Bε)

Finally, since ∇u0 is uniformly bounded on Bε, we obtain

‖uε − u0‖H1(Ω) ≤ Cε

�

Lemma 3.4 For sufficiently small ε ≥ 0, the following estimation holds

‖uε − u0‖L2(Bε) = O(ε) (3.22)

Proof.
To prove this lemma, it is enough to note that

‖uε − u0‖L2(Bε) ≤ ‖uε − u0‖L2(Ω)

and then to apply the Sobolev embedding theorem and Lemma 3.3

�

3.2.2 Integral representation formula

In order to derive the integral representation of functions uε and u0, we need
to know the fundamental solution of the equation u − ∆u = 0. From [53,
page 490] we have

Definition 3.3 The function Γ : R2 \ {y} → R defined by

Γ(x, y) :=
1

2π
K0(|x− y|) ∀x, y ∈ R

2, x 6= y (3.23)
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where K0 denote modified Bessel function of the second kind, it is called the
fundamental solution or the free space Green function of the equation

u− ∆u = 0

In [60, page 499] one can find the sum formula for the function K0, given by

K0(z) = −
(

ln
(z

2

)

+ γ
)

I0(z) +
1
4
z2

(1!)2
+

(

1 +
1

2

)

(1
4
z2)2

(2!)2
+ ... (3.24)

where

I0(z) = 1 +
1
4
z2

(1!)2
+

(

1 +
1

2

)

(1
4
z2)2

(2!)2
+

(

1 +
1

2
+

1

3

)

(1
4
z2)3

(3!)2
+ ... (3.25)

is the modified Bessel function of the first kind and γ denote the Euler-
Mascheroni constant.

From expansions (3.24) and (3.25) we deduce the following asymptotic

K0(z) = − ln z + ln 2 − γ +O(z2 ln z) for z → 0 (3.26)

Therefore, the fundamental solution Γ(·, y), defined in (3.23), has the same
singular behavior as the fundamental solution

Φ(x, y) = −
1

2π
ln(|x− y|) (3.27)

of the Laplace equation ∆u = 0.

From (3.23), (3.26) and (3.27), for |x− y| → 0, we obtain

Γ(x, y) = Φ(x, y) + ln 2 − γ +O(|x− y|2 ln |x− y|) (3.28)

In order to see how to derive the integral representation formula for a solution
of the Poisson equation, we refer to Evans [29, page 23]. For the case of
solution u0 of equation u0 − ∆u0 = f , we may proceed analogously, making
use of the estimation (3.28). This representation, for any y ∈ Ω, is given by

u0(y) =

∫

∂Ω

[

u0(x)
∂Γ

∂n
(x, y) − Γ(x, y)

∂u0

∂n
(x)

]

ds(x)

+

∫

Ω

Γ(x, y) f(x) dx

(3.29)
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In a similar manner, we can derive an integral representation of the function
uε, solution of the problem (3.8) for any y ∈ Ω \ B̄ε. We have

uε(y) =

∫

∂Ω

[

uε(x)
∂Γ

∂n
(x, y) − Γ(x, y)

∂uε

∂n
(x)

]

ds(x)

+

∫

∂Bε

[

uε(x)
∂Γ

∂n
(x, y) − Γ(x, y)

∂u+
ε

∂n
(x)

]

ds(x)

+

∫

Ω\B̄ε

Γ(x, y) f(x) dx

(3.30)

Subtracting (3.29) from (3.30), we get

uε(y) − u0(y) =

∫

∂Bε

[

uε(x)
∂Γ

∂n
(x, y) − Γ(x, y)

∂u+
ε

∂n
(x)

]

ds(x)

+

∫

∂Ω

[uε(x) − u0(x)]
∂Γ

∂n
(x, y) ds(x) −

∫

Bε

Γ(x, y) f(x) dx

(3.31)

Let us now introduce the Green function G(·, y) for the Neumann problem







u0 − ∆u0 = f x ∈ Ω

∂u0

∂n
= 0 x ∈ ∂Ω

(3.32)

This function is the unique solution of the problem







G(x, y) − ∆xG(x, y) = δy(x) x ∈ Ω

∂G

∂n
(x, y) = 0 x ∈ ∂Ω

and can be expressed as a sum of the fundamental solution Γ(·, y) and the
so called corrector function h(·, y), which is chosen in such a way that for
x ∈ ∂Ω and y ∈ Ω, the following is true

∂G

∂n
(x, y) = 0 (3.33)

Thus, we can write

G(x, y) = Γ(x, y) + h(x, y) (3.34)
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where the function h(·, y) satisfies the following boundary value problem







h(x, y) − ∆xh(x, y) = 0 x ∈ Ω

∂h

∂n
(x, y) = −

∂Γ

∂n
(x, y) x ∈ ∂Ω

Using the Green formula, we can show that function h(·, y) satisfies

0 =

∫

∂Bε

[

uε(x)
∂h

∂n
(x, y) − h(x, y)

∂u+
ε

∂n
(x)

]

ds(x)

+

∫

∂Ω

[uε(x) − u0(x)]
∂h

∂n
(x, y) ds(x) −

∫

Bε

h(x, y) f(x) dx

(3.35)

Summing (3.31) and (3.35) both sides and using (3.34) and (3.33), we get

uε(y) − u0(y) =

∫

∂Bε

[

uε(x)
∂G

∂n
(x, y) −G(x, y)

∂u+
ε

∂n
(x)

]

ds(x)

−

∫

Bε

G(x, y) f(x) dx

(3.36)

for any y ∈ Ω \ B̄ε.

3.2.3 Estimation of the Green function

We will need the following estimation

Lemma 3.5 For sufficiently small ε ≥ 0 and y ∈ B2ε \ B̄ε the following
estimation holds

‖G(·, y)‖L2(Bε) = O(ε|ln ε|)

Proof.
From the Minkowski inequality, equation (3.34) and estimation (3.28), we
obtain

‖G(·, y)‖L2(Bε) = ‖Γ(·, y) + h(·, y)‖L2(Bε) ≤ ‖Φ(·, y)‖L2(Bε) + Cε

+ C‖ξ(·, y)‖L2(Bε) + ‖h(·, y)‖L2(Bε)
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where ξ(x, y) := −|x− y|2 ln|x− y| for sufficiently small |x− y| < 1.

First, let us find an upper bound of the norm

‖Φ(·, y)‖L2(Bε) =
1

2π

√

∫

Bε

ln2|x− y| dx

where Bε and B2ε are open balls of radius ε and 2ε, respectively, centred in
the origin 0 ∈ Bε. The point y ∈ B2ε \ B̄ε is fixed.

Let x = (x1, x2) and y = (y1, y2). Applying a change of variables

{

x1 = r cos θ 0 ≤ r < ε

x2 = r sin θ 0 ≤ θ ≤ 2π

{

y1 = R cosβ ε < R < 2ε

y2 = R sin β 0 ≤ β ≤ 2π
(3.37)

we obtain

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 =
√

r2 +R2 − 2rR cos(θ − β)

We have

∫

Bε

ln2|x− y| dx =

∫ 2π

0

∫ ε

0

r ln2
√

r2 +R2 − 2rR cos(θ − β) drdθ

Since

0 < R − r ≤
√

r2 +R2 − 2rR cos(θ − β) ≤ R + r < 3ε

and ln2(·) is a strictly decreasing function on the interval [0, 1], for ε ≤ 3−1,
we obtain

∫

Bε

ln2|x− y|dx ≤

∫ 2π

0

∫ ε

0

r ln2(R− r) drdθ

We have

∫ ε

0

r ln2(R − r) dr < lim
a→ε−

∫ a

0

r ln2(ε− r) dr =
7

4
ε2 −

3

2
ε2 ln ε+

1

2
ε2 ln2 ε
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Therefore, for 0 < ε ≤ e−3, we have

7

4
ε2 −

3

2
ε2 ln ε+

1

2
ε2 ln2 ε ≤ Cε2 ln2 ε

Finally, we obtain

‖Φ(x, y)‖L2(Bε) ≤ C

√

∫

Bε

ln2|x− y|dx ≤ Cε|ln ε|

In the similar manner as above, one can show that

‖ξ(·, y)‖L2(Bε) ≤ Cε3|ln ε|

Since function Γ(·, y) is in C∞(Ω) for x 6= y, we have ‖h(·, y)‖L2(Bε) = O(ε)

�

In the proofs of the two next lemmas we follow Vogelius et al. [61].

Lemma 3.6 For sufficiently small ε ≥ 0 and y ∈ B2ε \ B̄ε, we have the
following estimation

uε(y) − u0(y) = (1 − α)

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x) +O(ε2|ln ε|)

Proof.
Applying the condition (3.9), the divergence theorem and the Green formula,
we obtain

∫

∂Bε

G(x, y)
∂u+

ε

∂n
(x) ds(x) = α

∫

∂Bε

G(x, y)
∂u−ε
∂n

(x) ds(x)

= α

∫

Bε

∇ · [G(x, y)∇uε(x)] dx

= α

∫

Bε

G(x, y) ∆uε(x) dx + α

∫

Bε

∇G(x, y) · ∇uε(x) dx

=

∫

Bε

G(x, y) [uε(x) − f(x)] dx− α

∫

Bε

∆G(x, y) uε(x) dx

+ α

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x)
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Since y ∈ B2ε \ B̄ε, we have G(x, y) − ∆G(x, y) = 0, for any x ∈ Bε. Com-
bining this fact with the above equality, we obtain

∫

∂Bε

G(x, y)
∂u+

ε

∂n
(x) ds(x) = (1 − α)

∫

Bε

G(x, y) uε(x) dx

−

∫

Bε

G(x, y) f(x) dx+ α

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x)

(3.38)

Substituting (3.38) into (3.36), we get

uε(y) − u0(y) = (1 − α)

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x)

− (1 − α)

∫

Bε

uε(x)G(x, y) dx

(3.39)

To complete the proof, what remains to be checked is

∫

Bε

uε(x)G(x, y) dx ≤ Cε2|ln ε|

From the Minkowski inequality and Lemma 3.4 we obtain

||uε||L2(Bε) ≤ ||uε − u0||L2(Bε) + ||u0||L2(Bε) ≤ Cε (3.40)

The Hölder inequality and Lemma 3.5 yields

∫

Bε

uε(x)G(x, y) dx ≤ ||uε||L2(Bε) ||G(·, y)||L2(Bε) ≤ Cε2|ln ε|

�

Lemma 3.7 For sufficiently small ε ≥ 0 and y ∈ B2ε \ B̄ε, we have the
following estimation

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x) =

∫

∂Bε

uε(x)
∂Φ

∂n
(x, y) ds(x) +O(ε2|ln ε|)
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Proof.
From (3.34) and next (3.28), we have

∫

∂Bε

uε(x)
∂G

∂n
(x, y) ds(x) =

∫

∂Bε

uε(x)
∂Γ

∂n
(x, y) ds(x) +

∫

∂Bε

uε(x)
∂h

∂n
(x, y) ds(x)

∫

∂Bε

uε(x)
∂Γ

∂n
(x, y) ds(x) ≤

∫

∂Bε

uε(x)
∂Φ

∂n
(x, y) ds(x)+C

∫

∂Bε

uε(x)
∂ξ

∂n
(x, y) ds(x)

where function ξ(·, y) is defined by ξ(x, y) := −|x−y|2 ln|x−y| for sufficiently
small |x− y| < 1.

Thus, we have to find estimations of the two last integrals of the above
expressions.

Since the function G(·, y) satisfies G(x, y) − ∆xG(x, y) = 0 for x ∈ Bε and
y ∈ B2ε \ B̄ε, we have

G(x, y) = ∆xh(x, y) + ∆xΓ(x, y) (3.41)

Using the divergence theorem and equality (3.41), we obtain

∫

∂Bε

∂h

∂n
(x, y) ds(x) =

∫

Bε

∆xh(x, y) dx =

∫

Bε

G(x, y) dx−

∫

Bε

∆xΓ(x, y) dx

(3.42)

Since function Φ(·, y) satisfies ∆xΦ(x, y) = 0 for x ∈ Bε and y ∈ B2ε \ B̄ε

and function −∆xΓ(·, y) is bounded from above by 0, using Lemma 3.5, we
obtain

∫

∂Bε

∂h

∂n
(x, y) ds(x) ≤

∫

Bε

G(x, y) dx ≤ Cε‖G(·, y)‖L2(Bε) ≤ Cε2|ln ε| (3.43)

Using this fact, we can write

∫

∂Bε

uε(x)
∂h

∂n
(x, y) ds(x) =

∫

∂Bε

[uε(x) − u0(y)]
∂h

∂n
(x, y) ds(x) +O(ε2|ln ε|)
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and next

∫

∂Bε

uε(x)
∂h

∂n
(x, y) ds(x) =

∫

∂Bε

[uε(x) − u0(x)]
∂h

∂n
(x, y) ds(x)

+

∫

∂Bε

[u0(x) − u0(y)]
∂h

∂n
(x, y) ds(x) +O(ε2|ln ε|)

(3.44)

Using the divergence theorem to the first integral on the right hand side of
the above equation, we get

∫

∂Bε

[uε(x) − u0(x)]
∂h

∂n
(x, y) ds(x) =

∫

Bε

[uε(x) − u0(x)]∆h(x, y) dx

+

∫

Bε

∇[uε(x) − u0(x)] · ∇h(x, y) dx

Next, application of (3.41) and the Hölder inequality yields

∫

∂Bε

[uε(x) − u0(x)]
∂h

∂n
(x, y) ds(x) ≤ ‖uε − u0‖L2(Bε) ‖G(·, y)‖L2(Bε)

+ ‖∇(uε − u0)‖L2(Bε) ‖∇h(·, y)‖L2(Bε)

(3.45)

Using Lemma 3.4, Lemma 3.3 and Lemma 3.5, we obtain

∫

∂Bε

[uε(x) − u0(x)]
∂h

∂n
(x, y) ds(x) ≤ Cε2|ln ε| + Cε2 ≤ Cε2|ln ε| (3.46)

In order to bound the second integral on the right hand side of equation
(3.44), we use estimation (3.43). Thus we have

∫

∂Bε

[u0(x) − u0(y)]
∂h

∂n
(x, y) ds(x)

≤ ‖u0(·) − u0(y)‖L∞(∂Bε) ‖
∂h

∂n
(·, y)‖L1(∂Bε) ≤ Cε2|ln ε|

(3.47)

In order to estimate integral
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∫

∂Bε

uε(x)
∂Γ

∂n
(x, y) ds(x) (3.48)

we need to find an estimate of the following expression

∫

∂Bε

∂ξ

∂n
(x, y) ds(x) =

∫

Bε

∆xξ(x, y) dx (3.49)

and then to proceed analogously as in estimation of the integral (3.44).

Applying changing of variables as in (3.37) and calculate laplacian of the
function ξ(·, y) in polar coordinates, we obtain

∆ξ(r, θ) = −4 − 2 ln[r2 +R2 − 2rR cos(θ − β)]

Using that

−4 − 2 ln[r2 +R2 − 2rR cos(θ − β)] ≤ −4 − 2 ln(R − r)

we get

∫ ε

0

r∆ξ(r, θ) dr < lim
a→ε−

∫ a

0

r [−4 − 2 ln(ε− r)] dr = −
1

2
ε2 − ε2 ln ε

Thus, for sufficiently small ε, we have

∫

∂Bε

∂ξ

∂n
(x, y) ds(x) = O(ε2|ln ε|) (3.50)

�

From Lemma 3.6 and Lemma 3.10, we get

uε(y) − u0(y) = (1 − α)

∫

∂Bε

uε(x)
∂Φ

∂n
(x, y) ds(x) +O(ε2|ln ε|) (3.51)

3.2.4 Asymptotic expansion of uε−u0 on the boundary

of the inhomogeneity

Based on estimates of H1-norm and L2-norm of expression uε − u0, and
boundary integral formulation (3.51), we are now able to obtain an asymp-
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totic formula for uε − u0 on the boundary of the inhomogeneity Bε.

Let us first introduce the definition of the single and double layer potentials
[42, page 67]

Definition 3.4 Given an integrable function ϕ, the integrals

u(y) =

∫

∂B

ϕ(x)Φ(x, y) ds(x), y ∈ R
N \ ∂B

and

v(y) =

∫

∂B

ϕ(x)
∂Φ

∂n
(x, y) ds(x), y ∈ R

N \ ∂B

are called, single layer and double layer potentials, respectively, with density
ϕ.

For the investigation of the boundary value problems we need properties
of these potentials for points on the boundary of inhomogeneity Bε where
the integrals become singular. These properties are given in the following
theorem

Theorem 3.3 Let ∂B be of class C2 and let ϕ ∈ C(∂B). Then the sin-
gle layer potential u with density ϕ is continuous throughout RN . On the
boundary, it holds

u(y) =

∫

∂B

ϕ(x)Φ(x, y) ds(x), y ∈ ∂B

and

∂u±

∂n
(y) =

∫

∂B

ϕ(x)
∂Φ

∂n
(x, y) ds(x) ∓

1

2
ϕ(y) y ∈ ∂B

where

∂u±

∂n
(y) = lim

ρ→0
[∇u(y ± ρ n(y)) · n(y)]

is to be understood in a sense of uniform convergence on ∂B and where
the integrals exist as improper integrals. The double layer potential v with
density ϕ can be continously extended from B+ to B̄+ and from B− to B̄−

with limiting values
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v±(y) =

∫

∂B

ϕ(x)
∂Φ

∂n
(x, y) ds(x) ±

1

2
ϕ(y) y ∈ ∂B (3.52)

where

v±(y) = lim
ρ→0

v(y ± ρ n(y))

and where the integrals exist as improper integrals. Furthermore

lim
ρ→0

[

∂v

∂n
(y + ρ n(y)) −

∂v

∂n
(y − ρ n(y))

]

= 0 y ∈ ∂B

uniformly on ∂B

Proof.
The proof of these so-called jump relations for the single and double layer
potentials is very elaborate and lengthy. One can find the scratch of this
proof in Colton and Kress [25, page 40]. Refer to Colton [24] if interested in
details.

�

The immediate consequence of Theorem 3.3 is the following corollary

Corollary 3.2 For the double layer potential with constant density there
holds

2

∫

∂B

∂Φ

∂n
(x, y) ds(x) =







−2 y ∈ B−

−1 y ∈ ∂B
0 y ∈ B+

(3.53)

Proof.
One can find the proof in [42, page 68]

�

Let us introduce the auxiliary, vector valued function φ : R2 → R2, which is
a solution of the problem
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∆φ = 0 x ∈ R
2 \ B̄ and x ∈ B

φ+ = φ− x ∈ ∂B

1

α

∂φ+

∂n
−
∂φ−

∂n
= −n x ∈ ∂B

lim
x→∞

φ(x) = 0

(3.54)

The existence and uniqueness of its solution, and bounds of the function φ
as x→ ∞, given by

φ(x) = O(|x|−1) and ∇φ(x) = O(|x|−2) (3.55)

are established in [21]. Following authors, we will derive the integral repre-
sentation of the function φ for ỹ ∈ ∂B. We have the following lemma

Lemma 3.8 For ỹ ∈ ∂B, the function φ has the following integral represen-
tation

1

2
(1 + α)φ(ỹ) = (1 − α)

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ) ds(x̃) + α

∫

∂B

nΦ(x̃, ỹ) ds(x̃)

Proof.
Let x ∈ R2 and let BR be a disk of radius R, such that B ⊂ BR and x ∈ BR.
Applying the Green formula for the domain BR \ B̄, we obtain

φ(ỹ) =

∫

∂BR

∂φ

∂n
(x̃)Φ(x̃, ỹ)ds(x̃) −

∫

∂B

∂φ

∂n

+

(x̃)Φ(x̃, ỹ)ds(x̃)

−

∫

∂BR

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) +

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃)

(3.56)

From (3.55), we have

φ(y) =

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) −

∫

∂B

∂φ

∂n

+

(x̃)Φ(x̃, ỹ)ds(x̃)

Using the boundary condition

1

α

∂φ

∂n

+

(x̃) −
∂φ

∂n

−
(x̃) = −n(x̃) for x̃ ∈ ∂B
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we obtain

φ(ỹ) =

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) + α

∫

∂B

nΦ(x̃, ỹ)ds(x̃)

− α

∫

∂B

∂φ

∂n

−
(x̃)Φ(x̃, ỹ)ds(x̃)

(3.57)

From the Green formula applied to functions φ and Φ(·, ỹ) for the domain
B, we obtain

∫

∂B

∂φ

∂n

−
(x̃)Φ(x̃, ỹ)ds(x̃) =

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) (3.58)

Substitution (3.58) into (3.57) yields

φ(ỹ) = (1 − α)

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) + α

∫

∂B

nΦ(x̃, ỹ)ds(x̃)

According to Definition 3.4, we know that φ is a double layer potential with
density (1 − α)φ. Using Theorem 3.3 for ỹ ∈ ∂B we obtain

φ(y) = (1−α)

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ)ds(x̃) +

1

2
(1−α)φ(ỹ) + α

∫

∂B

nΦ(x̃, ỹ)ds(x̃)

Therefore, for y ∈ ∂B, we have

1

2
(1 + α)φ(ỹ) = (1 − α)

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ) ds(x̃) + α

∫

∂B

nΦ(x̃, ỹ) ds(x̃)

which gives the desired result

�

From the boundary integral formula (3.51), we know that the function uε−u0

is a double layer potential with density (1 − α)uε. Thus, using Theorem 3.3
and Corollary 3.2 for y ∈ ∂Bε, we obtain
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1

2
(1 + α)[uε(y) − u0(y)]

= (1 − α)

∫

∂Bε

[uε(x) − u0(y)]
∂Φ

∂n
(x, y) ds(x) +O(ε2|ln ε|)

(3.59)

Given the approximation of the Green function G(·, y) by the fundamental
solution Φ(·, y), which is defined for all x ∈ R2\{y}, we can directly apply the
result of Vogelius et al. presented in [61]. Authors, starting with expression
(3.59) prove the following theorem

Theorem 3.4 For sufficiently small ε ≥ 0 and ỹ ∈ ∂B, we have

uε(εỹ) − u0(εỹ) = ε
1

α
(1 − α) φ(ỹ) · ∇u0(0) +O(ε2|ln ε|)

Proof.
Here we present the main idea of the proof. For the complete proof, refer to
[61]. We have

1

2
(1 + α)[uε(y) − u0(y)] = (1 − α)

∫

∂Bε

[uε(x) − u0(x)]
∂Φ

∂n
(x, y) ds(x)

+ (1 − α)

∫

∂Bε

[u0(x) − u0(y)]
∂Φ

∂n
(x, y) ds(x) +O(ε2|ln ε|)

(3.60)

We introduce a change of variables x̃ = x/ε, ỹ = y/ε and note that

∂Φ

∂n
(x, y) = −

1

2π

x− y

|x− y|2
= −

1

2π

1

ε

x̃− ỹ

|x̃− ỹ|2
=

1

ε

∂Φ

∂n
(x̃, ỹ)

Furthermore, we have

|u0(εx̃) − u0(εỹ) − ε∇u0(0) · (x̃− ỹ)| = O(ε2)

Hence

1

2
(1 + α)[uε(εỹ) − u0(εỹ)] = (1 − α)

∫

∂B

[uε(εx̃) − u0(εỹ)]
∂Φ

∂n
(x̃, ỹ) ds(x̃)

+ ε(1 − α)∇u0(0) ·

∫

∂B

(x̃− ỹ)
∂Φ

∂n
(x̃, ỹ) ds(x̃) +O(ε2|ln ε|)

(3.61)
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Next, we note that

∫

∂B

(x̃− ỹ)
∂Φ

∂n
(x̃, ỹ) ds(x̃) =

∫

B

∇x̃(x̃− ỹ) · ∇x̃Φ(x̃, ỹ) ds(x̃)

=

∫

∂B

nΦ(x̃, ỹ) ds(x̃)

(3.62)

Substituting (3.62) into (3.61), we can write

1

2
(1 + α)[uε(εỹ) − u0(εỹ)] = (1 − α)

∫

∂B

[uε(εx̃) − u0(εỹ)]
∂Φ

∂n
(x̃, ỹ) ds(x̃)

+ ε(1 − α)∇u0(0)

∫

∂B

nΦ(x̃, ỹ) ds(x̃) +O(ε2|ln ε|)

(3.63)

From Lemma 3.8, we have

1

2
(1 + α)φ(ỹ) = (1 − α)

∫

∂B

φ(x̃)
∂Φ

∂n
(x̃, ỹ) ds(x̃) + α

∫

∂B

nΦ(x̃, ỹ) ds(x̃)

(3.64)

Next, we multiply equation (3.64) by expression ε 1
α

(1 − α)∇u0(0) and sub-
stract the result from both sides of the equation (3.63). We obtain

1

2
(1 + α)ψ∗(ỹ) = (1 − α)

∫

∂B

ψ∗(x̃)
∂Φ

∂n
(x̃, ỹ) ds(x̃) +O(ε2|ln ε|) (3.65)

where

ψ∗(ỹ) := uε(εỹ) − u0(εỹ) − ε
1

α
(1 − α)∇u0(0) · φ(ỹ)

The Fredholm theory implies that the bounded linear operator

ψ → (c+K)ψ

given by
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(c+K)(ψ)(ỹ) :=
1

2
(1 + α)ψ(ỹ) + (1 − α)

∫

∂B

ψ(x̃)
∂Φ

∂n
(x̃, ỹ) ds(x̃) (3.66)

maps C0(∂B) onto C0(∂B), and therefore has a bounded inverse. Due to the
existence of bounded inverse for c+K, it now follows that

‖uε(ε·) − u0(ε·) − ε
1

α
(1 − α)∇u0(0) · φ(·)‖C0(∂B) = ‖ψ∗‖C0(∂B)

= ‖(c+K)−1O(ε2|ln ε|)‖C0(∂B) ≤ O(ε2|ln ε|)
(3.67)

which gives the desired result

�

3.2.5 Topological asymptotic expansion

In order to prove that the topological asymptotic expansion (3.4) holds, we
will need the following lemmas.

Lemma 3.9 For sufficiently small ε ≥ 0, have the following estimation
∫

Bε

|∇u0|
2 dy = ε2|B||∇u0(0)|2 + o(ε2)

Proof.
To prove this lemma, it is enough to use the Taylor expansion and a change
of variables. One can find the complete proof in [6]

�

Lemma 3.10 For sufficiently small ε ≥ 0 and ỹ = y/ε, we have the follow-
ing estimation

∫

∂Bε

(uε − u0)
∂u0

∂n
ds(y)

= ε2 ∇u0(0)

[

1

α
(1 − α)

∫

∂B

n(ỹ)Tφ(ỹ) ds(ỹ)

]

∇u0(0)T + o(ε2)
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Proof.
We have

∫

∂Bε

(uε − u0)
∂u0

∂n
ds(y) =

∫

∂Bε

(uε − u0)∇u0(0) · n ds(y)

−

∫

∂Bε

(uε − u0) [∇u0 · n−∇u0(0) · n] ds(y)

(3.68)

In [9] we can find an estimate

∫

∂Bε

(uε − u0) [∇u0 · n−∇u0(0) · n] ds(y) = o(ε2) (3.69)

To the first integral on the right hand side of equation (3.68) we apply a
change of variables ỹ = y/ε and obtain

∫

∂Bε

(uε − u0)∇u0(0) · n ds(y)

= ε

∫

∂B

[uε(εỹ) − u0(εỹ)]∇u0(0) · n ds(ỹ)

(3.70)

Applying Theorem 3.4, we get

∫

∂Bε

(uε − u0)∇u0(0) · n ds(y)

= ε2∇u0(0)

[

1

α
(1 − α)

∫

∂B

n(ỹ)Tφ(ỹ) ds(ỹ)

]

∇u0(0)T

(3.71)

Substitution (3.69) and (3.71) into (3.68) yields to the desired result

�

Lemma 3.11 For sufficiently small ε ≥ 0, we have the following estimation

∫

Bε

(u0 − f)(uε − u0) dy = o(ε2)

Proof.
In the proof we follow [6]. We have

∫

Bε

(u0 − f)(uε − u0) dy ≤ ||u0 − f ||L∞(Bε)

∫

Bε

|uε − u0| dy
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From the Hölder inequality, for all p, q ∈ [1,∞] satisfying 1
p

+ 1
q

= 1, we
obtain

|

∫

Bε

(u0 − f)(uε − u0) dy| ≤ Cε2/p||uε − u0||Lq(Bε)

We choose p = 3/2 and q = 3. It follows from the Sobolev imbedding theorem
that H1(Ω) ⊂ Lq(Ω). Hence

|

∫

Bε

(u0 − f)(uε − u0) dy| ≤ Cε2/p||uε − u0||H1(Ω)

From Lemma 3.3, we have ||uε − u0||H1(Ω) ≤ Cε. Thus

|

∫

Bε

(u0 − f)(uε − u0) dy| ≤ Cε7/3

�

Definition 3.5 Let the vector function φ be a unique solution of the problem
(3.54) and n a normal vector outward to the boundary ∂B. The matrix M ,
defined by

M = |B|I +
1

α
(1 − α)

∫

∂B

n(ỹ)Tφ(ỹ) ds(ỹ) (3.72)

is called the polarization tensor.

The properties of the polarization tensor are investigated by Ammari et. al
in [5] or in [21]. In these publications it is proven that M is a symmetric
matrix. Moreover, M is positive definite for 1 > α and it is negative definite
for 1 < α. In [15] and [40] explicit form of the polarization tensor has been
derived for cases where B is a ball or an ellipsoid.

Proposition 3.1 For sufficiently small ε ≥ 0, the following asymptotic ex-
pansion holds

aε(uε, u0) − a0(uε, u0) = ε2(α− 1)∇u0(0)M ∇u0(0)T + o(ε2)
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Proof.
From the definition of bilinear form (3.11) and the Green formula, we obtain

aε(uε, u0) − a0(uε, u0) = (α− 1)

∫

Bε

∇uε · ∇u0 dy

= (α− 1)

∫

Bε

∇(uε − u0) · ∇u0 dy + (α− 1)

∫

Bε

|∇u0|
2 dy

= (α− 1)

∫

∂Bε

(uε − u0)
∂u0

∂n
ds(y) + (α− 1)

∫

Bε

|∇u0|
2 dy

− (α− 1)

∫

Bε

(uε − u0)(u0 − f) dy

To the above equation, we apply Lemma 3.9, Lemma 3.10 and Lemma 3.11.
We have

aε(uε, u0) − a0(uε, u0) = ε2(α− 1) |B||∇u0(0)|2

+ ε2(α− 1)∇u0(0)

[

1

α
(1 − α)

∫

∂B

n(ỹ)Tφ(ỹ) ds(ỹ)

]

∇u0(0)T + o(ε2)

(3.73)

Using Definition 3.5 we can write

aε(uε, u0) − a0(uε, u0) = ε2(α− 1)∇u0(0)M ∇u0(0)T + o(ε2)

�

Proposition 3.2 For sufficiently small ε ≥ 0, the following asymptotic ex-
pansion holds

Jε(uε) − J0(u0) = ε2 (α− 1)

2
∇u0(0)M ∇u0(0)T + o(ε2)

Proof.
Let us write the functional Jε at uε with the help of bilinear aε and linear l
form as follows

Jε(uε) =
1

2
aε(uε, uε) − l(uε) +

1

2

∫

Ω

f 2 dy (3.74)
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Similarly, we can write the functional J0 at u0

J0(u0) =
1

2
a0(u0, u0) − l(u0) +

1

2

∫

Ω

f 2 dy (3.75)

Subtracting (3.75) from (3.74), we get

Jε(uε) − J0(u0) =
1

2
aε(uε, uε) − l(uε) −

1

2
a0(u0, u0) + l(u0)

Since uε ∈ H1(Ω) is a unique solution of problem (3.10), we have aε(uε, v) =
l(v) for all v ∈ H1(Ω), thus for v = uε we obtain

aε(uε, uε) = l(uε) (3.76)

Using the same argument as above we show that

a0(u0, u0) = l(u0) (3.77)

Using (3.76) and (3.77), we can write

Jε(uε) − J0(u0) =
1

2
l(uε) − l(uε) −

1

2
l(u0) + l(u0) = −

1

2
l(uε − u0)

Since we want to avoid to calculate uε(y)− u0(y) for all y ∈ Ω, we can write

Jε(uε) − J0(u0) = −
1

2
l(uε − u0) +

1

2
a0(u0, uε − u0) −

1

2
a0(u0, uε − u0)

where u0 is once again the unique solution of the problem

{

Find u ∈ H1(Ω)

a0(u, v) = l(v) ∀v ∈ H1(Ω)
(3.78)

Thus particularly for v = uε − u0, we have

a0(u0, uε − u0) = l(uε − u0)

Using this fact, we obtain
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Jε(uε) − J0(u0) = −
1

2
a0(u0, uε − u0)

= −
1

2
a0(u0, uε) +

1

2
a0(u0, u0)

= −
1

2
a0(uε, u0) +

1

2
l(u0)

= −
1

2
a0(uε, u0) +

1

2
aε(uε, u0)

(3.79)

From Proposition 3.1 we get

Jε(uε) − J0(u0) = ε2 (α− 1)

2
∇u0(0)M ∇u0(0)T + o(ε2)

�

Corollary 3.3 The topological gradient g is a function independent of ε,
which formula is given by

g(x) =
(α− 1)

2
∇u0(x)M ∇u0(x)T (3.80)

The symmetric and positive define matrix M is defined as in (3.72)

Proof.
This corollary is a consequence of Proposition 3.1 and Proposition 3.2

�

3.3 Explicit formula of the topological gradi-

ent

In order to obtain an explicit formula of the topological gradient (3.80), we
have to solve problem (3.54) and next to calculate the polarization tensor

M = |B|I +
1

α
(1 − α)

∫

∂B

n(ỹ)Tφ(ỹ) ds (3.81)
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Using the standard approach of introducing elliptic coordinates and applying
the Fourier method, Brühl et al. in [15] derived an explicit formula of the
function φ for the case when B is a fixed ellipse, whose semi-major and
semi-minor axis have length a and b, respectively, and lie on the axis of the
coordinate system. This formula is as follows

M = |B|









α(a+ b)

(a+ αb)
0

0
α(a+ b)

(b+ αa)









(3.82)

It is not difficult to check, by setting a = b, that for the case when B is a
ball, the matrix M has the following form

M = |B|







2α

(1 + α)
0

0
2α

(1 + α)






(3.83)

Using formulas (3.83) and (3.82) we are able to derive the formula of the
topological gradient (3.80) depending on shape of the domain B

Case of B is a disk. Substituting (3.83) into (3.80) yields

g(x) = (α− 1)
α

1 + α
|B||∇u0|

2 (3.84)

Case of B is an ellipse. Using formula (3.82) we want to derive formula
of topological gradient (3.80) for the case of an arbitrary ellipse. For this, we
fix that a < b and denote

m1 =
α(a+ b)

(a + αb)
and m2 =

α(a+ b)

(b+ αa)

Since

m1 −m2 =
α(α− 1)(a2 − b2)

(a+ αb)(b+ αa)
> 0 thus m1 > m2

Next, we assume that Bθ is an ellipse obtained by rotation of B by angle
θ ∈ [0, π], then we can find an orthogonal transformation
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Rθ =

[

cos θ − sin θ
sin θ cos θ

]

(3.85)

such that Bθ = Rθ B. The polarization tensor coresponding to the rotated
ellipse Bθ is given by

Mθ = Rθ MRT
θ

Therefore, the topological gradient for an arbitrary ellipse Bθ has the form

g(x, θ) =
(α− 1)

2
∇u0Mθ ∇u

T
0 (3.86)

We have the following proposition

Proposition 3.3 The topological gradient g(x, θ) is minimal at the fixed
point x if and only if [cos θ, sin θ] is the eigenvector associated with the great-
est eigenvalue of the matrix ∇uT

0 ∇u0

Proof.
Let us fix point x ∈ Ω and calculate the derivative of the topological gradient
g with respect to θ. We have

∂g

∂θ
(x, θ) = (α− 1)(m1 −m2)|B|

·

(

∂u0

∂x2
cos θ −

∂u0

∂x1
sin θ

) (

∂u0

∂x1
cos θ +

∂u0

∂x2
sin θ

)

The derivative
∂g

∂θ
(x, θ) is equal to 0 if and only if

θ = arctan

(

∂u0

∂x2

/∂u0

∂x1

)

=: θ1 or θ = − arctan

(

∂u0

∂x1

/∂u0

∂x2

)

=: θ2

Let us now consider the two cases. First, let θ = θ1. We have

cos θ1 =
1

|∇u0|

∂u0

∂x1
and sin θ1 =

1

|∇u0|

∂u0

∂x2

Therefore
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∂2g

∂θ2
(x, θ1) = (α− 1)(m2 −m1)|B||∇u0|

3 > 0 for m1 > m2

Next, let θ = θ2. We have

cos θ2 =
1

|∇u0|

∂u0

∂x2
and sin θ2 = −

1

|∇u0|

∂u0

∂x1

Therefore

∂2g

∂θ2
(x, θ2) = (α− 1)(m1 −m2)|B||∇u0|

3 < 0 for m1 > m2

We conclude that g(x, θ) is minimal for θ = θ1 and

g(x, θ1) = (α− 1)m1|B||∇u0|
2

To complete the proof, it is enough to observe that

∇uT
0 ∇u0 = Rθ1

[

|∇u0|2 0
0 0

]

RT
θ1

From the above decomposition, we conclude that ∇u0/|∇u0| is the eigenvec-
tor associated with the greatest eigenvalue |∇u0|

2 of the matrix ∇uT
0 ∇u0

�

3.4 Remarks

As we have already mentioned, there are several approaches to derive the
formula for the topological gradient and there is no uniquely justified method,
which would be correct for any given cost function. In this section, we would
like to give some remarks and discuss problems that arise, when we apply
some of the existing methods to our particular problem, posed in Section
3.2 of the current chapter. At the end of this section, we introduce some
criterion, which can be applied to edge detection. We decided to include it to
the thesis, however there is no rigorous mathematical proof of its correctness.
Some advantages of this criterion over magnitude of the smoothened image
gradient |∇uσ|2 are confirmed based on numerical experiments, which we
present in Chapter 5.
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3.4.1 The generalized adjoint method

In this subsection, we would like to present a rough idea of the generalized
adjoint method, introduced by Céa in [19] and further adapted to the topo-
logical sensitivity analysis by Garreau et al. in [35]. One can find a diverse
modification of this method in Amstutz [6, 7].

Let v0 ∈ H1(Ω) be the unique solution of the adjoint problem

{

Find v0 ∈ H1(Ω)
a0(w, v0) = −L(w) ∀w ∈ H1(Ω)

(3.87)

where L : H1(Ω) → R is a continuous linear form.

Hypothesis 3.1 For sufficiently small ε ≥ 0, there exists a real number δJ
and continuous linear form L : H1(Ω) → R, such that

Jε(uε) − J0(u0) = L(uε − u0) + ε2 δJ + o(ε2) (3.88)

Hypothesis 3.2 For sufficiently small ε ≥ 0, there exists a real number δa,
such that

aε(uε, v0) − a0(uε, v0) = ε2 δa+ o(ε2)

We have the following proposition

Proposition 3.4 Let uε be the unique solution of problem (3.10), the cost
function Jε, as defined in (3.91) and v0 satisfies (3.87). Then, for sufficiently
small ε ≥ 0, we have the following asymptotic expansion

Jε(uε) − J0(u0) = ε2(δa+ δJ) + o(ε2)

Proof.
The proof is based on idea presented in [35]. From Hypothesis 3.1, we have

Jε(uε) − J0(u0) = L(uε − u0) + ε2 δJ + o(ε2)

and we may write this expansion as follows

Jε(uε) − J0(u0) = L(uε − u0) + a0(uε − u0, v0) − a0(uε − u0, v0)

+ ε2 δJ + o(ε2)
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Next, by using properties of a bilinear form, v0 being the solution to problem
(3.87) for all w ∈ H1(Ω) and u0 satisfying equation a0(u0, v) = l(v) for all
v ∈ H1(Ω), we obtain

Jε(uε) − J0(u0) = l(v0) − a0(uε, v0) + ε2 δJ + o(ε2)

Since we have assumed that the function uε satisfies aε(uε, v) = l(v) for all
v ∈ H1(Ω), thus in particular for v = v0. Thus, we have

Jε(uε) − J0(u0) = aε(uε, v0) − a0(uε, v0) + ε2 δJ + o(ε2)

Finally, applying Hypothesis 3.2, we obtain

Jε(uε) − J0(u0) = ε2(δa + δJ) + o(ε2) (3.89)

�

Therefore, if Hypothesis 3.1 and Hypothesis 3.2 would be true, we would have
to find δa and δJ , in order to know the formula of the topological gradient
g.

However, in Proposition 3.2 we have shown that

Jε(uε) − J0(u0) = ε2 (α− 1)

2
∇u0(0)M ∇u0(0)T + o(ε2) (3.90)

Comparing the right hand sides of equations (3.88) and (3.90) we conclude
that

δJ =
(α− 1)

2
∇u0(0)M ∇u0(0)T

and

L(uε − u0) = 0

It means, that the solution v0 of the adjoint problem (3.87) is identically
equal to 0. This implying that Hypothesis 3.2 is true only for the trivial case
ε = 0.
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3.4.2 The domain truncation method

Here, we briefly explain the idea of domain truncation method introduced
by Garreau et al. in [35], further investigated by Feijóo et al. in [33]. We
mention that in this subsection, we will use the same notations Jε, aε, uε, l
used in the previous parts of work, but the different problem is considered.

Let us define the cost function as follows

Jε(u) :=
1

2

∫

Ω\B̄ε

(u− f)2 dx +
1

2

∫

Ω\B̄ε

|∇u|2 dx (3.91)

The minimum of Jε satisfies function uε, solution of the problem























uε − ∆uε = f x ∈ Ω \ B̄ε

∂uε

∂n
= 0 x ∈ ∂Bε

∂uε

∂n
= 0 x ∈ ∂Ω

(3.92)

In order to apply the generalized adjoint method, we need a fixed functional
space. Such a functional space, independent of ε, can be constructed by using
the domain truncation technique.

Let R > 0 be large enough such that the open ball BR ⊂ Ω includes inho-
mogeneity Bε. Let us consider problems defined on the truncated domains
BR \ B̄ε and Ω \ B̄R. We have



















zε − ∆zε = f x ∈ BR \ B̄ε

zε = ψ x ∈ ∂BR

∂zε

∂n
= 0 x ∈ ∂Bε

(3.93)

and



























zR − ∆zR = f x ∈ Ω \ B̄R

∂zR

∂n
= Λεψ x ∈ ∂BR

∂zR

∂n
= 0 x ∈ ∂Ω

(3.94)

where Λε denotes the Steklov-Poincaré operator
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Λε : H1/2(∂BR) → H−1/2(∂BR)

which maps Dirichlet data to Neumann data on the boundary ∂BR and is
defined by

Λεψ :=
∂zε

∂n
|∂BR

We have the following proposition

Proposition 3.5 Let ε ≥ 0. If ψ is the trace of uε on ∂BR then the re-
striction to BR \ B̄ε of the solution uε to problem (3.92) is the solution zε of
problem (3.93) and the restriction to Ω\ B̄R of the solution uε is the solution
zR of problem (3.94).

Proof.
The proof is standard, see [35]

�

From the above proposition we conclude that the function uε satisfies



























uε − ∆uε = f x ∈ Ω \ B̄R

∂uε

∂n
= Λεuε x ∈ ∂BR

∂uε

∂n
= 0 x ∈ ∂Ω

(3.95)

The bilinear form associated with the above problem is defined by

aε(u, v) :=

∫

Ω\B̄R

u v dx+

∫

Ω\B̄R

∇u · ∇v dx−

∫

∂BR

Λεu v ds (3.96)

and the linear form by

l(v) :=

∫

Ω\B̄R

f v dx (3.97)

In order to prove that the topological asymptotic expansion

Jε(uε) − J0(u0) = ε2(δa + δJ) + o(ε2)
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holds, we would have to show that for ε ≥ 0, there exists a positive number
δa ∈ R, such that

aε(uε, v0) − a0(uε, v0) = ε2δa + o(ε2)

Since the domain integration does not depend on ε from definition (3.96) we
obtain

aε(uε, v0) − a0(uε, v0) = −

∫

∂BR

(Λε − Λ0)uεv0 ds

For ψ = uε|∂BR
, we have

aε(uε, v0) − a0(uε, v0) = −

∫

∂BR

(

∂uε

∂n
−
∂u0

∂n

)

v0 ds

Thus, in order to find an explicit expression for δa, first we would have to
solve problem (3.93), then calculate the normal derivative of its solution and
last find the dominant term in the expression

−

∫

∂BR

(

∂uε

∂n
−
∂u0

∂n

)

v0 ds

The natural way to deal with such a problem, defined on a ring domain, is to
change the coordinate system to polar and then to apply the Fourier method.
Such approach has been presented by Feijóo in [33] for the Poisson problem.
In our case, since problem (3.92) is inhomogeneous, a better idea would be to
use the method of Green function. However, since we would have to calculate
expression uε(y)−u0(y) for y ∈ ∂BR, where the radius R is fixed, we could not
use asymptotic (3.26) in approximation of the fundamental solution Γ(·, y)
by Φ(·, y), as it was possible in (3.28).

3.4.3 Formula of the ‘topological gradient’ derived us-

ing the ‘generalized adjoint method’

Here, we propose the criterion which can be used to edge detection. Its
formula is given by

∇uσ∇vρ (3.98)

The functions uσ and vρ are defined by
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uσ := Gσ ∗ u

and

vρ := Gρ ∗ (−〈∇uσ,∇
2uσ∇uσ〉)

and Gσ and Gρ denote Gaussian kernels with the standard deviation equal
σ and ρ, respectively, and are defined as in (2.2).

In the definition of function vρ the expression

〈∇uσ,∇
2uσ∇uσ〉 =

(

∂uσ

∂x2

)2
∂2uσ

∂x2
1

+ 2
∂uσ

∂x1

∂uσ

∂x2

∂2uσ

∂x1∂x2
+

(

∂uσ

∂x1

)2
∂2uσ

∂x2
2

is nothing but the second order derivative of the function uσ in the direction
of ∇uσ and is commonly used in image analysis as a second order operator
for edge detection. For details we refer for instance to [46].
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Chapter 4

Finite volume discretization

In this chapter, we propose the finite volume discretization for the Catté
et al. (2.8) and the Weickert (2.9) models. Discretization is based on the
integro-interpolation method introduced by Samarskii in [56]. The numer-
ical schemes have been derived for the case of uniform (see Fig. 4.2) and
nonuniform (see Fig. 4.3) grids for the computational domain Ω ⊂ R

2. An
essential part of our discretization approach is the local adaptive coarsening
strategy, which allows significant reduction of the number of grid cells.

h

h

pixelP

x1

x2

Fig. 4.1: Uniform grid on the
space domain for the finite differ-
ence method

h

h

pixelP

x1

x2

Fig. 4.2: Uniform grid on the
space domain for the finite volume
method
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4.1 Grid coarsening technique

In this section, we describe how to construct an adaptive grid, used in discrete
scale steps to solve problems (2.8) and (2.9) numerically.

P

Q

hP

hQ

P∩Q

(xP
1 ,xP

2 )

(x
Q
1 ,x

Q
2 )

x1

x2

Fig. 4.3: Notations used for nonuniform grid

Let Ωm, with m ∈ N, be a uniform grid composed of square cells P ∈ Ωm,
each with a side length hP = 2m−1h and oriented along axes x1 and x2. We
assume that the grid points are located at the centres of cells, as presented in
Fig. 4.2. We start the coarsening procedure with the fine grid Ω1, with grid
spacing h, which is equivalent to the pixel size1. In the whole procedure, the
most important is to define the correct criterion, defining where and how to
merge cells. Since the goal of the nonlinear diffusion filtering is to pereserve
boundaries of objects, we would like to have a fine grid at these positions.
Therefore, the same criterion as in the case of edges detection can be used.
In the grid coarsening procedure one can distinguish the following two steps:

Step 1. We consider union of grids Ω1 and Ω2. We merge four cells, each
with a side length h into one cell Q ∈ Ω2 with a side length 2h if and only
if for all cells P ∈ Ω1, such that P ∈ Q, the criterion to edge detection at
the point (xP

1 , x
P
2 ) is less than the fixed value of a threshold µ. The value of

the function u at the central point (xQ
1 , x

Q
2 ) of the new cell Q is equal to the

arithmetic average of values of u at the central points of cells that have been

1In many articles from the computer vision literature is assumed that h = 1, which

means that the pixel size is chosen as the unit of reference.
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merged. As a result, we obtain a nonuniform grid composed of cells of two
different sizes, h and 2h. In general, we will denote by Ωm+l a nonuniform
grid composed of cells P , each with a side length hP ∈ {2m−1h, 2mh, . . . , 2lh}.

Step 2. In order to simplify the implementation process, we impose the
so-called balance criterion. This implies coarsening the grid in such a way
that each neighboring cell Q of the cell P will have a side length equal to hP

or two times greater or smaller than hP . For this, we consider the union of
two grids, Ω3 and Ω1+2. We merge four cells in Ω1+2 into one cell Q ∈ Ω3 if
and only if for all P ∈ Ω1+2, such that P ∈ Q and hP = 2h, each neighbor of
cell P has a side length equal to 2h. We repeat this procedure until either l is
equal to the required level of coarsening or 2lh is equal to the size of image.

Ω1 Ω1+2 Ω1+3

Fig. 4.4: Stages of the grid coarsening technique

The two steps described above are illustrated in Fig. 4.4. It is observed
that it is not necessary to start with the fine grid Ω1 at each iteration of the
diffusion process. To save computation time, in each discrete time step, we
may start the coarsening procedure with the grid obtained in the previous
iteration and perform Step 1 only for the cells having a side length equal to
h and then move to Step 2.

4.2 Discretization of the Catté et al. model

In this section we will derive the finite volume discretization of the Catté et
al. model (2.8) using the integro-interpolation method for the case of uniform
and nonuniform grid for the computational domain Ω ⊂ R

2.

Integration of the first equation in (2.8) over any finite volume P ∈ Ωm or
P ∈ Ωm+l, and application of the divergence theorem, yields the following
integral equation
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∫

P

∂u

∂t
dx =

∫

∂P

d(|∇uσ|
2)
∂u

∂n
ds (4.1)

where n denotes the unit normal vector to the boundary ∂P , outward to P .

4.2.1 Time discretization

Let τ ∈ R be a constant time step and tk := kτ , for k ∈ N. Furthermore, let
us denote uk(x) := u(x, tk). Writing equation (4.1) at time tk and discretizing
the time partial derivative using the backward Euler method, we obtain the
following equation

1

τ

∫

P

(uk − uk−1) dx =

∫

∂P

d(|∇uk−1
σ |2)

∂uk

∂n
ds (4.2)

for k ∈ N and P ∈ Ωm or P ∈ Ωm+l. In order to simplify notations, we will
further write dk−1 instead of d(|∇uk−1

σ |2) := d(|∇Gσ ∗ uk−1(x)|).

Using the fact that the sides of cell P are oriented along axes x1 and x2, we
can write equation (4.2) in the form

1

τ

∫

P

(uk − uk−1) dx =

∫

∂P E

dk−1∂u
k

∂x1
dx2 −

∫

∂P W

dk−1∂u
k

∂x1
dx2

+

∫

∂P N

dk−1∂u
k

∂x2
dx1 −

∫

∂P S

dk−1∂u
k

∂x2
dx1

(4.3)

where the upper indexes at ∂P denote respectively east, west, north and
south side of the cell P .

4.2.2 Space discretization on an uniform grid

Let Ω1 be a uniform grid of the domain Ω ⊂ R2 composed of square cells P ,
each with a side length h, as presented in Fig. 4.2. We will derive a space
discretization for one of the integrals on the right hand side of expression
(4.3), for instance

∫

∂P E

dk−1∂u
k

∂x1
dx2 (4.4)
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We discretize the remaining integrals in a similar way. For this, we denote
the flux function by

W1 = dk−1∂u
k

∂x1

Let us rewrite the above equation in the form

∂uk

∂x1
=

W1

dk−1

and then integrate this expression over the interval [xP
1 , x

P
1 + h]

∫ xP
1 +h

xP
1

∂uk

∂x1
dx1 =

∫ xP
1 +h

xP
1

W1

dk−1
dx1

Assumption that the flux function W1 is constant on the interval [xP
1 , x

P
1 +h]

yields

u(xP
1 + h, x2) − u(xP

1 , x2) = W1(x
P
1 + h

2
, x2)

∫ xP
1 +h

xP
1

1

dk−1
dx1

Thereofore, the value of function W1 at point (xP
1 + h

2
, x2), where x2 ∈ [xP

2 −
h
2
, xP

2 + h
2
], is given by

W1(x
P
1 + h

2
, x2) =

[

∫ xP
1 +h

xP
1

1

dk−1
dx1

]−1
[

uk(xP
1 + h, x2) − uk(xP

1 , x2)
]

(4.5)

Using the midpoint rule, we can approximate the integral (4.4) as follows

∫

∂P E

dk−1∂u
k

∂x1

dx2 =

∫

∂P E

W1 dx2 ≈ h W1(x
P
1 + h

2
, xP

2 ) (4.6)

Substituting (4.5) into (4.6) for x2 = xP
2 we obtain

∫

∂P E

dk−1∂u
k

∂x1

dx2 ≈ h d̃k−1(x1, x
P
2 )

[

uk(xP
1 + h, xP

2 ) − uk(xP
1 , x

P
2 )

]

where
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d̃k−1(x1, x
P
2 ) :=

[

∫ xP
1 +h

xP
1

1

dk−1(x1, xP
2 )
dx1

]−1

(4.7)

The function d̃k−1 at point (xP
1 + h

2
, xP

2 ) may be approximated in one of the
following two ways

d̃k−1(xP
1 + h

2
, xP

2 ) ≈

[

h

dk−1(xP
1 + h

2
, xP

2 )

]−1

=
dk−1(xP

1 , x
P
2 ) + dk−1(xP

1 + h, xP
2 )

2h

(4.8)

d̃k−1(xP
1 + h

2
, xP

2 ) ≈

[

h

2 dk−1(xP
1 , x

P
2 )

+
h

2 dk−1(xP
1 + h, xP

2 )

]−1

=
2 dk−1(xP

1 , x
P
2 ) dk−1(xP

1 + h, xP
2 )

h dk−1(xP
1 + h, xP

2 ) + h dk−1(xP
1 , x

P
2 )

(4.9)

Approximation (4.8) is simply the arithmetic average of diffusivity values in
the two neighboring cells and approximation (4.9) is the well known harmonic
averaging. In the case of oscillatory diffusivity values, there is a suggestion
in the book of Samarskii [56] to use approximation (4.9). In this book one
can also find the numerical analysis of derived scheme.

4.2.3 Space discretization on a nonuniform grid

Let Ωm+l be a nonuniform grid of the domain Ω ⊂ R2 composed of square
cells P , each with a side length hP , as presented in Fig. 4.3. For every
cell P ∈ Ωm+l, we consider the set of neighbors N (P ) consisting of all cells
Q ∈ Ωm+l for which the common interface of P and Q, denoted by P ∩ Q,
has nonzero length |P ∩Q| = min(hP , hQ).

Let us consider discretization of the first integral on the right hand side
of expression (4.3). The conservation law says that the flux through the
interface ∂PE is equal to the sum of the fluxes through interfaces ∂QW and
∂RW (see Fig. 4.5). Therefore, we have

∫

∂P E

dk−1∂u
k

∂x1

dx2 =

∫

∂QW

dk−1∂u
k

∂x1

dx2 +

∫

∂RW

dk−1∂u
k

∂x1

dx2 (4.10)
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P
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R(xP
1 ,xP
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(xQ
1 ,xQ
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(xR
1 ,xR

2 )

(xP
1 ,xQ

2 )

Fig. 4.5: Part of the adaptive grid

We will demonstrate how to derive a space discretization for the integral over
∂QW in the above expression. For that, we denote the flux function by

W1 = dk−1∂u
k

∂x1

Let us rewrite the above equation in the form

∂uk

∂x1

=
W1

dk−1

and then, integrate this expression over the interval [xP
1 , x

Q
1 ]

∫ xQ
1

xP
1

∂uk

∂x1

dx1 =

∫ xQ
1

xP
1

W1

dk−1
dx1

Assumption that the flux function W1 is constant on the interval [xP
1 , x

Q
1 ]

yields

uk(xQ
1 , x2) − uk(xP

1 , x2) = W1(xP
1 + hP

2
, x2)

∫ xQ
1

xP
1

1

dk−1
dx1

Thereofore, the value of function W1 at point (xP
1 + hP

2
, x2), where x2 ∈

[xP
2 , x

P
2 + hP

2
], is given by



64 Chapter 4. Finite volume discretization

W1(x
P
1 + hp

2
, x2) =

[

∫ xQ
1

xP
1

1

dk−1
dx1

]−1
[

uk(xQ
1 , x2) − uk(xP

1 , x2)
]

(4.11)

Using the midpoint rule, we approximate the integral over ∂QW in expression
(4.10) as follows

∫

∂QW

dk−1 ∂u

∂x1
dx2 =

∫

∂QW

W1 dx2 ≈ hQW1(xP
1 + hp

2
, xQ

2 ) (4.12)

Substituting (4.31) into (4.33) for x2 = xP
2 , we obtain

∫

∂QW

dk−1∂u
k

∂x1
dx2 ≈ d̃k−1(x1, x

Q
2 ) hQ

[

uk(xQ
1 , x

Q
2 ) − uk(xP

1 , x
Q
2 )

]

where

d̃k−1(x1, x
Q
2 ) :=

[

∫ xQ
1

xP
1

1

dk−1(x1, x
Q
2 )
dx1

]−1

(4.13)

The function d̃k−1 at the point (xP
1 + h

2
, xQ

2 ) may be approximated in one of
the following two ways

d̃k−1(xP
1 + h

2
, xQ

2 ) ≈

[

hP + hQ

2 dk−1(xP
1 + h

2
, xQ

2 )

]−1

=
dk−1(xP

1 , x
Q
2 ) + dk−1(xQ

1 , x
Q
2 )

hP + hQ

(4.14)

d̃k−1(xP
1 + h

2
, xQ

2 ) ≈

[

hP

2 dk−1(xP
1 , x

Q
2 )

+
hQ

2 dk−1(xQ
1 , x

Q
2 )

]−1

=
2 dk−1(xP

1 , x
Q
2 ) dk−1(xQ

1 , x
Q
2 )

hP dk−1(xQ
1 , x

Q
2 ) + hQ dk−1(xP

1 , x
Q
2 )

(4.15)

Since point (xP
1 , x

Q
2 ), marked by ◦ in Fig. 4.5, is not a grid point, values

of functions uk and dk−1 at this point have to be interpolated. We use the
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simplest constant interpolation, it means, we assume that values of uk and
dk−1 at the point (xP

1 , x
Q
2 ) are equal to values of these functions at the point

(xP
1 , x

P
2 ).

In [30], Ewing et al. proposed a finite difference method on rectangular
cell-centered grids with local refinement in order to derive discretization of
the second-order elliptic equation. They have proven that the discretization
for the case of a constant interpolation of irregular points provides simple
symmetric scheme with error estimates in the discrete H1-norm of order
h1/2. In the case of a nonsymmetric and a more accurate symmetric scheme,
the convergence rate is O(h3/2).

4.3 Discretization of the Weickert model

In this section we will derive the finite volume discretization of the Weickert
model (2.9) using the integro-interpolation method for the case of uniform
and nonuniform grid of the computational domain Ω ⊂ R2.

Integration of the first equation in (2.9) over the finite volume P ⊂ Ωm or
P ∈ Ωm+l and application of the divergence theorem yields the following
balance equation

∫

P

∂u

∂t
dx =

∫

∂P

〈D(Sρ(∇uσ))∇u, n〉 ds (4.16)

where n denotes the unit normal vector to the boundary ∂P , outward to P
and the diffusion tensor D(Sρ(∇uσ)) is defined as in Section 2.3 of Chapter
2.

4.3.1 Time discretization

Let τ ∈ R be a constant time step and tk := kτ , for k ∈ N. Furthermore,
let us denote uk(x) := u(x, tk). Writing equation (4.16) at time tk and
discretizing the time partial derivative by the Euler explicit scheme, we obtain
the following equation

1

τ

∫

P

(uk − uk−1) dx =

∫

∂P

〈D(Sρ(∇uk−1
σ )) ∇uk, n〉 ds (4.17)

for all P ∈ Ωm or P ∈ Ωm+l. Further, we denote entries of the diffusion
tensor D(Sρ(∇uk−1

σ )) by dk−1
ij , where i, j = 1, 2.
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Using the fact that the sides of cell P are oriented along axes x1 and x2, we
can write equation (4.17) in the form

1

τ

∫

P

(uk − uk−1) dx =

∫

∂P E

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2 −

∫

∂P W

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2

+

∫

∂P N

(

dk−1
21

∂uk

∂x1
+ dk−1

22

∂uk

∂x2

)

dx1 −

∫

∂P S

(

dk−1
21

∂uk

∂x1
+ dk−1

22

∂uk

∂x2

)

dx1

(4.18)

The upper indexes at ∂P denote the east, west, north and south side of the
cell P , respectively.

4.3.2 Space discretization on an uniform grid

Let Ω1 be a uniform grid of the domain Ω ⊂ R2 composed of square cells
P ∈ Ω1, each with a side length h, as it is presented in Fig. 4.2. We will
derive a space discretization for one of the integrals on the right hand side
of expression (4.18), for example

∫

∂P E

(

dk−1
11

∂uk

∂x1
+ dk−1

12

∂uk

∂x2

)

dx2 (4.19)

We discretize the integrals in a similar way. For this, the flux function is
denoted by

W2 = dk−1
11

∂uk

∂x1
+ dk−1

12

∂uk

∂x2

Let us rewrite the above equation in the form

∂uk

∂x1
+
dk−1

12

dk−1
11

∂uk

∂x2
=

W2

dk−1
11

and then integrate this expression over the interval [xP
1 , x

P
1 + h]

∫ xP
1 +h

xP
1

(

∂uk

∂x1
+
dk−1

12

dk−1
11

∂uk

∂x2

)

dx1 =

∫ xP
1 +h

xP
1

W2

dk−1
11

dx1 (4.20)
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Assumption that the flux function W2 is constant on the interval [xP
1 , x

P
1 +h]

yields

∫ xP
1 +h

xP
1

W2

dk−1
11

dx1 = W2(x
P
1 + h

2
, x2)

∫ xP
1 +h

xP
1

1

dk−1
11

dx1 (4.21)

We approximate the left hand side of equation (4.20) as follows

∫ xP
1 +h

xP
1

(

∂uk

∂x1
+
dk−1

12

dk−1
11

∂uk

∂x2

)

dx1 ≈ uk(xP
1 + h, x2) − uk(xP

1 , x2)

+ dk−1
12 (xP

1 + h
2
, x2)

∂uk

∂x2

(xP
1 + h

2
, x2)

∫ xP
1 +h

xP
1

1

dk−1
11

dx1

(4.22)

By substituting (4.21) and (4.22) into equation (4.20), an approximate value
of the function W2 at point (xP

1 + h
2
, x2) is given by

W2(xP
1 + h

2
, x2) ≈

[

∫ xP
1 +h

xP
1

1

dk−1
11

dx1

]−1

[uk(xP
1 + h, x2) − uk(xP

1 , x2)]

+ dk−1
12 (xP

1 + h
2
, x2)

∂uk

∂x2
(xP

1 + h
2
, x2)

(4.23)

where x2 ∈ [xP
2 − h

2
, xP

2 + h
2
]. We further approximate the last term in (4.23)

by the arithmetic mean as follows

dk−1
12 (xP

1 + h
2
, x2)

∂uk

∂x2

(xP
1 + h

2
, x2)

≈
1

2

[

dk−1
12 (xP

1 , x2)
∂uk

∂x2

(xP
1 , x2) + dk−1

12 (xP
1 + h, x2)

∂uk

∂x2

(xP
1 + h, x2)

] (4.24)

Application of the midpoint rule to integral (4.19) yields

∫

∂P E

(

dk−1
11

∂u

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2 =

∫

∂P E

W2 dx2 ≈ hW2(x
P
1 + h

2
, xP

2 ) (4.25)

By substituting (4.23) into (4.25), we obtain for x2 = xP
2
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∫

∂P E

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2 ≈ d̃k−1
11 (x1, x

P
2 ) h [uk(xP

1 + h, x2) − uk(xP
1 , x2)]

+
h

2

[

dk−1
12 (xP

1 , x2)
∂uk

∂x2
(xP

1 , x2) + dk−1
12 (xP

1 + h, x2)
∂uk

∂x2
(xP

1 + h, x2)

]

(4.26)

where

d̃k−1
11 (x1, x

P
2 ) :=

[

∫ xP
1 +h

xP
1

1

dk−1
11 (x1, x

P
2 )

dx1

]−1

The partial derivatives on the right hand side of expression (4.26) at points
(xP

1 , x
P
2 ) and (xP

1 + h, xP
2 ) may be approximated using the central difference

∂u

∂x2
(xP

1 , x
P
2 ) ≈

1

2h
[uk(xP

1 , x
P
2 + h) − uk(xP

1 , x
P
2 − h)]

∂u

∂x2
(xP

1 + h, xP
2 ) ≈

1

2h
[uk(xP

1 + h, xP
2 + h) − uk(xP

1 + h, xP
2 − h)]

The function d̃k−1
11 at the point (xP

1 + h
2
, xP

2 ) may be approximated in a similar

way as the function d̃k−1 in (4.8) or in (4.9).

Notice that if we would derive, in the same manner as above, an approxima-
tion of the integral over ∂PW , appearing on the right hand side of equation
(4.18), and next the result subtract from (4.26), the term

dk−1
12 (xP

1 , x2)
∂uk

∂x2
(xP

1 , x2)

would cancel out. The derived space discretization of the operator ∇·(D∇u)
is equivalent to what Samarskii proposed in [56, page 288] and provide an
approximation of O(h2).

4.3.3 Space discretization on a nonuniform grid

Let Ωm+l be a nonuniform grid of domain Ω ⊂ R2 composed of square cells P ,
each with a side length hP , as presented in Fig. 4.3. For every cell P ∈ Ωm+l,
we consider the set of neighbors N (P ) consisting of all cells Q ∈ Ωm+l for
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Fig. 4.6: Part of the adaptive grid

which the common interface of P and Q, denoted by P ∩ Q, has nonzero
length |P ∩Q| = min(hP , hQ).

Let us consider the discretization of the first integral on the right hand side
of expression (4.18). The conservation law says that the flux through the
interface ∂PE is equal to the sum of the fluxes through interfaces ∂QW and
∂RW (see Fig. 4.6). Therefore, we have

∫

∂P E

(

dk−1
11

∂uk

∂x1
+ dk−1

12

∂uk

∂x2

)

dx2 =

∫

∂QW

(

dk−1
11

∂uk

∂x1
+ dk−1

12

∂uk

∂x2

)

dx2

+

∫

∂RW

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2

(4.27)

We will show the derivation of a space discretization for the integral over
∂QW . For this, we denote the flux function by

W2 = dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

Let us rewrite the above equation in the form

∂uk

∂x1

+
dk−1

12

dk−1
11

∂uk

∂x2

=
W2

dk−1
11
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and then, integrate this expression over the interval [xP
1 , x

Q
1 ]

∫ xQ
1

xP
1

(

∂uk

∂x1
+
dk−1

12

dk−1
11

∂uk

∂x2

)

dx1 =

∫ xQ
1

xP
1

W2

dk−1
11

dx1 (4.28)

Assumption that the flux function W2 is constant on the interval [xP
1 , x

Q
1 ]

yields

∫ xQ
1

xP
1

W2

dk−1
11

dx1 = W2(xP
1 + hP

2
, x2)

∫ xQ
1

xP
1

1

dk−1
11

dx1 (4.29)

We approximate the left hand side of equation (4.28) as follows

∫ xQ
1

xP
1

(

∂uk

∂x1

+
dk−1

12

dk−1
11

∂uk

∂x2

)

dx1 ≈ uk(xQ
1 , x2) − uk(xP

1 , x2)

+ dk−1
12 (xP

1 + hP

2
, x2)

∂uk

∂x2
(xP

1 + hP

2
, x2)

∫ xQ
1

xP
1

1

dk−1
11

dx1

(4.30)

By substituting (4.29) and (4.30) into equation (4.28), an approximate value
of the function W2 at point (xP

1 + hP

2
, x2) is given by

W2(xP
1 + hP

2
, x2) ≈

[

∫ xQ
1

xP
1

1

dk−1
11

dx1

]−1

[uk(xQ
1 , x2) − uk(xP

1 , x2)]

+ dk−1
12 (xP

1 + hP

2
, x2)

∂uk

∂x2

(xP
1 + hP

2
, x2)

(4.31)

where x2 ∈ [xP
2 , x

P
2 + hP

2
]. The last term in (4.31) is approximated by the

weighted mean as follows

dk−1
12 (xP

1 + h
2
, x2)

∂uk

∂x2
(xP

1 + h
2
, x2)

≈
hP

hP + hQ
dk−1

12 (xP
1 , x2)

∂uk

∂x2
(xP

1 , x2)

+
hQ

hP + hQ
dk−1

12 (xQ
1 , x2)

∂uk

∂x2
(xQ

1 , x2)

(4.32)
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The integral over ∂QW in expression (4.27) may be approximated using the
midpoint rule as follows

∫

∂QW

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2 =

∫

∂QW

W2 dx2

≈ hQW2(xP
1 + hP

2
, xQ

2 )

(4.33)

By substituting (4.31) into (4.33), we obtain for x2 = xQ
2

∫

∂QW

(

dk−1
11

∂uk

∂x1

+ dk−1
12

∂uk

∂x2

)

dx2 ≈ d̃k−1
11 (x1, x

Q
2 )hQ[uk(xQ

1 , x
Q
2 ) − uk(xP

1 , x
Q
2 )]

+ hQ

[

hP

hP + hQ

dk−1
12 (xP

1 , x
Q
2 )
∂uk

∂x2

(xP
1 , x

Q
2 ) +

hP

hP + hQ

dk−1
12 (xQ

1 , x
Q
2 )
∂uk

∂x2

(xQ
1 , x

Q
2 )

]

The partial derivatives on the right hand side of the above expression may
be approximated by using the midpoint rule as follows

∂uk

∂x2

(xP
1 , x

Q
2 ) ≈

1

hP

[uk(xP
1 , x

Q
2 + hQ) − uk(xP

1 , x
Q
2 − hQ)]

∂uk

∂x2
(xQ

1 , x
Q
2 ) ≈

1

hP
[uk(xQ

1 , x
Q
2 + hQ) − uk(xQ

1 , x
Q
2 − hQ)]

The function d̃k−1
11 is defined by

d̃k−1
11 (x1, x

Q
2 ) :=

[

∫ xQ
1

xP
1

1

dk−1
11 (x1, x

Q
2 )
dx1

]−1

At the point (xP
1 + hP

2
, xQ

2 ), it could be approximated similar to the function

d̃k−1 in (4.14) or in (4.15).

The points, marked by ◦ in Fig. 4.6, are not grid points and values of the
function uk at these points have to be interpolated. We consider a constant
interpolation in the cell P , which means that values of uk at points (xP

1 , x
Q
2 )

and (xP
1 , x

R
2 ) are equal to uk(xP

1 , x
P
2 ). The value of uk at the point (xP

1 , x
Q
2 +

hQ) is equal to the arithmetic mean of values uk in two neighboring cells.

The value of uk at the point (xQ
1 , x

Q
2 + hQ) is equal to the arithmetic mean

of values uk in four neighboring cells.
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4.4 Discretization of the first and the second

order derivatives

In this section, we present how to approximate the magnitude of gradient
∇uσ

|∇uσ|
2 =

(

∂uσ

∂x1

)2

+

(

∂uσ

∂x2

)2

(4.34)

and the second order derivative of the function uσ in the gradient ∇uσ di-
rection

〈∇uσ,∇
2uσ ∇uσ〉

=

(

∂uσ

∂x2

)2
∂2uσ

∂x2
1

+ 2
∂uσ

∂x1

∂uσ

∂x2

∂2uσ

∂x1∂x2

+

(

∂uσ

∂x1

)2
∂2uσ

∂x2
2

(4.35)

on an uniform as well as a nonuniform grid.

4.4.1 Discretization on an uniform grid

To approximate values of expressions (4.34) and (4.35) for an uniform grid we
use standard second order approximation. The first derivative of the function
uσ is approximated using the central difference scheme

∂uσ

∂x1

(xP
1 , x

P
2 ) ≈

1

2h

[

uσ(xP
1 + h, xP

2 ) − uσ(xP
1 − h, xP

2 )
]

The second derivative is approximated by

∂2uσ

∂x2
1

(xP
1 , x

P
2 ) ≈

1

h

[

∂uσ

∂x1
(xP

1 + h
2
, xP

2 ) −
∂uσ

∂x1
(xP

1 − h
2
, xP

2 )

]

≈
1

h

[

uσ(xP
1 + h, xP

2 ) − 2 uσ(xP
1 , x

P
2 ) + uσ(xP

1 − h, xP
2 )

]

The mixed derivative of the function uσ is approximated by

∂2uσ

∂x1∂x2
(xP

1 , x
P
2 ) ≈

1

2h

[

∂uσ

∂x1
(xP

1 , x
P
2 + h) −

∂uσ

∂x1
(xP

1 , x
P
2 − h)

]
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4.4.2 Discretization on a nonuniform grid

Since it is difficult to write discretization for the general case of a nonuniform
grid, we will demonstrate how to approximate values of expressions (4.34)
and (4.35) for the configuration of cells presented in Fig. 4.7

(xP
1 ,xP

2 )

(xQ
1 ,xQ

2 )

(xR
1 ,xR

2 )

(xS
1 ,xS

2 )

P
Q

R

S

Fig. 4.7: Part of the adaptive grid

In order to compute expression (4.34) and (4.35), we have to know values of
the first and the second order derivatives of the function uσ at point (xP

1 , x
P
2 ),

the center of the cell P . The first derivative is approximated by the arithmetic
mean of the derivatives at points (xP

1 − hP

2
, xP

2 ) and (xP
1 + hP

2
, xP

2 ) as follows

∂uσ

∂x1
(xP

1 , x
P
2 ) ≈

1

2

[

∂uσ

∂x1
(xP

1 + hP

2
, xP

2 ) +
∂uσ

∂x1
(xP

1 − hP

2
, xP

2 )

]

The second derivative is approximated by the central difference of derivatives
at these points

∂2uσ

∂x2
1

(xP
1 , x

P
2 ) ≈

1

hP

[

∂uσ

∂x1
(xP

1 + hP

2
, xP

2 ) −
∂uσ

∂x1
(xP

1 − hP

2
, xP

2 )

]

The derivative at point (xP
1 − hP

2
, xP

2 ) may be approximated as follows
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∂uσ

∂x1

(xP
1 −

hP

2
, xP

2 ) ≈
1

2

[

uσ(xP
1 , x

Q
2 ) − uσ(xQ

1 , x
Q
2 )

1
2
(hP + hQ)

+
uσ(xP

1 , x
R
2 ) − uσ(xR

1 , x
R
2 )

1
2
(hP + hR)

]

Since (xP
1 , x

Q
2 ) and (xP

1 , x
R
2 ) are not the grid points, the values of the function

u at these points have to be interpolated. For that, we use simple constant
interpolation, it means, we assume that these values are equal to value of
function u at the point (xP

1 , x
P
2 ).

The value of the mixed derivative at point (xP
1 , x

P
2 ) is approximated by the

arithmetic mean of the mixed derivative values at all corners of the cell P .
We demonstrate how to approximate the value of the mixed derivative in the
upper left corner of the cell P

∂2uσ

∂x1∂x2
(xP

1 −
hP

2
, xP

2 +hP

2
) ≈

2

hP + hS

[

∂uσ

∂x1
(xS

1 − hS

2
, xS

2 ) −
∂uσ

∂x1
(xP

1 − hP

2
, xP

2 )

]

In a similar manner, we approximate the first and the second order partial
derivatives of a function uσ with respect to the variable x2.
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Numerical experiments

In this chapter, we perform experiments which aims to compare the criterion
∇uσ∇vρ that was introduced in Section 3.4 of Chapter 3, with the commonly
used magnitude of the smoothed image gradient |∇uσ|2 in application to edge
detection. In the second part, we present results of nonadaptive and adaptive
diffusion filtering using semi-implicit finite volume schemes derived in Section
4.2 of Chapter 4.

Experiments presented in this chapter have been performed with some real
and artificial images1. In all examples, we work with gray pictures with
intensity between 0 and 255. For implementation, we used Matlab ver. 5.3.

5.1 Edge detection

Let us recall definitions of function uσ and function vρ. We have

uσ := Gσ ∗ u

and
vρ := Gρ ∗ (−〈∇uσ,∇

2uσ∇uσ〉)

where Gσ and Gρ denote Gaussian kernel with the standard deviation equal
to σ and to ρ, respectively.

In order to roughly illustrate the difference between criterion |∇uσ|2 and
∇uσ∇vρ, we model one dimensional edge with a smooth function u(x) =
1 + tanh(10 x). The plot of this function is presented in Fig. 5.1.

1The test images presented in Fig. 5.12 and Fig. 5.16 are taken from the Institute of

Computer Science, University of Innsbruck.
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Fig. 5.1: Simple edge model

For simplicity, we neglect smoothing by a convolution with the Gaussian
kernel. Therefore, we can now easily derive explicit formulas for both criteria.
Its plots are presented in Fig. 5.2 and in Fig. 5.3. As we expected, in
the both cases the maxima of criterion indicate the center of our model
edge. However, in the case of real images, the problem of edge detection is
more complicated because of many local maxima. In order to approximate
a position of the edge points, we have to apply the threshold operator. This
implies that we have to determine some value for µ, such that for all points
x, at which the criterion is greater than µ, will lead to the set of edge points.
Of course, when choosing the value for µ, we should remember that the lower
a threshold, implies that more lines will be detected, and the results become
increasingly susceptible to noise, and also to picking out irrelevant features
from the image. Conversely, a high threshold may ignore subtle or segmented
lines.
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Fig. 5.2: Plot of (u′)2
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Fig. 5.3: Plot of u′v′

In the next part of this chapter, we present results of the three experiments
in order to compare the criteria ∇uσ∇vρ and |∇uσ|2 in application to edge
detection for the case of real images.
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In the first experiment, we would like to compare behavior of the both criteria
with respect to the presence of noise in an image. In Fig. 5.5, we see the true
image f perturbed by the additive noise with the normal distribution of mean
0 and standard deviation 255/2. In order to better illustrate the problem of
edge detection, we restrict ourself to the cross-sections of considered images
passing through its centers, although all calculations have been performed
for the two dimensional case.

Fig. 5.4: True image f Fig. 5.5: Noisy image u
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Fig. 5.6: Cross-section of f
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Fig. 5.7: Cross-section of u

To calculate the criteria |∇uσ|2 and ∇uσ∇vρ for a noisy image u, we applied
a smoothing by convolution with the Gaussian kernel with parameters σ =
ρ = 1. Plots in Fig. 5.8 and in Fig. 5.9 present cross-sections of the both
criteria and histograms are shown in Fig. 5.10 and in Fig. 5.11. The first
thing that should be noticed is that the criterion ∇uσ∇vρ is less sensitive to
large oscillations of image values that were introduced by noise. Due to this,
it is easier to choose the right threshold value without picking up irrelevant
edges.
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Fig. 5.8: Cross-section of |∇uσ|2

with σ = 1
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Fig. 5.9: Cross-section of ∇uσ∇vρ

with σ = ρ = 1
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Fig. 5.10: Histogram of |∇uσ|2
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Fig. 5.11: Histogram of ∇uσ∇vρ

The aim of the next experiment is to demonstrate the advantage of the
criterion ∇uσ∇vρ over |∇uσ|2 in the case when boundary of objects in an
image are blurred and not clearly defined. During the test, we consider the
image presented in Fig. 5.12.

Fig. 5.12: Input image u
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Fig. 5.13: Cross-section of u
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In Fig. 5.14 we see the edge maps obtained by thresholding of criterion |∇uσ|2

for three selected values of the threshold µ. The same parameters have been
used to obtain edge maps for criterion ∇uσ∇vρ . The results are presented
in Fig. 5.15. As we can see in Fig. 5.14, it is difficult or even impossible to
choose a value of the threshold µ, in way such that the boundaries of objects
in the image u would be detected with required precision. In Fig. 5.14 c, one
can see that the edge of the smaller circle is too thick and the edge of the
bigger circle is not detected at all. Alternatively, the image presented in Fig.
5.15 c, carried out with the same threshold value µ = 15 but for criterion
∇uσ∇vρ , gives more or less expected results.

Fig. 5.14: Edge map of |∇uσ|2 with σ = 0.1 and the threshold a) µ = 5, b)
µ = 10, c) µ = 15

Fig. 5.15: Edge map of ∇uσ∇vρ with σ = ρ = 0.1 and the threshold a)
µ = 5, b) µ = 10, c) µ = 15
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In the third experiment, we would like to demonstrate results of edge detec-
tion with respect to choice of various threshold values. During the test, we
calculate criteria |∇uσ|2 and ∇uσ∇vρ with parameters σ = ρ = 0.1 for the
image u presented in Fig. 5.16.

Fig. 5.16: Input image u
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Fig. 5.17: Cross-section of u

In Fig. 5.18 and 5.19 we present cross-sections of the both criteria.
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Fig. 5.18: Cross-section of |∇uσ|2

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

12

14
x 10

5

Fig. 5.19: Cross-section of ∇uσ∇vρ

We observe that the values of criterion |∇uσ|2 in the position of potential
edges are much greater than values of criterion ∇uσ∇vρ at these positions.
Furthermore, points for which the criterion is greater than 0 are more close
to the center of edges. We should also notice the criterion ∇uσ∇vρ is less
sensitive to the choice of the threshold value. In Fig. 5.21, we can observe
that for three different values of µ, the edge maps are nearly the same and
the threshold from the interval [0, 8 · 105] gives relatively good and more or
less similar results. Though, it should be noted that in the case of criterion
|∇uσ|2 , a reasonable value of a threshold can be chosen only from the interval
[103, 2 · 103].
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Fig. 5.20: Edge map of |∇uσ|2 with σ = 0.1 and the threshold a) µ = 10, b)
µ = 1000, c) µ = 2000

Fig. 5.21: Edge map of ∇uσ∇vρ with σ = ρ = 0.1 and the threshold a)
µ = 10, b) µ = 1000, c) µ = 2000
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5.2 Nonlinear isotropic diffusion filtering

In this section, we present results of isotropic diffusion filtering obtained by
the application of the two semi-implicit finite volume schemes introduced in
Section 4.2 of Chapter 4 for discretization of the Catté et al. model (2.8). In
every discrete time step, each of these schemes result in a linear system of
equations with a symmetric and strictly diagonally dominant matrix, which
guarantees existence of a unique solution. The number of unknowns in such
a system correspond to the number of cells in a grid. In the case of the
adaptive filtering, in each discrete time step, a grid is adapted to the local
image structure and a number of unknowns in the linear system is rapidly
reduced. In the case of nonadaptive grid, the number of cells is the same
in each iteration and is equal to the number of pixels in an image. In all
examples, we work with the diffusivity d defined by

d(s) :=
1

1 + s/µ

We consider two cases for each experiment: s =|∇uσ|2 and s = ∇uσ∇vρ.
The regularizing convolution with the Gaussian kernel is implemented via
the implicit finite volume scheme for linear diffusion.

Fig. 5.22: Input image f ∈ [0, 255], Ω = [0, 256]2

In Fig. 5.23, we present results of the nonadaptive isotropic diffusion filtering
applied to the image presented in Fig. 5.22, using |∇uσ|2 with the threshold
µ = 20, and ∇uσ∇vρ with the threshold µ = 50 as an edge detector.
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During the experiment, we have used the following parameters σ = ρ = 1,
τ = 1 and iter = 20. In both cases, the diffusion coefficient on the interface
of two neighboring cells is approximated by arithmetic averaging.

Fig. 5.23: Result of the isotropic diffusion filtering with the edge detector
a) |∇uσ|2 , b) ∇uσ∇vρ

Fig. 5.24: Edge map obtained by thresholding of a) |∇uσ|2 , b) ∇uσ∇vρ

In Fig. 5.24, we present edge maps obtained by thresholding of the criteria
|∇uσ|2 and ∇uσ∇vρ after the 20th iteration of the diffusion process. We
observe that the position of edges in Fig. 5.24 b is more accurate and close
to the center of the real edges. Owing to this, the boundaries obtained in the
result of filtering are more sharp, as presented in Fig. 5.23 b. Moreover, there
is less noise preserved at position of edges compare to the result presented in
Fig. 5.23 a. Similar imperfection could be observed in Fig. 2.5, in Chapter
2.
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In Fig. 5.25, we see the results of adaptive isotropic diffusion filtering using
semi-implicit finite volume scheme with the diffusion coefficient discretized
using arithmetic averaging. We have done two experiments. In the first, we
used |∇uσ|2 as the edge detector with threshold µ = 30 and in the second,
∇uσ∇vρ with threshold µ = 100. For both experiments, we used parameters
σ = ρ = 1, τ = 1 and iter = 10.

Fig. 5.25: Result of the adaptive isotropic diffusion filtering with arithmetic
averaging of the diffusivity and the edge detector a) |∇uσ|2 , b) ∇uσ∇vρ

Fig. 5.26: Adaptive grid corresponding to the results presented in Fig. 5.25
with a) 6037 cells, b) 6094 cells

In Fig. 5.26, we present adaptive grids corresponding to the results presented
in Fig. 5.25. Note that the input image used in filtering has size 256 × 256.
This means, that by the application of adaptive coarsening strategy, we were



5.2. Nonlinear isotropic diffusion filtering 85

able to reduce the number of grid cells and unknowns in the linear system,
from 65536 to around 6000.

The results carried out with the same parameters as in the previous experi-
ment, but for the case of the harmonic averaging of the diffusion coefficient
on interface of two cells are presented in Fig. 5.27

Fig. 5.27: Result of the adaptive isotropic diffusion filtering with harmonic
averaging of the diffusivity and the edge detector a) |∇uσ|2 , b) ∇uσ∇vρ

Fig. 5.28: Adaptive grid corresponding to the result presented in Fig. 5.27
with a) 10300 cells, b) 10156 cells

In Fig. 5.28, we present adaptive grids corresponding to the results presented
in Fig. 5.27. In Tab. 5.1, we see the number of cells for each iteration of the
adaptive isotropic diffusion filtering with respect to kind of averaging and
used edge detector.
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Iteration 0 1 2 3 4 5 6 7

B 65536 25987 14851 10186 8086 7276 6778 6433

A 65536 19288 12790 10024 8668 7951 7444 6925

C 65536 25987 17521 14620 13237 12214 11632 11284

D 65536 19288 14515 12961 12148 11614 11194 10780

Iteration 8 9 10

B 6250 6124 6037

A 6517 6298 6094

C 10969 10714 10300

D 10576 10396 10156

Tab. 5.1: Number of cells for each iteration of the adaptive isotropic diffusion
filtering. A: |∇uσ|2 and arithmetic averaging, B: ∇uσ∇vρ and arithmetic
averaging, C: |∇uσ|

2 and harmonic averaging, D: ∇uσ∇vρ and harmonic
averaging
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Conclusions

In this thesis, the problem of nonlinear diffusion filtering of images with pre-
serving and enhancing edges was theoretically and numerically investigated.
We considered the topological asymptotic expansion of the functional Jε, de-
fined in (3.91), with respect to change the diffusivity function αε, defined in
(3.5). We have proven that the asymptotic expansion

Jε(uε) − J0(u0) = ε2g(x) + o(ε2)

holds, and have derived the explicit form of its dominant term g for two
different shapes of the inhomogeneity Bε = εB. In the case B is a disk of
radius a, the explicit formula of the topological gradient g is given by

g(x) = (α− 1)
α

1 + α
πa2 |∇u0|

2

In the case when B is an arbitrary ellipse with semi-axes a and b, where
a < b, the topological gradient g is the matrix defined in (3.86). It has been
showen that g is minimal if and only if the eigenvector corresponding to the
greatest eigenvalue of this matrix is normal to the edge. Then, the value of
g can be calculated using the following formula

g(x) = (α− 1)
α(a+ b)

a + αb
πab |∇u0|

2

Recalling the solution of equation u0−f = ∆u0 can be regarded as an implicit
time discretization of the diffusion process with a single time step of size 1,
we can generalize the definition of g and instead of |∇u0|2 take |∇uσ|2, where
uσ := Gσ ∗ u.
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Moreover, we have proposed new (to knowledge of the author) formula for a
criterion that can be used to edge detection. This formula is given by

∇uσ∇vρ

where

vρ := Gρ ∗ (−〈∇uσ,∇
2uσ∇uσ〉)

We remark that if we would replace |∇uσ|2 in (2.8) by ∇uσ∇vρ, it would not
change the well-posedness of this problem (see detailed proof of Theorem 2.1
in Catté et al. [18]). The advantages of this criterion in application to edge
detection are confirmed based on numerical experiments in Chapter 5.

Furthermore, we have proposed the finite volume discretization for the Catté
et al. (2.8) and the Weickert (2.9) models. The proposed discretization is
based on the integro-interpolation method introduced by Samarskii in [56].
The numerical schemes have been derived for the case of uniform and nonuni-
form cell-centered grids of the computational domain Ω ⊂ R2. In order to
generate a nonuniform grid we applied the adaptive coarsening technique. In
Chapter 5, numerical results of application derived schemes for a nonlinear
isotopic diffusion filtering are presented.



Appendix A

Definitions and fundamental

theorems

Theorem A.1 (Gauss-Green theorem) Let u ∈ C1(Ω). Then

∫

Ω

∂u

∂xi
dx =

∫

∂Ω

uni ds (i = 1, ..., N),

where ni is the outward unit normal of ∂Ω.

Theorem A.2 (Integration by parts formula) Let u, v ∈ C1(Ω). Then

∫

Ω

∂u

∂xi
v dx = −

∫

Ω

u
∂v

∂xi
dx+

∫

∂Ω

uvni ds (i = 1, ..., N),

where ni is the outward unit normal of ∂Ω.

Theorem A.3 (Green’s formulas) Let u, v ∈ C2(Ω). Then

(i)
∫

Ω

∆u dx =

∫

∂Ω

∂u

∂n
ds

(ii)
∫

Ω

∇u · ∇v dx = −

∫

Ω

u∆v dx+

∫

∂Ω

∂v

∂n
u ds
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(iii)
∫

Ω

u∆v − v∆u dx =

∫

∂Ω

u
∂v

∂n
ds−

∫

∂Ω

v
∂u

∂n
ds

Theorem A.4 (Hölder inequality) Assume 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1.

Then, if u ∈ Lp(Ω) and v ∈ Lq(Ω), we have

∫

Ω

|uv| dx ≤ ||u||Lp(Ω)||v||Lq(Ω)

Theorem A.5 (Minkowski inequality) Assume 1 ≤ p ≤ ∞ and u, v ∈
Lp(Ω). Then

||u+ v||Lp(Ω) ≤ ||u||Lp(Ω) + ||v||Lp(Ω)

Theorem A.6 (Poincaré inequality) Let Ω ⊂ R
N be a bounded open domain

and u ∈W 1,p
0 (Ω) with 1 ≤ p ≤ N . Then

‖u‖Lq ≤ C‖∇u‖Lp with q ∈

[

1,
Np

N − p

]

for some constant C depending only on p, N , q and Ω.

Definition A.1 (Continuous embedding) Let V , W be Banach spaces. We
say V is continuously embedded in W and write

V →֒ W

if V ⊂W and there exist a constant C such that for all u ∈ V

‖u‖W ≤ C‖u‖V

Theorem A.7 (Sobolev embedding theorem) Let Ω ⊂ RN be a bounded
open domain with C1 boundary and let 1 ≤ p ≤ ∞. We have

(i) If 1 ≤ p ≤ N then W 1,p(Ω) →֒ Lq(Ω), 1
q
≥ 1

p
+ 1

N
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(ii) If p = N then W 1,p(Ω) →֒ Lq(Ω), 1 ≤ q <∞

(iii) If p > N then W 1,p(Ω) →֒ C(Ω̄)

Definition A.2 Let V be a Banach space with norm || · ||V . A bilinear form

a : V × V → R

is called continuous if there exists α > 0 with

|a(u, v)| ≤ α||u||V ||v||V ∀u, v ∈ V (A.1)

a is called coercive if there exists a constant β > 0 with

a(u, v) ≥ β||u||2V ∀u ∈ V (A.2)

Theorem A.8 (Lax-Milgram theorem) Let V be a Hilbert space and let a :
V × V → R be a continious, coercive bilinear form, i.e. (A.1) and (A.2)
hold. Then for any bounded linear functional l on V the variational equation

a(u, v) = l(v)

has unique solution u ∈ V for all v ∈ V

Theorem A.9 (Riesz representation theorem) Let V be a Hilbert space and
let l ∈ V ′. Then there exist a unique v ∈ V such that l(v) = 〈u, v〉V for all
v ∈ V .

Definition A.3 (Well-posedness) When a minimization problem or a PDE
admits a unique solution that depends continuously on the data, we say that
the minimization problem or the PDE is well-posed in the sense of Hadamard.
If existence, uniqueness, or continuity fails, we say that the minimization
problem or the PDE is ill-posed.
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List of notations

R Real numbers

R+ Positive real numbers, R+ = {x ∈ R | x > 0}

N Natural numbers, N = {1, 2, 3, ...}

RN N -dimensional Euclidean space

SN×N Space of N -dimensional real symmetric matrices

Ω Domain in RN

Ω̄ Closure of the domain Ω

∂Ω Boundary of the domain Ω

∇u Gradient of u in the classical sense ∇u =
(

∂u
∂x1
, ..., ∂u

∂xN

)

∇ · u Divergence operator ∇ · u =
∑N

i=1
∂u
∂xi

∇2u Hessian matrix of u in the classical sense (∇2u)i,j = ∂2u
∂xi∂xj

∆u Laplacian operator ∆u =
∑N

i=1
∂2u
∂x2

i

aT Vector transposed to a vector a = (a1, ..., aN) ∈ R
N

AT Matrix transposed to a matrix A

a⊥ Vector perpendicular to a vector a

I0 Modified Bessel function of the first kind

K0 Modified Bessel function of the second kind

Φ Fundamental solution of the Laplace equation ∆u = 0 defined by
Φ(x, y) := − 1

2π
ln(|x− y|) for x, y ∈ R2 and x 6= y

Γ Fundamental solution of the equation u − ∆u = 0 defined by
Γ(x, y) := 1

2π
K0(|x− y|) for x, y ∈ R2 and x 6= y

Gσ Gaussian kernel defined by Gσ(x, y) := 1
2πσ

exp(− |x−y|
2σ2 ) for x, y ∈

R2

f ∗ g Convolution of f and g

ln x Natural logarthm of x

|x| Absolute value of x

‖u‖V Norm of u in space V



94 List of notations

Cp
0(Ω) Space of real valued functions, p continiously differen-

tiable with compact support

C∞
0 (Ω) Space of real valued functions, infinitely continiously dif-

ferentiable with compact support

Lp(Ω) Space of Lebesgue measurable functions u such that

‖u‖Lp(Ω) :=

(
∫

Ω

|u|p dx

)1/p

<∞ for 1 ≤ p ≤ ∞

L∞(Ω) Space of Lebesgue measurable functions u such that

‖u‖L∞(Ω) := ess supΩ|u| <∞

Lp
loc(Ω) {u : Ω → R | u ∈ Lp(U) for each U ⊂⊂ Ω}

W k,p(Ω) With 1 ≤ p <∞. Sobolev space of functions u ∈ Lp(Ω)
such that for each multiindex α with |α| ≤ k, derivative
Dα exist in the weak sense and belongs to Lp(Ω). In
W k,p(Ω) we define the norm

‖u‖W k,p(Ω) :=





∑

|α|≤k

∫

Ω

|Dαu|p dx





1/p

In particular, we write H1(Ω) = W 1,2(Ω). Thus

‖u‖H1(Ω) :=

(∫

Ω

u2 dx+

∫

Ω

Du ·Dudx

)1/2

C([0, T ];L2(Ω)) Space of continuous functions u : [0, T ] → L2(Ω) with
the norm

‖u‖C([0,T ];L2(Ω)) := max
[0,T ]

‖u(t)‖L2(Ω)

L2([0, T ];H1(Ω)) Space of functions u measurable on [0, T ] for the
Lebesgue measure dt with the range in H1(Ω), such that

‖u‖L2([0,T ];H1(Ω)) :=

(∫ T

0

‖u(t)‖2
H1(Ω) dt

)1/2

<∞
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Ωm Uniform grid composed of square cells P ∈ Ωm with a
side length hP = 2m−1h

Ωm+l Nonuniform grid composed of square cells P ∈ Ωm+l

with a side length hP ∈ {2m−1h, 2m+1h, . . . , 2lh} for
m, l ∈ N and m < l

N (P ) Set of neighbours of the cell P

hP Side length of the cell P

|P ∩Q| Length of interface between cells P and Q, |P ∩ Q| =
min(hP , hQ)

(xP
1 , x

P
2 ) Center of the cell P

µ Threshold

σ, ρ Standard deviations

τ Time discretization step

iter Number of iterations
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[8] S. Amstutz and H. Andrä. A new algorithm for topology optimization
using a level-set method. Journal of Computational Physics, 216:573–
588, 2006.

[9] S. Amstutz, B. Samet, and N. Dominguez. Sensitivity analysis with
respect to the insertion of small inhomogeneities. Proceedings of ECCO-
MAS, 2004.



98 Bibliography

[10] G. Aubert and P. Kornprobst. Mathematical Problems in Image Process-
ing: Partial Differential Equations and the Calculus of Variations (sec-
ond edition), volume 147 of Applied Mathematical Sciences. Springer-
Verlag, 2006.

[11] D. Auroux, M. Masmoudi, and L. Belaid. Image restoration and classi-
fication by topological asymptotic expansion. Variational Formulations
in Mechanics: Theory and Applications, 2006.
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